GNU Linux-libre 4.9.294-gnu1
[releases.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /*
84  * For btree insert:
85  *  3 for btree insert +
86  *  2 for btree lookup used within space map
87  * For btree remove:
88  *  2 for shadow spine +
89  *  4 for rebalance 3 child node
90  */
91 #define THIN_MAX_CONCURRENT_LOCKS 6
92
93 /* This should be plenty */
94 #define SPACE_MAP_ROOT_SIZE 128
95
96 /*
97  * Little endian on-disk superblock and device details.
98  */
99 struct thin_disk_superblock {
100         __le32 csum;    /* Checksum of superblock except for this field. */
101         __le32 flags;
102         __le64 blocknr; /* This block number, dm_block_t. */
103
104         __u8 uuid[16];
105         __le64 magic;
106         __le32 version;
107         __le32 time;
108
109         __le64 trans_id;
110
111         /*
112          * Root held by userspace transactions.
113          */
114         __le64 held_root;
115
116         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
117         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
118
119         /*
120          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
121          */
122         __le64 data_mapping_root;
123
124         /*
125          * Device detail root mapping dev_id -> device_details
126          */
127         __le64 device_details_root;
128
129         __le32 data_block_size;         /* In 512-byte sectors. */
130
131         __le32 metadata_block_size;     /* In 512-byte sectors. */
132         __le64 metadata_nr_blocks;
133
134         __le32 compat_flags;
135         __le32 compat_ro_flags;
136         __le32 incompat_flags;
137 } __packed;
138
139 struct disk_device_details {
140         __le64 mapped_blocks;
141         __le64 transaction_id;          /* When created. */
142         __le32 creation_time;
143         __le32 snapshotted_time;
144 } __packed;
145
146 struct dm_pool_metadata {
147         struct hlist_node hash;
148
149         struct block_device *bdev;
150         struct dm_block_manager *bm;
151         struct dm_space_map *metadata_sm;
152         struct dm_space_map *data_sm;
153         struct dm_transaction_manager *tm;
154         struct dm_transaction_manager *nb_tm;
155
156         /*
157          * Two-level btree.
158          * First level holds thin_dev_t.
159          * Second level holds mappings.
160          */
161         struct dm_btree_info info;
162
163         /*
164          * Non-blocking version of the above.
165          */
166         struct dm_btree_info nb_info;
167
168         /*
169          * Just the top level for deleting whole devices.
170          */
171         struct dm_btree_info tl_info;
172
173         /*
174          * Just the bottom level for creating new devices.
175          */
176         struct dm_btree_info bl_info;
177
178         /*
179          * Describes the device details btree.
180          */
181         struct dm_btree_info details_info;
182
183         struct rw_semaphore root_lock;
184         uint32_t time;
185         dm_block_t root;
186         dm_block_t details_root;
187         struct list_head thin_devices;
188         uint64_t trans_id;
189         unsigned long flags;
190         sector_t data_block_size;
191
192         /*
193          * We reserve a section of the metadata for commit overhead.
194          * All reported space does *not* include this.
195          */
196         dm_block_t metadata_reserve;
197
198         /*
199          * Set if a transaction has to be aborted but the attempt to roll back
200          * to the previous (good) transaction failed.  The only pool metadata
201          * operation possible in this state is the closing of the device.
202          */
203         bool fail_io:1;
204
205         /*
206          * Reading the space map roots can fail, so we read it into these
207          * buffers before the superblock is locked and updated.
208          */
209         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
210         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
211 };
212
213 struct dm_thin_device {
214         struct list_head list;
215         struct dm_pool_metadata *pmd;
216         dm_thin_id id;
217
218         int open_count;
219         bool changed:1;
220         bool aborted_with_changes:1;
221         uint64_t mapped_blocks;
222         uint64_t transaction_id;
223         uint32_t creation_time;
224         uint32_t snapshotted_time;
225 };
226
227 /*----------------------------------------------------------------
228  * superblock validator
229  *--------------------------------------------------------------*/
230
231 #define SUPERBLOCK_CSUM_XOR 160774
232
233 static void sb_prepare_for_write(struct dm_block_validator *v,
234                                  struct dm_block *b,
235                                  size_t block_size)
236 {
237         struct thin_disk_superblock *disk_super = dm_block_data(b);
238
239         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
240         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
241                                                       block_size - sizeof(__le32),
242                                                       SUPERBLOCK_CSUM_XOR));
243 }
244
245 static int sb_check(struct dm_block_validator *v,
246                     struct dm_block *b,
247                     size_t block_size)
248 {
249         struct thin_disk_superblock *disk_super = dm_block_data(b);
250         __le32 csum_le;
251
252         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
253                 DMERR("sb_check failed: blocknr %llu: "
254                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
255                       (unsigned long long)dm_block_location(b));
256                 return -ENOTBLK;
257         }
258
259         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
260                 DMERR("sb_check failed: magic %llu: "
261                       "wanted %llu", le64_to_cpu(disk_super->magic),
262                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
263                 return -EILSEQ;
264         }
265
266         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
267                                              block_size - sizeof(__le32),
268                                              SUPERBLOCK_CSUM_XOR));
269         if (csum_le != disk_super->csum) {
270                 DMERR("sb_check failed: csum %u: wanted %u",
271                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
272                 return -EILSEQ;
273         }
274
275         return 0;
276 }
277
278 static struct dm_block_validator sb_validator = {
279         .name = "superblock",
280         .prepare_for_write = sb_prepare_for_write,
281         .check = sb_check
282 };
283
284 /*----------------------------------------------------------------
285  * Methods for the btree value types
286  *--------------------------------------------------------------*/
287
288 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
289 {
290         return (b << 24) | t;
291 }
292
293 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
294 {
295         *b = v >> 24;
296         *t = v & ((1 << 24) - 1);
297 }
298
299 static void data_block_inc(void *context, const void *value_le)
300 {
301         struct dm_space_map *sm = context;
302         __le64 v_le;
303         uint64_t b;
304         uint32_t t;
305
306         memcpy(&v_le, value_le, sizeof(v_le));
307         unpack_block_time(le64_to_cpu(v_le), &b, &t);
308         dm_sm_inc_block(sm, b);
309 }
310
311 static void data_block_dec(void *context, const void *value_le)
312 {
313         struct dm_space_map *sm = context;
314         __le64 v_le;
315         uint64_t b;
316         uint32_t t;
317
318         memcpy(&v_le, value_le, sizeof(v_le));
319         unpack_block_time(le64_to_cpu(v_le), &b, &t);
320         dm_sm_dec_block(sm, b);
321 }
322
323 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
324 {
325         __le64 v1_le, v2_le;
326         uint64_t b1, b2;
327         uint32_t t;
328
329         memcpy(&v1_le, value1_le, sizeof(v1_le));
330         memcpy(&v2_le, value2_le, sizeof(v2_le));
331         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
332         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
333
334         return b1 == b2;
335 }
336
337 static void subtree_inc(void *context, const void *value)
338 {
339         struct dm_btree_info *info = context;
340         __le64 root_le;
341         uint64_t root;
342
343         memcpy(&root_le, value, sizeof(root_le));
344         root = le64_to_cpu(root_le);
345         dm_tm_inc(info->tm, root);
346 }
347
348 static void subtree_dec(void *context, const void *value)
349 {
350         struct dm_btree_info *info = context;
351         __le64 root_le;
352         uint64_t root;
353
354         memcpy(&root_le, value, sizeof(root_le));
355         root = le64_to_cpu(root_le);
356         if (dm_btree_del(info, root))
357                 DMERR("btree delete failed");
358 }
359
360 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
361 {
362         __le64 v1_le, v2_le;
363         memcpy(&v1_le, value1_le, sizeof(v1_le));
364         memcpy(&v2_le, value2_le, sizeof(v2_le));
365
366         return v1_le == v2_le;
367 }
368
369 /*----------------------------------------------------------------*/
370
371 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
372                                 struct dm_block **sblock)
373 {
374         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
375                                      &sb_validator, sblock);
376 }
377
378 static int superblock_lock(struct dm_pool_metadata *pmd,
379                            struct dm_block **sblock)
380 {
381         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
382                                 &sb_validator, sblock);
383 }
384
385 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
386 {
387         int r;
388         unsigned i;
389         struct dm_block *b;
390         __le64 *data_le, zero = cpu_to_le64(0);
391         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
392
393         /*
394          * We can't use a validator here - it may be all zeroes.
