GNU Linux-libre 5.4.241-gnu1
[releases.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *data_dev;
235         struct block_device *md_dev;
236         struct dm_pool_metadata *pmd;
237
238         dm_block_t low_water_blocks;
239         uint32_t sectors_per_block;
240         int sectors_per_block_shift;
241
242         struct pool_features pf;
243         bool low_water_triggered:1;     /* A dm event has been sent */
244         bool suspended:1;
245         bool out_of_data_space:1;
246
247         struct dm_bio_prison *prison;
248         struct dm_kcopyd_client *copier;
249
250         struct work_struct worker;
251         struct workqueue_struct *wq;
252         struct throttle throttle;
253         struct delayed_work waker;
254         struct delayed_work no_space_timeout;
255
256         unsigned long last_commit_jiffies;
257         unsigned ref_count;
258
259         spinlock_t lock;
260         struct bio_list deferred_flush_bios;
261         struct bio_list deferred_flush_completions;
262         struct list_head prepared_mappings;
263         struct list_head prepared_discards;
264         struct list_head prepared_discards_pt2;
265         struct list_head active_thins;
266
267         struct dm_deferred_set *shared_read_ds;
268         struct dm_deferred_set *all_io_ds;
269
270         struct dm_thin_new_mapping *next_mapping;
271
272         process_bio_fn process_bio;
273         process_bio_fn process_discard;
274
275         process_cell_fn process_cell;
276         process_cell_fn process_discard_cell;
277
278         process_mapping_fn process_prepared_mapping;
279         process_mapping_fn process_prepared_discard;
280         process_mapping_fn process_prepared_discard_pt2;
281
282         struct dm_bio_prison_cell **cell_sort_array;
283
284         mempool_t mapping_pool;
285 };
286
287 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
288
289 static enum pool_mode get_pool_mode(struct pool *pool)
290 {
291         return pool->pf.mode;
292 }
293
294 static void notify_of_pool_mode_change(struct pool *pool)
295 {
296         const char *descs[] = {
297                 "write",
298                 "out-of-data-space",
299                 "read-only",
300                 "read-only",
301                 "fail"
302         };
303         const char *extra_desc = NULL;
304         enum pool_mode mode = get_pool_mode(pool);
305
306         if (mode == PM_OUT_OF_DATA_SPACE) {
307                 if (!pool->pf.error_if_no_space)
308                         extra_desc = " (queue IO)";
309                 else
310                         extra_desc = " (error IO)";
311         }
312
313         dm_table_event(pool->ti->table);
314         DMINFO("%s: switching pool to %s%s mode",
315                dm_device_name(pool->pool_md),
316                descs[(int)mode], extra_desc ? : "");
317 }
318
319 /*
320  * Target context for a pool.
321  */
322 struct pool_c {
323         struct dm_target *ti;
324         struct pool *pool;
325         struct dm_dev *data_dev;
326         struct dm_dev *metadata_dev;
327         struct dm_target_callbacks callbacks;
328
329         dm_block_t low_water_blocks;
330         struct pool_features requested_pf; /* Features requested during table load */
331         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
332         struct bio flush_bio;
333 };
334
335 /*
336  * Target context for a thin.
337  */
338 struct thin_c {
339         struct list_head list;
340         struct dm_dev *pool_dev;
341         struct dm_dev *origin_dev;
342         sector_t origin_size;
343         dm_thin_id dev_id;
344
345         struct pool *pool;
346         struct dm_thin_device *td;
347         struct mapped_device *thin_md;
348
349         bool requeue_mode:1;
350         spinlock_t lock;
351         struct list_head deferred_cells;
352         struct bio_list deferred_bio_list;
353         struct bio_list retry_on_resume_list;
354         struct rb_root sort_bio_list; /* sorted list of deferred bios */
355
356         /*
357          * Ensures the thin is not destroyed until the worker has finished
358          * iterating the active_thins list.
359          */
360         refcount_t refcount;
361         struct completion can_destroy;
362 };
363
364 /*----------------------------------------------------------------*/
365
366 static bool block_size_is_power_of_two(struct pool *pool)
367 {
368         return pool->sectors_per_block_shift >= 0;
369 }
370
371 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
372 {
373         return block_size_is_power_of_two(pool) ?
374                 (b << pool->sectors_per_block_shift) :
375                 (b * pool->sectors_per_block);
376 }
377
378 /*----------------------------------------------------------------*/
379
380 struct discard_op {
381         struct thin_c *tc;
382         struct blk_plug plug;
383         struct bio *parent_bio;
384         struct bio *bio;
385 };
386
387 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
388 {
389         BUG_ON(!parent);
390
391         op->tc = tc;
392         blk_start_plug(&op->plug);
393         op->parent_bio = parent;
394         op->bio = NULL;
395 }
396
397 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
398 {
399         struct thin_c *tc = op->tc;
400         sector_t s = block_to_sectors(tc->pool, data_b);
401         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
402
403         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
404                                       GFP_NOWAIT, 0, &op->bio);
405 }
406
407 static void end_discard(struct discard_op *op, int r)
408 {
409         if (op->bio) {
410                 /*
411                  * Even if one of the calls to issue_discard failed, we
412                  * need to wait for the chain to complete.
413                  */
414                 bio_chain(op->bio, op->parent_bio);
415                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
416                 submit_bio(op->bio);
417         }
418
419         blk_finish_plug(&op->plug);
420
421         /*
422          * Even if r is set, there could be sub discards in flight that we
423          * need to wait for.
424          */
425         if (r && !op->parent_bio->bi_status)
426                 op->parent_bio->bi_status = errno_to_blk_status(r);
427         bio_endio(op->parent_bio);
428 }
429
430 /*----------------------------------------------------------------*/
431
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
436 static void wake_worker(struct pool *pool)
437 {
438         queue_work(pool->wq, &pool->worker);
439 }
440
441 /*----------------------------------------------------------------*/
442
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444                       struct dm_bio_prison_cell **cell_result)
445 {
446         int r;
447         struct dm_bio_prison_cell *cell_prealloc;
448
449         /*
450          * Allocate a cell from the prison's mempool.
451          * This might block but it can't fail.
452          */
453         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456         if (r)
457                 /*
458                  * We reused an old cell; we can get rid of
459                  * the new one.
460                  */
461                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462
463         return r;
464 }
465
466 static void cell_release(struct pool *pool,
467                          struct dm_bio_prison_cell *cell,
468                          struct bio_list *bios)
469 {
470         dm_cell_release(pool->prison, cell, bios);
471         dm_bio_prison_free_cell(pool->prison, cell);
472 }
473
474 static void cell_visit_release(struct pool *pool,
475                                void (*fn)(void *, struct dm_bio_prison_cell *),
476                                void *context,
477                                struct dm_bio_prison_cell *cell)
478 {
479         dm_cell_visit_release(pool->prison, fn, context, cell);
480         dm_bio_prison_free_cell(pool->prison, cell);
481 }
482
483 static void cell_release_no_holder(struct pool *pool,
484                                    struct dm_bio_prison_cell *cell,
485                                    struct bio_list *bios)
486 {
487         dm_cell_release_no_holder(pool->prison, cell, bios);
488         dm_bio_prison_free_cell(pool->prison, cell);
489 }
490
491 static void cell_error_with_code(struct pool *pool,
492                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
493 {
494         dm_cell_error(pool->prison, cell, error_code);
495         dm_bio_prison_free_cell(pool->prison, cell);
496 }
497
498 static blk_status_t get_pool_io_error_code(struct pool *pool)
499 {
500         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501 }
502
503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504 {
505         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506 }
507
508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509 {
510         cell_error_with_code(pool, cell, 0);
511 }
512
513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514 {
515         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516 }
517
518 /*----------------------------------------------------------------*/
519
520 /*
521  * A global list of pools that uses a struct mapped_device as a key.
522  */
523 static struct dm_thin_pool_table {
524         struct mutex mutex;
525         struct list_head pools;
526 } dm_thin_pool_table;
527
528 static void pool_table_init(void)
529 {
530         mutex_init(&dm_thin_pool_table.mutex);
531         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532 }
533
534 static void pool_table_exit(void)
535 {
536         mutex_destroy(&dm_thin_pool_table.mutex);
537 }
538
539 static void __pool_table_insert(struct pool *pool)
540 {
541         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542         list_add(&pool->list, &dm_thin_pool_table.pools);
543 }
544
545 static void __pool_table_remove(struct pool *pool)
546 {
547         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548         list_del(&pool->list);
549 }
550
551 static struct pool *__pool_table_lookup(struct mapped_device *md)
552 {
553         struct pool *pool = NULL, *tmp;
554
555         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556
557         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558                 if (tmp->pool_md == md) {
559                         pool = tmp;
560                         break;
561                 }
562         }
563
564         return pool;
565 }
566
567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568 {
569         struct pool *pool = NULL, *tmp;
570
571         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572
573         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574                 if (tmp->md_dev == md_dev) {
575                         pool = tmp;
576                         break;
577                 }
578         }
579
580         return pool;
581 }
582
583 /*----------------------------------------------------------------*/
584
585 struct dm_thin_endio_hook {
586         struct thin_c *tc;
587         struct dm_deferred_entry *shared_read_entry;
588         struct dm_deferred_entry *all_io_entry;
589         struct dm_thin_new_mapping *overwrite_mapping;
590         struct rb_node rb_node;
591         struct dm_bio_prison_cell *cell;
592 };
593
594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595 {
596         bio_list_merge(bios, master);
597         bio_list_init(master);
598 }
599
600 static void error_bio_list(struct bio_list *bios, blk_status_t error)
601 {
602         struct bio *bio;
603
604         while ((bio = bio_list_pop(bios))) {
605                 bio->bi_status = error;
606                 bio_endio(bio);
607         }
608 }
609
610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611                 blk_status_t error)
612 {
613         struct bio_list bios;
614         unsigned long flags;
615
616         bio_list_init(&bios);
617
618         spin_lock_irqsave(&tc->lock, flags);
619         __merge_bio_list(&bios, master);
620         spin_unlock_irqrestore(&tc->lock, flags);
621
622         error_bio_list(&bios, error);
623 }
624
625 static void requeue_deferred_cells(struct thin_c *tc)
626 {
627         struct pool *pool = tc->pool;
628         unsigned long flags;
629         struct list_head cells;
630         struct dm_bio_prison_cell *cell, *tmp;
631
632         INIT_LIST_HEAD(&cells);
633
634         spin_lock_irqsave(&tc->lock, flags);
635         list_splice_init(&tc->deferred_cells, &cells);
636         spin_unlock_irqrestore(&tc->lock, flags);
637
638         list_for_each_entry_safe(cell, tmp, &cells, user_list)
639                 cell_requeue(pool, cell);
640 }
641
642 static void requeue_io(struct thin_c *tc)
643 {
644         struct bio_list bios;
645         unsigned long flags;
646
647         bio_list_init(&bios);
648
649         spin_lock_irqsave(&tc->lock, flags);
650         __merge_bio_list(&bios, &tc->deferred_bio_list);
651         __merge_bio_list(&bios, &tc->retry_on_resume_list);
652         spin_unlock_irqrestore(&tc->lock, flags);
653
654         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
655         requeue_deferred_cells(tc);
656 }
657
658 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
659 {
660         struct thin_c *tc;
661
662         rcu_read_lock();
663         list_for_each_entry_rcu(tc, &pool->active_thins, list)
664                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
665         rcu_read_unlock();
666 }
667
668 static void error_retry_list(struct pool *pool)
669 {
670         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
671 }
672
673 /*
674  * This section of code contains the logic for processing a thin device's IO.
675  * Much of the code depends on pool object resources (lists, workqueues, etc)
676  * but most is exclusively called from the thin target rather than the thin-pool
677  * target.
678  */
679
680 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
681 {
682         struct pool *pool = tc->pool;
683         sector_t block_nr = bio->bi_iter.bi_sector;
684
685         if (block_size_is_power_of_two(pool))
686                 block_nr >>= pool->sectors_per_block_shift;
687         else
688                 (void) sector_div(block_nr, pool->sectors_per_block);
689
690         return block_nr;
691 }
692
693 /*
694  * Returns the _complete_ blocks that this bio covers.
695  */
696 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
697                                 dm_block_t *begin, dm_block_t *end)
698 {
699         struct pool *pool = tc->pool;
700         sector_t b = bio->bi_iter.bi_sector;
701         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
702
703         b += pool->sectors_per_block - 1ull; /* so we round up */
704
705         if (block_size_is_power_of_two(pool)) {
706                 b >>= pool->sectors_per_block_shift;
707                 e >>= pool->sectors_per_block_shift;
708         } else {
709                 (void) sector_div(b, pool->sectors_per_block);
710                 (void) sector_div(e, pool->sectors_per_block);
711         }
712
713         if (e < b)
714                 /* Can happen if the bio is within a single block. */
715                 e = b;
716
717         *begin = b;
718         *end = e;
719 }
720
721 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
722 {
723         struct pool *pool = tc->pool;
724         sector_t bi_sector = bio->bi_iter.bi_sector;
725
726         bio_set_dev(bio, tc->pool_dev->bdev);
727         if (block_size_is_power_of_two(pool))
728                 bio->bi_iter.bi_sector =
729                         (block << pool->sectors_per_block_shift) |
730                         (bi_sector & (pool->sectors_per_block - 1));
731         else
732                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
733                                  sector_div(bi_sector, pool->sectors_per_block);
734 }
735
736 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
737 {
738         bio_set_dev(bio, tc->origin_dev->bdev);
739 }
740
741 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
742 {
743         return op_is_flush(bio->bi_opf) &&
744                 dm_thin_changed_this_transaction(tc->td);
745 }
746
747 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
748 {
749         struct dm_thin_endio_hook *h;
750
751         if (bio_op(bio) == REQ_OP_DISCARD)
752                 return;
753
754         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
755         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
756 }
757
758 static void issue(struct thin_c *tc, struct bio *bio)
759 {
760         struct pool *pool = tc->pool;
761         unsigned long flags;
762
763         if (!bio_triggers_commit(tc, bio)) {
764                 generic_make_request(bio);
765                 return;
766         }
767
768         /*
769          * Complete bio with an error if earlier I/O caused changes to
770          * the metadata that can't be committed e.g, due to I/O errors
771          * on the metadata device.
772          */
773         if (dm_thin_aborted_changes(tc->td)) {
774                 bio_io_error(bio);
775                 return;
776         }
777
778         /*
779          * Batch together any bios that trigger commits and then issue a
780          * single commit for them in process_deferred_bios().
781          */
782         spin_lock_irqsave(&pool->lock, flags);
783         bio_list_add(&pool->deferred_flush_bios, bio);
784         spin_unlock_irqrestore(&pool->lock, flags);
785 }
786
787 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
788 {
789         remap_to_origin(tc, bio);
790         issue(tc, bio);
791 }
792
793 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
794                             dm_block_t block)
795 {
796         remap(tc, bio, block);
797         issue(tc, bio);
798 }
799
800 /*----------------------------------------------------------------*/
801
802 /*
803  * Bio endio functions.
804  */
805 struct dm_thin_new_mapping {
806         struct list_head list;
807
808         bool pass_discard:1;
809         bool maybe_shared:1;
810
811         /*
812          * Track quiescing, copying and zeroing preparation actions.  When this
813          * counter hits zero the block is prepared and can be inserted into the
814          * btree.
