GNU Linux-libre 6.1.24-gnu
[releases.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #include "dm-audit.h"
27
28 #define DM_MSG_PREFIX "integrity"
29
30 #define DEFAULT_INTERLEAVE_SECTORS      32768
31 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
32 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
33 #define DEFAULT_BUFFER_SECTORS          128
34 #define DEFAULT_JOURNAL_WATERMARK       50
35 #define DEFAULT_SYNC_MSEC               10000
36 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
37 #define MIN_LOG2_INTERLEAVE_SECTORS     3
38 #define MAX_LOG2_INTERLEAVE_SECTORS     31
39 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
40 #define RECALC_SECTORS                  32768
41 #define RECALC_WRITE_SUPER              16
42 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
43 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
44 #define DISCARD_FILLER                  0xf6
45 #define SALT_SIZE                       16
46
47 /*
48  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
49  * so it should not be enabled in the official kernel
50  */
51 //#define DEBUG_PRINT
52 //#define INTERNAL_VERIFY
53
54 /*
55  * On disk structures
56  */
57
58 #define SB_MAGIC                        "integrt"
59 #define SB_VERSION_1                    1
60 #define SB_VERSION_2                    2
61 #define SB_VERSION_3                    3
62 #define SB_VERSION_4                    4
63 #define SB_VERSION_5                    5
64 #define SB_SECTORS                      8
65 #define MAX_SECTORS_PER_BLOCK           8
66
67 struct superblock {
68         __u8 magic[8];
69         __u8 version;
70         __u8 log2_interleave_sectors;
71         __le16 integrity_tag_size;
72         __le32 journal_sections;
73         __le64 provided_data_sectors;   /* userspace uses this value */
74         __le32 flags;
75         __u8 log2_sectors_per_block;
76         __u8 log2_blocks_per_bitmap_bit;
77         __u8 pad[2];
78         __le64 recalc_sector;
79         __u8 pad2[8];
80         __u8 salt[SALT_SIZE];
81 };
82
83 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
84 #define SB_FLAG_RECALCULATING           0x2
85 #define SB_FLAG_DIRTY_BITMAP            0x4
86 #define SB_FLAG_FIXED_PADDING           0x8
87 #define SB_FLAG_FIXED_HMAC              0x10
88
89 #define JOURNAL_ENTRY_ROUNDUP           8
90
91 typedef __le64 commit_id_t;
92 #define JOURNAL_MAC_PER_SECTOR          8
93
94 struct journal_entry {
95         union {
96                 struct {
97                         __le32 sector_lo;
98                         __le32 sector_hi;
99                 } s;
100                 __le64 sector;
101         } u;
102         commit_id_t last_bytes[];
103         /* __u8 tag[0]; */
104 };
105
106 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
107
108 #if BITS_PER_LONG == 64
109 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
110 #else
111 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
112 #endif
113 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
114 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
115 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
116 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
117 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
118
119 #define JOURNAL_BLOCK_SECTORS           8
120 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
121 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
122
123 struct journal_sector {
124         struct_group(sectors,
125                 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
126                 __u8 mac[JOURNAL_MAC_PER_SECTOR];
127         );
128         commit_id_t commit_id;
129 };
130
131 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
132
133 #define METADATA_PADDING_SECTORS        8
134
135 #define N_COMMIT_IDS                    4
136
137 static unsigned char prev_commit_seq(unsigned char seq)
138 {
139         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
140 }
141
142 static unsigned char next_commit_seq(unsigned char seq)
143 {
144         return (seq + 1) % N_COMMIT_IDS;
145 }
146
147 /*
148  * In-memory structures
149  */
150
151 struct journal_node {
152         struct rb_node node;
153         sector_t sector;
154 };
155
156 struct alg_spec {
157         char *alg_string;
158         char *key_string;
159         __u8 *key;
160         unsigned int key_size;
161 };
162
163 struct dm_integrity_c {
164         struct dm_dev *dev;
165         struct dm_dev *meta_dev;
166         unsigned int tag_size;
167         __s8 log2_tag_size;
168         sector_t start;
169         mempool_t journal_io_mempool;
170         struct dm_io_client *io;
171         struct dm_bufio_client *bufio;
172         struct workqueue_struct *metadata_wq;
173         struct superblock *sb;
174         unsigned int journal_pages;
175         unsigned int n_bitmap_blocks;
176
177         struct page_list *journal;
178         struct page_list *journal_io;
179         struct page_list *journal_xor;
180         struct page_list *recalc_bitmap;
181         struct page_list *may_write_bitmap;
182         struct bitmap_block_status *bbs;
183         unsigned int bitmap_flush_interval;
184         int synchronous_mode;
185         struct bio_list synchronous_bios;
186         struct delayed_work bitmap_flush_work;
187
188         struct crypto_skcipher *journal_crypt;
189         struct scatterlist **journal_scatterlist;
190         struct scatterlist **journal_io_scatterlist;
191         struct skcipher_request **sk_requests;
192
193         struct crypto_shash *journal_mac;
194
195         struct journal_node *journal_tree;
196         struct rb_root journal_tree_root;
197
198         sector_t provided_data_sectors;
199
200         unsigned short journal_entry_size;
201         unsigned char journal_entries_per_sector;
202         unsigned char journal_section_entries;
203         unsigned short journal_section_sectors;
204         unsigned int journal_sections;
205         unsigned int journal_entries;
206         sector_t data_device_sectors;
207         sector_t meta_device_sectors;
208         unsigned int initial_sectors;
209         unsigned int metadata_run;
210         __s8 log2_metadata_run;
211         __u8 log2_buffer_sectors;
212         __u8 sectors_per_block;
213         __u8 log2_blocks_per_bitmap_bit;
214
215         unsigned char mode;
216
217         int failed;
218
219         struct crypto_shash *internal_hash;
220
221         struct dm_target *ti;
222
223         /* these variables are locked with endio_wait.lock */
224         struct rb_root in_progress;
225         struct list_head wait_list;
226         wait_queue_head_t endio_wait;
227         struct workqueue_struct *wait_wq;
228         struct workqueue_struct *offload_wq;
229
230         unsigned char commit_seq;
231         commit_id_t commit_ids[N_COMMIT_IDS];
232
233         unsigned int committed_section;
234         unsigned int n_committed_sections;
235
236         unsigned int uncommitted_section;
237         unsigned int n_uncommitted_sections;
238
239         unsigned int free_section;
240         unsigned char free_section_entry;
241         unsigned int free_sectors;
242
243         unsigned int free_sectors_threshold;
244
245         struct workqueue_struct *commit_wq;
246         struct work_struct commit_work;
247
248         struct workqueue_struct *writer_wq;
249         struct work_struct writer_work;
250
251         struct workqueue_struct *recalc_wq;
252         struct work_struct recalc_work;
253         u8 *recalc_buffer;
254         u8 *recalc_tags;
255
256         struct bio_list flush_bio_list;
257
258         unsigned long autocommit_jiffies;
259         struct timer_list autocommit_timer;
260         unsigned int autocommit_msec;
261
262         wait_queue_head_t copy_to_journal_wait;
263
264         struct completion crypto_backoff;
265
266         bool wrote_to_journal;
267         bool journal_uptodate;
268         bool just_formatted;
269         bool recalculate_flag;
270         bool reset_recalculate_flag;
271         bool discard;
272         bool fix_padding;
273         bool fix_hmac;
274         bool legacy_recalculate;
275
276         struct alg_spec internal_hash_alg;
277         struct alg_spec journal_crypt_alg;
278         struct alg_spec journal_mac_alg;
279
280         atomic64_t number_of_mismatches;
281
282         struct notifier_block reboot_notifier;
283 };
284
285 struct dm_integrity_range {
286         sector_t logical_sector;
287         sector_t n_sectors;
288         bool waiting;
289         union {
290                 struct rb_node node;
291                 struct {
292                         struct task_struct *task;
293                         struct list_head wait_entry;
294                 };
295         };
296 };
297
298 struct dm_integrity_io {
299         struct work_struct work;
300
301         struct dm_integrity_c *ic;
302         enum req_op op;
303         bool fua;
304
305         struct dm_integrity_range range;
306
307         sector_t metadata_block;
308         unsigned int metadata_offset;
309
310         atomic_t in_flight;
311         blk_status_t bi_status;
312
313         struct completion *completion;
314
315         struct dm_bio_details bio_details;
316 };
317
318 struct journal_completion {
319         struct dm_integrity_c *ic;
320         atomic_t in_flight;
321         struct completion comp;
322 };
323
324 struct journal_io {
325         struct dm_integrity_range range;
326         struct journal_completion *comp;
327 };
328
329 struct bitmap_block_status {
330         struct work_struct work;
331         struct dm_integrity_c *ic;
332         unsigned int idx;
333         unsigned long *bitmap;
334         struct bio_list bio_queue;
335         spinlock_t bio_queue_lock;
336
337 };
338
339 static struct kmem_cache *journal_io_cache;
340
341 #define JOURNAL_IO_MEMPOOL      32
342
343 #ifdef DEBUG_PRINT
344 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
345 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
