GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "md-bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
21
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 /*
28  * Minimum journal space 4 MiB in sectors.
29  */
30 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
31
32 static bool devices_handle_discard_safely = false;
33
34 /*
35  * The following flags are used by dm-raid.c to set up the array state.
36  * They must be cleared before md_run is called.
37  */
38 #define FirstUse 10             /* rdev flag */
39
40 struct raid_dev {
41         /*
42          * Two DM devices, one to hold metadata and one to hold the
43          * actual data/parity.  The reason for this is to not confuse
44          * ti->len and give more flexibility in altering size and
45          * characteristics.
46          *
47          * While it is possible for this device to be associated
48          * with a different physical device than the data_dev, it
49          * is intended for it to be the same.
50          *    |--------- Physical Device ---------|
51          *    |- meta_dev -|------ data_dev ------|
52          */
53         struct dm_dev *meta_dev;
54         struct dm_dev *data_dev;
55         struct md_rdev rdev;
56 };
57
58 /*
59  * Bits for establishing rs->ctr_flags
60  *
61  * 1 = no flag value
62  * 2 = flag with value
63  */
64 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV          15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
83
84 /* New for v1.11.1 */
85 #define __CTR_FLAG_JOURNAL_MODE         16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
86
87 /*
88  * Flags for rs->ctr_flags field.
89  */
90 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
91 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
92 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
93 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
94 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
95 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
97 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
98 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
99 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
100 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
101 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
102 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
103 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
104 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
105 #define CTR_FLAG_JOURNAL_DEV            (1 << __CTR_FLAG_JOURNAL_DEV)
106 #define CTR_FLAG_JOURNAL_MODE           (1 << __CTR_FLAG_JOURNAL_MODE)
107
108 /*
109  * Definitions of various constructor flags to
110  * be used in checks of valid / invalid flags
111  * per raid level.
112  */
113 /* Define all any sync flags */
114 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
115
116 /* Define flags for options without argument (e.g. 'nosync') */
117 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
118                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
119
120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
122                                   CTR_FLAG_WRITE_MOSTLY | \
123                                   CTR_FLAG_DAEMON_SLEEP | \
124                                   CTR_FLAG_MIN_RECOVERY_RATE | \
125                                   CTR_FLAG_MAX_RECOVERY_RATE | \
126                                   CTR_FLAG_MAX_WRITE_BEHIND | \
127                                   CTR_FLAG_STRIPE_CACHE | \
128                                   CTR_FLAG_REGION_SIZE | \
129                                   CTR_FLAG_RAID10_COPIES | \
130                                   CTR_FLAG_RAID10_FORMAT | \
131                                   CTR_FLAG_DELTA_DISKS | \
132                                   CTR_FLAG_DATA_OFFSET | \
133                                   CTR_FLAG_JOURNAL_DEV | \
134                                   CTR_FLAG_JOURNAL_MODE)
135
136 /* Valid options definitions per raid level... */
137
138 /* "raid0" does only accept data offset */
139 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
140
141 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
142 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
143                                  CTR_FLAG_REBUILD | \
144                                  CTR_FLAG_WRITE_MOSTLY | \
145                                  CTR_FLAG_DAEMON_SLEEP | \
146                                  CTR_FLAG_MIN_RECOVERY_RATE | \
147                                  CTR_FLAG_MAX_RECOVERY_RATE | \
148                                  CTR_FLAG_MAX_WRITE_BEHIND | \
149                                  CTR_FLAG_REGION_SIZE | \
150                                  CTR_FLAG_DELTA_DISKS | \
151                                  CTR_FLAG_DATA_OFFSET)
152
153 /* "raid10" does not accept any raid1 or stripe cache options */
154 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
155                                  CTR_FLAG_REBUILD | \
156                                  CTR_FLAG_DAEMON_SLEEP | \
157                                  CTR_FLAG_MIN_RECOVERY_RATE | \
158                                  CTR_FLAG_MAX_RECOVERY_RATE | \
159                                  CTR_FLAG_REGION_SIZE | \
160                                  CTR_FLAG_RAID10_COPIES | \
161                                  CTR_FLAG_RAID10_FORMAT | \
162                                  CTR_FLAG_DELTA_DISKS | \
163                                  CTR_FLAG_DATA_OFFSET | \
164                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
165
166 /*
167  * "raid4/5/6" do not accept any raid1 or raid10 specific options
168  *
169  * "raid6" does not accept "nosync", because it is not guaranteed
170  * that both parity and q-syndrome are being written properly with
171  * any writes
172  */
173 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
174                                  CTR_FLAG_REBUILD | \
175                                  CTR_FLAG_DAEMON_SLEEP | \
176                                  CTR_FLAG_MIN_RECOVERY_RATE | \
177                                  CTR_FLAG_MAX_RECOVERY_RATE | \
178                                  CTR_FLAG_STRIPE_CACHE | \
179                                  CTR_FLAG_REGION_SIZE | \
180                                  CTR_FLAG_DELTA_DISKS | \
181                                  CTR_FLAG_DATA_OFFSET | \
182                                  CTR_FLAG_JOURNAL_DEV | \
183                                  CTR_FLAG_JOURNAL_MODE)
184
185 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
186                                  CTR_FLAG_REBUILD | \
187                                  CTR_FLAG_DAEMON_SLEEP | \
188                                  CTR_FLAG_MIN_RECOVERY_RATE | \
189                                  CTR_FLAG_MAX_RECOVERY_RATE | \
190                                  CTR_FLAG_STRIPE_CACHE | \
191                                  CTR_FLAG_REGION_SIZE | \
192                                  CTR_FLAG_DELTA_DISKS | \
193                                  CTR_FLAG_DATA_OFFSET | \
194                                  CTR_FLAG_JOURNAL_DEV | \
195                                  CTR_FLAG_JOURNAL_MODE)
196 /* ...valid options definitions per raid level */
197
198 /*
199  * Flags for rs->runtime_flags field
200  * (RT_FLAG prefix meaning "runtime flag")
201  *
202  * These are all internal and used to define runtime state,
203  * e.g. to prevent another resume from preresume processing
204  * the raid set all over again.
205  */
206 #define RT_FLAG_RS_PRERESUMED           0
207 #define RT_FLAG_RS_RESUMED              1
208 #define RT_FLAG_RS_BITMAP_LOADED        2
209 #define RT_FLAG_UPDATE_SBS              3
210 #define RT_FLAG_RESHAPE_RS              4
211 #define RT_FLAG_RS_SUSPENDED            5
212 #define RT_FLAG_RS_IN_SYNC              6
213 #define RT_FLAG_RS_RESYNCING            7
214 #define RT_FLAG_RS_GROW                 8
215
216 /* Array elements of 64 bit needed for rebuild/failed disk bits */
217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
218
219 /*
220  * raid set level, layout and chunk sectors backup/restore
221  */
222 struct rs_layout {
223         int new_level;
224         int new_layout;
225         int new_chunk_sectors;
226 };
227
228 struct raid_set {
229         struct dm_target *ti;
230
231         uint32_t stripe_cache_entries;
232         unsigned long ctr_flags;
233         unsigned long runtime_flags;
234
235         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
236
237         int raid_disks;
238         int delta_disks;
239         int data_offset;
240         int raid10_copies;
241         int requested_bitmap_chunk_sectors;
242
243         struct mddev md;
244         struct raid_type *raid_type;
245
246         sector_t array_sectors;
247         sector_t dev_sectors;
248
249         /* Optional raid4/5/6 journal device */
250         struct journal_dev {
251                 struct dm_dev *dev;
252                 struct md_rdev rdev;
253                 int mode;
254         } journal_dev;
255
256         struct raid_dev dev[];
257 };
258
259 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
260 {
261         struct mddev *mddev = &rs->md;
262
263         l->new_level = mddev->new_level;
264         l->new_layout = mddev->new_layout;
265         l->new_chunk_sectors = mddev->new_chunk_sectors;
266 }
267
268 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
269 {
270         struct mddev *mddev = &rs->md;
271
272         mddev->new_level = l->new_level;
273         mddev->new_layout = l->new_layout;
274         mddev->new_chunk_sectors = l->new_chunk_sectors;
275 }
276
277 /* raid10 algorithms (i.e. formats) */
278 #define ALGORITHM_RAID10_DEFAULT        0
279 #define ALGORITHM_RAID10_NEAR           1
280 #define ALGORITHM_RAID10_OFFSET         2
281 #define ALGORITHM_RAID10_FAR            3
282
283 /* Supported raid types and properties. */
284 static struct raid_type {
285         const char *name;               /* RAID algorithm. */
286         const char *descr;              /* Descriptor text for logging. */
287         const unsigned int parity_devs; /* # of parity devices. */
288         const unsigned int minimal_devs;/* minimal # of devices in set. */
289         const unsigned int level;       /* RAID level. */
290         const unsigned int algorithm;   /* RAID algorithm. */
291 } raid_types[] = {
292         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
293         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
294         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
295         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
296         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
297         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
298         {"raid4",         "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
299         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
300         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
301         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
302         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
303         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
304         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
305         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
306         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
307         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
308         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
309         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
310         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
311         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
312 };
313
314 /* True, if @v is in inclusive range [@min, @max] */
315 static bool __within_range(long v, long min, long max)
316 {
317         return v >= min && v <= max;
318 }
319
320 /* All table line arguments are defined here */
321 static struct arg_name_flag {
322         const unsigned long flag;
323         const char *name;
324 } __arg_name_flags[] = {
325         { CTR_FLAG_SYNC, "sync"},
326         { CTR_FLAG_NOSYNC, "nosync"},
327         { CTR_FLAG_REBUILD, "rebuild"},
328         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
329         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
330         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
331         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
332         { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
333         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
334         { CTR_FLAG_REGION_SIZE, "region_size"},
335         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
336         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
337         { CTR_FLAG_DATA_OFFSET, "data_offset"},
338         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
339         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
340         { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
341         { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
342 };
343
344 /* Return argument name string for given @flag */
345 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
346 {
347         if (hweight32(flag) == 1) {
348                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
349
350                 while (anf-- > __arg_name_flags)
351                         if (flag & anf->flag)
352                                 return anf->name;
353
354         } else
355                 DMERR("%s called with more than one flag!", __func__);
356
357         return NULL;
358 }
359
360 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
361 static struct {
362         const int mode;
363         const char *param;
364 } _raid456_journal_mode[] = {
365         { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
366         { R5C_JOURNAL_MODE_WRITE_BACK    , "writeback" }
367 };
368
369 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
370 static int dm_raid_journal_mode_to_md(const char *mode)
371 {
372         int m = ARRAY_SIZE(_raid456_journal_mode);
373
374         while (m--)
375                 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
376                         return _raid456_journal_mode[m].mode;
377
378         return -EINVAL;
379 }
380
381 /* Return dm-raid raid4/5/6 journal mode string for @mode */
382 static const char *md_journal_mode_to_dm_raid(const int mode)
383 {
384         int m = ARRAY_SIZE(_raid456_journal_mode);
385
386         while (m--)
387                 if (mode == _raid456_journal_mode[m].mode)
388                         return _raid456_journal_mode[m].param;
389
390         return "unknown";
391 }
392
393 /*
394  * Bool helpers to test for various raid levels of a raid set.
395  * It's level as reported by the superblock rather than
396  * the requested raid_type passed to the constructor.
397  */
398 /* Return true, if raid set in @rs is raid0 */
399 static bool rs_is_raid0(struct raid_set *rs)
400 {
401         return !rs->md.level;
402 }
403
404 /* Return true, if raid set in @rs is raid1 */
405 static bool rs_is_raid1(struct raid_set *rs)
406 {
407         return rs->md.level == 1;
408 }
409
410 /* Return true, if raid set in @rs is raid10 */
411 static bool rs_is_raid10(struct raid_set *rs)
412 {
413         return rs->md.level == 10;
414 }
415
416 /* Return true, if raid set in @rs is level 6 */
417 static bool rs_is_raid6(struct raid_set *rs)
418 {
419         return rs->md.level == 6;
420 }
421
422 /* Return true, if raid set in @rs is level 4, 5 or 6 */
423 static bool rs_is_raid456(struct raid_set *rs)
424 {
425         return __within_range(rs->md.level, 4, 6);
426 }
427
428 /* Return true, if raid set in @rs is reshapable */
429 static bool __is_raid10_far(int layout);
430 static bool rs_is_reshapable(struct raid_set *rs)
431 {
432         return rs_is_raid456(rs) ||
433                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
434 }
435
436 /* Return true, if raid set in @rs is recovering */
437 static bool rs_is_recovering(struct raid_set *rs)
438 {
439         return rs->md.recovery_cp < rs->md.dev_sectors;
440 }
441
442 /* Return true, if raid set in @rs is reshaping */
443 static bool rs_is_reshaping(struct raid_set *rs)
444 {
445         return rs->md.reshape_position != MaxSector;
446 }
447
448 /*
449  * bool helpers to test for various raid levels of a raid type @rt
450  */
451
452 /* Return true, if raid type in @rt is raid0 */
453 static bool rt_is_raid0(struct raid_type *rt)
454 {
455         return !rt->level;
456 }
457
458 /* Return true, if raid type in @rt is raid1 */
459 static bool rt_is_raid1(struct raid_type *rt)
460 {
461         return rt->level == 1;
462 }
463
464 /* Return true, if raid type in @rt is raid10 */
465 static bool rt_is_raid10(struct raid_type *rt)
466 {
467         return rt->level == 10;
468 }
469
470 /* Return true, if raid type in @rt is raid4/5 */
471 static bool rt_is_raid45(struct raid_type *rt)
472 {
473         return __within_range(rt->level, 4, 5);
474 }
475
476 /* Return true, if raid type in @rt is raid6 */
477 static bool rt_is_raid6(struct raid_type *rt)
478 {
479         return rt->level == 6;
480 }
481
482 /* Return true, if raid type in @rt is raid4/5/6 */
483 static bool rt_is_raid456(struct raid_type *rt)
484 {
485         return __within_range(rt->level, 4, 6);
486 }
487 /* END: raid level bools */
488
489 /* Return valid ctr flags for the raid level of @rs */
490 static unsigned long __valid_flags(struct raid_set *rs)
491 {
492         if (rt_is_raid0(rs->raid_type))
493                 return RAID0_VALID_FLAGS;
494         else if (rt_is_raid1(rs->raid_type))
495                 return RAID1_VALID_FLAGS;
496         else if (rt_is_raid10(rs->raid_type))
497                 return RAID10_VALID_FLAGS;
498         else if (rt_is_raid45(rs->raid_type))
499                 return RAID45_VALID_FLAGS;
500         else if (rt_is_raid6(rs->raid_type))
501                 return RAID6_VALID_FLAGS;
502
503         return 0;
504 }
505
506 /*
507  * Check for valid flags set on @rs
508  *
509  * Has to be called after parsing of the ctr flags!
