2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
25 #define DM_MSG_PREFIX "table"
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 struct mapped_device *md;
34 enum dm_queue_mode type;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
41 unsigned int num_targets;
42 unsigned int num_allocated;
44 struct dm_target *targets;
46 struct target_type *immutable_target_type;
48 bool integrity_supported:1;
51 unsigned integrity_added:1;
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
60 /* a list of devices used by this table */
61 struct list_head devices;
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
67 struct dm_md_mempools *mempools;
69 struct list_head target_callbacks;
73 * Similar to ceiling(log_size(n))
75 static unsigned int int_log(unsigned int n, unsigned int base)
80 n = dm_div_up(n, base);
88 * Calculate the index of the child node of the n'th node k'th key.
90 static inline unsigned int get_child(unsigned int n, unsigned int k)
92 return (n * CHILDREN_PER_NODE) + k;
96 * Return the n'th node of level l from table t.
98 static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
101 return t->index[l] + (n * KEYS_PER_NODE);
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
120 * Fills in a level of the btree based on the highs of the level
123 static int setup_btree_index(unsigned int l, struct dm_table *t)
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
144 * Check that we're not going to overflow.
146 if (nmemb > (ULONG_MAX / elem_size))
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
154 EXPORT_SYMBOL(dm_vcalloc);
157 * highs, and targets are managed as dynamic arrays during a
160 static int alloc_targets(struct dm_table *t, unsigned int num)
163 struct dm_target *n_targets;
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
175 n_targets = (struct dm_target *) (n_highs + num);
177 memset(n_highs, -1, sizeof(*n_highs) * num);
180 t->num_allocated = num;
182 t->targets = n_targets;
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
199 num_targets = KEYS_PER_NODE;
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
208 if (alloc_targets(t, num_targets)) {
213 t->type = DM_TYPE_NONE;
220 static void free_devices(struct list_head *devices, struct mapped_device *md)
222 struct list_head *tmp, *next;
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
234 void dm_table_destroy(struct dm_table *t)
241 /* free the indexes */
243 vfree(t->index[t->depth - 2]);
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
252 dm_put_target_type(tgt->type);
257 /* free the device list */
258 free_devices(&t->devices, t->md);
260 dm_free_md_mempools(t->mempools);
266 * See if we've already got a device in the list.
268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
270 struct dm_dev_internal *dd;
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
280 * If possible, this checks an area of a destination device is invalid.
282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
356 if (logical_block_size_sectors <= 1)
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
390 struct dm_dev *old_dev, *new_dev;
392 old_dev = dd->dm_dev;
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
406 * Convert the path to a device
408 dev_t dm_get_dev_t(const char *path)
411 struct block_device *bdev;
413 bdev = lookup_bdev(path);
415 dev = name_to_dev_t(path);
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
434 unsigned int major, minor;
436 struct dm_dev_internal *dd;
437 struct dm_table *t = ti->table;
441 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
442 /* Extract the major/minor numbers */
443 dev = MKDEV(major, minor);
444 if (MAJOR(dev) != major || MINOR(dev) != minor)
447 dev = dm_get_dev_t(path);
452 dd = find_device(&t->devices, dev);
454 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
458 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
463 refcount_set(&dd->count, 1);
464 list_add(&dd->list, &t->devices);
467 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
468 r = upgrade_mode(dd, mode, t->md);
472 refcount_inc(&dd->count);
474 *result = dd->dm_dev;
477 EXPORT_SYMBOL(dm_get_device);
479 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
480 sector_t start, sector_t len, void *data)
482 struct queue_limits *limits = data;
483 struct block_device *bdev = dev->bdev;
484 struct request_queue *q = bdev_get_queue(bdev);
485 char b[BDEVNAME_SIZE];
488 DMWARN("%s: Cannot set limits for nonexistent device %s",
489 dm_device_name(ti->table->md), bdevname(bdev, b));
493 if (bdev_stack_limits(limits, bdev, start) < 0)
494 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
495 "physical_block_size=%u, logical_block_size=%u, "
496 "alignment_offset=%u, start=%llu",
497 dm_device_name(ti->table->md), bdevname(bdev, b),
498 q->limits.physical_block_size,
499 q->limits.logical_block_size,
500 q->limits.alignment_offset,
501 (unsigned long long) start << SECTOR_SHIFT);
503 limits->zoned = blk_queue_zoned_model(q);
509 * Decrement a device's use count and remove it if necessary.
511 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
514 struct list_head *devices = &ti->table->devices;
515 struct dm_dev_internal *dd;
517 list_for_each_entry(dd, devices, list) {
518 if (dd->dm_dev == d) {
524 DMWARN("%s: device %s not in table devices list",
525 dm_device_name(ti->table->md), d->name);
528 if (refcount_dec_and_test(&dd->count)) {
529 dm_put_table_device(ti->table->md, d);
534 EXPORT_SYMBOL(dm_put_device);
537 * Checks to see if the target joins onto the end of the table.
