GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99         __le32 csum;    /* Checksum of superblock except for this field. */
100         __le32 flags;
101         __le64 blocknr; /* This block number, dm_block_t. */
102
103         __u8 uuid[16];
104         __le64 magic;
105         __le32 version;
106         __le32 time;
107
108         __le64 trans_id;
109
110         /*
111          * Root held by userspace transactions.
112          */
113         __le64 held_root;
114
115         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118         /*
119          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120          */
121         __le64 data_mapping_root;
122
123         /*
124          * Device detail root mapping dev_id -> device_details
125          */
126         __le64 device_details_root;
127
128         __le32 data_block_size;         /* In 512-byte sectors. */
129
130         __le32 metadata_block_size;     /* In 512-byte sectors. */
131         __le64 metadata_nr_blocks;
132
133         __le32 compat_flags;
134         __le32 compat_ro_flags;
135         __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139         __le64 mapped_blocks;
140         __le64 transaction_id;          /* When created. */
141         __le32 creation_time;
142         __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146         struct hlist_node hash;
147
148         struct block_device *bdev;
149         struct dm_block_manager *bm;
150         struct dm_space_map *metadata_sm;
151         struct dm_space_map *data_sm;
152         struct dm_transaction_manager *tm;
153         struct dm_transaction_manager *nb_tm;
154
155         /*
156          * Two-level btree.
157          * First level holds thin_dev_t.
158          * Second level holds mappings.
159          */
160         struct dm_btree_info info;
161
162         /*
163          * Non-blocking version of the above.
164          */
165         struct dm_btree_info nb_info;
166
167         /*
168          * Just the top level for deleting whole devices.
169          */
170         struct dm_btree_info tl_info;
171
172         /*
173          * Just the bottom level for creating new devices.
174          */
175         struct dm_btree_info bl_info;
176
177         /*
178          * Describes the device details btree.
179          */
180         struct dm_btree_info details_info;
181
182         struct rw_semaphore root_lock;
183         uint32_t time;
184         dm_block_t root;
185         dm_block_t details_root;
186         struct list_head thin_devices;
187         uint64_t trans_id;
188         unsigned long flags;
189         sector_t data_block_size;
190
191         /*
192          * We reserve a section of the metadata for commit overhead.
193          * All reported space does *not* include this.
194          */
195         dm_block_t metadata_reserve;
196
197         /*
198          * Set if a transaction has to be aborted but the attempt to roll back
199          * to the previous (good) transaction failed.  The only pool metadata
200          * operation possible in this state is the closing of the device.
201          */
202         bool fail_io:1;
203
204         /*
205          * Reading the space map roots can fail, so we read it into these
206          * buffers before the superblock is locked and updated.
207          */
208         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
209         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
210 };
211
212 struct dm_thin_device {
213         struct list_head list;
214         struct dm_pool_metadata *pmd;
215         dm_thin_id id;
216
217         int open_count;
218         bool changed:1;
219         bool aborted_with_changes:1;
220         uint64_t mapped_blocks;
221         uint64_t transaction_id;
222         uint32_t creation_time;
223         uint32_t snapshotted_time;
224 };
225
226 /*----------------------------------------------------------------
227  * superblock validator
228  *--------------------------------------------------------------*/
229
230 #define SUPERBLOCK_CSUM_XOR 160774
231
232 static void sb_prepare_for_write(struct dm_block_validator *v,
233                                  struct dm_block *b,
234                                  size_t block_size)
235 {
236         struct thin_disk_superblock *disk_super = dm_block_data(b);
237
238         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
239         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
240                                                       block_size - sizeof(__le32),
241                                                       SUPERBLOCK_CSUM_XOR));
242 }
243
244 static int sb_check(struct dm_block_validator *v,
245                     struct dm_block *b,
246                     size_t block_size)
247 {
248         struct thin_disk_superblock *disk_super = dm_block_data(b);
249         __le32 csum_le;
250
251         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
252                 DMERR("sb_check failed: blocknr %llu: "
253                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
254                       (unsigned long long)dm_block_location(b));
255                 return -ENOTBLK;
256         }
257
258         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
259                 DMERR("sb_check failed: magic %llu: "
260                       "wanted %llu", le64_to_cpu(disk_super->magic),
261                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
262                 return -EILSEQ;
263         }
264
265         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
266                                              block_size - sizeof(__le32),
267                                              SUPERBLOCK_CSUM_XOR));
268         if (csum_le != disk_super->csum) {
269                 DMERR("sb_check failed: csum %u: wanted %u",
270                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
271                 return -EILSEQ;
272         }
273
274         return 0;
275 }
276
277 static struct dm_block_validator sb_validator = {
278         .name = "superblock",
279         .prepare_for_write = sb_prepare_for_write,
280         .check = sb_check
281 };
282
283 /*----------------------------------------------------------------
284  * Methods for the btree value types
285  *--------------------------------------------------------------*/
286
287 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
288 {
289         return (b << 24) | t;
290 }
291
292 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
293 {
294         *b = v >> 24;
295         *t = v & ((1 << 24) - 1);
296 }
297
298 static void data_block_inc(void *context, const void *value_le)
299 {
300         struct dm_space_map *sm = context;
301         __le64 v_le;
302         uint64_t b;
303         uint32_t t;
304
305         memcpy(&v_le, value_le, sizeof(v_le));
306         unpack_block_time(le64_to_cpu(v_le), &b, &t);
307         dm_sm_inc_block(sm, b);
308 }
309
310 static void data_block_dec(void *context, const void *value_le)
311 {
312         struct dm_space_map *sm = context;
313         __le64 v_le;
314         uint64_t b;
315         uint32_t t;
316
317         memcpy(&v_le, value_le, sizeof(v_le));
318         unpack_block_time(le64_to_cpu(v_le), &b, &t);
319         dm_sm_dec_block(sm, b);
320 }
321
322 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
323 {
324         __le64 v1_le, v2_le;
325         uint64_t b1, b2;
326         uint32_t t;
327
328         memcpy(&v1_le, value1_le, sizeof(v1_le));
329         memcpy(&v2_le, value2_le, sizeof(v2_le));
330         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
331         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
332
333         return b1 == b2;
334 }
335
336 static void subtree_inc(void *context, const void *value)
337 {
338         struct dm_btree_info *info = context;
339         __le64 root_le;
340         uint64_t root;
341
342         memcpy(&root_le, value, sizeof(root_le));
343         root = le64_to_cpu(root_le);
344         dm_tm_inc(info->tm, root);
345 }
346
347 static void subtree_dec(void *context, const void *value)
348 {
349         struct dm_btree_info *info = context;
350         __le64 root_le;
351         uint64_t root;
352
353         memcpy(&root_le, value, sizeof(root_le));
354         root = le64_to_cpu(root_le);
355         if (dm_btree_del(info, root))
356                 DMERR("btree delete failed");
357 }
358
359 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
360 {
361         __le64 v1_le, v2_le;
362         memcpy(&v1_le, value1_le, sizeof(v1_le));
363         memcpy(&v2_le, value2_le, sizeof(v2_le));
364
365         return v1_le == v2_le;
366 }
367
368 /*----------------------------------------------------------------*/
369
370 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
371                                 struct dm_block **sblock)
372 {
373         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
374                                      &sb_validator, sblock);
375 }
376
377 static int superblock_lock(struct dm_pool_metadata *pmd,
378                            struct dm_block **sblock)
379 {
380         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
381                                 &sb_validator, sblock);
382 }
383
384 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
385 {
386         int r;
387         unsigned i;
388         struct dm_block *b;
389         __le64 *data_le, zero = cpu_to_le64(0);
390         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
391
392         /*
393          * We can't use a validator here - it may be all zeroes.
