GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32  * Similar to ceiling(log_size(n))
33  */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36         int result = 0;
37
38         while (n > 1) {
39                 n = dm_div_up(n, base);
40                 result++;
41         }
42
43         return result;
44 }
45
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51         return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55  * Return the n'th node of level l from table t.
56  */
57 static inline sector_t *get_node(struct dm_table *t,
58                                  unsigned int l, unsigned int n)
59 {
60         return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69         for (; l < t->depth - 1; l++)
70                 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72         if (n >= t->counts[l])
73                 return (sector_t) - 1;
74
75         return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84         unsigned int n, k;
85         sector_t *node;
86
87         for (n = 0U; n < t->counts[l]; n++) {
88                 node = get_node(t, l, n);
89
90                 for (k = 0U; k < KEYS_PER_NODE; k++)
91                         node[k] = high(t, l + 1, get_child(n, k));
92         }
93
94         return 0;
95 }
96
97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99         unsigned long size;
100         void *addr;
101
102         /*
103          * Check that we're not going to overflow.
104          */
105         if (nmemb > (ULONG_MAX / elem_size))
106                 return NULL;
107
108         size = nmemb * elem_size;
109         addr = vzalloc(size);
110
111         return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121         sector_t *n_highs;
122         struct dm_target *n_targets;
123
124         /*
125          * Allocate both the target array and offset array at once.
126          */
127         n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128                                           sizeof(sector_t));
129         if (!n_highs)
130                 return -ENOMEM;
131
132         n_targets = (struct dm_target *) (n_highs + num);
133
134         memset(n_highs, -1, sizeof(*n_highs) * num);
135         vfree(t->highs);
136
137         t->num_allocated = num;
138         t->highs = n_highs;
139         t->targets = n_targets;
140
141         return 0;
142 }
143
144 int dm_table_create(struct dm_table **result, fmode_t mode,
145                     unsigned num_targets, struct mapped_device *md)
146 {
147         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148
149         if (!t)
150                 return -ENOMEM;
151
152         INIT_LIST_HEAD(&t->devices);
153
154         if (!num_targets)
155                 num_targets = KEYS_PER_NODE;
156
157         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158
159         if (!num_targets) {
160                 kfree(t);
161                 return -ENOMEM;
162         }
163
164         if (alloc_targets(t, num_targets)) {
165                 kfree(t);
166                 return -ENOMEM;
167         }
168
169         t->type = DM_TYPE_NONE;
170         t->mode = mode;
171         t->md = md;
172         *result = t;
173         return 0;
174 }
175
176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178         struct list_head *tmp, *next;
179
180         list_for_each_safe(tmp, next, devices) {
181                 struct dm_dev_internal *dd =
182                     list_entry(tmp, struct dm_dev_internal, list);
183                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184                        dm_device_name(md), dd->dm_dev->name);
185                 dm_put_table_device(md, dd->dm_dev);
186                 kfree(dd);
187         }
188 }
189
190 void dm_table_destroy(struct dm_table *t)
191 {
192         unsigned int i;
193
194         if (!t)
195                 return;
196
197         /* free the indexes */
198         if (t->depth >= 2)
199                 vfree(t->index[t->depth - 2]);
200
201         /* free the targets */
202         for (i = 0; i < t->num_targets; i++) {
203                 struct dm_target *tgt = t->targets + i;
204
205                 if (tgt->type->dtr)
206                         tgt->type->dtr(tgt);
207
208                 dm_put_target_type(tgt->type);
209         }
210
211         vfree(t->highs);
212
213         /* free the device list */
214         free_devices(&t->devices, t->md);
215
216         dm_free_md_mempools(t->mempools);
217
218         kfree(t);
219 }
220
221 /*
222  * See if we've already got a device in the list.
223  */
224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
225 {
226         struct dm_dev_internal *dd;
227
228         list_for_each_entry (dd, l, list)
229                 if (dd->dm_dev->bdev->bd_dev == dev)
230                         return dd;
231
232         return NULL;
233 }
234
235 /*
236  * If possible, this checks an area of a destination device is invalid.
237  */
238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
239                                   sector_t start, sector_t len, void *data)
240 {
241         struct queue_limits *limits = data;
242         struct block_device *bdev = dev->bdev;
243         sector_t dev_size =
244                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
245         unsigned short logical_block_size_sectors =
246                 limits->logical_block_size >> SECTOR_SHIFT;
247         char b[BDEVNAME_SIZE];
248
249         if (!dev_size)
250                 return 0;
251
252         if ((start >= dev_size) || (start + len > dev_size)) {
253                 DMWARN("%s: %s too small for target: "
254                        "start=%llu, len=%llu, dev_size=%llu",
255                        dm_device_name(ti->table->md), bdevname(bdev, b),
256                        (unsigned long long)start,
257                        (unsigned long long)len,
258                        (unsigned long long)dev_size);
259                 return 1;
260         }
261
262         /*
263          * If the target is mapped to zoned block device(s), check
264          * that the zones are not partially mapped.
265          */
266         if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
267                 unsigned int zone_sectors = bdev_zone_sectors(bdev);
268
269                 if (start & (zone_sectors - 1)) {
270                         DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271                                dm_device_name(ti->table->md),
272                                (unsigned long long)start,
273                                zone_sectors, bdevname(bdev, b));
274                         return 1;
275                 }
276
277                 /*
278                  * Note: The last zone of a zoned block device may be smaller
279                  * than other zones. So for a target mapping the end of a
280                  * zoned block device with such a zone, len would not be zone
281                  * aligned. We do not allow such last smaller zone to be part
282                  * of the mapping here to ensure that mappings with multiple
283                  * devices do not end up with a smaller zone in the middle of
284                  * the sector range.
285                  */
286                 if (len & (zone_sectors - 1)) {
287                         DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288                                dm_device_name(ti->table->md),
289                                (unsigned long long)len,
290                                zone_sectors, bdevname(bdev, b));
291                         return 1;
292                 }
293         }
294
295         if (logical_block_size_sectors <= 1)
296                 return 0;
297
298         if (start & (logical_block_size_sectors - 1)) {
299                 DMWARN("%s: start=%llu not aligned to h/w "
300                        "logical block size %u of %s",
301                        dm_device_name(ti->table->md),
302                        (unsigned long long)start,
303                        limits->logical_block_size, bdevname(bdev, b));
304                 return 1;
305         }
306
307         if (len & (logical_block_size_sectors - 1)) {
308                 DMWARN("%s: len=%llu not aligned to h/w "
309                        "logical block size %u of %s",
310                        dm_device_name(ti->table->md),
311                        (unsigned long long)len,
312                        limits->logical_block_size, bdevname(bdev, b));
313                 return 1;
314         }
315
316         return 0;
317 }
318
319 /*
320  * This upgrades the mode on an already open dm_dev, being
321  * careful to leave things as they were if we fail to reopen the
322  * device and not to touch the existing bdev field in case
323  * it is accessed concurrently.