346 {
347         va_list args;
348         va_start(args, msg);
349         vprintk(msg, args);
350         va_end(args);
351         if (len)
352                 pr_cont(":");
353         while (len) {
354                 pr_cont(" %02x", *bytes);
355                 bytes++;
356                 len--;
357         }
358         pr_cont("\n");
359 }
360 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
361 #else
362 #define DEBUG_print(x, ...)                     do { } while (0)
363 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
364 #endif
365
366 static void dm_integrity_prepare(struct request *rq)
367 {
368 }
369
370 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
371 {
372 }
373
374 /*
375  * DM Integrity profile, protection is performed layer above (dm-crypt)
376  */
377 static const struct blk_integrity_profile dm_integrity_profile = {
378         .name                   = "DM-DIF-EXT-TAG",
379         .generate_fn            = NULL,
380         .verify_fn              = NULL,
381         .prepare_fn             = dm_integrity_prepare,
382         .complete_fn            = dm_integrity_complete,
383 };
384
385 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
386 static void integrity_bio_wait(struct work_struct *w);
387 static void dm_integrity_dtr(struct dm_target *ti);
388
389 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
390 {
391         if (err == -EILSEQ)
392                 atomic64_inc(&ic->number_of_mismatches);
393         if (!cmpxchg(&ic->failed, 0, err))
394                 DMERR("Error on %s: %d", msg, err);
395 }
396
397 static int dm_integrity_failed(struct dm_integrity_c *ic)
398 {
399         return READ_ONCE(ic->failed);
400 }
401
402 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
403 {
404         if (ic->legacy_recalculate)
405                 return false;
406         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
407             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
408             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
409                 return true;
410         return false;
411 }
412
413 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
414                                           unsigned int j, unsigned char seq)
415 {
416         /*
417          * Xor the number with section and sector, so that if a piece of
418          * journal is written at wrong place, it is detected.
419          */
420         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
421 }
422
423 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
424                                 sector_t *area, sector_t *offset)
425 {
426         if (!ic->meta_dev) {
427                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
428                 *area = data_sector >> log2_interleave_sectors;
429                 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
430         } else {
431                 *area = 0;
432                 *offset = data_sector;
433         }
434 }
435
436 #define sector_to_block(ic, n)                                          \
437 do {                                                                    \
438         BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));              \
439         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
440 } while (0)
441
442 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
443                                             sector_t offset, unsigned int *metadata_offset)
444 {
445         __u64 ms;
446         unsigned int mo;
447
448         ms = area << ic->sb->log2_interleave_sectors;
449         if (likely(ic->log2_metadata_run >= 0))
450                 ms += area << ic->log2_metadata_run;
451         else
452                 ms += area * ic->metadata_run;
453         ms >>= ic->log2_buffer_sectors;
454
455         sector_to_block(ic, offset);
456
457         if (likely(ic->log2_tag_size >= 0)) {
458                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
459                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
460         } else {
461                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
462                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
463         }
464         *metadata_offset = mo;
465         return ms;
466 }
467
468 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
469 {
470         sector_t result;
471
472         if (ic->meta_dev)
473                 return offset;
474
475         result = area << ic->sb->log2_interleave_sectors;
476         if (likely(ic->log2_metadata_run >= 0))
477                 result += (area + 1) << ic->log2_metadata_run;
478         else
479                 result += (area + 1) * ic->metadata_run;
480
481         result += (sector_t)ic->initial_sectors + offset;
482         result += ic->start;
483
484         return result;
485 }
486
487 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
488 {
489         if (unlikely(*sec_ptr >= ic->journal_sections))
490                 *sec_ptr -= ic->journal_sections;
491 }
492
493 static void sb_set_version(struct dm_integrity_c *ic)
494 {
495         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
496                 ic->sb->version = SB_VERSION_5;
497         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
498                 ic->sb->version = SB_VERSION_4;
499         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
500                 ic->sb->version = SB_VERSION_3;
501         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
502                 ic->sb->version = SB_VERSION_2;
503         else
504                 ic->sb->version = SB_VERSION_1;
505 }
506
507 static int sb_mac(struct dm_integrity_c *ic, bool wr)
508 {
509         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
510         int r;
511         unsigned int size = crypto_shash_digestsize(ic->journal_mac);
512
513         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
514                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
515                 return -EINVAL;
516         }
517
518         desc->tfm = ic->journal_mac;
519
520         r = crypto_shash_init(desc);
521         if (unlikely(r < 0)) {
522                 dm_integrity_io_error(ic, "crypto_shash_init", r);
523                 return r;
524         }
525
526         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
527         if (unlikely(r < 0)) {
528                 dm_integrity_io_error(ic, "crypto_shash_update", r);
529                 return r;
530         }
531
532         if (likely(wr)) {
533                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
534                 if (unlikely(r < 0)) {
535                         dm_integrity_io_error(ic, "crypto_shash_final", r);
536                         return r;
537                 }
538         } else {
539                 __u8 result[HASH_MAX_DIGESTSIZE];
540                 r = crypto_shash_final(desc, result);
541                 if (unlikely(r < 0)) {
542                         dm_integrity_io_error(ic, "crypto_shash_final", r);
543                         return r;
544                 }
545                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
546                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
547                         dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
548                         return -EILSEQ;
549                 }
550         }
551
552         return 0;
553 }
554
555 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
556 {
557         struct dm_io_request io_req;
558         struct dm_io_region io_loc;
559         const enum req_op op = opf & REQ_OP_MASK;
560         int r;
561
562         io_req.bi_opf = opf;
563         io_req.mem.type = DM_IO_KMEM;
564         io_req.mem.ptr.addr = ic->sb;
565         io_req.notify.fn = NULL;
566         io_req.client = ic->io;
567         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
568         io_loc.sector = ic->start;
569         io_loc.count = SB_SECTORS;
570
571         if (op == REQ_OP_WRITE) {
572                 sb_set_version(ic);
573                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
574                         r = sb_mac(ic, true);
575                         if (unlikely(r))
576                                 return r;
577                 }
578         }
579
580         r = dm_io(&io_req, 1, &io_loc, NULL);
581         if (unlikely(r))
582                 return r;
583
584         if (op == REQ_OP_READ) {
585                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
586                         r = sb_mac(ic, false);
587                         if (unlikely(r))
588                                 return r;
589                 }
590         }
591
592         return 0;
593 }
594
595 #define BITMAP_OP_TEST_ALL_SET          0
596 #define BITMAP_OP_TEST_ALL_CLEAR        1
597 #define BITMAP_OP_SET                   2
598 #define BITMAP_OP_CLEAR                 3
599
600 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
601                             sector_t sector, sector_t n_sectors, int mode)
602 {
603         unsigned long bit, end_bit, this_end_bit, page, end_page;
604         unsigned long *data;
605
606         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
607                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
608                         sector,
609                         n_sectors,
610                         ic->sb->log2_sectors_per_block,
611                         ic->log2_blocks_per_bitmap_bit,
612                         mode);
613                 BUG();
614         }
615
616         if (unlikely(!n_sectors))
617                 return true;
618
619         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
620         end_bit = (sector + n_sectors - 1) >>
621                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
622
623         page = bit / (PAGE_SIZE * 8);
624         bit %= PAGE_SIZE * 8;
625
626         end_page = end_bit / (PAGE_SIZE * 8);