394          */
395         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
396         if (r)
397                 return r;
398
399         data_le = dm_block_data(b);
400         *result = 1;
401         for (i = 0; i < block_size; i++) {
402                 if (data_le[i] != zero) {
403                         *result = 0;
404                         break;
405                 }
406         }
407
408         dm_bm_unlock(b);
409
410         return 0;
411 }
412
413 static void __setup_btree_details(struct dm_pool_metadata *pmd)
414 {
415         pmd->info.tm = pmd->tm;
416         pmd->info.levels = 2;
417         pmd->info.value_type.context = pmd->data_sm;
418         pmd->info.value_type.size = sizeof(__le64);
419         pmd->info.value_type.inc = data_block_inc;
420         pmd->info.value_type.dec = data_block_dec;
421         pmd->info.value_type.equal = data_block_equal;
422
423         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
424         pmd->nb_info.tm = pmd->nb_tm;
425
426         pmd->tl_info.tm = pmd->tm;
427         pmd->tl_info.levels = 1;
428         pmd->tl_info.value_type.context = &pmd->bl_info;
429         pmd->tl_info.value_type.size = sizeof(__le64);
430         pmd->tl_info.value_type.inc = subtree_inc;
431         pmd->tl_info.value_type.dec = subtree_dec;
432         pmd->tl_info.value_type.equal = subtree_equal;
433
434         pmd->bl_info.tm = pmd->tm;
435         pmd->bl_info.levels = 1;
436         pmd->bl_info.value_type.context = pmd->data_sm;
437         pmd->bl_info.value_type.size = sizeof(__le64);
438         pmd->bl_info.value_type.inc = data_block_inc;
439         pmd->bl_info.value_type.dec = data_block_dec;
440         pmd->bl_info.value_type.equal = data_block_equal;
441
442         pmd->details_info.tm = pmd->tm;
443         pmd->details_info.levels = 1;
444         pmd->details_info.value_type.context = NULL;
445         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
446         pmd->details_info.value_type.inc = NULL;
447         pmd->details_info.value_type.dec = NULL;
448         pmd->details_info.value_type.equal = NULL;
449 }
450
451 static int save_sm_roots(struct dm_pool_metadata *pmd)
452 {
453         int r;
454         size_t len;
455
456         r = dm_sm_root_size(pmd->metadata_sm, &len);
457         if (r < 0)
458                 return r;
459
460         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
461         if (r < 0)
462                 return r;
463
464         r = dm_sm_root_size(pmd->data_sm, &len);
465         if (r < 0)
466                 return r;
467
468         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
469 }
470
471 static void copy_sm_roots(struct dm_pool_metadata *pmd,
472                           struct thin_disk_superblock *disk)
473 {
474         memcpy(&disk->metadata_space_map_root,
475                &pmd->metadata_space_map_root,
476                sizeof(pmd->metadata_space_map_root));
477
478         memcpy(&disk->data_space_map_root,
479                &pmd->data_space_map_root,
480                sizeof(pmd->data_space_map_root));
481 }
482
483 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
484 {
485         int r;
486         struct dm_block *sblock;
487         struct thin_disk_superblock *disk_super;
488         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
489
490         if (bdev_size > THIN_METADATA_MAX_SECTORS)
491                 bdev_size = THIN_METADATA_MAX_SECTORS;
492
493         r = dm_sm_commit(pmd->data_sm);
494         if (r < 0)
495                 return r;
496
497         r = dm_tm_pre_commit(pmd->tm);
498         if (r < 0)
499                 return r;
500
501         r = save_sm_roots(pmd);
502         if (r < 0)
503                 return r;
504
505         r = superblock_lock_zero(pmd, &sblock);
506         if (r)
507                 return r;
508
509         disk_super = dm_block_data(sblock);
510         disk_super->flags = 0;
511         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
512         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
513         disk_super->version = cpu_to_le32(THIN_VERSION);
514         disk_super->time = 0;
515         disk_super->trans_id = 0;
516         disk_super->held_root = 0;
517
518         copy_sm_roots(pmd, disk_super);
519
520         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
521         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
522         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
523         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
524         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
525
526         return dm_tm_commit(pmd->tm, sblock);
527 }
528
529 static int __format_metadata(struct dm_pool_metadata *pmd)
530 {
531         int r;
532
533         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
534                                  &pmd->tm, &pmd->metadata_sm);
535         if (r < 0) {
536                 DMERR("tm_create_with_sm failed");
537                 return r;
538         }
539
540         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
541         if (IS_ERR(pmd->data_sm)) {
542                 DMERR("sm_disk_create failed");
543                 r = PTR_ERR(pmd->data_sm);
544                 goto bad_cleanup_tm;
545         }
546
547         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
548         if (!pmd->nb_tm) {
549                 DMERR("could not create non-blocking clone tm");
550                 r = -ENOMEM;
551                 goto bad_cleanup_data_sm;
552         }
553
554         __setup_btree_details(pmd);
555
556         r = dm_btree_empty(&pmd->info, &pmd->root);
557         if (r < 0)
558                 goto bad_cleanup_nb_tm;
559
560         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
561         if (r < 0) {
562                 DMERR("couldn't create devices root");
563                 goto bad_cleanup_nb_tm;
564         }
565
566         r = __write_initial_superblock(pmd);
567         if (r)
568                 goto bad_cleanup_nb_tm;
569
570         return 0;
571
572 bad_cleanup_nb_tm:
573         dm_tm_destroy(pmd->nb_tm);
574 bad_cleanup_data_sm:
575         dm_sm_destroy(pmd->data_sm);
576 bad_cleanup_tm:
577         dm_tm_destroy(pmd->tm);
578         dm_sm_destroy(pmd->metadata_sm);
579
580         return r;
581 }
582
583 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
584                                      struct dm_pool_metadata *pmd)
585 {
586         uint32_t features;
587
588         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
589         if (features) {
590                 DMERR("could not access metadata due to unsupported optional features (%lx).",
591                       (unsigned long)features);
592                 return -EINVAL;
593         }
594
595         /*
596          * Check for read-only metadata to skip the following RDWR checks.
