GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /*
84  * For btree insert:
85  *  3 for btree insert +
86  *  2 for btree lookup used within space map
87  * For btree remove:
88  *  2 for shadow spine +
89  *  4 for rebalance 3 child node
90  */
91 #define THIN_MAX_CONCURRENT_LOCKS 6
92
93 /* This should be plenty */
94 #define SPACE_MAP_ROOT_SIZE 128
95
96 /*
97  * Little endian on-disk superblock and device details.
98  */
99 struct thin_disk_superblock {
100         __le32 csum;    /* Checksum of superblock except for this field. */
101         __le32 flags;
102         __le64 blocknr; /* This block number, dm_block_t. */
103
104         __u8 uuid[16];
105         __le64 magic;
106         __le32 version;
107         __le32 time;
108
109         __le64 trans_id;
110
111         /*
112          * Root held by userspace transactions.
113          */
114         __le64 held_root;
115
116         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
117         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
118
119         /*
120          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
121          */
122         __le64 data_mapping_root;
123
124         /*
125          * Device detail root mapping dev_id -> device_details
126          */
127         __le64 device_details_root;
128
129         __le32 data_block_size;         /* In 512-byte sectors. */
130
131         __le32 metadata_block_size;     /* In 512-byte sectors. */
132         __le64 metadata_nr_blocks;
133
134         __le32 compat_flags;
135         __le32 compat_ro_flags;
136         __le32 incompat_flags;
137 } __packed;
138
139 struct disk_device_details {
140         __le64 mapped_blocks;
141         __le64 transaction_id;          /* When created. */
142         __le32 creation_time;
143         __le32 snapshotted_time;
144 } __packed;
145
146 struct dm_pool_metadata {
147         struct hlist_node hash;
148
149         struct block_device *bdev;
150         struct dm_block_manager *bm;
151         struct dm_space_map *metadata_sm;
152         struct dm_space_map *data_sm;
153         struct dm_transaction_manager *tm;
154         struct dm_transaction_manager *nb_tm;
155
156         /*
157          * Two-level btree.
158          * First level holds thin_dev_t.
159          * Second level holds mappings.
160          */
161         struct dm_btree_info info;
162
163         /*
164          * Non-blocking version of the above.
165          */
166         struct dm_btree_info nb_info;
167
168         /*
169          * Just the top level for deleting whole devices.
170          */
171         struct dm_btree_info tl_info;
172
173         /*
174          * Just the bottom level for creating new devices.
175          */
176         struct dm_btree_info bl_info;
177
178         /*
179          * Describes the device details btree.
180          */
181         struct dm_btree_info details_info;
182
183         struct rw_semaphore root_lock;
184         uint32_t time;
185         dm_block_t root;
186         dm_block_t details_root;
187         struct list_head thin_devices;
188         uint64_t trans_id;
189         unsigned long flags;
190         sector_t data_block_size;
191
192         /*
193          * We reserve a section of the metadata for commit overhead.
194          * All reported space does *not* include this.
195          */
196         dm_block_t metadata_reserve;
197
198         /*
199          * Set if a transaction has to be aborted but the attempt to roll back
200          * to the previous (good) transaction failed.  The only pool metadata
201          * operation possible in this state is the closing of the device.
202          */
203         bool fail_io:1;
204
205         /*
206          * Reading the space map roots can fail, so we read it into these
207          * buffers before the superblock is locked and updated.
208          */
209         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
210         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
211 };
212
213 struct dm_thin_device {
214         struct list_head list;
215         struct dm_pool_metadata *pmd;
216         dm_thin_id id;
217
218         int open_count;
219         bool changed:1;
220         bool aborted_with_changes:1;
221         uint64_t mapped_blocks;
222         uint64_t transaction_id;
223         uint32_t creation_time;
224         uint32_t snapshotted_time;
225 };
226
227 /*----------------------------------------------------------------
228  * superblock validator
229  *--------------------------------------------------------------*/
230
231 #define SUPERBLOCK_CSUM_XOR 160774
232
233 static void sb_prepare_for_write(struct dm_block_validator *v,
234                                  struct dm_block *b,
235                                  size_t block_size)
236 {
237         struct thin_disk_superblock *disk_super = dm_block_data(b);
238
239         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
240         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
241                                                       block_size - sizeof(__le32),
242                                                       SUPERBLOCK_CSUM_XOR));
243 }
244
245 static int sb_check(struct dm_block_validator *v,
246                     struct dm_block *b,
247                     size_t block_size)
248 {
249         struct thin_disk_superblock *disk_super = dm_block_data(b);
250         __le32 csum_le;
251
252         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
253                 DMERR("sb_check failed: blocknr %llu: "
254                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
255                       (unsigned long long)dm_block_location(b));
256                 return -ENOTBLK;
257         }
258
259         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
260                 DMERR("sb_check failed: magic %llu: "
261                       "wanted %llu", le64_to_cpu(disk_super->magic),
262                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
263                 return -EILSEQ;
264         }
265
266         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
267                                              block_size - sizeof(__le32),
268                                              SUPERBLOCK_CSUM_XOR));
269         if (csum_le != disk_super->csum) {
270                 DMERR("sb_check failed: csum %u: wanted %u",
271                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
272                 return -EILSEQ;
273         }
274
275         return 0;
276 }
277
278 static struct dm_block_validator sb_validator = {
279         .name = "superblock",
280         .prepare_for_write = sb_prepare_for_write,
281         .check = sb_check
282 };
283
284 /*----------------------------------------------------------------
285  * Methods for the btree value types
286  *--------------------------------------------------------------*/
287
288 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
289 {
290         return (b << 24) | t;
291 }
292
293 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
294 {
295         *b = v >> 24;
296         *t = v & ((1 << 24) - 1);
297 }
298
299 static void data_block_inc(void *context, const void *value_le)
300 {
301         struct dm_space_map *sm = context;
302         __le64 v_le;
303         uint64_t b;
304         uint32_t t;
305
306         memcpy(&v_le, value_le, sizeof(v_le));
307         unpack_block_time(le64_to_cpu(v_le), &b, &t);
308         dm_sm_inc_block(sm, b);
309 }
310
311 static void data_block_dec(void *context, const void *value_le)
312 {
313         struct dm_space_map *sm = context;
314         __le64 v_le;
315         uint64_t b;
316         uint32_t t;
317
318         memcpy(&v_le, value_le, sizeof(v_le));
319         unpack_block_time(le64_to_cpu(v_le), &b, &t);
320         dm_sm_dec_block(sm, b);
321 }
322
323 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
324 {
325         __le64 v1_le, v2_le;
326         uint64_t b1, b2;
327         uint32_t t;
328
329         memcpy(&v1_le, value1_le, sizeof(v1_le));
330         memcpy(&v2_le, value2_le, sizeof(v2_le));
331         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
332         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
333
334         return b1 == b2;
335 }
336
337 static void subtree_inc(void *context, const void *value)
338 {
339         struct dm_btree_info *info = context;
340         __le64 root_le;
341         uint64_t root;
342
343         memcpy(&root_le, value, sizeof(root_le));
344         root = le64_to_cpu(root_le);
345         dm_tm_inc(info->tm, root);
346 }
347
348 static void subtree_dec(void *context, const void *value)
349 {
350         struct dm_btree_info *info = context;
351         __le64 root_le;
352         uint64_t root;
353
354         memcpy(&root_le, value, sizeof(root_le));
355         root = le64_to_cpu(root_le);
356         if (dm_btree_del(info, root))
357                 DMERR("btree delete failed");
358 }
359
360 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
361 {
362         __le64 v1_le, v2_le;
363         memcpy(&v1_le, value1_le, sizeof(v1_le));
364         memcpy(&v2_le, value2_le, sizeof(v2_le));
365
366         return v1_le == v2_le;
367 }
368
369 /*----------------------------------------------------------------*/
370
371 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
372                                 struct dm_block **sblock)
373 {
374         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
375                                      &sb_validator, sblock);
376 }
377
378 static int superblock_lock(struct dm_pool_metadata *pmd,
379                            struct dm_block **sblock)
380 {
381         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
382                                 &sb_validator, sblock);
383 }
384
385 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
386 {
387         int r;
388         unsigned i;
389         struct dm_block *b;
390         __le64 *data_le, zero = cpu_to_le64(0);
391         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
392
393         /*
394          * We can't use a validator here - it may be all zeroes.