510  */
511 static int rs_check_for_valid_flags(struct raid_set *rs)
512 {
513         if (rs->ctr_flags & ~__valid_flags(rs)) {
514                 rs->ti->error = "Invalid flags combination";
515                 return -EINVAL;
516         }
517
518         return 0;
519 }
520
521 /* MD raid10 bit definitions and helpers */
522 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
523 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
524 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
525 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
526
527 /* Return md raid10 near copies for @layout */
528 static unsigned int __raid10_near_copies(int layout)
529 {
530         return layout & 0xFF;
531 }
532
533 /* Return md raid10 far copies for @layout */
534 static unsigned int __raid10_far_copies(int layout)
535 {
536         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
537 }
538
539 /* Return true if md raid10 offset for @layout */
540 static bool __is_raid10_offset(int layout)
541 {
542         return !!(layout & RAID10_OFFSET);
543 }
544
545 /* Return true if md raid10 near for @layout */
546 static bool __is_raid10_near(int layout)
547 {
548         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
549 }
550
551 /* Return true if md raid10 far for @layout */
552 static bool __is_raid10_far(int layout)
553 {
554         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
555 }
556
557 /* Return md raid10 layout string for @layout */
558 static const char *raid10_md_layout_to_format(int layout)
559 {
560         /*
561          * Bit 16 stands for "offset"
562          * (i.e. adjacent stripes hold copies)
563          *
564          * Refer to MD's raid10.c for details
565          */
566         if (__is_raid10_offset(layout))
567                 return "offset";
568
569         if (__raid10_near_copies(layout) > 1)
570                 return "near";
571
572         if (__raid10_far_copies(layout) > 1)
573                 return "far";
574
575         return "unknown";
576 }
577
578 /* Return md raid10 algorithm for @name */
579 static int raid10_name_to_format(const char *name)
580 {
581         if (!strcasecmp(name, "near"))
582                 return ALGORITHM_RAID10_NEAR;
583         else if (!strcasecmp(name, "offset"))
584                 return ALGORITHM_RAID10_OFFSET;
585         else if (!strcasecmp(name, "far"))
586                 return ALGORITHM_RAID10_FAR;
587
588         return -EINVAL;
589 }
590
591 /* Return md raid10 copies for @layout */
592 static unsigned int raid10_md_layout_to_copies(int layout)
593 {
594         return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
595 }
596
597 /* Return md raid10 format id for @format string */
598 static int raid10_format_to_md_layout(struct raid_set *rs,
599                                       unsigned int algorithm,
600                                       unsigned int copies)
601 {
602         unsigned int n = 1, f = 1, r = 0;
603
604         /*
605          * MD resilienece flaw:
606          *
607          * enabling use_far_sets for far/offset formats causes copies
608          * to be colocated on the same devs together with their origins!
609          *
610          * -> disable it for now in the definition above
611          */
612         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
613             algorithm == ALGORITHM_RAID10_NEAR)
614                 n = copies;
615
616         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
617                 f = copies;
618                 r = RAID10_OFFSET;
619                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
620                         r |= RAID10_USE_FAR_SETS;
621
622         } else if (algorithm == ALGORITHM_RAID10_FAR) {
623                 f = copies;
624                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
625                         r |= RAID10_USE_FAR_SETS;
626
627         } else
628                 return -EINVAL;
629
630         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
631 }
632 /* END: MD raid10 bit definitions and helpers */
633
634 /* Check for any of the raid10 algorithms */
635 static bool __got_raid10(struct raid_type *rtp, const int layout)
636 {
637         if (rtp->level == 10) {
638                 switch (rtp->algorithm) {
639                 case ALGORITHM_RAID10_DEFAULT:
640                 case ALGORITHM_RAID10_NEAR:
641                         return __is_raid10_near(layout);
642                 case ALGORITHM_RAID10_OFFSET:
643                         return __is_raid10_offset(layout);
644                 case ALGORITHM_RAID10_FAR:
645                         return __is_raid10_far(layout);
646                 default:
647                         break;
648                 }
649         }
650
651         return false;
652 }
653
654 /* Return raid_type for @name */
655 static struct raid_type *get_raid_type(const char *name)
656 {
657         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
658
659         while (rtp-- > raid_types)
660                 if (!strcasecmp(rtp->name, name))
661                         return rtp;
662
663         return NULL;
664 }
665
666 /* Return raid_type for @name based derived from @level and @layout */
667 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
668 {
669         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
670
671         while (rtp-- > raid_types) {
672                 /* RAID10 special checks based on @layout flags/properties */
673                 if (rtp->level == level &&
674                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
675                         return rtp;
676         }
677
678         return NULL;
679 }
680
681 /* Adjust rdev sectors */
682 static void rs_set_rdev_sectors(struct raid_set *rs)
683 {
684         struct mddev *mddev = &rs->md;
685         struct md_rdev *rdev;
686
687         /*
688          * raid10 sets rdev->sector to the device size, which
689          * is unintended in case of out-of-place reshaping
690          */
691         rdev_for_each(rdev, mddev)
692                 if (!test_bit(Journal, &rdev->flags))
693                         rdev->sectors = mddev->dev_sectors;
694 }
695
696 /*
697  * Change bdev capacity of @rs in case of a disk add/remove reshape
698  */
699 static void rs_set_capacity(struct raid_set *rs)
700 {
701         struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
702
703         set_capacity(gendisk, rs->md.array_sectors);
704         revalidate_disk_size(gendisk, true);
705 }
706
707 /*
708  * Set the mddev properties in @rs to the current
709  * ones retrieved from the freshest superblock
710  */
711 static void rs_set_cur(struct raid_set *rs)
712 {
713         struct mddev *mddev = &rs->md;
714
715         mddev->new_level = mddev->level;
716         mddev->new_layout = mddev->layout;
717         mddev->new_chunk_sectors = mddev->chunk_sectors;
718 }
719
720 /*
721  * Set the mddev properties in @rs to the new
722  * ones requested by the ctr
723  */
724 static void rs_set_new(struct raid_set *rs)
725 {
726         struct mddev *mddev = &rs->md;
727
728         mddev->level = mddev->new_level;
729         mddev->layout = mddev->new_layout;
730         mddev->chunk_sectors = mddev->new_chunk_sectors;
731         mddev->raid_disks = rs->raid_disks;
732         mddev->delta_disks = 0;
733 }
734
735 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
736                                        unsigned int raid_devs)
737 {
738         unsigned int i;
739         struct raid_set *rs;
740
741         if (raid_devs <= raid_type->parity_devs) {
742                 ti->error = "Insufficient number of devices";
743                 return ERR_PTR(-EINVAL);
744         }
745
746         rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
747         if (!rs) {
748                 ti->error = "Cannot allocate raid context";
749                 return ERR_PTR(-ENOMEM);
750         }
751
752         mddev_init(&rs->md);
753
754         rs->raid_disks = raid_devs;
755         rs->delta_disks = 0;
756
757         rs->ti = ti;
758         rs->raid_type = raid_type;
759         rs->stripe_cache_entries = 256;
760         rs->md.raid_disks = raid_devs;
761         rs->md.level = raid_type->level;
762         rs->md.new_level = rs->md.level;
763         rs->md.layout = raid_type->algorithm;
764         rs->md.new_layout = rs->md.layout;
765         rs->md.delta_disks = 0;
766         rs->md.recovery_cp = MaxSector;
767
768         for (i = 0; i < raid_devs; i++)
769                 md_rdev_init(&rs->dev[i].rdev);
770
771         /*
772          * Remaining items to be initialized by further RAID params:
773          *  rs->md.persistent
774          *  rs->md.external
775          *  rs->md.chunk_sectors
776          *  rs->md.new_chunk_sectors
777          *  rs->md.dev_sectors
778          */
779
780         return rs;
781 }
782
783 /* Free all @rs allocations */
784 static void raid_set_free(struct raid_set *rs)
785 {
786         int i;
787
788         if (rs->journal_dev.dev) {
789                 md_rdev_clear(&rs->journal_dev.rdev);
790                 dm_put_device(rs->ti, rs->journal_dev.dev);
791         }
792
793         for (i = 0; i < rs->raid_disks; i++) {
794                 if (rs->dev[i].meta_dev)
795                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
796                 md_rdev_clear(&rs->dev[i].rdev);
797                 if (rs->dev[i].data_dev)
798                         dm_put_device(rs->ti, rs->dev[i].data_dev);
799         }
800
801         kfree(rs);
802 }
803
804 /*
805  * For every device we have two words
806  *  <meta_dev>: meta device name or '-' if missing
807  *  <data_dev>: data device name or '-' if missing
808  *
809  * The following are permitted:
810  *    - -
811  *    - <data_dev>
812  *    <meta_dev> <data_dev>
813  *
814  * The following is not allowed:
815  *    <meta_dev> -
816  *
817  * This code parses those words.  If there is a failure,
818  * the caller must use raid_set_free() to unwind the operations.
819  */
820 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
821 {
822         int i;
823         int rebuild = 0;
824         int metadata_available = 0;
825         int r = 0;
826         const char *arg;
827
828         /* Put off the number of raid devices argument to get to dev pairs */
829         arg = dm_shift_arg(as);
830         if (!arg)
831                 return -EINVAL;
832
833         for (i = 0; i < rs->raid_disks; i++) {
834                 rs->dev[i].rdev.raid_disk = i;
835
836                 rs->dev[i].meta_dev = NULL;
837                 rs->dev[i].data_dev = NULL;
838
839                 /*
840                  * There are no offsets initially.
841                  * Out of place reshape will set them accordingly.
842                  */
843                 rs->dev[i].rdev.data_offset = 0;
844                 rs->dev[i].rdev.new_data_offset = 0;
845                 rs->dev[i].rdev.mddev = &rs->md;
846
847                 arg = dm_shift_arg(as);
848                 if (!arg)
849                         return -EINVAL;
850
851                 if (strcmp(arg, "-")) {
852                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
853                                           &rs->dev[i].meta_dev);
854                         if (r) {
855                                 rs->ti->error = "RAID metadata device lookup failure";
856                                 return r;
857                         }
858
859                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
860                         if (!rs->dev[i].rdev.sb_page) {
861                                 rs->ti->error = "Failed to allocate superblock page";
862                                 return -ENOMEM;
863                         }
864                 }
865
866                 arg = dm_shift_arg(as);
867                 if (!arg)
868                         return -EINVAL;
869
870                 if (!strcmp(arg, "-")) {
871                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
872                             (!rs->dev[i].rdev.recovery_offset)) {
873                                 rs->ti->error = "Drive designated for rebuild not specified";
874                                 return -EINVAL;
875                         }
876
877                         if (rs->dev[i].meta_dev) {
878                                 rs->ti->error = "No data device supplied with metadata device";
879                                 return -EINVAL;
880                         }
881
882                         continue;
883                 }
884
885                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
886                                   &rs->dev[i].data_dev);
887                 if (r) {
888                         rs->ti->error = "RAID device lookup failure";
889                         return r;
890                 }
891
892                 if (rs->dev[i].meta_dev) {
893                         metadata_available = 1;
894                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
895                 }
896                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
897                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
898                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
899                         rebuild++;
900         }
901
902         if (rs->journal_dev.dev)
903                 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
904
905         if (metadata_available) {
906                 rs->md.external = 0;
907                 rs->md.persistent = 1;
908                 rs->md.major_version = 2;
909         } else if (rebuild && !rs->md.recovery_cp) {
910                 /*
911                  * Without metadata, we will not be able to tell if the array
912                  * is in-sync or not - we must assume it is not.  Therefore,
913                  * it is impossible to rebuild a drive.
914                  *
915                  * Even if there is metadata, the on-disk information may
916                  * indicate that the array is not in-sync and it will then
917                  * fail at that time.
918                  *
919                  * User could specify 'nosync' option if desperate.
920                  */
921                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
922                 return -EINVAL;
923         }
924
925         return 0;
926 }
927
928 /*
929  * validate_region_size
930  * @rs
931  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
932  *
933  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
934  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
935  *
936  * Returns: 0 on success, -EINVAL on failure.
937  */
938 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
939 {
940         unsigned long min_region_size = rs->ti->len / (1 << 21);
941
942         if (rs_is_raid0(rs))
943                 return 0;
944
945         if (!region_size) {
946                 /*
947                  * Choose a reasonable default.  All figures in sectors.
948                  */
949                 if (min_region_size > (1 << 13)) {
950                         /* If not a power of 2, make it the next power of 2 */
951                         region_size = roundup_pow_of_two(min_region_size);
952                         DMINFO("Choosing default region size of %lu sectors",
953                                region_size);
954                 } else {
955                         DMINFO("Choosing default region size of 4MiB");
956                         region_size = 1 << 13; /* sectors */
957                 }
958         } else {
959                 /*
960                  * Validate user-supplied value.
961                  */
962                 if (region_size > rs->ti->len) {
963                         rs->ti->error = "Supplied region size is too large";
964                         return -EINVAL;
965                 }
966
967                 if (region_size < min_region_size) {
968                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
969                               region_size, min_region_size);
970                         rs->ti->error = "Supplied region size is too small";
971                         return -EINVAL;
972                 }
973
974                 if (!is_power_of_2(region_size)) {
975                         rs->ti->error = "Region size is not a power of 2";
976                         return -EINVAL;
977                 }
978
979                 if (region_size < rs->md.chunk_sectors) {
980                         rs->ti->error = "Region size is smaller than the chunk size";
981                         return -EINVAL;
982                 }
983         }
984
985         /*
986          * Convert sectors to bytes.
987          */
988         rs->md.bitmap_info.chunksize = to_bytes(region_size);
989
990         return 0;
991 }
992
993 /*
994  * validate_raid_redundancy
995  * @rs
996  *
997  * Determine if there are enough devices in the array that haven't
998  * failed (or are being rebuilt) to form a usable array.
999  *
1000  * Returns: 0 on success, -EINVAL on failure.
1001  */
1002 static int validate_raid_redundancy(struct raid_set *rs)
1003 {
1004         unsigned int i, rebuild_cnt = 0;
1005         unsigned int rebuilds_per_group = 0, copies, raid_disks;
1006         unsigned int group_size, last_group_start;
1007
1008         for (i = 0; i < rs->raid_disks; i++)
1009                 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1010                     ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1011                       !rs->dev[i].rdev.sb_page)))
1012                         rebuild_cnt++;
1013
1014         switch (rs->md.level) {
1015         case 0:
1016                 break;
1017         case 1:
1018                 if (rebuild_cnt >= rs->md.raid_disks)
1019                         goto too_many;
1020                 break;
1021         case 4:
1022         case 5:
1023         case 6:
1024                 if (rebuild_cnt > rs->raid_type->parity_devs)
1025                         goto too_many;
1026                 break;
1027         case 10:
1028                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1029                 if (copies < 2) {
1030                         DMERR("Bogus raid10 data copies < 2!");
1031                         return -EINVAL;
1032                 }
1033
1034                 if (rebuild_cnt < copies)
1035                         break;
1036
1037                 /*
1038                  * It is possible to have a higher rebuild count for RAID10,
1039                  * as long as the failed devices occur in different mirror
1040                  * groups (i.e. different stripes).
1041                  *
1042                  * When checking "near" format, make sure no adjacent devices
1043                  * have failed beyond what can be handled.  In addition to the
1044                  * simple case where the number of devices is a multiple of the
1045                  * number of copies, we must also handle cases where the number
1046                  * of devices is not a multiple of the number of copies.