597          */
598         if (get_disk_ro(pmd->bdev->bd_disk))
599                 return 0;
600
601         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
602         if (features) {
603                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
604                       (unsigned long)features);
605                 return -EINVAL;
606         }
607
608         return 0;
609 }
610
611 static int __open_metadata(struct dm_pool_metadata *pmd)
612 {
613         int r;
614         struct dm_block *sblock;
615         struct thin_disk_superblock *disk_super;
616
617         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
618                             &sb_validator, &sblock);
619         if (r < 0) {
620                 DMERR("couldn't read superblock");
621                 return r;
622         }
623
624         disk_super = dm_block_data(sblock);
625
626         /* Verify the data block size hasn't changed */
627         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
628                 DMERR("changing the data block size (from %u to %llu) is not supported",
629                       le32_to_cpu(disk_super->data_block_size),
630                       (unsigned long long)pmd->data_block_size);
631                 r = -EINVAL;
632                 goto bad_unlock_sblock;
633         }
634
635         r = __check_incompat_features(disk_super, pmd);
636         if (r < 0)
637                 goto bad_unlock_sblock;
638
639         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
640                                disk_super->metadata_space_map_root,
641                                sizeof(disk_super->metadata_space_map_root),
642                                &pmd->tm, &pmd->metadata_sm);
643         if (r < 0) {
644                 DMERR("tm_open_with_sm failed");
645                 goto bad_unlock_sblock;
646         }
647
648         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
649                                        sizeof(disk_super->data_space_map_root));
650         if (IS_ERR(pmd->data_sm)) {
651                 DMERR("sm_disk_open failed");
652                 r = PTR_ERR(pmd->data_sm);
653                 goto bad_cleanup_tm;
654         }
655
656         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
657         if (!pmd->nb_tm) {
658                 DMERR("could not create non-blocking clone tm");
659                 r = -ENOMEM;
660                 goto bad_cleanup_data_sm;
661         }
662
663         /*
664          * For pool metadata opening process, root setting is redundant
665          * because it will be set again in __begin_transaction(). But dm
666          * pool aborting process really needs to get last transaction's
667          * root to avoid accessing broken btree.
668          */
669         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
670         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
671
672         __setup_btree_details(pmd);
673         dm_bm_unlock(sblock);
674
675         return 0;
676
677 bad_cleanup_data_sm:
678         dm_sm_destroy(pmd->data_sm);
679 bad_cleanup_tm:
680         dm_tm_destroy(pmd->tm);
681         dm_sm_destroy(pmd->metadata_sm);
682 bad_unlock_sblock:
683         dm_bm_unlock(sblock);
684
685         return r;
686 }
687
688 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
689 {
690         int r, unformatted;
691
692         r = __superblock_all_zeroes(pmd->bm, &unformatted);
693         if (r)
694                 return r;
695
696         if (unformatted)
697                 return format_device ? __format_metadata(pmd) : -EPERM;
698
699         return __open_metadata(pmd);
700 }
701
702 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
703 {
704         int r;
705
706         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
707                                           THIN_MAX_CONCURRENT_LOCKS);
708         if (IS_ERR(pmd->bm)) {
709                 DMERR("could not create block manager");
710                 r = PTR_ERR(pmd->bm);
711                 pmd->bm = NULL;
712                 return r;
713         }
714
715         r = __open_or_format_metadata(pmd, format_device);
716         if (r) {
717                 dm_block_manager_destroy(pmd->bm);
718                 pmd->bm = NULL;
719         }
720
721         return r;
722 }
723
724 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
725 {
726         dm_sm_destroy(pmd->data_sm);
727         dm_sm_destroy(pmd->metadata_sm);
728         dm_tm_destroy(pmd->nb_tm);
729         dm_tm_destroy(pmd->tm);
730         dm_block_manager_destroy(pmd->bm);
731 }
732
733 static int __begin_transaction(struct dm_pool_metadata *pmd)
734 {
735         int r;
736         struct thin_disk_superblock *disk_super;
737         struct dm_block *sblock;
738
739         /*
740          * We re-read the superblock every time.  Shouldn't need to do this
741          * really.