815          */
816         atomic_t prepare_actions;
817
818         blk_status_t status;
819         struct thin_c *tc;
820         dm_block_t virt_begin, virt_end;
821         dm_block_t data_block;
822         struct dm_bio_prison_cell *cell;
823
824         /*
825          * If the bio covers the whole area of a block then we can avoid
826          * zeroing or copying.  Instead this bio is hooked.  The bio will
827          * still be in the cell, so care has to be taken to avoid issuing
828          * the bio twice.
829          */
830         struct bio *bio;
831         bio_end_io_t *saved_bi_end_io;
832 };
833
834 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
835 {
836         struct pool *pool = m->tc->pool;
837
838         if (atomic_dec_and_test(&m->prepare_actions)) {
839                 list_add_tail(&m->list, &pool->prepared_mappings);
840                 wake_worker(pool);
841         }
842 }
843
844 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
845 {
846         unsigned long flags;
847         struct pool *pool = m->tc->pool;
848
849         spin_lock_irqsave(&pool->lock, flags);
850         __complete_mapping_preparation(m);
851         spin_unlock_irqrestore(&pool->lock, flags);
852 }
853
854 static void copy_complete(int read_err, unsigned long write_err, void *context)
855 {
856         struct dm_thin_new_mapping *m = context;
857
858         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
859         complete_mapping_preparation(m);
860 }
861
862 static void overwrite_endio(struct bio *bio)
863 {
864         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
865         struct dm_thin_new_mapping *m = h->overwrite_mapping;
866
867         bio->bi_end_io = m->saved_bi_end_io;
868
869         m->status = bio->bi_status;
870         complete_mapping_preparation(m);
871 }
872
873 /*----------------------------------------------------------------*/
874
875 /*
876  * Workqueue.
877  */
878
879 /*
880  * Prepared mapping jobs.
881  */
882
883 /*
884  * This sends the bios in the cell, except the original holder, back
885  * to the deferred_bios list.
886  */
887 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
888 {
889         struct pool *pool = tc->pool;
890         unsigned long flags;
891
892         spin_lock_irqsave(&tc->lock, flags);
893         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
894         spin_unlock_irqrestore(&tc->lock, flags);
895
896         wake_worker(pool);
897 }
898
899 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
900
901 struct remap_info {
902         struct thin_c *tc;
903         struct bio_list defer_bios;
904         struct bio_list issue_bios;
905 };
906
907 static void __inc_remap_and_issue_cell(void *context,
908                                        struct dm_bio_prison_cell *cell)
909 {
910         struct remap_info *info = context;
911         struct bio *bio;
912
913         while ((bio = bio_list_pop(&cell->bios))) {
914                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
915                         bio_list_add(&info->defer_bios, bio);
916                 else {
917                         inc_all_io_entry(info->tc->pool, bio);
918
919                         /*
920                          * We can't issue the bios with the bio prison lock
921                          * held, so we add them to a list to issue on
922                          * return from this function.
923                          */
924                         bio_list_add(&info->issue_bios, bio);
925                 }
926         }
927 }
928
929 static void inc_remap_and_issue_cell(struct thin_c *tc,
930                                      struct dm_bio_prison_cell *cell,
931                                      dm_block_t block)
932 {
933         struct bio *bio;
934         struct remap_info info;
935
936         info.tc = tc;
937         bio_list_init(&info.defer_bios);
938         bio_list_init(&info.issue_bios);
939
940         /*
941          * We have to be careful to inc any bios we're about to issue
942          * before the cell is released, and avoid a race with new bios
943          * being added to the cell.
944          */
945         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
946                            &info, cell);
947
948         while ((bio = bio_list_pop(&info.defer_bios)))
949                 thin_defer_bio(tc, bio);
950
951         while ((bio = bio_list_pop(&info.issue_bios)))
952                 remap_and_issue(info.tc, bio, block);
953 }
954
955 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
956 {
957         cell_error(m->tc->pool, m->cell);
958         list_del(&m->list);
959         mempool_free(m, &m->tc->pool->mapping_pool);
960 }
961
962 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
963 {
964         struct pool *pool = tc->pool;
965         unsigned long flags;
966
967         /*
968          * If the bio has the REQ_FUA flag set we must commit the metadata
969          * before signaling its completion.
970          */
971         if (!bio_triggers_commit(tc, bio)) {
972                 bio_endio(bio);
973                 return;
974         }
975
976         /*
977          * Complete bio with an error if earlier I/O caused changes to the
978          * metadata that can't be committed, e.g, due to I/O errors on the
979          * metadata device.
980          */
981         if (dm_thin_aborted_changes(tc->td)) {
982                 bio_io_error(bio);
983                 return;
984         }
985
986         /*
987          * Batch together any bios that trigger commits and then issue a
988          * single commit for them in process_deferred_bios().
989          */
990         spin_lock_irqsave(&pool->lock, flags);
991         bio_list_add(&pool->deferred_flush_completions, bio);
992         spin_unlock_irqrestore(&pool->lock, flags);
993 }
994
995 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
996 {
997         struct thin_c *tc = m->tc;
998         struct pool *pool = tc->pool;
999         struct bio *bio = m->bio;
1000         int r;
1001
1002         if (m->status) {
1003                 cell_error(pool, m->cell);
1004                 goto out;
1005         }
1006
1007         /*
1008          * Commit the prepared block into the mapping btree.
1009          * Any I/O for this block arriving after this point will get
1010          * remapped to it directly.
1011          */
1012         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1013         if (r) {
1014                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1015                 cell_error(pool, m->cell);
1016                 goto out;
1017         }
1018
1019         /*
1020          * Release any bios held while the block was being provisioned.
1021          * If we are processing a write bio that completely covers the block,
1022          * we already processed it so can ignore it now when processing
1023          * the bios in the cell.
1024          */
1025         if (bio) {
1026                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1027                 complete_overwrite_bio(tc, bio);
1028         } else {
1029                 inc_all_io_entry(tc->pool, m->cell->holder);
1030                 remap_and_issue(tc, m->cell->holder, m->data_block);
1031                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1032         }
1033
1034 out:
1035         list_del(&m->list);
1036         mempool_free(m, &pool->mapping_pool);
1037 }
1038
1039 /*----------------------------------------------------------------*/
1040
1041 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1042 {
1043         struct thin_c *tc = m->tc;
1044         if (m->cell)
1045                 cell_defer_no_holder(tc, m->cell);
1046         mempool_free(m, &tc->pool->mapping_pool);
1047 }
1048
1049 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1050 {
1051         bio_io_error(m->bio);
1052         free_discard_mapping(m);
1053 }
1054
1055 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1056 {
1057         bio_endio(m->bio);
1058         free_discard_mapping(m);
1059 }
1060
1061 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1062 {
1063         int r;
1064         struct thin_c *tc = m->tc;
1065
1066         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1067         if (r) {
1068                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1069                 bio_io_error(m->bio);
1070         } else
1071                 bio_endio(m->bio);
1072
1073         cell_defer_no_holder(tc, m->cell);
1074         mempool_free(m, &tc->pool->mapping_pool);
1075 }
1076
1077 /*----------------------------------------------------------------*/
1078
1079 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1080                                                    struct bio *discard_parent)
1081 {
1082         /*
1083          * We've already unmapped this range of blocks, but before we
1084          * passdown we have to check that these blocks are now unused.
1085          */
1086         int r = 0;
1087         bool shared = true;
1088         struct thin_c *tc = m->tc;
1089         struct pool *pool = tc->pool;
1090         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1091         struct discard_op op;
1092
1093         begin_discard(&op, tc, discard_parent);
1094         while (b != end) {
1095                 /* find start of unmapped run */
1096                 for (; b < end; b++) {
1097                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1098                         if (r)
1099                                 goto out;
1100
1101                         if (!shared)
1102                                 break;
1103                 }
1104
1105                 if (b == end)
1106                         break;
1107
1108                 /* find end of run */
1109                 for (e = b + 1; e != end; e++) {
1110                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1111                         if (r)
1112                                 goto out;
1113
1114                         if (shared)
1115                                 break;
1116                 }
1117
1118                 r = issue_discard(&op, b, e);
1119                 if (r)
1120                         goto out;
1121
1122                 b = e;
1123         }
1124 out:
1125         end_discard(&op, r);
1126 }
1127
1128 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1129 {
1130         unsigned long flags;
1131         struct pool *pool = m->tc->pool;
1132
1133         spin_lock_irqsave(&pool->lock, flags);
1134         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1135         spin_unlock_irqrestore(&pool->lock, flags);
1136         wake_worker(pool);
1137 }
1138
1139 static void passdown_endio(struct bio *bio)
1140 {
1141         /*
1142          * It doesn't matter if the passdown discard failed, we still want
1143          * to unmap (we ignore err).
1144          */
1145         queue_passdown_pt2(bio->bi_private);
1146         bio_put(bio);
1147 }
1148
1149 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1150 {
1151         int r;
1152         struct thin_c *tc = m->tc;
1153         struct pool *pool = tc->pool;
1154         struct bio *discard_parent;
1155         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1156
1157         /*
1158          * Only this thread allocates blocks, so we can be sure that the
1159          * newly unmapped blocks will not be allocated before the end of
1160          * the function.
1161          */
1162         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1163         if (r) {
1164                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1165                 bio_io_error(m->bio);
1166                 cell_defer_no_holder(tc, m->cell);
1167                 mempool_free(m, &pool->mapping_pool);
1168                 return;
1169         }
1170
1171         /*
1172          * Increment the unmapped blocks.  This prevents a race between the
1173          * passdown io and reallocation of freed blocks.
1174          */
1175         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1176         if (r) {
1177                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1178                 bio_io_error(m->bio);
1179                 cell_defer_no_holder(tc, m->cell);
1180                 mempool_free(m, &pool->mapping_pool);
1181                 return;
1182         }
1183
1184         discard_parent = bio_alloc(GFP_NOIO, 1);
1185         if (!discard_parent) {
1186                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1187                        dm_device_name(tc->pool->pool_md));
1188                 queue_passdown_pt2(m);
1189
1190         } else {
1191                 discard_parent->bi_end_io = passdown_endio;
1192                 discard_parent->bi_private = m;
1193
1194                 if (m->maybe_shared)
1195                         passdown_double_checking_shared_status(m, discard_parent);
1196                 else {
1197                         struct discard_op op;
1198
1199                         begin_discard(&op, tc, discard_parent);
1200                         r = issue_discard(&op, m->data_block, data_end);
1201                         end_discard(&op, r);
1202                 }
1203         }
1204 }
1205
1206 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1207 {
1208         int r;
1209         struct thin_c *tc = m->tc;
1210         struct pool *pool = tc->pool;
1211
1212         /*
1213          * The passdown has completed, so now we can decrement all those
1214          * unmapped blocks.
1215          */
1216         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1217                                    m->data_block + (m->virt_end - m->virt_begin));
1218         if (r) {
1219                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1220                 bio_io_error(m->bio);
1221         } else
1222                 bio_endio(m->bio);
1223
1224         cell_defer_no_holder(tc, m->cell);
1225         mempool_free(m, &pool->mapping_pool);
1226 }
1227
1228 static void process_prepared(struct pool *pool, struct list_head *head,
1229                              process_mapping_fn *fn)
1230 {
1231         unsigned long flags;
1232         struct list_head maps;
1233         struct dm_thin_new_mapping *m, *tmp;
1234
1235         INIT_LIST_HEAD(&maps);
1236         spin_lock_irqsave(&pool->lock, flags);
1237         list_splice_init(head, &maps);
1238         spin_unlock_irqrestore(&pool->lock, flags);
1239
1240         list_for_each_entry_safe(m, tmp, &maps, list)
1241                 (*fn)(m);
1242 }
1243
1244 /*
1245  * Deferred bio jobs.
1246  */
1247 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1248 {
1249         return bio->bi_iter.bi_size ==
1250                 (pool->sectors_per_block << SECTOR_SHIFT);
1251 }
1252
1253 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1254 {
1255         return (bio_data_dir(bio) == WRITE) &&
1256                 io_overlaps_block(pool, bio);
1257 }
1258
1259 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1260                                bio_end_io_t *fn)
1261 {
1262         *save = bio->bi_end_io;
1263         bio->bi_end_io = fn;
1264 }
1265
1266 static int ensure_next_mapping(struct pool *pool)
1267 {
1268         if (pool->next_mapping)
1269                 return 0;
1270
1271         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1272
1273         return pool->next_mapping ? 0 : -ENOMEM;
1274 }
1275
1276 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1277 {
1278         struct dm_thin_new_mapping *m = pool->next_mapping;
1279
1280         BUG_ON(!pool->next_mapping);
1281
1282         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1283         INIT_LIST_HEAD(&m->list);
1284         m->bio = NULL;
1285
1286         pool->next_mapping = NULL;
1287
1288         return m;
1289 }
1290
1291 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1292                     sector_t begin, sector_t end)
1293 {
1294         struct dm_io_region to;
1295
1296         to.bdev = tc->pool_dev->bdev;
1297         to.sector = begin;
1298         to.count = end - begin;
1299
1300         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1301 }
1302
1303 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1304                                       dm_block_t data_begin,
1305                                       struct dm_thin_new_mapping *m)
1306 {
1307         struct pool *pool = tc->pool;
1308         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1309
1310         h->overwrite_mapping = m;
1311         m->bio = bio;
1312         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1313         inc_all_io_entry(pool, bio);
1314         remap_and_issue(tc, bio, data_begin);
1315 }
1316
1317 /*
1318  * A partial copy also needs to zero the uncopied region.
1319  */
1320 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1321                           struct dm_dev *origin, dm_block_t data_origin,
1322                           dm_block_t data_dest,
1323                           struct dm_bio_prison_cell *cell, struct bio *bio,
1324                           sector_t len)
1325 {
1326         struct pool *pool = tc->pool;
1327         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1328
1329         m->tc = tc;
1330         m->virt_begin = virt_block;
1331         m->virt_end = virt_block + 1u;
1332         m->data_block = data_dest;
1333         m->cell = cell;
1334
1335         /*
1336          * quiesce action + copy action + an extra reference held for the
1337          * duration of this function (we may need to inc later for a
1338          * partial zero).
1339          */
1340         atomic_set(&m->prepare_actions, 3);
1341
1342         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1343                 complete_mapping_preparation(m); /* already quiesced */
1344
1345         /*
1346          * IO to pool_dev remaps to the pool target's data_dev.
1347          *
1348          * If the whole block of data is being overwritten, we can issue the
1349          * bio immediately. Otherwise we use kcopyd to clone the data first.
1350          */
1351         if (io_overwrites_block(pool, bio))
1352                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1353         else {
1354                 struct dm_io_region from, to;
1355
1356                 from.bdev = origin->bdev;
1357                 from.sector = data_origin * pool->sectors_per_block;
1358                 from.count = len;
1359
1360                 to.bdev = tc->pool_dev->bdev;
1361                 to.sector = data_dest * pool->sectors_per_block;
1362                 to.count = len;
1363
1364                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1365                                0, copy_complete, m);
1366
1367                 /*
1368                  * Do we need to zero a tail region?
1369                  */
1370                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1371                         atomic_inc(&m->prepare_actions);
1372                         ll_zero(tc, m,
1373                                 data_dest * pool->sectors_per_block + len,
1374                                 (data_dest + 1) * pool->sectors_per_block);
1375                 }
1376         }
1377
1378         complete_mapping_preparation(m); /* drop our ref */
1379 }
1380
1381 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1382                                    dm_block_t data_origin, dm_block_t data_dest,
1383                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1384 {
1385         schedule_copy(tc, virt_block, tc->pool_dev,
1386                       data_origin, data_dest, cell, bio,
1387                       tc->pool->sectors_per_block);
1388 }
1389
1390 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1391                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1392                           struct bio *bio)
1393 {
1394         struct pool *pool = tc->pool;
1395         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1396
1397         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1398         m->tc = tc;
1399         m->virt_begin = virt_block;
1400         m->virt_end = virt_block + 1u;
1401         m->data_block = data_block;
1402         m->cell = cell;
1403
1404         /*
1405          * If the whole block of data is being overwritten or we are not
1406          * zeroing pre-existing data, we can issue the bio immediately.