1047                  * E.g.    dev1 dev2 dev3 dev4 dev5
1048                  *          A    A    B    B    C
1049                  *          C    D    D    E    E
1050                  */
1051                 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1052                 if (__is_raid10_near(rs->md.new_layout)) {
1053                         for (i = 0; i < raid_disks; i++) {
1054                                 if (!(i % copies))
1055                                         rebuilds_per_group = 0;
1056                                 if ((!rs->dev[i].rdev.sb_page ||
1057                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1058                                     (++rebuilds_per_group >= copies))
1059                                         goto too_many;
1060                         }
1061                         break;
1062                 }
1063
1064                 /*
1065                  * When checking "far" and "offset" formats, we need to ensure
1066                  * that the device that holds its copy is not also dead or
1067                  * being rebuilt.  (Note that "far" and "offset" formats only
1068                  * support two copies right now.  These formats also only ever
1069                  * use the 'use_far_sets' variant.)
1070                  *
1071                  * This check is somewhat complicated by the need to account
1072                  * for arrays that are not a multiple of (far) copies.  This
1073                  * results in the need to treat the last (potentially larger)
1074                  * set differently.
1075                  */
1076                 group_size = (raid_disks / copies);
1077                 last_group_start = (raid_disks / group_size) - 1;
1078                 last_group_start *= group_size;
1079                 for (i = 0; i < raid_disks; i++) {
1080                         if (!(i % copies) && !(i > last_group_start))
1081                                 rebuilds_per_group = 0;
1082                         if ((!rs->dev[i].rdev.sb_page ||
1083                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1084                             (++rebuilds_per_group >= copies))
1085                                         goto too_many;
1086                 }
1087                 break;
1088         default:
1089                 if (rebuild_cnt)
1090                         return -EINVAL;
1091         }
1092
1093         return 0;
1094
1095 too_many:
1096         return -EINVAL;
1097 }
1098
1099 /*
1100  * Possible arguments are...
1101  *      <chunk_size> [optional_args]
1102  *
1103  * Argument definitions
1104  *    <chunk_size>                      The number of sectors per disk that
1105  *                                      will form the "stripe"
1106  *    [[no]sync]                        Force or prevent recovery of the
1107  *                                      entire array
1108  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1109  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1110  *                                      clear bits
1111  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1112  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1113  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1114  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1115  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1116  *    [region_size <sectors>]           Defines granularity of bitmap
1117  *    [journal_dev <dev>]               raid4/5/6 journaling deviice
1118  *                                      (i.e. write hole closing log)
1119  *
1120  * RAID10-only options:
1121  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1122  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1123  */
1124 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1125                              unsigned int num_raid_params)
1126 {
1127         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1128         unsigned int raid10_copies = 2;
1129         unsigned int i, write_mostly = 0;
1130         unsigned int region_size = 0;
1131         sector_t max_io_len;
1132         const char *arg, *key;
1133         struct raid_dev *rd;
1134         struct raid_type *rt = rs->raid_type;
1135
1136         arg = dm_shift_arg(as);
1137         num_raid_params--; /* Account for chunk_size argument */
1138
1139         if (kstrtoint(arg, 10, &value) < 0) {
1140                 rs->ti->error = "Bad numerical argument given for chunk_size";
1141                 return -EINVAL;
1142         }
1143
1144         /*
1145          * First, parse the in-order required arguments
1146          * "chunk_size" is the only argument of this type.
1147          */
1148         if (rt_is_raid1(rt)) {
1149                 if (value)
1150                         DMERR("Ignoring chunk size parameter for RAID 1");
1151                 value = 0;
1152         } else if (!is_power_of_2(value)) {
1153                 rs->ti->error = "Chunk size must be a power of 2";
1154                 return -EINVAL;
1155         } else if (value < 8) {
1156                 rs->ti->error = "Chunk size value is too small";
1157                 return -EINVAL;
1158         }
1159
1160         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1161
1162         /*
1163          * We set each individual device as In_sync with a completed
1164          * 'recovery_offset'.  If there has been a device failure or
1165          * replacement then one of the following cases applies:
1166          *
1167          *   1) User specifies 'rebuild'.
1168          *      - Device is reset when param is read.
1169          *   2) A new device is supplied.
1170          *      - No matching superblock found, resets device.
1171          *   3) Device failure was transient and returns on reload.
1172          *      - Failure noticed, resets device for bitmap replay.
1173          *   4) Device hadn't completed recovery after previous failure.
1174          *      - Superblock is read and overrides recovery_offset.
1175          *
1176          * What is found in the superblocks of the devices is always
1177          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1178          */
1179         for (i = 0; i < rs->raid_disks; i++) {
1180                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1181                 rs->dev[i].rdev.recovery_offset = MaxSector;
1182         }
1183
1184         /*
1185          * Second, parse the unordered optional arguments
1186          */
1187         for (i = 0; i < num_raid_params; i++) {
1188                 key = dm_shift_arg(as);
1189                 if (!key) {
1190                         rs->ti->error = "Not enough raid parameters given";
1191                         return -EINVAL;
1192                 }
1193
1194                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1195                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1196                                 rs->ti->error = "Only one 'nosync' argument allowed";
1197                                 return -EINVAL;
1198                         }
1199                         continue;
1200                 }
1201                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1202                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1203                                 rs->ti->error = "Only one 'sync' argument allowed";
1204                                 return -EINVAL;
1205                         }
1206                         continue;
1207                 }
1208                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1209                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1210                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1211                                 return -EINVAL;
1212                         }
1213                         continue;
1214                 }
1215
1216                 arg = dm_shift_arg(as);
1217                 i++; /* Account for the argument pairs */
1218                 if (!arg) {
1219                         rs->ti->error = "Wrong number of raid parameters given";
1220                         return -EINVAL;
1221                 }
1222
1223                 /*
1224                  * Parameters that take a string value are checked here.
1225                  */
1226                 /* "raid10_format {near|offset|far} */
1227                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1228                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1229                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1230                                 return -EINVAL;
1231                         }
1232                         if (!rt_is_raid10(rt)) {
1233                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1234                                 return -EINVAL;
1235                         }
1236                         raid10_format = raid10_name_to_format(arg);
1237                         if (raid10_format < 0) {
1238                                 rs->ti->error = "Invalid 'raid10_format' value given";
1239                                 return raid10_format;
1240                         }
1241                         continue;
1242                 }
1243
1244                 /* "journal_dev <dev>" */
1245                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1246                         int r;
1247                         struct md_rdev *jdev;
1248
1249                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1250                                 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1251                                 return -EINVAL;
1252                         }
1253                         if (!rt_is_raid456(rt)) {
1254                                 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1255                                 return -EINVAL;
1256                         }
1257                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1258                                           &rs->journal_dev.dev);
1259                         if (r) {
1260                                 rs->ti->error = "raid4/5/6 journal device lookup failure";
1261                                 return r;
1262                         }
1263                         jdev = &rs->journal_dev.rdev;
1264                         md_rdev_init(jdev);
1265                         jdev->mddev = &rs->md;
1266                         jdev->bdev = rs->journal_dev.dev->bdev;
1267                         jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1268                         if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1269                                 rs->ti->error = "No space for raid4/5/6 journal";
1270                                 return -ENOSPC;
1271                         }
1272                         rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1273                         set_bit(Journal, &jdev->flags);
1274                         continue;
1275                 }
1276
1277                 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1278                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1279                         int r;
1280
1281                         if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1282                                 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1283                                 return -EINVAL;
1284                         }
1285                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1286                                 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1287                                 return -EINVAL;
1288                         }
1289                         r = dm_raid_journal_mode_to_md(arg);
1290                         if (r < 0) {
1291                                 rs->ti->error = "Invalid 'journal_mode' argument";
1292                                 return r;
1293                         }
1294                         rs->journal_dev.mode = r;
1295                         continue;
1296                 }
1297
1298                 /*
1299                  * Parameters with number values from here on.
1300                  */
1301                 if (kstrtoint(arg, 10, &value) < 0) {
1302                         rs->ti->error = "Bad numerical argument given in raid params";
1303                         return -EINVAL;
1304                 }
1305
1306                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1307                         /*
1308                          * "rebuild" is being passed in by userspace to provide
1309                          * indexes of replaced devices and to set up additional
1310                          * devices on raid level takeover.
1311                          */
1312                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1313                                 rs->ti->error = "Invalid rebuild index given";
1314                                 return -EINVAL;
1315                         }
1316
1317                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1318                                 rs->ti->error = "rebuild for this index already given";
1319                                 return -EINVAL;
1320                         }
1321
1322                         rd = rs->dev + value;
1323                         clear_bit(In_sync, &rd->rdev.flags);
1324                         clear_bit(Faulty, &rd->rdev.flags);
1325                         rd->rdev.recovery_offset = 0;
1326                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1327                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1328                         if (!rt_is_raid1(rt)) {
1329                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1330                                 return -EINVAL;
1331                         }
1332
1333                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1334                                 rs->ti->error = "Invalid write_mostly index given";
1335                                 return -EINVAL;
1336                         }
1337
1338                         write_mostly++;
1339                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1340                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1341                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1342                         if (!rt_is_raid1(rt)) {
1343                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1344                                 return -EINVAL;
1345                         }
1346
1347                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1348                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1349                                 return -EINVAL;
1350                         }
1351
1352                         /*
1353                          * In device-mapper, we specify things in sectors, but
1354                          * MD records this value in kB
1355                          */
1356                         if (value < 0 || value / 2 > COUNTER_MAX) {
1357                                 rs->ti->error = "Max write-behind limit out of range";
1358                                 return -EINVAL;
1359                         }
1360
1361                         rs->md.bitmap_info.max_write_behind = value / 2;
1362                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1363                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1364                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1365                                 return -EINVAL;
1366                         }
1367                         if (value < 0) {
1368                                 rs->ti->error = "daemon sleep period out of range";
1369                                 return -EINVAL;
1370                         }
1371                         rs->md.bitmap_info.daemon_sleep = value;
1372                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1373                         /* Userspace passes new data_offset after having extended the the data image LV */
1374                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1375                                 rs->ti->error = "Only one data_offset argument pair allowed";
1376                                 return -EINVAL;
1377                         }
1378                         /* Ensure sensible data offset */
1379                         if (value < 0 ||
1380                             (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1381                                 rs->ti->error = "Bogus data_offset value";
1382                                 return -EINVAL;
1383                         }
1384                         rs->data_offset = value;
1385                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1386                         /* Define the +/-# of disks to add to/remove from the given raid set */
1387                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1388                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1389                                 return -EINVAL;
1390                         }
1391                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1392                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1393                                 rs->ti->error = "Too many delta_disk requested";
1394                                 return -EINVAL;
1395                         }
1396
1397                         rs->delta_disks = value;
1398                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1399                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1400                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1401                                 return -EINVAL;
1402                         }
1403
1404                         if (!rt_is_raid456(rt)) {
1405                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1406                                 return -EINVAL;
1407                         }
1408
1409                         if (value < 0) {
1410                                 rs->ti->error = "Bogus stripe cache entries value";
1411                                 return -EINVAL;
1412                         }
1413                         rs->stripe_cache_entries = value;
1414                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1415                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1416                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1417                                 return -EINVAL;
1418                         }
1419
1420                         if (value < 0) {
1421                                 rs->ti->error = "min_recovery_rate out of range";
1422                                 return -EINVAL;
1423                         }
1424                         rs->md.sync_speed_min = value;
1425                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1426                         if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1427                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1428                                 return -EINVAL;
1429                         }
1430
1431                         if (value < 0) {
1432                                 rs->ti->error = "max_recovery_rate out of range";
1433                                 return -EINVAL;
1434                         }
1435                         rs->md.sync_speed_max = value;
1436                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1437                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1438                                 rs->ti->error = "Only one region_size argument pair allowed";
1439                                 return -EINVAL;
1440                         }
1441
1442                         region_size = value;
1443                         rs->requested_bitmap_chunk_sectors = value;
1444                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1445                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1446                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1447                                 return -EINVAL;
1448                         }
1449
1450                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1451                                 rs->ti->error = "Bad value for 'raid10_copies'";
1452                                 return -EINVAL;
1453                         }
1454
1455                         raid10_copies = value;
1456                 } else {
1457                         DMERR("Unable to parse RAID parameter: %s", key);
1458                         rs->ti->error = "Unable to parse RAID parameter";
1459                         return -EINVAL;
1460                 }
1461         }
1462
1463         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1464             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1465                 rs->ti->error = "sync and nosync are mutually exclusive";
1466                 return -EINVAL;
1467         }
1468
1469         if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1470             (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1471              test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1472                 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1473                 return -EINVAL;
1474         }
1475
1476         if (write_mostly >= rs->md.raid_disks) {
1477                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1478                 return -EINVAL;
1479         }
1480
1481         if (rs->md.sync_speed_max &&
1482             rs->md.sync_speed_min > rs->md.sync_speed_max) {
1483                 rs->ti->error = "Bogus recovery rates";
1484                 return -EINVAL;
1485         }
1486
1487         if (validate_region_size(rs, region_size))
1488                 return -EINVAL;
1489
1490         if (rs->md.chunk_sectors)
1491                 max_io_len = rs->md.chunk_sectors;
1492         else
1493                 max_io_len = region_size;
1494
1495         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1496                 return -EINVAL;
1497
1498         if (rt_is_raid10(rt)) {
1499                 if (raid10_copies > rs->md.raid_disks) {
1500                         rs->ti->error = "Not enough devices to satisfy specification";
1501                         return -EINVAL;
1502                 }
1503
1504                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1505                 if (rs->md.new_layout < 0) {
1506                         rs->ti->error = "Error getting raid10 format";
1507                         return rs->md.new_layout;
1508                 }
1509
1510                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1511                 if (!rt) {
1512                         rs->ti->error = "Failed to recognize new raid10 layout";
1513                         return -EINVAL;
1514                 }
1515
1516                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1517                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1518                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1519                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1520                         return -EINVAL;
1521                 }
1522         }
1523
1524         rs->raid10_copies = raid10_copies;
1525
1526         /* Assume there are no metadata devices until the drives are parsed */
1527         rs->md.persistent = 0;
1528         rs->md.external = 1;
1529
1530         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1531         return rs_check_for_valid_flags(rs);
1532 }
1533
1534 /* Set raid4/5/6 cache size */
1535 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1536 {
1537         int r;
1538         struct r5conf *conf;
1539         struct mddev *mddev = &rs->md;
1540         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1541         uint32_t nr_stripes = rs->stripe_cache_entries;
1542
1543         if (!rt_is_raid456(rs->raid_type)) {
1544                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1545                 return -EINVAL;
1546         }
1547
1548         if (nr_stripes < min_stripes) {
1549                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1550                        nr_stripes, min_stripes);
1551                 nr_stripes = min_stripes;
1552         }
1553
1554         conf = mddev->private;
1555         if (!conf) {
1556                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1557                 return -EINVAL;
1558         }
1559
1560         /* Try setting number of stripes in raid456 stripe cache */
1561         if (conf->min_nr_stripes != nr_stripes) {
1562                 r = raid5_set_cache_size(mddev, nr_stripes);
1563                 if (r) {
1564                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1565                         return r;
1566                 }
1567
1568                 DMINFO("%u stripe cache entries", nr_stripes);
1569         }
1570
1571         return 0;
1572 }
1573
1574 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1575 static unsigned int mddev_data_stripes(struct raid_set *rs)
1576 {
1577         return rs->md.raid_disks - rs->raid_type->parity_devs;
1578 }
1579
1580 /* Return # of data stripes of @rs (i.e. as of ctr) */
1581 static unsigned int rs_data_stripes(struct raid_set *rs)
1582 {
1583         return rs->raid_disks - rs->raid_type->parity_devs;
1584 }
1585
1586 /*
1587  * Retrieve rdev->sectors from any valid raid device of @rs
1588  * to allow userpace to pass in arbitray "- -" device tupples.