395          */
396         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
397         if (r)
398                 return r;
399
400         data_le = dm_block_data(b);
401         *result = 1;
402         for (i = 0; i < block_size; i++) {
403                 if (data_le[i] != zero) {
404                         *result = 0;
405                         break;
406                 }
407         }
408
409         dm_bm_unlock(b);
410
411         return 0;
412 }
413
414 static void __setup_btree_details(struct dm_pool_metadata *pmd)
415 {
416         pmd->info.tm = pmd->tm;
417         pmd->info.levels = 2;
418         pmd->info.value_type.context = pmd->data_sm;
419         pmd->info.value_type.size = sizeof(__le64);
420         pmd->info.value_type.inc = data_block_inc;
421         pmd->info.value_type.dec = data_block_dec;
422         pmd->info.value_type.equal = data_block_equal;
423
424         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
425         pmd->nb_info.tm = pmd->nb_tm;
426
427         pmd->tl_info.tm = pmd->tm;
428         pmd->tl_info.levels = 1;
429         pmd->tl_info.value_type.context = &pmd->bl_info;
430         pmd->tl_info.value_type.size = sizeof(__le64);
431         pmd->tl_info.value_type.inc = subtree_inc;
432         pmd->tl_info.value_type.dec = subtree_dec;
433         pmd->tl_info.value_type.equal = subtree_equal;
434
435         pmd->bl_info.tm = pmd->tm;
436         pmd->bl_info.levels = 1;
437         pmd->bl_info.value_type.context = pmd->data_sm;
438         pmd->bl_info.value_type.size = sizeof(__le64);
439         pmd->bl_info.value_type.inc = data_block_inc;
440         pmd->bl_info.value_type.dec = data_block_dec;
441         pmd->bl_info.value_type.equal = data_block_equal;
442
443         pmd->details_info.tm = pmd->tm;
444         pmd->details_info.levels = 1;
445         pmd->details_info.value_type.context = NULL;
446         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
447         pmd->details_info.value_type.inc = NULL;
448         pmd->details_info.value_type.dec = NULL;
449         pmd->details_info.value_type.equal = NULL;
450 }
451
452 static int save_sm_roots(struct dm_pool_metadata *pmd)
453 {
454         int r;
455         size_t len;
456
457         r = dm_sm_root_size(pmd->metadata_sm, &len);
458         if (r < 0)
459                 return r;
460
461         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
462         if (r < 0)
463                 return r;
464
465         r = dm_sm_root_size(pmd->data_sm, &len);
466         if (r < 0)
467                 return r;
468
469         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
470 }
471
472 static void copy_sm_roots(struct dm_pool_metadata *pmd,
473                           struct thin_disk_superblock *disk)
474 {
475         memcpy(&disk->metadata_space_map_root,
476                &pmd->metadata_space_map_root,
477                sizeof(pmd->metadata_space_map_root));
478
479         memcpy(&disk->data_space_map_root,
480                &pmd->data_space_map_root,
481                sizeof(pmd->data_space_map_root));
482 }
483
484 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
485 {
486         int r;
487         struct dm_block *sblock;
488         struct thin_disk_superblock *disk_super;
489         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
490
491         if (bdev_size > THIN_METADATA_MAX_SECTORS)
492                 bdev_size = THIN_METADATA_MAX_SECTORS;
493
494         r = dm_sm_commit(pmd->data_sm);
495         if (r < 0)
496                 return r;
497
498         r = dm_tm_pre_commit(pmd->tm);
499         if (r < 0)
500                 return r;
501
502         r = save_sm_roots(pmd);
503         if (r < 0)
504                 return r;
505
506         r = superblock_lock_zero(pmd, &sblock);
507         if (r)
508                 return r;
509
510         disk_super = dm_block_data(sblock);
511         disk_super->flags = 0;
512         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
513         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
514         disk_super->version = cpu_to_le32(THIN_VERSION);
515         disk_super->time = 0;
516         disk_super->trans_id = 0;
517         disk_super->held_root = 0;
518
519         copy_sm_roots(pmd, disk_super);
520
521         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
522         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
523         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
524         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
525         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
526
527         return dm_tm_commit(pmd->tm, sblock);
528 }
529
530 static int __format_metadata(struct dm_pool_metadata *pmd)
531 {
532         int r;
533
534         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
535                                  &pmd->tm, &pmd->metadata_sm);
536         if (r < 0) {
537                 DMERR("tm_create_with_sm failed");
538                 return r;
539         }
540
541         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
542         if (IS_ERR(pmd->data_sm)) {
543                 DMERR("sm_disk_create failed");
544                 r = PTR_ERR(pmd->data_sm);
545                 goto bad_cleanup_tm;
546         }
547
548         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
549         if (!pmd->nb_tm) {
550                 DMERR("could not create non-blocking clone tm");
551                 r = -ENOMEM;
552                 goto bad_cleanup_data_sm;
553         }
554
555         __setup_btree_details(pmd);
556
557         r = dm_btree_empty(&pmd->info, &pmd->root);
558         if (r < 0)
559                 goto bad_cleanup_nb_tm;
560
561         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
562         if (r < 0) {
563                 DMERR("couldn't create devices root");
564                 goto bad_cleanup_nb_tm;
565         }
566
567         r = __write_initial_superblock(pmd);
568         if (r)
569                 goto bad_cleanup_nb_tm;
570
571         return 0;
572
573 bad_cleanup_nb_tm:
574         dm_tm_destroy(pmd->nb_tm);
575 bad_cleanup_data_sm:
576         dm_sm_destroy(pmd->data_sm);
577 bad_cleanup_tm:
578         dm_tm_destroy(pmd->tm);
579         dm_sm_destroy(pmd->metadata_sm);
580
581         return r;
582 }
583
584 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
585                                      struct dm_pool_metadata *pmd)
586 {
587         uint32_t features;
588
589         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
590         if (features) {
591                 DMERR("could not access metadata due to unsupported optional features (%lx).",
592                       (unsigned long)features);
593                 return -EINVAL;
594         }
595
596         /*
597          * Check for read-only metadata to skip the following RDWR checks.