324  */
325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
326                         struct mapped_device *md)
327 {
328         int r;
329         struct dm_dev *old_dev, *new_dev;
330
331         old_dev = dd->dm_dev;
332
333         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
334                                 dd->dm_dev->mode | new_mode, &new_dev);
335         if (r)
336                 return r;
337
338         dd->dm_dev = new_dev;
339         dm_put_table_device(md, old_dev);
340
341         return 0;
342 }
343
344 /*
345  * Convert the path to a device
346  */
347 dev_t dm_get_dev_t(const char *path)
348 {
349         dev_t dev;
350         struct block_device *bdev;
351
352         bdev = lookup_bdev(path);
353         if (IS_ERR(bdev))
354                 dev = name_to_dev_t(path);
355         else {
356                 dev = bdev->bd_dev;
357                 bdput(bdev);
358         }
359
360         return dev;
361 }
362 EXPORT_SYMBOL_GPL(dm_get_dev_t);
363
364 /*
365  * Add a device to the list, or just increment the usage count if
366  * it's already present.
367  */
368 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
369                   struct dm_dev **result)
370 {
371         int r;
372         dev_t dev;
373         unsigned int major, minor;
374         char dummy;
375         struct dm_dev_internal *dd;
376         struct dm_table *t = ti->table;
377
378         BUG_ON(!t);
379
380         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
381                 /* Extract the major/minor numbers */
382                 dev = MKDEV(major, minor);
383                 if (MAJOR(dev) != major || MINOR(dev) != minor)
384                         return -EOVERFLOW;
385         } else {
386                 dev = dm_get_dev_t(path);
387                 if (!dev)
388                         return -ENODEV;
389         }
390
391         dd = find_device(&t->devices, dev);
392         if (!dd) {
393                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
394                 if (!dd)
395                         return -ENOMEM;
396
397                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
398                         kfree(dd);
399                         return r;
400                 }
401
402                 refcount_set(&dd->count, 1);
403                 list_add(&dd->list, &t->devices);
404                 goto out;
405
406         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
407                 r = upgrade_mode(dd, mode, t->md);
408                 if (r)
409                         return r;
410         }
411         refcount_inc(&dd->count);
412 out:
413         *result = dd->dm_dev;
414         return 0;
415 }
416 EXPORT_SYMBOL(dm_get_device);
417
418 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
419                                 sector_t start, sector_t len, void *data)
420 {
421         struct queue_limits *limits = data;
422         struct block_device *bdev = dev->bdev;
423         struct request_queue *q = bdev_get_queue(bdev);
424         char b[BDEVNAME_SIZE];
425
426         if (unlikely(!q)) {
427                 DMWARN("%s: Cannot set limits for nonexistent device %s",
428                        dm_device_name(ti->table->md), bdevname(bdev, b));
429                 return 0;
430         }
431
432         if (blk_stack_limits(limits, &q->limits,
433                         get_start_sect(bdev) + start) < 0)
434                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435                        "physical_block_size=%u, logical_block_size=%u, "
436                        "alignment_offset=%u, start=%llu",
437                        dm_device_name(ti->table->md), bdevname(bdev, b),
438                        q->limits.physical_block_size,
439                        q->limits.logical_block_size,
440                        q->limits.alignment_offset,
441                        (unsigned long long) start << SECTOR_SHIFT);
442         return 0;
443 }
444
445 /*
446  * Decrement a device's use count and remove it if necessary.
447  */
448 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
449 {
450         int found = 0;
451         struct list_head *devices = &ti->table->devices;
452         struct dm_dev_internal *dd;
453
454         list_for_each_entry(dd, devices, list) {
455                 if (dd->dm_dev == d) {
456                         found = 1;
457                         break;
458                 }
459         }
460         if (!found) {
461                 DMWARN("%s: device %s not in table devices list",
462                        dm_device_name(ti->table->md), d->name);
463                 return;
464         }
465         if (refcount_dec_and_test(&dd->count)) {
466                 dm_put_table_device(ti->table->md, d);
467                 list_del(&dd->list);
468                 kfree(dd);
469         }
470 }
471 EXPORT_SYMBOL(dm_put_device);
472
473 /*
474  * Checks to see if the target joins onto the end of the table.
475  */
476 static int adjoin(struct dm_table *table, struct dm_target *ti)
477 {
478         struct dm_target *prev;
479
480         if (!table->num_targets)
481                 return !ti->begin;
482
483         prev = &table->targets[table->num_targets - 1];
484         return (ti->begin == (prev->begin + prev->len));
485 }
486
487 /*
488  * Used to dynamically allocate the arg array.
489  *
490  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
491  * process messages even if some device is suspended. These messages have a
492  * small fixed number of arguments.
493  *
494  * On the other hand, dm-switch needs to process bulk data using messages and
495  * excessive use of GFP_NOIO could cause trouble.
496  */
497 static char **realloc_argv(unsigned *size, char **old_argv)
498 {
499         char **argv;
500         unsigned new_size;
501         gfp_t gfp;
502
503         if (*size) {
504                 new_size = *size * 2;
505                 gfp = GFP_KERNEL;
506         } else {
507                 new_size = 8;
508                 gfp = GFP_NOIO;
509         }
510         argv = kmalloc_array(new_size, sizeof(*argv), gfp);
511         if (argv && old_argv) {
512                 memcpy(argv, old_argv, *size * sizeof(*argv));
513                 *size = new_size;
514         }
515
516         kfree(old_argv);
517         return argv;
518 }
519
520 /*
521  * Destructively splits up the argument list to pass to ctr.
522  */
523 int dm_split_args(int *argc, char ***argvp, char *input)
524 {
525         char *start, *end = input, *out, **argv = NULL;
526         unsigned array_size = 0;
527
528         *argc = 0;
529
530         if (!input) {
531                 *argvp = NULL;
532                 return 0;
533         }
534
535         argv = realloc_argv(&array_size, argv);
536         if (!argv)
537                 return -ENOMEM;
538
539         while (1) {
540                 /* Skip whitespace */
541                 start = skip_spaces(end);
542
543                 if (!*start)
544                         break;  /* success, we hit the end */
545
546                 /* 'out' is used to remove any back-quotes */
547                 end = out = start;
548                 while (*end) {
549                         /* Everything apart from '\0' can be quoted */
550                         if (*end == '\\' && *(end + 1)) {
551                                 *out++ = *(end + 1);
552                                 end += 2;
553                                 continue;
554                         }
555
556                         if (isspace(*end))
557                                 break;  /* end of token */
558
559                         *out++ = *end++;
560                 }
561
562                 /* have we already filled the array ? */
563                 if ((*argc + 1) > array_size) {
564                         argv = realloc_argv(&array_size, argv);
565                         if (!argv)
566                                 return -ENOMEM;
567                 }
568
569                 /* we know this is whitespace */
570                 if (*end)
571                         end++;
572
573                 /* terminate the string and put it in the array */
574                 *out = '\0';
575                 argv[*argc] = start;
576                 (*argc)++;
577         }
578
579         *argvp = argv;
580         return 0;
581 }
582
583 /*
584  * Impose necessary and sufficient conditions on a devices's table such
585  * that any incoming bio which respects its logical_block_size can be
586  * processed successfully.  If it falls across the boundary between
587  * two or more targets, the size of each piece it gets split into must
588  * be compatible with the logical_block_size of the target processing it.
