GNU Linux-libre 4.4.295-gnu1
[releases.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23
24 #define DM_MSG_PREFIX "table"
25
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 struct dm_table {
32         struct mapped_device *md;
33         unsigned type;
34
35         /* btree table */
36         unsigned int depth;
37         unsigned int counts[MAX_DEPTH]; /* in nodes */
38         sector_t *index[MAX_DEPTH];
39
40         unsigned int num_targets;
41         unsigned int num_allocated;
42         sector_t *highs;
43         struct dm_target *targets;
44
45         struct target_type *immutable_target_type;
46         unsigned integrity_supported:1;
47         unsigned singleton:1;
48
49         /*
50          * Indicates the rw permissions for the new logical
51          * device.  This should be a combination of FMODE_READ
52          * and FMODE_WRITE.
53          */
54         fmode_t mode;
55
56         /* a list of devices used by this table */
57         struct list_head devices;
58
59         /* events get handed up using this callback */
60         void (*event_fn)(void *);
61         void *event_context;
62
63         struct dm_md_mempools *mempools;
64
65         struct list_head target_callbacks;
66 };
67
68 /*
69  * Similar to ceiling(log_size(n))
70  */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73         int result = 0;
74
75         while (n > 1) {
76                 n = dm_div_up(n, base);
77                 result++;
78         }
79
80         return result;
81 }
82
83 /*
84  * Calculate the index of the child node of the n'th node k'th key.
85  */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88         return (n * CHILDREN_PER_NODE) + k;
89 }
90
91 /*
92  * Return the n'th node of level l from table t.
93  */
94 static inline sector_t *get_node(struct dm_table *t,
95                                  unsigned int l, unsigned int n)
96 {
97         return t->index[l] + (n * KEYS_PER_NODE);
98 }
99
100 /*
101  * Return the highest key that you could lookup from the n'th
102  * node on level l of the btree.
103  */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106         for (; l < t->depth - 1; l++)
107                 n = get_child(n, CHILDREN_PER_NODE - 1);
108
109         if (n >= t->counts[l])
110                 return (sector_t) - 1;
111
112         return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114
115 /*
116  * Fills in a level of the btree based on the highs of the level
117  * below it.
118  */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121         unsigned int n, k;
122         sector_t *node;
123
124         for (n = 0U; n < t->counts[l]; n++) {
125                 node = get_node(t, l, n);
126
127                 for (k = 0U; k < KEYS_PER_NODE; k++)
128                         node[k] = high(t, l + 1, get_child(n, k));
129         }
130
131         return 0;
132 }
133
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136         unsigned long size;
137         void *addr;
138
139         /*
140          * Check that we're not going to overflow.
141          */
142         if (nmemb > (ULONG_MAX / elem_size))
143                 return NULL;
144
145         size = nmemb * elem_size;
146         addr = vzalloc(size);
147
148         return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151
152 /*
153  * highs, and targets are managed as dynamic arrays during a
154  * table load.
155  */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158         sector_t *n_highs;
159         struct dm_target *n_targets;
160
161         /*
162          * Allocate both the target array and offset array at once.
163          * Append an empty entry to catch sectors beyond the end of
164          * the device.
165          */
166         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167                                           sizeof(sector_t));
168         if (!n_highs)
169                 return -ENOMEM;
170
171         n_targets = (struct dm_target *) (n_highs + num);
172
173         memset(n_highs, -1, sizeof(*n_highs) * num);
174         vfree(t->highs);
175
176         t->num_allocated = num;
177         t->highs = n_highs;
178         t->targets = n_targets;
179
180         return 0;
181 }
182
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184                     unsigned num_targets, struct mapped_device *md)
185 {
186         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187
188         if (!t)
189                 return -ENOMEM;
190
191         INIT_LIST_HEAD(&t->devices);
192         INIT_LIST_HEAD(&t->target_callbacks);
193
194         if (!num_targets)
195                 num_targets = KEYS_PER_NODE;
196
197         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198
199         if (!num_targets) {
200                 kfree(t);
201                 return -ENOMEM;
202         }
203
204         if (alloc_targets(t, num_targets)) {
205                 kfree(t);
206                 return -ENOMEM;
207         }
208
209         t->mode = mode;
210         t->md = md;
211         *result = t;
212         return 0;
213 }
214
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217         struct list_head *tmp, *next;
218
219         list_for_each_safe(tmp, next, devices) {
220                 struct dm_dev_internal *dd =
221                     list_entry(tmp, struct dm_dev_internal, list);
222                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223                        dm_device_name(md), dd->dm_dev->name);
224                 dm_put_table_device(md, dd->dm_dev);
225                 kfree(dd);
226         }
227 }
228
229 void dm_table_destroy(struct dm_table *t)
230 {
231         unsigned int i;
232
233         if (!t)
234                 return;
235
236         /* free the indexes */
237         if (t->depth >= 2)
238                 vfree(t->index[t->depth - 2]);
239
240         /* free the targets */
241         for (i = 0; i < t->num_targets; i++) {
242                 struct dm_target *tgt = t->targets + i;
243
244                 if (tgt->type->dtr)
245                         tgt->type->dtr(tgt);
246
247                 dm_put_target_type(tgt->type);
248         }
249
250         vfree(t->highs);
251
252         /* free the device list */
253         free_devices(&t->devices, t->md);
254
255         dm_free_md_mempools(t->mempools);
256
257         kfree(t);
258 }
259
260 /*
261  * See if we've already got a device in the list.
262  */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265         struct dm_dev_internal *dd;
266
267         list_for_each_entry (dd, l, list)
268                 if (dd->dm_dev->bdev->bd_dev == dev)
269                         return dd;
270
271         return NULL;
272 }
273
274 /*
275  * If possible, this checks an area of a destination device is invalid.
276  */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278                                   sector_t start, sector_t len, void *data)
279 {
280         struct request_queue *q;
281         struct queue_limits *limits = data;
282         struct block_device *bdev = dev->bdev;
283         sector_t dev_size =
284                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285         unsigned short logical_block_size_sectors =
286                 limits->logical_block_size >> SECTOR_SHIFT;
287         char b[BDEVNAME_SIZE];
288
289         /*
290          * Some devices exist without request functions,
291          * such as loop devices not yet bound to backing files.
