GNU Linux-libre 4.19.314-gnu1
[releases.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *md_dev;
235         struct dm_pool_metadata *pmd;
236
237         dm_block_t low_water_blocks;
238         uint32_t sectors_per_block;
239         int sectors_per_block_shift;
240
241         struct pool_features pf;
242         bool low_water_triggered:1;     /* A dm event has been sent */
243         bool suspended:1;
244         bool out_of_data_space:1;
245
246         struct dm_bio_prison *prison;
247         struct dm_kcopyd_client *copier;
248
249         struct work_struct worker;
250         struct workqueue_struct *wq;
251         struct throttle throttle;
252         struct delayed_work waker;
253         struct delayed_work no_space_timeout;
254
255         unsigned long last_commit_jiffies;
256         unsigned ref_count;
257
258         spinlock_t lock;
259         struct bio_list deferred_flush_bios;
260         struct bio_list deferred_flush_completions;
261         struct list_head prepared_mappings;
262         struct list_head prepared_discards;
263         struct list_head prepared_discards_pt2;
264         struct list_head active_thins;
265
266         struct dm_deferred_set *shared_read_ds;
267         struct dm_deferred_set *all_io_ds;
268
269         struct dm_thin_new_mapping *next_mapping;
270
271         process_bio_fn process_bio;
272         process_bio_fn process_discard;
273
274         process_cell_fn process_cell;
275         process_cell_fn process_discard_cell;
276
277         process_mapping_fn process_prepared_mapping;
278         process_mapping_fn process_prepared_discard;
279         process_mapping_fn process_prepared_discard_pt2;
280
281         struct dm_bio_prison_cell **cell_sort_array;
282
283         mempool_t mapping_pool;
284 };
285
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287
288 static enum pool_mode get_pool_mode(struct pool *pool)
289 {
290         return pool->pf.mode;
291 }
292
293 static void notify_of_pool_mode_change(struct pool *pool)
294 {
295         const char *descs[] = {
296                 "write",
297                 "out-of-data-space",
298                 "read-only",
299                 "read-only",
300                 "fail"
301         };
302         const char *extra_desc = NULL;
303         enum pool_mode mode = get_pool_mode(pool);
304
305         if (mode == PM_OUT_OF_DATA_SPACE) {
306                 if (!pool->pf.error_if_no_space)
307                         extra_desc = " (queue IO)";
308                 else
309                         extra_desc = " (error IO)";
310         }
311
312         dm_table_event(pool->ti->table);
313         DMINFO("%s: switching pool to %s%s mode",
314                dm_device_name(pool->pool_md),
315                descs[(int)mode], extra_desc ? : "");
316 }
317
318 /*
319  * Target context for a pool.
320  */
321 struct pool_c {
322         struct dm_target *ti;
323         struct pool *pool;
324         struct dm_dev *data_dev;
325         struct dm_dev *metadata_dev;
326         struct dm_target_callbacks callbacks;
327
328         dm_block_t low_water_blocks;
329         struct pool_features requested_pf; /* Features requested during table load */
330         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
331 };
332
333 /*
334  * Target context for a thin.
335  */
336 struct thin_c {
337         struct list_head list;
338         struct dm_dev *pool_dev;
339         struct dm_dev *origin_dev;
340         sector_t origin_size;
341         dm_thin_id dev_id;
342
343         struct pool *pool;
344         struct dm_thin_device *td;
345         struct mapped_device *thin_md;
346
347         bool requeue_mode:1;
348         spinlock_t lock;
349         struct list_head deferred_cells;
350         struct bio_list deferred_bio_list;
351         struct bio_list retry_on_resume_list;
352         struct rb_root sort_bio_list; /* sorted list of deferred bios */
353
354         /*
355          * Ensures the thin is not destroyed until the worker has finished
356          * iterating the active_thins list.
357          */
358         atomic_t refcount;
359         struct completion can_destroy;
360 };
361
362 /*----------------------------------------------------------------*/
363
364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366         return pool->sectors_per_block_shift >= 0;
367 }
368
369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371         return block_size_is_power_of_two(pool) ?
372                 (b << pool->sectors_per_block_shift) :
373                 (b * pool->sectors_per_block);
374 }
375
376 /*----------------------------------------------------------------*/
377
378 struct discard_op {
379         struct thin_c *tc;
380         struct blk_plug plug;
381         struct bio *parent_bio;
382         struct bio *bio;
383 };
384
385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387         BUG_ON(!parent);
388
389         op->tc = tc;
390         blk_start_plug(&op->plug);
391         op->parent_bio = parent;
392         op->bio = NULL;
393 }
394
395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397         struct thin_c *tc = op->tc;
398         sector_t s = block_to_sectors(tc->pool, data_b);
399         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400
401         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
402                                       GFP_NOWAIT, 0, &op->bio);
403 }
404
405 static void end_discard(struct discard_op *op, int r)
406 {
407         if (op->bio) {
408                 /*
409                  * Even if one of the calls to issue_discard failed, we
410                  * need to wait for the chain to complete.
411                  */
412                 bio_chain(op->bio, op->parent_bio);
413                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
414                 submit_bio(op->bio);
415         }
416
417         blk_finish_plug(&op->plug);
418
419         /*
420          * Even if r is set, there could be sub discards in flight that we
421          * need to wait for.
422          */
423         if (r && !op->parent_bio->bi_status)
424                 op->parent_bio->bi_status = errno_to_blk_status(r);
425         bio_endio(op->parent_bio);
426 }
427
428 /*----------------------------------------------------------------*/
429
430 /*
431  * wake_worker() is used when new work is queued and when pool_resume is
432  * ready to continue deferred IO processing.
433  */
434 static void wake_worker(struct pool *pool)
435 {
436         queue_work(pool->wq, &pool->worker);
437 }
438
439 /*----------------------------------------------------------------*/
440
441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
442                       struct dm_bio_prison_cell **cell_result)
443 {
444         int r;
445         struct dm_bio_prison_cell *cell_prealloc;
446
447         /*
448          * Allocate a cell from the prison's mempool.
449          * This might block but it can't fail.
450          */
451         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
452
453         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
454         if (r)
455                 /*
456                  * We reused an old cell; we can get rid of
457                  * the new one.
458                  */
459                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
460
461         return r;
462 }
463
464 static void cell_release(struct pool *pool,
465                          struct dm_bio_prison_cell *cell,
466                          struct bio_list *bios)
467 {
468         dm_cell_release(pool->prison, cell, bios);
469         dm_bio_prison_free_cell(pool->prison, cell);
470 }
471
472 static void cell_visit_release(struct pool *pool,
473                                void (*fn)(void *, struct dm_bio_prison_cell *),
474                                void *context,
475                                struct dm_bio_prison_cell *cell)
476 {
477         dm_cell_visit_release(pool->prison, fn, context, cell);
478         dm_bio_prison_free_cell(pool->prison, cell);
479 }
480
481 static void cell_release_no_holder(struct pool *pool,
482                                    struct dm_bio_prison_cell *cell,
483                                    struct bio_list *bios)
484 {
485         dm_cell_release_no_holder(pool->prison, cell, bios);
486         dm_bio_prison_free_cell(pool->prison, cell);
487 }
488
489 static void cell_error_with_code(struct pool *pool,
490                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
491 {
492         dm_cell_error(pool->prison, cell, error_code);
493         dm_bio_prison_free_cell(pool->prison, cell);
494 }
495
496 static blk_status_t get_pool_io_error_code(struct pool *pool)
497 {
498         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
499 }
500
501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
502 {
503         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
504 }
505
506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
507 {
508         cell_error_with_code(pool, cell, 0);
509 }
510
511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
512 {
513         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
514 }
515
516 /*----------------------------------------------------------------*/
517
518 /*
519  * A global list of pools that uses a struct mapped_device as a key.
520  */
521 static struct dm_thin_pool_table {
522         struct mutex mutex;
523         struct list_head pools;
524 } dm_thin_pool_table;
525
526 static void pool_table_init(void)
527 {
528         mutex_init(&dm_thin_pool_table.mutex);
529         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
530 }
531
532 static void pool_table_exit(void)
533 {
534         mutex_destroy(&dm_thin_pool_table.mutex);
535 }
536
537 static void __pool_table_insert(struct pool *pool)
538 {
539         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540         list_add(&pool->list, &dm_thin_pool_table.pools);
541 }
542
543 static void __pool_table_remove(struct pool *pool)
544 {
545         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
546         list_del(&pool->list);
547 }
548
549 static struct pool *__pool_table_lookup(struct mapped_device *md)
550 {
551         struct pool *pool = NULL, *tmp;
552
553         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
554
555         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
556                 if (tmp->pool_md == md) {
557                         pool = tmp;
558                         break;
559                 }
560         }
561
562         return pool;
563 }
564
565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
566 {
567         struct pool *pool = NULL, *tmp;
568
569         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572                 if (tmp->md_dev == md_dev) {
573                         pool = tmp;
574                         break;
575                 }
576         }
577
578         return pool;
579 }
580
581 /*----------------------------------------------------------------*/
582
583 struct dm_thin_endio_hook {
584         struct thin_c *tc;
585         struct dm_deferred_entry *shared_read_entry;
586         struct dm_deferred_entry *all_io_entry;
587         struct dm_thin_new_mapping *overwrite_mapping;
588         struct rb_node rb_node;
589         struct dm_bio_prison_cell *cell;
590 };
591
592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
593 {
594         bio_list_merge(bios, master);
595         bio_list_init(master);
596 }
597
598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
599 {
600         struct bio *bio;
601
602         while ((bio = bio_list_pop(bios))) {
603                 bio->bi_status = error;
604                 bio_endio(bio);
605         }
606 }
607
608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
609                 blk_status_t error)
610 {
611         struct bio_list bios;
612         unsigned long flags;
613
614         bio_list_init(&bios);
615
616         spin_lock_irqsave(&tc->lock, flags);
617         __merge_bio_list(&bios, master);
618         spin_unlock_irqrestore(&tc->lock, flags);
619
620         error_bio_list(&bios, error);
621 }
622
623 static void requeue_deferred_cells(struct thin_c *tc)
624 {
625         struct pool *pool = tc->pool;
626         unsigned long flags;
627         struct list_head cells;
628         struct dm_bio_prison_cell *cell, *tmp;
629
630         INIT_LIST_HEAD(&cells);
631
632         spin_lock_irqsave(&tc->lock, flags);
633         list_splice_init(&tc->deferred_cells, &cells);
634         spin_unlock_irqrestore(&tc->lock, flags);
635
636         list_for_each_entry_safe(cell, tmp, &cells, user_list)
637                 cell_requeue(pool, cell);
638 }
639
640 static void requeue_io(struct thin_c *tc)
641 {
642         struct bio_list bios;
643         unsigned long flags;
644
645         bio_list_init(&bios);
646
647         spin_lock_irqsave(&tc->lock, flags);
648         __merge_bio_list(&bios, &tc->deferred_bio_list);
649         __merge_bio_list(&bios, &tc->retry_on_resume_list);
650         spin_unlock_irqrestore(&tc->lock, flags);
651
652         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653         requeue_deferred_cells(tc);
654 }
655
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658         struct thin_c *tc;
659
660         rcu_read_lock();
661         list_for_each_entry_rcu(tc, &pool->active_thins, list)
662                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663         rcu_read_unlock();
664 }
665
666 static void error_retry_list(struct pool *pool)
667 {
668         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680         struct pool *pool = tc->pool;
681         sector_t block_nr = bio->bi_iter.bi_sector;
682
683         if (block_size_is_power_of_two(pool))
684                 block_nr >>= pool->sectors_per_block_shift;
685         else
686                 (void) sector_div(block_nr, pool->sectors_per_block);
687
688         return block_nr;
689 }
690
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695                                 dm_block_t *begin, dm_block_t *end)
696 {
697         struct pool *pool = tc->pool;
698         sector_t b = bio->bi_iter.bi_sector;
699         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700
701         b += pool->sectors_per_block - 1ull; /* so we round up */
702
703         if (block_size_is_power_of_two(pool)) {
704                 b >>= pool->sectors_per_block_shift;
705                 e >>= pool->sectors_per_block_shift;
706         } else {
707                 (void) sector_div(b, pool->sectors_per_block);
708                 (void) sector_div(e, pool->sectors_per_block);
709         }
710
711         if (e < b)
712                 /* Can happen if the bio is within a single block. */
713                 e = b;
714
715         *begin = b;
716         *end = e;
717 }
718
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
720 {
721         struct pool *pool = tc->pool;
722         sector_t bi_sector = bio->bi_iter.bi_sector;
723
724         bio_set_dev(bio, tc->pool_dev->bdev);
725         if (block_size_is_power_of_two(pool))
726                 bio->bi_iter.bi_sector =
727                         (block << pool->sectors_per_block_shift) |
728                         (bi_sector & (pool->sectors_per_block - 1));
729         else
730                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731                                  sector_div(bi_sector, pool->sectors_per_block);
732 }
733
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
735 {
736         bio_set_dev(bio, tc->origin_dev->bdev);
737 }
738
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
740 {
741         return op_is_flush(bio->bi_opf) &&
742                 dm_thin_changed_this_transaction(tc->td);
743 }
744
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
746 {
747         struct dm_thin_endio_hook *h;
748
749         if (bio_op(bio) == REQ_OP_DISCARD)
750                 return;
751
752         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 }
755
756 static void issue(struct thin_c *tc, struct bio *bio)
757 {
758         struct pool *pool = tc->pool;
759         unsigned long flags;
760
761         if (!bio_triggers_commit(tc, bio)) {
762                 generic_make_request(bio);
763                 return;
764         }
765
766         /*
767          * Complete bio with an error if earlier I/O caused changes to
768          * the metadata that can't be committed e.g, due to I/O errors
769          * on the metadata device.
770          */
771         if (dm_thin_aborted_changes(tc->td)) {
772                 bio_io_error(bio);
773                 return;
774         }
775
776         /*
777          * Batch together any bios that trigger commits and then issue a
778          * single commit for them in process_deferred_bios().
779          */
780         spin_lock_irqsave(&pool->lock, flags);
781         bio_list_add(&pool->deferred_flush_bios, bio);
782         spin_unlock_irqrestore(&pool->lock, flags);
783 }
784
785 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
786 {
787         remap_to_origin(tc, bio);
788         issue(tc, bio);
789 }
790
791 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
792                             dm_block_t block)
793 {
794         remap(tc, bio, block);
795         issue(tc, bio);
796 }
797
798 /*----------------------------------------------------------------*/
799
800 /*
801  * Bio endio functions.
802  */
803 struct dm_thin_new_mapping {
804         struct list_head list;
805
806         bool pass_discard:1;
807         bool maybe_shared:1;
808
809         /*
810          * Track quiescing, copying and zeroing preparation actions.  When this
811          * counter hits zero the block is prepared and can be inserted into the
812          * btree.
813          */
814         atomic_t prepare_actions;
815
816         blk_status_t status;
817         struct thin_c *tc;
818         dm_block_t virt_begin, virt_end;
819         dm_block_t data_block;
820         struct dm_bio_prison_cell *cell;
821
822         /*
823          * If the bio covers the whole area of a block then we can avoid
824          * zeroing or copying.  Instead this bio is hooked.  The bio will
825          * still be in the cell, so care has to be taken to avoid issuing
826          * the bio twice.