589  */
590 static int validate_hardware_logical_block_alignment(struct dm_table *table,
591                                                  struct queue_limits *limits)
592 {
593         /*
594          * This function uses arithmetic modulo the logical_block_size
595          * (in units of 512-byte sectors).
596          */
597         unsigned short device_logical_block_size_sects =
598                 limits->logical_block_size >> SECTOR_SHIFT;
599
600         /*
601          * Offset of the start of the next table entry, mod logical_block_size.
602          */
603         unsigned short next_target_start = 0;
604
605         /*
606          * Given an aligned bio that extends beyond the end of a
607          * target, how many sectors must the next target handle?
608          */
609         unsigned short remaining = 0;
610
611         struct dm_target *ti;
612         struct queue_limits ti_limits;
613         unsigned i;
614
615         /*
616          * Check each entry in the table in turn.
617          */
618         for (i = 0; i < dm_table_get_num_targets(table); i++) {
619                 ti = dm_table_get_target(table, i);
620
621                 blk_set_stacking_limits(&ti_limits);
622
623                 /* combine all target devices' limits */
624                 if (ti->type->iterate_devices)
625                         ti->type->iterate_devices(ti, dm_set_device_limits,
626                                                   &ti_limits);
627
628                 /*
629                  * If the remaining sectors fall entirely within this
630                  * table entry are they compatible with its logical_block_size?
631                  */
632                 if (remaining < ti->len &&
633                     remaining & ((ti_limits.logical_block_size >>
634                                   SECTOR_SHIFT) - 1))
635                         break;  /* Error */
636
637                 next_target_start =
638                     (unsigned short) ((next_target_start + ti->len) &
639                                       (device_logical_block_size_sects - 1));
640                 remaining = next_target_start ?
641                     device_logical_block_size_sects - next_target_start : 0;
642         }
643
644         if (remaining) {
645                 DMWARN("%s: table line %u (start sect %llu len %llu) "
646                        "not aligned to h/w logical block size %u",
647                        dm_device_name(table->md), i,
648                        (unsigned long long) ti->begin,
649                        (unsigned long long) ti->len,
650                        limits->logical_block_size);
651                 return -EINVAL;
652         }
653
654         return 0;
655 }
656
657 int dm_table_add_target(struct dm_table *t, const char *type,
658                         sector_t start, sector_t len, char *params)
659 {
660         int r = -EINVAL, argc;
661         char **argv;
662         struct dm_target *tgt;
663
664         if (t->singleton) {
665                 DMERR("%s: target type %s must appear alone in table",
666                       dm_device_name(t->md), t->targets->type->name);
667                 return -EINVAL;
668         }
669
670         BUG_ON(t->num_targets >= t->num_allocated);
671
672         tgt = t->targets + t->num_targets;
673         memset(tgt, 0, sizeof(*tgt));
674
675         if (!len) {
676                 DMERR("%s: zero-length target", dm_device_name(t->md));
677                 return -EINVAL;
678         }
679
680         tgt->type = dm_get_target_type(type);
681         if (!tgt->type) {
682                 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
683                 return -EINVAL;
684         }
685
686         if (dm_target_needs_singleton(tgt->type)) {
687                 if (t->num_targets) {
688                         tgt->error = "singleton target type must appear alone in table";
689                         goto bad;
690                 }
691                 t->singleton = true;
692         }
693
694         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
695                 tgt->error = "target type may not be included in a read-only table";
696                 goto bad;
697         }
698
699         if (t->immutable_target_type) {
700                 if (t->immutable_target_type != tgt->type) {
701                         tgt->error = "immutable target type cannot be mixed with other target types";
702                         goto bad;
703                 }
704         } else if (dm_target_is_immutable(tgt->type)) {
705                 if (t->num_targets) {
706                         tgt->error = "immutable target type cannot be mixed with other target types";
707                         goto bad;
708                 }
709                 t->immutable_target_type = tgt->type;
710         }
711
712         if (dm_target_has_integrity(tgt->type))
713                 t->integrity_added = 1;
714
715         tgt->table = t;
716         tgt->begin = start;
717         tgt->len = len;
718         tgt->error = "Unknown error";
719
720         /*
721          * Does this target adjoin the previous one ?
722          */
723         if (!adjoin(t, tgt)) {
724                 tgt->error = "Gap in table";
725                 goto bad;
726         }
727
728         r = dm_split_args(&argc, &argv, params);
729         if (r) {
730                 tgt->error = "couldn't split parameters (insufficient memory)";
731                 goto bad;
732         }
733
734         r = tgt->type->ctr(tgt, argc, argv);
735         kfree(argv);
736         if (r)
737                 goto bad;
738
739         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
740
741         if (!tgt->num_discard_bios && tgt->discards_supported)
742                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
743                        dm_device_name(t->md), type);
744
745         return 0;
746
747  bad:
748         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
749         dm_put_target_type(tgt->type);
750         return r;
751 }
752
753 /*
754  * Target argument parsing helpers.