1407          * Otherwise we use kcopyd to zero the data first.
1408          */
1409         if (pool->pf.zero_new_blocks) {
1410                 if (io_overwrites_block(pool, bio))
1411                         remap_and_issue_overwrite(tc, bio, data_block, m);
1412                 else
1413                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1414                                 (data_block + 1) * pool->sectors_per_block);
1415         } else
1416                 process_prepared_mapping(m);
1417 }
1418
1419 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1420                                    dm_block_t data_dest,
1421                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1422 {
1423         struct pool *pool = tc->pool;
1424         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1425         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1426
1427         if (virt_block_end <= tc->origin_size)
1428                 schedule_copy(tc, virt_block, tc->origin_dev,
1429                               virt_block, data_dest, cell, bio,
1430                               pool->sectors_per_block);
1431
1432         else if (virt_block_begin < tc->origin_size)
1433                 schedule_copy(tc, virt_block, tc->origin_dev,
1434                               virt_block, data_dest, cell, bio,
1435                               tc->origin_size - virt_block_begin);
1436
1437         else
1438                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1439 }
1440
1441 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1442
1443 static void requeue_bios(struct pool *pool);
1444
1445 static bool is_read_only_pool_mode(enum pool_mode mode)
1446 {
1447         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1448 }
1449
1450 static bool is_read_only(struct pool *pool)
1451 {
1452         return is_read_only_pool_mode(get_pool_mode(pool));
1453 }
1454
1455 static void check_for_metadata_space(struct pool *pool)
1456 {
1457         int r;
1458         const char *ooms_reason = NULL;
1459         dm_block_t nr_free;
1460
1461         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1462         if (r)
1463                 ooms_reason = "Could not get free metadata blocks";
1464         else if (!nr_free)
1465                 ooms_reason = "No free metadata blocks";
1466
1467         if (ooms_reason && !is_read_only(pool)) {
1468                 DMERR("%s", ooms_reason);
1469                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1470         }
1471 }
1472
1473 static void check_for_data_space(struct pool *pool)
1474 {
1475         int r;
1476         dm_block_t nr_free;
1477
1478         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1479                 return;
1480
1481         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1482         if (r)
1483                 return;
1484
1485         if (nr_free) {
1486                 set_pool_mode(pool, PM_WRITE);
1487                 requeue_bios(pool);
1488         }
1489 }
1490
1491 /*
1492  * A non-zero return indicates read_only or fail_io mode.
1493  * Many callers don't care about the return value.
1494  */
1495 static int commit(struct pool *pool)
1496 {
1497         int r;
1498
1499         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1500                 return -EINVAL;
1501
1502         r = dm_pool_commit_metadata(pool->pmd);
1503         if (r)
1504                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1505         else {
1506                 check_for_metadata_space(pool);
1507                 check_for_data_space(pool);
1508         }
1509
1510         return r;
1511 }
1512
1513 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1514 {
1515         unsigned long flags;
1516
1517         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1518                 DMWARN("%s: reached low water mark for data device: sending event.",
1519                        dm_device_name(pool->pool_md));
1520                 spin_lock_irqsave(&pool->lock, flags);
1521                 pool->low_water_triggered = true;
1522                 spin_unlock_irqrestore(&pool->lock, flags);
1523                 dm_table_event(pool->ti->table);
1524         }
1525 }
1526
1527 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1528 {
1529         int r;
1530         dm_block_t free_blocks;
1531         struct pool *pool = tc->pool;
1532
1533         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1534                 return -EINVAL;
1535
1536         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1537         if (r) {
1538                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1539                 return r;
1540         }
1541
1542         check_low_water_mark(pool, free_blocks);
1543
1544         if (!free_blocks) {
1545                 /*
1546                  * Try to commit to see if that will free up some
1547                  * more space.
1548                  */
1549                 r = commit(pool);
1550                 if (r)
1551                         return r;
1552
1553                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1554                 if (r) {
1555                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1556                         return r;
1557                 }
1558
1559                 if (!free_blocks) {
1560                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1561                         return -ENOSPC;
1562                 }
1563         }
1564
1565         r = dm_pool_alloc_data_block(pool->pmd, result);
1566         if (r) {
1567                 if (r == -ENOSPC)
1568                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1569                 else
1570                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1571                 return r;
1572         }
1573
1574         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1575         if (r) {
1576                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1577                 return r;
1578         }
1579
1580         if (!free_blocks) {
1581                 /* Let's commit before we use up the metadata reserve. */
1582                 r = commit(pool);
1583                 if (r)
1584                         return r;
1585         }
1586
1587         return 0;
1588 }
1589
1590 /*
1591  * If we have run out of space, queue bios until the device is
1592  * resumed, presumably after having been reloaded with more space.
1593  */
1594 static void retry_on_resume(struct bio *bio)
1595 {
1596         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1597         struct thin_c *tc = h->tc;
1598         unsigned long flags;
1599
1600         spin_lock_irqsave(&tc->lock, flags);
1601         bio_list_add(&tc->retry_on_resume_list, bio);
1602         spin_unlock_irqrestore(&tc->lock, flags);
1603 }
1604
1605 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1606 {
1607         enum pool_mode m = get_pool_mode(pool);
1608
1609         switch (m) {
1610         case PM_WRITE:
1611                 /* Shouldn't get here */
1612                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1613                 return BLK_STS_IOERR;
1614
1615         case PM_OUT_OF_DATA_SPACE:
1616                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1617
1618         case PM_OUT_OF_METADATA_SPACE:
1619         case PM_READ_ONLY:
1620         case PM_FAIL:
1621                 return BLK_STS_IOERR;
1622         default:
1623                 /* Shouldn't get here */
1624                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1625                 return BLK_STS_IOERR;
1626         }
1627 }
1628
1629 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1630 {
1631         blk_status_t error = should_error_unserviceable_bio(pool);
1632
1633         if (error) {
1634                 bio->bi_status = error;
1635                 bio_endio(bio);
1636         } else
1637                 retry_on_resume(bio);
1638 }
1639
1640 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1641 {
1642         struct bio *bio;
1643         struct bio_list bios;
1644         blk_status_t error;
1645
1646         error = should_error_unserviceable_bio(pool);
1647         if (error) {
1648                 cell_error_with_code(pool, cell, error);
1649                 return;
1650         }
1651
1652         bio_list_init(&bios);
1653         cell_release(pool, cell, &bios);
1654
1655         while ((bio = bio_list_pop(&bios)))
1656                 retry_on_resume(bio);
1657 }
1658
1659 static void process_discard_cell_no_passdown(struct thin_c *tc,
1660                                              struct dm_bio_prison_cell *virt_cell)
1661 {
1662         struct pool *pool = tc->pool;
1663         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1664
1665         /*
1666          * We don't need to lock the data blocks, since there's no
1667          * passdown.  We only lock data blocks for allocation and breaking sharing.
1668          */
1669         m->tc = tc;
1670         m->virt_begin = virt_cell->key.block_begin;
1671         m->virt_end = virt_cell->key.block_end;
1672         m->cell = virt_cell;
1673         m->bio = virt_cell->holder;
1674
1675         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1676                 pool->process_prepared_discard(m);
1677 }
1678
1679 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1680                                  struct bio *bio)
1681 {
1682         struct pool *pool = tc->pool;
1683
1684         int r;
1685         bool maybe_shared;
1686         struct dm_cell_key data_key;
1687         struct dm_bio_prison_cell *data_cell;
1688         struct dm_thin_new_mapping *m;
1689         dm_block_t virt_begin, virt_end, data_begin;
1690
1691         while (begin != end) {
1692                 r = ensure_next_mapping(pool);
1693                 if (r)
1694                         /* we did our best */
1695                         return;
1696
1697                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1698                                               &data_begin, &maybe_shared);
1699                 if (r)
1700                         /*
1701                          * Silently fail, letting any mappings we've
1702                          * created complete.
1703                          */
1704                         break;
1705
1706                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1707                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1708                         /* contention, we'll give up with this range */
1709                         begin = virt_end;
1710                         continue;
1711                 }
1712
1713                 /*
1714                  * IO may still be going to the destination block.  We must
1715                  * quiesce before we can do the removal.
1716                  */
1717                 m = get_next_mapping(pool);
1718                 m->tc = tc;
1719                 m->maybe_shared = maybe_shared;
1720                 m->virt_begin = virt_begin;
1721                 m->virt_end = virt_end;
1722                 m->data_block = data_begin;
1723                 m->cell = data_cell;
1724                 m->bio = bio;
1725
1726                 /*
1727                  * The parent bio must not complete before sub discard bios are
1728                  * chained to it (see end_discard's bio_chain)!
1729                  *
1730                  * This per-mapping bi_remaining increment is paired with
1731                  * the implicit decrement that occurs via bio_endio() in
1732                  * end_discard().
1733                  */
1734                 bio_inc_remaining(bio);
1735                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1736                         pool->process_prepared_discard(m);
1737
1738                 begin = virt_end;
1739         }
1740 }
1741
1742 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1743 {
1744         struct bio *bio = virt_cell->holder;
1745         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1746
1747         /*
1748          * The virt_cell will only get freed once the origin bio completes.
1749          * This means it will remain locked while all the individual
1750          * passdown bios are in flight.
1751          */
1752         h->cell = virt_cell;
1753         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1754
1755         /*
1756          * We complete the bio now, knowing that the bi_remaining field
1757          * will prevent completion until the sub range discards have
1758          * completed.
1759          */
1760         bio_endio(bio);
1761 }
1762
1763 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1764 {
1765         dm_block_t begin, end;
1766         struct dm_cell_key virt_key;
1767         struct dm_bio_prison_cell *virt_cell;
1768
1769         get_bio_block_range(tc, bio, &begin, &end);
1770         if (begin == end) {
1771                 /*
1772                  * The discard covers less than a block.
1773                  */
1774                 bio_endio(bio);
1775                 return;
1776         }
1777
1778         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1779         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1780                 /*
1781                  * Potential starvation issue: We're relying on the
1782                  * fs/application being well behaved, and not trying to
1783                  * send IO to a region at the same time as discarding it.
1784                  * If they do this persistently then it's possible this
1785                  * cell will never be granted.
1786                  */
1787                 return;
1788
1789         tc->pool->process_discard_cell(tc, virt_cell);
1790 }
1791
1792 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1793                           struct dm_cell_key *key,
1794                           struct dm_thin_lookup_result *lookup_result,
1795                           struct dm_bio_prison_cell *cell)
1796 {
1797         int r;
1798         dm_block_t data_block;
1799         struct pool *pool = tc->pool;
1800
1801         r = alloc_data_block(tc, &data_block);
1802         switch (r) {
1803         case 0:
1804                 schedule_internal_copy(tc, block, lookup_result->block,
1805                                        data_block, cell, bio);
1806                 break;
1807
1808         case -ENOSPC:
1809                 retry_bios_on_resume(pool, cell);
1810                 break;
1811
1812         default:
1813                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1814                             __func__, r);
1815                 cell_error(pool, cell);
1816                 break;
1817         }
1818 }
1819
1820 static void __remap_and_issue_shared_cell(void *context,
1821                                           struct dm_bio_prison_cell *cell)
1822 {
1823         struct remap_info *info = context;
1824         struct bio *bio;
1825
1826         while ((bio = bio_list_pop(&cell->bios))) {
1827                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1828                     bio_op(bio) == REQ_OP_DISCARD)
1829                         bio_list_add(&info->defer_bios, bio);
1830                 else {
1831                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1832
1833                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1834                         inc_all_io_entry(info->tc->pool, bio);
1835                         bio_list_add(&info->issue_bios, bio);
1836                 }
1837         }
1838 }
1839
1840 static void remap_and_issue_shared_cell(struct thin_c *tc,
1841                                         struct dm_bio_prison_cell *cell,
1842                                         dm_block_t block)
1843 {
1844         struct bio *bio;
1845         struct remap_info info;
1846
1847         info.tc = tc;
1848         bio_list_init(&info.defer_bios);
1849         bio_list_init(&info.issue_bios);
1850
1851         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1852                            &info, cell);
1853
1854         while ((bio = bio_list_pop(&info.defer_bios)))
1855                 thin_defer_bio(tc, bio);
1856
1857         while ((bio = bio_list_pop(&info.issue_bios)))
1858                 remap_and_issue(tc, bio, block);
1859 }
1860
1861 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1862                                dm_block_t block,
1863                                struct dm_thin_lookup_result *lookup_result,
1864                                struct dm_bio_prison_cell *virt_cell)
1865 {
1866         struct dm_bio_prison_cell *data_cell;
1867         struct pool *pool = tc->pool;
1868         struct dm_cell_key key;
1869
1870         /*
1871          * If cell is already occupied, then sharing is already in the process
1872          * of being broken so we have nothing further to do here.
1873          */
1874         build_data_key(tc->td, lookup_result->block, &key);
1875         if (bio_detain(pool, &key, bio, &data_cell)) {
1876                 cell_defer_no_holder(tc, virt_cell);
1877                 return;
1878         }
1879
1880         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1881                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1882                 cell_defer_no_holder(tc, virt_cell);
1883         } else {
1884                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1885
1886                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1887                 inc_all_io_entry(pool, bio);
1888                 remap_and_issue(tc, bio, lookup_result->block);
1889
1890                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1891                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1892         }
1893 }
1894
1895 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1896                             struct dm_bio_prison_cell *cell)
1897 {
1898         int r;
1899         dm_block_t data_block;
1900         struct pool *pool = tc->pool;
1901
1902         /*
1903          * Remap empty bios (flushes) immediately, without provisioning.
1904          */
1905         if (!bio->bi_iter.bi_size) {
1906                 inc_all_io_entry(pool, bio);
1907                 cell_defer_no_holder(tc, cell);
1908
1909                 remap_and_issue(tc, bio, 0);
1910                 return;
1911         }
1912
1913         /*
1914          * Fill read bios with zeroes and complete them immediately.