827          */
828         struct bio *bio;
829         bio_end_io_t *saved_bi_end_io;
830 };
831
832 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
833 {
834         struct pool *pool = m->tc->pool;
835
836         if (atomic_dec_and_test(&m->prepare_actions)) {
837                 list_add_tail(&m->list, &pool->prepared_mappings);
838                 wake_worker(pool);
839         }
840 }
841
842 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
843 {
844         unsigned long flags;
845         struct pool *pool = m->tc->pool;
846
847         spin_lock_irqsave(&pool->lock, flags);
848         __complete_mapping_preparation(m);
849         spin_unlock_irqrestore(&pool->lock, flags);
850 }
851
852 static void copy_complete(int read_err, unsigned long write_err, void *context)
853 {
854         struct dm_thin_new_mapping *m = context;
855
856         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
857         complete_mapping_preparation(m);
858 }
859
860 static void overwrite_endio(struct bio *bio)
861 {
862         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863         struct dm_thin_new_mapping *m = h->overwrite_mapping;
864
865         bio->bi_end_io = m->saved_bi_end_io;
866
867         m->status = bio->bi_status;
868         complete_mapping_preparation(m);
869 }
870
871 /*----------------------------------------------------------------*/
872
873 /*
874  * Workqueue.
875  */
876
877 /*
878  * Prepared mapping jobs.
879  */
880
881 /*
882  * This sends the bios in the cell, except the original holder, back
883  * to the deferred_bios list.
884  */
885 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
886 {
887         struct pool *pool = tc->pool;
888         unsigned long flags;
889
890         spin_lock_irqsave(&tc->lock, flags);
891         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
892         spin_unlock_irqrestore(&tc->lock, flags);
893
894         wake_worker(pool);
895 }
896
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898
899 struct remap_info {
900         struct thin_c *tc;
901         struct bio_list defer_bios;
902         struct bio_list issue_bios;
903 };
904
905 static void __inc_remap_and_issue_cell(void *context,
906                                        struct dm_bio_prison_cell *cell)
907 {
908         struct remap_info *info = context;
909         struct bio *bio;
910
911         while ((bio = bio_list_pop(&cell->bios))) {
912                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913                         bio_list_add(&info->defer_bios, bio);
914                 else {
915                         inc_all_io_entry(info->tc->pool, bio);
916
917                         /*
918                          * We can't issue the bios with the bio prison lock
919                          * held, so we add them to a list to issue on
920                          * return from this function.
921                          */
922                         bio_list_add(&info->issue_bios, bio);
923                 }
924         }
925 }
926
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928                                      struct dm_bio_prison_cell *cell,
929                                      dm_block_t block)
930 {
931         struct bio *bio;
932         struct remap_info info;
933
934         info.tc = tc;
935         bio_list_init(&info.defer_bios);
936         bio_list_init(&info.issue_bios);
937
938         /*
939          * We have to be careful to inc any bios we're about to issue
940          * before the cell is released, and avoid a race with new bios
941          * being added to the cell.
942          */
943         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944                            &info, cell);
945
946         while ((bio = bio_list_pop(&info.defer_bios)))
947                 thin_defer_bio(tc, bio);
948
949         while ((bio = bio_list_pop(&info.issue_bios)))
950                 remap_and_issue(info.tc, bio, block);
951 }
952
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955         cell_error(m->tc->pool, m->cell);
956         list_del(&m->list);
957         mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962         struct pool *pool = tc->pool;
963         unsigned long flags;
964
965         /*
966          * If the bio has the REQ_FUA flag set we must commit the metadata
967          * before signaling its completion.
968          */
969         if (!bio_triggers_commit(tc, bio)) {
970                 bio_endio(bio);
971                 return;
972         }
973
974         /*
975          * Complete bio with an error if earlier I/O caused changes to the
976          * metadata that can't be committed, e.g, due to I/O errors on the
977          * metadata device.
978          */
979         if (dm_thin_aborted_changes(tc->td)) {
980                 bio_io_error(bio);
981                 return;
982         }
983
984         /*
985          * Batch together any bios that trigger commits and then issue a
986          * single commit for them in process_deferred_bios().
987          */
988         spin_lock_irqsave(&pool->lock, flags);
989         bio_list_add(&pool->deferred_flush_completions, bio);
990         spin_unlock_irqrestore(&pool->lock, flags);
991 }
992
993 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 {
995         struct thin_c *tc = m->tc;
996         struct pool *pool = tc->pool;
997         struct bio *bio = m->bio;
998         int r;
999
1000         if (m->status) {
1001                 cell_error(pool, m->cell);
1002                 goto out;
1003         }
1004
1005         /*
1006          * Commit the prepared block into the mapping btree.
1007          * Any I/O for this block arriving after this point will get
1008          * remapped to it directly.
1009          */
1010         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011         if (r) {
1012                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013                 cell_error(pool, m->cell);
1014                 goto out;
1015         }
1016
1017         /*
1018          * Release any bios held while the block was being provisioned.
1019          * If we are processing a write bio that completely covers the block,
1020          * we already processed it so can ignore it now when processing
1021          * the bios in the cell.
1022          */
1023         if (bio) {
1024                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025                 complete_overwrite_bio(tc, bio);
1026         } else {
1027                 inc_all_io_entry(tc->pool, m->cell->holder);
1028                 remap_and_issue(tc, m->cell->holder, m->data_block);
1029                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030         }
1031
1032 out:
1033         list_del(&m->list);
1034         mempool_free(m, &pool->mapping_pool);
1035 }
1036
1037 /*----------------------------------------------------------------*/
1038
1039 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 {
1041         struct thin_c *tc = m->tc;
1042         if (m->cell)
1043                 cell_defer_no_holder(tc, m->cell);
1044         mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049         bio_io_error(m->bio);
1050         free_discard_mapping(m);
1051 }
1052
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055         bio_endio(m->bio);
1056         free_discard_mapping(m);
1057 }
1058
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061         int r;
1062         struct thin_c *tc = m->tc;
1063
1064         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065         if (r) {
1066                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067                 bio_io_error(m->bio);
1068         } else
1069                 bio_endio(m->bio);
1070
1071         cell_defer_no_holder(tc, m->cell);
1072         mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074
1075 /*----------------------------------------------------------------*/
1076
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078                                                    struct bio *discard_parent)
1079 {
1080         /*
1081          * We've already unmapped this range of blocks, but before we
1082          * passdown we have to check that these blocks are now unused.
1083          */
1084         int r = 0;
1085         bool shared = true;
1086         struct thin_c *tc = m->tc;
1087         struct pool *pool = tc->pool;
1088         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089         struct discard_op op;
1090
1091         begin_discard(&op, tc, discard_parent);
1092         while (b != end) {
1093                 /* find start of unmapped run */
1094                 for (; b < end; b++) {
1095                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096                         if (r)
1097                                 goto out;
1098
1099                         if (!shared)
1100                                 break;
1101                 }
1102
1103                 if (b == end)
1104                         break;
1105
1106                 /* find end of run */
1107                 for (e = b + 1; e != end; e++) {
1108                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109                         if (r)
1110                                 goto out;
1111
1112                         if (shared)
1113                                 break;
1114                 }
1115
1116                 r = issue_discard(&op, b, e);
1117                 if (r)
1118                         goto out;
1119
1120                 b = e;
1121         }
1122 out:
1123         end_discard(&op, r);
1124 }
1125
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128         unsigned long flags;
1129         struct pool *pool = m->tc->pool;
1130
1131         spin_lock_irqsave(&pool->lock, flags);
1132         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133         spin_unlock_irqrestore(&pool->lock, flags);
1134         wake_worker(pool);
1135 }
1136
1137 static void passdown_endio(struct bio *bio)
1138 {
1139         /*
1140          * It doesn't matter if the passdown discard failed, we still want
1141          * to unmap (we ignore err).
1142          */
1143         queue_passdown_pt2(bio->bi_private);
1144         bio_put(bio);
1145 }
1146
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149         int r;
1150         struct thin_c *tc = m->tc;
1151         struct pool *pool = tc->pool;
1152         struct bio *discard_parent;
1153         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155         /*
1156          * Only this thread allocates blocks, so we can be sure that the
1157          * newly unmapped blocks will not be allocated before the end of
1158          * the function.
1159          */
1160         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161         if (r) {
1162                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163                 bio_io_error(m->bio);
1164                 cell_defer_no_holder(tc, m->cell);
1165                 mempool_free(m, &pool->mapping_pool);
1166                 return;
1167         }
1168
1169         /*
1170          * Increment the unmapped blocks.  This prevents a race between the
1171          * passdown io and reallocation of freed blocks.
1172          */
1173         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174         if (r) {
1175                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176                 bio_io_error(m->bio);
1177                 cell_defer_no_holder(tc, m->cell);
1178                 mempool_free(m, &pool->mapping_pool);
1179                 return;
1180         }
1181
1182         discard_parent = bio_alloc(GFP_NOIO, 1);
1183         if (!discard_parent) {
1184                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185                        dm_device_name(tc->pool->pool_md));
1186                 queue_passdown_pt2(m);
1187
1188         } else {
1189                 discard_parent->bi_end_io = passdown_endio;
1190                 discard_parent->bi_private = m;
1191
1192                 if (m->maybe_shared)
1193                         passdown_double_checking_shared_status(m, discard_parent);
1194                 else {
1195                         struct discard_op op;
1196
1197                         begin_discard(&op, tc, discard_parent);
1198                         r = issue_discard(&op, m->data_block, data_end);
1199                         end_discard(&op, r);
1200                 }
1201         }
1202 }
1203
1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205 {
1206         int r;
1207         struct thin_c *tc = m->tc;
1208         struct pool *pool = tc->pool;
1209
1210         /*
1211          * The passdown has completed, so now we can decrement all those
1212          * unmapped blocks.
1213          */
1214         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215                                    m->data_block + (m->virt_end - m->virt_begin));
1216         if (r) {
1217                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218                 bio_io_error(m->bio);
1219         } else
1220                 bio_endio(m->bio);
1221
1222         cell_defer_no_holder(tc, m->cell);
1223         mempool_free(m, &pool->mapping_pool);
1224 }
1225
1226 static void process_prepared(struct pool *pool, struct list_head *head,
1227                              process_mapping_fn *fn)
1228 {
1229         unsigned long flags;
1230         struct list_head maps;
1231         struct dm_thin_new_mapping *m, *tmp;
1232
1233         INIT_LIST_HEAD(&maps);
1234         spin_lock_irqsave(&pool->lock, flags);
1235         list_splice_init(head, &maps);
1236         spin_unlock_irqrestore(&pool->lock, flags);
1237
1238         list_for_each_entry_safe(m, tmp, &maps, list)
1239                 (*fn)(m);
1240 }
1241
1242 /*
1243  * Deferred bio jobs.
1244  */
1245 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1246 {
1247         return bio->bi_iter.bi_size ==
1248                 (pool->sectors_per_block << SECTOR_SHIFT);
1249 }
1250
1251 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1252 {
1253         return (bio_data_dir(bio) == WRITE) &&
1254                 io_overlaps_block(pool, bio);
1255 }
1256
1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1258                                bio_end_io_t *fn)
1259 {
1260         *save = bio->bi_end_io;
1261         bio->bi_end_io = fn;
1262 }
1263
1264 static int ensure_next_mapping(struct pool *pool)
1265 {
1266         if (pool->next_mapping)
1267                 return 0;
1268
1269         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1270
1271         return pool->next_mapping ? 0 : -ENOMEM;
1272 }
1273
1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1275 {
1276         struct dm_thin_new_mapping *m = pool->next_mapping;
1277
1278         BUG_ON(!pool->next_mapping);
1279
1280         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1281         INIT_LIST_HEAD(&m->list);
1282         m->bio = NULL;
1283
1284         pool->next_mapping = NULL;
1285
1286         return m;
1287 }
1288
1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1290                     sector_t begin, sector_t end)
1291 {
1292         struct dm_io_region to;
1293
1294         to.bdev = tc->pool_dev->bdev;
1295         to.sector = begin;
1296         to.count = end - begin;
1297
1298         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1299 }
1300
1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1302                                       dm_block_t data_begin,
1303                                       struct dm_thin_new_mapping *m)
1304 {
1305         struct pool *pool = tc->pool;
1306         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1307
1308         h->overwrite_mapping = m;
1309         m->bio = bio;
1310         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1311         inc_all_io_entry(pool, bio);
1312         remap_and_issue(tc, bio, data_begin);
1313 }
1314
1315 /*
1316  * A partial copy also needs to zero the uncopied region.
1317  */
1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1319                           struct dm_dev *origin, dm_block_t data_origin,
1320                           dm_block_t data_dest,
1321                           struct dm_bio_prison_cell *cell, struct bio *bio,
1322                           sector_t len)
1323 {
1324         struct pool *pool = tc->pool;
1325         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326
1327         m->tc = tc;
1328         m->virt_begin = virt_block;
1329         m->virt_end = virt_block + 1u;
1330         m->data_block = data_dest;
1331         m->cell = cell;
1332
1333         /*
1334          * quiesce action + copy action + an extra reference held for the
1335          * duration of this function (we may need to inc later for a
1336          * partial zero).
1337          */
1338         atomic_set(&m->prepare_actions, 3);
1339
1340         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341                 complete_mapping_preparation(m); /* already quiesced */
1342
1343         /*
1344          * IO to pool_dev remaps to the pool target's data_dev.
1345          *
1346          * If the whole block of data is being overwritten, we can issue the
1347          * bio immediately. Otherwise we use kcopyd to clone the data first.
1348          */
1349         if (io_overwrites_block(pool, bio))
1350                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1351         else {
1352                 struct dm_io_region from, to;
1353
1354                 from.bdev = origin->bdev;
1355                 from.sector = data_origin * pool->sectors_per_block;
1356                 from.count = len;
1357
1358                 to.bdev = tc->pool_dev->bdev;
1359                 to.sector = data_dest * pool->sectors_per_block;
1360                 to.count = len;
1361
1362                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363                                0, copy_complete, m);
1364
1365                 /*
1366                  * Do we need to zero a tail region?
1367                  */
1368                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1369                         atomic_inc(&m->prepare_actions);
1370                         ll_zero(tc, m,
1371                                 data_dest * pool->sectors_per_block + len,
1372                                 (data_dest + 1) * pool->sectors_per_block);
1373                 }
1374         }
1375
1376         complete_mapping_preparation(m); /* drop our ref */
1377 }
1378
1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1380                                    dm_block_t data_origin, dm_block_t data_dest,
1381                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1382 {
1383         schedule_copy(tc, virt_block, tc->pool_dev,
1384                       data_origin, data_dest, cell, bio,
1385                       tc->pool->sectors_per_block);
1386 }
1387
1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1389                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1390                           struct bio *bio)
1391 {
1392         struct pool *pool = tc->pool;
1393         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1394
1395         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1396         m->tc = tc;
1397         m->virt_begin = virt_block;
1398         m->virt_end = virt_block + 1u;
1399         m->data_block = data_block;
1400         m->cell = cell;
1401
1402         /*
1403          * If the whole block of data is being overwritten or we are not
1404          * zeroing pre-existing data, we can issue the bio immediately.