598          */
599         if (get_disk_ro(pmd->bdev->bd_disk))
600                 return 0;
601
602         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
603         if (features) {
604                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
605                       (unsigned long)features);
606                 return -EINVAL;
607         }
608
609         return 0;
610 }
611
612 static int __open_metadata(struct dm_pool_metadata *pmd)
613 {
614         int r;
615         struct dm_block *sblock;
616         struct thin_disk_superblock *disk_super;
617
618         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
619                             &sb_validator, &sblock);
620         if (r < 0) {
621                 DMERR("couldn't read superblock");
622                 return r;
623         }
624
625         disk_super = dm_block_data(sblock);
626
627         /* Verify the data block size hasn't changed */
628         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
629                 DMERR("changing the data block size (from %u to %llu) is not supported",
630                       le32_to_cpu(disk_super->data_block_size),
631                       (unsigned long long)pmd->data_block_size);
632                 r = -EINVAL;
633                 goto bad_unlock_sblock;
634         }
635
636         r = __check_incompat_features(disk_super, pmd);
637         if (r < 0)
638                 goto bad_unlock_sblock;
639
640         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
641                                disk_super->metadata_space_map_root,
642                                sizeof(disk_super->metadata_space_map_root),
643                                &pmd->tm, &pmd->metadata_sm);
644         if (r < 0) {
645                 DMERR("tm_open_with_sm failed");
646                 goto bad_unlock_sblock;
647         }
648
649         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
650                                        sizeof(disk_super->data_space_map_root));
651         if (IS_ERR(pmd->data_sm)) {
652                 DMERR("sm_disk_open failed");
653                 r = PTR_ERR(pmd->data_sm);
654                 goto bad_cleanup_tm;
655         }
656
657         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
658         if (!pmd->nb_tm) {
659                 DMERR("could not create non-blocking clone tm");
660                 r = -ENOMEM;
661                 goto bad_cleanup_data_sm;
662         }
663
664         __setup_btree_details(pmd);
665         dm_bm_unlock(sblock);
666
667         return 0;
668
669 bad_cleanup_data_sm:
670         dm_sm_destroy(pmd->data_sm);
671 bad_cleanup_tm:
672         dm_tm_destroy(pmd->tm);
673         dm_sm_destroy(pmd->metadata_sm);
674 bad_unlock_sblock:
675         dm_bm_unlock(sblock);
676
677         return r;
678 }
679
680 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
681 {
682         int r, unformatted;
683
684         r = __superblock_all_zeroes(pmd->bm, &unformatted);
685         if (r)
686                 return r;
687
688         if (unformatted)
689                 return format_device ? __format_metadata(pmd) : -EPERM;
690
691         return __open_metadata(pmd);
692 }
693
694 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
695 {
696         int r;
697
698         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
699                                           THIN_METADATA_CACHE_SIZE,
700                                           THIN_MAX_CONCURRENT_LOCKS);
701         if (IS_ERR(pmd->bm)) {
702                 DMERR("could not create block manager");
703                 r = PTR_ERR(pmd->bm);
704                 pmd->bm = NULL;
705                 return r;
706         }
707
708         r = __open_or_format_metadata(pmd, format_device);
709         if (r) {
710                 dm_block_manager_destroy(pmd->bm);
711                 pmd->bm = NULL;
712         }
713
714         return r;
715 }
716
717 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
718 {
719         dm_sm_destroy(pmd->data_sm);
720         dm_sm_destroy(pmd->metadata_sm);
721         dm_tm_destroy(pmd->nb_tm);
722         dm_tm_destroy(pmd->tm);
723         dm_block_manager_destroy(pmd->bm);
724 }
725
726 static int __begin_transaction(struct dm_pool_metadata *pmd)
727 {
728         int r;
729         struct thin_disk_superblock *disk_super;
730         struct dm_block *sblock;
731
732         /*
733          * We re-read the superblock every time.  Shouldn't need to do this
734          * really.