539 static int adjoin(struct dm_table *table, struct dm_target *ti)
541 struct dm_target *prev;
543 if (!table->num_targets)
546 prev = &table->targets[table->num_targets - 1];
547 return (ti->begin == (prev->begin + prev->len));
551 * Used to dynamically allocate the arg array.
553 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
554 * process messages even if some device is suspended. These messages have a
555 * small fixed number of arguments.
557 * On the other hand, dm-switch needs to process bulk data using messages and
558 * excessive use of GFP_NOIO could cause trouble.
560 static char **realloc_argv(unsigned *size, char **old_argv)
567 new_size = *size * 2;
573 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
574 if (argv && old_argv) {
575 memcpy(argv, old_argv, *size * sizeof(*argv));
584 * Destructively splits up the argument list to pass to ctr.
586 int dm_split_args(int *argc, char ***argvp, char *input)
588 char *start, *end = input, *out, **argv = NULL;
589 unsigned array_size = 0;
598 argv = realloc_argv(&array_size, argv);
603 /* Skip whitespace */
604 start = skip_spaces(end);
607 break; /* success, we hit the end */
609 /* 'out' is used to remove any back-quotes */
612 /* Everything apart from '\0' can be quoted */
613 if (*end == '\\' && *(end + 1)) {
620 break; /* end of token */
625 /* have we already filled the array ? */
626 if ((*argc + 1) > array_size) {
627 argv = realloc_argv(&array_size, argv);
632 /* we know this is whitespace */
636 /* terminate the string and put it in the array */
647 * Impose necessary and sufficient conditions on a devices's table such
648 * that any incoming bio which respects its logical_block_size can be
649 * processed successfully. If it falls across the boundary between
650 * two or more targets, the size of each piece it gets split into must
651 * be compatible with the logical_block_size of the target processing it.
653 static int validate_hardware_logical_block_alignment(struct dm_table *table,
654 struct queue_limits *limits)
657 * This function uses arithmetic modulo the logical_block_size
658 * (in units of 512-byte sectors).
660 unsigned short device_logical_block_size_sects =
661 limits->logical_block_size >> SECTOR_SHIFT;
664 * Offset of the start of the next table entry, mod logical_block_size.
666 unsigned short next_target_start = 0;
669 * Given an aligned bio that extends beyond the end of a
670 * target, how many sectors must the next target handle?
672 unsigned short remaining = 0;
674 struct dm_target *uninitialized_var(ti);
675 struct queue_limits ti_limits;
679 * Check each entry in the table in turn.
681 for (i = 0; i < dm_table_get_num_targets(table); i++) {
682 ti = dm_table_get_target(table, i);
684 blk_set_stacking_limits(&ti_limits);
686 /* combine all target devices' limits */
687 if (ti->type->iterate_devices)
688 ti->type->iterate_devices(ti, dm_set_device_limits,
692 * If the remaining sectors fall entirely within this
693 * table entry are they compatible with its logical_block_size?
695 if (remaining < ti->len &&
696 remaining & ((ti_limits.logical_block_size >>
701 (unsigned short) ((next_target_start + ti->len) &
702 (device_logical_block_size_sects - 1));
703 remaining = next_target_start ?
704 device_logical_block_size_sects - next_target_start : 0;
708 DMWARN("%s: table line %u (start sect %llu len %llu) "
709 "not aligned to h/w logical block size %u",
710 dm_device_name(table->md), i,
711 (unsigned long long) ti->begin,
712 (unsigned long long) ti->len,
713 limits->logical_block_size);
720 int dm_table_add_target(struct dm_table *t, const char *type,
721 sector_t start, sector_t len, char *params)
723 int r = -EINVAL, argc;
725 struct dm_target *tgt;
728 DMERR("%s: target type %s must appear alone in table",
729 dm_device_name(t->md), t->targets->type->name);
733 BUG_ON(t->num_targets >= t->num_allocated);
735 tgt = t->targets + t->num_targets;
736 memset(tgt, 0, sizeof(*tgt));
739 DMERR("%s: zero-length target", dm_device_name(t->md));
743 tgt->type = dm_get_target_type(type);
745 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
749 if (dm_target_needs_singleton(tgt->type)) {
750 if (t->num_targets) {
751 tgt->error = "singleton target type must appear alone in table";
757 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
758 tgt->error = "target type may not be included in a read-only table";
762 if (t->immutable_target_type) {
763 if (t->immutable_target_type != tgt->type) {
764 tgt->error = "immutable target type cannot be mixed with other target types";
767 } else if (dm_target_is_immutable(tgt->type)) {
768 if (t->num_targets) {
769 tgt->error = "immutable target type cannot be mixed with other target types";
772 t->immutable_target_type = tgt->type;
775 if (dm_target_has_integrity(tgt->type))
776 t->integrity_added = 1;
781 tgt->error = "Unknown error";
784 * Does this target adjoin the previous one ?