292          * Forbid the use of such devices.
293          */
294         q = bdev_get_queue(bdev);
295         if (!q || !q->make_request_fn) {
296                 DMWARN("%s: %s is not yet initialised: "
297                        "start=%llu, len=%llu, dev_size=%llu",
298                        dm_device_name(ti->table->md), bdevname(bdev, b),
299                        (unsigned long long)start,
300                        (unsigned long long)len,
301                        (unsigned long long)dev_size);
302                 return 1;
303         }
304
305         if (!dev_size)
306                 return 0;
307
308         if ((start >= dev_size) || (start + len > dev_size)) {
309                 DMWARN("%s: %s too small for target: "
310                        "start=%llu, len=%llu, dev_size=%llu",
311                        dm_device_name(ti->table->md), bdevname(bdev, b),
312                        (unsigned long long)start,
313                        (unsigned long long)len,
314                        (unsigned long long)dev_size);
315                 return 1;
316         }
317
318         if (logical_block_size_sectors <= 1)
319                 return 0;
320
321         if (start & (logical_block_size_sectors - 1)) {
322                 DMWARN("%s: start=%llu not aligned to h/w "
323                        "logical block size %u of %s",
324                        dm_device_name(ti->table->md),
325                        (unsigned long long)start,
326                        limits->logical_block_size, bdevname(bdev, b));
327                 return 1;
328         }
329
330         if (len & (logical_block_size_sectors - 1)) {
331                 DMWARN("%s: len=%llu not aligned to h/w "
332                        "logical block size %u of %s",
333                        dm_device_name(ti->table->md),
334                        (unsigned long long)len,
335                        limits->logical_block_size, bdevname(bdev, b));
336                 return 1;
337         }
338
339         return 0;
340 }
341
342 /*
343  * This upgrades the mode on an already open dm_dev, being
344  * careful to leave things as they were if we fail to reopen the
345  * device and not to touch the existing bdev field in case
346  * it is accessed concurrently inside dm_table_any_congested().
347  */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349                         struct mapped_device *md)
350 {
351         int r;
352         struct dm_dev *old_dev, *new_dev;
353
354         old_dev = dd->dm_dev;
355
356         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357                                 dd->dm_dev->mode | new_mode, &new_dev);
358         if (r)
359                 return r;
360
361         dd->dm_dev = new_dev;
362         dm_put_table_device(md, old_dev);
363
364         return 0;
365 }
366
367 /*
368  * Convert the path to a device
369  */
370 dev_t dm_get_dev_t(const char *path)
371 {
372         dev_t uninitialized_var(dev);
373         struct block_device *bdev;
374
375         bdev = lookup_bdev(path);
376         if (IS_ERR(bdev))
377                 dev = name_to_dev_t(path);
378         else {
379                 dev = bdev->bd_dev;
380                 bdput(bdev);
381         }
382
383         return dev;
384 }
385 EXPORT_SYMBOL_GPL(dm_get_dev_t);
386
387 /*
388  * Add a device to the list, or just increment the usage count if
389  * it's already present.
390  */
391 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
392                   struct dm_dev **result)
393 {
394         int r;
395         dev_t dev;
396         unsigned int major, minor;
397         char dummy;
398         struct dm_dev_internal *dd;
399         struct dm_table *t = ti->table;
400
401         BUG_ON(!t);
402
403         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
404                 /* Extract the major/minor numbers */
405                 dev = MKDEV(major, minor);
406                 if (MAJOR(dev) != major || MINOR(dev) != minor)
407                         return -EOVERFLOW;
408         } else {
409                 dev = dm_get_dev_t(path);
410                 if (!dev)
411                         return -ENODEV;
412         }
413
414         dd = find_device(&t->devices, dev);
415         if (!dd) {
416                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
417                 if (!dd)
418                         return -ENOMEM;
419
420                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
421                         kfree(dd);
422                         return r;
423                 }
424
425                 atomic_set(&dd->count, 0);
426                 list_add(&dd->list, &t->devices);
427
428         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
429                 r = upgrade_mode(dd, mode, t->md);
430                 if (r)
431                         return r;
432         }
433         atomic_inc(&dd->count);
434
435         *result = dd->dm_dev;
436         return 0;
437 }
438 EXPORT_SYMBOL(dm_get_device);
439
440 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
441                                 sector_t start, sector_t len, void *data)
442 {
443         struct queue_limits *limits = data;
444         struct block_device *bdev = dev->bdev;
445         struct request_queue *q = bdev_get_queue(bdev);
446         char b[BDEVNAME_SIZE];
447
448         if (unlikely(!q)) {
449                 DMWARN("%s: Cannot set limits for nonexistent device %s",
450                        dm_device_name(ti->table->md), bdevname(bdev, b));
451                 return 0;
452         }
453
454         if (bdev_stack_limits(limits, bdev, start) < 0)
455                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
456                        "physical_block_size=%u, logical_block_size=%u, "
457                        "alignment_offset=%u, start=%llu",
458                        dm_device_name(ti->table->md), bdevname(bdev, b),
459                        q->limits.physical_block_size,
460                        q->limits.logical_block_size,
461                        q->limits.alignment_offset,
462                        (unsigned long long) start << SECTOR_SHIFT);
463
464         return 0;
465 }
466
467 /*
468  * Decrement a device's use count and remove it if necessary.
469  */
470 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
471 {
472         int found = 0;
473         struct list_head *devices = &ti->table->devices;
474         struct dm_dev_internal *dd;
475
476         list_for_each_entry(dd, devices, list) {
477                 if (dd->dm_dev == d) {
478                         found = 1;
479                         break;
480                 }
481         }
482         if (!found) {
483                 DMWARN("%s: device %s not in table devices list",
484                        dm_device_name(ti->table->md), d->name);
485                 return;
486         }
487         if (atomic_dec_and_test(&dd->count)) {
488                 dm_put_table_device(ti->table->md, d);
489                 list_del(&dd->list);
490                 kfree(dd);
491         }
492 }
493 EXPORT_SYMBOL(dm_put_device);
494
495 /*
496  * Checks to see if the target joins onto the end of the table.