1405          * Otherwise we use kcopyd to zero the data first.
1406          */
1407         if (pool->pf.zero_new_blocks) {
1408                 if (io_overwrites_block(pool, bio))
1409                         remap_and_issue_overwrite(tc, bio, data_block, m);
1410                 else
1411                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1412                                 (data_block + 1) * pool->sectors_per_block);
1413         } else
1414                 process_prepared_mapping(m);
1415 }
1416
1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1418                                    dm_block_t data_dest,
1419                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1420 {
1421         struct pool *pool = tc->pool;
1422         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1423         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1424
1425         if (virt_block_end <= tc->origin_size)
1426                 schedule_copy(tc, virt_block, tc->origin_dev,
1427                               virt_block, data_dest, cell, bio,
1428                               pool->sectors_per_block);
1429
1430         else if (virt_block_begin < tc->origin_size)
1431                 schedule_copy(tc, virt_block, tc->origin_dev,
1432                               virt_block, data_dest, cell, bio,
1433                               tc->origin_size - virt_block_begin);
1434
1435         else
1436                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1437 }
1438
1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1440
1441 static void requeue_bios(struct pool *pool);
1442
1443 static bool is_read_only_pool_mode(enum pool_mode mode)
1444 {
1445         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1446 }
1447
1448 static bool is_read_only(struct pool *pool)
1449 {
1450         return is_read_only_pool_mode(get_pool_mode(pool));
1451 }
1452
1453 static void check_for_metadata_space(struct pool *pool)
1454 {
1455         int r;
1456         const char *ooms_reason = NULL;
1457         dm_block_t nr_free;
1458
1459         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1460         if (r)
1461                 ooms_reason = "Could not get free metadata blocks";
1462         else if (!nr_free)
1463                 ooms_reason = "No free metadata blocks";
1464
1465         if (ooms_reason && !is_read_only(pool)) {
1466                 DMERR("%s", ooms_reason);
1467                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1468         }
1469 }
1470
1471 static void check_for_data_space(struct pool *pool)
1472 {
1473         int r;
1474         dm_block_t nr_free;
1475
1476         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1477                 return;
1478
1479         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1480         if (r)
1481                 return;
1482
1483         if (nr_free) {
1484                 set_pool_mode(pool, PM_WRITE);
1485                 requeue_bios(pool);
1486         }
1487 }
1488
1489 /*
1490  * A non-zero return indicates read_only or fail_io mode.
1491  * Many callers don't care about the return value.
1492  */
1493 static int commit(struct pool *pool)
1494 {
1495         int r;
1496
1497         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1498                 return -EINVAL;
1499
1500         r = dm_pool_commit_metadata(pool->pmd);
1501         if (r)
1502                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1503         else {
1504                 check_for_metadata_space(pool);
1505                 check_for_data_space(pool);
1506         }
1507
1508         return r;
1509 }
1510
1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1512 {
1513         unsigned long flags;
1514
1515         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1516                 DMWARN("%s: reached low water mark for data device: sending event.",
1517                        dm_device_name(pool->pool_md));
1518                 spin_lock_irqsave(&pool->lock, flags);
1519                 pool->low_water_triggered = true;
1520                 spin_unlock_irqrestore(&pool->lock, flags);
1521                 dm_table_event(pool->ti->table);
1522         }
1523 }
1524
1525 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1526 {
1527         int r;
1528         dm_block_t free_blocks;
1529         struct pool *pool = tc->pool;
1530
1531         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1532                 return -EINVAL;
1533
1534         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1535         if (r) {
1536                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1537                 return r;
1538         }
1539
1540         check_low_water_mark(pool, free_blocks);
1541
1542         if (!free_blocks) {
1543                 /*
1544                  * Try to commit to see if that will free up some
1545                  * more space.
1546                  */
1547                 r = commit(pool);
1548                 if (r)
1549                         return r;
1550
1551                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1552                 if (r) {
1553                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1554                         return r;
1555                 }
1556
1557                 if (!free_blocks) {
1558                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559                         return -ENOSPC;
1560                 }
1561         }
1562
1563         r = dm_pool_alloc_data_block(pool->pmd, result);
1564         if (r) {
1565                 if (r == -ENOSPC)
1566                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1567                 else
1568                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1569                 return r;
1570         }
1571
1572         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1573         if (r) {
1574                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1575                 return r;
1576         }
1577
1578         if (!free_blocks) {
1579                 /* Let's commit before we use up the metadata reserve. */
1580                 r = commit(pool);
1581                 if (r)
1582                         return r;
1583         }
1584
1585         return 0;
1586 }
1587
1588 /*
1589  * If we have run out of space, queue bios until the device is
1590  * resumed, presumably after having been reloaded with more space.
1591  */
1592 static void retry_on_resume(struct bio *bio)
1593 {
1594         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1595         struct thin_c *tc = h->tc;
1596         unsigned long flags;
1597
1598         spin_lock_irqsave(&tc->lock, flags);
1599         bio_list_add(&tc->retry_on_resume_list, bio);
1600         spin_unlock_irqrestore(&tc->lock, flags);
1601 }
1602
1603 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1604 {
1605         enum pool_mode m = get_pool_mode(pool);
1606
1607         switch (m) {
1608         case PM_WRITE:
1609                 /* Shouldn't get here */
1610                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1611                 return BLK_STS_IOERR;
1612
1613         case PM_OUT_OF_DATA_SPACE:
1614                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1615
1616         case PM_OUT_OF_METADATA_SPACE:
1617         case PM_READ_ONLY:
1618         case PM_FAIL:
1619                 return BLK_STS_IOERR;
1620         default:
1621                 /* Shouldn't get here */
1622                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1623                 return BLK_STS_IOERR;
1624         }
1625 }
1626
1627 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1628 {
1629         blk_status_t error = should_error_unserviceable_bio(pool);
1630
1631         if (error) {
1632                 bio->bi_status = error;
1633                 bio_endio(bio);
1634         } else
1635                 retry_on_resume(bio);
1636 }
1637
1638 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1639 {
1640         struct bio *bio;
1641         struct bio_list bios;
1642         blk_status_t error;
1643
1644         error = should_error_unserviceable_bio(pool);
1645         if (error) {
1646                 cell_error_with_code(pool, cell, error);
1647                 return;
1648         }
1649
1650         bio_list_init(&bios);
1651         cell_release(pool, cell, &bios);
1652
1653         while ((bio = bio_list_pop(&bios)))
1654                 retry_on_resume(bio);
1655 }
1656
1657 static void process_discard_cell_no_passdown(struct thin_c *tc,
1658                                              struct dm_bio_prison_cell *virt_cell)
1659 {
1660         struct pool *pool = tc->pool;
1661         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1662
1663         /*
1664          * We don't need to lock the data blocks, since there's no
1665          * passdown.  We only lock data blocks for allocation and breaking sharing.
1666          */
1667         m->tc = tc;
1668         m->virt_begin = virt_cell->key.block_begin;
1669         m->virt_end = virt_cell->key.block_end;
1670         m->cell = virt_cell;
1671         m->bio = virt_cell->holder;
1672
1673         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1674                 pool->process_prepared_discard(m);
1675 }
1676
1677 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1678                                  struct bio *bio)
1679 {
1680         struct pool *pool = tc->pool;
1681
1682         int r;
1683         bool maybe_shared;
1684         struct dm_cell_key data_key;
1685         struct dm_bio_prison_cell *data_cell;
1686         struct dm_thin_new_mapping *m;
1687         dm_block_t virt_begin, virt_end, data_begin;
1688
1689         while (begin != end) {
1690                 r = ensure_next_mapping(pool);
1691                 if (r)
1692                         /* we did our best */
1693                         return;
1694
1695                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1696                                               &data_begin, &maybe_shared);
1697                 if (r)
1698                         /*
1699                          * Silently fail, letting any mappings we've
1700                          * created complete.
1701                          */
1702                         break;
1703
1704                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1705                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1706                         /* contention, we'll give up with this range */
1707                         begin = virt_end;
1708                         continue;
1709                 }
1710
1711                 /*
1712                  * IO may still be going to the destination block.  We must
1713                  * quiesce before we can do the removal.
1714                  */
1715                 m = get_next_mapping(pool);
1716                 m->tc = tc;
1717                 m->maybe_shared = maybe_shared;
1718                 m->virt_begin = virt_begin;
1719                 m->virt_end = virt_end;
1720                 m->data_block = data_begin;
1721                 m->cell = data_cell;
1722                 m->bio = bio;
1723
1724                 /*
1725                  * The parent bio must not complete before sub discard bios are
1726                  * chained to it (see end_discard's bio_chain)!
1727                  *
1728                  * This per-mapping bi_remaining increment is paired with
1729                  * the implicit decrement that occurs via bio_endio() in
1730                  * end_discard().
1731                  */
1732                 bio_inc_remaining(bio);
1733                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1734                         pool->process_prepared_discard(m);
1735
1736                 begin = virt_end;
1737         }
1738 }
1739
1740 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1741 {
1742         struct bio *bio = virt_cell->holder;
1743         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1744
1745         /*
1746          * The virt_cell will only get freed once the origin bio completes.
1747          * This means it will remain locked while all the individual
1748          * passdown bios are in flight.
1749          */
1750         h->cell = virt_cell;
1751         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1752
1753         /*
1754          * We complete the bio now, knowing that the bi_remaining field
1755          * will prevent completion until the sub range discards have
1756          * completed.
1757          */
1758         bio_endio(bio);
1759 }
1760
1761 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1762 {
1763         dm_block_t begin, end;
1764         struct dm_cell_key virt_key;
1765         struct dm_bio_prison_cell *virt_cell;
1766
1767         get_bio_block_range(tc, bio, &begin, &end);
1768         if (begin == end) {
1769                 /*
1770                  * The discard covers less than a block.
1771                  */
1772                 bio_endio(bio);
1773                 return;
1774         }
1775
1776         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1777         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1778                 /*
1779                  * Potential starvation issue: We're relying on the
1780                  * fs/application being well behaved, and not trying to
1781                  * send IO to a region at the same time as discarding it.
1782                  * If they do this persistently then it's possible this
1783                  * cell will never be granted.
1784                  */
1785                 return;
1786
1787         tc->pool->process_discard_cell(tc, virt_cell);
1788 }
1789
1790 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1791                           struct dm_cell_key *key,
1792                           struct dm_thin_lookup_result *lookup_result,
1793                           struct dm_bio_prison_cell *cell)
1794 {
1795         int r;
1796         dm_block_t data_block;
1797         struct pool *pool = tc->pool;
1798
1799         r = alloc_data_block(tc, &data_block);
1800         switch (r) {
1801         case 0:
1802                 schedule_internal_copy(tc, block, lookup_result->block,
1803                                        data_block, cell, bio);
1804                 break;
1805
1806         case -ENOSPC:
1807                 retry_bios_on_resume(pool, cell);
1808                 break;
1809
1810         default:
1811                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1812                             __func__, r);
1813                 cell_error(pool, cell);
1814                 break;
1815         }
1816 }
1817
1818 static void __remap_and_issue_shared_cell(void *context,
1819                                           struct dm_bio_prison_cell *cell)
1820 {
1821         struct remap_info *info = context;
1822         struct bio *bio;
1823
1824         while ((bio = bio_list_pop(&cell->bios))) {
1825                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1826                     bio_op(bio) == REQ_OP_DISCARD)
1827                         bio_list_add(&info->defer_bios, bio);
1828                 else {
1829                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1830
1831                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1832                         inc_all_io_entry(info->tc->pool, bio);
1833                         bio_list_add(&info->issue_bios, bio);
1834                 }
1835         }
1836 }
1837
1838 static void remap_and_issue_shared_cell(struct thin_c *tc,
1839                                         struct dm_bio_prison_cell *cell,
1840                                         dm_block_t block)
1841 {
1842         struct bio *bio;
1843         struct remap_info info;
1844
1845         info.tc = tc;
1846         bio_list_init(&info.defer_bios);
1847         bio_list_init(&info.issue_bios);
1848
1849         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1850                            &info, cell);
1851
1852         while ((bio = bio_list_pop(&info.defer_bios)))
1853                 thin_defer_bio(tc, bio);
1854
1855         while ((bio = bio_list_pop(&info.issue_bios)))
1856                 remap_and_issue(tc, bio, block);
1857 }
1858
1859 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1860                                dm_block_t block,
1861                                struct dm_thin_lookup_result *lookup_result,
1862                                struct dm_bio_prison_cell *virt_cell)
1863 {
1864         struct dm_bio_prison_cell *data_cell;
1865         struct pool *pool = tc->pool;
1866         struct dm_cell_key key;
1867
1868         /*
1869          * If cell is already occupied, then sharing is already in the process
1870          * of being broken so we have nothing further to do here.
1871          */
1872         build_data_key(tc->td, lookup_result->block, &key);
1873         if (bio_detain(pool, &key, bio, &data_cell)) {
1874                 cell_defer_no_holder(tc, virt_cell);
1875                 return;
1876         }
1877
1878         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1879                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1880                 cell_defer_no_holder(tc, virt_cell);
1881         } else {
1882                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1883
1884                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1885                 inc_all_io_entry(pool, bio);
1886                 remap_and_issue(tc, bio, lookup_result->block);
1887
1888                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1889                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1890         }
1891 }
1892
1893 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1894                             struct dm_bio_prison_cell *cell)
1895 {
1896         int r;
1897         dm_block_t data_block;
1898         struct pool *pool = tc->pool;
1899
1900         /*
1901          * Remap empty bios (flushes) immediately, without provisioning.
1902          */
1903         if (!bio->bi_iter.bi_size) {
1904                 inc_all_io_entry(pool, bio);
1905                 cell_defer_no_holder(tc, cell);
1906
1907                 remap_and_issue(tc, bio, 0);
1908                 return;
1909         }
1910
1911         /*
1912          * Fill read bios with zeroes and complete them immediately.