395          */
396         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
397         if (r)
398                 return r;
399
400         data_le = dm_block_data(b);
401         *result = 1;
402         for (i = 0; i < block_size; i++) {
403                 if (data_le[i] != zero) {
404                         *result = 0;
405                         break;
406                 }
407         }
408
409         dm_bm_unlock(b);
410
411         return 0;
412 }
413
414 static void __setup_btree_details(struct dm_pool_metadata *pmd)
415 {
416         pmd->info.tm = pmd->tm;
417         pmd->info.levels = 2;
418         pmd->info.value_type.context = pmd->data_sm;
419         pmd->info.value_type.size = sizeof(__le64);
420         pmd->info.value_type.inc = data_block_inc;
421         pmd->info.value_type.dec = data_block_dec;
422         pmd->info.value_type.equal = data_block_equal;
423
424         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
425         pmd->nb_info.tm = pmd->nb_tm;
426
427         pmd->tl_info.tm = pmd->tm;
428         pmd->tl_info.levels = 1;
429         pmd->tl_info.value_type.context = &pmd->bl_info;
430         pmd->tl_info.value_type.size = sizeof(__le64);
431         pmd->tl_info.value_type.inc = subtree_inc;
432         pmd->tl_info.value_type.dec = subtree_dec;
433         pmd->tl_info.value_type.equal = subtree_equal;
434
435         pmd->bl_info.tm = pmd->tm;
436         pmd->bl_info.levels = 1;
437         pmd->bl_info.value_type.context = pmd->data_sm;
438         pmd->bl_info.value_type.size = sizeof(__le64);
439         pmd->bl_info.value_type.inc = data_block_inc;
440         pmd->bl_info.value_type.dec = data_block_dec;
441         pmd->bl_info.value_type.equal = data_block_equal;
442
443         pmd->details_info.tm = pmd->tm;
444         pmd->details_info.levels = 1;
445         pmd->details_info.value_type.context = NULL;
446         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
447         pmd->details_info.value_type.inc = NULL;
448         pmd->details_info.value_type.dec = NULL;
449         pmd->details_info.value_type.equal = NULL;
450 }
451
452 static int save_sm_roots(struct dm_pool_metadata *pmd)
453 {
454         int r;
455         size_t len;
456
457         r = dm_sm_root_size(pmd->metadata_sm, &len);
458         if (r < 0)
459                 return r;
460
461         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
462         if (r < 0)
463                 return r;
464
465         r = dm_sm_root_size(pmd->data_sm, &len);
466         if (r < 0)
467                 return r;
468
469         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
470 }
471
472 static void copy_sm_roots(struct dm_pool_metadata *pmd,
473                           struct thin_disk_superblock *disk)
474 {
475         memcpy(&disk->metadata_space_map_root,
476                &pmd->metadata_space_map_root,
477                sizeof(pmd->metadata_space_map_root));
478
479         memcpy(&disk->data_space_map_root,
480                &pmd->data_space_map_root,
481                sizeof(pmd->data_space_map_root));
482 }
483
484 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
485 {
486         int r;
487         struct dm_block *sblock;
488         struct thin_disk_superblock *disk_super;
489         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
490
491         if (bdev_size > THIN_METADATA_MAX_SECTORS)
492                 bdev_size = THIN_METADATA_MAX_SECTORS;
493
494         r = dm_sm_commit(pmd->data_sm);
495         if (r < 0)
496                 return r;
497
498         r = dm_tm_pre_commit(pmd->tm);
499         if (r < 0)
500                 return r;
501
502         r = save_sm_roots(pmd);
503         if (r < 0)
504                 return r;
505
506         r = superblock_lock_zero(pmd, &sblock);
507         if (r)
508                 return r;
509
510         disk_super = dm_block_data(sblock);
511         disk_super->flags = 0;
512         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
513         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
514         disk_super->version = cpu_to_le32(THIN_VERSION);
515         disk_super->time = 0;
516         disk_super->trans_id = 0;
517         disk_super->held_root = 0;
518
519         copy_sm_roots(pmd, disk_super);
520
521         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
522         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
523         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
524         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
525         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
526
527         return dm_tm_commit(pmd->tm, sblock);
528 }
529
530 static int __format_metadata(struct dm_pool_metadata *pmd)
531 {
532         int r;
533
534         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
535                                  &pmd->tm, &pmd->metadata_sm);
536         if (r < 0) {
537                 DMERR("tm_create_with_sm failed");
538                 return r;
539         }
540
541         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
542         if (IS_ERR(pmd->data_sm)) {
543                 DMERR("sm_disk_create failed");
544                 r = PTR_ERR(pmd->data_sm);
545                 goto bad_cleanup_tm;
546         }
547
548         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
549         if (!pmd->nb_tm) {
550                 DMERR("could not create non-blocking clone tm");
551                 r = -ENOMEM;
552                 goto bad_cleanup_data_sm;
553         }
554
555         __setup_btree_details(pmd);
556
557         r = dm_btree_empty(&pmd->info, &pmd->root);
558         if (r < 0)
559                 goto bad_cleanup_nb_tm;
560
561         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
562         if (r < 0) {
563                 DMERR("couldn't create devices root");
564                 goto bad_cleanup_nb_tm;
565         }
566
567         r = __write_initial_superblock(pmd);
568         if (r)
569                 goto bad_cleanup_nb_tm;
570
571         return 0;
572
573 bad_cleanup_nb_tm:
574         dm_tm_destroy(pmd->nb_tm);
575 bad_cleanup_data_sm:
576         dm_sm_destroy(pmd->data_sm);
577 bad_cleanup_tm:
578         dm_tm_destroy(pmd->tm);
579         dm_sm_destroy(pmd->metadata_sm);
580
581         return r;
582 }
583
584 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
585                                      struct dm_pool_metadata *pmd)
586 {
587         uint32_t features;
588
589         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
590         if (features) {
591                 DMERR("could not access metadata due to unsupported optional features (%lx).",
592                       (unsigned long)features);
593                 return -EINVAL;
594         }
595
596         /*
597          * Check for read-only metadata to skip the following RDWR checks.