742          */
743         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
744                             &sb_validator, &sblock);
745         if (r)
746                 return r;
747
748         disk_super = dm_block_data(sblock);
749         pmd->time = le32_to_cpu(disk_super->time);
750         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
751         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
752         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
753         pmd->flags = le32_to_cpu(disk_super->flags);
754         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
755
756         dm_bm_unlock(sblock);
757         return 0;
758 }
759
760 static int __write_changed_details(struct dm_pool_metadata *pmd)
761 {
762         int r;
763         struct dm_thin_device *td, *tmp;
764         struct disk_device_details details;
765         uint64_t key;
766
767         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
768                 if (!td->changed)
769                         continue;
770
771                 key = td->id;
772
773                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
774                 details.transaction_id = cpu_to_le64(td->transaction_id);
775                 details.creation_time = cpu_to_le32(td->creation_time);
776                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
777                 __dm_bless_for_disk(&details);
778
779                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
780                                     &key, &details, &pmd->details_root);
781                 if (r)
782                         return r;
783
784                 if (td->open_count)
785                         td->changed = 0;
786                 else {
787                         list_del(&td->list);
788                         kfree(td);
789                 }
790         }
791
792         return 0;
793 }
794
795 static int __commit_transaction(struct dm_pool_metadata *pmd)
796 {
797         int r;
798         size_t metadata_len, data_len;
799         struct thin_disk_superblock *disk_super;
800         struct dm_block *sblock;
801
802         /*
803          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
804          */
805         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
806
807         r = __write_changed_details(pmd);
808         if (r < 0)
809                 return r;
810
811         r = dm_sm_commit(pmd->data_sm);
812         if (r < 0)
813                 return r;
814
815         r = dm_tm_pre_commit(pmd->tm);
816         if (r < 0)
817                 return r;
818
819         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
820         if (r < 0)
821                 return r;
822
823         r = dm_sm_root_size(pmd->data_sm, &data_len);
824         if (r < 0)
825                 return r;
826
827         r = save_sm_roots(pmd);
828         if (r < 0)
829                 return r;
830
831         r = superblock_lock(pmd, &sblock);
832         if (r)
833                 return r;
834
835         disk_super = dm_block_data(sblock);
836         disk_super->time = cpu_to_le32(pmd->time);
837         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
838         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
839         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
840         disk_super->flags = cpu_to_le32(pmd->flags);
841
842         copy_sm_roots(pmd, disk_super);
843
844         return dm_tm_commit(pmd->tm, sblock);
845 }
846
847 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
848 {
849         int r;
850         dm_block_t total;
851         dm_block_t max_blocks = 4096; /* 16M */
852
853         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
854         if (r) {
855                 DMERR("could not get size of metadata device");
856                 pmd->metadata_reserve = max_blocks;
857         } else
858                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
859 }
860
861 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
862                                                sector_t data_block_size,
863                                                bool format_device)
864 {
865         int r;
866         struct dm_pool_metadata *pmd;
867
868         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
869         if (!pmd) {
870                 DMERR("could not allocate metadata struct");
871                 return ERR_PTR(-ENOMEM);
872         }
873
874         init_rwsem(&pmd->root_lock);
875         pmd->time = 0;
876         INIT_LIST_HEAD(&pmd->thin_devices);
877         pmd->fail_io = false;
878         pmd->bdev = bdev;
879         pmd->data_block_size = data_block_size;
880
881         r = __create_persistent_data_objects(pmd, format_device);
882         if (r) {
883                 kfree(pmd);
884                 return ERR_PTR(r);
885         }
886
887         r = __begin_transaction(pmd);
888         if (r < 0) {
889                 if (dm_pool_metadata_close(pmd) < 0)
890                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
891                 return ERR_PTR(r);
892         }
893
894         __set_metadata_reserve(pmd);
895
896         return pmd;
897 }
898
899 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
900 {
901         int r;
902         unsigned open_devices = 0;
903         struct dm_thin_device *td, *tmp;
904
905         down_read(&pmd->root_lock);
906         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
907                 if (td->open_count)
908                         open_devices++;
909                 else {
910                         list_del(&td->list);
911                         kfree(td);
912                 }
913         }
914         up_read(&pmd->root_lock);
915
916         if (open_devices) {
917                 DMERR("attempt to close pmd when %u device(s) are still open",
918                        open_devices);
919                 return -EBUSY;
920         }
921
922         if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
923                 r = __commit_transaction(pmd);
924                 if (r < 0)
925                         DMWARN("%s: __commit_transaction() failed, error = %d",
926                                __func__, r);
927         }
928
929         if (!pmd->fail_io)
930                 __destroy_persistent_data_objects(pmd);
931
932         kfree(pmd);
933         return 0;
934 }
935
936 /*
937  * __open_device: Returns @td corresponding to device with id @dev,
938  * creating it if @create is set and incrementing @td->open_count.
939  * On failure, @td is undefined.
940  */
941 static int __open_device(struct dm_pool_metadata *pmd,
942                          dm_thin_id dev, int create,
943                          struct dm_thin_device **td)
944 {
945         int r, changed = 0;
946         struct dm_thin_device *td2;
947         uint64_t key = dev;
948         struct disk_device_details details_le;
949
950         /*
951          * If the device is already open, return it.
952          */
953         list_for_each_entry(td2, &pmd->thin_devices, list)
954                 if (td2->id == dev) {
955                         /*
956                          * May not create an already-open device.
957                          */
958                         if (create)
959                                 return -EEXIST;
960
961                         td2->open_count++;
962                         *td = td2;
963                         return 0;
964                 }
965
966         /*
967          * Check the device exists.
968          */
969         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
970                             &key, &details_le);
971         if (r) {
972                 if (r != -ENODATA || !create)
973                         return r;
974
975                 /*
976                  * Create new device.
977                  */
978                 changed = 1;
979                 details_le.mapped_blocks = 0;
980                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
981                 details_le.creation_time = cpu_to_le32(pmd->time);
982                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
983         }
984
985         *td = kmalloc(sizeof(**td), GFP_NOIO);
986         if (!*td)
987                 return -ENOMEM;
988
989         (*td)->pmd = pmd;
990         (*td)->id = dev;
991         (*td)->open_count = 1;
992         (*td)->changed = changed;
993         (*td)->aborted_with_changes = false;
994         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
995         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
996         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
997         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
998
999         list_add(&(*td)->list, &pmd->thin_devices);
1000
1001         return 0;
1002 }
1003
1004 static void __close_device(struct dm_thin_device *td)
1005 {
1006         --td->open_count;
1007 }
1008
1009 static int __create_thin(struct dm_pool_metadata *pmd,
1010                          dm_thin_id dev)
1011 {
1012         int r;
1013         dm_block_t dev_root;
1014         uint64_t key = dev;
1015         struct disk_device_details details_le;
1016         struct dm_thin_device *td;
1017         __le64 value;
1018
1019         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1020                             &key, &details_le);
1021         if (!r)
1022                 return -EEXIST;
1023
1024         /*
1025          * Create an empty btree for the mappings.
1026          */
1027         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1028         if (r)
1029                 return r;
1030
1031         /*
1032          * Insert it into the main mapping tree.