1589  */
1590 static sector_t __rdev_sectors(struct raid_set *rs)
1591 {
1592         int i;
1593
1594         for (i = 0; i < rs->raid_disks; i++) {
1595                 struct md_rdev *rdev = &rs->dev[i].rdev;
1596
1597                 if (!test_bit(Journal, &rdev->flags) &&
1598                     rdev->bdev && rdev->sectors)
1599                         return rdev->sectors;
1600         }
1601
1602         return 0;
1603 }
1604
1605 /* Check that calculated dev_sectors fits all component devices. */
1606 static int _check_data_dev_sectors(struct raid_set *rs)
1607 {
1608         sector_t ds = ~0;
1609         struct md_rdev *rdev;
1610
1611         rdev_for_each(rdev, &rs->md)
1612                 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1613                         ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1614                         if (ds < rs->md.dev_sectors) {
1615                                 rs->ti->error = "Component device(s) too small";
1616                                 return -EINVAL;
1617                         }
1618                 }
1619
1620         return 0;
1621 }
1622
1623 /* Calculate the sectors per device and per array used for @rs */
1624 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1625 {
1626         int delta_disks;
1627         unsigned int data_stripes;
1628         sector_t array_sectors = sectors, dev_sectors = sectors;
1629         struct mddev *mddev = &rs->md;
1630
1631         if (use_mddev) {
1632                 delta_disks = mddev->delta_disks;
1633                 data_stripes = mddev_data_stripes(rs);
1634         } else {
1635                 delta_disks = rs->delta_disks;
1636                 data_stripes = rs_data_stripes(rs);
1637         }
1638
1639         /* Special raid1 case w/o delta_disks support (yet) */
1640         if (rt_is_raid1(rs->raid_type))
1641                 ;
1642         else if (rt_is_raid10(rs->raid_type)) {
1643                 if (rs->raid10_copies < 2 ||
1644                     delta_disks < 0) {
1645                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1646                         return -EINVAL;
1647                 }
1648
1649                 dev_sectors *= rs->raid10_copies;
1650                 if (sector_div(dev_sectors, data_stripes))
1651                         goto bad;
1652
1653                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1654                 if (sector_div(array_sectors, rs->raid10_copies))
1655                         goto bad;
1656
1657         } else if (sector_div(dev_sectors, data_stripes))
1658                 goto bad;
1659
1660         else
1661                 /* Striped layouts */
1662                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1663
1664         mddev->array_sectors = array_sectors;
1665         mddev->dev_sectors = dev_sectors;
1666         rs_set_rdev_sectors(rs);
1667
1668         return _check_data_dev_sectors(rs);
1669 bad:
1670         rs->ti->error = "Target length not divisible by number of data devices";
1671         return -EINVAL;
1672 }
1673
1674 /* Setup recovery on @rs */
1675 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1676 {
1677         /* raid0 does not recover */
1678         if (rs_is_raid0(rs))
1679                 rs->md.recovery_cp = MaxSector;
1680         /*
1681          * A raid6 set has to be recovered either
1682          * completely or for the grown part to
1683          * ensure proper parity and Q-Syndrome
1684          */
1685         else if (rs_is_raid6(rs))
1686                 rs->md.recovery_cp = dev_sectors;
1687         /*
1688          * Other raid set types may skip recovery
1689          * depending on the 'nosync' flag.
1690          */
1691         else
1692                 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1693                                      ? MaxSector : dev_sectors;
1694 }
1695
1696 static void do_table_event(struct work_struct *ws)
1697 {
1698         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1699
1700         smp_rmb(); /* Make sure we access most actual mddev properties */
1701         if (!rs_is_reshaping(rs)) {
1702                 if (rs_is_raid10(rs))
1703                         rs_set_rdev_sectors(rs);
1704                 rs_set_capacity(rs);
1705         }
1706         dm_table_event(rs->ti->table);
1707 }
1708
1709 /*
1710  * Make sure a valid takover (level switch) is being requested on @rs
1711  *
1712  * Conversions of raid sets from one MD personality to another
1713  * have to conform to restrictions which are enforced here.
1714  */
1715 static int rs_check_takeover(struct raid_set *rs)
1716 {
1717         struct mddev *mddev = &rs->md;
1718         unsigned int near_copies;
1719
1720         if (rs->md.degraded) {
1721                 rs->ti->error = "Can't takeover degraded raid set";
1722                 return -EPERM;
1723         }
1724
1725         if (rs_is_reshaping(rs)) {
1726                 rs->ti->error = "Can't takeover reshaping raid set";
1727                 return -EPERM;
1728         }
1729
1730         switch (mddev->level) {
1731         case 0:
1732                 /* raid0 -> raid1/5 with one disk */
1733                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1734                     mddev->raid_disks == 1)
1735                         return 0;
1736
1737                 /* raid0 -> raid10 */
1738                 if (mddev->new_level == 10 &&
1739                     !(rs->raid_disks % mddev->raid_disks))
1740                         return 0;
1741
1742                 /* raid0 with multiple disks -> raid4/5/6 */
1743                 if (__within_range(mddev->new_level, 4, 6) &&
1744                     mddev->new_layout == ALGORITHM_PARITY_N &&
1745                     mddev->raid_disks > 1)
1746                         return 0;
1747
1748                 break;
1749
1750         case 10:
1751                 /* Can't takeover raid10_offset! */
1752                 if (__is_raid10_offset(mddev->layout))
1753                         break;
1754
1755                 near_copies = __raid10_near_copies(mddev->layout);
1756
1757                 /* raid10* -> raid0 */
1758                 if (mddev->new_level == 0) {
1759                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1760                         if (near_copies > 1 &&
1761                             !(mddev->raid_disks % near_copies)) {
1762                                 mddev->raid_disks /= near_copies;
1763                                 mddev->delta_disks = mddev->raid_disks;
1764                                 return 0;
1765                         }
1766
1767                         /* Can takeover raid10_far */
1768                         if (near_copies == 1 &&
1769                             __raid10_far_copies(mddev->layout) > 1)
1770                                 return 0;
1771
1772                         break;
1773                 }
1774
1775                 /* raid10_{near,far} -> raid1 */
1776                 if (mddev->new_level == 1 &&
1777                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1778                         return 0;
1779
1780                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1781                 if (__within_range(mddev->new_level, 4, 5) &&
1782                     mddev->raid_disks == 2)
1783                         return 0;
1784                 break;
1785
1786         case 1:
1787                 /* raid1 with 2 disks -> raid4/5 */
1788                 if (__within_range(mddev->new_level, 4, 5) &&
1789                     mddev->raid_disks == 2) {
1790                         mddev->degraded = 1;
1791                         return 0;
1792                 }
1793
1794                 /* raid1 -> raid0 */
1795                 if (mddev->new_level == 0 &&
1796                     mddev->raid_disks == 1)
1797                         return 0;
1798
1799                 /* raid1 -> raid10 */
1800                 if (mddev->new_level == 10)
1801                         return 0;
1802                 break;
1803
1804         case 4:
1805                 /* raid4 -> raid0 */
1806                 if (mddev->new_level == 0)
1807                         return 0;
1808
1809                 /* raid4 -> raid1/5 with 2 disks */
1810                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1811                     mddev->raid_disks == 2)
1812                         return 0;
1813
1814                 /* raid4 -> raid5/6 with parity N */
1815                 if (__within_range(mddev->new_level, 5, 6) &&
1816                     mddev->layout == ALGORITHM_PARITY_N)
1817                         return 0;
1818                 break;
1819
1820         case 5:
1821                 /* raid5 with parity N -> raid0 */
1822                 if (mddev->new_level == 0 &&
1823                     mddev->layout == ALGORITHM_PARITY_N)
1824                         return 0;
1825
1826                 /* raid5 with parity N -> raid4 */
1827                 if (mddev->new_level == 4 &&
1828                     mddev->layout == ALGORITHM_PARITY_N)
1829                         return 0;
1830
1831                 /* raid5 with 2 disks -> raid1/4/10 */
1832                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1833                     mddev->raid_disks == 2)
1834                         return 0;
1835
1836                 /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1837                 if (mddev->new_level == 6 &&
1838                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1839                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1840                         return 0;
1841                 break;
1842
1843         case 6:
1844                 /* raid6 with parity N -> raid0 */
1845                 if (mddev->new_level == 0 &&
1846                     mddev->layout == ALGORITHM_PARITY_N)
1847                         return 0;
1848
1849                 /* raid6 with parity N -> raid4 */
1850                 if (mddev->new_level == 4 &&
1851                     mddev->layout == ALGORITHM_PARITY_N)
1852                         return 0;
1853
1854                 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1855                 if (mddev->new_level == 5 &&
1856                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1857                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1858                         return 0;
1859
1860         default:
1861                 break;
1862         }
1863
1864         rs->ti->error = "takeover not possible";
1865         return -EINVAL;
1866 }
1867
1868 /* True if @rs requested to be taken over */
1869 static bool rs_takeover_requested(struct raid_set *rs)
1870 {
1871         return rs->md.new_level != rs->md.level;
1872 }
1873
1874 /* True if layout is set to reshape. */
1875 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1876 {
1877         return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1878                rs->md.new_layout != rs->md.layout ||
1879                rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1880 }
1881
1882 /* True if @rs is requested to reshape by ctr */
1883 static bool rs_reshape_requested(struct raid_set *rs)
1884 {
1885         bool change;
1886         struct mddev *mddev = &rs->md;
1887
1888         if (rs_takeover_requested(rs))
1889                 return false;
1890
1891         if (rs_is_raid0(rs))
1892                 return false;
1893
1894         change = rs_is_layout_change(rs, false);
1895
1896         /* Historical case to support raid1 reshape without delta disks */
1897         if (rs_is_raid1(rs)) {
1898                 if (rs->delta_disks)
1899                         return !!rs->delta_disks;
1900
1901                 return !change &&
1902                        mddev->raid_disks != rs->raid_disks;
1903         }
1904
1905         if (rs_is_raid10(rs))
1906                 return change &&
1907                        !__is_raid10_far(mddev->new_layout) &&
1908                        rs->delta_disks >= 0;
1909
1910         return change;
1911 }
1912
1913 /*  Features */
1914 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1915
1916 /* State flags for sb->flags */
1917 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1918 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1919
1920 /*
1921  * This structure is never routinely used by userspace, unlike md superblocks.
1922  * Devices with this superblock should only ever be accessed via device-mapper.
1923  */
1924 #define DM_RAID_MAGIC 0x64526D44
1925 struct dm_raid_superblock {
1926         __le32 magic;           /* "DmRd" */
1927         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1928
1929         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1930         __le32 array_position;  /* The position of this drive in the raid set */
1931
1932         __le64 events;          /* Incremented by md when superblock updated */
1933         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1934                                 /* indicate failures (see extension below) */
1935
1936         /*
1937          * This offset tracks the progress of the repair or replacement of
1938          * an individual drive.
1939          */
1940         __le64 disk_recovery_offset;
1941
1942         /*
1943          * This offset tracks the progress of the initial raid set
1944          * synchronisation/parity calculation.
1945          */
1946         __le64 array_resync_offset;
1947
1948         /*
1949          * raid characteristics
1950          */
1951         __le32 level;
1952         __le32 layout;
1953         __le32 stripe_sectors;
1954
1955         /********************************************************************
1956          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1957          *
1958          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1959          */
1960
1961         __le32 flags; /* Flags defining array states for reshaping */
1962
1963         /*
1964          * This offset tracks the progress of a raid
1965          * set reshape in order to be able to restart it
1966          */
1967         __le64 reshape_position;
1968
1969         /*
1970          * These define the properties of the array in case of an interrupted reshape
1971          */
1972         __le32 new_level;
1973         __le32 new_layout;
1974         __le32 new_stripe_sectors;
1975         __le32 delta_disks;
1976
1977         __le64 array_sectors; /* Array size in sectors */
1978
1979         /*
1980          * Sector offsets to data on devices (reshaping).
1981          * Needed to support out of place reshaping, thus
1982          * not writing over any stripes whilst converting
1983          * them from old to new layout
1984          */
1985         __le64 data_offset;
1986         __le64 new_data_offset;
1987
1988         __le64 sectors; /* Used device size in sectors */
1989
1990         /*
1991          * Additonal Bit field of devices indicating failures to support
1992          * up to 256 devices with the 1.9.0 on-disk metadata format
1993          */
1994         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1995
1996         __le32 incompat_features;       /* Used to indicate any incompatible features */
1997
1998         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1999 } __packed;
2000
2001 /*
2002  * Check for reshape constraints on raid set @rs:
2003  *
2004  * - reshape function non-existent
2005  * - degraded set
2006  * - ongoing recovery
2007  * - ongoing reshape
2008  *
2009  * Returns 0 if none or -EPERM if given constraint
2010  * and error message reference in @errmsg
2011  */
2012 static int rs_check_reshape(struct raid_set *rs)
2013 {
2014         struct mddev *mddev = &rs->md;
2015
2016         if (!mddev->pers || !mddev->pers->check_reshape)
2017                 rs->ti->error = "Reshape not supported";
2018         else if (mddev->degraded)
2019                 rs->ti->error = "Can't reshape degraded raid set";
2020         else if (rs_is_recovering(rs))
2021                 rs->ti->error = "Convert request on recovering raid set prohibited";
2022         else if (rs_is_reshaping(rs))
2023                 rs->ti->error = "raid set already reshaping!";
2024         else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2025                 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2026         else
2027                 return 0;
2028
2029         return -EPERM;
2030 }
2031
2032 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2033 {
2034         BUG_ON(!rdev->sb_page);
2035
2036         if (rdev->sb_loaded && !force_reload)
2037                 return 0;
2038
2039         rdev->sb_loaded = 0;
2040
2041         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2042                 DMERR("Failed to read superblock of device at position %d",
2043                       rdev->raid_disk);
2044                 md_error(rdev->mddev, rdev);
2045                 set_bit(Faulty, &rdev->flags);
2046                 return -EIO;
2047         }
2048
2049         rdev->sb_loaded = 1;
2050
2051         return 0;
2052 }
2053
2054 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2055 {
2056         failed_devices[0] = le64_to_cpu(sb->failed_devices);
2057         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2058
2059         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2060                 int i = ARRAY_SIZE(sb->extended_failed_devices);
2061
2062                 while (i--)
2063                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2064         }
2065 }
2066
2067 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2068 {
2069         int i = ARRAY_SIZE(sb->extended_failed_devices);
2070
2071         sb->failed_devices = cpu_to_le64(failed_devices[0]);
2072         while (i--)
2073                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2074 }
2075
2076 /*
2077  * Synchronize the superblock members with the raid set properties
2078  *
2079  * All superblock data is little endian.