1915          */
1916         if (bio_data_dir(bio) == READ) {
1917                 zero_fill_bio(bio);
1918                 cell_defer_no_holder(tc, cell);
1919                 bio_endio(bio);
1920                 return;
1921         }
1922
1923         r = alloc_data_block(tc, &data_block);
1924         switch (r) {
1925         case 0:
1926                 if (tc->origin_dev)
1927                         schedule_external_copy(tc, block, data_block, cell, bio);
1928                 else
1929                         schedule_zero(tc, block, data_block, cell, bio);
1930                 break;
1931
1932         case -ENOSPC:
1933                 retry_bios_on_resume(pool, cell);
1934                 break;
1935
1936         default:
1937                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1938                             __func__, r);
1939                 cell_error(pool, cell);
1940                 break;
1941         }
1942 }
1943
1944 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1945 {
1946         int r;
1947         struct pool *pool = tc->pool;
1948         struct bio *bio = cell->holder;
1949         dm_block_t block = get_bio_block(tc, bio);
1950         struct dm_thin_lookup_result lookup_result;
1951
1952         if (tc->requeue_mode) {
1953                 cell_requeue(pool, cell);
1954                 return;
1955         }
1956
1957         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1958         switch (r) {
1959         case 0:
1960                 if (lookup_result.shared)
1961                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1962                 else {
1963                         inc_all_io_entry(pool, bio);
1964                         remap_and_issue(tc, bio, lookup_result.block);
1965                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1966                 }
1967                 break;
1968
1969         case -ENODATA:
1970                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1971                         inc_all_io_entry(pool, bio);
1972                         cell_defer_no_holder(tc, cell);
1973
1974                         if (bio_end_sector(bio) <= tc->origin_size)
1975                                 remap_to_origin_and_issue(tc, bio);
1976
1977                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1978                                 zero_fill_bio(bio);
1979                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1980                                 remap_to_origin_and_issue(tc, bio);
1981
1982                         } else {
1983                                 zero_fill_bio(bio);
1984                                 bio_endio(bio);
1985                         }
1986                 } else
1987                         provision_block(tc, bio, block, cell);
1988                 break;
1989
1990         default:
1991                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1992                             __func__, r);
1993                 cell_defer_no_holder(tc, cell);
1994                 bio_io_error(bio);
1995                 break;
1996         }
1997 }
1998
1999 static void process_bio(struct thin_c *tc, struct bio *bio)
2000 {
2001         struct pool *pool = tc->pool;
2002         dm_block_t block = get_bio_block(tc, bio);
2003         struct dm_bio_prison_cell *cell;
2004         struct dm_cell_key key;
2005
2006         /*
2007          * If cell is already occupied, then the block is already
2008          * being provisioned so we have nothing further to do here.
2009          */
2010         build_virtual_key(tc->td, block, &key);
2011         if (bio_detain(pool, &key, bio, &cell))
2012                 return;
2013
2014         process_cell(tc, cell);
2015 }
2016
2017 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2018                                     struct dm_bio_prison_cell *cell)
2019 {
2020         int r;
2021         int rw = bio_data_dir(bio);
2022         dm_block_t block = get_bio_block(tc, bio);
2023         struct dm_thin_lookup_result lookup_result;
2024
2025         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2026         switch (r) {
2027         case 0:
2028                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2029                         handle_unserviceable_bio(tc->pool, bio);
2030                         if (cell)
2031                                 cell_defer_no_holder(tc, cell);
2032                 } else {
2033                         inc_all_io_entry(tc->pool, bio);
2034                         remap_and_issue(tc, bio, lookup_result.block);
2035                         if (cell)
2036                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2037                 }
2038                 break;
2039
2040         case -ENODATA:
2041                 if (cell)
2042                         cell_defer_no_holder(tc, cell);
2043                 if (rw != READ) {
2044                         handle_unserviceable_bio(tc->pool, bio);
2045                         break;
2046                 }
2047
2048                 if (tc->origin_dev) {
2049                         inc_all_io_entry(tc->pool, bio);
2050                         remap_to_origin_and_issue(tc, bio);
2051                         break;
2052                 }
2053
2054                 zero_fill_bio(bio);
2055                 bio_endio(bio);
2056                 break;
2057
2058         default:
2059                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2060                             __func__, r);
2061                 if (cell)
2062                         cell_defer_no_holder(tc, cell);
2063                 bio_io_error(bio);
2064                 break;
2065         }
2066 }
2067
2068 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2069 {
2070         __process_bio_read_only(tc, bio, NULL);
2071 }
2072
2073 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2074 {
2075         __process_bio_read_only(tc, cell->holder, cell);
2076 }
2077
2078 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2079 {
2080         bio_endio(bio);
2081 }
2082
2083 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2084 {
2085         bio_io_error(bio);
2086 }
2087
2088 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2089 {
2090         cell_success(tc->pool, cell);
2091 }
2092
2093 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2094 {
2095         cell_error(tc->pool, cell);
2096 }
2097
2098 /*
2099  * FIXME: should we also commit due to size of transaction, measured in
2100  * metadata blocks?
2101  */
2102 static int need_commit_due_to_time(struct pool *pool)
2103 {
2104         return !time_in_range(jiffies, pool->last_commit_jiffies,
2105                               pool->last_commit_jiffies + COMMIT_PERIOD);
2106 }
2107
2108 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2109 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2110
2111 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2112 {
2113         struct rb_node **rbp, *parent;
2114         struct dm_thin_endio_hook *pbd;
2115         sector_t bi_sector = bio->bi_iter.bi_sector;
2116
2117         rbp = &tc->sort_bio_list.rb_node;
2118         parent = NULL;
2119         while (*rbp) {
2120                 parent = *rbp;
2121                 pbd = thin_pbd(parent);
2122
2123                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2124                         rbp = &(*rbp)->rb_left;
2125                 else
2126                         rbp = &(*rbp)->rb_right;
2127         }
2128
2129         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2130         rb_link_node(&pbd->rb_node, parent, rbp);
2131         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2132 }
2133
2134 static void __extract_sorted_bios(struct thin_c *tc)
2135 {
2136         struct rb_node *node;
2137         struct dm_thin_endio_hook *pbd;
2138         struct bio *bio;
2139
2140         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2141                 pbd = thin_pbd(node);
2142                 bio = thin_bio(pbd);
2143
2144                 bio_list_add(&tc->deferred_bio_list, bio);
2145                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2146         }
2147
2148         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2149 }
2150
2151 static void __sort_thin_deferred_bios(struct thin_c *tc)
2152 {
2153         struct bio *bio;
2154         struct bio_list bios;
2155
2156         bio_list_init(&bios);
2157         bio_list_merge(&bios, &tc->deferred_bio_list);
2158         bio_list_init(&tc->deferred_bio_list);
2159
2160         /* Sort deferred_bio_list using rb-tree */
2161         while ((bio = bio_list_pop(&bios)))
2162                 __thin_bio_rb_add(tc, bio);
2163
2164         /*
2165          * Transfer the sorted bios in sort_bio_list back to
2166          * deferred_bio_list to allow lockless submission of
2167          * all bios.
2168          */
2169         __extract_sorted_bios(tc);
2170 }
2171
2172 static void process_thin_deferred_bios(struct thin_c *tc)
2173 {
2174         struct pool *pool = tc->pool;
2175         unsigned long flags;
2176         struct bio *bio;
2177         struct bio_list bios;
2178         struct blk_plug plug;
2179         unsigned count = 0;
2180
2181         if (tc->requeue_mode) {
2182                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2183                                 BLK_STS_DM_REQUEUE);
2184                 return;
2185         }
2186
2187         bio_list_init(&bios);
2188
2189         spin_lock_irqsave(&tc->lock, flags);
2190
2191         if (bio_list_empty(&tc->deferred_bio_list)) {
2192                 spin_unlock_irqrestore(&tc->lock, flags);
2193                 return;
2194         }
2195
2196         __sort_thin_deferred_bios(tc);
2197
2198         bio_list_merge(&bios, &tc->deferred_bio_list);
2199         bio_list_init(&tc->deferred_bio_list);
2200
2201         spin_unlock_irqrestore(&tc->lock, flags);
2202
2203         blk_start_plug(&plug);
2204         while ((bio = bio_list_pop(&bios))) {
2205                 /*
2206                  * If we've got no free new_mapping structs, and processing
2207                  * this bio might require one, we pause until there are some
2208                  * prepared mappings to process.
2209                  */
2210                 if (ensure_next_mapping(pool)) {
2211                         spin_lock_irqsave(&tc->lock, flags);
2212                         bio_list_add(&tc->deferred_bio_list, bio);
2213                         bio_list_merge(&tc->deferred_bio_list, &bios);
2214                         spin_unlock_irqrestore(&tc->lock, flags);
2215                         break;
2216                 }
2217
2218                 if (bio_op(bio) == REQ_OP_DISCARD)
2219                         pool->process_discard(tc, bio);
2220                 else
2221                         pool->process_bio(tc, bio);
2222
2223                 if ((count++ & 127) == 0) {
2224                         throttle_work_update(&pool->throttle);
2225                         dm_pool_issue_prefetches(pool->pmd);
2226                 }
2227                 cond_resched();
2228         }
2229         blk_finish_plug(&plug);
2230 }
2231
2232 static int cmp_cells(const void *lhs, const void *rhs)
2233 {
2234         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2235         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2236
2237         BUG_ON(!lhs_cell->holder);
2238         BUG_ON(!rhs_cell->holder);
2239
2240         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2241                 return -1;
2242
2243         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2244                 return 1;
2245
2246         return 0;
2247 }
2248
2249 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2250 {
2251         unsigned count = 0;
2252         struct dm_bio_prison_cell *cell, *tmp;
2253
2254         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2255                 if (count >= CELL_SORT_ARRAY_SIZE)
2256                         break;
2257
2258                 pool->cell_sort_array[count++] = cell;
2259                 list_del(&cell->user_list);
2260         }
2261
2262         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2263
2264         return count;
2265 }
2266
2267 static void process_thin_deferred_cells(struct thin_c *tc)
2268 {
2269         struct pool *pool = tc->pool;
2270         unsigned long flags;
2271         struct list_head cells;
2272         struct dm_bio_prison_cell *cell;
2273         unsigned i, j, count;
2274
2275         INIT_LIST_HEAD(&cells);
2276
2277         spin_lock_irqsave(&tc->lock, flags);
2278         list_splice_init(&tc->deferred_cells, &cells);
2279         spin_unlock_irqrestore(&tc->lock, flags);
2280
2281         if (list_empty(&cells))
2282                 return;
2283
2284         do {
2285                 count = sort_cells(tc->pool, &cells);
2286
2287                 for (i = 0; i < count; i++) {
2288                         cell = pool->cell_sort_array[i];
2289                         BUG_ON(!cell->holder);
2290
2291                         /*
2292                          * If we've got no free new_mapping structs, and processing
2293                          * this bio might require one, we pause until there are some
2294                          * prepared mappings to process.
2295                          */
2296                         if (ensure_next_mapping(pool)) {
2297                                 for (j = i; j < count; j++)
2298                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2299
2300                                 spin_lock_irqsave(&tc->lock, flags);
2301                                 list_splice(&cells, &tc->deferred_cells);
2302                                 spin_unlock_irqrestore(&tc->lock, flags);
2303                                 return;
2304                         }
2305
2306                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2307                                 pool->process_discard_cell(tc, cell);
2308                         else
2309                                 pool->process_cell(tc, cell);
2310                 }
2311                 cond_resched();
2312         } while (!list_empty(&cells));
2313 }
2314
2315 static void thin_get(struct thin_c *tc);
2316 static void thin_put(struct thin_c *tc);
2317
2318 /*
2319  * We can't hold rcu_read_lock() around code that can block.  So we
2320  * find a thin with the rcu lock held; bump a refcount; then drop
2321  * the lock.
2322  */
2323 static struct thin_c *get_first_thin(struct pool *pool)
2324 {
2325         struct thin_c *tc = NULL;
2326
2327         rcu_read_lock();
2328         if (!list_empty(&pool->active_thins)) {
2329                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2330                 thin_get(tc);
2331         }
2332         rcu_read_unlock();
2333
2334         return tc;
2335 }
2336
2337 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2338 {
2339         struct thin_c *old_tc = tc;
2340
2341         rcu_read_lock();
2342         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2343                 thin_get(tc);
2344                 thin_put(old_tc);
2345                 rcu_read_unlock();
2346                 return tc;
2347         }
2348         thin_put(old_tc);
2349         rcu_read_unlock();
2350
2351         return NULL;
2352 }
2353
2354 static void process_deferred_bios(struct pool *pool)
2355 {
2356         unsigned long flags;
2357         struct bio *bio;
2358         struct bio_list bios, bio_completions;
2359         struct thin_c *tc;
2360
2361         tc = get_first_thin(pool);
2362         while (tc) {
2363                 process_thin_deferred_cells(tc);
2364                 process_thin_deferred_bios(tc);
2365                 tc = get_next_thin(pool, tc);
2366         }
2367
2368         /*
2369          * If there are any deferred flush bios, we must commit the metadata
2370          * before issuing them or signaling their completion.
2371          */
2372         bio_list_init(&bios);
2373         bio_list_init(&bio_completions);
2374
2375         spin_lock_irqsave(&pool->lock, flags);
2376         bio_list_merge(&bios, &pool->deferred_flush_bios);
2377         bio_list_init(&pool->deferred_flush_bios);
2378
2379         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2380         bio_list_init(&pool->deferred_flush_completions);
2381         spin_unlock_irqrestore(&pool->lock, flags);
2382
2383         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2384             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2385                 return;
2386
2387         if (commit(pool)) {
2388                 bio_list_merge(&bios, &bio_completions);
2389
2390                 while ((bio = bio_list_pop(&bios)))
2391                         bio_io_error(bio);
2392                 return;
2393         }
2394         pool->last_commit_jiffies = jiffies;
2395
2396         while ((bio = bio_list_pop(&bio_completions)))
2397                 bio_endio(bio);
2398
2399         while ((bio = bio_list_pop(&bios))) {
2400                 /*
2401                  * The data device was flushed as part of metadata commit,
2402                  * so complete redundant flushes immediately.
2403                  */
2404                 if (bio->bi_opf & REQ_PREFLUSH)
2405                         bio_endio(bio);
2406                 else
2407                         generic_make_request(bio);
2408         }
2409 }
2410
2411 static void do_worker(struct work_struct *ws)
2412 {
2413         struct pool *pool = container_of(ws, struct pool, worker);
2414
2415         throttle_work_start(&pool->throttle);
2416         dm_pool_issue_prefetches(pool->pmd);
2417         throttle_work_update(&pool->throttle);
2418         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2419         throttle_work_update(&pool->throttle);
2420         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2421         throttle_work_update(&pool->throttle);
2422         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2423         throttle_work_update(&pool->throttle);
2424         process_deferred_bios(pool);
2425         throttle_work_complete(&pool->throttle);
2426 }
2427
2428 /*
2429  * We want to commit periodically so that not too much
2430  * unwritten data builds up.
2431  */
2432 static void do_waker(struct work_struct *ws)
2433 {
2434         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2435         wake_worker(pool);
2436         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2437 }
2438
2439 /*
2440  * We're holding onto IO to allow userland time to react.  After the
2441  * timeout either the pool will have been resized (and thus back in
2442  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2443  */
2444 static void do_no_space_timeout(struct work_struct *ws)
2445 {
2446         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2447                                          no_space_timeout);
2448
2449         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2450                 pool->pf.error_if_no_space = true;
2451                 notify_of_pool_mode_change(pool);
2452                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2453         }
2454 }
2455
2456 /*----------------------------------------------------------------*/
2457
2458 struct pool_work {
2459         struct work_struct worker;
2460         struct completion complete;
2461 };
2462
2463 static struct pool_work *to_pool_work(struct work_struct *ws)
2464 {
2465         return container_of(ws, struct pool_work, worker);
2466 }
2467
2468 static void pool_work_complete(struct pool_work *pw)
2469 {
2470         complete(&pw->complete);
2471 }
2472
2473 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2474                            void (*fn)(struct work_struct *))
2475 {
2476         INIT_WORK_ONSTACK(&pw->worker, fn);
2477         init_completion(&pw->complete);
2478         queue_work(pool->wq, &pw->worker);
2479         wait_for_completion(&pw->complete);
2480 }
2481
2482 /*----------------------------------------------------------------*/
2483
2484 struct noflush_work {
2485         struct pool_work pw;
2486         struct thin_c *tc;
2487 };
2488
2489 static struct noflush_work *to_noflush(struct work_struct *ws)
2490 {
2491         return container_of(to_pool_work(ws), struct noflush_work, pw);
2492 }
2493
2494 static void do_noflush_start(struct work_struct *ws)
2495 {
2496         struct noflush_work *w = to_noflush(ws);
2497         w->tc->requeue_mode = true;
2498         requeue_io(w->tc);
2499         pool_work_complete(&w->pw);
2500 }
2501
2502 static void do_noflush_stop(struct work_struct *ws)
2503 {
2504         struct noflush_work *w = to_noflush(ws);
2505         w->tc->requeue_mode = false;
2506         pool_work_complete(&w->pw);
2507 }
2508
2509 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2510 {
2511         struct noflush_work w;
2512
2513         w.tc = tc;
2514         pool_work_wait(&w.pw, tc->pool, fn);
2515 }
2516
2517 /*----------------------------------------------------------------*/
2518
2519 static bool passdown_enabled(struct pool_c *pt)
2520 {
2521         return pt->adjusted_pf.discard_passdown;
2522 }
2523
2524 static void set_discard_callbacks(struct pool *pool)
2525 {
2526         struct pool_c *pt = pool->ti->private;
2527
2528         if (passdown_enabled(pt)) {
2529                 pool->process_discard_cell = process_discard_cell_passdown;
2530                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2531                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2532         } else {
2533                 pool->process_discard_cell = process_discard_cell_no_passdown;
2534                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2535         }
2536 }
2537
2538 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2539 {
2540         struct pool_c *pt = pool->ti->private;
2541         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2542         enum pool_mode old_mode = get_pool_mode(pool);
2543         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2544
2545         /*
2546          * Never allow the pool to transition to PM_WRITE mode if user
2547          * intervention is required to verify metadata and data consistency.