1033          */
1034         value = cpu_to_le64(dev_root);
1035         __dm_bless_for_disk(&value);
1036         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1037         if (r) {
1038                 dm_btree_del(&pmd->bl_info, dev_root);
1039                 return r;
1040         }
1041
1042         r = __open_device(pmd, dev, 1, &td);
1043         if (r) {
1044                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1045                 dm_btree_del(&pmd->bl_info, dev_root);
1046                 return r;
1047         }
1048         __close_device(td);
1049
1050         return r;
1051 }
1052
1053 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1054 {
1055         int r = -EINVAL;
1056
1057         down_write(&pmd->root_lock);
1058         if (!pmd->fail_io)
1059                 r = __create_thin(pmd, dev);
1060         up_write(&pmd->root_lock);
1061
1062         return r;
1063 }
1064
1065 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1066                                   struct dm_thin_device *snap,
1067                                   dm_thin_id origin, uint32_t time)
1068 {
1069         int r;
1070         struct dm_thin_device *td;
1071
1072         r = __open_device(pmd, origin, 0, &td);
1073         if (r)
1074                 return r;
1075
1076         td->changed = 1;
1077         td->snapshotted_time = time;
1078
1079         snap->mapped_blocks = td->mapped_blocks;
1080         snap->snapshotted_time = time;
1081         __close_device(td);
1082
1083         return 0;
1084 }
1085
1086 static int __create_snap(struct dm_pool_metadata *pmd,
1087                          dm_thin_id dev, dm_thin_id origin)
1088 {
1089         int r;
1090         dm_block_t origin_root;
1091         uint64_t key = origin, dev_key = dev;
1092         struct dm_thin_device *td;
1093         struct disk_device_details details_le;
1094         __le64 value;
1095
1096         /* check this device is unused */
1097         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1098                             &dev_key, &details_le);
1099         if (!r)
1100                 return -EEXIST;
1101
1102         /* find the mapping tree for the origin */
1103         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1104         if (r)
1105                 return r;
1106         origin_root = le64_to_cpu(value);
1107
1108         /* clone the origin, an inc will do */
1109         dm_tm_inc(pmd->tm, origin_root);
1110
1111         /* insert into the main mapping tree */
1112         value = cpu_to_le64(origin_root);
1113         __dm_bless_for_disk(&value);
1114         key = dev;
1115         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1116         if (r) {
1117                 dm_tm_dec(pmd->tm, origin_root);
1118                 return r;
1119         }
1120
1121         pmd->time++;
1122
1123         r = __open_device(pmd, dev, 1, &td);
1124         if (r)
1125                 goto bad;
1126
1127         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1128         __close_device(td);
1129
1130         if (r)
1131                 goto bad;
1132
1133         return 0;
1134
1135 bad:
1136         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1137         dm_btree_remove(&pmd->details_info, pmd->details_root,
1138                         &key, &pmd->details_root);
1139         return r;
1140 }
1141
1142 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1143                                  dm_thin_id dev,
1144                                  dm_thin_id origin)
1145 {
1146         int r = -EINVAL;
1147
1148         down_write(&pmd->root_lock);
1149         if (!pmd->fail_io)
1150                 r = __create_snap(pmd, dev, origin);
1151         up_write(&pmd->root_lock);
1152
1153         return r;
1154 }
1155
1156 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1157 {
1158         int r;
1159         uint64_t key = dev;
1160         struct dm_thin_device *td;
1161
1162         /* TODO: failure should mark the transaction invalid */
1163         r = __open_device(pmd, dev, 0, &td);
1164         if (r)
1165                 return r;
1166
1167         if (td->open_count > 1) {
1168                 __close_device(td);
1169                 return -EBUSY;
1170         }
1171
1172         list_del(&td->list);
1173         kfree(td);
1174         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1175                             &key, &pmd->details_root);
1176         if (r)
1177                 return r;
1178
1179         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1180         if (r)
1181                 return r;
1182
1183         return 0;
1184 }
1185
1186 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1187                                dm_thin_id dev)
1188 {
1189         int r = -EINVAL;
1190
1191         down_write(&pmd->root_lock);
1192         if (!pmd->fail_io)
1193                 r = __delete_device(pmd, dev);
1194         up_write(&pmd->root_lock);
1195
1196         return r;
1197 }
1198
1199 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1200                                         uint64_t current_id,
1201                                         uint64_t new_id)
1202 {
1203         int r = -EINVAL;
1204
1205         down_write(&pmd->root_lock);
1206
1207         if (pmd->fail_io)
1208                 goto out;
1209
1210         if (pmd->trans_id != current_id) {
1211                 DMERR("mismatched transaction id");
1212                 goto out;
1213         }
1214
1215         pmd->trans_id = new_id;
1216         r = 0;
1217
1218 out:
1219         up_write(&pmd->root_lock);
1220
1221         return r;
1222 }
1223
1224 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1225                                         uint64_t *result)
1226 {
1227         int r = -EINVAL;
1228
1229         down_read(&pmd->root_lock);
1230         if (!pmd->fail_io) {
1231                 *result = pmd->trans_id;
1232                 r = 0;
1233         }
1234         up_read(&pmd->root_lock);
1235
1236         return r;
1237 }
1238
1239 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1240 {
1241         int r, inc;
1242         struct thin_disk_superblock *disk_super;
1243         struct dm_block *copy, *sblock;
1244         dm_block_t held_root;
1245
1246         /*
1247          * We commit to ensure the btree roots which we increment in a
1248          * moment are up to date.
1249          */
1250         __commit_transaction(pmd);
1251
1252         /*
1253          * Copy the superblock.
1254          */
1255         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1256         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1257                                &sb_validator, &copy, &inc);
1258         if (r)
1259                 return r;
1260
1261         BUG_ON(!inc);
1262
1263         held_root = dm_block_location(copy);
1264         disk_super = dm_block_data(copy);
1265
1266         if (le64_to_cpu(disk_super->held_root)) {
1267                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1268
1269                 dm_tm_dec(pmd->tm, held_root);
1270                 dm_tm_unlock(pmd->tm, copy);
1271                 return -EBUSY;
1272         }
1273
1274         /*
1275          * Wipe the spacemap since we're not publishing this.
1276          */
1277         memset(&disk_super->data_space_map_root, 0,
1278                sizeof(disk_super->data_space_map_root));
1279         memset(&disk_super->metadata_space_map_root, 0,
1280                sizeof(disk_super->metadata_space_map_root));
1281
1282         /*
1283          * Increment the data structures that need to be preserved.
1284          */
1285         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1286         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1287         dm_tm_unlock(pmd->tm, copy);
1288
1289         /*
1290          * Write the held root into the superblock.