786 if (!adjoin(t, tgt)) {
787 tgt->error = "Gap in table";
791 r = dm_split_args(&argc, &argv, params);
793 tgt->error = "couldn't split parameters (insufficient memory)";
797 r = tgt->type->ctr(tgt, argc, argv);
802 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
804 if (!tgt->num_discard_bios && tgt->discards_supported)
805 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
806 dm_device_name(t->md), type);
811 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
812 dm_put_target_type(tgt->type);
817 * Target argument parsing helpers.
819 static int validate_next_arg(const struct dm_arg *arg,
820 struct dm_arg_set *arg_set,
821 unsigned *value, char **error, unsigned grouped)
823 const char *arg_str = dm_shift_arg(arg_set);
827 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
828 (*value < arg->min) ||
829 (*value > arg->max) ||
830 (grouped && arg_set->argc < *value)) {
838 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
839 unsigned *value, char **error)
841 return validate_next_arg(arg, arg_set, value, error, 0);
843 EXPORT_SYMBOL(dm_read_arg);
845 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
846 unsigned *value, char **error)
848 return validate_next_arg(arg, arg_set, value, error, 1);
850 EXPORT_SYMBOL(dm_read_arg_group);
852 const char *dm_shift_arg(struct dm_arg_set *as)
865 EXPORT_SYMBOL(dm_shift_arg);
867 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
869 BUG_ON(as->argc < num_args);
870 as->argc -= num_args;
871 as->argv += num_args;
873 EXPORT_SYMBOL(dm_consume_args);
875 static bool __table_type_bio_based(enum dm_queue_mode table_type)
877 return (table_type == DM_TYPE_BIO_BASED ||
878 table_type == DM_TYPE_DAX_BIO_BASED ||
879 table_type == DM_TYPE_NVME_BIO_BASED);
882 static bool __table_type_request_based(enum dm_queue_mode table_type)
884 return (table_type == DM_TYPE_REQUEST_BASED ||
885 table_type == DM_TYPE_MQ_REQUEST_BASED);
888 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
892 EXPORT_SYMBOL_GPL(dm_table_set_type);
894 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
895 sector_t start, sector_t len, void *data)
897 return !bdev_dax_supported(dev->bdev, PAGE_SIZE);
900 static bool dm_table_supports_dax(struct dm_table *t)
902 struct dm_target *ti;
905 /* Ensure that all targets support DAX. */
906 for (i = 0; i < dm_table_get_num_targets(t); i++) {
907 ti = dm_table_get_target(t, i);
909 if (!ti->type->direct_access)
912 if (!ti->type->iterate_devices ||
913 ti->type->iterate_devices(ti, device_not_dax_capable, NULL))
920 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
922 struct verify_rq_based_data {
927 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
928 sector_t start, sector_t len, void *data)
930 struct request_queue *q = bdev_get_queue(dev->bdev);
931 struct verify_rq_based_data *v = data;
938 return queue_is_rq_based(q);
941 static int dm_table_determine_type(struct dm_table *t)
944 unsigned bio_based = 0, request_based = 0, hybrid = 0;
945 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
946 struct dm_target *tgt;
947 struct list_head *devices = dm_table_get_devices(t);
948 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
950 if (t->type != DM_TYPE_NONE) {
951 /* target already set the table's type */
952 if (t->type == DM_TYPE_BIO_BASED) {
953 /* possibly upgrade to a variant of bio-based */
954 goto verify_bio_based;
956 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
957 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
958 goto verify_rq_based;
961 for (i = 0; i < t->num_targets; i++) {
962 tgt = t->targets + i;
963 if (dm_target_hybrid(tgt))
965 else if (dm_target_request_based(tgt))
970 if (bio_based && request_based) {
971 DMERR("Inconsistent table: different target types"
972 " can't be mixed up");
977 if (hybrid && !bio_based && !request_based) {
979 * The targets can work either way.
980 * Determine the type from the live device.
981 * Default to bio-based if device is new.
983 if (__table_type_request_based(live_md_type))
991 /* We must use this table as bio-based */
992 t->type = DM_TYPE_BIO_BASED;
993 if (dm_table_supports_dax(t) ||
994 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
995 t->type = DM_TYPE_DAX_BIO_BASED;
997 /* Check if upgrading to NVMe bio-based is valid or required */
998 tgt = dm_table_get_immutable_target(t);
999 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1000 t->type = DM_TYPE_NVME_BIO_BASED;
1001 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1002 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1003 t->type = DM_TYPE_NVME_BIO_BASED;
1009 BUG_ON(!request_based); /* No targets in this table */
1012 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1013 * having a compatible target use dm_table_set_type.