2548          */
2549         if (new_mode == PM_WRITE && needs_check) {
2550                 DMERR("%s: unable to switch pool to write mode until repaired.",
2551                       dm_device_name(pool->pool_md));
2552                 if (old_mode != new_mode)
2553                         new_mode = old_mode;
2554                 else
2555                         new_mode = PM_READ_ONLY;
2556         }
2557         /*
2558          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2559          * not going to recover without a thin_repair.  So we never let the
2560          * pool move out of the old mode.
2561          */
2562         if (old_mode == PM_FAIL)
2563                 new_mode = old_mode;
2564
2565         switch (new_mode) {
2566         case PM_FAIL:
2567                 dm_pool_metadata_read_only(pool->pmd);
2568                 pool->process_bio = process_bio_fail;
2569                 pool->process_discard = process_bio_fail;
2570                 pool->process_cell = process_cell_fail;
2571                 pool->process_discard_cell = process_cell_fail;
2572                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2573                 pool->process_prepared_discard = process_prepared_discard_fail;
2574
2575                 error_retry_list(pool);
2576                 break;
2577
2578         case PM_OUT_OF_METADATA_SPACE:
2579         case PM_READ_ONLY:
2580                 dm_pool_metadata_read_only(pool->pmd);
2581                 pool->process_bio = process_bio_read_only;
2582                 pool->process_discard = process_bio_success;
2583                 pool->process_cell = process_cell_read_only;
2584                 pool->process_discard_cell = process_cell_success;
2585                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2586                 pool->process_prepared_discard = process_prepared_discard_success;
2587
2588                 error_retry_list(pool);
2589                 break;
2590
2591         case PM_OUT_OF_DATA_SPACE:
2592                 /*
2593                  * Ideally we'd never hit this state; the low water mark
2594                  * would trigger userland to extend the pool before we
2595                  * completely run out of data space.  However, many small
2596                  * IOs to unprovisioned space can consume data space at an
2597                  * alarming rate.  Adjust your low water mark if you're
2598                  * frequently seeing this mode.
2599                  */
2600                 pool->out_of_data_space = true;
2601                 pool->process_bio = process_bio_read_only;
2602                 pool->process_discard = process_discard_bio;
2603                 pool->process_cell = process_cell_read_only;
2604                 pool->process_prepared_mapping = process_prepared_mapping;
2605                 set_discard_callbacks(pool);
2606
2607                 if (!pool->pf.error_if_no_space && no_space_timeout)
2608                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2609                 break;
2610
2611         case PM_WRITE:
2612                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2613                         cancel_delayed_work_sync(&pool->no_space_timeout);
2614                 pool->out_of_data_space = false;
2615                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2616                 dm_pool_metadata_read_write(pool->pmd);
2617                 pool->process_bio = process_bio;
2618                 pool->process_discard = process_discard_bio;
2619                 pool->process_cell = process_cell;
2620                 pool->process_prepared_mapping = process_prepared_mapping;
2621                 set_discard_callbacks(pool);
2622                 break;
2623         }
2624
2625         pool->pf.mode = new_mode;
2626         /*
2627          * The pool mode may have changed, sync it so bind_control_target()
2628          * doesn't cause an unexpected mode transition on resume.
2629          */
2630         pt->adjusted_pf.mode = new_mode;
2631
2632         if (old_mode != new_mode)
2633                 notify_of_pool_mode_change(pool);
2634 }
2635
2636 static void abort_transaction(struct pool *pool)
2637 {
2638         const char *dev_name = dm_device_name(pool->pool_md);
2639
2640         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2641         if (dm_pool_abort_metadata(pool->pmd)) {
2642                 DMERR("%s: failed to abort metadata transaction", dev_name);
2643                 set_pool_mode(pool, PM_FAIL);
2644         }
2645
2646         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2647                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2648                 set_pool_mode(pool, PM_FAIL);
2649         }
2650 }
2651
2652 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2653 {
2654         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2655                     dm_device_name(pool->pool_md), op, r);
2656
2657         abort_transaction(pool);
2658         set_pool_mode(pool, PM_READ_ONLY);
2659 }
2660
2661 /*----------------------------------------------------------------*/
2662
2663 /*
2664  * Mapping functions.
2665  */
2666
2667 /*
2668  * Called only while mapping a thin bio to hand it over to the workqueue.
2669  */
2670 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2671 {
2672         unsigned long flags;
2673         struct pool *pool = tc->pool;
2674
2675         spin_lock_irqsave(&tc->lock, flags);
2676         bio_list_add(&tc->deferred_bio_list, bio);
2677         spin_unlock_irqrestore(&tc->lock, flags);
2678
2679         wake_worker(pool);
2680 }
2681
2682 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2683 {
2684         struct pool *pool = tc->pool;
2685
2686         throttle_lock(&pool->throttle);
2687         thin_defer_bio(tc, bio);
2688         throttle_unlock(&pool->throttle);
2689 }
2690
2691 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2692 {
2693         unsigned long flags;
2694         struct pool *pool = tc->pool;
2695
2696         throttle_lock(&pool->throttle);
2697         spin_lock_irqsave(&tc->lock, flags);
2698         list_add_tail(&cell->user_list, &tc->deferred_cells);
2699         spin_unlock_irqrestore(&tc->lock, flags);
2700         throttle_unlock(&pool->throttle);
2701
2702         wake_worker(pool);
2703 }
2704
2705 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2706 {
2707         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2708
2709         h->tc = tc;
2710         h->shared_read_entry = NULL;
2711         h->all_io_entry = NULL;
2712         h->overwrite_mapping = NULL;
2713         h->cell = NULL;
2714 }
2715
2716 /*
2717  * Non-blocking function called from the thin target's map function.
2718  */
2719 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2720 {
2721         int r;
2722         struct thin_c *tc = ti->private;
2723         dm_block_t block = get_bio_block(tc, bio);
2724         struct dm_thin_device *td = tc->td;
2725         struct dm_thin_lookup_result result;
2726         struct dm_bio_prison_cell *virt_cell, *data_cell;
2727         struct dm_cell_key key;
2728
2729         thin_hook_bio(tc, bio);
2730
2731         if (tc->requeue_mode) {
2732                 bio->bi_status = BLK_STS_DM_REQUEUE;
2733                 bio_endio(bio);
2734                 return DM_MAPIO_SUBMITTED;
2735         }
2736
2737         if (get_pool_mode(tc->pool) == PM_FAIL) {
2738                 bio_io_error(bio);
2739                 return DM_MAPIO_SUBMITTED;
2740         }
2741
2742         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2743                 thin_defer_bio_with_throttle(tc, bio);
2744                 return DM_MAPIO_SUBMITTED;
2745         }
2746
2747         /*
2748          * We must hold the virtual cell before doing the lookup, otherwise
2749          * there's a race with discard.
2750          */
2751         build_virtual_key(tc->td, block, &key);
2752         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2753                 return DM_MAPIO_SUBMITTED;
2754
2755         r = dm_thin_find_block(td, block, 0, &result);
2756
2757         /*
2758          * Note that we defer readahead too.
2759          */
2760         switch (r) {
2761         case 0:
2762                 if (unlikely(result.shared)) {
2763                         /*
2764                          * We have a race condition here between the
2765                          * result.shared value returned by the lookup and
2766                          * snapshot creation, which may cause new
2767                          * sharing.
2768                          *
2769                          * To avoid this always quiesce the origin before
2770                          * taking the snap.  You want to do this anyway to
2771                          * ensure a consistent application view
2772                          * (i.e. lockfs).
2773                          *
2774                          * More distant ancestors are irrelevant. The
2775                          * shared flag will be set in their case.
2776                          */
2777                         thin_defer_cell(tc, virt_cell);
2778                         return DM_MAPIO_SUBMITTED;
2779                 }
2780
2781                 build_data_key(tc->td, result.block, &key);
2782                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2783                         cell_defer_no_holder(tc, virt_cell);
2784                         return DM_MAPIO_SUBMITTED;
2785                 }
2786
2787                 inc_all_io_entry(tc->pool, bio);
2788                 cell_defer_no_holder(tc, data_cell);
2789                 cell_defer_no_holder(tc, virt_cell);
2790
2791                 remap(tc, bio, result.block);
2792                 return DM_MAPIO_REMAPPED;
2793
2794         case -ENODATA:
2795         case -EWOULDBLOCK:
2796                 thin_defer_cell(tc, virt_cell);
2797                 return DM_MAPIO_SUBMITTED;
2798
2799         default:
2800                 /*
2801                  * Must always call bio_io_error on failure.
2802                  * dm_thin_find_block can fail with -EINVAL if the
2803                  * pool is switched to fail-io mode.
2804                  */
2805                 bio_io_error(bio);
2806                 cell_defer_no_holder(tc, virt_cell);
2807                 return DM_MAPIO_SUBMITTED;
2808         }
2809 }
2810
2811 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2812 {
2813         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2814         struct request_queue *q;
2815
2816         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2817                 return 1;
2818
2819         q = bdev_get_queue(pt->data_dev->bdev);
2820         return bdi_congested(q->backing_dev_info, bdi_bits);
2821 }
2822
2823 static void requeue_bios(struct pool *pool)
2824 {
2825         unsigned long flags;
2826         struct thin_c *tc;
2827
2828         rcu_read_lock();
2829         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2830                 spin_lock_irqsave(&tc->lock, flags);
2831                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2832                 bio_list_init(&tc->retry_on_resume_list);
2833                 spin_unlock_irqrestore(&tc->lock, flags);
2834         }
2835         rcu_read_unlock();
2836 }
2837
2838 /*----------------------------------------------------------------
2839  * Binding of control targets to a pool object
2840  *--------------------------------------------------------------*/
2841 static bool data_dev_supports_discard(struct pool_c *pt)
2842 {
2843         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2844
2845         return q && blk_queue_discard(q);
2846 }
2847
2848 static bool is_factor(sector_t block_size, uint32_t n)
2849 {
2850         return !sector_div(block_size, n);
2851 }
2852
2853 /*
2854  * If discard_passdown was enabled verify that the data device
2855  * supports discards.  Disable discard_passdown if not.
2856  */
2857 static void disable_passdown_if_not_supported(struct pool_c *pt)
2858 {
2859         struct pool *pool = pt->pool;
2860         struct block_device *data_bdev = pt->data_dev->bdev;
2861         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2862         const char *reason = NULL;
2863         char buf[BDEVNAME_SIZE];
2864
2865         if (!pt->adjusted_pf.discard_passdown)
2866                 return;
2867
2868         if (!data_dev_supports_discard(pt))
2869                 reason = "discard unsupported";
2870
2871         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2872                 reason = "max discard sectors smaller than a block";
2873
2874         if (reason) {
2875                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2876                 pt->adjusted_pf.discard_passdown = false;
2877         }
2878 }
2879
2880 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2881 {
2882         struct pool_c *pt = ti->private;
2883
2884         /*
2885          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2886          */
2887         enum pool_mode old_mode = get_pool_mode(pool);
2888         enum pool_mode new_mode = pt->adjusted_pf.mode;
2889
2890         /*
2891          * Don't change the pool's mode until set_pool_mode() below.
2892          * Otherwise the pool's process_* function pointers may
2893          * not match the desired pool mode.
2894          */
2895         pt->adjusted_pf.mode = old_mode;
2896
2897         pool->ti = ti;
2898         pool->pf = pt->adjusted_pf;
2899         pool->low_water_blocks = pt->low_water_blocks;
2900
2901         set_pool_mode(pool, new_mode);
2902
2903         return 0;
2904 }
2905
2906 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2907 {
2908         if (pool->ti == ti)
2909                 pool->ti = NULL;
2910 }
2911
2912 /*----------------------------------------------------------------
2913  * Pool creation
2914  *--------------------------------------------------------------*/
2915 /* Initialize pool features. */
2916 static void pool_features_init(struct pool_features *pf)
2917 {
2918         pf->mode = PM_WRITE;
2919         pf->zero_new_blocks = true;
2920         pf->discard_enabled = true;
2921         pf->discard_passdown = true;
2922         pf->error_if_no_space = false;
2923 }
2924
2925 static void __pool_destroy(struct pool *pool)
2926 {
2927         __pool_table_remove(pool);
2928
2929         vfree(pool->cell_sort_array);
2930         if (dm_pool_metadata_close(pool->pmd) < 0)
2931                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2932
2933         dm_bio_prison_destroy(pool->prison);
2934         dm_kcopyd_client_destroy(pool->copier);
2935
2936         cancel_delayed_work_sync(&pool->waker);
2937         cancel_delayed_work_sync(&pool->no_space_timeout);
2938         if (pool->wq)
2939                 destroy_workqueue(pool->wq);
2940
2941         if (pool->next_mapping)
2942                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2943         mempool_exit(&pool->mapping_pool);
2944         dm_deferred_set_destroy(pool->shared_read_ds);
2945         dm_deferred_set_destroy(pool->all_io_ds);
2946         kfree(pool);
2947 }
2948
2949 static struct kmem_cache *_new_mapping_cache;
2950
2951 static struct pool *pool_create(struct mapped_device *pool_md,
2952                                 struct block_device *metadata_dev,
2953                                 struct block_device *data_dev,
2954                                 unsigned long block_size,
2955                                 int read_only, char **error)
2956 {
2957         int r;
2958         void *err_p;
2959         struct pool *pool;
2960         struct dm_pool_metadata *pmd;
2961         bool format_device = read_only ? false : true;
2962
2963         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2964         if (IS_ERR(pmd)) {
2965                 *error = "Error creating metadata object";
2966                 return (struct pool *)pmd;
2967         }
2968
2969         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2970         if (!pool) {
2971                 *error = "Error allocating memory for pool";
2972                 err_p = ERR_PTR(-ENOMEM);
2973                 goto bad_pool;
2974         }
2975
2976         pool->pmd = pmd;
2977         pool->sectors_per_block = block_size;
2978         if (block_size & (block_size - 1))
2979                 pool->sectors_per_block_shift = -1;
2980         else
2981                 pool->sectors_per_block_shift = __ffs(block_size);
2982         pool->low_water_blocks = 0;
2983         pool_features_init(&pool->pf);
2984         pool->prison = dm_bio_prison_create();
2985         if (!pool->prison) {
2986                 *error = "Error creating pool's bio prison";
2987                 err_p = ERR_PTR(-ENOMEM);
2988                 goto bad_prison;
2989         }
2990
2991         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2992         if (IS_ERR(pool->copier)) {
2993                 r = PTR_ERR(pool->copier);
2994                 *error = "Error creating pool's kcopyd client";
2995                 err_p = ERR_PTR(r);
2996                 goto bad_kcopyd_client;
2997         }
2998
2999         /*
3000          * Create singlethreaded workqueue that will service all devices
3001          * that use this metadata.