755  */
756 static int validate_next_arg(const struct dm_arg *arg,
757                              struct dm_arg_set *arg_set,
758                              unsigned *value, char **error, unsigned grouped)
759 {
760         const char *arg_str = dm_shift_arg(arg_set);
761         char dummy;
762
763         if (!arg_str ||
764             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
765             (*value < arg->min) ||
766             (*value > arg->max) ||
767             (grouped && arg_set->argc < *value)) {
768                 *error = arg->error;
769                 return -EINVAL;
770         }
771
772         return 0;
773 }
774
775 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
776                 unsigned *value, char **error)
777 {
778         return validate_next_arg(arg, arg_set, value, error, 0);
779 }
780 EXPORT_SYMBOL(dm_read_arg);
781
782 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
783                       unsigned *value, char **error)
784 {
785         return validate_next_arg(arg, arg_set, value, error, 1);
786 }
787 EXPORT_SYMBOL(dm_read_arg_group);
788
789 const char *dm_shift_arg(struct dm_arg_set *as)
790 {
791         char *r;
792
793         if (as->argc) {
794                 as->argc--;
795                 r = *as->argv;
796                 as->argv++;
797                 return r;
798         }
799
800         return NULL;
801 }
802 EXPORT_SYMBOL(dm_shift_arg);
803
804 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
805 {
806         BUG_ON(as->argc < num_args);
807         as->argc -= num_args;
808         as->argv += num_args;
809 }
810 EXPORT_SYMBOL(dm_consume_args);
811
812 static bool __table_type_bio_based(enum dm_queue_mode table_type)
813 {
814         return (table_type == DM_TYPE_BIO_BASED ||
815                 table_type == DM_TYPE_DAX_BIO_BASED);
816 }
817
818 static bool __table_type_request_based(enum dm_queue_mode table_type)
819 {
820         return table_type == DM_TYPE_REQUEST_BASED;
821 }
822
823 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
824 {
825         t->type = type;
826 }
827 EXPORT_SYMBOL_GPL(dm_table_set_type);
828
829 /* validate the dax capability of the target device span */
830 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
831                         sector_t start, sector_t len, void *data)
832 {
833         int blocksize = *(int *) data, id;
834         bool rc;
835
836         id = dax_read_lock();
837         rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
838         dax_read_unlock(id);
839
840         return rc;
841 }
842
843 /* Check devices support synchronous DAX */
844 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
845                                               sector_t start, sector_t len, void *data)
846 {
847         return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
848 }
849
850 bool dm_table_supports_dax(struct dm_table *t,
851                            iterate_devices_callout_fn iterate_fn, int *blocksize)
852 {
853         struct dm_target *ti;
854         unsigned i;
855
856         /* Ensure that all targets support DAX. */
857         for (i = 0; i < dm_table_get_num_targets(t); i++) {
858                 ti = dm_table_get_target(t, i);
859
860                 if (!ti->type->direct_access)
861                         return false;
862
863                 if (!ti->type->iterate_devices ||
864                     ti->type->iterate_devices(ti, iterate_fn, blocksize))
865                         return false;
866         }
867
868         return true;
869 }
870
871 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
872                                   sector_t start, sector_t len, void *data)
873 {
874         struct block_device *bdev = dev->bdev;
875         struct request_queue *q = bdev_get_queue(bdev);
876
877         /* request-based cannot stack on partitions! */
878         if (bdev_is_partition(bdev))
879                 return false;
880
881         return queue_is_mq(q);
882 }
883
884 static int dm_table_determine_type(struct dm_table *t)
885 {
886         unsigned i;
887         unsigned bio_based = 0, request_based = 0, hybrid = 0;
888         struct dm_target *tgt;
889         struct list_head *devices = dm_table_get_devices(t);
890         enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
891         int page_size = PAGE_SIZE;
892
893         if (t->type != DM_TYPE_NONE) {
894                 /* target already set the table's type */
895                 if (t->type == DM_TYPE_BIO_BASED) {
896                         /* possibly upgrade to a variant of bio-based */
897                         goto verify_bio_based;
898                 }
899                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
900                 goto verify_rq_based;
901         }
902
903         for (i = 0; i < t->num_targets; i++) {
904                 tgt = t->targets + i;
905                 if (dm_target_hybrid(tgt))
906                         hybrid = 1;
907                 else if (dm_target_request_based(tgt))
908                         request_based = 1;
909                 else
910                         bio_based = 1;
911
912                 if (bio_based && request_based) {
913                         DMERR("Inconsistent table: different target types"
914                               " can't be mixed up");
915                         return -EINVAL;
916                 }
917         }
918
919         if (hybrid && !bio_based && !request_based) {
920                 /*
921                  * The targets can work either way.
922                  * Determine the type from the live device.
923                  * Default to bio-based if device is new.
924                  */
925                 if (__table_type_request_based(live_md_type))
926                         request_based = 1;
927                 else
928                         bio_based = 1;
929         }
930
931         if (bio_based) {
932 verify_bio_based:
933                 /* We must use this table as bio-based */
934                 t->type = DM_TYPE_BIO_BASED;
935                 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
936                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
937                         t->type = DM_TYPE_DAX_BIO_BASED;
938                 }
939                 return 0;
940         }
941
942         BUG_ON(!request_based); /* No targets in this table */
943
944         t->type = DM_TYPE_REQUEST_BASED;
945
946 verify_rq_based:
947         /*
948          * Request-based dm supports only tables that have a single target now.
949          * To support multiple targets, request splitting support is needed,
950          * and that needs lots of changes in the block-layer.
951          * (e.g. request completion process for partial completion.)
952          */
953         if (t->num_targets > 1) {
954                 DMERR("request-based DM doesn't support multiple targets");
955                 return -EINVAL;
956         }
957
958         if (list_empty(devices)) {
959                 int srcu_idx;
960                 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
961
962                 /* inherit live table's type */
963                 if (live_table)
964                         t->type = live_table->type;
965                 dm_put_live_table(t->md, srcu_idx);
966                 return 0;
967         }
968
969         tgt = dm_table_get_immutable_target(t);
970         if (!tgt) {
971                 DMERR("table load rejected: immutable target is required");
972                 return -EINVAL;
973         } else if (tgt->max_io_len) {
974                 DMERR("table load rejected: immutable target that splits IO is not supported");
975                 return -EINVAL;
976         }
977
978         /* Non-request-stackable devices can't be used for request-based dm */
979         if (!tgt->type->iterate_devices ||
980             !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
981                 DMERR("table load rejected: including non-request-stackable devices");
982                 return -EINVAL;
983         }
984
985         return 0;
986 }
987
988 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
989 {
990         return t->type;
991 }
992
993 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
994 {
995         return t->immutable_target_type;
996 }
997
998 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
999 {
1000         /* Immutable target is implicitly a singleton */
1001         if (t->num_targets > 1 ||
1002             !dm_target_is_immutable(t->targets[0].type))
1003                 return NULL;
1004
1005         return t->targets;
1006 }
1007
1008 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1009 {
1010         struct dm_target *ti;
1011         unsigned i;
1012
1013         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1014                 ti = dm_table_get_target(t, i);
1015                 if (dm_target_is_wildcard(ti->type))
1016                         return ti;
1017         }
1018
1019         return NULL;
1020 }
1021
1022 bool dm_table_bio_based(struct dm_table *t)
1023 {
1024         return __table_type_bio_based(dm_table_get_type(t));
1025 }
1026
1027 bool dm_table_request_based(struct dm_table *t)
1028 {
1029         return __table_type_request_based(dm_table_get_type(t));
1030 }
1031
1032 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1033 {
1034         enum dm_queue_mode type = dm_table_get_type(t);
1035         unsigned per_io_data_size = 0;
1036         unsigned min_pool_size = 0;
1037         struct dm_target *ti;
1038         unsigned i;
1039
1040         if (unlikely(type == DM_TYPE_NONE)) {
1041                 DMWARN("no table type is set, can't allocate mempools");
1042                 return -EINVAL;
1043         }
1044
1045         if (__table_type_bio_based(type))
1046                 for (i = 0; i < t->num_targets; i++) {
1047                         ti = t->targets + i;
1048                         per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1049                         min_pool_size = max(min_pool_size, ti->num_flush_bios);
1050                 }
1051
1052         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1053                                            per_io_data_size, min_pool_size);
1054         if (!t->mempools)
1055                 return -ENOMEM;
1056
1057         return 0;
1058 }
1059
1060 void dm_table_free_md_mempools(struct dm_table *t)
1061 {
1062         dm_free_md_mempools(t->mempools);
1063         t->mempools = NULL;
1064 }
1065
1066 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1067 {
1068         return t->mempools;
1069 }
1070
1071 static int setup_indexes(struct dm_table *t)
1072 {
1073         int i;
1074         unsigned int total = 0;
1075         sector_t *indexes;
1076
1077         /* allocate the space for *all* the indexes */
1078         for (i = t->depth - 2; i >= 0; i--) {
1079                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1080                 total += t->counts[i];
1081         }
1082
1083         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1084         if (!indexes)
1085                 return -ENOMEM;
1086
1087         /* set up internal nodes, bottom-up */
1088         for (i = t->depth - 2; i >= 0; i--) {
1089                 t->index[i] = indexes;
1090                 indexes += (KEYS_PER_NODE * t->counts[i]);
1091                 setup_btree_index(i, t);
1092         }
1093
1094         return 0;
1095 }
1096
1097 /*
1098  * Builds the btree to index the map.