1291          */
1292         r = superblock_lock(pmd, &sblock);
1293         if (r) {
1294                 dm_tm_dec(pmd->tm, held_root);
1295                 return r;
1296         }
1297
1298         disk_super = dm_block_data(sblock);
1299         disk_super->held_root = cpu_to_le64(held_root);
1300         dm_bm_unlock(sblock);
1301         return 0;
1302 }
1303
1304 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1305 {
1306         int r = -EINVAL;
1307
1308         down_write(&pmd->root_lock);
1309         if (!pmd->fail_io)
1310                 r = __reserve_metadata_snap(pmd);
1311         up_write(&pmd->root_lock);
1312
1313         return r;
1314 }
1315
1316 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1317 {
1318         int r;
1319         struct thin_disk_superblock *disk_super;
1320         struct dm_block *sblock, *copy;
1321         dm_block_t held_root;
1322
1323         r = superblock_lock(pmd, &sblock);
1324         if (r)
1325                 return r;
1326
1327         disk_super = dm_block_data(sblock);
1328         held_root = le64_to_cpu(disk_super->held_root);
1329         disk_super->held_root = cpu_to_le64(0);
1330
1331         dm_bm_unlock(sblock);
1332
1333         if (!held_root) {
1334                 DMWARN("No pool metadata snapshot found: nothing to release.");
1335                 return -EINVAL;
1336         }
1337
1338         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1339         if (r)
1340                 return r;
1341
1342         disk_super = dm_block_data(copy);
1343         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1344         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1345         dm_sm_dec_block(pmd->metadata_sm, held_root);
1346
1347         dm_tm_unlock(pmd->tm, copy);
1348
1349         return 0;
1350 }
1351
1352 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1353 {
1354         int r = -EINVAL;
1355
1356         down_write(&pmd->root_lock);
1357         if (!pmd->fail_io)
1358                 r = __release_metadata_snap(pmd);
1359         up_write(&pmd->root_lock);
1360
1361         return r;
1362 }
1363
1364 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1365                                dm_block_t *result)
1366 {
1367         int r;
1368         struct thin_disk_superblock *disk_super;
1369         struct dm_block *sblock;
1370
1371         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1372                             &sb_validator, &sblock);
1373         if (r)
1374                 return r;
1375
1376         disk_super = dm_block_data(sblock);
1377         *result = le64_to_cpu(disk_super->held_root);
1378
1379         dm_bm_unlock(sblock);
1380
1381         return 0;
1382 }
1383
1384 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1385                               dm_block_t *result)
1386 {
1387         int r = -EINVAL;
1388
1389         down_read(&pmd->root_lock);
1390         if (!pmd->fail_io)
1391                 r = __get_metadata_snap(pmd, result);
1392         up_read(&pmd->root_lock);
1393
1394         return r;
1395 }
1396
1397 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1398                              struct dm_thin_device **td)
1399 {
1400         int r = -EINVAL;
1401
1402         down_write(&pmd->root_lock);
1403         if (!pmd->fail_io)
1404                 r = __open_device(pmd, dev, 0, td);
1405         up_write(&pmd->root_lock);
1406
1407         return r;
1408 }
1409
1410 int dm_pool_close_thin_device(struct dm_thin_device *td)
1411 {
1412         down_write(&td->pmd->root_lock);
1413         __close_device(td);
1414         up_write(&td->pmd->root_lock);
1415
1416         return 0;
1417 }
1418
1419 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1420 {
1421         return td->id;
1422 }
1423
1424 /*
1425  * Check whether @time (of block creation) is older than @td's last snapshot.
1426  * If so then the associated block is shared with the last snapshot device.
1427  * Any block on a device created *after* the device last got snapshotted is
1428  * necessarily not shared.
1429  */
1430 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1431 {
1432         return td->snapshotted_time > time;
1433 }
1434
1435 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1436                                  struct dm_thin_lookup_result *result)
1437 {
1438         uint64_t block_time = 0;
1439         dm_block_t exception_block;
1440         uint32_t exception_time;
1441
1442         block_time = le64_to_cpu(value);
1443         unpack_block_time(block_time, &exception_block, &exception_time);
1444         result->block = exception_block;
1445         result->shared = __snapshotted_since(td, exception_time);
1446 }
1447
1448 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1449                         int can_issue_io, struct dm_thin_lookup_result *result)
1450 {
1451         int r;
1452         __le64 value;
1453         struct dm_pool_metadata *pmd = td->pmd;
1454         dm_block_t keys[2] = { td->id, block };
1455         struct dm_btree_info *info;
1456
1457         if (can_issue_io) {
1458                 info = &pmd->info;
1459         } else
1460                 info = &pmd->nb_info;
1461
1462         r = dm_btree_lookup(info, pmd->root, keys, &value);
1463         if (!r)
1464                 unpack_lookup_result(td, value, result);
1465
1466         return r;
1467 }
1468
1469 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1470                        int can_issue_io, struct dm_thin_lookup_result *result)
1471 {
1472         int r;
1473         struct dm_pool_metadata *pmd = td->pmd;
1474
1475         down_read(&pmd->root_lock);
1476         if (pmd->fail_io) {
1477                 up_read(&pmd->root_lock);
1478                 return -EINVAL;
1479         }
1480
1481         r = __find_block(td, block, can_issue_io, result);
1482
1483         up_read(&pmd->root_lock);
1484         return r;
1485 }
1486
1487 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1488                                           dm_block_t *vblock,
1489                                           struct dm_thin_lookup_result *result)
1490 {
1491         int r;
1492         __le64 value;
1493         struct dm_pool_metadata *pmd = td->pmd;
1494         dm_block_t keys[2] = { td->id, block };
1495
1496         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1497         if (!r)
1498                 unpack_lookup_result(td, value, result);
1499
1500         return r;
1501 }
1502
1503 static int __find_mapped_range(struct dm_thin_device *td,
1504                                dm_block_t begin, dm_block_t end,
1505                                dm_block_t *thin_begin, dm_block_t *thin_end,
1506                                dm_block_t *pool_begin, bool *maybe_shared)
1507 {
1508         int r;
1509         dm_block_t pool_end;
1510         struct dm_thin_lookup_result lookup;
1511
1512         if (end < begin)
1513                 return -ENODATA;
1514
1515         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1516         if (r)
1517                 return r;
1518
1519         if (begin >= end)
1520                 return -ENODATA;
1521
1522         *thin_begin = begin;
1523         *pool_begin = lookup.block;
1524         *maybe_shared = lookup.shared;
1525
1526         begin++;
1527         pool_end = *pool_begin + 1;
1528         while (begin != end) {
1529                 r = __find_block(td, begin, true, &lookup);
1530                 if (r) {
1531                         if (r == -ENODATA)
1532                                 break;
1533                         else
1534                                 return r;
1535                 }
1536
1537                 if ((lookup.block != pool_end) ||
1538                     (lookup.shared != *maybe_shared))