3002          */
3003         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
3004         if (!pool->wq) {
3005                 *error = "Error creating pool's workqueue";
3006                 err_p = ERR_PTR(-ENOMEM);
3007                 goto bad_wq;
3008         }
3009
3010         throttle_init(&pool->throttle);
3011         INIT_WORK(&pool->worker, do_worker);
3012         INIT_DELAYED_WORK(&pool->waker, do_waker);
3013         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3014         spin_lock_init(&pool->lock);
3015         bio_list_init(&pool->deferred_flush_bios);
3016         bio_list_init(&pool->deferred_flush_completions);
3017         INIT_LIST_HEAD(&pool->prepared_mappings);
3018         INIT_LIST_HEAD(&pool->prepared_discards);
3019         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3020         INIT_LIST_HEAD(&pool->active_thins);
3021         pool->low_water_triggered = false;
3022         pool->suspended = true;
3023         pool->out_of_data_space = false;
3024
3025         pool->shared_read_ds = dm_deferred_set_create();
3026         if (!pool->shared_read_ds) {
3027                 *error = "Error creating pool's shared read deferred set";
3028                 err_p = ERR_PTR(-ENOMEM);
3029                 goto bad_shared_read_ds;
3030         }
3031
3032         pool->all_io_ds = dm_deferred_set_create();
3033         if (!pool->all_io_ds) {
3034                 *error = "Error creating pool's all io deferred set";
3035                 err_p = ERR_PTR(-ENOMEM);
3036                 goto bad_all_io_ds;
3037         }
3038
3039         pool->next_mapping = NULL;
3040         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3041                                    _new_mapping_cache);
3042         if (r) {
3043                 *error = "Error creating pool's mapping mempool";
3044                 err_p = ERR_PTR(r);
3045                 goto bad_mapping_pool;
3046         }
3047
3048         pool->cell_sort_array =
3049                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3050                                    sizeof(*pool->cell_sort_array)));
3051         if (!pool->cell_sort_array) {
3052                 *error = "Error allocating cell sort array";
3053                 err_p = ERR_PTR(-ENOMEM);
3054                 goto bad_sort_array;
3055         }
3056
3057         pool->ref_count = 1;
3058         pool->last_commit_jiffies = jiffies;
3059         pool->pool_md = pool_md;
3060         pool->md_dev = metadata_dev;
3061         pool->data_dev = data_dev;
3062         __pool_table_insert(pool);
3063
3064         return pool;
3065
3066 bad_sort_array:
3067         mempool_exit(&pool->mapping_pool);
3068 bad_mapping_pool:
3069         dm_deferred_set_destroy(pool->all_io_ds);
3070 bad_all_io_ds:
3071         dm_deferred_set_destroy(pool->shared_read_ds);
3072 bad_shared_read_ds:
3073         destroy_workqueue(pool->wq);
3074 bad_wq:
3075         dm_kcopyd_client_destroy(pool->copier);
3076 bad_kcopyd_client:
3077         dm_bio_prison_destroy(pool->prison);
3078 bad_prison:
3079         kfree(pool);
3080 bad_pool:
3081         if (dm_pool_metadata_close(pmd))
3082                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3083
3084         return err_p;
3085 }
3086
3087 static void __pool_inc(struct pool *pool)
3088 {
3089         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3090         pool->ref_count++;
3091 }
3092
3093 static void __pool_dec(struct pool *pool)
3094 {
3095         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3096         BUG_ON(!pool->ref_count);
3097         if (!--pool->ref_count)
3098                 __pool_destroy(pool);
3099 }
3100
3101 static struct pool *__pool_find(struct mapped_device *pool_md,
3102                                 struct block_device *metadata_dev,
3103                                 struct block_device *data_dev,
3104                                 unsigned long block_size, int read_only,
3105                                 char **error, int *created)
3106 {
3107         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3108
3109         if (pool) {
3110                 if (pool->pool_md != pool_md) {
3111                         *error = "metadata device already in use by a pool";
3112                         return ERR_PTR(-EBUSY);
3113                 }
3114                 if (pool->data_dev != data_dev) {
3115                         *error = "data device already in use by a pool";
3116                         return ERR_PTR(-EBUSY);
3117                 }
3118                 __pool_inc(pool);
3119
3120         } else {
3121                 pool = __pool_table_lookup(pool_md);
3122                 if (pool) {
3123                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3124                                 *error = "different pool cannot replace a pool";
3125                                 return ERR_PTR(-EINVAL);
3126                         }
3127                         __pool_inc(pool);
3128
3129                 } else {
3130                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3131                         *created = 1;
3132                 }
3133         }
3134
3135         return pool;
3136 }
3137
3138 /*----------------------------------------------------------------
3139  * Pool target methods
3140  *--------------------------------------------------------------*/
3141 static void pool_dtr(struct dm_target *ti)
3142 {
3143         struct pool_c *pt = ti->private;
3144
3145         mutex_lock(&dm_thin_pool_table.mutex);
3146
3147         unbind_control_target(pt->pool, ti);
3148         __pool_dec(pt->pool);
3149         dm_put_device(ti, pt->metadata_dev);
3150         dm_put_device(ti, pt->data_dev);
3151         bio_uninit(&pt->flush_bio);
3152         kfree(pt);
3153
3154         mutex_unlock(&dm_thin_pool_table.mutex);
3155 }
3156
3157 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3158                                struct dm_target *ti)
3159 {
3160         int r;
3161         unsigned argc;
3162         const char *arg_name;
3163
3164         static const struct dm_arg _args[] = {
3165                 {0, 4, "Invalid number of pool feature arguments"},
3166         };
3167
3168         /*
3169          * No feature arguments supplied.
3170          */
3171         if (!as->argc)
3172                 return 0;
3173
3174         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3175         if (r)
3176                 return -EINVAL;
3177
3178         while (argc && !r) {
3179                 arg_name = dm_shift_arg(as);
3180                 argc--;
3181
3182                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3183                         pf->zero_new_blocks = false;
3184
3185                 else if (!strcasecmp(arg_name, "ignore_discard"))
3186                         pf->discard_enabled = false;
3187
3188                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3189                         pf->discard_passdown = false;
3190
3191                 else if (!strcasecmp(arg_name, "read_only"))
3192                         pf->mode = PM_READ_ONLY;
3193
3194                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3195                         pf->error_if_no_space = true;
3196
3197                 else {
3198                         ti->error = "Unrecognised pool feature requested";
3199                         r = -EINVAL;
3200                         break;
3201                 }
3202         }
3203
3204         return r;
3205 }
3206
3207 static void metadata_low_callback(void *context)
3208 {
3209         struct pool *pool = context;
3210
3211         DMWARN("%s: reached low water mark for metadata device: sending event.",
3212                dm_device_name(pool->pool_md));
3213
3214         dm_table_event(pool->ti->table);
3215 }
3216
3217 /*
3218  * We need to flush the data device **before** committing the metadata.
3219  *
3220  * This ensures that the data blocks of any newly inserted mappings are
3221  * properly written to non-volatile storage and won't be lost in case of a
3222  * crash.
3223  *
3224  * Failure to do so can result in data corruption in the case of internal or
3225  * external snapshots and in the case of newly provisioned blocks, when block
3226  * zeroing is enabled.
3227  */
3228 static int metadata_pre_commit_callback(void *context)
3229 {
3230         struct pool_c *pt = context;
3231         struct bio *flush_bio = &pt->flush_bio;
3232
3233         bio_reset(flush_bio);
3234         bio_set_dev(flush_bio, pt->data_dev->bdev);
3235         flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3236
3237         return submit_bio_wait(flush_bio);
3238 }
3239
3240 static sector_t get_dev_size(struct block_device *bdev)
3241 {
3242         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3243 }
3244
3245 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3246 {
3247         sector_t metadata_dev_size = get_dev_size(bdev);
3248         char buffer[BDEVNAME_SIZE];
3249
3250         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3251                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3252                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3253 }
3254
3255 static sector_t get_metadata_dev_size(struct block_device *bdev)
3256 {
3257         sector_t metadata_dev_size = get_dev_size(bdev);
3258
3259         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3260                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3261
3262         return metadata_dev_size;
3263 }
3264
3265 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3266 {
3267         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3268
3269         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3270
3271         return metadata_dev_size;
3272 }
3273
3274 /*
3275  * When a metadata threshold is crossed a dm event is triggered, and
3276  * userland should respond by growing the metadata device.  We could let
3277  * userland set the threshold, like we do with the data threshold, but I'm
3278  * not sure they know enough to do this well.
3279  */
3280 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3281 {
3282         /*
3283          * 4M is ample for all ops with the possible exception of thin
3284          * device deletion which is harmless if it fails (just retry the
3285          * delete after you've grown the device).
3286          */
3287         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3288         return min((dm_block_t)1024ULL /* 4M */, quarter);
3289 }
3290
3291 /*
3292  * thin-pool <metadata dev> <data dev>
3293  *           <data block size (sectors)>
3294  *           <low water mark (blocks)>
3295  *           [<#feature args> [<arg>]*]
3296  *
3297  * Optional feature arguments are:
3298  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3299  *           ignore_discard: disable discard
3300  *           no_discard_passdown: don't pass discards down to the data device
3301  *           read_only: Don't allow any changes to be made to the pool metadata.
3302  *           error_if_no_space: error IOs, instead of queueing, if no space.
3303  */
3304 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3305 {
3306         int r, pool_created = 0;
3307         struct pool_c *pt;
3308         struct pool *pool;
3309         struct pool_features pf;
3310         struct dm_arg_set as;
3311         struct dm_dev *data_dev;
3312         unsigned long block_size;
3313         dm_block_t low_water_blocks;
3314         struct dm_dev *metadata_dev;
3315         fmode_t metadata_mode;
3316
3317         /*
3318          * FIXME Remove validation from scope of lock.
3319          */
3320         mutex_lock(&dm_thin_pool_table.mutex);
3321
3322         if (argc < 4) {
3323                 ti->error = "Invalid argument count";
3324                 r = -EINVAL;
3325                 goto out_unlock;
3326         }
3327
3328         as.argc = argc;
3329         as.argv = argv;
3330
3331         /* make sure metadata and data are different devices */
3332         if (!strcmp(argv[0], argv[1])) {
3333                 ti->error = "Error setting metadata or data device";
3334                 r = -EINVAL;
3335                 goto out_unlock;
3336         }
3337
3338         /*
3339          * Set default pool features.
3340          */
3341         pool_features_init(&pf);
3342
3343         dm_consume_args(&as, 4);
3344         r = parse_pool_features(&as, &pf, ti);
3345         if (r)
3346                 goto out_unlock;
3347
3348         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3349         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3350         if (r) {
3351                 ti->error = "Error opening metadata block device";
3352                 goto out_unlock;
3353         }
3354         warn_if_metadata_device_too_big(metadata_dev->bdev);
3355
3356         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3357         if (r) {
3358                 ti->error = "Error getting data device";
3359                 goto out_metadata;
3360         }
3361
3362         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3363             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3364             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3365             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3366                 ti->error = "Invalid block size";
3367                 r = -EINVAL;
3368                 goto out;
3369         }
3370
3371         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3372                 ti->error = "Invalid low water mark";
3373                 r = -EINVAL;
3374                 goto out;
3375         }
3376
3377         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3378         if (!pt) {
3379                 r = -ENOMEM;
3380                 goto out;
3381         }
3382
3383         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3384                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3385         if (IS_ERR(pool)) {
3386                 r = PTR_ERR(pool);
3387                 goto out_free_pt;
3388         }
3389
3390         /*
3391          * 'pool_created' reflects whether this is the first table load.
3392          * Top level discard support is not allowed to be changed after
3393          * initial load.  This would require a pool reload to trigger thin
3394          * device changes.
3395          */
3396         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3397                 ti->error = "Discard support cannot be disabled once enabled";
3398                 r = -EINVAL;
3399                 goto out_flags_changed;
3400         }
3401
3402         pt->pool = pool;
3403         pt->ti = ti;
3404         pt->metadata_dev = metadata_dev;
3405         pt->data_dev = data_dev;
3406         pt->low_water_blocks = low_water_blocks;
3407         pt->adjusted_pf = pt->requested_pf = pf;
3408         bio_init(&pt->flush_bio, NULL, 0);
3409         ti->num_flush_bios = 1;
3410         ti->limit_swap_bios = true;
3411
3412         /*
3413          * Only need to enable discards if the pool should pass
3414          * them down to the data device.  The thin device's discard
3415          * processing will cause mappings to be removed from the btree.
3416          */
3417         if (pf.discard_enabled && pf.discard_passdown) {
3418                 ti->num_discard_bios = 1;
3419
3420                 /*
3421                  * Setting 'discards_supported' circumvents the normal
3422                  * stacking of discard limits (this keeps the pool and
3423                  * thin devices' discard limits consistent).
3424                  */
3425                 ti->discards_supported = true;
3426         }
3427         ti->private = pt;
3428
3429         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3430                                                 calc_metadata_threshold(pt),
3431                                                 metadata_low_callback,
3432                                                 pool);
3433         if (r) {
3434                 ti->error = "Error registering metadata threshold";
3435                 goto out_flags_changed;
3436         }
3437
3438         pt->callbacks.congested_fn = pool_is_congested;
3439         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3440
3441         mutex_unlock(&dm_thin_pool_table.mutex);
3442
3443         return 0;
3444
3445 out_flags_changed:
3446         __pool_dec(pool);
3447 out_free_pt:
3448         kfree(pt);
3449 out:
3450         dm_put_device(ti, data_dev);
3451 out_metadata:
3452         dm_put_device(ti, metadata_dev);
3453 out_unlock:
3454         mutex_unlock(&dm_thin_pool_table.mutex);
3455
3456         return r;
3457 }
3458
3459 static int pool_map(struct dm_target *ti, struct bio *bio)
3460 {
3461         int r;
3462         struct pool_c *pt = ti->private;
3463         struct pool *pool = pt->pool;
3464         unsigned long flags;
3465
3466         /*
3467          * As this is a singleton target, ti->begin is always zero.