2080  */
2081 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2082 {
2083         bool update_failed_devices = false;
2084         unsigned int i;
2085         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2086         struct dm_raid_superblock *sb;
2087         struct raid_set *rs = container_of(mddev, struct raid_set, md);
2088
2089         /* No metadata device, no superblock */
2090         if (!rdev->meta_bdev)
2091                 return;
2092
2093         BUG_ON(!rdev->sb_page);
2094
2095         sb = page_address(rdev->sb_page);
2096
2097         sb_retrieve_failed_devices(sb, failed_devices);
2098
2099         for (i = 0; i < rs->raid_disks; i++)
2100                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2101                         update_failed_devices = true;
2102                         set_bit(i, (void *) failed_devices);
2103                 }
2104
2105         if (update_failed_devices)
2106                 sb_update_failed_devices(sb, failed_devices);
2107
2108         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2109         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2110
2111         sb->num_devices = cpu_to_le32(mddev->raid_disks);
2112         sb->array_position = cpu_to_le32(rdev->raid_disk);
2113
2114         sb->events = cpu_to_le64(mddev->events);
2115
2116         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2117         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2118
2119         sb->level = cpu_to_le32(mddev->level);
2120         sb->layout = cpu_to_le32(mddev->layout);
2121         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2122
2123         /********************************************************************
2124          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2125          *
2126          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2127          */
2128         sb->new_level = cpu_to_le32(mddev->new_level);
2129         sb->new_layout = cpu_to_le32(mddev->new_layout);
2130         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2131
2132         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2133
2134         smp_rmb(); /* Make sure we access most recent reshape position */
2135         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2136         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2137                 /* Flag ongoing reshape */
2138                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2139
2140                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2141                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2142         } else {
2143                 /* Clear reshape flags */
2144                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2145         }
2146
2147         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2148         sb->data_offset = cpu_to_le64(rdev->data_offset);
2149         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2150         sb->sectors = cpu_to_le64(rdev->sectors);
2151         sb->incompat_features = cpu_to_le32(0);
2152
2153         /* Zero out the rest of the payload after the size of the superblock */
2154         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2155 }
2156
2157 /*
2158  * super_load
2159  *
2160  * This function creates a superblock if one is not found on the device
2161  * and will decide which superblock to use if there's a choice.
2162  *
2163  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2164  */
2165 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2166 {
2167         int r;
2168         struct dm_raid_superblock *sb;
2169         struct dm_raid_superblock *refsb;
2170         uint64_t events_sb, events_refsb;
2171
2172         r = read_disk_sb(rdev, rdev->sb_size, false);
2173         if (r)
2174                 return r;
2175
2176         sb = page_address(rdev->sb_page);
2177
2178         /*
2179          * Two cases that we want to write new superblocks and rebuild:
2180          * 1) New device (no matching magic number)
2181          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2182          */
2183         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2184             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2185                 super_sync(rdev->mddev, rdev);
2186
2187                 set_bit(FirstUse, &rdev->flags);
2188                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2189
2190                 /* Force writing of superblocks to disk */
2191                 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2192
2193                 /* Any superblock is better than none, choose that if given */
2194                 return refdev ? 0 : 1;
2195         }
2196
2197         if (!refdev)
2198                 return 1;
2199
2200         events_sb = le64_to_cpu(sb->events);
2201
2202         refsb = page_address(refdev->sb_page);
2203         events_refsb = le64_to_cpu(refsb->events);
2204
2205         return (events_sb > events_refsb) ? 1 : 0;
2206 }
2207
2208 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2209 {
2210         int role;
2211         unsigned int d;
2212         struct mddev *mddev = &rs->md;
2213         uint64_t events_sb;
2214         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2215         struct dm_raid_superblock *sb;
2216         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2217         struct md_rdev *r;
2218         struct dm_raid_superblock *sb2;
2219
2220         sb = page_address(rdev->sb_page);
2221         events_sb = le64_to_cpu(sb->events);
2222
2223         /*
2224          * Initialise to 1 if this is a new superblock.
2225          */
2226         mddev->events = events_sb ? : 1;
2227
2228         mddev->reshape_position = MaxSector;
2229
2230         mddev->raid_disks = le32_to_cpu(sb->num_devices);
2231         mddev->level = le32_to_cpu(sb->level);
2232         mddev->layout = le32_to_cpu(sb->layout);
2233         mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2234
2235         /*
2236          * Reshaping is supported, e.g. reshape_position is valid
2237          * in superblock and superblock content is authoritative.
2238          */
2239         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2240                 /* Superblock is authoritative wrt given raid set layout! */
2241                 mddev->new_level = le32_to_cpu(sb->new_level);
2242                 mddev->new_layout = le32_to_cpu(sb->new_layout);
2243                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2244                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2245                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2246
2247                 /* raid was reshaping and got interrupted */
2248                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2249                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2250                                 DMERR("Reshape requested but raid set is still reshaping");
2251                                 return -EINVAL;
2252                         }
2253
2254                         if (mddev->delta_disks < 0 ||
2255                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2256                                 mddev->reshape_backwards = 1;
2257                         else
2258                                 mddev->reshape_backwards = 0;
2259
2260                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2261                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2262                 }
2263
2264         } else {
2265                 /*
2266                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2267                  */
2268                 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2269                 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2270
2271                 if (rs_takeover_requested(rs)) {
2272                         if (rt_cur && rt_new)
2273                                 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2274                                       rt_cur->name, rt_new->name);
2275                         else
2276                                 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2277                         return -EINVAL;
2278                 } else if (rs_reshape_requested(rs)) {
2279                         DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2280                         if (mddev->layout != mddev->new_layout) {
2281                                 if (rt_cur && rt_new)
2282                                         DMERR("  current layout %s vs new layout %s",
2283                                               rt_cur->name, rt_new->name);
2284                                 else
2285                                         DMERR("  current layout 0x%X vs new layout 0x%X",
2286                                               le32_to_cpu(sb->layout), mddev->new_layout);
2287                         }
2288                         if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2289                                 DMERR("  current stripe sectors %u vs new stripe sectors %u",
2290                                       mddev->chunk_sectors, mddev->new_chunk_sectors);
2291                         if (rs->delta_disks)
2292                                 DMERR("  current %u disks vs new %u disks",
2293                                       mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2294                         if (rs_is_raid10(rs)) {
2295                                 DMERR("  Old layout: %s w/ %u copies",
2296                                       raid10_md_layout_to_format(mddev->layout),
2297                                       raid10_md_layout_to_copies(mddev->layout));
2298                                 DMERR("  New layout: %s w/ %u copies",
2299                                       raid10_md_layout_to_format(mddev->new_layout),
2300                                       raid10_md_layout_to_copies(mddev->new_layout));
2301                         }
2302                         return -EINVAL;
2303                 }
2304
2305                 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2306         }
2307
2308         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2309                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2310
2311         /*
2312          * During load, we set FirstUse if a new superblock was written.
2313          * There are two reasons we might not have a superblock:
2314          * 1) The raid set is brand new - in which case, all of the
2315          *    devices must have their In_sync bit set.  Also,
2316          *    recovery_cp must be 0, unless forced.
2317          * 2) This is a new device being added to an old raid set
2318          *    and the new device needs to be rebuilt - in which
2319          *    case the In_sync bit will /not/ be set and
2320          *    recovery_cp must be MaxSector.
2321          * 3) This is/are a new device(s) being added to an old
2322          *    raid set during takeover to a higher raid level
2323          *    to provide capacity for redundancy or during reshape
2324          *    to add capacity to grow the raid set.
2325          */
2326         d = 0;
2327         rdev_for_each(r, mddev) {
2328                 if (test_bit(Journal, &rdev->flags))
2329                         continue;
2330
2331                 if (test_bit(FirstUse, &r->flags))
2332                         new_devs++;
2333
2334                 if (!test_bit(In_sync, &r->flags)) {
2335                         DMINFO("Device %d specified for rebuild; clearing superblock",
2336                                 r->raid_disk);
2337                         rebuilds++;
2338
2339                         if (test_bit(FirstUse, &r->flags))
2340                                 rebuild_and_new++;
2341                 }
2342
2343                 d++;
2344         }
2345
2346         if (new_devs == rs->raid_disks || !rebuilds) {
2347                 /* Replace a broken device */
2348                 if (new_devs == rs->raid_disks) {
2349                         DMINFO("Superblocks created for new raid set");
2350                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2351                 } else if (new_devs != rebuilds &&
2352                            new_devs != rs->delta_disks) {
2353                         DMERR("New device injected into existing raid set without "
2354                               "'delta_disks' or 'rebuild' parameter specified");
2355                         return -EINVAL;
2356                 }
2357         } else if (new_devs && new_devs != rebuilds) {
2358                 DMERR("%u 'rebuild' devices cannot be injected into"
2359                       " a raid set with %u other first-time devices",
2360                       rebuilds, new_devs);
2361                 return -EINVAL;
2362         } else if (rebuilds) {
2363                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2364                         DMERR("new device%s provided without 'rebuild'",
2365                               new_devs > 1 ? "s" : "");
2366                         return -EINVAL;
2367                 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2368                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2369                               (unsigned long long) mddev->recovery_cp);
2370                         return -EINVAL;
2371                 } else if (rs_is_reshaping(rs)) {
2372                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2373                               (unsigned long long) mddev->reshape_position);
2374                         return -EINVAL;
2375                 }
2376         }
2377
2378         /*
2379          * Now we set the Faulty bit for those devices that are
2380          * recorded in the superblock as failed.
2381          */
2382         sb_retrieve_failed_devices(sb, failed_devices);
2383         rdev_for_each(r, mddev) {
2384                 if (test_bit(Journal, &rdev->flags) ||
2385                     !r->sb_page)
2386                         continue;
2387                 sb2 = page_address(r->sb_page);
2388                 sb2->failed_devices = 0;
2389                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2390
2391                 /*
2392                  * Check for any device re-ordering.
2393                  */
2394                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2395                         role = le32_to_cpu(sb2->array_position);
2396                         if (role < 0)
2397                                 continue;
2398
2399                         if (role != r->raid_disk) {
2400                                 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2401                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2402                                             rs->raid_disks % rs->raid10_copies) {
2403                                                 rs->ti->error =
2404                                                         "Cannot change raid10 near set to odd # of devices!";
2405                                                 return -EINVAL;
2406                                         }
2407
2408                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2409
2410                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2411                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2412                                            !rt_is_raid1(rs->raid_type)) {
2413                                         rs->ti->error = "Cannot change device positions in raid set";
2414                                         return -EINVAL;
2415                                 }
2416
2417                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2418                         }
2419
2420                         /*
2421                          * Partial recovery is performed on
2422                          * returning failed devices.
2423                          */
2424                         if (test_bit(role, (void *) failed_devices))
2425                                 set_bit(Faulty, &r->flags);
2426                 }
2427         }
2428
2429         return 0;
2430 }
2431
2432 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2433 {
2434         struct mddev *mddev = &rs->md;
2435         struct dm_raid_superblock *sb;
2436
2437         if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2438                 return 0;
2439
2440         sb = page_address(rdev->sb_page);
2441
2442         /*
2443          * If mddev->events is not set, we know we have not yet initialized
2444          * the array.
2445          */
2446         if (!mddev->events && super_init_validation(rs, rdev))
2447                 return -EINVAL;
2448
2449         if (le32_to_cpu(sb->compat_features) &&
2450             le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2451                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2452                 return -EINVAL;
2453         }
2454
2455         if (sb->incompat_features) {
2456                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2457                 return -EINVAL;
2458         }
2459
2460         /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2461         mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2462         mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2463
2464         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2465                 /*
2466                  * Retrieve rdev size stored in superblock to be prepared for shrink.
2467                  * Check extended superblock members are present otherwise the size
2468                  * will not be set!
2469                  */
2470                 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2471                         rdev->sectors = le64_to_cpu(sb->sectors);
2472
2473                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2474                 if (rdev->recovery_offset == MaxSector)
2475                         set_bit(In_sync, &rdev->flags);
2476                 /*
2477                  * If no reshape in progress -> we're recovering single
2478                  * disk(s) and have to set the device(s) to out-of-sync
2479                  */
2480                 else if (!rs_is_reshaping(rs))
2481                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2482         }
2483
2484         /*
2485          * If a device comes back, set it as not In_sync and no longer faulty.
2486          */
2487         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2488                 rdev->recovery_offset = 0;
2489                 clear_bit(In_sync, &rdev->flags);
2490                 rdev->saved_raid_disk = rdev->raid_disk;
2491         }
2492
2493         /* Reshape support -> restore repective data offsets */
2494         rdev->data_offset = le64_to_cpu(sb->data_offset);
2495         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2496
2497         return 0;
2498 }
2499
2500 /*
2501  * Analyse superblocks and select the freshest.
2502  */
2503 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2504 {
2505         int r;
2506         struct md_rdev *rdev, *freshest;
2507         struct mddev *mddev = &rs->md;
2508
2509         freshest = NULL;
2510         rdev_for_each(rdev, mddev) {
2511                 if (test_bit(Journal, &rdev->flags))
2512                         continue;
2513
2514                 if (!rdev->meta_bdev)
2515                         continue;
2516
2517                 /* Set superblock offset/size for metadata device. */
2518                 rdev->sb_start = 0;
2519                 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2520                 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2521                         DMERR("superblock size of a logical block is no longer valid");
2522                         return -EINVAL;
2523                 }
2524
2525                 /*
2526                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2527                  * the array to undergo initialization again as
2528                  * though it were new.  This is the intended effect
2529                  * of the "sync" directive.
2530                  *
2531                  * With reshaping capability added, we must ensure that
2532                  * that the "sync" directive is disallowed during the reshape.
2533                  */
2534                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2535                         continue;
2536
2537                 r = super_load(rdev, freshest);
2538
2539                 switch (r) {
2540                 case 1:
2541                         freshest = rdev;
2542                         break;
2543                 case 0:
2544                         break;
2545                 default:
2546                         /* This is a failure to read the superblock from the metadata device. */
2547                         /*
2548                          * We have to keep any raid0 data/metadata device pairs or
2549                          * the MD raid0 personality will fail to start the array.
2550                          */
2551                         if (rs_is_raid0(rs))
2552                                 continue;
2553
2554                         /*
2555                          * We keep the dm_devs to be able to emit the device tuple
2556                          * properly on the table line in raid_status() (rather than
2557                          * mistakenly acting as if '- -' got passed into the constructor).
2558                          *
2559                          * The rdev has to stay on the same_set list to allow for
2560                          * the attempt to restore faulty devices on second resume.
2561                          */
2562                         rdev->raid_disk = rdev->saved_raid_disk = -1;
2563                         break;
2564                 }
2565         }
2566
2567         if (!freshest)
2568                 return 0;
2569
2570         /*
2571          * Validation of the freshest device provides the source of
2572          * validation for the remaining devices.