627         end_bit %= PAGE_SIZE * 8;
628
629 repeat:
630         if (page < end_page) {
631                 this_end_bit = PAGE_SIZE * 8 - 1;
632         } else {
633                 this_end_bit = end_bit;
634         }
635
636         data = lowmem_page_address(bitmap[page].page);
637
638         if (mode == BITMAP_OP_TEST_ALL_SET) {
639                 while (bit <= this_end_bit) {
640                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
641                                 do {
642                                         if (data[bit / BITS_PER_LONG] != -1)
643                                                 return false;
644                                         bit += BITS_PER_LONG;
645                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
646                                 continue;
647                         }
648                         if (!test_bit(bit, data))
649                                 return false;
650                         bit++;
651                 }
652         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
653                 while (bit <= this_end_bit) {
654                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
655                                 do {
656                                         if (data[bit / BITS_PER_LONG] != 0)
657                                                 return false;
658                                         bit += BITS_PER_LONG;
659                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
660                                 continue;
661                         }
662                         if (test_bit(bit, data))
663                                 return false;
664                         bit++;
665                 }
666         } else if (mode == BITMAP_OP_SET) {
667                 while (bit <= this_end_bit) {
668                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
669                                 do {
670                                         data[bit / BITS_PER_LONG] = -1;
671                                         bit += BITS_PER_LONG;
672                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
673                                 continue;
674                         }
675                         __set_bit(bit, data);
676                         bit++;
677                 }
678         } else if (mode == BITMAP_OP_CLEAR) {
679                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
680                         clear_page(data);
681                 else while (bit <= this_end_bit) {
682                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
683                                 do {
684                                         data[bit / BITS_PER_LONG] = 0;
685                                         bit += BITS_PER_LONG;
686                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
687                                 continue;
688                         }
689                         __clear_bit(bit, data);
690                         bit++;
691                 }
692         } else {
693                 BUG();
694         }
695
696         if (unlikely(page < end_page)) {
697                 bit = 0;
698                 page++;
699                 goto repeat;
700         }
701
702         return true;
703 }
704
705 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
706 {
707         unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
708         unsigned int i;
709
710         for (i = 0; i < n_bitmap_pages; i++) {
711                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
712                 unsigned long *src_data = lowmem_page_address(src[i].page);
713                 copy_page(dst_data, src_data);
714         }
715 }
716
717 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
718 {
719         unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
720         unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
721
722         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
723         return &ic->bbs[bitmap_block];
724 }
725
726 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
727                                  bool e, const char *function)
728 {
729 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
730         unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
731
732         if (unlikely(section >= ic->journal_sections) ||
733             unlikely(offset >= limit)) {
734                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
735                        function, section, offset, ic->journal_sections, limit);
736                 BUG();
737         }
738 #endif
739 }
740
741 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
742                                unsigned int *pl_index, unsigned int *pl_offset)
743 {
744         unsigned int sector;
745
746         access_journal_check(ic, section, offset, false, "page_list_location");
747
748         sector = section * ic->journal_section_sectors + offset;
749
750         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
751         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
752 }
753
754 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
755                                                unsigned int section, unsigned int offset, unsigned int *n_sectors)
756 {
757         unsigned int pl_index, pl_offset;
758         char *va;
759
760         page_list_location(ic, section, offset, &pl_index, &pl_offset);
761
762         if (n_sectors)
763                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
764
765         va = lowmem_page_address(pl[pl_index].page);
766
767         return (struct journal_sector *)(va + pl_offset);
768 }
769
770 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
771 {
772         return access_page_list(ic, ic->journal, section, offset, NULL);
773 }
774
775 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
776 {
777         unsigned int rel_sector, offset;
778         struct journal_sector *js;
779
780         access_journal_check(ic, section, n, true, "access_journal_entry");
781
782         rel_sector = n % JOURNAL_BLOCK_SECTORS;
783         offset = n / JOURNAL_BLOCK_SECTORS;
784
785         js = access_journal(ic, section, rel_sector);
786         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
787 }
788
789 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
790 {
791         n <<= ic->sb->log2_sectors_per_block;
792
793         n += JOURNAL_BLOCK_SECTORS;
794
795         access_journal_check(ic, section, n, false, "access_journal_data");
796
797         return access_journal(ic, section, n);
798 }
799
800 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
801 {
802         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
803         int r;
804         unsigned int j, size;
805
806         desc->tfm = ic->journal_mac;
807
808         r = crypto_shash_init(desc);
809         if (unlikely(r < 0)) {
810                 dm_integrity_io_error(ic, "crypto_shash_init", r);
811                 goto err;
812         }
813
814         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
815                 __le64 section_le;
816
817                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
818                 if (unlikely(r < 0)) {
819                         dm_integrity_io_error(ic, "crypto_shash_update", r);
820                         goto err;
821                 }
822
823                 section_le = cpu_to_le64(section);
824                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
825                 if (unlikely(r < 0)) {
826                         dm_integrity_io_error(ic, "crypto_shash_update", r);
827                         goto err;
828                 }
829         }
830
831         for (j = 0; j < ic->journal_section_entries; j++) {
832                 struct journal_entry *je = access_journal_entry(ic, section, j);
833                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
834                 if (unlikely(r < 0)) {
835                         dm_integrity_io_error(ic, "crypto_shash_update", r);
836                         goto err;
837                 }
838         }
839
840         size = crypto_shash_digestsize(ic->journal_mac);
841
842         if (likely(size <= JOURNAL_MAC_SIZE)) {
843                 r = crypto_shash_final(desc, result);
844                 if (unlikely(r < 0)) {
845                         dm_integrity_io_error(ic, "crypto_shash_final", r);
846                         goto err;
847                 }
848                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
849         } else {
850                 __u8 digest[HASH_MAX_DIGESTSIZE];
851
852                 if (WARN_ON(size > sizeof(digest))) {
853                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
854                         goto err;
855                 }
856                 r = crypto_shash_final(desc, digest);
857                 if (unlikely(r < 0)) {
858                         dm_integrity_io_error(ic, "crypto_shash_final", r);
859                         goto err;
860                 }
861                 memcpy(result, digest, JOURNAL_MAC_SIZE);
862         }
863
864         return;
865 err:
866         memset(result, 0, JOURNAL_MAC_SIZE);
867 }
868
869 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
870 {
871         __u8 result[JOURNAL_MAC_SIZE];
872         unsigned int j;
873
874         if (!ic->journal_mac)
875                 return;
876
877         section_mac(ic, section, result);
878
879         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
880                 struct journal_sector *js = access_journal(ic, section, j);
881
882                 if (likely(wr))
883                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
884                 else {
885                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
886                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