735          */
736         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
737                             &sb_validator, &sblock);
738         if (r)
739                 return r;
740
741         disk_super = dm_block_data(sblock);
742         pmd->time = le32_to_cpu(disk_super->time);
743         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
744         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
745         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
746         pmd->flags = le32_to_cpu(disk_super->flags);
747         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
748
749         dm_bm_unlock(sblock);
750         return 0;
751 }
752
753 static int __write_changed_details(struct dm_pool_metadata *pmd)
754 {
755         int r;
756         struct dm_thin_device *td, *tmp;
757         struct disk_device_details details;
758         uint64_t key;
759
760         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
761                 if (!td->changed)
762                         continue;
763
764                 key = td->id;
765
766                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
767                 details.transaction_id = cpu_to_le64(td->transaction_id);
768                 details.creation_time = cpu_to_le32(td->creation_time);
769                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
770                 __dm_bless_for_disk(&details);
771
772                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
773                                     &key, &details, &pmd->details_root);
774                 if (r)
775                         return r;
776
777                 if (td->open_count)
778                         td->changed = 0;
779                 else {
780                         list_del(&td->list);
781                         kfree(td);
782                 }
783         }
784
785         return 0;
786 }
787
788 static int __commit_transaction(struct dm_pool_metadata *pmd)
789 {
790         int r;
791         size_t metadata_len, data_len;
792         struct thin_disk_superblock *disk_super;
793         struct dm_block *sblock;
794
795         /*
796          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
797          */
798         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
799
800         r = __write_changed_details(pmd);
801         if (r < 0)
802                 return r;
803
804         r = dm_sm_commit(pmd->data_sm);
805         if (r < 0)
806                 return r;
807
808         r = dm_tm_pre_commit(pmd->tm);
809         if (r < 0)
810                 return r;
811
812         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
813         if (r < 0)
814                 return r;
815
816         r = dm_sm_root_size(pmd->data_sm, &data_len);
817         if (r < 0)
818                 return r;
819
820         r = save_sm_roots(pmd);
821         if (r < 0)
822                 return r;
823
824         r = superblock_lock(pmd, &sblock);
825         if (r)
826                 return r;
827
828         disk_super = dm_block_data(sblock);
829         disk_super->time = cpu_to_le32(pmd->time);
830         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
831         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
832         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
833         disk_super->flags = cpu_to_le32(pmd->flags);
834
835         copy_sm_roots(pmd, disk_super);
836
837         return dm_tm_commit(pmd->tm, sblock);
838 }
839
840 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
841 {
842         int r;
843         dm_block_t total;
844         dm_block_t max_blocks = 4096; /* 16M */
845
846         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
847         if (r) {
848                 DMERR("could not get size of metadata device");
849                 pmd->metadata_reserve = max_blocks;
850         } else
851                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
852 }
853
854 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
855                                                sector_t data_block_size,
856                                                bool format_device)
857 {
858         int r;
859         struct dm_pool_metadata *pmd;
860
861         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
862         if (!pmd) {
863                 DMERR("could not allocate metadata struct");
864                 return ERR_PTR(-ENOMEM);
865         }
866
867         init_rwsem(&pmd->root_lock);
868         pmd->time = 0;
869         INIT_LIST_HEAD(&pmd->thin_devices);
870         pmd->fail_io = false;
871         pmd->bdev = bdev;
872         pmd->data_block_size = data_block_size;
873
874         r = __create_persistent_data_objects(pmd, format_device);
875         if (r) {
876                 kfree(pmd);
877                 return ERR_PTR(r);
878         }
879
880         r = __begin_transaction(pmd);
881         if (r < 0) {
882                 if (dm_pool_metadata_close(pmd) < 0)
883                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
884                 return ERR_PTR(r);
885         }
886
887         __set_metadata_reserve(pmd);
888
889         return pmd;
890 }
891
892 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
893 {
894         int r;
895         unsigned open_devices = 0;
896         struct dm_thin_device *td, *tmp;
897
898         down_read(&pmd->root_lock);
899         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
900                 if (td->open_count)
901                         open_devices++;
902                 else {
903                         list_del(&td->list);
904                         kfree(td);
905                 }
906         }
907         up_read(&pmd->root_lock);
908
909         if (open_devices) {
910                 DMERR("attempt to close pmd when %u device(s) are still open",
911                        open_devices);
912                 return -EBUSY;
913         }
914
915         if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
916                 r = __commit_transaction(pmd);
917                 if (r < 0)
918                         DMWARN("%s: __commit_transaction() failed, error = %d",
919                                __func__, r);
920         }
921
922         if (!pmd->fail_io)
923                 __destroy_persistent_data_objects(pmd);
924
925         kfree(pmd);
926         return 0;
927 }
928
929 /*
930  * __open_device: Returns @td corresponding to device with id @dev,
931  * creating it if @create is set and incrementing @td->open_count.
932  * On failure, @td is undefined.
933  */
934 static int __open_device(struct dm_pool_metadata *pmd,
935                          dm_thin_id dev, int create,
936                          struct dm_thin_device **td)
937 {
938         int r, changed = 0;
939         struct dm_thin_device *td2;
940         uint64_t key = dev;
941         struct disk_device_details details_le;
942
943         /*
944          * If the device is already open, return it.
945          */
946         list_for_each_entry(td2, &pmd->thin_devices, list)
947                 if (td2->id == dev) {
948                         /*
949                          * May not create an already-open device.
950                          */
951                         if (create)
952                                 return -EEXIST;
953
954                         td2->open_count++;
955                         *td = td2;
956                         return 0;
957                 }
958
959         /*
960          * Check the device exists.
961          */
962         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
963                             &key, &details_le);
964         if (r) {
965                 if (r != -ENODATA || !create)
966                         return r;
967
968                 /*
969                  * Create new device.
970                  */
971                 changed = 1;
972                 details_le.mapped_blocks = 0;
973                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
974                 details_le.creation_time = cpu_to_le32(pmd->time);
975                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
976         }
977
978         *td = kmalloc(sizeof(**td), GFP_NOIO);
979         if (!*td)
980                 return -ENOMEM;
981
982         (*td)->pmd = pmd;
983         (*td)->id = dev;
984         (*td)->open_count = 1;
985         (*td)->changed = changed;
986         (*td)->aborted_with_changes = false;
987         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
988         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
989         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
990         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
991
992         list_add(&(*td)->list, &pmd->thin_devices);
993
994         return 0;
995 }
996
997 static void __close_device(struct dm_thin_device *td)
998 {
999         --td->open_count;
1000 }
1001
1002 static int __create_thin(struct dm_pool_metadata *pmd,
1003                          dm_thin_id dev)
1004 {
1005         int r;
1006         dm_block_t dev_root;
1007         uint64_t key = dev;
1008         struct disk_device_details details_le;
1009         struct dm_thin_device *td;
1010         __le64 value;
1011
1012         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1013                             &key, &details_le);
1014         if (!r)
1015                 return -EEXIST;
1016
1017         /*
1018          * Create an empty btree for the mappings.
1019          */
1020         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1021         if (r)
1022                 return r;
1023
1024         /*
1025          * Insert it into the main mapping tree.