2573          */
2574         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2575         if (super_validate(rs, freshest))
2576                 return -EINVAL;
2577
2578         if (validate_raid_redundancy(rs)) {
2579                 rs->ti->error = "Insufficient redundancy to activate array";
2580                 return -EINVAL;
2581         }
2582
2583         rdev_for_each(rdev, mddev)
2584                 if (!test_bit(Journal, &rdev->flags) &&
2585                     rdev != freshest &&
2586                     super_validate(rs, rdev))
2587                         return -EINVAL;
2588         return 0;
2589 }
2590
2591 /*
2592  * Adjust data_offset and new_data_offset on all disk members of @rs
2593  * for out of place reshaping if requested by contructor
2594  *
2595  * We need free space at the beginning of each raid disk for forward
2596  * and at the end for backward reshapes which userspace has to provide
2597  * via remapping/reordering of space.
2598  */
2599 static int rs_adjust_data_offsets(struct raid_set *rs)
2600 {
2601         sector_t data_offset = 0, new_data_offset = 0;
2602         struct md_rdev *rdev;
2603
2604         /* Constructor did not request data offset change */
2605         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2606                 if (!rs_is_reshapable(rs))
2607                         goto out;
2608
2609                 return 0;
2610         }
2611
2612         /* HM FIXME: get In_Sync raid_dev? */
2613         rdev = &rs->dev[0].rdev;
2614
2615         if (rs->delta_disks < 0) {
2616                 /*
2617                  * Removing disks (reshaping backwards):
2618                  *
2619                  * - before reshape: data is at offset 0 and free space
2620                  *                   is at end of each component LV
2621                  *
2622                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2623                  */
2624                 data_offset = 0;
2625                 new_data_offset = rs->data_offset;
2626
2627         } else if (rs->delta_disks > 0) {
2628                 /*
2629                  * Adding disks (reshaping forwards):
2630                  *
2631                  * - before reshape: data is at offset rs->data_offset != 0 and
2632                  *                   free space is at begin of each component LV
2633                  *
2634                  * - after reshape: data is at offset 0 on each component LV
2635                  */
2636                 data_offset = rs->data_offset;
2637                 new_data_offset = 0;
2638
2639         } else {
2640                 /*
2641                  * User space passes in 0 for data offset after having removed reshape space
2642                  *
2643                  * - or - (data offset != 0)
2644                  *
2645                  * Changing RAID layout or chunk size -> toggle offsets
2646                  *
2647                  * - before reshape: data is at offset rs->data_offset 0 and
2648                  *                   free space is at end of each component LV
2649                  *                   -or-
2650                  *                   data is at offset rs->data_offset != 0 and
2651                  *                   free space is at begin of each component LV
2652                  *
2653                  * - after reshape: data is at offset 0 if it was at offset != 0
2654                  *                  or at offset != 0 if it was at offset 0
2655                  *                  on each component LV
2656                  *
2657                  */
2658                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2659                 new_data_offset = data_offset ? 0 : rs->data_offset;
2660                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2661         }
2662
2663         /*
2664          * Make sure we got a minimum amount of free sectors per device
2665          */
2666         if (rs->data_offset &&
2667             to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2668                 rs->ti->error = data_offset ? "No space for forward reshape" :
2669                                               "No space for backward reshape";
2670                 return -ENOSPC;
2671         }
2672 out:
2673         /*
2674          * Raise recovery_cp in case data_offset != 0 to
2675          * avoid false recovery positives in the constructor.
2676          */
2677         if (rs->md.recovery_cp < rs->md.dev_sectors)
2678                 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2679
2680         /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2681         rdev_for_each(rdev, &rs->md) {
2682                 if (!test_bit(Journal, &rdev->flags)) {
2683                         rdev->data_offset = data_offset;
2684                         rdev->new_data_offset = new_data_offset;
2685                 }
2686         }
2687
2688         return 0;
2689 }
2690
2691 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2692 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2693 {
2694         int i = 0;
2695         struct md_rdev *rdev;
2696
2697         rdev_for_each(rdev, &rs->md) {
2698                 if (!test_bit(Journal, &rdev->flags)) {
2699                         rdev->raid_disk = i++;
2700                         rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2701                 }
2702         }
2703 }
2704
2705 /*
2706  * Setup @rs for takeover by a different raid level
2707  */
2708 static int rs_setup_takeover(struct raid_set *rs)
2709 {
2710         struct mddev *mddev = &rs->md;
2711         struct md_rdev *rdev;
2712         unsigned int d = mddev->raid_disks = rs->raid_disks;
2713         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2714
2715         if (rt_is_raid10(rs->raid_type)) {
2716                 if (rs_is_raid0(rs)) {
2717                         /* Userpace reordered disks -> adjust raid_disk indexes */
2718                         __reorder_raid_disk_indexes(rs);
2719
2720                         /* raid0 -> raid10_far layout */
2721                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2722                                                                    rs->raid10_copies);
2723                 } else if (rs_is_raid1(rs))
2724                         /* raid1 -> raid10_near layout */
2725                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2726                                                                    rs->raid_disks);
2727                 else
2728                         return -EINVAL;
2729
2730         }
2731
2732         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2733         mddev->recovery_cp = MaxSector;
2734
2735         while (d--) {
2736                 rdev = &rs->dev[d].rdev;
2737
2738                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2739                         clear_bit(In_sync, &rdev->flags);
2740                         clear_bit(Faulty, &rdev->flags);
2741                         mddev->recovery_cp = rdev->recovery_offset = 0;
2742                         /* Bitmap has to be created when we do an "up" takeover */
2743                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2744                 }
2745
2746                 rdev->new_data_offset = new_data_offset;
2747         }
2748
2749         return 0;
2750 }
2751
2752 /* Prepare @rs for reshape */
2753 static int rs_prepare_reshape(struct raid_set *rs)
2754 {
2755         bool reshape;
2756         struct mddev *mddev = &rs->md;
2757
2758         if (rs_is_raid10(rs)) {
2759                 if (rs->raid_disks != mddev->raid_disks &&
2760                     __is_raid10_near(mddev->layout) &&
2761                     rs->raid10_copies &&
2762                     rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2763                         /*
2764                          * raid disk have to be multiple of data copies to allow this conversion,
2765                          *
2766                          * This is actually not a reshape it is a
2767                          * rebuild of any additional mirrors per group
2768                          */
2769                         if (rs->raid_disks % rs->raid10_copies) {
2770                                 rs->ti->error = "Can't reshape raid10 mirror groups";
2771                                 return -EINVAL;
2772                         }
2773
2774                         /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2775                         __reorder_raid_disk_indexes(rs);
2776                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2777                                                                    rs->raid10_copies);
2778                         mddev->new_layout = mddev->layout;
2779                         reshape = false;
2780                 } else
2781                         reshape = true;
2782
2783         } else if (rs_is_raid456(rs))
2784                 reshape = true;
2785
2786         else if (rs_is_raid1(rs)) {
2787                 if (rs->delta_disks) {
2788                         /* Process raid1 via delta_disks */
2789                         mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2790                         reshape = true;
2791                 } else {
2792                         /* Process raid1 without delta_disks */
2793                         mddev->raid_disks = rs->raid_disks;
2794                         reshape = false;
2795                 }
2796         } else {
2797                 rs->ti->error = "Called with bogus raid type";
2798                 return -EINVAL;
2799         }
2800
2801         if (reshape) {
2802                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2803                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2804         } else if (mddev->raid_disks < rs->raid_disks)
2805                 /* Create new superblocks and bitmaps, if any new disks */
2806                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2807
2808         return 0;
2809 }
2810
2811 /* Get reshape sectors from data_offsets or raid set */
2812 static sector_t _get_reshape_sectors(struct raid_set *rs)
2813 {
2814         struct md_rdev *rdev;
2815         sector_t reshape_sectors = 0;
2816
2817         rdev_for_each(rdev, &rs->md)
2818                 if (!test_bit(Journal, &rdev->flags)) {
2819                         reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2820                                         rdev->data_offset - rdev->new_data_offset :
2821                                         rdev->new_data_offset - rdev->data_offset;
2822                         break;
2823                 }
2824
2825         return max(reshape_sectors, (sector_t) rs->data_offset);
2826 }
2827
2828 /*
2829  * Reshape:
2830  * - change raid layout
2831  * - change chunk size
2832  * - add disks
2833  * - remove disks
2834  */
2835 static int rs_setup_reshape(struct raid_set *rs)
2836 {
2837         int r = 0;
2838         unsigned int cur_raid_devs, d;
2839         sector_t reshape_sectors = _get_reshape_sectors(rs);
2840         struct mddev *mddev = &rs->md;
2841         struct md_rdev *rdev;
2842
2843         mddev->delta_disks = rs->delta_disks;
2844         cur_raid_devs = mddev->raid_disks;
2845
2846         /* Ignore impossible layout change whilst adding/removing disks */
2847         if (mddev->delta_disks &&
2848             mddev->layout != mddev->new_layout) {
2849                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2850                 mddev->new_layout = mddev->layout;
2851         }
2852
2853         /*
2854          * Adjust array size:
2855          *
2856          * - in case of adding disk(s), array size has
2857          *   to grow after the disk adding reshape,
2858          *   which'll hapen in the event handler;
2859          *   reshape will happen forward, so space has to
2860          *   be available at the beginning of each disk
2861          *
2862          * - in case of removing disk(s), array size
2863          *   has to shrink before starting the reshape,
2864          *   which'll happen here;
2865          *   reshape will happen backward, so space has to
2866          *   be available at the end of each disk
2867          *
2868          * - data_offset and new_data_offset are
2869          *   adjusted for aforementioned out of place
2870          *   reshaping based on userspace passing in
2871          *   the "data_offset <sectors>" key/value
2872          *   pair via the constructor
2873          */
2874
2875         /* Add disk(s) */
2876         if (rs->delta_disks > 0) {
2877                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2878                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2879                         rdev = &rs->dev[d].rdev;
2880                         clear_bit(In_sync, &rdev->flags);
2881
2882                         /*
2883                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2884                          * by md, which'll store that erroneously in the superblock on reshape
2885                          */
2886                         rdev->saved_raid_disk = -1;
2887                         rdev->raid_disk = d;
2888
2889                         rdev->sectors = mddev->dev_sectors;
2890                         rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2891                 }
2892
2893                 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2894
2895         /* Remove disk(s) */
2896         } else if (rs->delta_disks < 0) {
2897                 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2898                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2899
2900         /* Change layout and/or chunk size */
2901         } else {
2902                 /*
2903                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2904                  *
2905                  * keeping number of disks and do layout change ->
2906                  *
2907                  * toggle reshape_backward depending on data_offset:
2908                  *
2909                  * - free space upfront -> reshape forward
2910                  *
2911                  * - free space at the end -> reshape backward
2912                  *
2913                  *
2914                  * This utilizes free reshape space avoiding the need
2915                  * for userspace to move (parts of) LV segments in
2916                  * case of layout/chunksize change  (for disk
2917                  * adding/removing reshape space has to be at
2918                  * the proper address (see above with delta_disks):
2919                  *
2920                  * add disk(s)   -> begin
2921                  * remove disk(s)-> end
2922                  */
2923                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2924         }
2925
2926         /*
2927          * Adjust device size for forward reshape
2928          * because md_finish_reshape() reduces it.
2929          */
2930         if (!mddev->reshape_backwards)
2931                 rdev_for_each(rdev, &rs->md)
2932                         if (!test_bit(Journal, &rdev->flags))
2933                                 rdev->sectors += reshape_sectors;
2934
2935         return r;
2936 }
2937
2938 /*
2939  * If the md resync thread has updated superblock with max reshape position
2940  * at the end of a reshape but not (yet) reset the layout configuration
2941  * changes -> reset the latter.
2942  */
2943 static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2944 {
2945         if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2946                 rs_set_cur(rs);
2947                 rs->md.delta_disks = 0;
2948                 rs->md.reshape_backwards = 0;
2949         }
2950 }
2951
2952 /*
2953  * Enable/disable discard support on RAID set depending on
2954  * RAID level and discard properties of underlying RAID members.
2955  */
2956 static void configure_discard_support(struct raid_set *rs)
2957 {
2958         int i;
2959         bool raid456;
2960         struct dm_target *ti = rs->ti;
2961
2962         /*
2963          * XXX: RAID level 4,5,6 require zeroing for safety.
2964          */
2965         raid456 = rs_is_raid456(rs);
2966
2967         for (i = 0; i < rs->raid_disks; i++) {
2968                 struct request_queue *q;
2969
2970                 if (!rs->dev[i].rdev.bdev)
2971                         continue;
2972
2973                 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2974                 if (!q || !blk_queue_discard(q))
2975                         return;
2976
2977                 if (raid456) {
2978                         if (!devices_handle_discard_safely) {
2979                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2980                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2981                                 return;
2982                         }
2983                 }
2984         }
2985
2986         ti->num_discard_bios = 1;
2987 }
2988
2989 /*
2990  * Construct a RAID0/1/10/4/5/6 mapping:
2991  * Args:
2992  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2993  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2994  *
2995  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2996  * details on possible <raid_params>.
2997  *
2998  * Userspace is free to initialize the metadata devices, hence the superblocks to
2999  * enforce recreation based on the passed in table parameters.
3000  *
3001  */
3002 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3003 {
3004         int r;
3005         bool resize = false;
3006         struct raid_type *rt;
3007         unsigned int num_raid_params, num_raid_devs;
3008         sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3009         struct raid_set *rs = NULL;
3010         const char *arg;
3011         struct rs_layout rs_layout;
3012         struct dm_arg_set as = { argc, argv }, as_nrd;
3013         struct dm_arg _args[] = {
3014                 { 0, as.argc, "Cannot understand number of raid parameters" },
3015                 { 1, 254, "Cannot understand number of raid devices parameters" }
3016         };
3017
3018         arg = dm_shift_arg(&as);
3019         if (!arg) {
3020                 ti->error = "No arguments";
3021                 return -EINVAL;
3022         }
3023
3024         rt = get_raid_type(arg);
3025         if (!rt) {
3026                 ti->error = "Unrecognised raid_type";
3027                 return -EINVAL;
3028         }
3029
3030         /* Must have <#raid_params> */
3031         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3032                 return -EINVAL;
3033
3034         /* number of raid device tupples <meta_dev data_dev> */
3035         as_nrd = as;
3036         dm_consume_args(&as_nrd, num_raid_params);
3037         _args[1].max = (as_nrd.argc - 1) / 2;
3038         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3039                 return -EINVAL;
3040
3041         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3042                 ti->error = "Invalid number of supplied raid devices";
3043                 return -EINVAL;
3044         }
3045
3046         rs = raid_set_alloc(ti, rt, num_raid_devs);
3047         if (IS_ERR(rs))
3048                 return PTR_ERR(rs);
3049
3050         r = parse_raid_params(rs, &as, num_raid_params);
3051         if (r)
3052                 goto bad;
3053
3054         r = parse_dev_params(rs, &as);
3055         if (r)
3056                 goto bad;
3057
3058         rs->md.sync_super = super_sync;
3059
3060         /*
3061          * Calculate ctr requested array and device sizes to allow
3062          * for superblock analysis needing device sizes defined.
3063          *
3064          * Any existing superblock will overwrite the array and device sizes
3065          */
3066         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3067         if (r)
3068                 goto bad;
3069
3070         /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3071         rs->array_sectors = rs->md.array_sectors;
3072         rs->dev_sectors = rs->md.dev_sectors;
3073
3074         /*
3075          * Backup any new raid set level, layout, ...