1015 t->type = DM_TYPE_REQUEST_BASED;
1019 * Request-based dm supports only tables that have a single target now.
1020 * To support multiple targets, request splitting support is needed,
1021 * and that needs lots of changes in the block-layer.
1022 * (e.g. request completion process for partial completion.)
1024 if (t->num_targets > 1) {
1025 DMERR("%s DM doesn't support multiple targets",
1026 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1030 if (list_empty(devices)) {
1032 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1034 /* inherit live table's type and all_blk_mq */
1036 t->type = live_table->type;
1037 t->all_blk_mq = live_table->all_blk_mq;
1039 dm_put_live_table(t->md, srcu_idx);
1043 tgt = dm_table_get_immutable_target(t);
1045 DMERR("table load rejected: immutable target is required");
1047 } else if (tgt->max_io_len) {
1048 DMERR("table load rejected: immutable target that splits IO is not supported");
1052 /* Non-request-stackable devices can't be used for request-based dm */
1053 if (!tgt->type->iterate_devices ||
1054 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1055 DMERR("table load rejected: including non-request-stackable devices");
1058 if (v.sq_count && v.mq_count) {
1059 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1062 t->all_blk_mq = v.mq_count > 0;
1064 if (!t->all_blk_mq &&
1065 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1066 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1073 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1078 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1080 return t->immutable_target_type;
1083 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1085 /* Immutable target is implicitly a singleton */
1086 if (t->num_targets > 1 ||
1087 !dm_target_is_immutable(t->targets[0].type))
1093 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1095 struct dm_target *ti;
1098 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1099 ti = dm_table_get_target(t, i);
1100 if (dm_target_is_wildcard(ti->type))
1107 bool dm_table_bio_based(struct dm_table *t)
1109 return __table_type_bio_based(dm_table_get_type(t));
1112 bool dm_table_request_based(struct dm_table *t)
1114 return __table_type_request_based(dm_table_get_type(t));
1117 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1119 return t->all_blk_mq;
1122 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1124 enum dm_queue_mode type = dm_table_get_type(t);
1125 unsigned per_io_data_size = 0;
1126 unsigned min_pool_size = 0;
1127 struct dm_target *ti;
1130 if (unlikely(type == DM_TYPE_NONE)) {
1131 DMWARN("no table type is set, can't allocate mempools");
1135 if (__table_type_bio_based(type))
1136 for (i = 0; i < t->num_targets; i++) {
1137 ti = t->targets + i;
1138 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1139 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1142 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1143 per_io_data_size, min_pool_size);
1150 void dm_table_free_md_mempools(struct dm_table *t)
1152 dm_free_md_mempools(t->mempools);
1156 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1161 static int setup_indexes(struct dm_table *t)
1164 unsigned int total = 0;
1167 /* allocate the space for *all* the indexes */
1168 for (i = t->depth - 2; i >= 0; i--) {
1169 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1170 total += t->counts[i];
1173 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1177 /* set up internal nodes, bottom-up */
1178 for (i = t->depth - 2; i >= 0; i--) {
1179 t->index[i] = indexes;
1180 indexes += (KEYS_PER_NODE * t->counts[i]);
1181 setup_btree_index(i, t);
1188 * Builds the btree to index the map.
1190 static int dm_table_build_index(struct dm_table *t)
1193 unsigned int leaf_nodes;
1195 /* how many indexes will the btree have ? */
1196 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1197 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1199 /* leaf layer has already been set up */
1200 t->counts[t->depth - 1] = leaf_nodes;
1201 t->index[t->depth - 1] = t->highs;
1204 r = setup_indexes(t);
1209 static bool integrity_profile_exists(struct gendisk *disk)
1211 return !!blk_get_integrity(disk);
1215 * Get a disk whose integrity profile reflects the table's profile.
1216 * Returns NULL if integrity support was inconsistent or unavailable.