887                                 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
888                         }
889                 }
890         }
891 }
892
893 static void complete_journal_op(void *context)
894 {
895         struct journal_completion *comp = context;
896         BUG_ON(!atomic_read(&comp->in_flight));
897         if (likely(atomic_dec_and_test(&comp->in_flight)))
898                 complete(&comp->comp);
899 }
900
901 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
902                         unsigned int n_sections, struct journal_completion *comp)
903 {
904         struct async_submit_ctl submit;
905         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
906         unsigned int pl_index, pl_offset, section_index;
907         struct page_list *source_pl, *target_pl;
908
909         if (likely(encrypt)) {
910                 source_pl = ic->journal;
911                 target_pl = ic->journal_io;
912         } else {
913                 source_pl = ic->journal_io;
914                 target_pl = ic->journal;
915         }
916
917         page_list_location(ic, section, 0, &pl_index, &pl_offset);
918
919         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
920
921         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
922
923         section_index = pl_index;
924
925         do {
926                 size_t this_step;
927                 struct page *src_pages[2];
928                 struct page *dst_page;
929
930                 while (unlikely(pl_index == section_index)) {
931                         unsigned int dummy;
932                         if (likely(encrypt))
933                                 rw_section_mac(ic, section, true);
934                         section++;
935                         n_sections--;
936                         if (!n_sections)
937                                 break;
938                         page_list_location(ic, section, 0, &section_index, &dummy);
939                 }
940
941                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
942                 dst_page = target_pl[pl_index].page;
943                 src_pages[0] = source_pl[pl_index].page;
944                 src_pages[1] = ic->journal_xor[pl_index].page;
945
946                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
947
948                 pl_index++;
949                 pl_offset = 0;
950                 n_bytes -= this_step;
951         } while (n_bytes);
952
953         BUG_ON(n_sections);
954
955         async_tx_issue_pending_all();
956 }
957
958 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
959 {
960         struct journal_completion *comp = req->data;
961         if (unlikely(err)) {
962                 if (likely(err == -EINPROGRESS)) {
963                         complete(&comp->ic->crypto_backoff);
964                         return;
965                 }
966                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
967         }
968         complete_journal_op(comp);
969 }
970
971 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
972 {
973         int r;
974         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
975                                       complete_journal_encrypt, comp);
976         if (likely(encrypt))
977                 r = crypto_skcipher_encrypt(req);
978         else
979                 r = crypto_skcipher_decrypt(req);
980         if (likely(!r))
981                 return false;
982         if (likely(r == -EINPROGRESS))
983                 return true;
984         if (likely(r == -EBUSY)) {
985                 wait_for_completion(&comp->ic->crypto_backoff);
986                 reinit_completion(&comp->ic->crypto_backoff);
987                 return true;
988         }
989         dm_integrity_io_error(comp->ic, "encrypt", r);
990         return false;
991 }
992
993 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
994                           unsigned int n_sections, struct journal_completion *comp)
995 {
996         struct scatterlist **source_sg;
997         struct scatterlist **target_sg;
998
999         atomic_add(2, &comp->in_flight);
1000
1001         if (likely(encrypt)) {
1002                 source_sg = ic->journal_scatterlist;
1003                 target_sg = ic->journal_io_scatterlist;
1004         } else {
1005                 source_sg = ic->journal_io_scatterlist;
1006                 target_sg = ic->journal_scatterlist;
1007         }
1008
1009         do {
1010                 struct skcipher_request *req;
1011                 unsigned int ivsize;
1012                 char *iv;
1013
1014                 if (likely(encrypt))
1015                         rw_section_mac(ic, section, true);
1016
1017                 req = ic->sk_requests[section];
1018                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1019                 iv = req->iv;
1020
1021                 memcpy(iv, iv + ivsize, ivsize);
1022
1023                 req->src = source_sg[section];
1024                 req->dst = target_sg[section];
1025
1026                 if (unlikely(do_crypt(encrypt, req, comp)))
1027                         atomic_inc(&comp->in_flight);
1028
1029                 section++;
1030                 n_sections--;
1031         } while (n_sections);
1032
1033         atomic_dec(&comp->in_flight);
1034         complete_journal_op(comp);
1035 }
1036
1037 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1038                             unsigned int n_sections, struct journal_completion *comp)
1039 {
1040         if (ic->journal_xor)
1041                 return xor_journal(ic, encrypt, section, n_sections, comp);
1042         else
1043                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1044 }
1045
1046 static void complete_journal_io(unsigned long error, void *context)
1047 {
1048         struct journal_completion *comp = context;
1049         if (unlikely(error != 0))
1050                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1051         complete_journal_op(comp);
1052 }
1053
1054 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1055                                unsigned int sector, unsigned int n_sectors,
1056                                struct journal_completion *comp)
1057 {
1058         struct dm_io_request io_req;
1059         struct dm_io_region io_loc;
1060         unsigned int pl_index, pl_offset;
1061         int r;
1062
1063         if (unlikely(dm_integrity_failed(ic))) {
1064                 if (comp)
1065                         complete_journal_io(-1UL, comp);
1066                 return;
1067         }
1068
1069         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1070         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1071
1072         io_req.bi_opf = opf;
1073         io_req.mem.type = DM_IO_PAGE_LIST;
1074         if (ic->journal_io)
1075                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1076         else
1077                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1078         io_req.mem.offset = pl_offset;
1079         if (likely(comp != NULL)) {
1080                 io_req.notify.fn = complete_journal_io;
1081                 io_req.notify.context = comp;
1082         } else {
1083                 io_req.notify.fn = NULL;
1084         }
1085         io_req.client = ic->io;
1086         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1087         io_loc.sector = ic->start + SB_SECTORS + sector;
1088         io_loc.count = n_sectors;
1089
1090         r = dm_io(&io_req, 1, &io_loc, NULL);
1091         if (unlikely(r)) {
1092                 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1093                                       "reading journal" : "writing journal", r);
1094                 if (comp) {
1095                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1096                         complete_journal_io(-1UL, comp);
1097                 }
1098         }
1099 }
1100
1101 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1102                        unsigned int section, unsigned int n_sections,
1103                        struct journal_completion *comp)
1104 {
1105         unsigned int sector, n_sectors;
1106
1107         sector = section * ic->journal_section_sectors;
1108         n_sectors = n_sections * ic->journal_section_sectors;
1109
1110         rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1111 }
1112
1113 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1114 {
1115         struct journal_completion io_comp;
1116         struct journal_completion crypt_comp_1;
1117         struct journal_completion crypt_comp_2;
1118         unsigned int i;
1119
1120         io_comp.ic = ic;
1121         init_completion(&io_comp.comp);
1122
1123         if (commit_start + commit_sections <= ic->journal_sections) {
1124                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1125                 if (ic->journal_io) {
1126                         crypt_comp_1.ic = ic;
1127                         init_completion(&crypt_comp_1.comp);
1128                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1129                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1130                         wait_for_completion_io(&crypt_comp_1.comp);
1131                 } else {
1132                         for (i = 0; i < commit_sections; i++)
1133                                 rw_section_mac(ic, commit_start + i, true);
1134                 }
1135                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1136                            commit_sections, &io_comp);
1137         } else {
1138                 unsigned int to_end;
1139                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1140                 to_end = ic->journal_sections - commit_start;
1141                 if (ic->journal_io) {
1142                         crypt_comp_1.ic = ic;
1143                         init_completion(&crypt_comp_1.comp);