598          */
599         if (get_disk_ro(pmd->bdev->bd_disk))
600                 return 0;
601
602         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
603         if (features) {
604                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
605                       (unsigned long)features);
606                 return -EINVAL;
607         }
608
609         return 0;
610 }
611
612 static int __open_metadata(struct dm_pool_metadata *pmd)
613 {
614         int r;
615         struct dm_block *sblock;
616         struct thin_disk_superblock *disk_super;
617
618         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
619                             &sb_validator, &sblock);
620         if (r < 0) {
621                 DMERR("couldn't read superblock");
622                 return r;
623         }
624
625         disk_super = dm_block_data(sblock);
626
627         /* Verify the data block size hasn't changed */
628         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
629                 DMERR("changing the data block size (from %u to %llu) is not supported",
630                       le32_to_cpu(disk_super->data_block_size),
631                       (unsigned long long)pmd->data_block_size);
632                 r = -EINVAL;
633                 goto bad_unlock_sblock;
634         }
635
636         r = __check_incompat_features(disk_super, pmd);
637         if (r < 0)
638                 goto bad_unlock_sblock;
639
640         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
641                                disk_super->metadata_space_map_root,
642                                sizeof(disk_super->metadata_space_map_root),
643                                &pmd->tm, &pmd->metadata_sm);
644         if (r < 0) {
645                 DMERR("tm_open_with_sm failed");
646                 goto bad_unlock_sblock;
647         }
648
649         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
650                                        sizeof(disk_super->data_space_map_root));
651         if (IS_ERR(pmd->data_sm)) {
652                 DMERR("sm_disk_open failed");
653                 r = PTR_ERR(pmd->data_sm);
654                 goto bad_cleanup_tm;
655         }
656
657         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
658         if (!pmd->nb_tm) {
659                 DMERR("could not create non-blocking clone tm");
660                 r = -ENOMEM;
661                 goto bad_cleanup_data_sm;
662         }
663
664         /*
665          * For pool metadata opening process, root setting is redundant
666          * because it will be set again in __begin_transaction(). But dm
667          * pool aborting process really needs to get last transaction's
668          * root to avoid accessing broken btree.
669          */
670         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
671         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
672
673         __setup_btree_details(pmd);
674         dm_bm_unlock(sblock);
675
676         return 0;
677
678 bad_cleanup_data_sm:
679         dm_sm_destroy(pmd->data_sm);
680 bad_cleanup_tm:
681         dm_tm_destroy(pmd->tm);
682         dm_sm_destroy(pmd->metadata_sm);
683 bad_unlock_sblock:
684         dm_bm_unlock(sblock);
685
686         return r;
687 }
688
689 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
690 {
691         int r, unformatted;
692
693         r = __superblock_all_zeroes(pmd->bm, &unformatted);
694         if (r)
695                 return r;
696
697         if (unformatted)
698                 return format_device ? __format_metadata(pmd) : -EPERM;
699
700         return __open_metadata(pmd);
701 }
702
703 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
704 {
705         int r;
706
707         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
708                                           THIN_METADATA_CACHE_SIZE,
709                                           THIN_MAX_CONCURRENT_LOCKS);
710         if (IS_ERR(pmd->bm)) {
711                 DMERR("could not create block manager");
712                 r = PTR_ERR(pmd->bm);
713                 pmd->bm = NULL;
714                 return r;
715         }
716
717         r = __open_or_format_metadata(pmd, format_device);
718         if (r) {
719                 dm_block_manager_destroy(pmd->bm);
720                 pmd->bm = NULL;
721         }
722
723         return r;
724 }
725
726 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
727 {
728         dm_sm_destroy(pmd->data_sm);
729         dm_sm_destroy(pmd->metadata_sm);
730         dm_tm_destroy(pmd->nb_tm);
731         dm_tm_destroy(pmd->tm);
732         dm_block_manager_destroy(pmd->bm);
733 }
734
735 static int __begin_transaction(struct dm_pool_metadata *pmd)
736 {
737         int r;
738         struct thin_disk_superblock *disk_super;
739         struct dm_block *sblock;
740
741         /*
742          * We re-read the superblock every time.  Shouldn't need to do this
743          * really.