1218 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1220 struct list_head *devices = dm_table_get_devices(t);
1221 struct dm_dev_internal *dd = NULL;
1222 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1225 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1226 struct dm_target *ti = dm_table_get_target(t, i);
1227 if (!dm_target_passes_integrity(ti->type))
1231 list_for_each_entry(dd, devices, list) {
1232 template_disk = dd->dm_dev->bdev->bd_disk;
1233 if (!integrity_profile_exists(template_disk))
1235 else if (prev_disk &&
1236 blk_integrity_compare(prev_disk, template_disk) < 0)
1238 prev_disk = template_disk;
1241 return template_disk;
1245 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1246 dm_device_name(t->md),
1247 prev_disk->disk_name,
1248 template_disk->disk_name);
1253 * Register the mapped device for blk_integrity support if the
1254 * underlying devices have an integrity profile. But all devices may
1255 * not have matching profiles (checking all devices isn't reliable
1256 * during table load because this table may use other DM device(s) which
1257 * must be resumed before they will have an initialized integity
1258 * profile). Consequently, stacked DM devices force a 2 stage integrity
1259 * profile validation: First pass during table load, final pass during
1262 static int dm_table_register_integrity(struct dm_table *t)
1264 struct mapped_device *md = t->md;
1265 struct gendisk *template_disk = NULL;
1267 /* If target handles integrity itself do not register it here. */
1268 if (t->integrity_added)
1271 template_disk = dm_table_get_integrity_disk(t);
1275 if (!integrity_profile_exists(dm_disk(md))) {
1276 t->integrity_supported = true;
1278 * Register integrity profile during table load; we can do
1279 * this because the final profile must match during resume.
1281 blk_integrity_register(dm_disk(md),
1282 blk_get_integrity(template_disk));
1287 * If DM device already has an initialized integrity
1288 * profile the new profile should not conflict.
1290 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1291 DMWARN("%s: conflict with existing integrity profile: "
1292 "%s profile mismatch",
1293 dm_device_name(t->md),
1294 template_disk->disk_name);
1298 /* Preserve existing integrity profile */
1299 t->integrity_supported = true;
1304 * Prepares the table for use by building the indices,
1305 * setting the type, and allocating mempools.
1307 int dm_table_complete(struct dm_table *t)
1311 r = dm_table_determine_type(t);
1313 DMERR("unable to determine table type");
1317 r = dm_table_build_index(t);
1319 DMERR("unable to build btrees");
1323 r = dm_table_register_integrity(t);
1325 DMERR("could not register integrity profile.");
1329 r = dm_table_alloc_md_mempools(t, t->md);
1331 DMERR("unable to allocate mempools");
1336 static DEFINE_MUTEX(_event_lock);
1337 void dm_table_event_callback(struct dm_table *t,
1338 void (*fn)(void *), void *context)
1340 mutex_lock(&_event_lock);
1342 t->event_context = context;
1343 mutex_unlock(&_event_lock);
1346 void dm_table_event(struct dm_table *t)
1348 mutex_lock(&_event_lock);
1350 t->event_fn(t->event_context);
1351 mutex_unlock(&_event_lock);
1353 EXPORT_SYMBOL(dm_table_event);
1355 inline sector_t dm_table_get_size(struct dm_table *t)
1357 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1359 EXPORT_SYMBOL(dm_table_get_size);
1361 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1363 if (index >= t->num_targets)
1366 return t->targets + index;
1370 * Search the btree for the correct target.
1372 * Caller should check returned pointer with dm_target_is_valid()
1373 * to trap I/O beyond end of device.
1375 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1377 unsigned int l, n = 0, k = 0;
1380 if (unlikely(sector >= dm_table_get_size(t)))
1381 return &t->targets[t->num_targets];
1383 for (l = 0; l < t->depth; l++) {
1384 n = get_child(n, k);
1385 node = get_node(t, l, n);
1387 for (k = 0; k < KEYS_PER_NODE; k++)
1388 if (node[k] >= sector)
1392 return &t->targets[(KEYS_PER_NODE * n) + k];
1396 * type->iterate_devices() should be called when the sanity check needs to
1397 * iterate and check all underlying data devices. iterate_devices() will
1398 * iterate all underlying data devices until it encounters a non-zero return
1399 * code, returned by whether the input iterate_devices_callout_fn, or
1400 * iterate_devices() itself internally.
1402 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1403 * iterate multiple underlying devices internally, in which case a non-zero
1404 * return code returned by iterate_devices_callout_fn will stop the iteration
1407 * Cases requiring _any_ underlying device supporting some kind of attribute,
1408 * should use the iteration structure like dm_table_any_dev_attr(), or call
1409 * it directly. @func should handle semantics of positive examples, e.g.
1410 * capable of something.
1412 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1413 * should use the iteration structure like dm_table_supports_nowait() or
1414 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1415 * uses an @anti_func that handle semantics of counter examples, e.g. not
1416 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1418 static bool dm_table_any_dev_attr(struct dm_table *t,
1419 iterate_devices_callout_fn func, void *data)
1421 struct dm_target *ti;
1424 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1425 ti = dm_table_get_target(t, i);
1427 if (ti->type->iterate_devices &&
1428 ti->type->iterate_devices(ti, func, data))
1435 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1436 sector_t start, sector_t len, void *data)
1438 unsigned *num_devices = data;
1446 * Check whether a table has no data devices attached using each
1447 * target's iterate_devices method.
1448 * Returns false if the result is unknown because a target doesn't
1449 * support iterate_devices.