1144                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1145                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1146                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1147                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1148                                            commit_start, to_end, &io_comp);
1149                                 reinit_completion(&crypt_comp_1.comp);
1150                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1151                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1152                                 wait_for_completion_io(&crypt_comp_1.comp);
1153                         } else {
1154                                 crypt_comp_2.ic = ic;
1155                                 init_completion(&crypt_comp_2.comp);
1156                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1157                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1158                                 wait_for_completion_io(&crypt_comp_1.comp);
1159                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1160                                 wait_for_completion_io(&crypt_comp_2.comp);
1161                         }
1162                 } else {
1163                         for (i = 0; i < to_end; i++)
1164                                 rw_section_mac(ic, commit_start + i, true);
1165                         rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1166                         for (i = 0; i < commit_sections - to_end; i++)
1167                                 rw_section_mac(ic, i, true);
1168                 }
1169                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1170         }
1171
1172         wait_for_completion_io(&io_comp.comp);
1173 }
1174
1175 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1176                               unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1177 {
1178         struct dm_io_request io_req;
1179         struct dm_io_region io_loc;
1180         int r;
1181         unsigned int sector, pl_index, pl_offset;
1182
1183         BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1184
1185         if (unlikely(dm_integrity_failed(ic))) {
1186                 fn(-1UL, data);
1187                 return;
1188         }
1189
1190         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1191
1192         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1193         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1194
1195         io_req.bi_opf = REQ_OP_WRITE;
1196         io_req.mem.type = DM_IO_PAGE_LIST;
1197         io_req.mem.ptr.pl = &ic->journal[pl_index];
1198         io_req.mem.offset = pl_offset;
1199         io_req.notify.fn = fn;
1200         io_req.notify.context = data;
1201         io_req.client = ic->io;
1202         io_loc.bdev = ic->dev->bdev;
1203         io_loc.sector = target;
1204         io_loc.count = n_sectors;
1205
1206         r = dm_io(&io_req, 1, &io_loc, NULL);
1207         if (unlikely(r)) {
1208                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1209                 fn(-1UL, data);
1210         }
1211 }
1212
1213 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1214 {
1215         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1216                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1217 }
1218
1219 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1220 {
1221         struct rb_node **n = &ic->in_progress.rb_node;
1222         struct rb_node *parent;
1223
1224         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1225
1226         if (likely(check_waiting)) {
1227                 struct dm_integrity_range *range;
1228                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1229                         if (unlikely(ranges_overlap(range, new_range)))
1230                                 return false;
1231                 }
1232         }
1233
1234         parent = NULL;
1235
1236         while (*n) {
1237                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1238
1239                 parent = *n;
1240                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1241                         n = &range->node.rb_left;
1242                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1243                         n = &range->node.rb_right;
1244                 } else {
1245                         return false;
1246                 }
1247         }
1248
1249         rb_link_node(&new_range->node, parent, n);
1250         rb_insert_color(&new_range->node, &ic->in_progress);
1251
1252         return true;
1253 }
1254
1255 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1256 {
1257         rb_erase(&range->node, &ic->in_progress);
1258         while (unlikely(!list_empty(&ic->wait_list))) {
1259                 struct dm_integrity_range *last_range =
1260                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1261                 struct task_struct *last_range_task;
1262                 last_range_task = last_range->task;
1263                 list_del(&last_range->wait_entry);
1264                 if (!add_new_range(ic, last_range, false)) {
1265                         last_range->task = last_range_task;
1266                         list_add(&last_range->wait_entry, &ic->wait_list);
1267                         break;
1268                 }
1269                 last_range->waiting = false;
1270                 wake_up_process(last_range_task);
1271         }
1272 }
1273
1274 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1275 {
1276         unsigned long flags;
1277
1278         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1279         remove_range_unlocked(ic, range);
1280         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1281 }
1282
1283 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1284 {
1285         new_range->waiting = true;
1286         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1287         new_range->task = current;
1288         do {
1289                 __set_current_state(TASK_UNINTERRUPTIBLE);
1290                 spin_unlock_irq(&ic->endio_wait.lock);
1291                 io_schedule();
1292                 spin_lock_irq(&ic->endio_wait.lock);
1293         } while (unlikely(new_range->waiting));
1294 }
1295
1296 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1297 {
1298         if (unlikely(!add_new_range(ic, new_range, true)))
1299                 wait_and_add_new_range(ic, new_range);
1300 }
1301
1302 static void init_journal_node(struct journal_node *node)
1303 {
1304         RB_CLEAR_NODE(&node->node);
1305         node->sector = (sector_t)-1;
1306 }
1307
1308 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1309 {
1310         struct rb_node **link;
1311         struct rb_node *parent;
1312
1313         node->sector = sector;
1314         BUG_ON(!RB_EMPTY_NODE(&node->node));
1315
1316         link = &ic->journal_tree_root.rb_node;
1317         parent = NULL;
1318
1319         while (*link) {
1320                 struct journal_node *j;
1321                 parent = *link;
1322                 j = container_of(parent, struct journal_node, node);
1323                 if (sector < j->sector)
1324                         link = &j->node.rb_left;
1325                 else
1326                         link = &j->node.rb_right;
1327         }
1328
1329         rb_link_node(&node->node, parent, link);
1330         rb_insert_color(&node->node, &ic->journal_tree_root);
1331 }
1332
1333 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1334 {
1335         BUG_ON(RB_EMPTY_NODE(&node->node));
1336         rb_erase(&node->node, &ic->journal_tree_root);
1337         init_journal_node(node);
1338 }
1339
1340 #define NOT_FOUND       (-1U)
1341
1342 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1343 {
1344         struct rb_node *n = ic->journal_tree_root.rb_node;
1345         unsigned int found = NOT_FOUND;
1346         *next_sector = (sector_t)-1;
1347         while (n) {
1348                 struct journal_node *j = container_of(n, struct journal_node, node);
1349                 if (sector == j->sector) {
1350                         found = j - ic->journal_tree;
1351                 }
1352                 if (sector < j->sector) {
1353                         *next_sector = j->sector;
1354                         n = j->node.rb_left;
1355                 } else {
1356                         n = j->node.rb_right;
1357                 }
1358         }
1359
1360         return found;
1361 }
1362
1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1364 {
1365         struct journal_node *node, *next_node;
1366         struct rb_node *next;
1367
1368         if (unlikely(pos >= ic->journal_entries))
1369                 return false;
1370         node = &ic->journal_tree[pos];
1371         if (unlikely(RB_EMPTY_NODE(&node->node)))
1372                 return false;
1373         if (unlikely(node->sector != sector))
1374                 return false;
1375
1376         next = rb_next(&node->node);
1377         if (unlikely(!next))
1378                 return true;
1379
1380         next_node = container_of(next, struct journal_node, node);
1381         return next_node->sector != sector;
1382 }
1383
1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1385 {
1386         struct rb_node *next;
1387         struct journal_node *next_node;
1388         unsigned int next_section;
1389
1390         BUG_ON(RB_EMPTY_NODE(&node->node));
1391
1392         next = rb_next(&node->node);
1393         if (unlikely(!next))
1394                 return false;
1395
1396         next_node = container_of(next, struct journal_node, node);
1397
1398         if (next_node->sector != node->sector)
1399                 return false;
1400
1401         next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402         if (next_section >= ic->committed_section &&
1403             next_section < ic->committed_section + ic->n_committed_sections)
1404                 return true;