1539                         break;
1540
1541                 pool_end++;
1542                 begin++;
1543         }
1544
1545         *thin_end = begin;
1546         return 0;
1547 }
1548
1549 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1550                               dm_block_t begin, dm_block_t end,
1551                               dm_block_t *thin_begin, dm_block_t *thin_end,
1552                               dm_block_t *pool_begin, bool *maybe_shared)
1553 {
1554         int r = -EINVAL;
1555         struct dm_pool_metadata *pmd = td->pmd;
1556
1557         down_read(&pmd->root_lock);
1558         if (!pmd->fail_io) {
1559                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1560                                         pool_begin, maybe_shared);
1561         }
1562         up_read(&pmd->root_lock);
1563
1564         return r;
1565 }
1566
1567 static int __insert(struct dm_thin_device *td, dm_block_t block,
1568                     dm_block_t data_block)
1569 {
1570         int r, inserted;
1571         __le64 value;
1572         struct dm_pool_metadata *pmd = td->pmd;
1573         dm_block_t keys[2] = { td->id, block };
1574
1575         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1576         __dm_bless_for_disk(&value);
1577
1578         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1579                                    &pmd->root, &inserted);
1580         if (r)
1581                 return r;
1582
1583         td->changed = 1;
1584         if (inserted)
1585                 td->mapped_blocks++;
1586
1587         return 0;
1588 }
1589
1590 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1591                          dm_block_t data_block)
1592 {
1593         int r = -EINVAL;
1594
1595         down_write(&td->pmd->root_lock);
1596         if (!td->pmd->fail_io)
1597                 r = __insert(td, block, data_block);
1598         up_write(&td->pmd->root_lock);
1599
1600         return r;
1601 }
1602
1603 static int __remove(struct dm_thin_device *td, dm_block_t block)
1604 {
1605         int r;
1606         struct dm_pool_metadata *pmd = td->pmd;
1607         dm_block_t keys[2] = { td->id, block };
1608
1609         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1610         if (r)
1611                 return r;
1612
1613         td->mapped_blocks--;
1614         td->changed = 1;
1615
1616         return 0;
1617 }
1618
1619 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1620 {
1621         int r;
1622         unsigned count, total_count = 0;
1623         struct dm_pool_metadata *pmd = td->pmd;
1624         dm_block_t keys[1] = { td->id };
1625         __le64 value;
1626         dm_block_t mapping_root;
1627
1628         /*
1629          * Find the mapping tree
1630          */
1631         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1632         if (r)
1633                 return r;
1634
1635         /*
1636          * Remove from the mapping tree, taking care to inc the
1637          * ref count so it doesn't get deleted.
1638          */
1639         mapping_root = le64_to_cpu(value);
1640         dm_tm_inc(pmd->tm, mapping_root);
1641         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1642         if (r)
1643                 return r;
1644
1645         /*
1646          * Remove leaves stops at the first unmapped entry, so we have to
1647          * loop round finding mapped ranges.
1648          */
1649         while (begin < end) {
1650                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1651                 if (r == -ENODATA)
1652                         break;
1653
1654                 if (r)
1655                         return r;
1656
1657                 if (begin >= end)
1658                         break;
1659
1660                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1661                 if (r)
1662                         return r;
1663
1664                 total_count += count;
1665         }
1666
1667         td->mapped_blocks -= total_count;
1668         td->changed = 1;
1669
1670         /*
1671          * Reinsert the mapping tree.
1672          */
1673         value = cpu_to_le64(mapping_root);
1674         __dm_bless_for_disk(&value);
1675         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1676 }
1677
1678 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1679 {
1680         int r = -EINVAL;
1681
1682         down_write(&td->pmd->root_lock);
1683         if (!td->pmd->fail_io)
1684                 r = __remove(td, block);
1685         up_write(&td->pmd->root_lock);
1686
1687         return r;
1688 }
1689
1690 int dm_thin_remove_range(struct dm_thin_device *td,
1691                          dm_block_t begin, dm_block_t end)
1692 {
1693         int r = -EINVAL;
1694
1695         down_write(&td->pmd->root_lock);
1696         if (!td->pmd->fail_io)
1697                 r = __remove_range(td, begin, end);
1698         up_write(&td->pmd->root_lock);
1699
1700         return r;
1701 }
1702
1703 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1704 {
1705         int r;
1706         uint32_t ref_count;
1707
1708         down_read(&pmd->root_lock);
1709         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1710         if (!r)
1711                 *result = (ref_count > 1);
1712         up_read(&pmd->root_lock);
1713
1714         return r;
1715 }
1716
1717 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1718 {
1719         int r = 0;
1720
1721         down_write(&pmd->root_lock);
1722         for (; b != e; b++) {
1723                 r = dm_sm_inc_block(pmd->data_sm, b);
1724                 if (r)
1725                         break;
1726         }
1727         up_write(&pmd->root_lock);
1728
1729         return r;
1730 }
1731
1732 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1733 {
1734         int r = 0;
1735
1736         down_write(&pmd->root_lock);
1737         for (; b != e; b++) {
1738                 r = dm_sm_dec_block(pmd->data_sm, b);
1739                 if (r)
1740                         break;
1741         }
1742         up_write(&pmd->root_lock);
1743
1744         return r;
1745 }
1746
1747 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1748 {
1749         int r;
1750
1751         down_read(&td->pmd->root_lock);
1752         r = td->changed;
1753         up_read(&td->pmd->root_lock);
1754
1755         return r;
1756 }
1757
1758 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1759 {
1760         bool r = false;
1761         struct dm_thin_device *td, *tmp;
1762
1763         down_read(&pmd->root_lock);
1764         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1765                 if (td->changed) {
1766                         r = td->changed;
1767                         break;
1768                 }
1769         }
1770         up_read(&pmd->root_lock);
1771
1772         return r;
1773 }
1774
1775 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1776 {
1777         bool r;
1778
1779         down_read(&td->pmd->root_lock);
1780         r = td->aborted_with_changes;
1781         up_read(&td->pmd->root_lock);
1782
1783         return r;
1784 }
1785
1786 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1787 {
1788         int r = -EINVAL;
1789
1790         down_write(&pmd->root_lock);
1791         if (!pmd->fail_io)
1792                 r = dm_sm_new_block(pmd->data_sm, result);
1793         up_write(&pmd->root_lock);
1794
1795         return r;
1796 }
1797
1798 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1799 {
1800         int r = -EINVAL;
1801
1802         down_write(&pmd->root_lock);
1803         if (pmd->fail_io)
1804                 goto out;
1805
1806         r = __commit_transaction(pmd);
1807         if (r <= 0)
1808                 goto out;
1809
1810         /*
1811          * Open the next transaction.