1451 bool dm_table_has_no_data_devices(struct dm_table *table)
1453 struct dm_target *ti;
1454 unsigned i, num_devices;
1456 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1457 ti = dm_table_get_target(table, i);
1459 if (!ti->type->iterate_devices)
1463 ti->type->iterate_devices(ti, count_device, &num_devices);
1471 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1472 sector_t start, sector_t len, void *data)
1474 struct request_queue *q = bdev_get_queue(dev->bdev);
1475 enum blk_zoned_model *zoned_model = data;
1477 return !q || blk_queue_zoned_model(q) != *zoned_model;
1480 static bool dm_table_supports_zoned_model(struct dm_table *t,
1481 enum blk_zoned_model zoned_model)
1483 struct dm_target *ti;
1486 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1487 ti = dm_table_get_target(t, i);
1489 if (zoned_model == BLK_ZONED_HM &&
1490 !dm_target_supports_zoned_hm(ti->type))
1493 if (!ti->type->iterate_devices ||
1494 ti->type->iterate_devices(ti, device_not_zoned_model, &zoned_model))
1501 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1502 sector_t start, sector_t len, void *data)
1504 struct request_queue *q = bdev_get_queue(dev->bdev);
1505 unsigned int *zone_sectors = data;
1507 return !q || blk_queue_zone_sectors(q) != *zone_sectors;
1510 static int validate_hardware_zoned_model(struct dm_table *table,
1511 enum blk_zoned_model zoned_model,
1512 unsigned int zone_sectors)
1514 if (zoned_model == BLK_ZONED_NONE)
1517 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1518 DMERR("%s: zoned model is not consistent across all devices",
1519 dm_device_name(table->md));
1523 /* Check zone size validity and compatibility */
1524 if (!zone_sectors || !is_power_of_2(zone_sectors))
1527 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1528 DMERR("%s: zone sectors is not consistent across all devices",
1529 dm_device_name(table->md));
1537 * Establish the new table's queue_limits and validate them.
1539 int dm_calculate_queue_limits(struct dm_table *table,
1540 struct queue_limits *limits)
1542 struct dm_target *ti;
1543 struct queue_limits ti_limits;
1545 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1546 unsigned int zone_sectors = 0;
1548 blk_set_stacking_limits(limits);
1550 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1551 blk_set_stacking_limits(&ti_limits);
1553 ti = dm_table_get_target(table, i);
1555 if (!ti->type->iterate_devices)
1556 goto combine_limits;
1559 * Combine queue limits of all the devices this target uses.
1561 ti->type->iterate_devices(ti, dm_set_device_limits,
1564 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1566 * After stacking all limits, validate all devices
1567 * in table support this zoned model and zone sectors.
1569 zoned_model = ti_limits.zoned;
1570 zone_sectors = ti_limits.chunk_sectors;
1573 /* Set I/O hints portion of queue limits */
1574 if (ti->type->io_hints)
1575 ti->type->io_hints(ti, &ti_limits);
1578 * Check each device area is consistent with the target's
1579 * overall queue limits.
1581 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1587 * Merge this target's queue limits into the overall limits
1590 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1591 DMWARN("%s: adding target device "
1592 "(start sect %llu len %llu) "
1593 "caused an alignment inconsistency",
1594 dm_device_name(table->md),
1595 (unsigned long long) ti->begin,
1596 (unsigned long long) ti->len);
1599 * FIXME: this should likely be moved to blk_stack_limits(), would
1600 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1602 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1604 * By default, the stacked limits zoned model is set to
1605 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1606 * this model using the first target model reported
1607 * that is not BLK_ZONED_NONE. This will be either the
1608 * first target device zoned model or the model reported
1609 * by the target .io_hints.
1611 limits->zoned = ti_limits.zoned;
1616 * Verify that the zoned model and zone sectors, as determined before
1617 * any .io_hints override, are the same across all devices in the table.
1618 * - this is especially relevant if .io_hints is emulating a disk-managed
1619 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1622 if (limits->zoned != BLK_ZONED_NONE) {
1624 * ...IF the above limits stacking determined a zoned model
1625 * validate that all of the table's devices conform to it.
1627 zoned_model = limits->zoned;
1628 zone_sectors = limits->chunk_sectors;
1630 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1633 return validate_hardware_logical_block_alignment(table, limits);
1637 * Verify that all devices have an integrity profile that matches the
1638 * DM device's registered integrity profile. If the profiles don't
1639 * match then unregister the DM device's integrity profile.
1641 static void dm_table_verify_integrity(struct dm_table *t)
1643 struct gendisk *template_disk = NULL;
1645 if (t->integrity_added)
1648 if (t->integrity_supported) {
1650 * Verify that the original integrity profile
1651 * matches all the devices in this table.