1405         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1406                 return true;
1407
1408         return false;
1409 }
1410
1411 #define TAG_READ        0
1412 #define TAG_WRITE       1
1413 #define TAG_CMP         2
1414
1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416                                unsigned int *metadata_offset, unsigned int total_size, int op)
1417 {
1418 #define MAY_BE_FILLER           1
1419 #define MAY_BE_HASH             2
1420         unsigned int hash_offset = 0;
1421         unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1422
1423         do {
1424                 unsigned char *data, *dp;
1425                 struct dm_buffer *b;
1426                 unsigned int to_copy;
1427                 int r;
1428
1429                 r = dm_integrity_failed(ic);
1430                 if (unlikely(r))
1431                         return r;
1432
1433                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1434                 if (IS_ERR(data))
1435                         return PTR_ERR(data);
1436
1437                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438                 dp = data + *metadata_offset;
1439                 if (op == TAG_READ) {
1440                         memcpy(tag, dp, to_copy);
1441                 } else if (op == TAG_WRITE) {
1442                         if (memcmp(dp, tag, to_copy)) {
1443                                 memcpy(dp, tag, to_copy);
1444                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1445                         }
1446                 } else {
1447                         /* e.g.: op == TAG_CMP */
1448
1449                         if (likely(is_power_of_2(ic->tag_size))) {
1450                                 if (unlikely(memcmp(dp, tag, to_copy)))
1451                                         if (unlikely(!ic->discard) ||
1452                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1453                                                 goto thorough_test;
1454                                 }
1455                         } else {
1456                                 unsigned int i, ts;
1457 thorough_test:
1458                                 ts = total_size;
1459
1460                                 for (i = 0; i < to_copy; i++, ts--) {
1461                                         if (unlikely(dp[i] != tag[i]))
1462                                                 may_be &= ~MAY_BE_HASH;
1463                                         if (likely(dp[i] != DISCARD_FILLER))
1464                                                 may_be &= ~MAY_BE_FILLER;
1465                                         hash_offset++;
1466                                         if (unlikely(hash_offset == ic->tag_size)) {
1467                                                 if (unlikely(!may_be)) {
1468                                                         dm_bufio_release(b);
1469                                                         return ts;
1470                                                 }
1471                                                 hash_offset = 0;
1472                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1473                                         }
1474                                 }
1475                         }
1476                 }
1477                 dm_bufio_release(b);
1478
1479                 tag += to_copy;
1480                 *metadata_offset += to_copy;
1481                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482                         (*metadata_block)++;
1483                         *metadata_offset = 0;
1484                 }
1485
1486                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1487                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1488                 }
1489
1490                 total_size -= to_copy;
1491         } while (unlikely(total_size));
1492
1493         return 0;
1494 #undef MAY_BE_FILLER
1495 #undef MAY_BE_HASH
1496 }
1497
1498 struct flush_request {
1499         struct dm_io_request io_req;
1500         struct dm_io_region io_reg;
1501         struct dm_integrity_c *ic;
1502         struct completion comp;
1503 };
1504
1505 static void flush_notify(unsigned long error, void *fr_)
1506 {
1507         struct flush_request *fr = fr_;
1508         if (unlikely(error != 0))
1509                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510         complete(&fr->comp);
1511 }
1512
1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1514 {
1515         int r;
1516
1517         struct flush_request fr;
1518
1519         if (!ic->meta_dev)
1520                 flush_data = false;
1521         if (flush_data) {
1522                 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1523                 fr.io_req.mem.type = DM_IO_KMEM,
1524                 fr.io_req.mem.ptr.addr = NULL,
1525                 fr.io_req.notify.fn = flush_notify,
1526                 fr.io_req.notify.context = &fr;
1527                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1528                 fr.io_reg.bdev = ic->dev->bdev,
1529                 fr.io_reg.sector = 0,
1530                 fr.io_reg.count = 0,
1531                 fr.ic = ic;
1532                 init_completion(&fr.comp);
1533                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1534                 BUG_ON(r);
1535         }
1536
1537         r = dm_bufio_write_dirty_buffers(ic->bufio);
1538         if (unlikely(r))
1539                 dm_integrity_io_error(ic, "writing tags", r);
1540
1541         if (flush_data)
1542                 wait_for_completion(&fr.comp);
1543 }
1544
1545 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1546 {
1547         DECLARE_WAITQUEUE(wait, current);
1548         __add_wait_queue(&ic->endio_wait, &wait);
1549         __set_current_state(TASK_UNINTERRUPTIBLE);
1550         spin_unlock_irq(&ic->endio_wait.lock);
1551         io_schedule();
1552         spin_lock_irq(&ic->endio_wait.lock);
1553         __remove_wait_queue(&ic->endio_wait, &wait);
1554 }
1555
1556 static void autocommit_fn(struct timer_list *t)
1557 {
1558         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1559
1560         if (likely(!dm_integrity_failed(ic)))
1561                 queue_work(ic->commit_wq, &ic->commit_work);
1562 }
1563
1564 static void schedule_autocommit(struct dm_integrity_c *ic)
1565 {
1566         if (!timer_pending(&ic->autocommit_timer))
1567                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1568 }
1569
1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1571 {
1572         struct bio *bio;
1573         unsigned long flags;
1574
1575         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577         bio_list_add(&ic->flush_bio_list, bio);
1578         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579
1580         queue_work(ic->commit_wq, &ic->commit_work);
1581 }
1582
1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1584 {
1585         int r = dm_integrity_failed(ic);
1586         if (unlikely(r) && !bio->bi_status)
1587                 bio->bi_status = errno_to_blk_status(r);
1588         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1589                 unsigned long flags;
1590                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1591                 bio_list_add(&ic->synchronous_bios, bio);
1592                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1593                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1594                 return;
1595         }
1596         bio_endio(bio);
1597 }
1598
1599 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1600 {
1601         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1602
1603         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1604                 submit_flush_bio(ic, dio);
1605         else
1606                 do_endio(ic, bio);
1607 }
1608
1609 static void dec_in_flight(struct dm_integrity_io *dio)
1610 {
1611         if (atomic_dec_and_test(&dio->in_flight)) {
1612                 struct dm_integrity_c *ic = dio->ic;
1613                 struct bio *bio;
1614
1615                 remove_range(ic, &dio->range);
1616
1617                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1618                         schedule_autocommit(ic);
1619
1620                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1621
1622                 if (unlikely(dio->bi_status) && !bio->bi_status)
1623                         bio->bi_status = dio->bi_status;
1624                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1625                         dio->range.logical_sector += dio->range.n_sectors;
1626                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1627                         INIT_WORK(&dio->work, integrity_bio_wait);
1628                         queue_work(ic->offload_wq, &dio->work);
1629                         return;
1630                 }
1631                 do_endio_flush(ic, dio);
1632         }
1633 }
1634
1635 static void integrity_end_io(struct bio *bio)
1636 {
1637         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1638
1639         dm_bio_restore(&dio->bio_details, bio);
1640         if (bio->bi_integrity)
1641                 bio->bi_opf |= REQ_INTEGRITY;
1642
1643         if (dio->completion)
1644                 complete(dio->completion);
1645
1646         dec_in_flight(dio);
1647 }
1648
1649 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1650                                       const char *data, char *result)
1651 {
1652         __le64 sector_le = cpu_to_le64(sector);
1653         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1654         int r;
1655         unsigned int digest_size;
1656
1657         req->tfm = ic->internal_hash;
1658
1659         r = crypto_shash_init(req);
1660         if (unlikely(r < 0)) {
1661                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1662                 goto failed;
1663         }
1664