1099  */
1100 static int dm_table_build_index(struct dm_table *t)
1101 {
1102         int r = 0;
1103         unsigned int leaf_nodes;
1104
1105         /* how many indexes will the btree have ? */
1106         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1107         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1108
1109         /* leaf layer has already been set up */
1110         t->counts[t->depth - 1] = leaf_nodes;
1111         t->index[t->depth - 1] = t->highs;
1112
1113         if (t->depth >= 2)
1114                 r = setup_indexes(t);
1115
1116         return r;
1117 }
1118
1119 static bool integrity_profile_exists(struct gendisk *disk)
1120 {
1121         return !!blk_get_integrity(disk);
1122 }
1123
1124 /*
1125  * Get a disk whose integrity profile reflects the table's profile.
1126  * Returns NULL if integrity support was inconsistent or unavailable.
1127  */
1128 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1129 {
1130         struct list_head *devices = dm_table_get_devices(t);
1131         struct dm_dev_internal *dd = NULL;
1132         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1133         unsigned i;
1134
1135         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1136                 struct dm_target *ti = dm_table_get_target(t, i);
1137                 if (!dm_target_passes_integrity(ti->type))
1138                         goto no_integrity;
1139         }
1140
1141         list_for_each_entry(dd, devices, list) {
1142                 template_disk = dd->dm_dev->bdev->bd_disk;
1143                 if (!integrity_profile_exists(template_disk))
1144                         goto no_integrity;
1145                 else if (prev_disk &&
1146                          blk_integrity_compare(prev_disk, template_disk) < 0)
1147                         goto no_integrity;
1148                 prev_disk = template_disk;
1149         }
1150
1151         return template_disk;
1152
1153 no_integrity:
1154         if (prev_disk)
1155                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1156                        dm_device_name(t->md),
1157                        prev_disk->disk_name,
1158                        template_disk->disk_name);
1159         return NULL;
1160 }
1161
1162 /*
1163  * Register the mapped device for blk_integrity support if the
1164  * underlying devices have an integrity profile.  But all devices may
1165  * not have matching profiles (checking all devices isn't reliable
1166  * during table load because this table may use other DM device(s) which
1167  * must be resumed before they will have an initialized integity
1168  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1169  * profile validation: First pass during table load, final pass during
1170  * resume.
1171  */
1172 static int dm_table_register_integrity(struct dm_table *t)
1173 {
1174         struct mapped_device *md = t->md;
1175         struct gendisk *template_disk = NULL;
1176
1177         /* If target handles integrity itself do not register it here. */
1178         if (t->integrity_added)
1179                 return 0;
1180
1181         template_disk = dm_table_get_integrity_disk(t);
1182         if (!template_disk)
1183                 return 0;
1184
1185         if (!integrity_profile_exists(dm_disk(md))) {
1186                 t->integrity_supported = true;
1187                 /*
1188                  * Register integrity profile during table load; we can do
1189                  * this because the final profile must match during resume.
1190                  */
1191                 blk_integrity_register(dm_disk(md),
1192                                        blk_get_integrity(template_disk));
1193                 return 0;
1194         }
1195
1196         /*
1197          * If DM device already has an initialized integrity
1198          * profile the new profile should not conflict.
1199          */
1200         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1201                 DMWARN("%s: conflict with existing integrity profile: "
1202                        "%s profile mismatch",
1203                        dm_device_name(t->md),
1204                        template_disk->disk_name);
1205                 return 1;
1206         }
1207
1208         /* Preserve existing integrity profile */
1209         t->integrity_supported = true;
1210         return 0;
1211 }
1212
1213 /*
1214  * Prepares the table for use by building the indices,
1215  * setting the type, and allocating mempools.
1216  */
1217 int dm_table_complete(struct dm_table *t)
1218 {
1219         int r;
1220
1221         r = dm_table_determine_type(t);
1222         if (r) {
1223                 DMERR("unable to determine table type");
1224                 return r;
1225         }
1226
1227         r = dm_table_build_index(t);
1228         if (r) {
1229                 DMERR("unable to build btrees");
1230                 return r;
1231         }
1232
1233         r = dm_table_register_integrity(t);
1234         if (r) {
1235                 DMERR("could not register integrity profile.");
1236                 return r;
1237         }
1238
1239         r = dm_table_alloc_md_mempools(t, t->md);
1240         if (r)
1241                 DMERR("unable to allocate mempools");
1242
1243         return r;
1244 }
1245
1246 static DEFINE_MUTEX(_event_lock);
1247 void dm_table_event_callback(struct dm_table *t,
1248                              void (*fn)(void *), void *context)
1249 {
1250         mutex_lock(&_event_lock);
1251         t->event_fn = fn;
1252         t->event_context = context;
1253         mutex_unlock(&_event_lock);
1254 }
1255
1256 void dm_table_event(struct dm_table *t)
1257 {
1258         mutex_lock(&_event_lock);
1259         if (t->event_fn)
1260                 t->event_fn(t->event_context);
1261         mutex_unlock(&_event_lock);
1262 }
1263 EXPORT_SYMBOL(dm_table_event);
1264
1265 inline sector_t dm_table_get_size(struct dm_table *t)
1266 {
1267         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1268 }
1269 EXPORT_SYMBOL(dm_table_get_size);
1270
1271 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1272 {
1273         if (index >= t->num_targets)
1274                 return NULL;
1275
1276         return t->targets + index;
1277 }
1278
1279 /*
1280  * Search the btree for the correct target.
1281  *
1282  * Caller should check returned pointer for NULL
1283  * to trap I/O beyond end of device.
1284  */
1285 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1286 {
1287         unsigned int l, n = 0, k = 0;
1288         sector_t *node;
1289
1290         if (unlikely(sector >= dm_table_get_size(t)))
1291                 return NULL;
1292
1293         for (l = 0; l < t->depth; l++) {
1294                 n = get_child(n, k);
1295                 node = get_node(t, l, n);
1296
1297                 for (k = 0; k < KEYS_PER_NODE; k++)
1298                         if (node[k] >= sector)
1299                                 break;
1300         }
1301
1302         return &t->targets[(KEYS_PER_NODE * n) + k];
1303 }
1304
1305 /*
1306  * type->iterate_devices() should be called when the sanity check needs to
1307  * iterate and check all underlying data devices. iterate_devices() will
1308  * iterate all underlying data devices until it encounters a non-zero return
1309  * code, returned by whether the input iterate_devices_callout_fn, or
1310  * iterate_devices() itself internally.