1653 template_disk = dm_table_get_integrity_disk(t);
1654 if (template_disk &&
1655 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1659 if (integrity_profile_exists(dm_disk(t->md))) {
1660 DMWARN("%s: unable to establish an integrity profile",
1661 dm_device_name(t->md));
1662 blk_integrity_unregister(dm_disk(t->md));
1666 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1667 sector_t start, sector_t len, void *data)
1669 unsigned long flush = (unsigned long) data;
1670 struct request_queue *q = bdev_get_queue(dev->bdev);
1672 return q && (q->queue_flags & flush);
1675 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1677 struct dm_target *ti;
1681 * Require at least one underlying device to support flushes.
1682 * t->devices includes internal dm devices such as mirror logs
1683 * so we need to use iterate_devices here, which targets
1684 * supporting flushes must provide.
1686 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1687 ti = dm_table_get_target(t, i);
1689 if (!ti->num_flush_bios)
1692 if (ti->flush_supported)
1695 if (ti->type->iterate_devices &&
1696 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1703 static int device_dax_write_cache_enabled(struct dm_target *ti,
1704 struct dm_dev *dev, sector_t start,
1705 sector_t len, void *data)
1707 struct dax_device *dax_dev = dev->dax_dev;
1712 if (dax_write_cache_enabled(dax_dev))
1717 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1718 sector_t start, sector_t len, void *data)
1720 struct request_queue *q = bdev_get_queue(dev->bdev);
1722 return q && !blk_queue_nonrot(q);
1725 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1726 sector_t start, sector_t len, void *data)
1728 struct request_queue *q = bdev_get_queue(dev->bdev);
1730 return q && !blk_queue_add_random(q);
1733 static int queue_no_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1734 sector_t start, sector_t len, void *data)
1736 struct request_queue *q = bdev_get_queue(dev->bdev);
1738 return q && test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1741 static int device_is_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1742 sector_t start, sector_t len, void *data)
1744 char b[BDEVNAME_SIZE];
1746 /* For now, NVMe devices are the only devices of this class */
1747 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) != 0);
1750 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1752 return !dm_table_any_dev_attr(t, device_is_partial_completion, NULL);
1755 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1756 sector_t start, sector_t len, void *data)
1758 struct request_queue *q = bdev_get_queue(dev->bdev);
1760 return q && !q->limits.max_write_same_sectors;
1763 static bool dm_table_supports_write_same(struct dm_table *t)
1765 struct dm_target *ti;
1768 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1769 ti = dm_table_get_target(t, i);
1771 if (!ti->num_write_same_bios)
1774 if (!ti->type->iterate_devices ||
1775 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1782 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1783 sector_t start, sector_t len, void *data)
1785 struct request_queue *q = bdev_get_queue(dev->bdev);
1787 return q && !q->limits.max_write_zeroes_sectors;
1790 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1792 struct dm_target *ti;
1795 while (i < dm_table_get_num_targets(t)) {
1796 ti = dm_table_get_target(t, i++);
1798 if (!ti->num_write_zeroes_bios)
1801 if (!ti->type->iterate_devices ||
1802 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1809 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1810 sector_t start, sector_t len, void *data)
1812 struct request_queue *q = bdev_get_queue(dev->bdev);
1814 return q && !blk_queue_discard(q);
1817 static bool dm_table_supports_discards(struct dm_table *t)
1819 struct dm_target *ti;
1822 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1823 ti = dm_table_get_target(t, i);
1825 if (!ti->num_discard_bios)
1829 * Either the target provides discard support (as implied by setting
1830 * 'discards_supported') or it relies on _all_ data devices having
1833 if (!ti->discards_supported &&
1834 (!ti->type->iterate_devices ||
1835 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1842 static int device_not_secure_erase_capable(struct dm_target *ti,
1843 struct dm_dev *dev, sector_t start,
1844 sector_t len, void *data)
1846 struct request_queue *q = bdev_get_queue(dev->bdev);
1848 return q && !blk_queue_secure_erase(q);
1851 static bool dm_table_supports_secure_erase(struct dm_table *t)
1853 struct dm_target *ti;
1856 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1857 ti = dm_table_get_target(t, i);
1859 if (!ti->num_secure_erase_bios)
1862 if (!ti->type->iterate_devices ||
1863 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1870 static int device_requires_stable_pages(struct dm_target *ti,
1871 struct dm_dev *dev, sector_t start,
1872 sector_t len, void *data)
1874 struct request_queue *q = bdev_get_queue(dev->bdev);
1876 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1879 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1880 struct queue_limits *limits)
1882 bool wc = false, fua = false;
1885 * Copy table's limits to the DM device's request_queue
1887 q->limits = *limits;
1889 if (!dm_table_supports_discards(t)) {
1890 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1891 /* Must also clear discard limits... */
1892 q->limits.max_discard_sectors = 0;
1893 q->limits.max_hw_discard_sectors = 0;
1894 q->limits.discard_granularity = 0;
1895 q->limits.discard_alignment = 0;
1896 q->limits.discard_misaligned = 0;
1898 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1900 if (dm_table_supports_secure_erase(t))
1901 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1903 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1905 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1908 blk_queue_write_cache(q, wc, fua);
1910 if (dm_table_supports_dax(t))
1911 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1913 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1915 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1916 dax_write_cache(t->md->dax_dev, true);
1918 /* Ensure that all underlying devices are non-rotational. */
1919 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1920 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1922 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1924 if (!dm_table_supports_write_same(t))
1925 q->limits.max_write_same_sectors = 0;
1926 if (!dm_table_supports_write_zeroes(t))
1927 q->limits.max_write_zeroes_sectors = 0;
1929 if (dm_table_any_dev_attr(t, queue_no_sg_merge, NULL))
1930 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1932 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1934 dm_table_verify_integrity(t);
1937 * Some devices don't use blk_integrity but still want stable pages
1938 * because they do their own checksumming.