1665         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1666                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1667                 if (unlikely(r < 0)) {
1668                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1669                         goto failed;
1670                 }
1671         }
1672
1673         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1674         if (unlikely(r < 0)) {
1675                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1676                 goto failed;
1677         }
1678
1679         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1680         if (unlikely(r < 0)) {
1681                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1682                 goto failed;
1683         }
1684
1685         r = crypto_shash_final(req, result);
1686         if (unlikely(r < 0)) {
1687                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1688                 goto failed;
1689         }
1690
1691         digest_size = crypto_shash_digestsize(ic->internal_hash);
1692         if (unlikely(digest_size < ic->tag_size))
1693                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1694
1695         return;
1696
1697 failed:
1698         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1699         get_random_bytes(result, ic->tag_size);
1700 }
1701
1702 static void integrity_metadata(struct work_struct *w)
1703 {
1704         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1705         struct dm_integrity_c *ic = dio->ic;
1706
1707         int r;
1708
1709         if (ic->internal_hash) {
1710                 struct bvec_iter iter;
1711                 struct bio_vec bv;
1712                 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1713                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1714                 char *checksums;
1715                 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1716                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1717                 sector_t sector;
1718                 unsigned int sectors_to_process;
1719
1720                 if (unlikely(ic->mode == 'R'))
1721                         goto skip_io;
1722
1723                 if (likely(dio->op != REQ_OP_DISCARD))
1724                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1725                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726                 else
1727                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1728                 if (!checksums) {
1729                         checksums = checksums_onstack;
1730                         if (WARN_ON(extra_space &&
1731                                     digest_size > sizeof(checksums_onstack))) {
1732                                 r = -EINVAL;
1733                                 goto error;
1734                         }
1735                 }
1736
1737                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1738                         unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1739                         unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1740                         unsigned int max_blocks = max_size / ic->tag_size;
1741                         memset(checksums, DISCARD_FILLER, max_size);
1742
1743                         while (bi_size) {
1744                                 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1745                                 this_step_blocks = min(this_step_blocks, max_blocks);
1746                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1747                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1748                                 if (unlikely(r)) {
1749                                         if (likely(checksums != checksums_onstack))
1750                                                 kfree(checksums);
1751                                         goto error;
1752                                 }
1753
1754                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1755                         }
1756
1757                         if (likely(checksums != checksums_onstack))
1758                                 kfree(checksums);
1759                         goto skip_io;
1760                 }
1761
1762                 sector = dio->range.logical_sector;
1763                 sectors_to_process = dio->range.n_sectors;
1764
1765                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1766                         unsigned int pos;
1767                         char *mem, *checksums_ptr;
1768
1769 again:
1770                         mem = bvec_kmap_local(&bv);
1771                         pos = 0;
1772                         checksums_ptr = checksums;
1773                         do {
1774                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1775                                 checksums_ptr += ic->tag_size;
1776                                 sectors_to_process -= ic->sectors_per_block;
1777                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1778                                 sector += ic->sectors_per_block;
1779                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1780                         kunmap_local(mem);
1781
1782                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1783                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1784                         if (unlikely(r)) {
1785                                 if (r > 0) {
1786                                         sector_t s;
1787
1788                                         s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1789                                         DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1790                                                     bio->bi_bdev, s);
1791                                         r = -EILSEQ;
1792                                         atomic64_inc(&ic->number_of_mismatches);
1793                                         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1794                                                          bio, s, 0);
1795                                 }
1796                                 if (likely(checksums != checksums_onstack))
1797                                         kfree(checksums);
1798                                 goto error;
1799                         }
1800
1801                         if (!sectors_to_process)
1802                                 break;
1803
1804                         if (unlikely(pos < bv.bv_len)) {
1805                                 bv.bv_offset += pos;
1806                                 bv.bv_len -= pos;
1807                                 goto again;
1808                         }
1809                 }
1810
1811                 if (likely(checksums != checksums_onstack))
1812                         kfree(checksums);
1813         } else {
1814                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1815
1816                 if (bip) {
1817                         struct bio_vec biv;
1818                         struct bvec_iter iter;
1819                         unsigned int data_to_process = dio->range.n_sectors;
1820                         sector_to_block(ic, data_to_process);
1821                         data_to_process *= ic->tag_size;
1822
1823                         bip_for_each_vec(biv, bip, iter) {
1824                                 unsigned char *tag;
1825                                 unsigned int this_len;
1826
1827                                 BUG_ON(PageHighMem(biv.bv_page));
1828                                 tag = bvec_virt(&biv);
1829                                 this_len = min(biv.bv_len, data_to_process);
1830                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1831                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1832                                 if (unlikely(r))
1833                                         goto error;
1834                                 data_to_process -= this_len;
1835                                 if (!data_to_process)
1836                                         break;
1837                         }
1838                 }
1839         }
1840 skip_io:
1841         dec_in_flight(dio);
1842         return;
1843 error:
1844         dio->bi_status = errno_to_blk_status(r);
1845         dec_in_flight(dio);
1846 }
1847
1848 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1849 {
1850         struct dm_integrity_c *ic = ti->private;
1851         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1852         struct bio_integrity_payload *bip;
1853
1854         sector_t area, offset;
1855
1856         dio->ic = ic;
1857         dio->bi_status = 0;
1858         dio->op = bio_op(bio);
1859
1860         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1861                 if (ti->max_io_len) {
1862                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1863                         unsigned int log2_max_io_len = __fls(ti->max_io_len);
1864                         sector_t start_boundary = sec >> log2_max_io_len;
1865                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1866                         if (start_boundary < end_boundary) {
1867                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1868                                 dm_accept_partial_bio(bio, len);
1869                         }
1870                 }
1871         }
1872
1873         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1874                 submit_flush_bio(ic, dio);
1875                 return DM_MAPIO_SUBMITTED;
1876         }
1877
1878         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1879         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1880         if (unlikely(dio->fua)) {
1881                 /*
1882                  * Don't pass down the FUA flag because we have to flush
1883                  * disk cache anyway.