744          */
745         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
746                             &sb_validator, &sblock);
747         if (r)
748                 return r;
749
750         disk_super = dm_block_data(sblock);
751         pmd->time = le32_to_cpu(disk_super->time);
752         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
753         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
754         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
755         pmd->flags = le32_to_cpu(disk_super->flags);
756         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
757
758         dm_bm_unlock(sblock);
759         return 0;
760 }
761
762 static int __write_changed_details(struct dm_pool_metadata *pmd)
763 {
764         int r;
765         struct dm_thin_device *td, *tmp;
766         struct disk_device_details details;
767         uint64_t key;
768
769         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
770                 if (!td->changed)
771                         continue;
772
773                 key = td->id;
774
775                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
776                 details.transaction_id = cpu_to_le64(td->transaction_id);
777                 details.creation_time = cpu_to_le32(td->creation_time);
778                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
779                 __dm_bless_for_disk(&details);
780
781                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
782                                     &key, &details, &pmd->details_root);
783                 if (r)
784                         return r;
785
786                 if (td->open_count)
787                         td->changed = 0;
788                 else {
789                         list_del(&td->list);
790                         kfree(td);
791                 }
792         }
793
794         return 0;
795 }
796
797 static int __commit_transaction(struct dm_pool_metadata *pmd)
798 {
799         int r;
800         size_t metadata_len, data_len;
801         struct thin_disk_superblock *disk_super;
802         struct dm_block *sblock;
803
804         /*
805          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
806          */
807         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
808
809         r = __write_changed_details(pmd);
810         if (r < 0)
811                 return r;
812
813         r = dm_sm_commit(pmd->data_sm);
814         if (r < 0)
815                 return r;
816
817         r = dm_tm_pre_commit(pmd->tm);
818         if (r < 0)
819                 return r;
820
821         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
822         if (r < 0)
823                 return r;
824
825         r = dm_sm_root_size(pmd->data_sm, &data_len);
826         if (r < 0)
827                 return r;
828
829         r = save_sm_roots(pmd);
830         if (r < 0)
831                 return r;
832
833         r = superblock_lock(pmd, &sblock);
834         if (r)
835                 return r;
836
837         disk_super = dm_block_data(sblock);
838         disk_super->time = cpu_to_le32(pmd->time);
839         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
840         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
841         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
842         disk_super->flags = cpu_to_le32(pmd->flags);
843
844         copy_sm_roots(pmd, disk_super);
845
846         return dm_tm_commit(pmd->tm, sblock);
847 }
848
849 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
850 {
851         int r;
852         dm_block_t total;
853         dm_block_t max_blocks = 4096; /* 16M */
854
855         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
856         if (r) {
857                 DMERR("could not get size of metadata device");
858                 pmd->metadata_reserve = max_blocks;
859         } else
860                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
861 }
862
863 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
864                                                sector_t data_block_size,
865                                                bool format_device)
866 {
867         int r;
868         struct dm_pool_metadata *pmd;
869
870         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
871         if (!pmd) {
872                 DMERR("could not allocate metadata struct");
873                 return ERR_PTR(-ENOMEM);
874         }
875
876         init_rwsem(&pmd->root_lock);
877         pmd->time = 0;
878         INIT_LIST_HEAD(&pmd->thin_devices);
879         pmd->fail_io = false;
880         pmd->bdev = bdev;
881         pmd->data_block_size = data_block_size;
882
883         r = __create_persistent_data_objects(pmd, format_device);
884         if (r) {
885                 kfree(pmd);
886                 return ERR_PTR(r);
887         }
888
889         r = __begin_transaction(pmd);
890         if (r < 0) {
891                 if (dm_pool_metadata_close(pmd) < 0)
892                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
893                 return ERR_PTR(r);
894         }
895
896         __set_metadata_reserve(pmd);
897
898         return pmd;
899 }
900
901 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
902 {
903         int r;
904         unsigned open_devices = 0;
905         struct dm_thin_device *td, *tmp;
906
907         down_read(&pmd->root_lock);
908         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
909                 if (td->open_count)
910                         open_devices++;
911                 else {
912                         list_del(&td->list);
913                         kfree(td);
914                 }
915         }
916         up_read(&pmd->root_lock);
917
918         if (open_devices) {
919                 DMERR("attempt to close pmd when %u device(s) are still open",
920                        open_devices);
921                 return -EBUSY;
922         }
923
924         if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
925                 r = __commit_transaction(pmd);
926                 if (r < 0)
927                         DMWARN("%s: __commit_transaction() failed, error = %d",
928                                __func__, r);
929         }
930
931         if (!pmd->fail_io)
932                 __destroy_persistent_data_objects(pmd);
933
934         kfree(pmd);
935         return 0;
936 }
937
938 /*
939  * __open_device: Returns @td corresponding to device with id @dev,
940  * creating it if @create is set and incrementing @td->open_count.
941  * On failure, @td is undefined.
942  */
943 static int __open_device(struct dm_pool_metadata *pmd,
944                          dm_thin_id dev, int create,
945                          struct dm_thin_device **td)
946 {
947         int r, changed = 0;
948         struct dm_thin_device *td2;
949         uint64_t key = dev;
950         struct disk_device_details details_le;
951
952         /*
953          * If the device is already open, return it.
954          */
955         list_for_each_entry(td2, &pmd->thin_devices, list)
956                 if (td2->id == dev) {
957                         /*
958                          * May not create an already-open device.
959                          */
960                         if (create)
961                                 return -EEXIST;
962
963                         td2->open_count++;
964                         *td = td2;
965                         return 0;
966                 }
967
968         /*
969          * Check the device exists.
970          */
971         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
972                             &key, &details_le);
973         if (r) {
974                 if (r != -ENODATA || !create)
975                         return r;
976
977                 /*
978                  * Create new device.
979                  */
980                 changed = 1;
981                 details_le.mapped_blocks = 0;
982                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
983                 details_le.creation_time = cpu_to_le32(pmd->time);
984                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
985         }
986
987         *td = kmalloc(sizeof(**td), GFP_NOIO);
988         if (!*td)
989                 return -ENOMEM;
990
991         (*td)->pmd = pmd;
992         (*td)->id = dev;
993         (*td)->open_count = 1;
994         (*td)->changed = changed;
995         (*td)->aborted_with_changes = false;
996         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
997         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
998         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
999         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1000
1001         list_add(&(*td)->list, &pmd->thin_devices);
1002
1003         return 0;
1004 }
1005
1006 static void __close_device(struct dm_thin_device *td)
1007 {
1008         --td->open_count;
1009 }
1010
1011 static int __create_thin(struct dm_pool_metadata *pmd,
1012                          dm_thin_id dev)
1013 {
1014         int r;
1015         dm_block_t dev_root;
1016         uint64_t key = dev;
1017         struct disk_device_details details_le;
1018         struct dm_thin_device *td;
1019         __le64 value;
1020
1021         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1022                             &key, &details_le);
1023         if (!r)
1024                 return -EEXIST;
1025
1026         /*
1027          * Create an empty btree for the mappings.
1028          */
1029         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1030         if (r)
1031                 return r;
1032
1033         /*
1034          * Insert it into the main mapping tree.