1311  *
1312  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1313  * iterate multiple underlying devices internally, in which case a non-zero
1314  * return code returned by iterate_devices_callout_fn will stop the iteration
1315  * in advance.
1316  *
1317  * Cases requiring _any_ underlying device supporting some kind of attribute,
1318  * should use the iteration structure like dm_table_any_dev_attr(), or call
1319  * it directly. @func should handle semantics of positive examples, e.g.
1320  * capable of something.
1321  *
1322  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1323  * should use the iteration structure like dm_table_supports_nowait() or
1324  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1325  * uses an @anti_func that handle semantics of counter examples, e.g. not
1326  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1327  */
1328 static bool dm_table_any_dev_attr(struct dm_table *t,
1329                                   iterate_devices_callout_fn func, void *data)
1330 {
1331         struct dm_target *ti;
1332         unsigned int i;
1333
1334         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1335                 ti = dm_table_get_target(t, i);
1336
1337                 if (ti->type->iterate_devices &&
1338                     ti->type->iterate_devices(ti, func, data))
1339                         return true;
1340         }
1341
1342         return false;
1343 }
1344
1345 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1346                         sector_t start, sector_t len, void *data)
1347 {
1348         unsigned *num_devices = data;
1349
1350         (*num_devices)++;
1351
1352         return 0;
1353 }
1354
1355 /*
1356  * Check whether a table has no data devices attached using each
1357  * target's iterate_devices method.
1358  * Returns false if the result is unknown because a target doesn't
1359  * support iterate_devices.
1360  */
1361 bool dm_table_has_no_data_devices(struct dm_table *table)
1362 {
1363         struct dm_target *ti;
1364         unsigned i, num_devices;
1365
1366         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1367                 ti = dm_table_get_target(table, i);
1368
1369                 if (!ti->type->iterate_devices)
1370                         return false;
1371
1372                 num_devices = 0;
1373                 ti->type->iterate_devices(ti, count_device, &num_devices);
1374                 if (num_devices)
1375                         return false;
1376         }
1377
1378         return true;
1379 }
1380
1381 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1382                                   sector_t start, sector_t len, void *data)
1383 {
1384         struct request_queue *q = bdev_get_queue(dev->bdev);
1385         enum blk_zoned_model *zoned_model = data;
1386
1387         return !q || blk_queue_zoned_model(q) != *zoned_model;
1388 }
1389
1390 /*
1391  * Check the device zoned model based on the target feature flag. If the target
1392  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1393  * also accepted but all devices must have the same zoned model. If the target
1394  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1395  * zoned model with all zoned devices having the same zone size.
1396  */
1397 static bool dm_table_supports_zoned_model(struct dm_table *t,
1398                                           enum blk_zoned_model zoned_model)
1399 {
1400         struct dm_target *ti;
1401         unsigned i;
1402
1403         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1404                 ti = dm_table_get_target(t, i);
1405
1406                 if (dm_target_supports_zoned_hm(ti->type)) {
1407                         if (!ti->type->iterate_devices ||
1408                             ti->type->iterate_devices(ti, device_not_zoned_model,
1409                                                       &zoned_model))
1410                                 return false;
1411                 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1412                         if (zoned_model == BLK_ZONED_HM)
1413                                 return false;
1414                 }
1415         }
1416
1417         return true;
1418 }
1419
1420 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1421                                            sector_t start, sector_t len, void *data)
1422 {
1423         struct request_queue *q = bdev_get_queue(dev->bdev);
1424         unsigned int *zone_sectors = data;
1425
1426         if (!blk_queue_is_zoned(q))
1427                 return 0;
1428
1429         return !q || blk_queue_zone_sectors(q) != *zone_sectors;
1430 }
1431
1432 /*
1433  * Check consistency of zoned model and zone sectors across all targets. For
1434  * zone sectors, if the destination device is a zoned block device, it shall
1435  * have the specified zone_sectors.
1436  */
1437 static int validate_hardware_zoned_model(struct dm_table *table,
1438                                          enum blk_zoned_model zoned_model,
1439                                          unsigned int zone_sectors)
1440 {
1441         if (zoned_model == BLK_ZONED_NONE)
1442                 return 0;
1443
1444         if (!dm_table_supports_zoned_model(table, zoned_model)) {
1445                 DMERR("%s: zoned model is not consistent across all devices",
1446                       dm_device_name(table->md));
1447                 return -EINVAL;
1448         }
1449
1450         /* Check zone size validity and compatibility */
1451         if (!zone_sectors || !is_power_of_2(zone_sectors))
1452                 return -EINVAL;
1453
1454         if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1455                 DMERR("%s: zone sectors is not consistent across all zoned devices",
1456                       dm_device_name(table->md));
1457                 return -EINVAL;
1458         }
1459
1460         return 0;
1461 }
1462
1463 /*
1464  * Establish the new table's queue_limits and validate them.
1465  */
1466 int dm_calculate_queue_limits(struct dm_table *table,
1467                               struct queue_limits *limits)
1468 {
1469         struct dm_target *ti;
1470         struct queue_limits ti_limits;
1471         unsigned i;
1472         enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1473         unsigned int zone_sectors = 0;
1474
1475         blk_set_stacking_limits(limits);
1476
1477         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1478                 blk_set_stacking_limits(&ti_limits);
1479
1480                 ti = dm_table_get_target(table, i);
1481
1482                 if (!ti->type->iterate_devices)
1483                         goto combine_limits;
1484
1485                 /*
1486                  * Combine queue limits of all the devices this target uses.
1487                  */
1488                 ti->type->iterate_devices(ti, dm_set_device_limits,
1489                                           &ti_limits);
1490
1491                 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1492                         /*
1493                          * After stacking all limits, validate all devices
1494                          * in table support this zoned model and zone sectors.
1495                          */
1496                         zoned_model = ti_limits.zoned;
1497                         zone_sectors = ti_limits.chunk_sectors;
1498                 }
1499
1500                 /* Set I/O hints portion of queue limits */
1501                 if (ti->type->io_hints)
1502                         ti->type->io_hints(ti, &ti_limits);
1503
1504                 /*
1505                  * Check each device area is consistent with the target's
1506                  * overall queue limits.
1507                  */
1508                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1509                                               &ti_limits))
1510                         return -EINVAL;
1511
1512 combine_limits:
1513                 /*
1514                  * Merge this target's queue limits into the overall limits
1515                  * for the table.
1516                  */
1517                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1518                         DMWARN("%s: adding target device "
1519                                "(start sect %llu len %llu) "
1520                                "caused an alignment inconsistency",
1521                                dm_device_name(table->md),
1522                                (unsigned long long) ti->begin,
1523                                (unsigned long long) ti->len);
1524         }
1525
1526         /*
1527          * Verify that the zoned model and zone sectors, as determined before
1528          * any .io_hints override, are the same across all devices in the table.