497  */
498 static int adjoin(struct dm_table *table, struct dm_target *ti)
499 {
500         struct dm_target *prev;
501
502         if (!table->num_targets)
503                 return !ti->begin;
504
505         prev = &table->targets[table->num_targets - 1];
506         return (ti->begin == (prev->begin + prev->len));
507 }
508
509 /*
510  * Used to dynamically allocate the arg array.
511  *
512  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
513  * process messages even if some device is suspended. These messages have a
514  * small fixed number of arguments.
515  *
516  * On the other hand, dm-switch needs to process bulk data using messages and
517  * excessive use of GFP_NOIO could cause trouble.
518  */
519 static char **realloc_argv(unsigned *size, char **old_argv)
520 {
521         char **argv;
522         unsigned new_size;
523         gfp_t gfp;
524
525         if (*size) {
526                 new_size = *size * 2;
527                 gfp = GFP_KERNEL;
528         } else {
529                 new_size = 8;
530                 gfp = GFP_NOIO;
531         }
532         argv = kmalloc(new_size * sizeof(*argv), gfp);
533         if (argv) {
534                 memcpy(argv, old_argv, *size * sizeof(*argv));
535                 *size = new_size;
536         }
537
538         kfree(old_argv);
539         return argv;
540 }
541
542 /*
543  * Destructively splits up the argument list to pass to ctr.
544  */
545 int dm_split_args(int *argc, char ***argvp, char *input)
546 {
547         char *start, *end = input, *out, **argv = NULL;
548         unsigned array_size = 0;
549
550         *argc = 0;
551
552         if (!input) {
553                 *argvp = NULL;
554                 return 0;
555         }
556
557         argv = realloc_argv(&array_size, argv);
558         if (!argv)
559                 return -ENOMEM;
560
561         while (1) {
562                 /* Skip whitespace */
563                 start = skip_spaces(end);
564
565                 if (!*start)
566                         break;  /* success, we hit the end */
567
568                 /* 'out' is used to remove any back-quotes */
569                 end = out = start;
570                 while (*end) {
571                         /* Everything apart from '\0' can be quoted */
572                         if (*end == '\\' && *(end + 1)) {
573                                 *out++ = *(end + 1);
574                                 end += 2;
575                                 continue;
576                         }
577
578                         if (isspace(*end))
579                                 break;  /* end of token */
580
581                         *out++ = *end++;
582                 }
583
584                 /* have we already filled the array ? */
585                 if ((*argc + 1) > array_size) {
586                         argv = realloc_argv(&array_size, argv);
587                         if (!argv)
588                                 return -ENOMEM;
589                 }
590
591                 /* we know this is whitespace */
592                 if (*end)
593                         end++;
594
595                 /* terminate the string and put it in the array */
596                 *out = '\0';
597                 argv[*argc] = start;
598                 (*argc)++;
599         }
600
601         *argvp = argv;
602         return 0;
603 }
604
605 /*
606  * Impose necessary and sufficient conditions on a devices's table such
607  * that any incoming bio which respects its logical_block_size can be
608  * processed successfully.  If it falls across the boundary between
609  * two or more targets, the size of each piece it gets split into must
610  * be compatible with the logical_block_size of the target processing it.
611  */
612 static int validate_hardware_logical_block_alignment(struct dm_table *table,
613                                                  struct queue_limits *limits)
614 {
615         /*
616          * This function uses arithmetic modulo the logical_block_size
617          * (in units of 512-byte sectors).
618          */
619         unsigned short device_logical_block_size_sects =
620                 limits->logical_block_size >> SECTOR_SHIFT;
621
622         /*
623          * Offset of the start of the next table entry, mod logical_block_size.
624          */
625         unsigned short next_target_start = 0;
626
627         /*
628          * Given an aligned bio that extends beyond the end of a
629          * target, how many sectors must the next target handle?
630          */
631         unsigned short remaining = 0;
632
633         struct dm_target *uninitialized_var(ti);
634         struct queue_limits ti_limits;
635         unsigned i = 0;
636
637         /*
638          * Check each entry in the table in turn.
639          */
640         while (i < dm_table_get_num_targets(table)) {
641                 ti = dm_table_get_target(table, i++);
642
643                 blk_set_stacking_limits(&ti_limits);
644
645                 /* combine all target devices' limits */
646                 if (ti->type->iterate_devices)
647                         ti->type->iterate_devices(ti, dm_set_device_limits,
648                                                   &ti_limits);
649
650                 /*
651                  * If the remaining sectors fall entirely within this
652                  * table entry are they compatible with its logical_block_size?
653                  */
654                 if (remaining < ti->len &&
655                     remaining & ((ti_limits.logical_block_size >>
656                                   SECTOR_SHIFT) - 1))
657                         break;  /* Error */
658
659                 next_target_start =
660                     (unsigned short) ((next_target_start + ti->len) &
661                                       (device_logical_block_size_sects - 1));
662                 remaining = next_target_start ?