1035          */
1036         value = cpu_to_le64(dev_root);
1037         __dm_bless_for_disk(&value);
1038         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1039         if (r) {
1040                 dm_btree_del(&pmd->bl_info, dev_root);
1041                 return r;
1042         }
1043
1044         r = __open_device(pmd, dev, 1, &td);
1045         if (r) {
1046                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1047                 dm_btree_del(&pmd->bl_info, dev_root);
1048                 return r;
1049         }
1050         __close_device(td);
1051
1052         return r;
1053 }
1054
1055 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1056 {
1057         int r = -EINVAL;
1058
1059         down_write(&pmd->root_lock);
1060         if (!pmd->fail_io)
1061                 r = __create_thin(pmd, dev);
1062         up_write(&pmd->root_lock);
1063
1064         return r;
1065 }
1066
1067 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1068                                   struct dm_thin_device *snap,
1069                                   dm_thin_id origin, uint32_t time)
1070 {
1071         int r;
1072         struct dm_thin_device *td;
1073
1074         r = __open_device(pmd, origin, 0, &td);
1075         if (r)
1076                 return r;
1077
1078         td->changed = 1;
1079         td->snapshotted_time = time;
1080
1081         snap->mapped_blocks = td->mapped_blocks;
1082         snap->snapshotted_time = time;
1083         __close_device(td);
1084
1085         return 0;
1086 }
1087
1088 static int __create_snap(struct dm_pool_metadata *pmd,
1089                          dm_thin_id dev, dm_thin_id origin)
1090 {
1091         int r;
1092         dm_block_t origin_root;
1093         uint64_t key = origin, dev_key = dev;
1094         struct dm_thin_device *td;
1095         struct disk_device_details details_le;
1096         __le64 value;
1097
1098         /* check this device is unused */
1099         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1100                             &dev_key, &details_le);
1101         if (!r)
1102                 return -EEXIST;
1103
1104         /* find the mapping tree for the origin */
1105         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1106         if (r)
1107                 return r;
1108         origin_root = le64_to_cpu(value);
1109
1110         /* clone the origin, an inc will do */
1111         dm_tm_inc(pmd->tm, origin_root);
1112
1113         /* insert into the main mapping tree */
1114         value = cpu_to_le64(origin_root);
1115         __dm_bless_for_disk(&value);
1116         key = dev;
1117         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1118         if (r) {
1119                 dm_tm_dec(pmd->tm, origin_root);
1120                 return r;
1121         }
1122
1123         pmd->time++;
1124
1125         r = __open_device(pmd, dev, 1, &td);
1126         if (r)
1127                 goto bad;
1128
1129         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1130         __close_device(td);
1131
1132         if (r)
1133                 goto bad;
1134
1135         return 0;
1136
1137 bad:
1138         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1139         dm_btree_remove(&pmd->details_info, pmd->details_root,
1140                         &key, &pmd->details_root);
1141         return r;
1142 }
1143
1144 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1145                                  dm_thin_id dev,
1146                                  dm_thin_id origin)
1147 {
1148         int r = -EINVAL;
1149
1150         down_write(&pmd->root_lock);
1151         if (!pmd->fail_io)
1152                 r = __create_snap(pmd, dev, origin);
1153         up_write(&pmd->root_lock);
1154
1155         return r;
1156 }
1157
1158 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1159 {
1160         int r;
1161         uint64_t key = dev;
1162         struct dm_thin_device *td;
1163
1164         /* TODO: failure should mark the transaction invalid */
1165         r = __open_device(pmd, dev, 0, &td);
1166         if (r)
1167                 return r;
1168
1169         if (td->open_count > 1) {
1170                 __close_device(td);
1171                 return -EBUSY;
1172         }
1173
1174         list_del(&td->list);
1175         kfree(td);
1176         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1177                             &key, &pmd->details_root);
1178         if (r)
1179                 return r;
1180
1181         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1182         if (r)
1183                 return r;
1184
1185         return 0;
1186 }
1187
1188 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1189                                dm_thin_id dev)
1190 {
1191         int r = -EINVAL;
1192
1193         down_write(&pmd->root_lock);
1194         if (!pmd->fail_io)
1195                 r = __delete_device(pmd, dev);
1196         up_write(&pmd->root_lock);
1197
1198         return r;
1199 }
1200
1201 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1202                                         uint64_t current_id,
1203                                         uint64_t new_id)
1204 {
1205         int r = -EINVAL;
1206
1207         down_write(&pmd->root_lock);
1208
1209         if (pmd->fail_io)
1210                 goto out;
1211
1212         if (pmd->trans_id != current_id) {
1213                 DMERR("mismatched transaction id");
1214                 goto out;
1215         }
1216
1217         pmd->trans_id = new_id;
1218         r = 0;
1219
1220 out:
1221         up_write(&pmd->root_lock);
1222
1223         return r;
1224 }
1225
1226 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1227                                         uint64_t *result)
1228 {
1229         int r = -EINVAL;
1230
1231         down_read(&pmd->root_lock);
1232         if (!pmd->fail_io) {
1233                 *result = pmd->trans_id;
1234                 r = 0;
1235         }
1236         up_read(&pmd->root_lock);
1237
1238         return r;
1239 }
1240
1241 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1242 {
1243         int r, inc;
1244         struct thin_disk_superblock *disk_super;
1245         struct dm_block *copy, *sblock;
1246         dm_block_t held_root;
1247
1248         /*
1249          * We commit to ensure the btree roots which we increment in a
1250          * moment are up to date.
1251          */
1252         __commit_transaction(pmd);
1253
1254         /*
1255          * Copy the superblock.
1256          */
1257         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1258         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1259                                &sb_validator, &copy, &inc);
1260         if (r)
1261                 return r;
1262
1263         BUG_ON(!inc);
1264
1265         held_root = dm_block_location(copy);
1266         disk_super = dm_block_data(copy);
1267
1268         if (le64_to_cpu(disk_super->held_root)) {
1269                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1270
1271                 dm_tm_dec(pmd->tm, held_root);
1272                 dm_tm_unlock(pmd->tm, copy);
1273                 return -EBUSY;
1274         }
1275
1276         /*
1277          * Wipe the spacemap since we're not publishing this.
1278          */
1279         memset(&disk_super->data_space_map_root, 0,
1280                sizeof(disk_super->data_space_map_root));
1281         memset(&disk_super->metadata_space_map_root, 0,
1282                sizeof(disk_super->metadata_space_map_root));
1283
1284         /*
1285          * Increment the data structures that need to be preserved.
1286          */
1287         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1288         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1289         dm_tm_unlock(pmd->tm, copy);
1290
1291         /*
1292          * Write the held root into the superblock.