1913          */
1914         if (bio_data_dir(bio) == READ) {
1915                 zero_fill_bio(bio);
1916                 cell_defer_no_holder(tc, cell);
1917                 bio_endio(bio);
1918                 return;
1919         }
1920
1921         r = alloc_data_block(tc, &data_block);
1922         switch (r) {
1923         case 0:
1924                 if (tc->origin_dev)
1925                         schedule_external_copy(tc, block, data_block, cell, bio);
1926                 else
1927                         schedule_zero(tc, block, data_block, cell, bio);
1928                 break;
1929
1930         case -ENOSPC:
1931                 retry_bios_on_resume(pool, cell);
1932                 break;
1933
1934         default:
1935                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1936                             __func__, r);
1937                 cell_error(pool, cell);
1938                 break;
1939         }
1940 }
1941
1942 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943 {
1944         int r;
1945         struct pool *pool = tc->pool;
1946         struct bio *bio = cell->holder;
1947         dm_block_t block = get_bio_block(tc, bio);
1948         struct dm_thin_lookup_result lookup_result;
1949
1950         if (tc->requeue_mode) {
1951                 cell_requeue(pool, cell);
1952                 return;
1953         }
1954
1955         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1956         switch (r) {
1957         case 0:
1958                 if (lookup_result.shared)
1959                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1960                 else {
1961                         inc_all_io_entry(pool, bio);
1962                         remap_and_issue(tc, bio, lookup_result.block);
1963                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1964                 }
1965                 break;
1966
1967         case -ENODATA:
1968                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1969                         inc_all_io_entry(pool, bio);
1970                         cell_defer_no_holder(tc, cell);
1971
1972                         if (bio_end_sector(bio) <= tc->origin_size)
1973                                 remap_to_origin_and_issue(tc, bio);
1974
1975                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1976                                 zero_fill_bio(bio);
1977                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1978                                 remap_to_origin_and_issue(tc, bio);
1979
1980                         } else {
1981                                 zero_fill_bio(bio);
1982                                 bio_endio(bio);
1983                         }
1984                 } else
1985                         provision_block(tc, bio, block, cell);
1986                 break;
1987
1988         default:
1989                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1990                             __func__, r);
1991                 cell_defer_no_holder(tc, cell);
1992                 bio_io_error(bio);
1993                 break;
1994         }
1995 }
1996
1997 static void process_bio(struct thin_c *tc, struct bio *bio)
1998 {
1999         struct pool *pool = tc->pool;
2000         dm_block_t block = get_bio_block(tc, bio);
2001         struct dm_bio_prison_cell *cell;
2002         struct dm_cell_key key;
2003
2004         /*
2005          * If cell is already occupied, then the block is already
2006          * being provisioned so we have nothing further to do here.
2007          */
2008         build_virtual_key(tc->td, block, &key);
2009         if (bio_detain(pool, &key, bio, &cell))
2010                 return;
2011
2012         process_cell(tc, cell);
2013 }
2014
2015 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2016                                     struct dm_bio_prison_cell *cell)
2017 {
2018         int r;
2019         int rw = bio_data_dir(bio);
2020         dm_block_t block = get_bio_block(tc, bio);
2021         struct dm_thin_lookup_result lookup_result;
2022
2023         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2024         switch (r) {
2025         case 0:
2026                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2027                         handle_unserviceable_bio(tc->pool, bio);
2028                         if (cell)
2029                                 cell_defer_no_holder(tc, cell);
2030                 } else {
2031                         inc_all_io_entry(tc->pool, bio);
2032                         remap_and_issue(tc, bio, lookup_result.block);
2033                         if (cell)
2034                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2035                 }
2036                 break;
2037
2038         case -ENODATA:
2039                 if (cell)
2040                         cell_defer_no_holder(tc, cell);
2041                 if (rw != READ) {
2042                         handle_unserviceable_bio(tc->pool, bio);
2043                         break;
2044                 }
2045
2046                 if (tc->origin_dev) {
2047                         inc_all_io_entry(tc->pool, bio);
2048                         remap_to_origin_and_issue(tc, bio);
2049                         break;
2050                 }
2051
2052                 zero_fill_bio(bio);
2053                 bio_endio(bio);
2054                 break;
2055
2056         default:
2057                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2058                             __func__, r);
2059                 if (cell)
2060                         cell_defer_no_holder(tc, cell);
2061                 bio_io_error(bio);
2062                 break;
2063         }
2064 }
2065
2066 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2067 {
2068         __process_bio_read_only(tc, bio, NULL);
2069 }
2070
2071 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2072 {
2073         __process_bio_read_only(tc, cell->holder, cell);
2074 }
2075
2076 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2077 {
2078         bio_endio(bio);
2079 }
2080
2081 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2082 {
2083         bio_io_error(bio);
2084 }
2085
2086 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2087 {
2088         cell_success(tc->pool, cell);
2089 }
2090
2091 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2092 {
2093         cell_error(tc->pool, cell);
2094 }
2095
2096 /*
2097  * FIXME: should we also commit due to size of transaction, measured in
2098  * metadata blocks?
2099  */
2100 static int need_commit_due_to_time(struct pool *pool)
2101 {
2102         return !time_in_range(jiffies, pool->last_commit_jiffies,
2103                               pool->last_commit_jiffies + COMMIT_PERIOD);
2104 }
2105
2106 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2107 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2108
2109 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2110 {
2111         struct rb_node **rbp, *parent;
2112         struct dm_thin_endio_hook *pbd;
2113         sector_t bi_sector = bio->bi_iter.bi_sector;
2114
2115         rbp = &tc->sort_bio_list.rb_node;
2116         parent = NULL;
2117         while (*rbp) {
2118                 parent = *rbp;
2119                 pbd = thin_pbd(parent);
2120
2121                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2122                         rbp = &(*rbp)->rb_left;
2123                 else
2124                         rbp = &(*rbp)->rb_right;
2125         }
2126
2127         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2128         rb_link_node(&pbd->rb_node, parent, rbp);
2129         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2130 }
2131
2132 static void __extract_sorted_bios(struct thin_c *tc)
2133 {
2134         struct rb_node *node;
2135         struct dm_thin_endio_hook *pbd;
2136         struct bio *bio;
2137
2138         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2139                 pbd = thin_pbd(node);
2140                 bio = thin_bio(pbd);
2141
2142                 bio_list_add(&tc->deferred_bio_list, bio);
2143                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2144         }
2145
2146         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2147 }
2148
2149 static void __sort_thin_deferred_bios(struct thin_c *tc)
2150 {
2151         struct bio *bio;
2152         struct bio_list bios;
2153
2154         bio_list_init(&bios);
2155         bio_list_merge(&bios, &tc->deferred_bio_list);
2156         bio_list_init(&tc->deferred_bio_list);
2157
2158         /* Sort deferred_bio_list using rb-tree */
2159         while ((bio = bio_list_pop(&bios)))
2160                 __thin_bio_rb_add(tc, bio);
2161
2162         /*
2163          * Transfer the sorted bios in sort_bio_list back to
2164          * deferred_bio_list to allow lockless submission of
2165          * all bios.
2166          */
2167         __extract_sorted_bios(tc);
2168 }
2169
2170 static void process_thin_deferred_bios(struct thin_c *tc)
2171 {
2172         struct pool *pool = tc->pool;
2173         unsigned long flags;
2174         struct bio *bio;
2175         struct bio_list bios;
2176         struct blk_plug plug;
2177         unsigned count = 0;
2178
2179         if (tc->requeue_mode) {
2180                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2181                                 BLK_STS_DM_REQUEUE);
2182                 return;
2183         }
2184
2185         bio_list_init(&bios);
2186
2187         spin_lock_irqsave(&tc->lock, flags);
2188
2189         if (bio_list_empty(&tc->deferred_bio_list)) {
2190                 spin_unlock_irqrestore(&tc->lock, flags);
2191                 return;
2192         }
2193
2194         __sort_thin_deferred_bios(tc);
2195
2196         bio_list_merge(&bios, &tc->deferred_bio_list);
2197         bio_list_init(&tc->deferred_bio_list);
2198
2199         spin_unlock_irqrestore(&tc->lock, flags);
2200
2201         blk_start_plug(&plug);
2202         while ((bio = bio_list_pop(&bios))) {
2203                 /*
2204                  * If we've got no free new_mapping structs, and processing
2205                  * this bio might require one, we pause until there are some
2206                  * prepared mappings to process.
2207                  */
2208                 if (ensure_next_mapping(pool)) {
2209                         spin_lock_irqsave(&tc->lock, flags);
2210                         bio_list_add(&tc->deferred_bio_list, bio);
2211                         bio_list_merge(&tc->deferred_bio_list, &bios);
2212                         spin_unlock_irqrestore(&tc->lock, flags);
2213                         break;
2214                 }
2215
2216                 if (bio_op(bio) == REQ_OP_DISCARD)
2217                         pool->process_discard(tc, bio);
2218                 else
2219                         pool->process_bio(tc, bio);
2220
2221                 if ((count++ & 127) == 0) {
2222                         throttle_work_update(&pool->throttle);
2223                         dm_pool_issue_prefetches(pool->pmd);
2224                 }
2225                 cond_resched();
2226         }
2227         blk_finish_plug(&plug);
2228 }
2229
2230 static int cmp_cells(const void *lhs, const void *rhs)
2231 {
2232         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2233         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2234
2235         BUG_ON(!lhs_cell->holder);
2236         BUG_ON(!rhs_cell->holder);
2237
2238         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2239                 return -1;
2240
2241         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2242                 return 1;
2243
2244         return 0;
2245 }
2246
2247 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2248 {
2249         unsigned count = 0;
2250         struct dm_bio_prison_cell *cell, *tmp;
2251
2252         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2253                 if (count >= CELL_SORT_ARRAY_SIZE)
2254                         break;
2255
2256                 pool->cell_sort_array[count++] = cell;
2257                 list_del(&cell->user_list);
2258         }
2259
2260         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2261
2262         return count;
2263 }
2264
2265 static void process_thin_deferred_cells(struct thin_c *tc)
2266 {
2267         struct pool *pool = tc->pool;
2268         unsigned long flags;
2269         struct list_head cells;
2270         struct dm_bio_prison_cell *cell;
2271         unsigned i, j, count;
2272
2273         INIT_LIST_HEAD(&cells);
2274
2275         spin_lock_irqsave(&tc->lock, flags);
2276         list_splice_init(&tc->deferred_cells, &cells);
2277         spin_unlock_irqrestore(&tc->lock, flags);
2278
2279         if (list_empty(&cells))
2280                 return;
2281
2282         do {
2283                 count = sort_cells(tc->pool, &cells);
2284
2285                 for (i = 0; i < count; i++) {
2286                         cell = pool->cell_sort_array[i];
2287                         BUG_ON(!cell->holder);
2288
2289                         /*
2290                          * If we've got no free new_mapping structs, and processing
2291                          * this bio might require one, we pause until there are some
2292                          * prepared mappings to process.
2293                          */
2294                         if (ensure_next_mapping(pool)) {
2295                                 for (j = i; j < count; j++)
2296                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2297
2298                                 spin_lock_irqsave(&tc->lock, flags);
2299                                 list_splice(&cells, &tc->deferred_cells);
2300                                 spin_unlock_irqrestore(&tc->lock, flags);
2301                                 return;
2302                         }
2303
2304                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2305                                 pool->process_discard_cell(tc, cell);
2306                         else
2307                                 pool->process_cell(tc, cell);
2308                 }
2309                 cond_resched();
2310         } while (!list_empty(&cells));
2311 }
2312
2313 static void thin_get(struct thin_c *tc);
2314 static void thin_put(struct thin_c *tc);
2315
2316 /*
2317  * We can't hold rcu_read_lock() around code that can block.  So we
2318  * find a thin with the rcu lock held; bump a refcount; then drop
2319  * the lock.
2320  */
2321 static struct thin_c *get_first_thin(struct pool *pool)
2322 {
2323         struct thin_c *tc = NULL;
2324
2325         rcu_read_lock();
2326         if (!list_empty(&pool->active_thins)) {
2327                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2328                 thin_get(tc);
2329         }
2330         rcu_read_unlock();
2331
2332         return tc;
2333 }
2334
2335 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2336 {
2337         struct thin_c *old_tc = tc;
2338
2339         rcu_read_lock();
2340         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2341                 thin_get(tc);
2342                 thin_put(old_tc);
2343                 rcu_read_unlock();
2344                 return tc;
2345         }
2346         thin_put(old_tc);
2347         rcu_read_unlock();
2348
2349         return NULL;
2350 }
2351
2352 static void process_deferred_bios(struct pool *pool)
2353 {
2354         unsigned long flags;
2355         struct bio *bio;
2356         struct bio_list bios, bio_completions;
2357         struct thin_c *tc;
2358
2359         tc = get_first_thin(pool);
2360         while (tc) {
2361                 process_thin_deferred_cells(tc);
2362                 process_thin_deferred_bios(tc);
2363                 tc = get_next_thin(pool, tc);
2364         }
2365
2366         /*
2367          * If there are any deferred flush bios, we must commit the metadata
2368          * before issuing them or signaling their completion.
2369          */
2370         bio_list_init(&bios);
2371         bio_list_init(&bio_completions);
2372
2373         spin_lock_irqsave(&pool->lock, flags);
2374         bio_list_merge(&bios, &pool->deferred_flush_bios);
2375         bio_list_init(&pool->deferred_flush_bios);
2376
2377         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2378         bio_list_init(&pool->deferred_flush_completions);
2379         spin_unlock_irqrestore(&pool->lock, flags);
2380
2381         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2382             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2383                 return;
2384
2385         if (commit(pool)) {
2386                 bio_list_merge(&bios, &bio_completions);
2387
2388                 while ((bio = bio_list_pop(&bios)))
2389                         bio_io_error(bio);
2390                 return;
2391         }
2392         pool->last_commit_jiffies = jiffies;
2393
2394         while ((bio = bio_list_pop(&bio_completions)))
2395                 bio_endio(bio);
2396
2397         while ((bio = bio_list_pop(&bios)))
2398                 generic_make_request(bio);
2399 }
2400
2401 static void do_worker(struct work_struct *ws)
2402 {
2403         struct pool *pool = container_of(ws, struct pool, worker);
2404
2405         throttle_work_start(&pool->throttle);
2406         dm_pool_issue_prefetches(pool->pmd);
2407         throttle_work_update(&pool->throttle);
2408         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2409         throttle_work_update(&pool->throttle);
2410         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2411         throttle_work_update(&pool->throttle);
2412         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2413         throttle_work_update(&pool->throttle);
2414         process_deferred_bios(pool);
2415         throttle_work_complete(&pool->throttle);
2416 }
2417
2418 /*
2419  * We want to commit periodically so that not too much
2420  * unwritten data builds up.
2421  */
2422 static void do_waker(struct work_struct *ws)
2423 {
2424         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2425         wake_worker(pool);
2426         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2427 }
2428
2429 /*
2430  * We're holding onto IO to allow userland time to react.  After the
2431  * timeout either the pool will have been resized (and thus back in
2432  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2433  */
2434 static void do_no_space_timeout(struct work_struct *ws)
2435 {
2436         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2437                                          no_space_timeout);
2438
2439         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2440                 pool->pf.error_if_no_space = true;
2441                 notify_of_pool_mode_change(pool);
2442                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2443         }
2444 }
2445
2446 /*----------------------------------------------------------------*/
2447
2448 struct pool_work {
2449         struct work_struct worker;
2450         struct completion complete;
2451 };
2452
2453 static struct pool_work *to_pool_work(struct work_struct *ws)
2454 {
2455         return container_of(ws, struct pool_work, worker);
2456 }
2457
2458 static void pool_work_complete(struct pool_work *pw)
2459 {
2460         complete(&pw->complete);
2461 }
2462
2463 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2464                            void (*fn)(struct work_struct *))
2465 {
2466         INIT_WORK_ONSTACK(&pw->worker, fn);
2467         init_completion(&pw->complete);
2468         queue_work(pool->wq, &pw->worker);
2469         wait_for_completion(&pw->complete);
2470 }
2471
2472 /*----------------------------------------------------------------*/
2473
2474 struct noflush_work {
2475         struct pool_work pw;
2476         struct thin_c *tc;
2477 };
2478
2479 static struct noflush_work *to_noflush(struct work_struct *ws)
2480 {
2481         return container_of(to_pool_work(ws), struct noflush_work, pw);
2482 }
2483
2484 static void do_noflush_start(struct work_struct *ws)
2485 {
2486         struct noflush_work *w = to_noflush(ws);
2487         w->tc->requeue_mode = true;
2488         requeue_io(w->tc);
2489         pool_work_complete(&w->pw);
2490 }
2491
2492 static void do_noflush_stop(struct work_struct *ws)
2493 {
2494         struct noflush_work *w = to_noflush(ws);
2495         w->tc->requeue_mode = false;
2496         pool_work_complete(&w->pw);
2497 }
2498
2499 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2500 {
2501         struct noflush_work w;
2502
2503         w.tc = tc;
2504         pool_work_wait(&w.pw, tc->pool, fn);
2505 }
2506
2507 /*----------------------------------------------------------------*/
2508
2509 static bool passdown_enabled(struct pool_c *pt)
2510 {
2511         return pt->adjusted_pf.discard_passdown;
2512 }
2513
2514 static void set_discard_callbacks(struct pool *pool)
2515 {
2516         struct pool_c *pt = pool->ti->private;
2517
2518         if (passdown_enabled(pt)) {
2519                 pool->process_discard_cell = process_discard_cell_passdown;
2520                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2521                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2522         } else {
2523                 pool->process_discard_cell = process_discard_cell_no_passdown;
2524                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2525         }
2526 }
2527
2528 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2529 {
2530         struct pool_c *pt = pool->ti->private;
2531         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2532         enum pool_mode old_mode = get_pool_mode(pool);
2533         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2534
2535         /*
2536          * Never allow the pool to transition to PM_WRITE mode if user
2537          * intervention is required to verify metadata and data consistency.