663                     device_logical_block_size_sects - next_target_start : 0;
664         }
665
666         if (remaining) {
667                 DMWARN("%s: table line %u (start sect %llu len %llu) "
668                        "not aligned to h/w logical block size %u",
669                        dm_device_name(table->md), i,
670                        (unsigned long long) ti->begin,
671                        (unsigned long long) ti->len,
672                        limits->logical_block_size);
673                 return -EINVAL;
674         }
675
676         return 0;
677 }
678
679 int dm_table_add_target(struct dm_table *t, const char *type,
680                         sector_t start, sector_t len, char *params)
681 {
682         int r = -EINVAL, argc;
683         char **argv;
684         struct dm_target *tgt;
685
686         if (t->singleton) {
687                 DMERR("%s: target type %s must appear alone in table",
688                       dm_device_name(t->md), t->targets->type->name);
689                 return -EINVAL;
690         }
691
692         BUG_ON(t->num_targets >= t->num_allocated);
693
694         tgt = t->targets + t->num_targets;
695         memset(tgt, 0, sizeof(*tgt));
696
697         if (!len) {
698                 DMERR("%s: zero-length target", dm_device_name(t->md));
699                 return -EINVAL;
700         }
701
702         tgt->type = dm_get_target_type(type);
703         if (!tgt->type) {
704                 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
705                       type);
706                 return -EINVAL;
707         }
708
709         if (dm_target_needs_singleton(tgt->type)) {
710                 if (t->num_targets) {
711                         DMERR("%s: target type %s must appear alone in table",
712                               dm_device_name(t->md), type);
713                         return -EINVAL;
714                 }
715                 t->singleton = 1;
716         }
717
718         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
719                 DMERR("%s: target type %s may not be included in read-only tables",
720                       dm_device_name(t->md), type);
721                 return -EINVAL;
722         }
723
724         if (t->immutable_target_type) {
725                 if (t->immutable_target_type != tgt->type) {
726                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
727                               dm_device_name(t->md), t->immutable_target_type->name);
728                         return -EINVAL;
729                 }
730         } else if (dm_target_is_immutable(tgt->type)) {
731                 if (t->num_targets) {
732                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
733                               dm_device_name(t->md), tgt->type->name);
734                         return -EINVAL;
735                 }
736                 t->immutable_target_type = tgt->type;
737         }
738
739         tgt->table = t;
740         tgt->begin = start;
741         tgt->len = len;
742         tgt->error = "Unknown error";
743
744         /*
745          * Does this target adjoin the previous one ?
746          */
747         if (!adjoin(t, tgt)) {
748                 tgt->error = "Gap in table";
749                 r = -EINVAL;
750                 goto bad;
751         }
752
753         r = dm_split_args(&argc, &argv, params);
754         if (r) {
755                 tgt->error = "couldn't split parameters (insufficient memory)";
756                 goto bad;
757         }
758
759         r = tgt->type->ctr(tgt, argc, argv);
760         kfree(argv);
761         if (r)
762                 goto bad;
763
764         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
765
766         if (!tgt->num_discard_bios && tgt->discards_supported)
767                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
768                        dm_device_name(t->md), type);
769
770         return 0;
771
772  bad:
773         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
774         dm_put_target_type(tgt->type);
775         return r;
776 }
777
778 /*
779  * Target argument parsing helpers.
780  */
781 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
782                              unsigned *value, char **error, unsigned grouped)
783 {
784         const char *arg_str = dm_shift_arg(arg_set);
785         char dummy;
786
787         if (!arg_str ||
788             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
789             (*value < arg->min) ||
790             (*value > arg->max) ||
791             (grouped && arg_set->argc < *value)) {
792                 *error = arg->error;
793                 return -EINVAL;
794         }
795
796         return 0;
797 }
798
799 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
800                 unsigned *value, char **error)
801 {
802         return validate_next_arg(arg, arg_set, value, error, 0);
803 }
804 EXPORT_SYMBOL(dm_read_arg);
805
806 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
807                       unsigned *value, char **error)
808 {
809         return validate_next_arg(arg, arg_set, value, error, 1);
810 }
811 EXPORT_SYMBOL(dm_read_arg_group);
812
813 const char *dm_shift_arg(struct dm_arg_set *as)
814 {
815         char *r;
816
817         if (as->argc) {
818                 as->argc--;
819                 r = *as->argv;
820                 as->argv++;
821                 return r;
822         }
823
824         return NULL;
825 }
826 EXPORT_SYMBOL(dm_shift_arg);
827
828 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
829 {
830         BUG_ON(as->argc < num_args);
831         as->argc -= num_args;
832         as->argv += num_args;
833 }
834 EXPORT_SYMBOL(dm_consume_args);
835
836 static bool __table_type_request_based(unsigned table_type)
837 {
838         return (table_type == DM_TYPE_REQUEST_BASED ||
839                 table_type == DM_TYPE_MQ_REQUEST_BASED);
840 }
841
842 static int dm_table_set_type(struct dm_table *t)
843 {
844         unsigned i;
845         unsigned bio_based = 0, request_based = 0, hybrid = 0;
846         bool use_blk_mq = false;
847         struct dm_target *tgt;
848         struct dm_dev_internal *dd;
849         struct list_head *devices;
850         unsigned live_md_type = dm_get_md_type(t->md);
851
852         for (i = 0; i < t->num_targets; i++) {
853                 tgt = t->targets + i;
854                 if (dm_target_hybrid(tgt))
855                         hybrid = 1;
856                 else if (dm_target_request_based(tgt))
857                         request_based = 1;
858                 else
859                         bio_based = 1;
860
861                 if (bio_based && request_based) {
862                         DMWARN("Inconsistent table: different target types"
863                                " can't be mixed up");
864                         return -EINVAL;
865                 }
866         }
867
868         if (hybrid && !bio_based && !request_based) {
869                 /*
870                  * The targets can work either way.
871                  * Determine the type from the live device.
872                  * Default to bio-based if device is new.
873                  */
874                 if (__table_type_request_based(live_md_type))
875                         request_based = 1;
876                 else
877                         bio_based = 1;
878         }
879
880         if (bio_based) {
881                 /* We must use this table as bio-based */
882                 t->type = DM_TYPE_BIO_BASED;
883                 return 0;
884         }
885
886         BUG_ON(!request_based); /* No targets in this table */
887
888         /*
889          * Request-based dm supports only tables that have a single target now.
890          * To support multiple targets, request splitting support is needed,
891          * and that needs lots of changes in the block-layer.
892          * (e.g. request completion process for partial completion.)