1529          * - this is especially relevant if .io_hints is emulating a disk-managed
1530          *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1531          * BUT...
1532          */
1533         if (limits->zoned != BLK_ZONED_NONE) {
1534                 /*
1535                  * ...IF the above limits stacking determined a zoned model
1536                  * validate that all of the table's devices conform to it.
1537                  */
1538                 zoned_model = limits->zoned;
1539                 zone_sectors = limits->chunk_sectors;
1540         }
1541         if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1542                 return -EINVAL;
1543
1544         return validate_hardware_logical_block_alignment(table, limits);
1545 }
1546
1547 /*
1548  * Verify that all devices have an integrity profile that matches the
1549  * DM device's registered integrity profile.  If the profiles don't
1550  * match then unregister the DM device's integrity profile.
1551  */
1552 static void dm_table_verify_integrity(struct dm_table *t)
1553 {
1554         struct gendisk *template_disk = NULL;
1555
1556         if (t->integrity_added)
1557                 return;
1558
1559         if (t->integrity_supported) {
1560                 /*
1561                  * Verify that the original integrity profile
1562                  * matches all the devices in this table.
1563                  */
1564                 template_disk = dm_table_get_integrity_disk(t);
1565                 if (template_disk &&
1566                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1567                         return;
1568         }
1569
1570         if (integrity_profile_exists(dm_disk(t->md))) {
1571                 DMWARN("%s: unable to establish an integrity profile",
1572                        dm_device_name(t->md));
1573                 blk_integrity_unregister(dm_disk(t->md));
1574         }
1575 }
1576
1577 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1578                                 sector_t start, sector_t len, void *data)
1579 {
1580         unsigned long flush = (unsigned long) data;
1581         struct request_queue *q = bdev_get_queue(dev->bdev);
1582
1583         return q && (q->queue_flags & flush);
1584 }
1585
1586 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1587 {
1588         struct dm_target *ti;
1589         unsigned i;
1590
1591         /*
1592          * Require at least one underlying device to support flushes.
1593          * t->devices includes internal dm devices such as mirror logs
1594          * so we need to use iterate_devices here, which targets
1595          * supporting flushes must provide.
1596          */
1597         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1598                 ti = dm_table_get_target(t, i);
1599
1600                 if (!ti->num_flush_bios)
1601                         continue;
1602
1603                 if (ti->flush_supported)
1604                         return true;
1605
1606                 if (ti->type->iterate_devices &&
1607                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1608                         return true;
1609         }
1610
1611         return false;
1612 }
1613
1614 static int device_dax_write_cache_enabled(struct dm_target *ti,
1615                                           struct dm_dev *dev, sector_t start,
1616                                           sector_t len, void *data)
1617 {
1618         struct dax_device *dax_dev = dev->dax_dev;
1619
1620         if (!dax_dev)
1621                 return false;
1622
1623         if (dax_write_cache_enabled(dax_dev))
1624                 return true;
1625         return false;
1626 }
1627
1628 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1629                                 sector_t start, sector_t len, void *data)
1630 {
1631         struct request_queue *q = bdev_get_queue(dev->bdev);
1632
1633         return q && !blk_queue_nonrot(q);
1634 }
1635
1636 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1637                              sector_t start, sector_t len, void *data)
1638 {
1639         struct request_queue *q = bdev_get_queue(dev->bdev);
1640
1641         return q && !blk_queue_add_random(q);
1642 }
1643
1644 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1645                                          sector_t start, sector_t len, void *data)
1646 {
1647         struct request_queue *q = bdev_get_queue(dev->bdev);
1648
1649         return q && !q->limits.max_write_same_sectors;
1650 }
1651
1652 static bool dm_table_supports_write_same(struct dm_table *t)
1653 {
1654         struct dm_target *ti;
1655         unsigned i;
1656
1657         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1658                 ti = dm_table_get_target(t, i);
1659
1660                 if (!ti->num_write_same_bios)
1661                         return false;
1662
1663                 if (!ti->type->iterate_devices ||
1664                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1665                         return false;
1666         }
1667
1668         return true;
1669 }
1670
1671 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1672                                            sector_t start, sector_t len, void *data)
1673 {
1674         struct request_queue *q = bdev_get_queue(dev->bdev);
1675
1676         return q && !q->limits.max_write_zeroes_sectors;
1677 }
1678
1679 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1680 {
1681         struct dm_target *ti;
1682         unsigned i = 0;
1683
1684         while (i < dm_table_get_num_targets(t)) {
1685                 ti = dm_table_get_target(t, i++);
1686
1687                 if (!ti->num_write_zeroes_bios)
1688                         return false;
1689
1690                 if (!ti->type->iterate_devices ||
1691                     ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1692                         return false;
1693         }
1694
1695         return true;
1696 }
1697
1698 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1699                                      sector_t start, sector_t len, void *data)
1700 {
1701         struct request_queue *q = bdev_get_queue(dev->bdev);
1702
1703         return q && !blk_queue_nowait(q);
1704 }
1705
1706 static bool dm_table_supports_nowait(struct dm_table *t)
1707 {
1708         struct dm_target *ti;
1709         unsigned i = 0;
1710
1711         while (i < dm_table_get_num_targets(t)) {
1712                 ti = dm_table_get_target(t, i++);
1713
1714                 if (!dm_target_supports_nowait(ti->type))
1715                         return false;
1716
1717                 if (!ti->type->iterate_devices ||
1718                     ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1719                         return false;
1720         }
1721
1722         return true;
1723 }
1724
1725 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1726                                       sector_t start, sector_t len, void *data)
1727 {
1728         struct request_queue *q = bdev_get_queue(dev->bdev);
1729
1730         return q && !blk_queue_discard(q);
1731 }
1732
1733 static bool dm_table_supports_discards(struct dm_table *t)
1734 {
1735         struct dm_target *ti;
1736         unsigned i;
1737
1738         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1739                 ti = dm_table_get_target(t, i);
1740
1741                 if (!ti->num_discard_bios)
1742                         return false;
1743
1744                 /*
1745                  * Either the target provides discard support (as implied by setting
1746                  * 'discards_supported') or it relies on _all_ data devices having
1747                  * discard support.