3468          */
3469         spin_lock_irqsave(&pool->lock, flags);
3470         bio_set_dev(bio, pt->data_dev->bdev);
3471         r = DM_MAPIO_REMAPPED;
3472         spin_unlock_irqrestore(&pool->lock, flags);
3473
3474         return r;
3475 }
3476
3477 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3478 {
3479         int r;
3480         struct pool_c *pt = ti->private;
3481         struct pool *pool = pt->pool;
3482         sector_t data_size = ti->len;
3483         dm_block_t sb_data_size;
3484
3485         *need_commit = false;
3486
3487         (void) sector_div(data_size, pool->sectors_per_block);
3488
3489         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3490         if (r) {
3491                 DMERR("%s: failed to retrieve data device size",
3492                       dm_device_name(pool->pool_md));
3493                 return r;
3494         }
3495
3496         if (data_size < sb_data_size) {
3497                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3498                       dm_device_name(pool->pool_md),
3499                       (unsigned long long)data_size, sb_data_size);
3500                 return -EINVAL;
3501
3502         } else if (data_size > sb_data_size) {
3503                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3504                         DMERR("%s: unable to grow the data device until repaired.",
3505                               dm_device_name(pool->pool_md));
3506                         return 0;
3507                 }
3508
3509                 if (sb_data_size)
3510                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3511                                dm_device_name(pool->pool_md),
3512                                sb_data_size, (unsigned long long)data_size);
3513                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3514                 if (r) {
3515                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3516                         return r;
3517                 }
3518
3519                 *need_commit = true;
3520         }
3521
3522         return 0;
3523 }
3524
3525 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3526 {
3527         int r;
3528         struct pool_c *pt = ti->private;
3529         struct pool *pool = pt->pool;
3530         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3531
3532         *need_commit = false;
3533
3534         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3535
3536         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3537         if (r) {
3538                 DMERR("%s: failed to retrieve metadata device size",
3539                       dm_device_name(pool->pool_md));
3540                 return r;
3541         }
3542
3543         if (metadata_dev_size < sb_metadata_dev_size) {
3544                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3545                       dm_device_name(pool->pool_md),
3546                       metadata_dev_size, sb_metadata_dev_size);
3547                 return -EINVAL;
3548
3549         } else if (metadata_dev_size > sb_metadata_dev_size) {
3550                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3551                         DMERR("%s: unable to grow the metadata device until repaired.",
3552                               dm_device_name(pool->pool_md));
3553                         return 0;
3554                 }
3555
3556                 warn_if_metadata_device_too_big(pool->md_dev);
3557                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3558                        dm_device_name(pool->pool_md),
3559                        sb_metadata_dev_size, metadata_dev_size);
3560
3561                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3562                         set_pool_mode(pool, PM_WRITE);
3563
3564                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3565                 if (r) {
3566                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3567                         return r;
3568                 }
3569
3570                 *need_commit = true;
3571         }
3572
3573         return 0;
3574 }
3575
3576 /*
3577  * Retrieves the number of blocks of the data device from
3578  * the superblock and compares it to the actual device size,
3579  * thus resizing the data device in case it has grown.
3580  *
3581  * This both copes with opening preallocated data devices in the ctr
3582  * being followed by a resume
3583  * -and-
3584  * calling the resume method individually after userspace has
3585  * grown the data device in reaction to a table event.
3586  */
3587 static int pool_preresume(struct dm_target *ti)
3588 {
3589         int r;
3590         bool need_commit1, need_commit2;
3591         struct pool_c *pt = ti->private;
3592         struct pool *pool = pt->pool;
3593
3594         /*
3595          * Take control of the pool object.
3596          */
3597         r = bind_control_target(pool, ti);
3598         if (r)
3599                 goto out;
3600
3601         dm_pool_register_pre_commit_callback(pool->pmd,
3602                                              metadata_pre_commit_callback, pt);
3603
3604         r = maybe_resize_data_dev(ti, &need_commit1);
3605         if (r)
3606                 goto out;
3607
3608         r = maybe_resize_metadata_dev(ti, &need_commit2);
3609         if (r)
3610                 goto out;
3611
3612         if (need_commit1 || need_commit2)
3613                 (void) commit(pool);
3614 out:
3615         /*
3616          * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3617          * bio is in deferred list. Therefore need to return 0
3618          * to allow pool_resume() to flush IO.
3619          */
3620         if (r && get_pool_mode(pool) == PM_FAIL)
3621                 r = 0;
3622
3623         return r;
3624 }
3625
3626 static void pool_suspend_active_thins(struct pool *pool)
3627 {
3628         struct thin_c *tc;
3629
3630         /* Suspend all active thin devices */
3631         tc = get_first_thin(pool);
3632         while (tc) {
3633                 dm_internal_suspend_noflush(tc->thin_md);
3634                 tc = get_next_thin(pool, tc);
3635         }
3636 }
3637
3638 static void pool_resume_active_thins(struct pool *pool)
3639 {
3640         struct thin_c *tc;
3641
3642         /* Resume all active thin devices */
3643         tc = get_first_thin(pool);
3644         while (tc) {
3645                 dm_internal_resume(tc->thin_md);
3646                 tc = get_next_thin(pool, tc);
3647         }
3648 }
3649
3650 static void pool_resume(struct dm_target *ti)
3651 {
3652         struct pool_c *pt = ti->private;
3653         struct pool *pool = pt->pool;
3654         unsigned long flags;
3655
3656         /*
3657          * Must requeue active_thins' bios and then resume
3658          * active_thins _before_ clearing 'suspend' flag.
3659          */
3660         requeue_bios(pool);
3661         pool_resume_active_thins(pool);
3662
3663         spin_lock_irqsave(&pool->lock, flags);
3664         pool->low_water_triggered = false;
3665         pool->suspended = false;
3666         spin_unlock_irqrestore(&pool->lock, flags);
3667
3668         do_waker(&pool->waker.work);
3669 }
3670
3671 static void pool_presuspend(struct dm_target *ti)
3672 {
3673         struct pool_c *pt = ti->private;
3674         struct pool *pool = pt->pool;
3675         unsigned long flags;
3676
3677         spin_lock_irqsave(&pool->lock, flags);
3678         pool->suspended = true;
3679         spin_unlock_irqrestore(&pool->lock, flags);
3680
3681         pool_suspend_active_thins(pool);
3682 }
3683
3684 static void pool_presuspend_undo(struct dm_target *ti)
3685 {
3686         struct pool_c *pt = ti->private;
3687         struct pool *pool = pt->pool;
3688         unsigned long flags;
3689
3690         pool_resume_active_thins(pool);
3691
3692         spin_lock_irqsave(&pool->lock, flags);
3693         pool->suspended = false;
3694         spin_unlock_irqrestore(&pool->lock, flags);
3695 }
3696
3697 static void pool_postsuspend(struct dm_target *ti)
3698 {
3699         struct pool_c *pt = ti->private;
3700         struct pool *pool = pt->pool;
3701
3702         cancel_delayed_work_sync(&pool->waker);
3703         cancel_delayed_work_sync(&pool->no_space_timeout);
3704         flush_workqueue(pool->wq);
3705         (void) commit(pool);
3706 }
3707
3708 static int check_arg_count(unsigned argc, unsigned args_required)
3709 {
3710         if (argc != args_required) {
3711                 DMWARN("Message received with %u arguments instead of %u.",
3712                        argc, args_required);
3713                 return -EINVAL;
3714         }
3715
3716         return 0;
3717 }
3718
3719 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3720 {
3721         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3722             *dev_id <= MAX_DEV_ID)
3723                 return 0;
3724
3725         if (warning)
3726                 DMWARN("Message received with invalid device id: %s", arg);
3727
3728         return -EINVAL;
3729 }
3730
3731 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3732 {
3733         dm_thin_id dev_id;
3734         int r;
3735
3736         r = check_arg_count(argc, 2);
3737         if (r)
3738                 return r;
3739
3740         r = read_dev_id(argv[1], &dev_id, 1);
3741         if (r)
3742                 return r;
3743
3744         r = dm_pool_create_thin(pool->pmd, dev_id);
3745         if (r) {
3746                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3747                        argv[1]);
3748                 return r;
3749         }
3750
3751         return 0;
3752 }
3753
3754 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3755 {
3756         dm_thin_id dev_id;
3757         dm_thin_id origin_dev_id;
3758         int r;
3759
3760         r = check_arg_count(argc, 3);
3761         if (r)
3762                 return r;
3763
3764         r = read_dev_id(argv[1], &dev_id, 1);
3765         if (r)
3766                 return r;
3767
3768         r = read_dev_id(argv[2], &origin_dev_id, 1);
3769         if (r)
3770                 return r;
3771
3772         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3773         if (r) {
3774                 DMWARN("Creation of new snapshot %s of device %s failed.",
3775                        argv[1], argv[2]);
3776                 return r;
3777         }
3778
3779         return 0;
3780 }
3781
3782 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3783 {
3784         dm_thin_id dev_id;
3785         int r;
3786
3787         r = check_arg_count(argc, 2);
3788         if (r)
3789                 return r;
3790
3791         r = read_dev_id(argv[1], &dev_id, 1);
3792         if (r)
3793                 return r;
3794
3795         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3796         if (r)
3797                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3798
3799         return r;
3800 }
3801
3802 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3803 {
3804         dm_thin_id old_id, new_id;
3805         int r;
3806
3807         r = check_arg_count(argc, 3);
3808         if (r)
3809                 return r;
3810
3811         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3812                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3813                 return -EINVAL;
3814         }
3815
3816         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3817                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3818                 return -EINVAL;
3819         }
3820
3821         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3822         if (r) {
3823                 DMWARN("Failed to change transaction id from %s to %s.",
3824                        argv[1], argv[2]);
3825                 return r;
3826         }
3827
3828         return 0;
3829 }
3830
3831 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3832 {
3833         int r;
3834
3835         r = check_arg_count(argc, 1);
3836         if (r)
3837                 return r;
3838
3839         (void) commit(pool);
3840
3841         r = dm_pool_reserve_metadata_snap(pool->pmd);
3842         if (r)
3843                 DMWARN("reserve_metadata_snap message failed.");
3844
3845         return r;
3846 }
3847
3848 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3849 {
3850         int r;
3851
3852         r = check_arg_count(argc, 1);
3853         if (r)
3854                 return r;
3855
3856         r = dm_pool_release_metadata_snap(pool->pmd);
3857         if (r)
3858                 DMWARN("release_metadata_snap message failed.");
3859
3860         return r;
3861 }
3862
3863 /*
3864  * Messages supported:
3865  *   create_thin        <dev_id>
3866  *   create_snap        <dev_id> <origin_id>
3867  *   delete             <dev_id>
3868  *   set_transaction_id <current_trans_id> <new_trans_id>
3869  *   reserve_metadata_snap
3870  *   release_metadata_snap
3871  */
3872 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3873                         char *result, unsigned maxlen)
3874 {
3875         int r = -EINVAL;
3876         struct pool_c *pt = ti->private;
3877         struct pool *pool = pt->pool;
3878
3879         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3880                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3881                       dm_device_name(pool->pool_md));
3882                 return -EOPNOTSUPP;
3883         }
3884
3885         if (!strcasecmp(argv[0], "create_thin"))
3886                 r = process_create_thin_mesg(argc, argv, pool);
3887
3888         else if (!strcasecmp(argv[0], "create_snap"))
3889                 r = process_create_snap_mesg(argc, argv, pool);
3890
3891         else if (!strcasecmp(argv[0], "delete"))
3892                 r = process_delete_mesg(argc, argv, pool);
3893
3894         else if (!strcasecmp(argv[0], "set_transaction_id"))
3895                 r = process_set_transaction_id_mesg(argc, argv, pool);
3896
3897         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3898                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3899
3900         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3901                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3902
3903         else
3904                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3905
3906         if (!r)
3907                 (void) commit(pool);
3908
3909         return r;
3910 }
3911
3912 static void emit_flags(struct pool_features *pf, char *result,
3913                        unsigned sz, unsigned maxlen)
3914 {
3915         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3916                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3917                 pf->error_if_no_space;
3918         DMEMIT("%u ", count);
3919
3920         if (!pf->zero_new_blocks)
3921                 DMEMIT("skip_block_zeroing ");
3922
3923         if (!pf->discard_enabled)
3924                 DMEMIT("ignore_discard ");
3925
3926         if (!pf->discard_passdown)
3927                 DMEMIT("no_discard_passdown ");
3928
3929         if (pf->mode == PM_READ_ONLY)
3930                 DMEMIT("read_only ");
3931
3932         if (pf->error_if_no_space)
3933                 DMEMIT("error_if_no_space ");
3934 }
3935
3936 /*
3937  * Status line is:
3938  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3939  *    <used data sectors>/<total data sectors> <held metadata root>
3940  *    <pool mode> <discard config> <no space config> <needs_check>
3941  */
3942 static void pool_status(struct dm_target *ti, status_type_t type,
3943                         unsigned status_flags, char *result, unsigned maxlen)
3944 {
3945         int r;
3946         unsigned sz = 0;
3947         uint64_t transaction_id;
3948         dm_block_t nr_free_blocks_data;
3949         dm_block_t nr_free_blocks_metadata;
3950         dm_block_t nr_blocks_data;
3951         dm_block_t nr_blocks_metadata;
3952         dm_block_t held_root;
3953         enum pool_mode mode;
3954         char buf[BDEVNAME_SIZE];
3955         char buf2[BDEVNAME_SIZE];
3956         struct pool_c *pt = ti->private;
3957         struct pool *pool = pt->pool;
3958
3959         switch (type) {
3960         case STATUSTYPE_INFO:
3961                 if (get_pool_mode(pool) == PM_FAIL) {
3962                         DMEMIT("Fail");
3963                         break;
3964                 }
3965
3966                 /* Commit to ensure statistics aren't out-of-date */
3967                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3968                         (void) commit(pool);
3969
3970                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3971                 if (r) {
3972                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3973                               dm_device_name(pool->pool_md), r);
3974                         goto err;
3975                 }
3976
3977                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3978                 if (r) {
3979                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3980                               dm_device_name(pool->pool_md), r);
3981                         goto err;
3982                 }
3983
3984                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3985                 if (r) {
3986                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3987                               dm_device_name(pool->pool_md), r);
3988                         goto err;
3989                 }
3990
3991                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3992                 if (r) {
3993                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3994                               dm_device_name(pool->pool_md), r);
3995                         goto err;
3996                 }
3997
3998                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3999                 if (r) {
4000                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
4001                               dm_device_name(pool->pool_md), r);
4002                         goto err;
4003                 }
4004
4005                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
4006                 if (r) {
4007                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
4008                               dm_device_name(pool->pool_md), r);
4009                         goto err;
4010                 }
4011
4012                 DMEMIT("%llu %llu/%llu %llu/%llu ",
4013                        (unsigned long long)transaction_id,
4014                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
4015                        (unsigned long long)nr_blocks_metadata,
4016                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
4017                        (unsigned long long)nr_blocks_data);
4018
4019                 if (held_root)
4020                         DMEMIT("%llu ", held_root);
4021                 else
4022                         DMEMIT("- ");
4023
4024                 mode = get_pool_mode(pool);
4025                 if (mode == PM_OUT_OF_DATA_SPACE)
4026                         DMEMIT("out_of_data_space ");
4027                 else if (is_read_only_pool_mode(mode))
4028                         DMEMIT("ro ");
4029                 else
4030                         DMEMIT("rw ");
4031
4032                 if (!pool->pf.discard_enabled)
4033                         DMEMIT("ignore_discard ");
4034                 else if (pool->pf.discard_passdown)
4035                         DMEMIT("discard_passdown ");
4036                 else
4037                         DMEMIT("no_discard_passdown ");
4038
4039                 if (pool->pf.error_if_no_space)
4040                         DMEMIT("error_if_no_space ");
4041                 else
4042                         DMEMIT("queue_if_no_space ");
4043
4044                 if (dm_pool_metadata_needs_check(pool->pmd))
4045                         DMEMIT("needs_check ");
4046                 else
4047                         DMEMIT("- ");
4048
4049                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4050
4051                 break;
4052
4053         case STATUSTYPE_TABLE:
4054                 DMEMIT("%s %s %lu %llu ",
4055                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4056                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4057                        (unsigned long)pool->sectors_per_block,
4058                        (unsigned long long)pt->low_water_blocks);
4059                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4060                 break;
4061         }
4062         return;
4063
4064 err:
4065         DMEMIT("Error");
4066 }
4067
4068 static int pool_iterate_devices(struct dm_target *ti,
4069                                 iterate_devices_callout_fn fn, void *data)
4070 {
4071         struct pool_c *pt = ti->private;
4072
4073         return fn(ti, pt->data_dev, 0, ti->len, data);
4074 }
4075
4076 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4077 {
4078         struct pool_c *pt = ti->private;
4079         struct pool *pool = pt->pool;
4080         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4081
4082         /*
4083          * If max_sectors is smaller than pool->sectors_per_block adjust it
4084          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4085          * This is especially beneficial when the pool's data device is a RAID
4086          * device that has a full stripe width that matches pool->sectors_per_block
4087          * -- because even though partial RAID stripe-sized IOs will be issued to a
4088          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4089          *    boundary.. which avoids additional partial RAID stripe writes cascading
4090          */
4091         if (limits->max_sectors < pool->sectors_per_block) {
4092                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4093                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4094                                 limits->max_sectors--;
4095                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4096                 }
4097         }
4098
4099         /*
4100          * If the system-determined stacked limits are compatible with the
4101          * pool's blocksize (io_opt is a factor) do not override them.