893          */
894         if (t->num_targets > 1) {
895                 DMWARN("Request-based dm doesn't support multiple targets yet");
896                 return -EINVAL;
897         }
898
899         /* Non-request-stackable devices can't be used for request-based dm */
900         devices = dm_table_get_devices(t);
901         list_for_each_entry(dd, devices, list) {
902                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
903
904                 if (!blk_queue_stackable(q)) {
905                         DMERR("table load rejected: including"
906                               " non-request-stackable devices");
907                         return -EINVAL;
908                 }
909
910                 if (q->mq_ops)
911                         use_blk_mq = true;
912         }
913
914         if (use_blk_mq) {
915                 /* verify _all_ devices in the table are blk-mq devices */
916                 list_for_each_entry(dd, devices, list)
917                         if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
918                                 DMERR("table load rejected: not all devices"
919                                       " are blk-mq request-stackable");
920                                 return -EINVAL;
921                         }
922                 t->type = DM_TYPE_MQ_REQUEST_BASED;
923
924         } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
925                 /* inherit live MD type */
926                 t->type = live_md_type;
927
928         } else
929                 t->type = DM_TYPE_REQUEST_BASED;
930
931         return 0;
932 }
933
934 unsigned dm_table_get_type(struct dm_table *t)
935 {
936         return t->type;
937 }
938
939 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
940 {
941         return t->immutable_target_type;
942 }
943
944 bool dm_table_request_based(struct dm_table *t)
945 {
946         return __table_type_request_based(dm_table_get_type(t));
947 }
948
949 bool dm_table_mq_request_based(struct dm_table *t)
950 {
951         return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
952 }
953
954 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
955 {
956         unsigned type = dm_table_get_type(t);
957         unsigned per_bio_data_size = 0;
958         struct dm_target *tgt;
959         unsigned i;
960
961         if (unlikely(type == DM_TYPE_NONE)) {
962                 DMWARN("no table type is set, can't allocate mempools");
963                 return -EINVAL;
964         }
965
966         if (type == DM_TYPE_BIO_BASED)
967                 for (i = 0; i < t->num_targets; i++) {
968                         tgt = t->targets + i;
969                         per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
970                 }
971
972         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
973         if (!t->mempools)
974                 return -ENOMEM;
975
976         return 0;
977 }
978
979 void dm_table_free_md_mempools(struct dm_table *t)
980 {
981         dm_free_md_mempools(t->mempools);
982         t->mempools = NULL;
983 }
984
985 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
986 {
987         return t->mempools;
988 }
989
990 static int setup_indexes(struct dm_table *t)
991 {
992         int i;
993         unsigned int total = 0;
994         sector_t *indexes;
995
996         /* allocate the space for *all* the indexes */
997         for (i = t->depth - 2; i >= 0; i--) {
998                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
999                 total += t->counts[i];
1000         }
1001
1002         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1003         if (!indexes)
1004                 return -ENOMEM;
1005
1006         /* set up internal nodes, bottom-up */
1007         for (i = t->depth - 2; i >= 0; i--) {
1008                 t->index[i] = indexes;
1009                 indexes += (KEYS_PER_NODE * t->counts[i]);
1010                 setup_btree_index(i, t);
1011         }
1012
1013         return 0;
1014 }
1015
1016 /*
1017  * Builds the btree to index the map.
1018  */
1019 static int dm_table_build_index(struct dm_table *t)
1020 {
1021         int r = 0;
1022         unsigned int leaf_nodes;
1023
1024         /* how many indexes will the btree have ? */
1025         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1026         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1027
1028         /* leaf layer has already been set up */
1029         t->counts[t->depth - 1] = leaf_nodes;
1030         t->index[t->depth - 1] = t->highs;
1031
1032         if (t->depth >= 2)
1033                 r = setup_indexes(t);
1034
1035         return r;
1036 }
1037
1038 static bool integrity_profile_exists(struct gendisk *disk)
1039 {
1040         return !!blk_get_integrity(disk);
1041 }
1042
1043 /*
1044  * Get a disk whose integrity profile reflects the table's profile.
1045  * Returns NULL if integrity support was inconsistent or unavailable.
1046  */
1047 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1048 {
1049         struct list_head *devices = dm_table_get_devices(t);
1050         struct dm_dev_internal *dd = NULL;
1051         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1052
1053         list_for_each_entry(dd, devices, list) {
1054                 template_disk = dd->dm_dev->bdev->bd_disk;
1055                 if (!integrity_profile_exists(template_disk))
1056                         goto no_integrity;
1057                 else if (prev_disk &&
1058                          blk_integrity_compare(prev_disk, template_disk) < 0)
1059                         goto no_integrity;
1060                 prev_disk = template_disk;
1061         }
1062
1063         return template_disk;
1064
1065 no_integrity:
1066         if (prev_disk)
1067                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1068                        dm_device_name(t->md),
1069                        prev_disk->disk_name,
1070                        template_disk->disk_name);
1071         return NULL;
1072 }
1073
1074 /*
1075  * Register the mapped device for blk_integrity support if the
1076  * underlying devices have an integrity profile.  But all devices may
1077  * not have matching profiles (checking all devices isn't reliable
1078  * during table load because this table may use other DM device(s) which
1079  * must be resumed before they will have an initialized integity
1080  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1081  * profile validation: First pass during table load, final pass during
1082  * resume.
1083  */
1084 static int dm_table_register_integrity(struct dm_table *t)
1085 {
1086         struct mapped_device *md = t->md;
1087         struct gendisk *template_disk = NULL;
1088
1089         template_disk = dm_table_get_integrity_disk(t);
1090         if (!template_disk)
1091                 return 0;
1092
1093         if (!integrity_profile_exists(dm_disk(md))) {
1094                 t->integrity_supported = 1;
1095                 /*
1096                  * Register integrity profile during table load; we can do
1097                  * this because the final profile must match during resume.
1098                  */
1099                 blk_integrity_register(dm_disk(md),
1100                                        blk_get_integrity(template_disk));
1101                 return 0;
1102         }
1103
1104         /*
1105          * If DM device already has an initialized integrity
1106          * profile the new profile should not conflict.
1107          */
1108         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1109                 DMWARN("%s: conflict with existing integrity profile: "
1110                        "%s profile mismatch",
1111                        dm_device_name(t->md),
1112                        template_disk->disk_name);
1113                 return 1;
1114         }
1115
1116         /* Preserve existing integrity profile */
1117         t->integrity_supported = 1;
1118         return 0;
1119 }
1120
1121 /*
1122  * Prepares the table for use by building the indices,
1123  * setting the type, and allocating mempools.