1748                  */
1749                 if (!ti->discards_supported &&
1750                     (!ti->type->iterate_devices ||
1751                      ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1752                         return false;
1753         }
1754
1755         return true;
1756 }
1757
1758 static int device_not_secure_erase_capable(struct dm_target *ti,
1759                                            struct dm_dev *dev, sector_t start,
1760                                            sector_t len, void *data)
1761 {
1762         struct request_queue *q = bdev_get_queue(dev->bdev);
1763
1764         return q && !blk_queue_secure_erase(q);
1765 }
1766
1767 static bool dm_table_supports_secure_erase(struct dm_table *t)
1768 {
1769         struct dm_target *ti;
1770         unsigned int i;
1771
1772         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1773                 ti = dm_table_get_target(t, i);
1774
1775                 if (!ti->num_secure_erase_bios)
1776                         return false;
1777
1778                 if (!ti->type->iterate_devices ||
1779                     ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1780                         return false;
1781         }
1782
1783         return true;
1784 }
1785
1786 static int device_requires_stable_pages(struct dm_target *ti,
1787                                         struct dm_dev *dev, sector_t start,
1788                                         sector_t len, void *data)
1789 {
1790         struct request_queue *q = bdev_get_queue(dev->bdev);
1791
1792         return q && blk_queue_stable_writes(q);
1793 }
1794
1795 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1796                                struct queue_limits *limits)
1797 {
1798         bool wc = false, fua = false;
1799         int page_size = PAGE_SIZE;
1800
1801         /*
1802          * Copy table's limits to the DM device's request_queue
1803          */
1804         q->limits = *limits;
1805
1806         if (dm_table_supports_nowait(t))
1807                 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1808         else
1809                 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1810
1811         if (!dm_table_supports_discards(t)) {
1812                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1813                 /* Must also clear discard limits... */
1814                 q->limits.max_discard_sectors = 0;
1815                 q->limits.max_hw_discard_sectors = 0;
1816                 q->limits.discard_granularity = 0;
1817                 q->limits.discard_alignment = 0;
1818                 q->limits.discard_misaligned = 0;
1819         } else
1820                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1821
1822         if (dm_table_supports_secure_erase(t))
1823                 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1824
1825         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1826                 wc = true;
1827                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1828                         fua = true;
1829         }
1830         blk_queue_write_cache(q, wc, fua);
1831
1832         if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
1833                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1834                 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
1835                         set_dax_synchronous(t->md->dax_dev);
1836         }
1837         else
1838                 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1839
1840         if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1841                 dax_write_cache(t->md->dax_dev, true);
1842
1843         /* Ensure that all underlying devices are non-rotational. */
1844         if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1845                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1846         else
1847                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1848
1849         if (!dm_table_supports_write_same(t))
1850                 q->limits.max_write_same_sectors = 0;
1851         if (!dm_table_supports_write_zeroes(t))
1852                 q->limits.max_write_zeroes_sectors = 0;
1853
1854         dm_table_verify_integrity(t);
1855
1856         /*
1857          * Some devices don't use blk_integrity but still want stable pages
1858          * because they do their own checksumming.
1859          * If any underlying device requires stable pages, a table must require
1860          * them as well.  Only targets that support iterate_devices are considered:
1861          * don't want error, zero, etc to require stable pages.
1862          */
1863         if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
1864                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1865         else
1866                 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1867
1868         /*
1869          * Determine whether or not this queue's I/O timings contribute
1870          * to the entropy pool, Only request-based targets use this.
1871          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1872          * have it set.
1873          */
1874         if (blk_queue_add_random(q) &&
1875             dm_table_any_dev_attr(t, device_is_not_random, NULL))
1876                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1877
1878         /*
1879          * For a zoned target, the number of zones should be updated for the
1880          * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1881          * target, this is all that is needed.
1882          */
1883 #ifdef CONFIG_BLK_DEV_ZONED
1884         if (blk_queue_is_zoned(q)) {
1885                 WARN_ON_ONCE(queue_is_mq(q));
1886                 q->nr_zones = blkdev_nr_zones(t->md->disk);
1887         }
1888 #endif
1889
1890         blk_queue_update_readahead(q);
1891 }
1892
1893 unsigned int dm_table_get_num_targets(struct dm_table *t)
1894 {
1895         return t->num_targets;
1896 }
1897
1898 struct list_head *dm_table_get_devices(struct dm_table *t)
1899 {
1900         return &t->devices;
1901 }
1902
1903 fmode_t dm_table_get_mode(struct dm_table *t)
1904 {
1905         return t->mode;
1906 }
1907 EXPORT_SYMBOL(dm_table_get_mode);
1908
1909 enum suspend_mode {
1910         PRESUSPEND,
1911         PRESUSPEND_UNDO,
1912         POSTSUSPEND,
1913 };
1914
1915 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1916 {
1917         int i = t->num_targets;
1918         struct dm_target *ti = t->targets;
1919
1920         lockdep_assert_held(&t->md->suspend_lock);
1921
1922         while (i--) {
1923                 switch (mode) {
1924                 case PRESUSPEND:
1925                         if (ti->type->presuspend)
1926                                 ti->type->presuspend(ti);
1927                         break;
1928                 case PRESUSPEND_UNDO:
1929                         if (ti->type->presuspend_undo)
1930                                 ti->type->presuspend_undo(ti);
1931                         break;
1932                 case POSTSUSPEND:
1933                         if (ti->type->postsuspend)
1934                                 ti->type->postsuspend(ti);
1935                         break;
1936                 }
1937                 ti++;
1938         }
1939 }
1940
1941 void dm_table_presuspend_targets(struct dm_table *t)
1942 {
1943         if (!t)
1944                 return;
1945
1946         suspend_targets(t, PRESUSPEND);
1947 }
1948
1949 void dm_table_presuspend_undo_targets(struct dm_table *t)
1950 {
1951         if (!t)
1952                 return;
1953
1954         suspend_targets(t, PRESUSPEND_UNDO);
1955 }
1956
1957 void dm_table_postsuspend_targets(struct dm_table *t)
1958 {
1959         if (!t)
1960                 return;
1961
1962         suspend_targets(t, POSTSUSPEND);
1963 }
1964
1965 int dm_table_resume_targets(struct dm_table *t)
1966 {
1967         int i, r = 0;
1968
1969         lockdep_assert_held(&t->md->suspend_lock);
1970
1971         for (i = 0; i < t->num_targets; i++) {
1972                 struct dm_target *ti = t->targets + i;
1973
1974                 if (!ti->type->preresume)
1975                         continue;
1976
1977                 r = ti->type->preresume(ti);
1978                 if (r) {
1979                         DMERR("%s: %s: preresume failed, error = %d",
1980                               dm_device_name(t->md), ti->type->name, r);
1981                         return r;
1982                 }
1983         }
1984
1985         for (i = 0; i < t->num_targets; i++) {
1986                 struct dm_target *ti = t->targets + i;
1987
1988                 if (ti->type->resume)
1989                         ti->type->resume(ti);
1990         }
1991
1992         return 0;
1993 }
1994
1995 struct mapped_device *dm_table_get_md(struct dm_table *t)
1996 {
1997         return t->md;
1998 }
1999 EXPORT_SYMBOL(dm_table_get_md);
2000
2001 const char *dm_table_device_name(struct dm_table *t)
2002 {
2003         return dm_device_name(t->md);
2004 }
2005 EXPORT_SYMBOL_GPL(dm_table_device_name);
2006
2007 void dm_table_run_md_queue_async(struct dm_table *t)
2008 {
2009         if (!dm_table_request_based(t))
2010                 return;
2011
2012         if (t->md->queue)
2013                 blk_mq_run_hw_queues(t->md->queue, true);
2014 }
2015 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2016