2538          */
2539         if (new_mode == PM_WRITE && needs_check) {
2540                 DMERR("%s: unable to switch pool to write mode until repaired.",
2541                       dm_device_name(pool->pool_md));
2542                 if (old_mode != new_mode)
2543                         new_mode = old_mode;
2544                 else
2545                         new_mode = PM_READ_ONLY;
2546         }
2547         /*
2548          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2549          * not going to recover without a thin_repair.  So we never let the
2550          * pool move out of the old mode.
2551          */
2552         if (old_mode == PM_FAIL)
2553                 new_mode = old_mode;
2554
2555         switch (new_mode) {
2556         case PM_FAIL:
2557                 dm_pool_metadata_read_only(pool->pmd);
2558                 pool->process_bio = process_bio_fail;
2559                 pool->process_discard = process_bio_fail;
2560                 pool->process_cell = process_cell_fail;
2561                 pool->process_discard_cell = process_cell_fail;
2562                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2563                 pool->process_prepared_discard = process_prepared_discard_fail;
2564
2565                 error_retry_list(pool);
2566                 break;
2567
2568         case PM_OUT_OF_METADATA_SPACE:
2569         case PM_READ_ONLY:
2570                 dm_pool_metadata_read_only(pool->pmd);
2571                 pool->process_bio = process_bio_read_only;
2572                 pool->process_discard = process_bio_success;
2573                 pool->process_cell = process_cell_read_only;
2574                 pool->process_discard_cell = process_cell_success;
2575                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2576                 pool->process_prepared_discard = process_prepared_discard_success;
2577
2578                 error_retry_list(pool);
2579                 break;
2580
2581         case PM_OUT_OF_DATA_SPACE:
2582                 /*
2583                  * Ideally we'd never hit this state; the low water mark
2584                  * would trigger userland to extend the pool before we
2585                  * completely run out of data space.  However, many small
2586                  * IOs to unprovisioned space can consume data space at an
2587                  * alarming rate.  Adjust your low water mark if you're
2588                  * frequently seeing this mode.
2589                  */
2590                 pool->out_of_data_space = true;
2591                 pool->process_bio = process_bio_read_only;
2592                 pool->process_discard = process_discard_bio;
2593                 pool->process_cell = process_cell_read_only;
2594                 pool->process_prepared_mapping = process_prepared_mapping;
2595                 set_discard_callbacks(pool);
2596
2597                 if (!pool->pf.error_if_no_space && no_space_timeout)
2598                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2599                 break;
2600
2601         case PM_WRITE:
2602                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2603                         cancel_delayed_work_sync(&pool->no_space_timeout);
2604                 pool->out_of_data_space = false;
2605                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2606                 dm_pool_metadata_read_write(pool->pmd);
2607                 pool->process_bio = process_bio;
2608                 pool->process_discard = process_discard_bio;
2609                 pool->process_cell = process_cell;
2610                 pool->process_prepared_mapping = process_prepared_mapping;
2611                 set_discard_callbacks(pool);
2612                 break;
2613         }
2614
2615         pool->pf.mode = new_mode;
2616         /*
2617          * The pool mode may have changed, sync it so bind_control_target()
2618          * doesn't cause an unexpected mode transition on resume.
2619          */
2620         pt->adjusted_pf.mode = new_mode;
2621
2622         if (old_mode != new_mode)
2623                 notify_of_pool_mode_change(pool);
2624 }
2625
2626 static void abort_transaction(struct pool *pool)
2627 {
2628         const char *dev_name = dm_device_name(pool->pool_md);
2629
2630         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2631         if (dm_pool_abort_metadata(pool->pmd)) {
2632                 DMERR("%s: failed to abort metadata transaction", dev_name);
2633                 set_pool_mode(pool, PM_FAIL);
2634         }
2635
2636         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2637                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2638                 set_pool_mode(pool, PM_FAIL);
2639         }
2640 }
2641
2642 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2643 {
2644         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2645                     dm_device_name(pool->pool_md), op, r);
2646
2647         abort_transaction(pool);
2648         set_pool_mode(pool, PM_READ_ONLY);
2649 }
2650
2651 /*----------------------------------------------------------------*/
2652
2653 /*
2654  * Mapping functions.
2655  */
2656
2657 /*
2658  * Called only while mapping a thin bio to hand it over to the workqueue.
2659  */
2660 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2661 {
2662         unsigned long flags;
2663         struct pool *pool = tc->pool;
2664
2665         spin_lock_irqsave(&tc->lock, flags);
2666         bio_list_add(&tc->deferred_bio_list, bio);
2667         spin_unlock_irqrestore(&tc->lock, flags);
2668
2669         wake_worker(pool);
2670 }
2671
2672 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2673 {
2674         struct pool *pool = tc->pool;
2675
2676         throttle_lock(&pool->throttle);
2677         thin_defer_bio(tc, bio);
2678         throttle_unlock(&pool->throttle);
2679 }
2680
2681 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2682 {
2683         unsigned long flags;
2684         struct pool *pool = tc->pool;
2685
2686         throttle_lock(&pool->throttle);
2687         spin_lock_irqsave(&tc->lock, flags);
2688         list_add_tail(&cell->user_list, &tc->deferred_cells);
2689         spin_unlock_irqrestore(&tc->lock, flags);
2690         throttle_unlock(&pool->throttle);
2691
2692         wake_worker(pool);
2693 }
2694
2695 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2696 {
2697         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2698
2699         h->tc = tc;
2700         h->shared_read_entry = NULL;
2701         h->all_io_entry = NULL;
2702         h->overwrite_mapping = NULL;
2703         h->cell = NULL;
2704 }
2705
2706 /*
2707  * Non-blocking function called from the thin target's map function.
2708  */
2709 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2710 {
2711         int r;
2712         struct thin_c *tc = ti->private;
2713         dm_block_t block = get_bio_block(tc, bio);
2714         struct dm_thin_device *td = tc->td;
2715         struct dm_thin_lookup_result result;
2716         struct dm_bio_prison_cell *virt_cell, *data_cell;
2717         struct dm_cell_key key;
2718
2719         thin_hook_bio(tc, bio);
2720
2721         if (tc->requeue_mode) {
2722                 bio->bi_status = BLK_STS_DM_REQUEUE;
2723                 bio_endio(bio);
2724                 return DM_MAPIO_SUBMITTED;
2725         }
2726
2727         if (get_pool_mode(tc->pool) == PM_FAIL) {
2728                 bio_io_error(bio);
2729                 return DM_MAPIO_SUBMITTED;
2730         }
2731
2732         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2733                 thin_defer_bio_with_throttle(tc, bio);
2734                 return DM_MAPIO_SUBMITTED;
2735         }
2736
2737         /*
2738          * We must hold the virtual cell before doing the lookup, otherwise
2739          * there's a race with discard.
2740          */
2741         build_virtual_key(tc->td, block, &key);
2742         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2743                 return DM_MAPIO_SUBMITTED;
2744
2745         r = dm_thin_find_block(td, block, 0, &result);
2746
2747         /*
2748          * Note that we defer readahead too.
2749          */
2750         switch (r) {
2751         case 0:
2752                 if (unlikely(result.shared)) {
2753                         /*
2754                          * We have a race condition here between the
2755                          * result.shared value returned by the lookup and
2756                          * snapshot creation, which may cause new
2757                          * sharing.
2758                          *
2759                          * To avoid this always quiesce the origin before
2760                          * taking the snap.  You want to do this anyway to
2761                          * ensure a consistent application view
2762                          * (i.e. lockfs).
2763                          *
2764                          * More distant ancestors are irrelevant. The
2765                          * shared flag will be set in their case.
2766                          */
2767                         thin_defer_cell(tc, virt_cell);
2768                         return DM_MAPIO_SUBMITTED;
2769                 }
2770
2771                 build_data_key(tc->td, result.block, &key);
2772                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2773                         cell_defer_no_holder(tc, virt_cell);
2774                         return DM_MAPIO_SUBMITTED;
2775                 }
2776
2777                 inc_all_io_entry(tc->pool, bio);
2778                 cell_defer_no_holder(tc, data_cell);
2779                 cell_defer_no_holder(tc, virt_cell);
2780
2781                 remap(tc, bio, result.block);
2782                 return DM_MAPIO_REMAPPED;
2783
2784         case -ENODATA:
2785         case -EWOULDBLOCK:
2786                 thin_defer_cell(tc, virt_cell);
2787                 return DM_MAPIO_SUBMITTED;
2788
2789         default:
2790                 /*
2791                  * Must always call bio_io_error on failure.
2792                  * dm_thin_find_block can fail with -EINVAL if the
2793                  * pool is switched to fail-io mode.
2794                  */
2795                 bio_io_error(bio);
2796                 cell_defer_no_holder(tc, virt_cell);
2797                 return DM_MAPIO_SUBMITTED;
2798         }
2799 }
2800
2801 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2802 {
2803         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2804         struct request_queue *q;
2805
2806         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2807                 return 1;
2808
2809         q = bdev_get_queue(pt->data_dev->bdev);
2810         return bdi_congested(q->backing_dev_info, bdi_bits);
2811 }
2812
2813 static void requeue_bios(struct pool *pool)
2814 {
2815         unsigned long flags;
2816         struct thin_c *tc;
2817
2818         rcu_read_lock();
2819         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2820                 spin_lock_irqsave(&tc->lock, flags);
2821                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2822                 bio_list_init(&tc->retry_on_resume_list);
2823                 spin_unlock_irqrestore(&tc->lock, flags);
2824         }
2825         rcu_read_unlock();
2826 }
2827
2828 /*----------------------------------------------------------------
2829  * Binding of control targets to a pool object
2830  *--------------------------------------------------------------*/
2831 static bool data_dev_supports_discard(struct pool_c *pt)
2832 {
2833         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2834
2835         return q && blk_queue_discard(q);
2836 }
2837
2838 static bool is_factor(sector_t block_size, uint32_t n)
2839 {
2840         return !sector_div(block_size, n);
2841 }
2842
2843 /*
2844  * If discard_passdown was enabled verify that the data device
2845  * supports discards.  Disable discard_passdown if not.
2846  */
2847 static void disable_passdown_if_not_supported(struct pool_c *pt)
2848 {
2849         struct pool *pool = pt->pool;
2850         struct block_device *data_bdev = pt->data_dev->bdev;
2851         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2852         const char *reason = NULL;
2853         char buf[BDEVNAME_SIZE];
2854
2855         if (!pt->adjusted_pf.discard_passdown)
2856                 return;
2857
2858         if (!data_dev_supports_discard(pt))
2859                 reason = "discard unsupported";
2860
2861         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2862                 reason = "max discard sectors smaller than a block";
2863
2864         if (reason) {
2865                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2866                 pt->adjusted_pf.discard_passdown = false;
2867         }
2868 }
2869
2870 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2871 {
2872         struct pool_c *pt = ti->private;
2873
2874         /*
2875          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2876          */
2877         enum pool_mode old_mode = get_pool_mode(pool);
2878         enum pool_mode new_mode = pt->adjusted_pf.mode;
2879
2880         /*
2881          * Don't change the pool's mode until set_pool_mode() below.
2882          * Otherwise the pool's process_* function pointers may
2883          * not match the desired pool mode.
2884          */
2885         pt->adjusted_pf.mode = old_mode;
2886
2887         pool->ti = ti;
2888         pool->pf = pt->adjusted_pf;
2889         pool->low_water_blocks = pt->low_water_blocks;
2890
2891         set_pool_mode(pool, new_mode);
2892
2893         return 0;
2894 }
2895
2896 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2897 {
2898         if (pool->ti == ti)
2899                 pool->ti = NULL;
2900 }
2901
2902 /*----------------------------------------------------------------
2903  * Pool creation
2904  *--------------------------------------------------------------*/
2905 /* Initialize pool features. */
2906 static void pool_features_init(struct pool_features *pf)
2907 {
2908         pf->mode = PM_WRITE;
2909         pf->zero_new_blocks = true;
2910         pf->discard_enabled = true;
2911         pf->discard_passdown = true;
2912         pf->error_if_no_space = false;
2913 }
2914
2915 static void __pool_destroy(struct pool *pool)
2916 {
2917         __pool_table_remove(pool);
2918
2919         vfree(pool->cell_sort_array);
2920         if (dm_pool_metadata_close(pool->pmd) < 0)
2921                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2922
2923         dm_bio_prison_destroy(pool->prison);
2924         dm_kcopyd_client_destroy(pool->copier);
2925
2926         cancel_delayed_work_sync(&pool->waker);
2927         cancel_delayed_work_sync(&pool->no_space_timeout);
2928         if (pool->wq)
2929                 destroy_workqueue(pool->wq);
2930
2931         if (pool->next_mapping)
2932                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2933         mempool_exit(&pool->mapping_pool);
2934         dm_deferred_set_destroy(pool->shared_read_ds);
2935         dm_deferred_set_destroy(pool->all_io_ds);
2936         kfree(pool);
2937 }
2938
2939 static struct kmem_cache *_new_mapping_cache;
2940
2941 static struct pool *pool_create(struct mapped_device *pool_md,
2942                                 struct block_device *metadata_dev,
2943                                 unsigned long block_size,
2944                                 int read_only, char **error)
2945 {
2946         int r;
2947         void *err_p;
2948         struct pool *pool;
2949         struct dm_pool_metadata *pmd;
2950         bool format_device = read_only ? false : true;
2951
2952         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2953         if (IS_ERR(pmd)) {
2954                 *error = "Error creating metadata object";
2955                 return (struct pool *)pmd;
2956         }
2957
2958         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2959         if (!pool) {
2960                 *error = "Error allocating memory for pool";
2961                 err_p = ERR_PTR(-ENOMEM);
2962                 goto bad_pool;
2963         }
2964
2965         pool->pmd = pmd;
2966         pool->sectors_per_block = block_size;
2967         if (block_size & (block_size - 1))
2968                 pool->sectors_per_block_shift = -1;
2969         else
2970                 pool->sectors_per_block_shift = __ffs(block_size);
2971         pool->low_water_blocks = 0;
2972         pool_features_init(&pool->pf);
2973         pool->prison = dm_bio_prison_create();
2974         if (!pool->prison) {
2975                 *error = "Error creating pool's bio prison";
2976                 err_p = ERR_PTR(-ENOMEM);
2977                 goto bad_prison;
2978         }
2979
2980         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2981         if (IS_ERR(pool->copier)) {
2982                 r = PTR_ERR(pool->copier);
2983                 *error = "Error creating pool's kcopyd client";
2984                 err_p = ERR_PTR(r);
2985                 goto bad_kcopyd_client;
2986         }
2987
2988         /*
2989          * Create singlethreaded workqueue that will service all devices
2990          * that use this metadata.