1939 * If any underlying device requires stable pages, a table must require
1940 * them as well. Only targets that support iterate_devices are considered:
1941 * don't want error, zero, etc to require stable pages.
1943 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
1944 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1946 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1949 * Determine whether or not this queue's I/O timings contribute
1950 * to the entropy pool, Only request-based targets use this.
1951 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1954 if (blk_queue_add_random(q) &&
1955 dm_table_any_dev_attr(t, device_is_not_random, NULL))
1956 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1959 unsigned int dm_table_get_num_targets(struct dm_table *t)
1961 return t->num_targets;
1964 struct list_head *dm_table_get_devices(struct dm_table *t)
1969 fmode_t dm_table_get_mode(struct dm_table *t)
1973 EXPORT_SYMBOL(dm_table_get_mode);
1981 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1983 int i = t->num_targets;
1984 struct dm_target *ti = t->targets;
1986 lockdep_assert_held(&t->md->suspend_lock);
1991 if (ti->type->presuspend)
1992 ti->type->presuspend(ti);
1994 case PRESUSPEND_UNDO:
1995 if (ti->type->presuspend_undo)
1996 ti->type->presuspend_undo(ti);
1999 if (ti->type->postsuspend)
2000 ti->type->postsuspend(ti);
2007 void dm_table_presuspend_targets(struct dm_table *t)
2012 suspend_targets(t, PRESUSPEND);
2015 void dm_table_presuspend_undo_targets(struct dm_table *t)
2020 suspend_targets(t, PRESUSPEND_UNDO);
2023 void dm_table_postsuspend_targets(struct dm_table *t)
2028 suspend_targets(t, POSTSUSPEND);
2031 int dm_table_resume_targets(struct dm_table *t)
2035 lockdep_assert_held(&t->md->suspend_lock);
2037 for (i = 0; i < t->num_targets; i++) {
2038 struct dm_target *ti = t->targets + i;
2040 if (!ti->type->preresume)
2043 r = ti->type->preresume(ti);
2045 DMERR("%s: %s: preresume failed, error = %d",
2046 dm_device_name(t->md), ti->type->name, r);
2051 for (i = 0; i < t->num_targets; i++) {
2052 struct dm_target *ti = t->targets + i;
2054 if (ti->type->resume)
2055 ti->type->resume(ti);
2061 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2063 list_add(&cb->list, &t->target_callbacks);
2065 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2067 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2069 struct dm_dev_internal *dd;
2070 struct list_head *devices = dm_table_get_devices(t);
2071 struct dm_target_callbacks *cb;
2074 list_for_each_entry(dd, devices, list) {
2075 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2076 char b[BDEVNAME_SIZE];
2079 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2081 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2082 dm_device_name(t->md),
2083 bdevname(dd->dm_dev->bdev, b));
2086 list_for_each_entry(cb, &t->target_callbacks, list)
2087 if (cb->congested_fn)
2088 r |= cb->congested_fn(cb, bdi_bits);
2093 struct mapped_device *dm_table_get_md(struct dm_table *t)
2097 EXPORT_SYMBOL(dm_table_get_md);
2099 void dm_table_run_md_queue_async(struct dm_table *t)
2101 struct mapped_device *md;
2102 struct request_queue *queue;
2103 unsigned long flags;
2105 if (!dm_table_request_based(t))
2108 md = dm_table_get_md(t);
2109 queue = dm_get_md_queue(md);
2112 blk_mq_run_hw_queues(queue, true);
2114 spin_lock_irqsave(queue->queue_lock, flags);
2115 blk_run_queue_async(queue);
2116 spin_unlock_irqrestore(queue->queue_lock, flags);
2120 EXPORT_SYMBOL(dm_table_run_md_queue_async);