3076          * requested to be able to compare to superblock
3077          * members for conversion decisions.
3078          */
3079         rs_config_backup(rs, &rs_layout);
3080
3081         r = analyse_superblocks(ti, rs);
3082         if (r)
3083                 goto bad;
3084
3085         /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3086         sb_array_sectors = rs->md.array_sectors;
3087         rdev_sectors = __rdev_sectors(rs);
3088         if (!rdev_sectors) {
3089                 ti->error = "Invalid rdev size";
3090                 r = -EINVAL;
3091                 goto bad;
3092         }
3093
3094
3095         reshape_sectors = _get_reshape_sectors(rs);
3096         if (rs->dev_sectors != rdev_sectors) {
3097                 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3098                 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3099                         set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3100         }
3101
3102         INIT_WORK(&rs->md.event_work, do_table_event);
3103         ti->private = rs;
3104         ti->num_flush_bios = 1;
3105
3106         /* Restore any requested new layout for conversion decision */
3107         rs_config_restore(rs, &rs_layout);
3108
3109         /*
3110          * Now that we have any superblock metadata available,
3111          * check for new, recovering, reshaping, to be taken over,
3112          * to be reshaped or an existing, unchanged raid set to
3113          * run in sequence.
3114          */
3115         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3116                 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3117                 if (rs_is_raid6(rs) &&
3118                     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3119                         ti->error = "'nosync' not allowed for new raid6 set";
3120                         r = -EINVAL;
3121                         goto bad;
3122                 }
3123                 rs_setup_recovery(rs, 0);
3124                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3125                 rs_set_new(rs);
3126         } else if (rs_is_recovering(rs)) {
3127                 /* A recovering raid set may be resized */
3128                 goto size_check;
3129         } else if (rs_is_reshaping(rs)) {
3130                 /* Have to reject size change request during reshape */
3131                 if (resize) {
3132                         ti->error = "Can't resize a reshaping raid set";
3133                         r = -EPERM;
3134                         goto bad;
3135                 }
3136                 /* skip setup rs */
3137         } else if (rs_takeover_requested(rs)) {
3138                 if (rs_is_reshaping(rs)) {
3139                         ti->error = "Can't takeover a reshaping raid set";
3140                         r = -EPERM;
3141                         goto bad;
3142                 }
3143
3144                 /* We can't takeover a journaled raid4/5/6 */
3145                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3146                         ti->error = "Can't takeover a journaled raid4/5/6 set";
3147                         r = -EPERM;
3148                         goto bad;
3149                 }
3150
3151                 /*
3152                  * If a takeover is needed, userspace sets any additional
3153                  * devices to rebuild and we can check for a valid request here.
3154                  *
3155                  * If acceptible, set the level to the new requested
3156                  * one, prohibit requesting recovery, allow the raid
3157                  * set to run and store superblocks during resume.
3158                  */
3159                 r = rs_check_takeover(rs);
3160                 if (r)
3161                         goto bad;
3162
3163                 r = rs_setup_takeover(rs);
3164                 if (r)
3165                         goto bad;
3166
3167                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3168                 /* Takeover ain't recovery, so disable recovery */
3169                 rs_setup_recovery(rs, MaxSector);
3170                 rs_set_new(rs);
3171         } else if (rs_reshape_requested(rs)) {
3172                 /* Only request grow on raid set size extensions, not on reshapes. */
3173                 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3174
3175                 /*
3176                  * No need to check for 'ongoing' takeover here, because takeover
3177                  * is an instant operation as oposed to an ongoing reshape.
3178                  */
3179
3180                 /* We can't reshape a journaled raid4/5/6 */
3181                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3182                         ti->error = "Can't reshape a journaled raid4/5/6 set";
3183                         r = -EPERM;
3184                         goto bad;
3185                 }
3186
3187                 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3188                 if (reshape_sectors || rs_is_raid1(rs)) {
3189                         /*
3190                           * We can only prepare for a reshape here, because the
3191                           * raid set needs to run to provide the repective reshape
3192                           * check functions via its MD personality instance.
3193                           *
3194                           * So do the reshape check after md_run() succeeded.
3195                           */
3196                         r = rs_prepare_reshape(rs);
3197                         if (r)
3198                                 goto bad;
3199
3200                         /* Reshaping ain't recovery, so disable recovery */
3201                         rs_setup_recovery(rs, MaxSector);
3202                 }
3203                 rs_set_cur(rs);
3204         } else {
3205 size_check:
3206                 /* May not set recovery when a device rebuild is requested */
3207                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3208                         clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3209                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3210                         rs_setup_recovery(rs, MaxSector);
3211                 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3212                         /*
3213                          * Set raid set to current size, i.e. size as of
3214                          * superblocks to grow to larger size in preresume.
3215                          */
3216                         r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3217                         if (r)
3218                                 goto bad;
3219
3220                         rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3221                 } else {
3222                         /* This is no size change or it is shrinking, update size and record in superblocks */
3223                         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3224                         if (r)
3225                                 goto bad;
3226
3227                         if (sb_array_sectors > rs->array_sectors)
3228                                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3229                 }
3230                 rs_set_cur(rs);
3231         }
3232
3233         /* If constructor requested it, change data and new_data offsets */
3234         r = rs_adjust_data_offsets(rs);
3235         if (r)
3236                 goto bad;
3237
3238         /* Catch any inconclusive reshape superblock content. */
3239         rs_reset_inconclusive_reshape(rs);
3240
3241         /* Start raid set read-only and assumed clean to change in raid_resume() */
3242         rs->md.ro = 1;
3243         rs->md.in_sync = 1;
3244
3245         /* Keep array frozen until resume. */
3246         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3247
3248         /* Has to be held on running the array */
3249         mddev_lock_nointr(&rs->md);
3250         r = md_run(&rs->md);
3251         rs->md.in_sync = 0; /* Assume already marked dirty */
3252         if (r) {
3253                 ti->error = "Failed to run raid array";
3254                 mddev_unlock(&rs->md);
3255                 goto bad;
3256         }
3257
3258         r = md_start(&rs->md);
3259         if (r) {
3260                 ti->error = "Failed to start raid array";
3261                 goto bad_unlock;
3262         }
3263
3264         /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3265         if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3266                 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3267                 if (r) {
3268                         ti->error = "Failed to set raid4/5/6 journal mode";
3269                         goto bad_unlock;
3270                 }
3271         }
3272
3273         mddev_suspend(&rs->md);
3274         set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3275
3276         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3277         if (rs_is_raid456(rs)) {
3278                 r = rs_set_raid456_stripe_cache(rs);
3279                 if (r)
3280                         goto bad_unlock;
3281         }
3282
3283         /* Now do an early reshape check */
3284         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3285                 r = rs_check_reshape(rs);
3286                 if (r)
3287                         goto bad_unlock;
3288
3289                 /* Restore new, ctr requested layout to perform check */
3290                 rs_config_restore(rs, &rs_layout);
3291
3292                 if (rs->md.pers->start_reshape) {
3293                         r = rs->md.pers->check_reshape(&rs->md);
3294                         if (r) {
3295                                 ti->error = "Reshape check failed";
3296                                 goto bad_unlock;
3297                         }
3298                 }
3299         }
3300
3301         /* Disable/enable discard support on raid set. */
3302         configure_discard_support(rs);
3303
3304         mddev_unlock(&rs->md);
3305         return 0;
3306
3307 bad_unlock:
3308         md_stop(&rs->md);
3309         mddev_unlock(&rs->md);
3310 bad:
3311         raid_set_free(rs);
3312
3313         return r;
3314 }
3315
3316 static void raid_dtr(struct dm_target *ti)
3317 {
3318         struct raid_set *rs = ti->private;
3319
3320         mddev_lock_nointr(&rs->md);
3321         md_stop(&rs->md);
3322         mddev_unlock(&rs->md);
3323         raid_set_free(rs);
3324 }
3325
3326 static int raid_map(struct dm_target *ti, struct bio *bio)
3327 {
3328         struct raid_set *rs = ti->private;
3329         struct mddev *mddev = &rs->md;
3330
3331         /*
3332          * If we're reshaping to add disk(s), ti->len and
3333          * mddev->array_sectors will differ during the process
3334          * (ti->len > mddev->array_sectors), so we have to requeue
3335          * bios with addresses > mddev->array_sectors here or
3336          * there will occur accesses past EOD of the component
3337          * data images thus erroring the raid set.
3338          */
3339         if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors))
3340                 return DM_MAPIO_REQUEUE;
3341
3342         md_handle_request(mddev, bio);
3343
3344         return DM_MAPIO_SUBMITTED;
3345 }
3346
3347 /* Return sync state string for @state */
3348 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3349 static const char *sync_str(enum sync_state state)
3350 {
3351         /* Has to be in above sync_state order! */
3352         static const char *sync_strs[] = {
3353                 "frozen",
3354                 "reshape",
3355                 "resync",
3356                 "check",
3357                 "repair",
3358                 "recover",
3359                 "idle"
3360         };
3361
3362         return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3363 };
3364
3365 /* Return enum sync_state for @mddev derived from @recovery flags */
3366 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3367 {
3368         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3369                 return st_frozen;
3370
3371         /* The MD sync thread can be done with io or be interrupted but still be running */
3372         if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3373             (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3374              (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3375                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3376                         return st_reshape;
3377
3378                 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3379                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3380                                 return st_resync;
3381                         if (test_bit(MD_RECOVERY_CHECK, &recovery))
3382                                 return st_check;
3383                         return st_repair;
3384                 }
3385
3386                 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3387                         return st_recover;
3388
3389                 if (mddev->reshape_position != MaxSector)
3390                         return st_reshape;
3391         }
3392
3393         return st_idle;
3394 }
3395
3396 /*
3397  * Return status string for @rdev
3398  *
3399  * Status characters:
3400  *
3401  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3402  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3403  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3404  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3405  */
3406 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3407 {
3408         if (!rdev->bdev)
3409                 return "-";
3410         else if (test_bit(Faulty, &rdev->flags))
3411                 return "D";
3412         else if (test_bit(Journal, &rdev->flags))
3413                 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3414         else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3415                  (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3416                   !test_bit(In_sync, &rdev->flags)))
3417                 return "a";
3418         else
3419                 return "A";
3420 }
3421
3422 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3423 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3424                                 enum sync_state state, sector_t resync_max_sectors)
3425 {
3426         sector_t r;
3427         struct mddev *mddev = &rs->md;
3428
3429         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3430         clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3431
3432         if (rs_is_raid0(rs)) {
3433                 r = resync_max_sectors;
3434                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3435
3436         } else {
3437                 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3438                         r = mddev->recovery_cp;
3439                 else
3440                         r = mddev->curr_resync_completed;
3441
3442                 if (state == st_idle && r >= resync_max_sectors) {
3443                         /*
3444                          * Sync complete.
3445                          */
3446                         /* In case we have finished recovering, the array is in sync. */
3447                         if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3448                                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3449
3450                 } else if (state == st_recover)
3451                         /*
3452                          * In case we are recovering, the array is not in sync
3453                          * and health chars should show the recovering legs.
3454                          *
3455                          * Already retrieved recovery offset from curr_resync_completed above.
3456                          */
3457                         ;
3458
3459                 else if (state == st_resync || state == st_reshape)
3460                         /*
3461                          * If "resync/reshape" is occurring, the raid set
3462                          * is or may be out of sync hence the health
3463                          * characters shall be 'a'.
3464                          */
3465                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3466
3467                 else if (state == st_check || state == st_repair)
3468                         /*
3469                          * If "check" or "repair" is occurring, the raid set has
3470                          * undergone an initial sync and the health characters
3471                          * should not be 'a' anymore.
3472                          */
3473                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3474
3475                 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3476                         /*
3477                          * We are idle and recovery is needed, prevent 'A' chars race
3478                          * caused by components still set to in-sync by constructor.
3479                          */
3480                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3481
3482                 else {
3483                         /*
3484                          * We are idle and the raid set may be doing an initial
3485                          * sync, or it may be rebuilding individual components.
3486                          * If all the devices are In_sync, then it is the raid set
3487                          * that is being initialized.
3488                          */
3489                         struct md_rdev *rdev;
3490
3491                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3492                         rdev_for_each(rdev, mddev)
3493                                 if (!test_bit(Journal, &rdev->flags) &&
3494                                     !test_bit(In_sync, &rdev->flags)) {
3495                                         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3496                                         break;
3497                                 }
3498                 }
3499         }
3500
3501         return min(r, resync_max_sectors);
3502 }
3503
3504 /* Helper to return @dev name or "-" if !@dev */
3505 static const char *__get_dev_name(struct dm_dev *dev)
3506 {
3507         return dev ? dev->name : "-";
3508 }
3509
3510 static void raid_status(struct dm_target *ti, status_type_t type,
3511                         unsigned int status_flags, char *result, unsigned int maxlen)
3512 {
3513         struct raid_set *rs = ti->private;
3514         struct mddev *mddev = &rs->md;
3515         struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3516         int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3517         unsigned long recovery;
3518         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3519         unsigned int sz = 0;
3520         unsigned int rebuild_writemostly_count = 0;
3521         sector_t progress, resync_max_sectors, resync_mismatches;
3522         enum sync_state state;
3523         struct raid_type *rt;
3524
3525         switch (type) {
3526         case STATUSTYPE_INFO:
3527                 /* *Should* always succeed */
3528                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3529                 if (!rt)
3530                         return;
3531
3532                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3533
3534                 /* Access most recent mddev properties for status output */
3535                 smp_rmb();
3536                 /* Get sensible max sectors even if raid set not yet started */
3537                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3538                                       mddev->resync_max_sectors : mddev->dev_sectors;
3539                 recovery = rs->md.recovery;
3540                 state = decipher_sync_action(mddev, recovery);
3541                 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3542                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3543                                     atomic64_read(&mddev->resync_mismatches) : 0;
3544
3545                 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3546                 for (i = 0; i < rs->raid_disks; i++)
3547                         DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3548
3549                 /*
3550                  * In-sync/Reshape ratio:
3551                  *  The in-sync ratio shows the progress of:
3552                  *   - Initializing the raid set
3553                  *   - Rebuilding a subset of devices of the raid set
3554                  *  The user can distinguish between the two by referring
3555                  *  to the status characters.
3556                  *
3557                  *  The reshape ratio shows the progress of
3558                  *  changing the raid layout or the number of
3559                  *  disks of a raid set
3560                  */
3561                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3562                                      (unsigned long long) resync_max_sectors);
3563
3564                 /*
3565                  * v1.5.0+:
3566                  *
3567                  * Sync action:
3568                  *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3569                  *   information on each of these states.
3570                  */
3571                 DMEMIT(" %s", sync_str(state));
3572
3573                 /*
3574                  * v1.5.0+:
3575                  *
3576                  * resync_mismatches/mismatch_cnt
3577                  *   This field shows the number of discrepancies found when
3578                  *   performing a "check" of the raid set.
3579                  */
3580                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3581
3582                 /*
3583                  * v1.9.0+:
3584                  *
3585                  * data_offset (needed for out of space reshaping)
3586                  *   This field shows the data offset into the data
3587                  *   image LV where the first stripes data starts.