2991          */
2992         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2993         if (!pool->wq) {
2994                 *error = "Error creating pool's workqueue";
2995                 err_p = ERR_PTR(-ENOMEM);
2996                 goto bad_wq;
2997         }
2998
2999         throttle_init(&pool->throttle);
3000         INIT_WORK(&pool->worker, do_worker);
3001         INIT_DELAYED_WORK(&pool->waker, do_waker);
3002         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3003         spin_lock_init(&pool->lock);
3004         bio_list_init(&pool->deferred_flush_bios);
3005         bio_list_init(&pool->deferred_flush_completions);
3006         INIT_LIST_HEAD(&pool->prepared_mappings);
3007         INIT_LIST_HEAD(&pool->prepared_discards);
3008         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3009         INIT_LIST_HEAD(&pool->active_thins);
3010         pool->low_water_triggered = false;
3011         pool->suspended = true;
3012         pool->out_of_data_space = false;
3013
3014         pool->shared_read_ds = dm_deferred_set_create();
3015         if (!pool->shared_read_ds) {
3016                 *error = "Error creating pool's shared read deferred set";
3017                 err_p = ERR_PTR(-ENOMEM);
3018                 goto bad_shared_read_ds;
3019         }
3020
3021         pool->all_io_ds = dm_deferred_set_create();
3022         if (!pool->all_io_ds) {
3023                 *error = "Error creating pool's all io deferred set";
3024                 err_p = ERR_PTR(-ENOMEM);
3025                 goto bad_all_io_ds;
3026         }
3027
3028         pool->next_mapping = NULL;
3029         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3030                                    _new_mapping_cache);
3031         if (r) {
3032                 *error = "Error creating pool's mapping mempool";
3033                 err_p = ERR_PTR(r);
3034                 goto bad_mapping_pool;
3035         }
3036
3037         pool->cell_sort_array =
3038                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3039                                    sizeof(*pool->cell_sort_array)));
3040         if (!pool->cell_sort_array) {
3041                 *error = "Error allocating cell sort array";
3042                 err_p = ERR_PTR(-ENOMEM);
3043                 goto bad_sort_array;
3044         }
3045
3046         pool->ref_count = 1;
3047         pool->last_commit_jiffies = jiffies;
3048         pool->pool_md = pool_md;
3049         pool->md_dev = metadata_dev;
3050         __pool_table_insert(pool);
3051
3052         return pool;
3053
3054 bad_sort_array:
3055         mempool_exit(&pool->mapping_pool);
3056 bad_mapping_pool:
3057         dm_deferred_set_destroy(pool->all_io_ds);
3058 bad_all_io_ds:
3059         dm_deferred_set_destroy(pool->shared_read_ds);
3060 bad_shared_read_ds:
3061         destroy_workqueue(pool->wq);
3062 bad_wq:
3063         dm_kcopyd_client_destroy(pool->copier);
3064 bad_kcopyd_client:
3065         dm_bio_prison_destroy(pool->prison);
3066 bad_prison:
3067         kfree(pool);
3068 bad_pool:
3069         if (dm_pool_metadata_close(pmd))
3070                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3071
3072         return err_p;
3073 }
3074
3075 static void __pool_inc(struct pool *pool)
3076 {
3077         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3078         pool->ref_count++;
3079 }
3080
3081 static void __pool_dec(struct pool *pool)
3082 {
3083         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3084         BUG_ON(!pool->ref_count);
3085         if (!--pool->ref_count)
3086                 __pool_destroy(pool);
3087 }
3088
3089 static struct pool *__pool_find(struct mapped_device *pool_md,
3090                                 struct block_device *metadata_dev,
3091                                 unsigned long block_size, int read_only,
3092                                 char **error, int *created)
3093 {
3094         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3095
3096         if (pool) {
3097                 if (pool->pool_md != pool_md) {
3098                         *error = "metadata device already in use by a pool";
3099                         return ERR_PTR(-EBUSY);
3100                 }
3101                 __pool_inc(pool);
3102
3103         } else {
3104                 pool = __pool_table_lookup(pool_md);
3105                 if (pool) {
3106                         if (pool->md_dev != metadata_dev) {
3107                                 *error = "different pool cannot replace a pool";
3108                                 return ERR_PTR(-EINVAL);
3109                         }
3110                         __pool_inc(pool);
3111
3112                 } else {
3113                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3114                         *created = 1;
3115                 }
3116         }
3117
3118         return pool;
3119 }
3120
3121 /*----------------------------------------------------------------
3122  * Pool target methods
3123  *--------------------------------------------------------------*/
3124 static void pool_dtr(struct dm_target *ti)
3125 {
3126         struct pool_c *pt = ti->private;
3127
3128         mutex_lock(&dm_thin_pool_table.mutex);
3129
3130         unbind_control_target(pt->pool, ti);
3131         __pool_dec(pt->pool);
3132         dm_put_device(ti, pt->metadata_dev);
3133         dm_put_device(ti, pt->data_dev);
3134         kfree(pt);
3135
3136         mutex_unlock(&dm_thin_pool_table.mutex);
3137 }
3138
3139 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3140                                struct dm_target *ti)
3141 {
3142         int r;
3143         unsigned argc;
3144         const char *arg_name;
3145
3146         static const struct dm_arg _args[] = {
3147                 {0, 4, "Invalid number of pool feature arguments"},
3148         };
3149
3150         /*
3151          * No feature arguments supplied.
3152          */
3153         if (!as->argc)
3154                 return 0;
3155
3156         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3157         if (r)
3158                 return -EINVAL;
3159
3160         while (argc && !r) {
3161                 arg_name = dm_shift_arg(as);
3162                 argc--;
3163
3164                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3165                         pf->zero_new_blocks = false;
3166
3167                 else if (!strcasecmp(arg_name, "ignore_discard"))
3168                         pf->discard_enabled = false;
3169
3170                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3171                         pf->discard_passdown = false;
3172
3173                 else if (!strcasecmp(arg_name, "read_only"))
3174                         pf->mode = PM_READ_ONLY;
3175
3176                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3177                         pf->error_if_no_space = true;
3178
3179                 else {
3180                         ti->error = "Unrecognised pool feature requested";
3181                         r = -EINVAL;
3182                         break;
3183                 }
3184         }
3185
3186         return r;
3187 }
3188
3189 static void metadata_low_callback(void *context)
3190 {
3191         struct pool *pool = context;
3192
3193         DMWARN("%s: reached low water mark for metadata device: sending event.",
3194                dm_device_name(pool->pool_md));
3195
3196         dm_table_event(pool->ti->table);
3197 }
3198
3199 static sector_t get_dev_size(struct block_device *bdev)
3200 {
3201         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3202 }
3203
3204 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3205 {
3206         sector_t metadata_dev_size = get_dev_size(bdev);
3207         char buffer[BDEVNAME_SIZE];
3208
3209         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3210                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3211                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3212 }
3213
3214 static sector_t get_metadata_dev_size(struct block_device *bdev)
3215 {
3216         sector_t metadata_dev_size = get_dev_size(bdev);
3217
3218         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3219                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3220
3221         return metadata_dev_size;
3222 }
3223
3224 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3225 {
3226         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3227
3228         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3229
3230         return metadata_dev_size;
3231 }
3232
3233 /*
3234  * When a metadata threshold is crossed a dm event is triggered, and
3235  * userland should respond by growing the metadata device.  We could let
3236  * userland set the threshold, like we do with the data threshold, but I'm
3237  * not sure they know enough to do this well.
3238  */
3239 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3240 {
3241         /*
3242          * 4M is ample for all ops with the possible exception of thin
3243          * device deletion which is harmless if it fails (just retry the
3244          * delete after you've grown the device).
3245          */
3246         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3247         return min((dm_block_t)1024ULL /* 4M */, quarter);
3248 }
3249
3250 /*
3251  * thin-pool <metadata dev> <data dev>
3252  *           <data block size (sectors)>
3253  *           <low water mark (blocks)>
3254  *           [<#feature args> [<arg>]*]
3255  *
3256  * Optional feature arguments are:
3257  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3258  *           ignore_discard: disable discard
3259  *           no_discard_passdown: don't pass discards down to the data device
3260  *           read_only: Don't allow any changes to be made to the pool metadata.
3261  *           error_if_no_space: error IOs, instead of queueing, if no space.
3262  */
3263 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3264 {
3265         int r, pool_created = 0;
3266         struct pool_c *pt;
3267         struct pool *pool;
3268         struct pool_features pf;
3269         struct dm_arg_set as;
3270         struct dm_dev *data_dev;
3271         unsigned long block_size;
3272         dm_block_t low_water_blocks;
3273         struct dm_dev *metadata_dev;
3274         fmode_t metadata_mode;
3275
3276         /*
3277          * FIXME Remove validation from scope of lock.
3278          */
3279         mutex_lock(&dm_thin_pool_table.mutex);
3280
3281         if (argc < 4) {
3282                 ti->error = "Invalid argument count";
3283                 r = -EINVAL;
3284                 goto out_unlock;
3285         }
3286
3287         as.argc = argc;
3288         as.argv = argv;
3289
3290         /* make sure metadata and data are different devices */
3291         if (!strcmp(argv[0], argv[1])) {
3292                 ti->error = "Error setting metadata or data device";
3293                 r = -EINVAL;
3294                 goto out_unlock;
3295         }
3296
3297         /*
3298          * Set default pool features.
3299          */
3300         pool_features_init(&pf);
3301
3302         dm_consume_args(&as, 4);
3303         r = parse_pool_features(&as, &pf, ti);
3304         if (r)
3305                 goto out_unlock;
3306
3307         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3308         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3309         if (r) {
3310                 ti->error = "Error opening metadata block device";
3311                 goto out_unlock;
3312         }
3313         warn_if_metadata_device_too_big(metadata_dev->bdev);
3314
3315         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3316         if (r) {
3317                 ti->error = "Error getting data device";
3318                 goto out_metadata;
3319         }
3320
3321         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3322             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3323             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3324             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3325                 ti->error = "Invalid block size";
3326                 r = -EINVAL;
3327                 goto out;
3328         }
3329
3330         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3331                 ti->error = "Invalid low water mark";
3332                 r = -EINVAL;
3333                 goto out;
3334         }
3335
3336         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3337         if (!pt) {
3338                 r = -ENOMEM;
3339                 goto out;
3340         }
3341
3342         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3343                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3344         if (IS_ERR(pool)) {
3345                 r = PTR_ERR(pool);
3346                 goto out_free_pt;
3347         }
3348
3349         /*
3350          * 'pool_created' reflects whether this is the first table load.
3351          * Top level discard support is not allowed to be changed after
3352          * initial load.  This would require a pool reload to trigger thin
3353          * device changes.
3354          */
3355         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3356                 ti->error = "Discard support cannot be disabled once enabled";
3357                 r = -EINVAL;
3358                 goto out_flags_changed;
3359         }
3360
3361         pt->pool = pool;
3362         pt->ti = ti;
3363         pt->metadata_dev = metadata_dev;
3364         pt->data_dev = data_dev;
3365         pt->low_water_blocks = low_water_blocks;
3366         pt->adjusted_pf = pt->requested_pf = pf;
3367         ti->num_flush_bios = 1;
3368         ti->limit_swap_bios = true;
3369
3370         /*
3371          * Only need to enable discards if the pool should pass
3372          * them down to the data device.  The thin device's discard
3373          * processing will cause mappings to be removed from the btree.
3374          */
3375         if (pf.discard_enabled && pf.discard_passdown) {
3376                 ti->num_discard_bios = 1;
3377
3378                 /*
3379                  * Setting 'discards_supported' circumvents the normal
3380                  * stacking of discard limits (this keeps the pool and
3381                  * thin devices' discard limits consistent).
3382                  */
3383                 ti->discards_supported = true;
3384         }
3385         ti->private = pt;
3386
3387         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3388                                                 calc_metadata_threshold(pt),
3389                                                 metadata_low_callback,
3390                                                 pool);
3391         if (r)
3392                 goto out_flags_changed;
3393
3394         pt->callbacks.congested_fn = pool_is_congested;
3395         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3396
3397         mutex_unlock(&dm_thin_pool_table.mutex);
3398
3399         return 0;
3400
3401 out_flags_changed:
3402         __pool_dec(pool);
3403 out_free_pt:
3404         kfree(pt);
3405 out:
3406         dm_put_device(ti, data_dev);
3407 out_metadata:
3408         dm_put_device(ti, metadata_dev);
3409 out_unlock:
3410         mutex_unlock(&dm_thin_pool_table.mutex);
3411
3412         return r;
3413 }
3414
3415 static int pool_map(struct dm_target *ti, struct bio *bio)
3416 {
3417         int r;
3418         struct pool_c *pt = ti->private;
3419         struct pool *pool = pt->pool;
3420         unsigned long flags;
3421
3422         /*
3423          * As this is a singleton target, ti->begin is always zero.