4102          */
4103         if (io_opt_sectors < pool->sectors_per_block ||
4104             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4105                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4106                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4107                 else
4108                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4109                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4110         }
4111
4112         /*
4113          * pt->adjusted_pf is a staging area for the actual features to use.
4114          * They get transferred to the live pool in bind_control_target()
4115          * called from pool_preresume().
4116          */
4117         if (!pt->adjusted_pf.discard_enabled) {
4118                 /*
4119                  * Must explicitly disallow stacking discard limits otherwise the
4120                  * block layer will stack them if pool's data device has support.
4121                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4122                  * user to see that, so make sure to set all discard limits to 0.
4123                  */
4124                 limits->discard_granularity = 0;
4125                 return;
4126         }
4127
4128         disable_passdown_if_not_supported(pt);
4129
4130         /*
4131          * The pool uses the same discard limits as the underlying data
4132          * device.  DM core has already set this up.
4133          */
4134 }
4135
4136 static struct target_type pool_target = {
4137         .name = "thin-pool",
4138         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4139                     DM_TARGET_IMMUTABLE,
4140         .version = {1, 22, 0},
4141         .module = THIS_MODULE,
4142         .ctr = pool_ctr,
4143         .dtr = pool_dtr,
4144         .map = pool_map,
4145         .presuspend = pool_presuspend,
4146         .presuspend_undo = pool_presuspend_undo,
4147         .postsuspend = pool_postsuspend,
4148         .preresume = pool_preresume,
4149         .resume = pool_resume,
4150         .message = pool_message,
4151         .status = pool_status,
4152         .iterate_devices = pool_iterate_devices,
4153         .io_hints = pool_io_hints,
4154 };
4155
4156 /*----------------------------------------------------------------
4157  * Thin target methods
4158  *--------------------------------------------------------------*/
4159 static void thin_get(struct thin_c *tc)
4160 {
4161         refcount_inc(&tc->refcount);
4162 }
4163
4164 static void thin_put(struct thin_c *tc)
4165 {
4166         if (refcount_dec_and_test(&tc->refcount))
4167                 complete(&tc->can_destroy);
4168 }
4169
4170 static void thin_dtr(struct dm_target *ti)
4171 {
4172         struct thin_c *tc = ti->private;
4173         unsigned long flags;
4174
4175         spin_lock_irqsave(&tc->pool->lock, flags);
4176         list_del_rcu(&tc->list);
4177         spin_unlock_irqrestore(&tc->pool->lock, flags);
4178         synchronize_rcu();
4179
4180         thin_put(tc);
4181         wait_for_completion(&tc->can_destroy);
4182
4183         mutex_lock(&dm_thin_pool_table.mutex);
4184
4185         __pool_dec(tc->pool);
4186         dm_pool_close_thin_device(tc->td);
4187         dm_put_device(ti, tc->pool_dev);
4188         if (tc->origin_dev)
4189                 dm_put_device(ti, tc->origin_dev);
4190         kfree(tc);
4191
4192         mutex_unlock(&dm_thin_pool_table.mutex);
4193 }
4194
4195 /*
4196  * Thin target parameters:
4197  *
4198  * <pool_dev> <dev_id> [origin_dev]
4199  *
4200  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4201  * dev_id: the internal device identifier
4202  * origin_dev: a device external to the pool that should act as the origin
4203  *
4204  * If the pool device has discards disabled, they get disabled for the thin
4205  * device as well.
4206  */
4207 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4208 {
4209         int r;
4210         struct thin_c *tc;
4211         struct dm_dev *pool_dev, *origin_dev;
4212         struct mapped_device *pool_md;
4213         unsigned long flags;
4214
4215         mutex_lock(&dm_thin_pool_table.mutex);
4216
4217         if (argc != 2 && argc != 3) {
4218                 ti->error = "Invalid argument count";
4219                 r = -EINVAL;
4220                 goto out_unlock;
4221         }
4222
4223         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4224         if (!tc) {
4225                 ti->error = "Out of memory";
4226                 r = -ENOMEM;
4227                 goto out_unlock;
4228         }
4229         tc->thin_md = dm_table_get_md(ti->table);
4230         spin_lock_init(&tc->lock);
4231         INIT_LIST_HEAD(&tc->deferred_cells);
4232         bio_list_init(&tc->deferred_bio_list);
4233         bio_list_init(&tc->retry_on_resume_list);
4234         tc->sort_bio_list = RB_ROOT;
4235
4236         if (argc == 3) {
4237                 if (!strcmp(argv[0], argv[2])) {
4238                         ti->error = "Error setting origin device";
4239                         r = -EINVAL;
4240                         goto bad_origin_dev;
4241                 }
4242
4243                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4244                 if (r) {
4245                         ti->error = "Error opening origin device";
4246                         goto bad_origin_dev;
4247                 }
4248                 tc->origin_dev = origin_dev;
4249         }
4250
4251         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4252         if (r) {
4253                 ti->error = "Error opening pool device";
4254                 goto bad_pool_dev;
4255         }
4256         tc->pool_dev = pool_dev;
4257
4258         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4259                 ti->error = "Invalid device id";
4260                 r = -EINVAL;
4261                 goto bad_common;
4262         }
4263
4264         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4265         if (!pool_md) {
4266                 ti->error = "Couldn't get pool mapped device";
4267                 r = -EINVAL;
4268                 goto bad_common;
4269         }
4270
4271         tc->pool = __pool_table_lookup(pool_md);
4272         if (!tc->pool) {
4273                 ti->error = "Couldn't find pool object";
4274                 r = -EINVAL;
4275                 goto bad_pool_lookup;
4276         }
4277         __pool_inc(tc->pool);
4278
4279         if (get_pool_mode(tc->pool) == PM_FAIL) {
4280                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4281                 r = -EINVAL;
4282                 goto bad_pool;
4283         }
4284
4285         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4286         if (r) {
4287                 ti->error = "Couldn't open thin internal device";
4288                 goto bad_pool;
4289         }
4290
4291         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4292         if (r)
4293                 goto bad;
4294
4295         ti->num_flush_bios = 1;
4296         ti->limit_swap_bios = true;
4297         ti->flush_supported = true;
4298         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4299
4300         /* In case the pool supports discards, pass them on. */
4301         if (tc->pool->pf.discard_enabled) {
4302                 ti->discards_supported = true;
4303                 ti->num_discard_bios = 1;
4304         }
4305
4306         mutex_unlock(&dm_thin_pool_table.mutex);
4307
4308         spin_lock_irqsave(&tc->pool->lock, flags);
4309         if (tc->pool->suspended) {
4310                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4311                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4312                 ti->error = "Unable to activate thin device while pool is suspended";
4313                 r = -EINVAL;
4314                 goto bad;
4315         }
4316         refcount_set(&tc->refcount, 1);
4317         init_completion(&tc->can_destroy);
4318         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4319         spin_unlock_irqrestore(&tc->pool->lock, flags);
4320         /*
4321          * This synchronize_rcu() call is needed here otherwise we risk a
4322          * wake_worker() call finding no bios to process (because the newly
4323          * added tc isn't yet visible).  So this reduces latency since we
4324          * aren't then dependent on the periodic commit to wake_worker().
4325          */
4326         synchronize_rcu();
4327
4328         dm_put(pool_md);
4329
4330         return 0;
4331
4332 bad:
4333         dm_pool_close_thin_device(tc->td);
4334 bad_pool:
4335         __pool_dec(tc->pool);
4336 bad_pool_lookup:
4337         dm_put(pool_md);
4338 bad_common:
4339         dm_put_device(ti, tc->pool_dev);
4340 bad_pool_dev:
4341         if (tc->origin_dev)
4342                 dm_put_device(ti, tc->origin_dev);
4343 bad_origin_dev:
4344         kfree(tc);
4345 out_unlock:
4346         mutex_unlock(&dm_thin_pool_table.mutex);
4347
4348         return r;
4349 }
4350
4351 static int thin_map(struct dm_target *ti, struct bio *bio)
4352 {
4353         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4354
4355         return thin_bio_map(ti, bio);
4356 }
4357
4358 static int thin_endio(struct dm_target *ti, struct bio *bio,
4359                 blk_status_t *err)
4360 {
4361         unsigned long flags;
4362         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4363         struct list_head work;
4364         struct dm_thin_new_mapping *m, *tmp;
4365         struct pool *pool = h->tc->pool;
4366
4367         if (h->shared_read_entry) {
4368                 INIT_LIST_HEAD(&work);
4369                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4370
4371                 spin_lock_irqsave(&pool->lock, flags);
4372                 list_for_each_entry_safe(m, tmp, &work, list) {
4373                         list_del(&m->list);
4374                         __complete_mapping_preparation(m);
4375                 }
4376                 spin_unlock_irqrestore(&pool->lock, flags);
4377         }
4378
4379         if (h->all_io_entry) {
4380                 INIT_LIST_HEAD(&work);
4381                 dm_deferred_entry_dec(h->all_io_entry, &work);
4382                 if (!list_empty(&work)) {
4383                         spin_lock_irqsave(&pool->lock, flags);
4384                         list_for_each_entry_safe(m, tmp, &work, list)
4385                                 list_add_tail(&m->list, &pool->prepared_discards);
4386                         spin_unlock_irqrestore(&pool->lock, flags);
4387                         wake_worker(pool);
4388                 }
4389         }
4390
4391         if (h->cell)
4392                 cell_defer_no_holder(h->tc, h->cell);
4393
4394         return DM_ENDIO_DONE;
4395 }
4396
4397 static void thin_presuspend(struct dm_target *ti)
4398 {
4399         struct thin_c *tc = ti->private;
4400
4401         if (dm_noflush_suspending(ti))
4402                 noflush_work(tc, do_noflush_start);
4403 }
4404
4405 static void thin_postsuspend(struct dm_target *ti)
4406 {
4407         struct thin_c *tc = ti->private;
4408
4409         /*
4410          * The dm_noflush_suspending flag has been cleared by now, so
4411          * unfortunately we must always run this.
4412          */
4413         noflush_work(tc, do_noflush_stop);
4414 }
4415
4416 static int thin_preresume(struct dm_target *ti)
4417 {
4418         struct thin_c *tc = ti->private;
4419
4420         if (tc->origin_dev)
4421                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4422
4423         return 0;
4424 }
4425
4426 /*
4427  * <nr mapped sectors> <highest mapped sector>
4428  */
4429 static void thin_status(struct dm_target *ti, status_type_t type,
4430                         unsigned status_flags, char *result, unsigned maxlen)
4431 {
4432         int r;
4433         ssize_t sz = 0;
4434         dm_block_t mapped, highest;
4435         char buf[BDEVNAME_SIZE];
4436         struct thin_c *tc = ti->private;
4437
4438         if (get_pool_mode(tc->pool) == PM_FAIL) {
4439                 DMEMIT("Fail");
4440                 return;
4441         }
4442
4443         if (!tc->td)
4444                 DMEMIT("-");
4445         else {
4446                 switch (type) {
4447                 case STATUSTYPE_INFO:
4448                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4449                         if (r) {
4450                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4451                                 goto err;
4452                         }
4453
4454                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4455                         if (r < 0) {
4456                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4457                                 goto err;
4458                         }
4459
4460                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4461                         if (r)
4462                                 DMEMIT("%llu", ((highest + 1) *
4463                                                 tc->pool->sectors_per_block) - 1);
4464                         else
4465                                 DMEMIT("-");
4466                         break;
4467
4468                 case STATUSTYPE_TABLE:
4469                         DMEMIT("%s %lu",
4470                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4471                                (unsigned long) tc->dev_id);
4472                         if (tc->origin_dev)
4473                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4474                         break;
4475                 }
4476         }
4477
4478         return;
4479
4480 err:
4481         DMEMIT("Error");
4482 }
4483
4484 static int thin_iterate_devices(struct dm_target *ti,
4485                                 iterate_devices_callout_fn fn, void *data)
4486 {
4487         sector_t blocks;
4488         struct thin_c *tc = ti->private;
4489         struct pool *pool = tc->pool;
4490
4491         /*
4492          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4493          * we follow a more convoluted path through to the pool's target.
4494          */
4495         if (!pool->ti)
4496                 return 0;       /* nothing is bound */
4497
4498         blocks = pool->ti->len;
4499         (void) sector_div(blocks, pool->sectors_per_block);
4500         if (blocks)
4501                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4502
4503         return 0;
4504 }
4505
4506 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4507 {
4508         struct thin_c *tc = ti->private;
4509         struct pool *pool = tc->pool;
4510
4511         if (!pool->pf.discard_enabled)
4512                 return;
4513
4514         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4515         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4516 }
4517
4518 static struct target_type thin_target = {
4519         .name = "thin",
4520         .version = {1, 22, 0},
4521         .module = THIS_MODULE,
4522         .ctr = thin_ctr,
4523         .dtr = thin_dtr,
4524         .map = thin_map,
4525         .end_io = thin_endio,
4526         .preresume = thin_preresume,
4527         .presuspend = thin_presuspend,
4528         .postsuspend = thin_postsuspend,
4529         .status = thin_status,
4530         .iterate_devices = thin_iterate_devices,
4531         .io_hints = thin_io_hints,
4532 };
4533
4534 /*----------------------------------------------------------------*/
4535
4536 static int __init dm_thin_init(void)
4537 {
4538         int r = -ENOMEM;
4539
4540         pool_table_init();
4541
4542         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4543         if (!_new_mapping_cache)
4544                 return r;
4545
4546         r = dm_register_target(&thin_target);
4547         if (r)
4548                 goto bad_new_mapping_cache;
4549
4550         r = dm_register_target(&pool_target);
4551         if (r)
4552                 goto bad_thin_target;
4553
4554         return 0;
4555
4556 bad_thin_target:
4557         dm_unregister_target(&thin_target);
4558 bad_new_mapping_cache:
4559         kmem_cache_destroy(_new_mapping_cache);
4560
4561         return r;
4562 }
4563
4564 static void dm_thin_exit(void)
4565 {
4566         dm_unregister_target(&thin_target);
4567         dm_unregister_target(&pool_target);
4568
4569         kmem_cache_destroy(_new_mapping_cache);
4570
4571         pool_table_exit();
4572 }
4573
4574 module_init(dm_thin_init);
4575 module_exit(dm_thin_exit);
4576
4577 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4578 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4579
4580 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4581 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4582 MODULE_LICENSE("GPL");