3588                  *
3589                  * We keep data_offset equal on all raid disks of the set,
3590                  * so retrieving it from the first raid disk is sufficient.
3591                  */
3592                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3593
3594                 /*
3595                  * v1.10.0+:
3596                  */
3597                 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3598                               __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3599                 break;
3600
3601         case STATUSTYPE_TABLE:
3602                 /* Report the table line string you would use to construct this raid set */
3603
3604                 /*
3605                  * Count any rebuild or writemostly argument pairs and subtract the
3606                  * hweight count being added below of any rebuild and writemostly ctr flags.
3607                  */
3608                 for (i = 0; i < rs->raid_disks; i++) {
3609                         rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3610                                                      (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3611                 }
3612                 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3613                                              (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3614                 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3615                 raid_param_cnt += rebuild_writemostly_count +
3616                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3617                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3618                 /* Emit table line */
3619                 /* This has to be in the documented order for userspace! */
3620                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3621                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3622                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3623                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3624                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3625                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3626                         for (i = 0; i < rs->raid_disks; i++)
3627                                 if (test_bit(i, (void *) rs->rebuild_disks))
3628                                         DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3629                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3630                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3631                                           mddev->bitmap_info.daemon_sleep);
3632                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3633                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3634                                          mddev->sync_speed_min);
3635                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3636                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3637                                          mddev->sync_speed_max);
3638                 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3639                         for (i = 0; i < rs->raid_disks; i++)
3640                                 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3641                                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3642                                                rs->dev[i].rdev.raid_disk);
3643                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3644                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3645                                           mddev->bitmap_info.max_write_behind);
3646                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3647                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3648                                          max_nr_stripes);
3649                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3650                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3651                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3652                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3653                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3654                                          raid10_md_layout_to_copies(mddev->layout));
3655                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3656                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3657                                          raid10_md_layout_to_format(mddev->layout));
3658                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3659                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3660                                          max(rs->delta_disks, mddev->delta_disks));
3661                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3662                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3663                                            (unsigned long long) rs->data_offset);
3664                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3665                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3666                                         __get_dev_name(rs->journal_dev.dev));
3667                 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3668                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3669                                          md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3670                 DMEMIT(" %d", rs->raid_disks);
3671                 for (i = 0; i < rs->raid_disks; i++)
3672                         DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3673                                          __get_dev_name(rs->dev[i].data_dev));
3674         }
3675 }
3676
3677 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3678                         char *result, unsigned maxlen)
3679 {
3680         struct raid_set *rs = ti->private;
3681         struct mddev *mddev = &rs->md;
3682
3683         if (!mddev->pers || !mddev->pers->sync_request)
3684                 return -EINVAL;
3685
3686         if (!strcasecmp(argv[0], "frozen"))
3687                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3688         else
3689                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3690
3691         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3692                 if (mddev->sync_thread) {
3693                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3694                         md_reap_sync_thread(mddev);
3695                 }
3696         } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3697                 return -EBUSY;
3698         else if (!strcasecmp(argv[0], "resync"))
3699                 ; /* MD_RECOVERY_NEEDED set below */
3700         else if (!strcasecmp(argv[0], "recover"))
3701                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3702         else {
3703                 if (!strcasecmp(argv[0], "check")) {
3704                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3705                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3706                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3707                 } else if (!strcasecmp(argv[0], "repair")) {
3708                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3709                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3710                 } else
3711                         return -EINVAL;
3712         }
3713         if (mddev->ro == 2) {
3714                 /* A write to sync_action is enough to justify
3715                  * canceling read-auto mode
3716                  */
3717                 mddev->ro = 0;
3718                 if (!mddev->suspended && mddev->sync_thread)
3719                         md_wakeup_thread(mddev->sync_thread);
3720         }
3721         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3722         if (!mddev->suspended && mddev->thread)
3723                 md_wakeup_thread(mddev->thread);
3724
3725         return 0;
3726 }
3727
3728 static int raid_iterate_devices(struct dm_target *ti,
3729                                 iterate_devices_callout_fn fn, void *data)
3730 {
3731         struct raid_set *rs = ti->private;
3732         unsigned int i;
3733         int r = 0;
3734
3735         for (i = 0; !r && i < rs->raid_disks; i++) {
3736                 if (rs->dev[i].data_dev) {
3737                         r = fn(ti, rs->dev[i].data_dev,
3738                                0, /* No offset on data devs */
3739                                rs->md.dev_sectors, data);
3740                 }
3741         }
3742
3743         return r;
3744 }
3745
3746 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3747 {
3748         struct raid_set *rs = ti->private;
3749         unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3750
3751         blk_limits_io_min(limits, chunk_size_bytes);
3752         blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3753
3754         /*
3755          * RAID0 and RAID10 personalities require bio splitting,
3756          * RAID1/4/5/6 don't and process large discard bios properly.
3757          */
3758         if (rs_is_raid0(rs) || rs_is_raid10(rs)) {
3759                 limits->discard_granularity = chunk_size_bytes;
3760                 limits->max_discard_sectors = rs->md.chunk_sectors;
3761         }
3762 }
3763
3764 static void raid_postsuspend(struct dm_target *ti)
3765 {
3766         struct raid_set *rs = ti->private;
3767
3768         if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3769                 /* Writes have to be stopped before suspending to avoid deadlocks. */
3770                 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3771                         md_stop_writes(&rs->md);
3772
3773                 mddev_lock_nointr(&rs->md);
3774                 mddev_suspend(&rs->md);
3775                 mddev_unlock(&rs->md);
3776         }
3777 }
3778
3779 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3780 {
3781         int i;
3782         uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3783         unsigned long flags;
3784         bool cleared = false;
3785         struct dm_raid_superblock *sb;
3786         struct mddev *mddev = &rs->md;
3787         struct md_rdev *r;
3788
3789         /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3790         if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3791                 return;
3792
3793         memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3794
3795         for (i = 0; i < rs->raid_disks; i++) {
3796                 r = &rs->dev[i].rdev;
3797                 /* HM FIXME: enhance journal device recovery processing */
3798                 if (test_bit(Journal, &r->flags))
3799                         continue;
3800
3801                 if (test_bit(Faulty, &r->flags) &&
3802                     r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3803                         DMINFO("Faulty %s device #%d has readable super block."
3804                                "  Attempting to revive it.",
3805                                rs->raid_type->name, i);
3806
3807                         /*
3808                          * Faulty bit may be set, but sometimes the array can
3809                          * be suspended before the personalities can respond
3810                          * by removing the device from the array (i.e. calling
3811                          * 'hot_remove_disk').  If they haven't yet removed
3812                          * the failed device, its 'raid_disk' number will be
3813                          * '>= 0' - meaning we must call this function
3814                          * ourselves.
3815                          */
3816                         flags = r->flags;
3817                         clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3818                         if (r->raid_disk >= 0) {
3819                                 if (mddev->pers->hot_remove_disk(mddev, r)) {
3820                                         /* Failed to revive this device, try next */
3821                                         r->flags = flags;
3822                                         continue;
3823                                 }
3824                         } else
3825                                 r->raid_disk = r->saved_raid_disk = i;
3826
3827                         clear_bit(Faulty, &r->flags);
3828                         clear_bit(WriteErrorSeen, &r->flags);
3829
3830                         if (mddev->pers->hot_add_disk(mddev, r)) {
3831                                 /* Failed to revive this device, try next */
3832                                 r->raid_disk = r->saved_raid_disk = -1;
3833                                 r->flags = flags;
3834                         } else {
3835                                 clear_bit(In_sync, &r->flags);
3836                                 r->recovery_offset = 0;
3837                                 set_bit(i, (void *) cleared_failed_devices);
3838                                 cleared = true;
3839                         }
3840                 }
3841         }
3842
3843         /* If any failed devices could be cleared, update all sbs failed_devices bits */
3844         if (cleared) {
3845                 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3846
3847                 rdev_for_each(r, &rs->md) {
3848                         if (test_bit(Journal, &r->flags))
3849                                 continue;
3850
3851                         sb = page_address(r->sb_page);
3852                         sb_retrieve_failed_devices(sb, failed_devices);
3853
3854                         for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3855                                 failed_devices[i] &= ~cleared_failed_devices[i];
3856
3857                         sb_update_failed_devices(sb, failed_devices);
3858                 }
3859         }
3860 }
3861
3862 static int __load_dirty_region_bitmap(struct raid_set *rs)
3863 {
3864         int r = 0;
3865
3866         /* Try loading the bitmap unless "raid0", which does not have one */
3867         if (!rs_is_raid0(rs) &&
3868             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3869                 r = md_bitmap_load(&rs->md);
3870                 if (r)
3871                         DMERR("Failed to load bitmap");
3872         }
3873
3874         return r;
3875 }
3876
3877 /* Enforce updating all superblocks */
3878 static void rs_update_sbs(struct raid_set *rs)
3879 {
3880         struct mddev *mddev = &rs->md;
3881         int ro = mddev->ro;
3882
3883         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3884         mddev->ro = 0;
3885         md_update_sb(mddev, 1);
3886         mddev->ro = ro;
3887 }
3888
3889 /*
3890  * Reshape changes raid algorithm of @rs to new one within personality
3891  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3892  * disks from a raid set thus growing/shrinking it or resizes the set
3893  *
3894  * Call mddev_lock_nointr() before!
3895  */
3896 static int rs_start_reshape(struct raid_set *rs)
3897 {
3898         int r;
3899         struct mddev *mddev = &rs->md;
3900         struct md_personality *pers = mddev->pers;
3901
3902         /* Don't allow the sync thread to work until the table gets reloaded. */
3903         set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3904
3905         r = rs_setup_reshape(rs);
3906         if (r)
3907                 return r;
3908
3909         /*
3910          * Check any reshape constraints enforced by the personalility
3911          *
3912          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3913          */
3914         r = pers->check_reshape(mddev);
3915         if (r) {
3916                 rs->ti->error = "pers->check_reshape() failed";
3917                 return r;
3918         }
3919
3920         /*
3921          * Personality may not provide start reshape method in which
3922          * case check_reshape above has already covered everything
3923          */
3924         if (pers->start_reshape) {
3925                 r = pers->start_reshape(mddev);
3926                 if (r) {
3927                         rs->ti->error = "pers->start_reshape() failed";
3928                         return r;
3929                 }
3930         }
3931
3932         /*
3933          * Now reshape got set up, update superblocks to
3934          * reflect the fact so that a table reload will
3935          * access proper superblock content in the ctr.
3936          */
3937         rs_update_sbs(rs);
3938
3939         return 0;
3940 }
3941
3942 static int raid_preresume(struct dm_target *ti)
3943 {
3944         int r;
3945         struct raid_set *rs = ti->private;
3946         struct mddev *mddev = &rs->md;
3947
3948         /* This is a resume after a suspend of the set -> it's already started. */
3949         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3950                 return 0;
3951
3952         /*
3953          * The superblocks need to be updated on disk if the
3954          * array is new or new devices got added (thus zeroed
3955          * out by userspace) or __load_dirty_region_bitmap
3956          * will overwrite them in core with old data or fail.
3957          */
3958         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3959                 rs_update_sbs(rs);
3960
3961         /* Load the bitmap from disk unless raid0 */
3962         r = __load_dirty_region_bitmap(rs);
3963         if (r)
3964                 return r;
3965
3966         /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3967         if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3968                 mddev->array_sectors = rs->array_sectors;
3969                 mddev->dev_sectors = rs->dev_sectors;
3970                 rs_set_rdev_sectors(rs);
3971                 rs_set_capacity(rs);
3972         }
3973
3974         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
3975         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3976             (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
3977              (rs->requested_bitmap_chunk_sectors &&
3978                mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
3979                 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
3980
3981                 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
3982                 if (r)
3983                         DMERR("Failed to resize bitmap");
3984         }
3985
3986         /* Check for any resize/reshape on @rs and adjust/initiate */
3987         /* Be prepared for mddev_resume() in raid_resume() */
3988         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3989         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3990                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3991                 mddev->resync_min = mddev->recovery_cp;
3992                 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
3993                         mddev->resync_max_sectors = mddev->dev_sectors;
3994         }
3995
3996         /* Check for any reshape request unless new raid set */
3997         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3998                 /* Initiate a reshape. */
3999                 rs_set_rdev_sectors(rs);
4000                 mddev_lock_nointr(mddev);
4001                 r = rs_start_reshape(rs);
4002                 mddev_unlock(mddev);
4003                 if (r)
4004                         DMWARN("Failed to check/start reshape, continuing without change");
4005                 r = 0;
4006         }
4007
4008         return r;
4009 }
4010
4011 static void raid_resume(struct dm_target *ti)
4012 {
4013         struct raid_set *rs = ti->private;
4014         struct mddev *mddev = &rs->md;
4015
4016         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4017                 /*
4018                  * A secondary resume while the device is active.
4019                  * Take this opportunity to check whether any failed
4020                  * devices are reachable again.
4021                  */
4022                 mddev_lock_nointr(mddev);
4023                 attempt_restore_of_faulty_devices(rs);
4024                 mddev_unlock(mddev);
4025         }
4026
4027         if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4028                 /* Only reduce raid set size before running a disk removing reshape. */
4029                 if (mddev->delta_disks < 0)
4030                         rs_set_capacity(rs);
4031
4032                 mddev_lock_nointr(mddev);
4033                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4034                 mddev->ro = 0;
4035                 mddev->in_sync = 0;
4036                 mddev_resume(mddev);
4037                 mddev_unlock(mddev);
4038         }
4039 }
4040
4041 static struct target_type raid_target = {
4042         .name = "raid",
4043         .version = {1, 15, 1},
4044         .module = THIS_MODULE,
4045         .ctr = raid_ctr,
4046         .dtr = raid_dtr,
4047         .map = raid_map,
4048         .status = raid_status,
4049         .message = raid_message,
4050         .iterate_devices = raid_iterate_devices,
4051         .io_hints = raid_io_hints,
4052         .postsuspend = raid_postsuspend,
4053         .preresume = raid_preresume,
4054         .resume = raid_resume,
4055 };
4056
4057 static int __init dm_raid_init(void)
4058 {
4059         DMINFO("Loading target version %u.%u.%u",
4060                raid_target.version[0],
4061                raid_target.version[1],
4062                raid_target.version[2]);
4063         return dm_register_target(&raid_target);
4064 }
4065
4066 static void __exit dm_raid_exit(void)
4067 {
4068         dm_unregister_target(&raid_target);
4069 }
4070
4071 module_init(dm_raid_init);
4072 module_exit(dm_raid_exit);
4073
4074 module_param(devices_handle_discard_safely, bool, 0644);
4075 MODULE_PARM_DESC(devices_handle_discard_safely,
4076                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4077
4078 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4079 MODULE_ALIAS("dm-raid0");
4080 MODULE_ALIAS("dm-raid1");
4081 MODULE_ALIAS("dm-raid10");
4082 MODULE_ALIAS("dm-raid4");
4083 MODULE_ALIAS("dm-raid5");
4084 MODULE_ALIAS("dm-raid6");
4085 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4086 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4087 MODULE_LICENSE("GPL");