1026          */
1027         value = cpu_to_le64(dev_root);
1028         __dm_bless_for_disk(&value);
1029         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1030         if (r) {
1031                 dm_btree_del(&pmd->bl_info, dev_root);
1032                 return r;
1033         }
1034
1035         r = __open_device(pmd, dev, 1, &td);
1036         if (r) {
1037                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1038                 dm_btree_del(&pmd->bl_info, dev_root);
1039                 return r;
1040         }
1041         __close_device(td);
1042
1043         return r;
1044 }
1045
1046 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1047 {
1048         int r = -EINVAL;
1049
1050         down_write(&pmd->root_lock);
1051         if (!pmd->fail_io)
1052                 r = __create_thin(pmd, dev);
1053         up_write(&pmd->root_lock);
1054
1055         return r;
1056 }
1057
1058 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1059                                   struct dm_thin_device *snap,
1060                                   dm_thin_id origin, uint32_t time)
1061 {
1062         int r;
1063         struct dm_thin_device *td;
1064
1065         r = __open_device(pmd, origin, 0, &td);
1066         if (r)
1067                 return r;
1068
1069         td->changed = 1;
1070         td->snapshotted_time = time;
1071
1072         snap->mapped_blocks = td->mapped_blocks;
1073         snap->snapshotted_time = time;
1074         __close_device(td);
1075
1076         return 0;
1077 }
1078
1079 static int __create_snap(struct dm_pool_metadata *pmd,
1080                          dm_thin_id dev, dm_thin_id origin)
1081 {
1082         int r;
1083         dm_block_t origin_root;
1084         uint64_t key = origin, dev_key = dev;
1085         struct dm_thin_device *td;
1086         struct disk_device_details details_le;
1087         __le64 value;
1088
1089         /* check this device is unused */
1090         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1091                             &dev_key, &details_le);
1092         if (!r)
1093                 return -EEXIST;
1094
1095         /* find the mapping tree for the origin */
1096         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1097         if (r)
1098                 return r;
1099         origin_root = le64_to_cpu(value);
1100
1101         /* clone the origin, an inc will do */
1102         dm_tm_inc(pmd->tm, origin_root);
1103
1104         /* insert into the main mapping tree */
1105         value = cpu_to_le64(origin_root);
1106         __dm_bless_for_disk(&value);
1107         key = dev;
1108         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1109         if (r) {
1110                 dm_tm_dec(pmd->tm, origin_root);
1111                 return r;
1112         }
1113
1114         pmd->time++;
1115
1116         r = __open_device(pmd, dev, 1, &td);
1117         if (r)
1118                 goto bad;
1119
1120         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1121         __close_device(td);
1122
1123         if (r)
1124                 goto bad;
1125
1126         return 0;
1127
1128 bad:
1129         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1130         dm_btree_remove(&pmd->details_info, pmd->details_root,
1131                         &key, &pmd->details_root);
1132         return r;
1133 }
1134
1135 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1136                                  dm_thin_id dev,
1137                                  dm_thin_id origin)
1138 {
1139         int r = -EINVAL;
1140
1141         down_write(&pmd->root_lock);
1142         if (!pmd->fail_io)
1143                 r = __create_snap(pmd, dev, origin);
1144         up_write(&pmd->root_lock);
1145
1146         return r;
1147 }
1148
1149 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1150 {
1151         int r;
1152         uint64_t key = dev;
1153         struct dm_thin_device *td;
1154
1155         /* TODO: failure should mark the transaction invalid */
1156         r = __open_device(pmd, dev, 0, &td);
1157         if (r)
1158                 return r;
1159
1160         if (td->open_count > 1) {
1161                 __close_device(td);
1162                 return -EBUSY;
1163         }
1164
1165         list_del(&td->list);
1166         kfree(td);
1167         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1168                             &key, &pmd->details_root);
1169         if (r)
1170                 return r;
1171
1172         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1173         if (r)
1174                 return r;
1175
1176         return 0;
1177 }
1178
1179 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1180                                dm_thin_id dev)
1181 {
1182         int r = -EINVAL;
1183
1184         down_write(&pmd->root_lock);
1185         if (!pmd->fail_io)
1186                 r = __delete_device(pmd, dev);
1187         up_write(&pmd->root_lock);
1188
1189         return r;
1190 }
1191
1192 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1193                                         uint64_t current_id,
1194                                         uint64_t new_id)
1195 {
1196         int r = -EINVAL;
1197
1198         down_write(&pmd->root_lock);
1199
1200         if (pmd->fail_io)
1201                 goto out;
1202
1203         if (pmd->trans_id != current_id) {
1204                 DMERR("mismatched transaction id");
1205                 goto out;
1206         }
1207
1208         pmd->trans_id = new_id;
1209         r = 0;
1210
1211 out:
1212         up_write(&pmd->root_lock);
1213
1214         return r;
1215 }
1216
1217 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1218                                         uint64_t *result)
1219 {
1220         int r = -EINVAL;
1221
1222         down_read(&pmd->root_lock);
1223         if (!pmd->fail_io) {
1224                 *result = pmd->trans_id;
1225                 r = 0;
1226         }
1227         up_read(&pmd->root_lock);
1228
1229         return r;
1230 }
1231
1232 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1233 {
1234         int r, inc;
1235         struct thin_disk_superblock *disk_super;
1236         struct dm_block *copy, *sblock;
1237         dm_block_t held_root;
1238
1239         /*
1240          * We commit to ensure the btree roots which we increment in a
1241          * moment are up to date.
1242          */
1243         __commit_transaction(pmd);
1244
1245         /*
1246          * Copy the superblock.
1247          */
1248         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1249         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1250                                &sb_validator, &copy, &inc);
1251         if (r)
1252                 return r;
1253
1254         BUG_ON(!inc);
1255
1256         held_root = dm_block_location(copy);
1257         disk_super = dm_block_data(copy);
1258
1259         if (le64_to_cpu(disk_super->held_root)) {
1260                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1261
1262                 dm_tm_dec(pmd->tm, held_root);
1263                 dm_tm_unlock(pmd->tm, copy);
1264                 return -EBUSY;
1265         }
1266
1267         /*
1268          * Wipe the spacemap since we're not publishing this.
1269          */
1270         memset(&disk_super->data_space_map_root, 0,
1271                sizeof(disk_super->data_space_map_root));
1272         memset(&disk_super->metadata_space_map_root, 0,
1273                sizeof(disk_super->metadata_space_map_root));
1274
1275         /*
1276          * Increment the data structures that need to be preserved.
1277          */
1278         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1279         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1280         dm_tm_unlock(pmd->tm, copy);
1281
1282         /*
1283          * Write the held root into the superblock.