1293          */
1294         r = superblock_lock(pmd, &sblock);
1295         if (r) {
1296                 dm_tm_dec(pmd->tm, held_root);
1297                 return r;
1298         }
1299
1300         disk_super = dm_block_data(sblock);
1301         disk_super->held_root = cpu_to_le64(held_root);
1302         dm_bm_unlock(sblock);
1303         return 0;
1304 }
1305
1306 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1307 {
1308         int r = -EINVAL;
1309
1310         down_write(&pmd->root_lock);
1311         if (!pmd->fail_io)
1312                 r = __reserve_metadata_snap(pmd);
1313         up_write(&pmd->root_lock);
1314
1315         return r;
1316 }
1317
1318 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1319 {
1320         int r;
1321         struct thin_disk_superblock *disk_super;
1322         struct dm_block *sblock, *copy;
1323         dm_block_t held_root;
1324
1325         r = superblock_lock(pmd, &sblock);
1326         if (r)
1327                 return r;
1328
1329         disk_super = dm_block_data(sblock);
1330         held_root = le64_to_cpu(disk_super->held_root);
1331         disk_super->held_root = cpu_to_le64(0);
1332
1333         dm_bm_unlock(sblock);
1334
1335         if (!held_root) {
1336                 DMWARN("No pool metadata snapshot found: nothing to release.");
1337                 return -EINVAL;
1338         }
1339
1340         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1341         if (r)
1342                 return r;
1343
1344         disk_super = dm_block_data(copy);
1345         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1346         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1347         dm_sm_dec_block(pmd->metadata_sm, held_root);
1348
1349         dm_tm_unlock(pmd->tm, copy);
1350
1351         return 0;
1352 }
1353
1354 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1355 {
1356         int r = -EINVAL;
1357
1358         down_write(&pmd->root_lock);
1359         if (!pmd->fail_io)
1360                 r = __release_metadata_snap(pmd);
1361         up_write(&pmd->root_lock);
1362
1363         return r;
1364 }
1365
1366 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1367                                dm_block_t *result)
1368 {
1369         int r;
1370         struct thin_disk_superblock *disk_super;
1371         struct dm_block *sblock;
1372
1373         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1374                             &sb_validator, &sblock);
1375         if (r)
1376                 return r;
1377
1378         disk_super = dm_block_data(sblock);
1379         *result = le64_to_cpu(disk_super->held_root);
1380
1381         dm_bm_unlock(sblock);
1382
1383         return 0;
1384 }
1385
1386 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1387                               dm_block_t *result)
1388 {
1389         int r = -EINVAL;
1390
1391         down_read(&pmd->root_lock);
1392         if (!pmd->fail_io)
1393                 r = __get_metadata_snap(pmd, result);
1394         up_read(&pmd->root_lock);
1395
1396         return r;
1397 }
1398
1399 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1400                              struct dm_thin_device **td)
1401 {
1402         int r = -EINVAL;
1403
1404         down_write(&pmd->root_lock);
1405         if (!pmd->fail_io)
1406                 r = __open_device(pmd, dev, 0, td);
1407         up_write(&pmd->root_lock);
1408
1409         return r;
1410 }
1411
1412 int dm_pool_close_thin_device(struct dm_thin_device *td)
1413 {
1414         down_write(&td->pmd->root_lock);
1415         __close_device(td);
1416         up_write(&td->pmd->root_lock);
1417
1418         return 0;
1419 }
1420
1421 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1422 {
1423         return td->id;
1424 }
1425
1426 /*
1427  * Check whether @time (of block creation) is older than @td's last snapshot.
1428  * If so then the associated block is shared with the last snapshot device.
1429  * Any block on a device created *after* the device last got snapshotted is
1430  * necessarily not shared.
1431  */
1432 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1433 {
1434         return td->snapshotted_time > time;
1435 }
1436
1437 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1438                                  struct dm_thin_lookup_result *result)
1439 {
1440         uint64_t block_time = 0;
1441         dm_block_t exception_block;
1442         uint32_t exception_time;
1443
1444         block_time = le64_to_cpu(value);
1445         unpack_block_time(block_time, &exception_block, &exception_time);
1446         result->block = exception_block;
1447         result->shared = __snapshotted_since(td, exception_time);
1448 }
1449
1450 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1451                         int can_issue_io, struct dm_thin_lookup_result *result)
1452 {
1453         int r;
1454         __le64 value;
1455         struct dm_pool_metadata *pmd = td->pmd;
1456         dm_block_t keys[2] = { td->id, block };
1457         struct dm_btree_info *info;
1458
1459         if (can_issue_io) {
1460                 info = &pmd->info;
1461         } else
1462                 info = &pmd->nb_info;
1463
1464         r = dm_btree_lookup(info, pmd->root, keys, &value);
1465         if (!r)
1466                 unpack_lookup_result(td, value, result);
1467
1468         return r;
1469 }
1470
1471 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1472                        int can_issue_io, struct dm_thin_lookup_result *result)
1473 {
1474         int r;
1475         struct dm_pool_metadata *pmd = td->pmd;
1476
1477         down_read(&pmd->root_lock);
1478         if (pmd->fail_io) {
1479                 up_read(&pmd->root_lock);
1480                 return -EINVAL;
1481         }
1482
1483         r = __find_block(td, block, can_issue_io, result);
1484
1485         up_read(&pmd->root_lock);
1486         return r;
1487 }
1488
1489 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1490                                           dm_block_t *vblock,
1491                                           struct dm_thin_lookup_result *result)
1492 {
1493         int r;
1494         __le64 value;
1495         struct dm_pool_metadata *pmd = td->pmd;
1496         dm_block_t keys[2] = { td->id, block };
1497
1498         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1499         if (!r)
1500                 unpack_lookup_result(td, value, result);
1501
1502         return r;
1503 }
1504
1505 static int __find_mapped_range(struct dm_thin_device *td,
1506                                dm_block_t begin, dm_block_t end,
1507                                dm_block_t *thin_begin, dm_block_t *thin_end,
1508                                dm_block_t *pool_begin, bool *maybe_shared)
1509 {
1510         int r;
1511         dm_block_t pool_end;
1512         struct dm_thin_lookup_result lookup;
1513
1514         if (end < begin)
1515                 return -ENODATA;
1516
1517         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1518         if (r)
1519                 return r;
1520
1521         if (begin >= end)
1522                 return -ENODATA;
1523
1524         *thin_begin = begin;
1525         *pool_begin = lookup.block;
1526         *maybe_shared = lookup.shared;
1527
1528         begin++;
1529         pool_end = *pool_begin + 1;
1530         while (begin != end) {
1531                 r = __find_block(td, begin, true, &lookup);
1532                 if (r) {
1533                         if (r == -ENODATA)
1534                                 break;
1535                         else
1536                                 return r;
1537                 }
1538
1539                 if ((lookup.block != pool_end) ||
1540                     (lookup.shared != *maybe_shared))