3424          */
3425         spin_lock_irqsave(&pool->lock, flags);
3426         bio_set_dev(bio, pt->data_dev->bdev);
3427         r = DM_MAPIO_REMAPPED;
3428         spin_unlock_irqrestore(&pool->lock, flags);
3429
3430         return r;
3431 }
3432
3433 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3434 {
3435         int r;
3436         struct pool_c *pt = ti->private;
3437         struct pool *pool = pt->pool;
3438         sector_t data_size = ti->len;
3439         dm_block_t sb_data_size;
3440
3441         *need_commit = false;
3442
3443         (void) sector_div(data_size, pool->sectors_per_block);
3444
3445         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3446         if (r) {
3447                 DMERR("%s: failed to retrieve data device size",
3448                       dm_device_name(pool->pool_md));
3449                 return r;
3450         }
3451
3452         if (data_size < sb_data_size) {
3453                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3454                       dm_device_name(pool->pool_md),
3455                       (unsigned long long)data_size, sb_data_size);
3456                 return -EINVAL;
3457
3458         } else if (data_size > sb_data_size) {
3459                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3460                         DMERR("%s: unable to grow the data device until repaired.",
3461                               dm_device_name(pool->pool_md));
3462                         return 0;
3463                 }
3464
3465                 if (sb_data_size)
3466                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3467                                dm_device_name(pool->pool_md),
3468                                sb_data_size, (unsigned long long)data_size);
3469                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3470                 if (r) {
3471                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3472                         return r;
3473                 }
3474
3475                 *need_commit = true;
3476         }
3477
3478         return 0;
3479 }
3480
3481 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3482 {
3483         int r;
3484         struct pool_c *pt = ti->private;
3485         struct pool *pool = pt->pool;
3486         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3487
3488         *need_commit = false;
3489
3490         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3491
3492         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3493         if (r) {
3494                 DMERR("%s: failed to retrieve metadata device size",
3495                       dm_device_name(pool->pool_md));
3496                 return r;
3497         }
3498
3499         if (metadata_dev_size < sb_metadata_dev_size) {
3500                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3501                       dm_device_name(pool->pool_md),
3502                       metadata_dev_size, sb_metadata_dev_size);
3503                 return -EINVAL;
3504
3505         } else if (metadata_dev_size > sb_metadata_dev_size) {
3506                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3507                         DMERR("%s: unable to grow the metadata device until repaired.",
3508                               dm_device_name(pool->pool_md));
3509                         return 0;
3510                 }
3511
3512                 warn_if_metadata_device_too_big(pool->md_dev);
3513                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3514                        dm_device_name(pool->pool_md),
3515                        sb_metadata_dev_size, metadata_dev_size);
3516
3517                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3518                         set_pool_mode(pool, PM_WRITE);
3519
3520                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3521                 if (r) {
3522                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3523                         return r;
3524                 }
3525
3526                 *need_commit = true;
3527         }
3528
3529         return 0;
3530 }
3531
3532 /*
3533  * Retrieves the number of blocks of the data device from
3534  * the superblock and compares it to the actual device size,
3535  * thus resizing the data device in case it has grown.
3536  *
3537  * This both copes with opening preallocated data devices in the ctr
3538  * being followed by a resume
3539  * -and-
3540  * calling the resume method individually after userspace has
3541  * grown the data device in reaction to a table event.
3542  */
3543 static int pool_preresume(struct dm_target *ti)
3544 {
3545         int r;
3546         bool need_commit1, need_commit2;
3547         struct pool_c *pt = ti->private;
3548         struct pool *pool = pt->pool;
3549
3550         /*
3551          * Take control of the pool object.
3552          */
3553         r = bind_control_target(pool, ti);
3554         if (r)
3555                 goto out;
3556
3557         r = maybe_resize_data_dev(ti, &need_commit1);
3558         if (r)
3559                 goto out;
3560
3561         r = maybe_resize_metadata_dev(ti, &need_commit2);
3562         if (r)
3563                 goto out;
3564
3565         if (need_commit1 || need_commit2)
3566                 (void) commit(pool);
3567 out:
3568         /*
3569          * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3570          * bio is in deferred list. Therefore need to return 0
3571          * to allow pool_resume() to flush IO.
3572          */
3573         if (r && get_pool_mode(pool) == PM_FAIL)
3574                 r = 0;
3575
3576         return r;
3577 }
3578
3579 static void pool_suspend_active_thins(struct pool *pool)
3580 {
3581         struct thin_c *tc;
3582
3583         /* Suspend all active thin devices */
3584         tc = get_first_thin(pool);
3585         while (tc) {
3586                 dm_internal_suspend_noflush(tc->thin_md);
3587                 tc = get_next_thin(pool, tc);
3588         }
3589 }
3590
3591 static void pool_resume_active_thins(struct pool *pool)
3592 {
3593         struct thin_c *tc;
3594
3595         /* Resume all active thin devices */
3596         tc = get_first_thin(pool);
3597         while (tc) {
3598                 dm_internal_resume(tc->thin_md);
3599                 tc = get_next_thin(pool, tc);
3600         }
3601 }
3602
3603 static void pool_resume(struct dm_target *ti)
3604 {
3605         struct pool_c *pt = ti->private;
3606         struct pool *pool = pt->pool;
3607         unsigned long flags;
3608
3609         /*
3610          * Must requeue active_thins' bios and then resume
3611          * active_thins _before_ clearing 'suspend' flag.
3612          */
3613         requeue_bios(pool);
3614         pool_resume_active_thins(pool);
3615
3616         spin_lock_irqsave(&pool->lock, flags);
3617         pool->low_water_triggered = false;
3618         pool->suspended = false;
3619         spin_unlock_irqrestore(&pool->lock, flags);
3620
3621         do_waker(&pool->waker.work);
3622 }
3623
3624 static void pool_presuspend(struct dm_target *ti)
3625 {
3626         struct pool_c *pt = ti->private;
3627         struct pool *pool = pt->pool;
3628         unsigned long flags;
3629
3630         spin_lock_irqsave(&pool->lock, flags);
3631         pool->suspended = true;
3632         spin_unlock_irqrestore(&pool->lock, flags);
3633
3634         pool_suspend_active_thins(pool);
3635 }
3636
3637 static void pool_presuspend_undo(struct dm_target *ti)
3638 {
3639         struct pool_c *pt = ti->private;
3640         struct pool *pool = pt->pool;
3641         unsigned long flags;
3642
3643         pool_resume_active_thins(pool);
3644
3645         spin_lock_irqsave(&pool->lock, flags);
3646         pool->suspended = false;
3647         spin_unlock_irqrestore(&pool->lock, flags);
3648 }
3649
3650 static void pool_postsuspend(struct dm_target *ti)
3651 {
3652         struct pool_c *pt = ti->private;
3653         struct pool *pool = pt->pool;
3654
3655         cancel_delayed_work_sync(&pool->waker);
3656         cancel_delayed_work_sync(&pool->no_space_timeout);
3657         flush_workqueue(pool->wq);
3658         (void) commit(pool);
3659 }
3660
3661 static int check_arg_count(unsigned argc, unsigned args_required)
3662 {
3663         if (argc != args_required) {
3664                 DMWARN("Message received with %u arguments instead of %u.",
3665                        argc, args_required);
3666                 return -EINVAL;
3667         }
3668
3669         return 0;
3670 }
3671
3672 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3673 {
3674         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3675             *dev_id <= MAX_DEV_ID)
3676                 return 0;
3677
3678         if (warning)
3679                 DMWARN("Message received with invalid device id: %s", arg);
3680
3681         return -EINVAL;
3682 }
3683
3684 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3685 {
3686         dm_thin_id dev_id;
3687         int r;
3688
3689         r = check_arg_count(argc, 2);
3690         if (r)
3691                 return r;
3692
3693         r = read_dev_id(argv[1], &dev_id, 1);
3694         if (r)
3695                 return r;
3696
3697         r = dm_pool_create_thin(pool->pmd, dev_id);
3698         if (r) {
3699                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3700                        argv[1]);
3701                 return r;
3702         }
3703
3704         return 0;
3705 }
3706
3707 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3708 {
3709         dm_thin_id dev_id;
3710         dm_thin_id origin_dev_id;
3711         int r;
3712
3713         r = check_arg_count(argc, 3);
3714         if (r)
3715                 return r;
3716
3717         r = read_dev_id(argv[1], &dev_id, 1);
3718         if (r)
3719                 return r;
3720
3721         r = read_dev_id(argv[2], &origin_dev_id, 1);
3722         if (r)
3723                 return r;
3724
3725         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3726         if (r) {
3727                 DMWARN("Creation of new snapshot %s of device %s failed.",
3728                        argv[1], argv[2]);
3729                 return r;
3730         }
3731
3732         return 0;
3733 }
3734
3735 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3736 {
3737         dm_thin_id dev_id;
3738         int r;
3739
3740         r = check_arg_count(argc, 2);
3741         if (r)
3742                 return r;
3743
3744         r = read_dev_id(argv[1], &dev_id, 1);
3745         if (r)
3746                 return r;
3747
3748         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3749         if (r)
3750                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3751
3752         return r;
3753 }
3754
3755 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3756 {
3757         dm_thin_id old_id, new_id;
3758         int r;
3759
3760         r = check_arg_count(argc, 3);
3761         if (r)
3762                 return r;
3763
3764         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3765                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3766                 return -EINVAL;
3767         }
3768
3769         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3770                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3771                 return -EINVAL;
3772         }
3773
3774         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3775         if (r) {
3776                 DMWARN("Failed to change transaction id from %s to %s.",
3777                        argv[1], argv[2]);
3778                 return r;
3779         }
3780
3781         return 0;
3782 }
3783
3784 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3785 {
3786         int r;
3787
3788         r = check_arg_count(argc, 1);
3789         if (r)
3790                 return r;
3791
3792         (void) commit(pool);
3793
3794         r = dm_pool_reserve_metadata_snap(pool->pmd);
3795         if (r)
3796                 DMWARN("reserve_metadata_snap message failed.");
3797
3798         return r;
3799 }
3800
3801 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3802 {
3803         int r;
3804
3805         r = check_arg_count(argc, 1);
3806         if (r)
3807                 return r;
3808
3809         r = dm_pool_release_metadata_snap(pool->pmd);
3810         if (r)
3811                 DMWARN("release_metadata_snap message failed.");
3812
3813         return r;
3814 }
3815
3816 /*
3817  * Messages supported:
3818  *   create_thin        <dev_id>
3819  *   create_snap        <dev_id> <origin_id>
3820  *   delete             <dev_id>
3821  *   set_transaction_id <current_trans_id> <new_trans_id>
3822  *   reserve_metadata_snap
3823  *   release_metadata_snap
3824  */
3825 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3826                         char *result, unsigned maxlen)
3827 {
3828         int r = -EINVAL;
3829         struct pool_c *pt = ti->private;
3830         struct pool *pool = pt->pool;
3831
3832         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3833                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3834                       dm_device_name(pool->pool_md));
3835                 return -EOPNOTSUPP;
3836         }
3837
3838         if (!strcasecmp(argv[0], "create_thin"))
3839                 r = process_create_thin_mesg(argc, argv, pool);
3840
3841         else if (!strcasecmp(argv[0], "create_snap"))
3842                 r = process_create_snap_mesg(argc, argv, pool);
3843
3844         else if (!strcasecmp(argv[0], "delete"))
3845                 r = process_delete_mesg(argc, argv, pool);
3846
3847         else if (!strcasecmp(argv[0], "set_transaction_id"))
3848                 r = process_set_transaction_id_mesg(argc, argv, pool);
3849
3850         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3851                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3852
3853         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3854                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3855
3856         else
3857                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3858
3859         if (!r)
3860                 (void) commit(pool);
3861
3862         return r;
3863 }
3864
3865 static void emit_flags(struct pool_features *pf, char *result,
3866                        unsigned sz, unsigned maxlen)
3867 {
3868         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3869                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3870                 pf->error_if_no_space;
3871         DMEMIT("%u ", count);
3872
3873         if (!pf->zero_new_blocks)
3874                 DMEMIT("skip_block_zeroing ");
3875
3876         if (!pf->discard_enabled)
3877                 DMEMIT("ignore_discard ");
3878
3879         if (!pf->discard_passdown)
3880                 DMEMIT("no_discard_passdown ");
3881
3882         if (pf->mode == PM_READ_ONLY)
3883                 DMEMIT("read_only ");
3884
3885         if (pf->error_if_no_space)
3886                 DMEMIT("error_if_no_space ");
3887 }
3888
3889 /*
3890  * Status line is:
3891  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3892  *    <used data sectors>/<total data sectors> <held metadata root>
3893  *    <pool mode> <discard config> <no space config> <needs_check>
3894  */
3895 static void pool_status(struct dm_target *ti, status_type_t type,
3896                         unsigned status_flags, char *result, unsigned maxlen)
3897 {
3898         int r;
3899         unsigned sz = 0;
3900         uint64_t transaction_id;
3901         dm_block_t nr_free_blocks_data;
3902         dm_block_t nr_free_blocks_metadata;
3903         dm_block_t nr_blocks_data;
3904         dm_block_t nr_blocks_metadata;
3905         dm_block_t held_root;
3906         enum pool_mode mode;
3907         char buf[BDEVNAME_SIZE];
3908         char buf2[BDEVNAME_SIZE];
3909         struct pool_c *pt = ti->private;
3910         struct pool *pool = pt->pool;
3911
3912         switch (type) {
3913         case STATUSTYPE_INFO:
3914                 if (get_pool_mode(pool) == PM_FAIL) {
3915                         DMEMIT("Fail");
3916                         break;
3917                 }
3918
3919                 /* Commit to ensure statistics aren't out-of-date */
3920                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3921                         (void) commit(pool);
3922
3923                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3924                 if (r) {
3925                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3926                               dm_device_name(pool->pool_md), r);
3927                         goto err;
3928                 }
3929
3930                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3931                 if (r) {
3932                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3933                               dm_device_name(pool->pool_md), r);
3934                         goto err;
3935                 }
3936
3937                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3938                 if (r) {
3939                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3940                               dm_device_name(pool->pool_md), r);
3941                         goto err;
3942                 }
3943
3944                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3945                 if (r) {
3946                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3947                               dm_device_name(pool->pool_md), r);
3948                         goto err;
3949                 }
3950
3951                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3952                 if (r) {
3953                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3954                               dm_device_name(pool->pool_md), r);
3955                         goto err;
3956                 }
3957
3958                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3959                 if (r) {
3960                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3961                               dm_device_name(pool->pool_md), r);
3962                         goto err;
3963                 }
3964
3965                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3966                        (unsigned long long)transaction_id,
3967                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3968                        (unsigned long long)nr_blocks_metadata,
3969                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3970                        (unsigned long long)nr_blocks_data);
3971
3972                 if (held_root)
3973                         DMEMIT("%llu ", held_root);
3974                 else
3975                         DMEMIT("- ");
3976
3977                 mode = get_pool_mode(pool);
3978                 if (mode == PM_OUT_OF_DATA_SPACE)
3979                         DMEMIT("out_of_data_space ");
3980                 else if (is_read_only_pool_mode(mode))
3981                         DMEMIT("ro ");
3982                 else
3983                         DMEMIT("rw ");
3984
3985                 if (!pool->pf.discard_enabled)
3986                         DMEMIT("ignore_discard ");
3987                 else if (pool->pf.discard_passdown)
3988                         DMEMIT("discard_passdown ");
3989                 else
3990                         DMEMIT("no_discard_passdown ");
3991
3992                 if (pool->pf.error_if_no_space)
3993                         DMEMIT("error_if_no_space ");
3994                 else
3995                         DMEMIT("queue_if_no_space ");
3996
3997                 if (dm_pool_metadata_needs_check(pool->pmd))
3998                         DMEMIT("needs_check ");
3999                 else
4000                         DMEMIT("- ");
4001
4002                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4003
4004                 break;
4005
4006         case STATUSTYPE_TABLE:
4007                 DMEMIT("%s %s %lu %llu ",
4008                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4009                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4010                        (unsigned long)pool->sectors_per_block,
4011                        (unsigned long long)pt->low_water_blocks);
4012                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4013                 break;
4014         }
4015         return;
4016
4017 err:
4018         DMEMIT("Error");
4019 }
4020
4021 static int pool_iterate_devices(struct dm_target *ti,
4022                                 iterate_devices_callout_fn fn, void *data)
4023 {
4024         struct pool_c *pt = ti->private;
4025
4026         return fn(ti, pt->data_dev, 0, ti->len, data);
4027 }
4028
4029 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4030 {
4031         struct pool_c *pt = ti->private;
4032         struct pool *pool = pt->pool;
4033         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4034
4035         /*
4036          * If max_sectors is smaller than pool->sectors_per_block adjust it
4037          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4038          * This is especially beneficial when the pool's data device is a RAID
4039          * device that has a full stripe width that matches pool->sectors_per_block
4040          * -- because even though partial RAID stripe-sized IOs will be issued to a
4041          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4042          *    boundary.. which avoids additional partial RAID stripe writes cascading
4043          */
4044         if (limits->max_sectors < pool->sectors_per_block) {
4045                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4046                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4047                                 limits->max_sectors--;
4048                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4049                 }
4050         }
4051
4052         /*
4053          * If the system-determined stacked limits are compatible with the
4054          * pool's blocksize (io_opt is a factor) do not override them.