1284          */
1285         r = superblock_lock(pmd, &sblock);
1286         if (r) {
1287                 dm_tm_dec(pmd->tm, held_root);
1288                 return r;
1289         }
1290
1291         disk_super = dm_block_data(sblock);
1292         disk_super->held_root = cpu_to_le64(held_root);
1293         dm_bm_unlock(sblock);
1294         return 0;
1295 }
1296
1297 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1298 {
1299         int r = -EINVAL;
1300
1301         down_write(&pmd->root_lock);
1302         if (!pmd->fail_io)
1303                 r = __reserve_metadata_snap(pmd);
1304         up_write(&pmd->root_lock);
1305
1306         return r;
1307 }
1308
1309 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1310 {
1311         int r;
1312         struct thin_disk_superblock *disk_super;
1313         struct dm_block *sblock, *copy;
1314         dm_block_t held_root;
1315
1316         r = superblock_lock(pmd, &sblock);
1317         if (r)
1318                 return r;
1319
1320         disk_super = dm_block_data(sblock);
1321         held_root = le64_to_cpu(disk_super->held_root);
1322         disk_super->held_root = cpu_to_le64(0);
1323
1324         dm_bm_unlock(sblock);
1325
1326         if (!held_root) {
1327                 DMWARN("No pool metadata snapshot found: nothing to release.");
1328                 return -EINVAL;
1329         }
1330
1331         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1332         if (r)
1333                 return r;
1334
1335         disk_super = dm_block_data(copy);
1336         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1337         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1338         dm_sm_dec_block(pmd->metadata_sm, held_root);
1339
1340         dm_tm_unlock(pmd->tm, copy);
1341
1342         return 0;
1343 }
1344
1345 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1346 {
1347         int r = -EINVAL;
1348
1349         down_write(&pmd->root_lock);
1350         if (!pmd->fail_io)
1351                 r = __release_metadata_snap(pmd);
1352         up_write(&pmd->root_lock);
1353
1354         return r;
1355 }
1356
1357 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1358                                dm_block_t *result)
1359 {
1360         int r;
1361         struct thin_disk_superblock *disk_super;
1362         struct dm_block *sblock;
1363
1364         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1365                             &sb_validator, &sblock);
1366         if (r)
1367                 return r;
1368
1369         disk_super = dm_block_data(sblock);
1370         *result = le64_to_cpu(disk_super->held_root);
1371
1372         dm_bm_unlock(sblock);
1373
1374         return 0;
1375 }
1376
1377 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1378                               dm_block_t *result)
1379 {
1380         int r = -EINVAL;
1381
1382         down_read(&pmd->root_lock);
1383         if (!pmd->fail_io)
1384                 r = __get_metadata_snap(pmd, result);
1385         up_read(&pmd->root_lock);
1386
1387         return r;
1388 }
1389
1390 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1391                              struct dm_thin_device **td)
1392 {
1393         int r = -EINVAL;
1394
1395         down_write(&pmd->root_lock);
1396         if (!pmd->fail_io)
1397                 r = __open_device(pmd, dev, 0, td);
1398         up_write(&pmd->root_lock);
1399
1400         return r;
1401 }
1402
1403 int dm_pool_close_thin_device(struct dm_thin_device *td)
1404 {
1405         down_write(&td->pmd->root_lock);
1406         __close_device(td);
1407         up_write(&td->pmd->root_lock);
1408
1409         return 0;
1410 }
1411
1412 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1413 {
1414         return td->id;
1415 }
1416
1417 /*
1418  * Check whether @time (of block creation) is older than @td's last snapshot.
1419  * If so then the associated block is shared with the last snapshot device.
1420  * Any block on a device created *after* the device last got snapshotted is
1421  * necessarily not shared.
1422  */
1423 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1424 {
1425         return td->snapshotted_time > time;
1426 }
1427
1428 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1429                                  struct dm_thin_lookup_result *result)
1430 {
1431         uint64_t block_time = 0;
1432         dm_block_t exception_block;
1433         uint32_t exception_time;
1434
1435         block_time = le64_to_cpu(value);
1436         unpack_block_time(block_time, &exception_block, &exception_time);
1437         result->block = exception_block;
1438         result->shared = __snapshotted_since(td, exception_time);
1439 }
1440
1441 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1442                         int can_issue_io, struct dm_thin_lookup_result *result)
1443 {
1444         int r;
1445         __le64 value;
1446         struct dm_pool_metadata *pmd = td->pmd;
1447         dm_block_t keys[2] = { td->id, block };
1448         struct dm_btree_info *info;
1449
1450         if (can_issue_io) {
1451                 info = &pmd->info;
1452         } else
1453                 info = &pmd->nb_info;
1454
1455         r = dm_btree_lookup(info, pmd->root, keys, &value);
1456         if (!r)
1457                 unpack_lookup_result(td, value, result);
1458
1459         return r;
1460 }
1461
1462 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1463                        int can_issue_io, struct dm_thin_lookup_result *result)
1464 {
1465         int r;
1466         struct dm_pool_metadata *pmd = td->pmd;
1467
1468         down_read(&pmd->root_lock);
1469         if (pmd->fail_io) {
1470                 up_read(&pmd->root_lock);
1471                 return -EINVAL;
1472         }
1473
1474         r = __find_block(td, block, can_issue_io, result);
1475
1476         up_read(&pmd->root_lock);
1477         return r;
1478 }
1479
1480 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1481                                           dm_block_t *vblock,
1482                                           struct dm_thin_lookup_result *result)
1483 {
1484         int r;
1485         __le64 value;
1486         struct dm_pool_metadata *pmd = td->pmd;
1487         dm_block_t keys[2] = { td->id, block };
1488
1489         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1490         if (!r)
1491                 unpack_lookup_result(td, value, result);
1492
1493         return r;
1494 }
1495
1496 static int __find_mapped_range(struct dm_thin_device *td,
1497                                dm_block_t begin, dm_block_t end,
1498                                dm_block_t *thin_begin, dm_block_t *thin_end,
1499                                dm_block_t *pool_begin, bool *maybe_shared)
1500 {
1501         int r;
1502         dm_block_t pool_end;
1503         struct dm_thin_lookup_result lookup;
1504
1505         if (end < begin)
1506                 return -ENODATA;
1507
1508         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1509         if (r)
1510                 return r;
1511
1512         if (begin >= end)
1513                 return -ENODATA;
1514
1515         *thin_begin = begin;
1516         *pool_begin = lookup.block;
1517         *maybe_shared = lookup.shared;
1518
1519         begin++;
1520         pool_end = *pool_begin + 1;
1521         while (begin != end) {
1522                 r = __find_block(td, begin, true, &lookup);
1523                 if (r) {
1524                         if (r == -ENODATA)
1525                                 break;
1526                         else
1527                                 return r;
1528                 }
1529
1530                 if ((lookup.block != pool_end) ||
1531                     (lookup.shared != *maybe_shared))