1124  */
1125 int dm_table_complete(struct dm_table *t)
1126 {
1127         int r;
1128
1129         r = dm_table_set_type(t);
1130         if (r) {
1131                 DMERR("unable to set table type");
1132                 return r;
1133         }
1134
1135         r = dm_table_build_index(t);
1136         if (r) {
1137                 DMERR("unable to build btrees");
1138                 return r;
1139         }
1140
1141         r = dm_table_register_integrity(t);
1142         if (r) {
1143                 DMERR("could not register integrity profile.");
1144                 return r;
1145         }
1146
1147         r = dm_table_alloc_md_mempools(t, t->md);
1148         if (r)
1149                 DMERR("unable to allocate mempools");
1150
1151         return r;
1152 }
1153
1154 static DEFINE_MUTEX(_event_lock);
1155 void dm_table_event_callback(struct dm_table *t,
1156                              void (*fn)(void *), void *context)
1157 {
1158         mutex_lock(&_event_lock);
1159         t->event_fn = fn;
1160         t->event_context = context;
1161         mutex_unlock(&_event_lock);
1162 }
1163
1164 void dm_table_event(struct dm_table *t)
1165 {
1166         mutex_lock(&_event_lock);
1167         if (t->event_fn)
1168                 t->event_fn(t->event_context);
1169         mutex_unlock(&_event_lock);
1170 }
1171 EXPORT_SYMBOL(dm_table_event);
1172
1173 inline sector_t dm_table_get_size(struct dm_table *t)
1174 {
1175         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1176 }
1177 EXPORT_SYMBOL(dm_table_get_size);
1178
1179 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1180 {
1181         if (index >= t->num_targets)
1182                 return NULL;
1183
1184         return t->targets + index;
1185 }
1186
1187 /*
1188  * Search the btree for the correct target.
1189  *
1190  * Caller should check returned pointer with dm_target_is_valid()
1191  * to trap I/O beyond end of device.
1192  */
1193 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1194 {
1195         unsigned int l, n = 0, k = 0;
1196         sector_t *node;
1197
1198         if (unlikely(sector >= dm_table_get_size(t)))
1199                 return &t->targets[t->num_targets];
1200
1201         for (l = 0; l < t->depth; l++) {
1202                 n = get_child(n, k);
1203                 node = get_node(t, l, n);
1204
1205                 for (k = 0; k < KEYS_PER_NODE; k++)
1206                         if (node[k] >= sector)
1207                                 break;
1208         }
1209
1210         return &t->targets[(KEYS_PER_NODE * n) + k];
1211 }
1212
1213 /*
1214  * type->iterate_devices() should be called when the sanity check needs to
1215  * iterate and check all underlying data devices. iterate_devices() will
1216  * iterate all underlying data devices until it encounters a non-zero return
1217  * code, returned by whether the input iterate_devices_callout_fn, or
1218  * iterate_devices() itself internally.
1219  *
1220  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1221  * iterate multiple underlying devices internally, in which case a non-zero
1222  * return code returned by iterate_devices_callout_fn will stop the iteration
1223  * in advance.
1224  *
1225  * Cases requiring _any_ underlying device supporting some kind of attribute,
1226  * should use the iteration structure like dm_table_any_dev_attr(), or call
1227  * it directly. @func should handle semantics of positive examples, e.g.
1228  * capable of something.
1229  *
1230  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1231  * should use the iteration structure like dm_table_supports_nowait() or
1232  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1233  * uses an @anti_func that handle semantics of counter examples, e.g. not
1234  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func);
1235  */
1236 static bool dm_table_any_dev_attr(struct dm_table *t,
1237                                   iterate_devices_callout_fn func)
1238 {
1239         struct dm_target *ti;
1240         unsigned int i;
1241
1242         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1243                 ti = dm_table_get_target(t, i);
1244
1245                 if (ti->type->iterate_devices &&
1246                     ti->type->iterate_devices(ti, func, NULL))
1247                         return true;
1248         }
1249
1250         return false;
1251 }
1252
1253 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1254                         sector_t start, sector_t len, void *data)
1255 {
1256         unsigned *num_devices = data;
1257
1258         (*num_devices)++;
1259
1260         return 0;
1261 }
1262
1263 /*
1264  * Check whether a table has no data devices attached using each
1265  * target's iterate_devices method.
1266  * Returns false if the result is unknown because a target doesn't
1267  * support iterate_devices.
1268  */
1269 bool dm_table_has_no_data_devices(struct dm_table *table)
1270 {
1271         struct dm_target *uninitialized_var(ti);
1272         unsigned i = 0, num_devices = 0;
1273
1274         while (i < dm_table_get_num_targets(table)) {
1275                 ti = dm_table_get_target(table, i++);
1276
1277                 if (!ti->type->iterate_devices)
1278                         return false;
1279
1280                 ti->type->iterate_devices(ti, count_device, &num_devices);
1281                 if (num_devices)
1282                         return false;
1283         }
1284
1285         return true;
1286 }
1287
1288 /*
1289  * Establish the new table's queue_limits and validate them.
1290  */
1291 int dm_calculate_queue_limits(struct dm_table *table,
1292                               struct queue_limits *limits)
1293 {
1294         struct dm_target *uninitialized_var(ti);
1295         struct queue_limits ti_limits;
1296         unsigned i = 0;
1297
1298         blk_set_stacking_limits(limits);
1299
1300         while (i < dm_table_get_num_targets(table)) {
1301                 blk_set_stacking_limits(&ti_limits);
1302
1303                 ti = dm_table_get_target(table, i++);
1304
1305                 if (!ti->type->iterate_devices)
1306                         goto combine_limits;
1307
1308                 /*
1309                  * Combine queue limits of all the devices this target uses.
1310                  */
1311                 ti->type->iterate_devices(ti, dm_set_device_limits,
1312                                           &ti_limits);
1313
1314                 /* Set I/O hints portion of queue limits */
1315                 if (ti->type->io_hints)
1316                         ti->type->io_hints(ti, &ti_limits);
1317
1318                 /*
1319                  * Check each device area is consistent with the target's
1320                  * overall queue limits.