4055          */
4056         if (io_opt_sectors < pool->sectors_per_block ||
4057             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4058                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4059                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4060                 else
4061                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4062                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4063         }
4064
4065         /*
4066          * pt->adjusted_pf is a staging area for the actual features to use.
4067          * They get transferred to the live pool in bind_control_target()
4068          * called from pool_preresume().
4069          */
4070         if (!pt->adjusted_pf.discard_enabled) {
4071                 /*
4072                  * Must explicitly disallow stacking discard limits otherwise the
4073                  * block layer will stack them if pool's data device has support.
4074                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4075                  * user to see that, so make sure to set all discard limits to 0.
4076                  */
4077                 limits->discard_granularity = 0;
4078                 return;
4079         }
4080
4081         disable_passdown_if_not_supported(pt);
4082
4083         /*
4084          * The pool uses the same discard limits as the underlying data
4085          * device.  DM core has already set this up.
4086          */
4087 }
4088
4089 static struct target_type pool_target = {
4090         .name = "thin-pool",
4091         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4092                     DM_TARGET_IMMUTABLE,
4093         .version = {1, 20, 0},
4094         .module = THIS_MODULE,
4095         .ctr = pool_ctr,
4096         .dtr = pool_dtr,
4097         .map = pool_map,
4098         .presuspend = pool_presuspend,
4099         .presuspend_undo = pool_presuspend_undo,
4100         .postsuspend = pool_postsuspend,
4101         .preresume = pool_preresume,
4102         .resume = pool_resume,
4103         .message = pool_message,
4104         .status = pool_status,
4105         .iterate_devices = pool_iterate_devices,
4106         .io_hints = pool_io_hints,
4107 };
4108
4109 /*----------------------------------------------------------------
4110  * Thin target methods
4111  *--------------------------------------------------------------*/
4112 static void thin_get(struct thin_c *tc)
4113 {
4114         atomic_inc(&tc->refcount);
4115 }
4116
4117 static void thin_put(struct thin_c *tc)
4118 {
4119         if (atomic_dec_and_test(&tc->refcount))
4120                 complete(&tc->can_destroy);
4121 }
4122
4123 static void thin_dtr(struct dm_target *ti)
4124 {
4125         struct thin_c *tc = ti->private;
4126         unsigned long flags;
4127
4128         spin_lock_irqsave(&tc->pool->lock, flags);
4129         list_del_rcu(&tc->list);
4130         spin_unlock_irqrestore(&tc->pool->lock, flags);
4131         synchronize_rcu();
4132
4133         thin_put(tc);
4134         wait_for_completion(&tc->can_destroy);
4135
4136         mutex_lock(&dm_thin_pool_table.mutex);
4137
4138         __pool_dec(tc->pool);
4139         dm_pool_close_thin_device(tc->td);
4140         dm_put_device(ti, tc->pool_dev);
4141         if (tc->origin_dev)
4142                 dm_put_device(ti, tc->origin_dev);
4143         kfree(tc);
4144
4145         mutex_unlock(&dm_thin_pool_table.mutex);
4146 }
4147
4148 /*
4149  * Thin target parameters:
4150  *
4151  * <pool_dev> <dev_id> [origin_dev]
4152  *
4153  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4154  * dev_id: the internal device identifier
4155  * origin_dev: a device external to the pool that should act as the origin
4156  *
4157  * If the pool device has discards disabled, they get disabled for the thin
4158  * device as well.
4159  */
4160 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4161 {
4162         int r;
4163         struct thin_c *tc;
4164         struct dm_dev *pool_dev, *origin_dev;
4165         struct mapped_device *pool_md;
4166         unsigned long flags;
4167
4168         mutex_lock(&dm_thin_pool_table.mutex);
4169
4170         if (argc != 2 && argc != 3) {
4171                 ti->error = "Invalid argument count";
4172                 r = -EINVAL;
4173                 goto out_unlock;
4174         }
4175
4176         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4177         if (!tc) {
4178                 ti->error = "Out of memory";
4179                 r = -ENOMEM;
4180                 goto out_unlock;
4181         }
4182         tc->thin_md = dm_table_get_md(ti->table);
4183         spin_lock_init(&tc->lock);
4184         INIT_LIST_HEAD(&tc->deferred_cells);
4185         bio_list_init(&tc->deferred_bio_list);
4186         bio_list_init(&tc->retry_on_resume_list);
4187         tc->sort_bio_list = RB_ROOT;
4188
4189         if (argc == 3) {
4190                 if (!strcmp(argv[0], argv[2])) {
4191                         ti->error = "Error setting origin device";
4192                         r = -EINVAL;
4193                         goto bad_origin_dev;
4194                 }
4195
4196                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4197                 if (r) {
4198                         ti->error = "Error opening origin device";
4199                         goto bad_origin_dev;
4200                 }
4201                 tc->origin_dev = origin_dev;
4202         }
4203
4204         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4205         if (r) {
4206                 ti->error = "Error opening pool device";
4207                 goto bad_pool_dev;
4208         }
4209         tc->pool_dev = pool_dev;
4210
4211         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4212                 ti->error = "Invalid device id";
4213                 r = -EINVAL;
4214                 goto bad_common;
4215         }
4216
4217         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4218         if (!pool_md) {
4219                 ti->error = "Couldn't get pool mapped device";
4220                 r = -EINVAL;
4221                 goto bad_common;
4222         }
4223
4224         tc->pool = __pool_table_lookup(pool_md);
4225         if (!tc->pool) {
4226                 ti->error = "Couldn't find pool object";
4227                 r = -EINVAL;
4228                 goto bad_pool_lookup;
4229         }
4230         __pool_inc(tc->pool);
4231
4232         if (get_pool_mode(tc->pool) == PM_FAIL) {
4233                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4234                 r = -EINVAL;
4235                 goto bad_pool;
4236         }
4237
4238         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4239         if (r) {
4240                 ti->error = "Couldn't open thin internal device";
4241                 goto bad_pool;
4242         }
4243
4244         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4245         if (r)
4246                 goto bad;
4247
4248         ti->num_flush_bios = 1;
4249         ti->limit_swap_bios = true;
4250         ti->flush_supported = true;
4251         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4252
4253         /* In case the pool supports discards, pass them on. */
4254         if (tc->pool->pf.discard_enabled) {
4255                 ti->discards_supported = true;
4256                 ti->num_discard_bios = 1;
4257                 ti->split_discard_bios = false;
4258         }
4259
4260         mutex_unlock(&dm_thin_pool_table.mutex);
4261
4262         spin_lock_irqsave(&tc->pool->lock, flags);
4263         if (tc->pool->suspended) {
4264                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4265                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4266                 ti->error = "Unable to activate thin device while pool is suspended";
4267                 r = -EINVAL;
4268                 goto bad;
4269         }
4270         atomic_set(&tc->refcount, 1);
4271         init_completion(&tc->can_destroy);
4272         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4273         spin_unlock_irqrestore(&tc->pool->lock, flags);
4274         /*
4275          * This synchronize_rcu() call is needed here otherwise we risk a
4276          * wake_worker() call finding no bios to process (because the newly
4277          * added tc isn't yet visible).  So this reduces latency since we
4278          * aren't then dependent on the periodic commit to wake_worker().
4279          */
4280         synchronize_rcu();
4281
4282         dm_put(pool_md);
4283
4284         return 0;
4285
4286 bad:
4287         dm_pool_close_thin_device(tc->td);
4288 bad_pool:
4289         __pool_dec(tc->pool);
4290 bad_pool_lookup:
4291         dm_put(pool_md);
4292 bad_common:
4293         dm_put_device(ti, tc->pool_dev);
4294 bad_pool_dev:
4295         if (tc->origin_dev)
4296                 dm_put_device(ti, tc->origin_dev);
4297 bad_origin_dev:
4298         kfree(tc);
4299 out_unlock:
4300         mutex_unlock(&dm_thin_pool_table.mutex);
4301
4302         return r;
4303 }
4304
4305 static int thin_map(struct dm_target *ti, struct bio *bio)
4306 {
4307         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4308
4309         return thin_bio_map(ti, bio);
4310 }
4311
4312 static int thin_endio(struct dm_target *ti, struct bio *bio,
4313                 blk_status_t *err)
4314 {
4315         unsigned long flags;
4316         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4317         struct list_head work;
4318         struct dm_thin_new_mapping *m, *tmp;
4319         struct pool *pool = h->tc->pool;
4320
4321         if (h->shared_read_entry) {
4322                 INIT_LIST_HEAD(&work);
4323                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4324
4325                 spin_lock_irqsave(&pool->lock, flags);
4326                 list_for_each_entry_safe(m, tmp, &work, list) {
4327                         list_del(&m->list);
4328                         __complete_mapping_preparation(m);
4329                 }
4330                 spin_unlock_irqrestore(&pool->lock, flags);
4331         }
4332
4333         if (h->all_io_entry) {
4334                 INIT_LIST_HEAD(&work);
4335                 dm_deferred_entry_dec(h->all_io_entry, &work);
4336                 if (!list_empty(&work)) {
4337                         spin_lock_irqsave(&pool->lock, flags);
4338                         list_for_each_entry_safe(m, tmp, &work, list)
4339                                 list_add_tail(&m->list, &pool->prepared_discards);
4340                         spin_unlock_irqrestore(&pool->lock, flags);
4341                         wake_worker(pool);
4342                 }
4343         }
4344
4345         if (h->cell)
4346                 cell_defer_no_holder(h->tc, h->cell);
4347
4348         return DM_ENDIO_DONE;
4349 }
4350
4351 static void thin_presuspend(struct dm_target *ti)
4352 {
4353         struct thin_c *tc = ti->private;
4354
4355         if (dm_noflush_suspending(ti))
4356                 noflush_work(tc, do_noflush_start);
4357 }
4358
4359 static void thin_postsuspend(struct dm_target *ti)
4360 {
4361         struct thin_c *tc = ti->private;
4362
4363         /*
4364          * The dm_noflush_suspending flag has been cleared by now, so
4365          * unfortunately we must always run this.
4366          */
4367         noflush_work(tc, do_noflush_stop);
4368 }
4369
4370 static int thin_preresume(struct dm_target *ti)
4371 {
4372         struct thin_c *tc = ti->private;
4373
4374         if (tc->origin_dev)
4375                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4376
4377         return 0;
4378 }
4379
4380 /*
4381  * <nr mapped sectors> <highest mapped sector>
4382  */
4383 static void thin_status(struct dm_target *ti, status_type_t type,
4384                         unsigned status_flags, char *result, unsigned maxlen)
4385 {
4386         int r;
4387         ssize_t sz = 0;
4388         dm_block_t mapped, highest;
4389         char buf[BDEVNAME_SIZE];
4390         struct thin_c *tc = ti->private;
4391
4392         if (get_pool_mode(tc->pool) == PM_FAIL) {
4393                 DMEMIT("Fail");
4394                 return;
4395         }
4396
4397         if (!tc->td)
4398                 DMEMIT("-");
4399         else {
4400                 switch (type) {
4401                 case STATUSTYPE_INFO:
4402                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4403                         if (r) {
4404                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4405                                 goto err;
4406                         }
4407
4408                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4409                         if (r < 0) {
4410                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4411                                 goto err;
4412                         }
4413
4414                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4415                         if (r)
4416                                 DMEMIT("%llu", ((highest + 1) *
4417                                                 tc->pool->sectors_per_block) - 1);
4418                         else
4419                                 DMEMIT("-");
4420                         break;
4421
4422                 case STATUSTYPE_TABLE:
4423                         DMEMIT("%s %lu",
4424                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4425                                (unsigned long) tc->dev_id);
4426                         if (tc->origin_dev)
4427                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4428                         break;
4429                 }
4430         }
4431
4432         return;
4433
4434 err:
4435         DMEMIT("Error");
4436 }
4437
4438 static int thin_iterate_devices(struct dm_target *ti,
4439                                 iterate_devices_callout_fn fn, void *data)
4440 {
4441         sector_t blocks;
4442         struct thin_c *tc = ti->private;
4443         struct pool *pool = tc->pool;
4444
4445         /*
4446          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4447          * we follow a more convoluted path through to the pool's target.
4448          */
4449         if (!pool->ti)
4450                 return 0;       /* nothing is bound */
4451
4452         blocks = pool->ti->len;
4453         (void) sector_div(blocks, pool->sectors_per_block);
4454         if (blocks)
4455                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4456
4457         return 0;
4458 }
4459
4460 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4461 {
4462         struct thin_c *tc = ti->private;
4463         struct pool *pool = tc->pool;
4464
4465         if (!pool->pf.discard_enabled)
4466                 return;
4467
4468         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4469         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4470 }
4471
4472 static struct target_type thin_target = {
4473         .name = "thin",
4474         .version = {1, 20, 0},
4475         .module = THIS_MODULE,
4476         .ctr = thin_ctr,
4477         .dtr = thin_dtr,
4478         .map = thin_map,
4479         .end_io = thin_endio,
4480         .preresume = thin_preresume,
4481         .presuspend = thin_presuspend,
4482         .postsuspend = thin_postsuspend,
4483         .status = thin_status,
4484         .iterate_devices = thin_iterate_devices,
4485         .io_hints = thin_io_hints,
4486 };
4487
4488 /*----------------------------------------------------------------*/
4489
4490 static int __init dm_thin_init(void)
4491 {
4492         int r = -ENOMEM;
4493
4494         pool_table_init();
4495
4496         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4497         if (!_new_mapping_cache)
4498                 return r;
4499
4500         r = dm_register_target(&thin_target);
4501         if (r)
4502                 goto bad_new_mapping_cache;
4503
4504         r = dm_register_target(&pool_target);
4505         if (r)
4506                 goto bad_thin_target;
4507
4508         return 0;
4509
4510 bad_thin_target:
4511         dm_unregister_target(&thin_target);
4512 bad_new_mapping_cache:
4513         kmem_cache_destroy(_new_mapping_cache);
4514
4515         return r;
4516 }
4517
4518 static void dm_thin_exit(void)
4519 {
4520         dm_unregister_target(&thin_target);
4521         dm_unregister_target(&pool_target);
4522
4523         kmem_cache_destroy(_new_mapping_cache);
4524
4525         pool_table_exit();
4526 }
4527
4528 module_init(dm_thin_init);
4529 module_exit(dm_thin_exit);
4530
4531 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4532 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4533
4534 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4535 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4536 MODULE_LICENSE("GPL");