1532                         break;
1533
1534                 pool_end++;
1535                 begin++;
1536         }
1537
1538         *thin_end = begin;
1539         return 0;
1540 }
1541
1542 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1543                               dm_block_t begin, dm_block_t end,
1544                               dm_block_t *thin_begin, dm_block_t *thin_end,
1545                               dm_block_t *pool_begin, bool *maybe_shared)
1546 {
1547         int r = -EINVAL;
1548         struct dm_pool_metadata *pmd = td->pmd;
1549
1550         down_read(&pmd->root_lock);
1551         if (!pmd->fail_io) {
1552                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1553                                         pool_begin, maybe_shared);
1554         }
1555         up_read(&pmd->root_lock);
1556
1557         return r;
1558 }
1559
1560 static int __insert(struct dm_thin_device *td, dm_block_t block,
1561                     dm_block_t data_block)
1562 {
1563         int r, inserted;
1564         __le64 value;
1565         struct dm_pool_metadata *pmd = td->pmd;
1566         dm_block_t keys[2] = { td->id, block };
1567
1568         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1569         __dm_bless_for_disk(&value);
1570
1571         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1572                                    &pmd->root, &inserted);
1573         if (r)
1574                 return r;
1575
1576         td->changed = 1;
1577         if (inserted)
1578                 td->mapped_blocks++;
1579
1580         return 0;
1581 }
1582
1583 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1584                          dm_block_t data_block)
1585 {
1586         int r = -EINVAL;
1587
1588         down_write(&td->pmd->root_lock);
1589         if (!td->pmd->fail_io)
1590                 r = __insert(td, block, data_block);
1591         up_write(&td->pmd->root_lock);
1592
1593         return r;
1594 }
1595
1596 static int __remove(struct dm_thin_device *td, dm_block_t block)
1597 {
1598         int r;
1599         struct dm_pool_metadata *pmd = td->pmd;
1600         dm_block_t keys[2] = { td->id, block };
1601
1602         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1603         if (r)
1604                 return r;
1605
1606         td->mapped_blocks--;
1607         td->changed = 1;
1608
1609         return 0;
1610 }
1611
1612 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1613 {
1614         int r;
1615         unsigned count, total_count = 0;
1616         struct dm_pool_metadata *pmd = td->pmd;
1617         dm_block_t keys[1] = { td->id };
1618         __le64 value;
1619         dm_block_t mapping_root;
1620
1621         /*
1622          * Find the mapping tree
1623          */
1624         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1625         if (r)
1626                 return r;
1627
1628         /*
1629          * Remove from the mapping tree, taking care to inc the
1630          * ref count so it doesn't get deleted.
1631          */
1632         mapping_root = le64_to_cpu(value);
1633         dm_tm_inc(pmd->tm, mapping_root);
1634         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1635         if (r)
1636                 return r;
1637
1638         /*
1639          * Remove leaves stops at the first unmapped entry, so we have to
1640          * loop round finding mapped ranges.
1641          */
1642         while (begin < end) {
1643                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1644                 if (r == -ENODATA)
1645                         break;
1646
1647                 if (r)
1648                         return r;
1649
1650                 if (begin >= end)
1651                         break;
1652
1653                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1654                 if (r)
1655                         return r;
1656
1657                 total_count += count;
1658         }
1659
1660         td->mapped_blocks -= total_count;
1661         td->changed = 1;
1662
1663         /*
1664          * Reinsert the mapping tree.
1665          */
1666         value = cpu_to_le64(mapping_root);
1667         __dm_bless_for_disk(&value);
1668         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1669 }
1670
1671 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1672 {
1673         int r = -EINVAL;
1674
1675         down_write(&td->pmd->root_lock);
1676         if (!td->pmd->fail_io)
1677                 r = __remove(td, block);
1678         up_write(&td->pmd->root_lock);
1679
1680         return r;
1681 }
1682
1683 int dm_thin_remove_range(struct dm_thin_device *td,
1684                          dm_block_t begin, dm_block_t end)
1685 {
1686         int r = -EINVAL;
1687
1688         down_write(&td->pmd->root_lock);
1689         if (!td->pmd->fail_io)
1690                 r = __remove_range(td, begin, end);
1691         up_write(&td->pmd->root_lock);
1692
1693         return r;
1694 }
1695
1696 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1697 {
1698         int r;
1699         uint32_t ref_count;
1700
1701         down_read(&pmd->root_lock);
1702         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1703         if (!r)
1704                 *result = (ref_count > 1);
1705         up_read(&pmd->root_lock);
1706
1707         return r;
1708 }
1709
1710 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1711 {
1712         int r = 0;
1713
1714         down_write(&pmd->root_lock);
1715         for (; b != e; b++) {
1716                 r = dm_sm_inc_block(pmd->data_sm, b);
1717                 if (r)
1718                         break;
1719         }
1720         up_write(&pmd->root_lock);
1721
1722         return r;
1723 }
1724
1725 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1726 {
1727         int r = 0;
1728
1729         down_write(&pmd->root_lock);
1730         for (; b != e; b++) {
1731                 r = dm_sm_dec_block(pmd->data_sm, b);
1732                 if (r)
1733                         break;
1734         }
1735         up_write(&pmd->root_lock);
1736
1737         return r;
1738 }
1739
1740 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1741 {
1742         int r;
1743
1744         down_read(&td->pmd->root_lock);
1745         r = td->changed;
1746         up_read(&td->pmd->root_lock);
1747
1748         return r;
1749 }
1750
1751 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1752 {
1753         bool r = false;
1754         struct dm_thin_device *td, *tmp;
1755
1756         down_read(&pmd->root_lock);
1757         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1758                 if (td->changed) {
1759                         r = td->changed;
1760                         break;
1761                 }
1762         }
1763         up_read(&pmd->root_lock);
1764
1765         return r;
1766 }
1767
1768 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1769 {
1770         bool r;
1771
1772         down_read(&td->pmd->root_lock);
1773         r = td->aborted_with_changes;
1774         up_read(&td->pmd->root_lock);
1775
1776         return r;
1777 }
1778
1779 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1780 {
1781         int r = -EINVAL;
1782
1783         down_write(&pmd->root_lock);
1784         if (!pmd->fail_io)
1785                 r = dm_sm_new_block(pmd->data_sm, result);
1786         up_write(&pmd->root_lock);
1787
1788         return r;
1789 }
1790
1791 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1792 {
1793         int r = -EINVAL;
1794
1795         down_write(&pmd->root_lock);
1796         if (pmd->fail_io)
1797                 goto out;
1798
1799         r = __commit_transaction(pmd);
1800         if (r <= 0)
1801                 goto out;
1802
1803         /*
1804          * Open the next transaction.