1321                  */
1322                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1323                                               &ti_limits))
1324                         return -EINVAL;
1325
1326 combine_limits:
1327                 /*
1328                  * Merge this target's queue limits into the overall limits
1329                  * for the table.
1330                  */
1331                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1332                         DMWARN("%s: adding target device "
1333                                "(start sect %llu len %llu) "
1334                                "caused an alignment inconsistency",
1335                                dm_device_name(table->md),
1336                                (unsigned long long) ti->begin,
1337                                (unsigned long long) ti->len);
1338         }
1339
1340         return validate_hardware_logical_block_alignment(table, limits);
1341 }
1342
1343 /*
1344  * Verify that all devices have an integrity profile that matches the
1345  * DM device's registered integrity profile.  If the profiles don't
1346  * match then unregister the DM device's integrity profile.
1347  */
1348 static void dm_table_verify_integrity(struct dm_table *t)
1349 {
1350         struct gendisk *template_disk = NULL;
1351
1352         if (t->integrity_supported) {
1353                 /*
1354                  * Verify that the original integrity profile
1355                  * matches all the devices in this table.
1356                  */
1357                 template_disk = dm_table_get_integrity_disk(t);
1358                 if (template_disk &&
1359                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1360                         return;
1361         }
1362
1363         if (integrity_profile_exists(dm_disk(t->md))) {
1364                 DMWARN("%s: unable to establish an integrity profile",
1365                        dm_device_name(t->md));
1366                 blk_integrity_unregister(dm_disk(t->md));
1367         }
1368 }
1369
1370 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1371                                 sector_t start, sector_t len, void *data)
1372 {
1373         unsigned flush = (*(unsigned *)data);
1374         struct request_queue *q = bdev_get_queue(dev->bdev);
1375
1376         return q && (q->flush_flags & flush);
1377 }
1378
1379 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1380 {
1381         struct dm_target *ti;
1382         unsigned i = 0;
1383
1384         /*
1385          * Require at least one underlying device to support flushes.
1386          * t->devices includes internal dm devices such as mirror logs
1387          * so we need to use iterate_devices here, which targets
1388          * supporting flushes must provide.
1389          */
1390         while (i < dm_table_get_num_targets(t)) {
1391                 ti = dm_table_get_target(t, i++);
1392
1393                 if (!ti->num_flush_bios)
1394                         continue;
1395
1396                 if (ti->flush_supported)
1397                         return true;
1398
1399                 if (ti->type->iterate_devices &&
1400                     ti->type->iterate_devices(ti, device_flush_capable, &flush))
1401                         return true;
1402         }
1403
1404         return false;
1405 }
1406
1407 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1408 {
1409         struct dm_target *ti;
1410         unsigned i = 0;
1411
1412         /* Ensure that all targets supports discard_zeroes_data. */
1413         while (i < dm_table_get_num_targets(t)) {
1414                 ti = dm_table_get_target(t, i++);
1415
1416                 if (ti->discard_zeroes_data_unsupported)
1417                         return false;
1418         }
1419
1420         return true;
1421 }
1422
1423 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1424                                 sector_t start, sector_t len, void *data)
1425 {
1426         struct request_queue *q = bdev_get_queue(dev->bdev);
1427
1428         return q && !blk_queue_nonrot(q);
1429 }
1430
1431 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1432                              sector_t start, sector_t len, void *data)
1433 {
1434         struct request_queue *q = bdev_get_queue(dev->bdev);
1435
1436         return q && !blk_queue_add_random(q);
1437 }
1438
1439 static int queue_no_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1440                              sector_t start, sector_t len, void *data)
1441 {
1442         struct request_queue *q = bdev_get_queue(dev->bdev);
1443
1444         return q && test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1445 }
1446
1447 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1448                                          sector_t start, sector_t len, void *data)
1449 {
1450         struct request_queue *q = bdev_get_queue(dev->bdev);
1451
1452         return q && !q->limits.max_write_same_sectors;
1453 }
1454
1455 static bool dm_table_supports_write_same(struct dm_table *t)
1456 {
1457         struct dm_target *ti;
1458         unsigned i = 0;
1459
1460         while (i < dm_table_get_num_targets(t)) {
1461                 ti = dm_table_get_target(t, i++);
1462
1463                 if (!ti->num_write_same_bios)
1464                         return false;
1465
1466                 if (!ti->type->iterate_devices ||
1467                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1468                         return false;
1469         }
1470
1471         return true;
1472 }
1473
1474 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1475                                   sector_t start, sector_t len, void *data)
1476 {
1477         struct request_queue *q = bdev_get_queue(dev->bdev);
1478
1479         return q && blk_queue_discard(q);
1480 }
1481
1482 static bool dm_table_supports_discards(struct dm_table *t)
1483 {
1484         struct dm_target *ti;
1485         unsigned i = 0;
1486
1487         /*
1488          * Unless any target used by the table set discards_supported,
1489          * require at least one underlying device to support discards.
1490          * t->devices includes internal dm devices such as mirror logs
1491          * so we need to use iterate_devices here, which targets
1492          * supporting discard selectively must provide.
1493          */
1494         while (i < dm_table_get_num_targets(t)) {
1495                 ti = dm_table_get_target(t, i++);
1496
1497                 if (!ti->num_discard_bios)
1498                         continue;
1499
1500                 if (ti->discards_supported)
1501                         return true;
1502
1503                 if (ti->type->iterate_devices &&
1504                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1505                         return true;
1506         }
1507
1508         return false;
1509 }
1510
1511 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1512                                struct queue_limits *limits)
1513 {
1514         unsigned flush = 0;
1515
1516         /*
1517          * Copy table's limits to the DM device's request_queue
1518          */
1519         q->limits = *limits;
1520
1521         if (!dm_table_supports_discards(t))
1522                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1523         else
1524                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1525
1526         if (dm_table_supports_flush(t, REQ_FLUSH)) {
1527                 flush |= REQ_FLUSH;
1528                 if (dm_table_supports_flush(t, REQ_FUA))
1529                         flush |= REQ_FUA;
1530         }
1531         blk_queue_flush(q, flush);
1532
1533         if (!dm_table_discard_zeroes_data(t))
1534                 q->limits.discard_zeroes_data = 0;
1535
1536         /* Ensure that all underlying devices are non-rotational. */
1537         if (dm_table_any_dev_attr(t, device_is_rotational))
1538                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1539         else
1540                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1541
1542         if (!dm_table_supports_write_same(t))
1543                 q->limits.max_write_same_sectors = 0;
1544
1545         if (dm_table_any_dev_attr(t, queue_no_sg_merge))
1546                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1547         else
1548                 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1549
1550         dm_table_verify_integrity(t);
1551
1552         /*
1553          * Determine whether or not this queue's I/O timings contribute
1554          * to the entropy pool, Only request-based targets use this.