1541                         break;
1542
1543                 pool_end++;
1544                 begin++;
1545         }
1546
1547         *thin_end = begin;
1548         return 0;
1549 }
1550
1551 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1552                               dm_block_t begin, dm_block_t end,
1553                               dm_block_t *thin_begin, dm_block_t *thin_end,
1554                               dm_block_t *pool_begin, bool *maybe_shared)
1555 {
1556         int r = -EINVAL;
1557         struct dm_pool_metadata *pmd = td->pmd;
1558
1559         down_read(&pmd->root_lock);
1560         if (!pmd->fail_io) {
1561                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1562                                         pool_begin, maybe_shared);
1563         }
1564         up_read(&pmd->root_lock);
1565
1566         return r;
1567 }
1568
1569 static int __insert(struct dm_thin_device *td, dm_block_t block,
1570                     dm_block_t data_block)
1571 {
1572         int r, inserted;
1573         __le64 value;
1574         struct dm_pool_metadata *pmd = td->pmd;
1575         dm_block_t keys[2] = { td->id, block };
1576
1577         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1578         __dm_bless_for_disk(&value);
1579
1580         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1581                                    &pmd->root, &inserted);
1582         if (r)
1583                 return r;
1584
1585         td->changed = 1;
1586         if (inserted)
1587                 td->mapped_blocks++;
1588
1589         return 0;
1590 }
1591
1592 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1593                          dm_block_t data_block)
1594 {
1595         int r = -EINVAL;
1596
1597         down_write(&td->pmd->root_lock);
1598         if (!td->pmd->fail_io)
1599                 r = __insert(td, block, data_block);
1600         up_write(&td->pmd->root_lock);
1601
1602         return r;
1603 }
1604
1605 static int __remove(struct dm_thin_device *td, dm_block_t block)
1606 {
1607         int r;
1608         struct dm_pool_metadata *pmd = td->pmd;
1609         dm_block_t keys[2] = { td->id, block };
1610
1611         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1612         if (r)
1613                 return r;
1614
1615         td->mapped_blocks--;
1616         td->changed = 1;
1617
1618         return 0;
1619 }
1620
1621 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1622 {
1623         int r;
1624         unsigned count, total_count = 0;
1625         struct dm_pool_metadata *pmd = td->pmd;
1626         dm_block_t keys[1] = { td->id };
1627         __le64 value;
1628         dm_block_t mapping_root;
1629
1630         /*
1631          * Find the mapping tree
1632          */
1633         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1634         if (r)
1635                 return r;
1636
1637         /*
1638          * Remove from the mapping tree, taking care to inc the
1639          * ref count so it doesn't get deleted.
1640          */
1641         mapping_root = le64_to_cpu(value);
1642         dm_tm_inc(pmd->tm, mapping_root);
1643         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1644         if (r)
1645                 return r;
1646
1647         /*
1648          * Remove leaves stops at the first unmapped entry, so we have to
1649          * loop round finding mapped ranges.
1650          */
1651         while (begin < end) {
1652                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1653                 if (r == -ENODATA)
1654                         break;
1655
1656                 if (r)
1657                         return r;
1658
1659                 if (begin >= end)
1660                         break;
1661
1662                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1663                 if (r)
1664                         return r;
1665
1666                 total_count += count;
1667         }
1668
1669         td->mapped_blocks -= total_count;
1670         td->changed = 1;
1671
1672         /*
1673          * Reinsert the mapping tree.
1674          */
1675         value = cpu_to_le64(mapping_root);
1676         __dm_bless_for_disk(&value);
1677         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1678 }
1679
1680 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1681 {
1682         int r = -EINVAL;
1683
1684         down_write(&td->pmd->root_lock);
1685         if (!td->pmd->fail_io)
1686                 r = __remove(td, block);
1687         up_write(&td->pmd->root_lock);
1688
1689         return r;
1690 }
1691
1692 int dm_thin_remove_range(struct dm_thin_device *td,
1693                          dm_block_t begin, dm_block_t end)
1694 {
1695         int r = -EINVAL;
1696
1697         down_write(&td->pmd->root_lock);
1698         if (!td->pmd->fail_io)
1699                 r = __remove_range(td, begin, end);
1700         up_write(&td->pmd->root_lock);
1701
1702         return r;
1703 }
1704
1705 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1706 {
1707         int r;
1708         uint32_t ref_count;
1709
1710         down_read(&pmd->root_lock);
1711         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1712         if (!r)
1713                 *result = (ref_count > 1);
1714         up_read(&pmd->root_lock);
1715
1716         return r;
1717 }
1718
1719 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1720 {
1721         int r = 0;
1722
1723         down_write(&pmd->root_lock);
1724         for (; b != e; b++) {
1725                 r = dm_sm_inc_block(pmd->data_sm, b);
1726                 if (r)
1727                         break;
1728         }
1729         up_write(&pmd->root_lock);
1730
1731         return r;
1732 }
1733
1734 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1735 {
1736         int r = 0;
1737
1738         down_write(&pmd->root_lock);
1739         for (; b != e; b++) {
1740                 r = dm_sm_dec_block(pmd->data_sm, b);
1741                 if (r)
1742                         break;
1743         }
1744         up_write(&pmd->root_lock);
1745
1746         return r;
1747 }
1748
1749 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1750 {
1751         int r;
1752
1753         down_read(&td->pmd->root_lock);
1754         r = td->changed;
1755         up_read(&td->pmd->root_lock);
1756
1757         return r;
1758 }
1759
1760 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1761 {
1762         bool r = false;
1763         struct dm_thin_device *td, *tmp;
1764
1765         down_read(&pmd->root_lock);
1766         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1767                 if (td->changed) {
1768                         r = td->changed;
1769                         break;
1770                 }
1771         }
1772         up_read(&pmd->root_lock);
1773
1774         return r;
1775 }
1776
1777 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1778 {
1779         bool r;
1780
1781         down_read(&td->pmd->root_lock);
1782         r = td->aborted_with_changes;
1783         up_read(&td->pmd->root_lock);
1784
1785         return r;
1786 }
1787
1788 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1789 {
1790         int r = -EINVAL;
1791
1792         down_write(&pmd->root_lock);
1793         if (!pmd->fail_io)
1794                 r = dm_sm_new_block(pmd->data_sm, result);
1795         up_write(&pmd->root_lock);
1796
1797         return r;
1798 }
1799
1800 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1801 {
1802         int r = -EINVAL;
1803
1804         down_write(&pmd->root_lock);
1805         if (pmd->fail_io)
1806                 goto out;
1807
1808         r = __commit_transaction(pmd);
1809         if (r <= 0)
1810                 goto out;
1811
1812         /*
1813          * Open the next transaction.