1812          */
1813         r = __begin_transaction(pmd);
1814 out:
1815         up_write(&pmd->root_lock);
1816         return r;
1817 }
1818
1819 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1820 {
1821         struct dm_thin_device *td;
1822
1823         list_for_each_entry(td, &pmd->thin_devices, list)
1824                 td->aborted_with_changes = td->changed;
1825 }
1826
1827 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1828 {
1829         int r = -EINVAL;
1830
1831         down_write(&pmd->root_lock);
1832         if (pmd->fail_io)
1833                 goto out;
1834
1835         __set_abort_with_changes_flags(pmd);
1836         __destroy_persistent_data_objects(pmd);
1837         r = __create_persistent_data_objects(pmd, false);
1838         if (r)
1839                 pmd->fail_io = true;
1840
1841 out:
1842         up_write(&pmd->root_lock);
1843
1844         return r;
1845 }
1846
1847 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1848 {
1849         int r = -EINVAL;
1850
1851         down_read(&pmd->root_lock);
1852         if (!pmd->fail_io)
1853                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1854         up_read(&pmd->root_lock);
1855
1856         return r;
1857 }
1858
1859 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1860                                           dm_block_t *result)
1861 {
1862         int r = -EINVAL;
1863
1864         down_read(&pmd->root_lock);
1865         if (!pmd->fail_io)
1866                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1867
1868         if (!r) {
1869                 if (*result < pmd->metadata_reserve)
1870                         *result = 0;
1871                 else
1872                         *result -= pmd->metadata_reserve;
1873         }
1874         up_read(&pmd->root_lock);
1875
1876         return r;
1877 }
1878
1879 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1880                                   dm_block_t *result)
1881 {
1882         int r = -EINVAL;
1883
1884         down_read(&pmd->root_lock);
1885         if (!pmd->fail_io)
1886                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1887         up_read(&pmd->root_lock);
1888
1889         return r;
1890 }
1891
1892 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1893 {
1894         int r = -EINVAL;
1895
1896         down_read(&pmd->root_lock);
1897         if (!pmd->fail_io)
1898                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1899         up_read(&pmd->root_lock);
1900
1901         return r;
1902 }
1903
1904 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1905 {
1906         int r = -EINVAL;
1907         struct dm_pool_metadata *pmd = td->pmd;
1908
1909         down_read(&pmd->root_lock);
1910         if (!pmd->fail_io) {
1911                 *result = td->mapped_blocks;
1912                 r = 0;
1913         }
1914         up_read(&pmd->root_lock);
1915
1916         return r;
1917 }
1918
1919 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1920 {
1921         int r;
1922         __le64 value_le;
1923         dm_block_t thin_root;
1924         struct dm_pool_metadata *pmd = td->pmd;
1925
1926         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1927         if (r)
1928                 return r;
1929
1930         thin_root = le64_to_cpu(value_le);
1931
1932         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1933 }
1934
1935 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1936                                      dm_block_t *result)
1937 {
1938         int r = -EINVAL;
1939         struct dm_pool_metadata *pmd = td->pmd;
1940
1941         down_read(&pmd->root_lock);
1942         if (!pmd->fail_io)
1943                 r = __highest_block(td, result);
1944         up_read(&pmd->root_lock);
1945
1946         return r;
1947 }
1948
1949 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1950 {
1951         int r;
1952         dm_block_t old_count;
1953
1954         r = dm_sm_get_nr_blocks(sm, &old_count);
1955         if (r)
1956                 return r;
1957
1958         if (new_count == old_count)
1959                 return 0;
1960
1961         if (new_count < old_count) {
1962                 DMERR("cannot reduce size of space map");
1963                 return -EINVAL;
1964         }
1965
1966         return dm_sm_extend(sm, new_count - old_count);
1967 }
1968
1969 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1970 {
1971         int r = -EINVAL;
1972
1973         down_write(&pmd->root_lock);
1974         if (!pmd->fail_io)
1975                 r = __resize_space_map(pmd->data_sm, new_count);
1976         up_write(&pmd->root_lock);
1977
1978         return r;
1979 }
1980
1981 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1982 {
1983         int r = -EINVAL;
1984
1985         down_write(&pmd->root_lock);
1986         if (!pmd->fail_io) {
1987                 r = __resize_space_map(pmd->metadata_sm, new_count);
1988                 if (!r)
1989                         __set_metadata_reserve(pmd);
1990         }
1991         up_write(&pmd->root_lock);
1992
1993         return r;
1994 }
1995
1996 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1997 {
1998         down_write(&pmd->root_lock);
1999         dm_bm_set_read_only(pmd->bm);
2000         up_write(&pmd->root_lock);
2001 }
2002
2003 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2004 {
2005         down_write(&pmd->root_lock);
2006         dm_bm_set_read_write(pmd->bm);
2007         up_write(&pmd->root_lock);
2008 }
2009
2010 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2011                                         dm_block_t threshold,
2012                                         dm_sm_threshold_fn fn,
2013                                         void *context)
2014 {
2015         int r;
2016
2017         down_write(&pmd->root_lock);
2018         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2019         up_write(&pmd->root_lock);
2020
2021         return r;
2022 }
2023
2024 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2025 {
2026         int r;
2027         struct dm_block *sblock;
2028         struct thin_disk_superblock *disk_super;
2029
2030         down_write(&pmd->root_lock);
2031         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2032
2033         r = superblock_lock(pmd, &sblock);
2034         if (r) {
2035                 DMERR("couldn't read superblock");
2036                 goto out;
2037         }
2038
2039         disk_super = dm_block_data(sblock);
2040         disk_super->flags = cpu_to_le32(pmd->flags);
2041
2042         dm_bm_unlock(sblock);
2043 out:
2044         up_write(&pmd->root_lock);
2045         return r;
2046 }
2047
2048 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2049 {
2050         bool needs_check;
2051
2052         down_read(&pmd->root_lock);
2053         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2054         up_read(&pmd->root_lock);
2055
2056         return needs_check;
2057 }
2058
2059 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2060 {
2061         down_read(&pmd->root_lock);
2062         if (!pmd->fail_io)
2063                 dm_tm_issue_prefetches(pmd->tm);
2064         up_read(&pmd->root_lock);
2065 }