1555          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1556          * have it set.
1557          */
1558         if (blk_queue_add_random(q) && dm_table_any_dev_attr(t, device_is_not_random))
1559                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1560
1561         /*
1562          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1563          * visible to other CPUs because, once the flag is set, incoming bios
1564          * are processed by request-based dm, which refers to the queue
1565          * settings.
1566          * Until the flag set, bios are passed to bio-based dm and queued to
1567          * md->deferred where queue settings are not needed yet.
1568          * Those bios are passed to request-based dm at the resume time.
1569          */
1570         smp_mb();
1571         if (dm_table_request_based(t))
1572                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1573 }
1574
1575 unsigned int dm_table_get_num_targets(struct dm_table *t)
1576 {
1577         return t->num_targets;
1578 }
1579
1580 struct list_head *dm_table_get_devices(struct dm_table *t)
1581 {
1582         return &t->devices;
1583 }
1584
1585 fmode_t dm_table_get_mode(struct dm_table *t)
1586 {
1587         return t->mode;
1588 }
1589 EXPORT_SYMBOL(dm_table_get_mode);
1590
1591 enum suspend_mode {
1592         PRESUSPEND,
1593         PRESUSPEND_UNDO,
1594         POSTSUSPEND,
1595 };
1596
1597 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1598 {
1599         int i = t->num_targets;
1600         struct dm_target *ti = t->targets;
1601
1602         while (i--) {
1603                 switch (mode) {
1604                 case PRESUSPEND:
1605                         if (ti->type->presuspend)
1606                                 ti->type->presuspend(ti);
1607                         break;
1608                 case PRESUSPEND_UNDO:
1609                         if (ti->type->presuspend_undo)
1610                                 ti->type->presuspend_undo(ti);
1611                         break;
1612                 case POSTSUSPEND:
1613                         if (ti->type->postsuspend)
1614                                 ti->type->postsuspend(ti);
1615                         break;
1616                 }
1617                 ti++;
1618         }
1619 }
1620
1621 void dm_table_presuspend_targets(struct dm_table *t)
1622 {
1623         if (!t)
1624                 return;
1625
1626         suspend_targets(t, PRESUSPEND);
1627 }
1628
1629 void dm_table_presuspend_undo_targets(struct dm_table *t)
1630 {
1631         if (!t)
1632                 return;
1633
1634         suspend_targets(t, PRESUSPEND_UNDO);
1635 }
1636
1637 void dm_table_postsuspend_targets(struct dm_table *t)
1638 {
1639         if (!t)
1640                 return;
1641
1642         suspend_targets(t, POSTSUSPEND);
1643 }
1644
1645 int dm_table_resume_targets(struct dm_table *t)
1646 {
1647         int i, r = 0;
1648
1649         for (i = 0; i < t->num_targets; i++) {
1650                 struct dm_target *ti = t->targets + i;
1651
1652                 if (!ti->type->preresume)
1653                         continue;
1654
1655                 r = ti->type->preresume(ti);
1656                 if (r) {
1657                         DMERR("%s: %s: preresume failed, error = %d",
1658                               dm_device_name(t->md), ti->type->name, r);
1659                         return r;
1660                 }
1661         }
1662
1663         for (i = 0; i < t->num_targets; i++) {
1664                 struct dm_target *ti = t->targets + i;
1665
1666                 if (ti->type->resume)
1667                         ti->type->resume(ti);
1668         }
1669
1670         return 0;
1671 }
1672
1673 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1674 {
1675         list_add(&cb->list, &t->target_callbacks);
1676 }
1677 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1678
1679 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1680 {
1681         struct dm_dev_internal *dd;
1682         struct list_head *devices = dm_table_get_devices(t);
1683         struct dm_target_callbacks *cb;
1684         int r = 0;
1685
1686         list_for_each_entry(dd, devices, list) {
1687                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1688                 char b[BDEVNAME_SIZE];
1689
1690                 if (likely(q))
1691                         r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1692                 else
1693                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1694                                      dm_device_name(t->md),
1695                                      bdevname(dd->dm_dev->bdev, b));
1696         }
1697
1698         list_for_each_entry(cb, &t->target_callbacks, list)
1699                 if (cb->congested_fn)
1700                         r |= cb->congested_fn(cb, bdi_bits);
1701
1702         return r;
1703 }
1704
1705 struct mapped_device *dm_table_get_md(struct dm_table *t)
1706 {
1707         return t->md;
1708 }
1709 EXPORT_SYMBOL(dm_table_get_md);
1710
1711 void dm_table_run_md_queue_async(struct dm_table *t)
1712 {
1713         struct mapped_device *md;
1714         struct request_queue *queue;
1715         unsigned long flags;
1716
1717         if (!dm_table_request_based(t))
1718                 return;
1719
1720         md = dm_table_get_md(t);
1721         queue = dm_get_md_queue(md);
1722         if (queue) {
1723                 if (queue->mq_ops)
1724                         blk_mq_run_hw_queues(queue, true);
1725                 else {
1726                         spin_lock_irqsave(queue->queue_lock, flags);
1727                         blk_run_queue_async(queue);
1728                         spin_unlock_irqrestore(queue->queue_lock, flags);
1729                 }
1730         }
1731 }
1732 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1733