1805          */
1806         r = __begin_transaction(pmd);
1807 out:
1808         up_write(&pmd->root_lock);
1809         return r;
1810 }
1811
1812 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1813 {
1814         struct dm_thin_device *td;
1815
1816         list_for_each_entry(td, &pmd->thin_devices, list)
1817                 td->aborted_with_changes = td->changed;
1818 }
1819
1820 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1821 {
1822         int r = -EINVAL;
1823
1824         down_write(&pmd->root_lock);
1825         if (pmd->fail_io)
1826                 goto out;
1827
1828         __set_abort_with_changes_flags(pmd);
1829         __destroy_persistent_data_objects(pmd);
1830         r = __create_persistent_data_objects(pmd, false);
1831         if (r)
1832                 pmd->fail_io = true;
1833
1834 out:
1835         up_write(&pmd->root_lock);
1836
1837         return r;
1838 }
1839
1840 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1841 {
1842         int r = -EINVAL;
1843
1844         down_read(&pmd->root_lock);
1845         if (!pmd->fail_io)
1846                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1847         up_read(&pmd->root_lock);
1848
1849         return r;
1850 }
1851
1852 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1853                                           dm_block_t *result)
1854 {
1855         int r = -EINVAL;
1856
1857         down_read(&pmd->root_lock);
1858         if (!pmd->fail_io)
1859                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1860
1861         if (!r) {
1862                 if (*result < pmd->metadata_reserve)
1863                         *result = 0;
1864                 else
1865                         *result -= pmd->metadata_reserve;
1866         }
1867         up_read(&pmd->root_lock);
1868
1869         return r;
1870 }
1871
1872 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1873                                   dm_block_t *result)
1874 {
1875         int r = -EINVAL;
1876
1877         down_read(&pmd->root_lock);
1878         if (!pmd->fail_io)
1879                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1880         up_read(&pmd->root_lock);
1881
1882         return r;
1883 }
1884
1885 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1886 {
1887         int r = -EINVAL;
1888
1889         down_read(&pmd->root_lock);
1890         if (!pmd->fail_io)
1891                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1892         up_read(&pmd->root_lock);
1893
1894         return r;
1895 }
1896
1897 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1898 {
1899         int r = -EINVAL;
1900         struct dm_pool_metadata *pmd = td->pmd;
1901
1902         down_read(&pmd->root_lock);
1903         if (!pmd->fail_io) {
1904                 *result = td->mapped_blocks;
1905                 r = 0;
1906         }
1907         up_read(&pmd->root_lock);
1908
1909         return r;
1910 }
1911
1912 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1913 {
1914         int r;
1915         __le64 value_le;
1916         dm_block_t thin_root;
1917         struct dm_pool_metadata *pmd = td->pmd;
1918
1919         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1920         if (r)
1921                 return r;
1922
1923         thin_root = le64_to_cpu(value_le);
1924
1925         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1926 }
1927
1928 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1929                                      dm_block_t *result)
1930 {
1931         int r = -EINVAL;
1932         struct dm_pool_metadata *pmd = td->pmd;
1933
1934         down_read(&pmd->root_lock);
1935         if (!pmd->fail_io)
1936                 r = __highest_block(td, result);
1937         up_read(&pmd->root_lock);
1938
1939         return r;
1940 }
1941
1942 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1943 {
1944         int r;
1945         dm_block_t old_count;
1946
1947         r = dm_sm_get_nr_blocks(sm, &old_count);
1948         if (r)
1949                 return r;
1950
1951         if (new_count == old_count)
1952                 return 0;
1953
1954         if (new_count < old_count) {
1955                 DMERR("cannot reduce size of space map");
1956                 return -EINVAL;
1957         }
1958
1959         return dm_sm_extend(sm, new_count - old_count);
1960 }
1961
1962 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1963 {
1964         int r = -EINVAL;
1965
1966         down_write(&pmd->root_lock);
1967         if (!pmd->fail_io)
1968                 r = __resize_space_map(pmd->data_sm, new_count);
1969         up_write(&pmd->root_lock);
1970
1971         return r;
1972 }
1973
1974 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1975 {
1976         int r = -EINVAL;
1977
1978         down_write(&pmd->root_lock);
1979         if (!pmd->fail_io) {
1980                 r = __resize_space_map(pmd->metadata_sm, new_count);
1981                 if (!r)
1982                         __set_metadata_reserve(pmd);
1983         }
1984         up_write(&pmd->root_lock);
1985
1986         return r;
1987 }
1988
1989 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1990 {
1991         down_write(&pmd->root_lock);
1992         dm_bm_set_read_only(pmd->bm);
1993         up_write(&pmd->root_lock);
1994 }
1995
1996 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1997 {
1998         down_write(&pmd->root_lock);
1999         dm_bm_set_read_write(pmd->bm);
2000         up_write(&pmd->root_lock);
2001 }
2002
2003 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2004                                         dm_block_t threshold,
2005                                         dm_sm_threshold_fn fn,
2006                                         void *context)
2007 {
2008         int r;
2009
2010         down_write(&pmd->root_lock);
2011         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2012         up_write(&pmd->root_lock);
2013
2014         return r;
2015 }
2016
2017 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2018 {
2019         int r;
2020         struct dm_block *sblock;
2021         struct thin_disk_superblock *disk_super;
2022
2023         down_write(&pmd->root_lock);
2024         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2025
2026         r = superblock_lock(pmd, &sblock);
2027         if (r) {
2028                 DMERR("couldn't read superblock");
2029                 goto out;
2030         }
2031
2032         disk_super = dm_block_data(sblock);
2033         disk_super->flags = cpu_to_le32(pmd->flags);
2034
2035         dm_bm_unlock(sblock);
2036 out:
2037         up_write(&pmd->root_lock);
2038         return r;
2039 }
2040
2041 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2042 {
2043         bool needs_check;
2044
2045         down_read(&pmd->root_lock);
2046         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2047         up_read(&pmd->root_lock);
2048
2049         return needs_check;
2050 }
2051
2052 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2053 {
2054         down_read(&pmd->root_lock);
2055         if (!pmd->fail_io)
2056                 dm_tm_issue_prefetches(pmd->tm);
2057         up_read(&pmd->root_lock);
2058 }