1814          */
1815         r = __begin_transaction(pmd);
1816 out:
1817         up_write(&pmd->root_lock);
1818         return r;
1819 }
1820
1821 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1822 {
1823         struct dm_thin_device *td;
1824
1825         list_for_each_entry(td, &pmd->thin_devices, list)
1826                 td->aborted_with_changes = td->changed;
1827 }
1828
1829 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1830 {
1831         int r = -EINVAL;
1832
1833         down_write(&pmd->root_lock);
1834         if (pmd->fail_io)
1835                 goto out;
1836
1837         __set_abort_with_changes_flags(pmd);
1838         __destroy_persistent_data_objects(pmd);
1839         r = __create_persistent_data_objects(pmd, false);
1840         if (r)
1841                 pmd->fail_io = true;
1842
1843 out:
1844         up_write(&pmd->root_lock);
1845
1846         return r;
1847 }
1848
1849 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1850 {
1851         int r = -EINVAL;
1852
1853         down_read(&pmd->root_lock);
1854         if (!pmd->fail_io)
1855                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1856         up_read(&pmd->root_lock);
1857
1858         return r;
1859 }
1860
1861 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1862                                           dm_block_t *result)
1863 {
1864         int r = -EINVAL;
1865
1866         down_read(&pmd->root_lock);
1867         if (!pmd->fail_io)
1868                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1869
1870         if (!r) {
1871                 if (*result < pmd->metadata_reserve)
1872                         *result = 0;
1873                 else
1874                         *result -= pmd->metadata_reserve;
1875         }
1876         up_read(&pmd->root_lock);
1877
1878         return r;
1879 }
1880
1881 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1882                                   dm_block_t *result)
1883 {
1884         int r = -EINVAL;
1885
1886         down_read(&pmd->root_lock);
1887         if (!pmd->fail_io)
1888                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1889         up_read(&pmd->root_lock);
1890
1891         return r;
1892 }
1893
1894 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1895 {
1896         int r = -EINVAL;
1897
1898         down_read(&pmd->root_lock);
1899         if (!pmd->fail_io)
1900                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1901         up_read(&pmd->root_lock);
1902
1903         return r;
1904 }
1905
1906 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1907 {
1908         int r = -EINVAL;
1909         struct dm_pool_metadata *pmd = td->pmd;
1910
1911         down_read(&pmd->root_lock);
1912         if (!pmd->fail_io) {
1913                 *result = td->mapped_blocks;
1914                 r = 0;
1915         }
1916         up_read(&pmd->root_lock);
1917
1918         return r;
1919 }
1920
1921 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1922 {
1923         int r;
1924         __le64 value_le;
1925         dm_block_t thin_root;
1926         struct dm_pool_metadata *pmd = td->pmd;
1927
1928         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1929         if (r)
1930                 return r;
1931
1932         thin_root = le64_to_cpu(value_le);
1933
1934         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1935 }
1936
1937 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1938                                      dm_block_t *result)
1939 {
1940         int r = -EINVAL;
1941         struct dm_pool_metadata *pmd = td->pmd;
1942
1943         down_read(&pmd->root_lock);
1944         if (!pmd->fail_io)
1945                 r = __highest_block(td, result);
1946         up_read(&pmd->root_lock);
1947
1948         return r;
1949 }
1950
1951 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1952 {
1953         int r;
1954         dm_block_t old_count;
1955
1956         r = dm_sm_get_nr_blocks(sm, &old_count);
1957         if (r)
1958                 return r;
1959
1960         if (new_count == old_count)
1961                 return 0;
1962
1963         if (new_count < old_count) {
1964                 DMERR("cannot reduce size of space map");
1965                 return -EINVAL;
1966         }
1967
1968         return dm_sm_extend(sm, new_count - old_count);
1969 }
1970
1971 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1972 {
1973         int r = -EINVAL;
1974
1975         down_write(&pmd->root_lock);
1976         if (!pmd->fail_io)
1977                 r = __resize_space_map(pmd->data_sm, new_count);
1978         up_write(&pmd->root_lock);
1979
1980         return r;
1981 }
1982
1983 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1984 {
1985         int r = -EINVAL;
1986
1987         down_write(&pmd->root_lock);
1988         if (!pmd->fail_io) {
1989                 r = __resize_space_map(pmd->metadata_sm, new_count);
1990                 if (!r)
1991                         __set_metadata_reserve(pmd);
1992         }
1993         up_write(&pmd->root_lock);
1994
1995         return r;
1996 }
1997
1998 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1999 {
2000         down_write(&pmd->root_lock);
2001         dm_bm_set_read_only(pmd->bm);
2002         up_write(&pmd->root_lock);
2003 }
2004
2005 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2006 {
2007         down_write(&pmd->root_lock);
2008         dm_bm_set_read_write(pmd->bm);
2009         up_write(&pmd->root_lock);
2010 }
2011
2012 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2013                                         dm_block_t threshold,
2014                                         dm_sm_threshold_fn fn,
2015                                         void *context)
2016 {
2017         int r;
2018
2019         down_write(&pmd->root_lock);
2020         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2021         up_write(&pmd->root_lock);
2022
2023         return r;
2024 }
2025
2026 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2027 {
2028         int r;
2029         struct dm_block *sblock;
2030         struct thin_disk_superblock *disk_super;
2031
2032         down_write(&pmd->root_lock);
2033         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2034
2035         r = superblock_lock(pmd, &sblock);
2036         if (r) {
2037                 DMERR("couldn't read superblock");
2038                 goto out;
2039         }
2040
2041         disk_super = dm_block_data(sblock);
2042         disk_super->flags = cpu_to_le32(pmd->flags);
2043
2044         dm_bm_unlock(sblock);
2045 out:
2046         up_write(&pmd->root_lock);
2047         return r;
2048 }
2049
2050 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2051 {
2052         bool needs_check;
2053
2054         down_read(&pmd->root_lock);
2055         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2056         up_read(&pmd->root_lock);
2057
2058         return needs_check;
2059 }
2060
2061 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2062 {
2063         down_read(&pmd->root_lock);
2064         if (!pmd->fail_io)
2065                 dm_tm_issue_prefetches(pmd->tm);
2066         up_read(&pmd->root_lock);
2067 }