1884                  */
1885                 bio->bi_opf &= ~REQ_FUA;
1886         }
1887         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1888                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1889                       dio->range.logical_sector, bio_sectors(bio),
1890                       ic->provided_data_sectors);
1891                 return DM_MAPIO_KILL;
1892         }
1893         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1894                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1895                       ic->sectors_per_block,
1896                       dio->range.logical_sector, bio_sectors(bio));
1897                 return DM_MAPIO_KILL;
1898         }
1899
1900         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1901                 struct bvec_iter iter;
1902                 struct bio_vec bv;
1903                 bio_for_each_segment(bv, bio, iter) {
1904                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1905                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1906                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1907                                 return DM_MAPIO_KILL;
1908                         }
1909                 }
1910         }
1911
1912         bip = bio_integrity(bio);
1913         if (!ic->internal_hash) {
1914                 if (bip) {
1915                         unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1916                         if (ic->log2_tag_size >= 0)
1917                                 wanted_tag_size <<= ic->log2_tag_size;
1918                         else
1919                                 wanted_tag_size *= ic->tag_size;
1920                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1921                                 DMERR("Invalid integrity data size %u, expected %u",
1922                                       bip->bip_iter.bi_size, wanted_tag_size);
1923                                 return DM_MAPIO_KILL;
1924                         }
1925                 }
1926         } else {
1927                 if (unlikely(bip != NULL)) {
1928                         DMERR("Unexpected integrity data when using internal hash");
1929                         return DM_MAPIO_KILL;
1930                 }
1931         }
1932
1933         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1934                 return DM_MAPIO_KILL;
1935
1936         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1937         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1938         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1939
1940         dm_integrity_map_continue(dio, true);
1941         return DM_MAPIO_SUBMITTED;
1942 }
1943
1944 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1945                                  unsigned int journal_section, unsigned int journal_entry)
1946 {
1947         struct dm_integrity_c *ic = dio->ic;
1948         sector_t logical_sector;
1949         unsigned int n_sectors;
1950
1951         logical_sector = dio->range.logical_sector;
1952         n_sectors = dio->range.n_sectors;
1953         do {
1954                 struct bio_vec bv = bio_iovec(bio);
1955                 char *mem;
1956
1957                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1958                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1959                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1960                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1961 retry_kmap:
1962                 mem = kmap_local_page(bv.bv_page);
1963                 if (likely(dio->op == REQ_OP_WRITE))
1964                         flush_dcache_page(bv.bv_page);
1965
1966                 do {
1967                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1968
1969                         if (unlikely(dio->op == REQ_OP_READ)) {
1970                                 struct journal_sector *js;
1971                                 char *mem_ptr;
1972                                 unsigned int s;
1973
1974                                 if (unlikely(journal_entry_is_inprogress(je))) {
1975                                         flush_dcache_page(bv.bv_page);
1976                                         kunmap_local(mem);
1977
1978                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1979                                         goto retry_kmap;
1980                                 }
1981                                 smp_rmb();
1982                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1983                                 js = access_journal_data(ic, journal_section, journal_entry);
1984                                 mem_ptr = mem + bv.bv_offset;
1985                                 s = 0;
1986                                 do {
1987                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1988                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1989                                         js++;
1990                                         mem_ptr += 1 << SECTOR_SHIFT;
1991                                 } while (++s < ic->sectors_per_block);
1992 #ifdef INTERNAL_VERIFY
1993                                 if (ic->internal_hash) {
1994                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1995
1996                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1997                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1998                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1999                                                             logical_sector);
2000                                                 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2001                                                                  bio, logical_sector, 0);
2002                                         }
2003                                 }
2004 #endif
2005                         }
2006
2007                         if (!ic->internal_hash) {
2008                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2009                                 unsigned int tag_todo = ic->tag_size;
2010                                 char *tag_ptr = journal_entry_tag(ic, je);
2011
2012                                 if (bip) do {
2013                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2014                                         unsigned int tag_now = min(biv.bv_len, tag_todo);
2015                                         char *tag_addr;
2016                                         BUG_ON(PageHighMem(biv.bv_page));
2017                                         tag_addr = bvec_virt(&biv);
2018                                         if (likely(dio->op == REQ_OP_WRITE))
2019                                                 memcpy(tag_ptr, tag_addr, tag_now);
2020                                         else
2021                                                 memcpy(tag_addr, tag_ptr, tag_now);
2022                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2023                                         tag_ptr += tag_now;
2024                                         tag_todo -= tag_now;
2025                                 } while (unlikely(tag_todo)); else {
2026                                         if (likely(dio->op == REQ_OP_WRITE))
2027                                                 memset(tag_ptr, 0, tag_todo);
2028                                 }
2029                         }
2030
2031                         if (likely(dio->op == REQ_OP_WRITE)) {
2032                                 struct journal_sector *js;
2033                                 unsigned int s;
2034
2035                                 js = access_journal_data(ic, journal_section, journal_entry);
2036                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2037
2038                                 s = 0;
2039                                 do {
2040                                         je->last_bytes[s] = js[s].commit_id;
2041                                 } while (++s < ic->sectors_per_block);
2042
2043                                 if (ic->internal_hash) {
2044                                         unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2045                                         if (unlikely(digest_size > ic->tag_size)) {
2046                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2047                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2048                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2049                                         } else
2050                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2051                                 }
2052
2053                                 journal_entry_set_sector(je, logical_sector);
2054                         }
2055                         logical_sector += ic->sectors_per_block;
2056
2057                         journal_entry++;
2058                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2059                                 journal_entry = 0;
2060                                 journal_section++;
2061                                 wraparound_section(ic, &journal_section);
2062                         }
2063
2064                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2065                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2066
2067                 if (unlikely(dio->op == REQ_OP_READ))
2068                         flush_dcache_page(bv.bv_page);
2069                 kunmap_local(mem);
2070         } while (n_sectors);
2071
2072         if (likely(dio->op == REQ_OP_WRITE)) {
2073                 smp_mb();
2074                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2075                         wake_up(&ic->copy_to_journal_wait);
2076                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2077                         queue_work(ic->commit_wq, &ic->commit_work);
2078                 } else {
2079                         schedule_autocommit(ic);
2080                 }
2081         } else {
2082                 remove_range(ic, &dio->range);
2083         }
2084
2085         if (unlikely(bio->bi_iter.bi_size)) {
2086                 sector_t area, offset;
2087
2088                 dio->range.logical_sector = logical_sector;
2089                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2090                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2091                 return true;
2092         }
2093
2094         return false;
2095 }
2096
2097 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2098 {
2099         struct dm_integrity_c *ic = dio->ic;
2100         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2101         unsigned int journal_section, journal_entry;
2102         unsigned int journal_read_pos;
2103         struct completion read_comp;
2104         bool discard_retried = false;
2105         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2106         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2107                 need_sync_io = true;
2108
2109         if (need_sync_io && from_map) {
2110                 INIT_WORK(&dio->work, integrity_bio_wait);
2111                 queue_work(ic->offload_wq, &dio->work);
2112                 return;
2113         }
2114
2115 lock_retry:
2116         spin_lock_irq(&ic->endio_wait.lock);
2117 retry:
2118         if (unlikely(dm_integrity_failed(ic))) {
2119                 spin_unlock_irq(&ic->endio_wait.lock);
2120                 do_endio(ic, bio);
2121                 return;
2122         }
2123         dio->range.n_sectors = bio_sectors(bio);
2124         journal_read_pos = NOT_FOUND;
2125         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2126                 if (dio->op == REQ_OP_WRITE) {
2127                         unsigned int next_entry, i, pos;
2128                         unsigned int ws, we, range_sectors;
2129
2130                         dio->range.n_sectors = min(dio->range.n_sectors,
2131                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2132                         if (unlikely(!dio->range.n_sectors)) {
2133                                 if (from_map)
2134                                         goto offload_to_thread;
2135                                 sleep_on_endio_wait(ic);
2136                                 goto retry;
2137                         }
2138                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2139                         ic->free_sectors -= range_sectors;
2140                         journal_section = ic->free_section;
2141                         journal_entry = ic->free_section_entry;
2142
2143                         next_entry = ic->free_section_entry + range_sectors;
2144                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2145                         ic->free_section += next_entry / ic->journal_section_entries;
2146                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2147                         wraparound_section(ic, &ic->free_section);
2148
2149                         pos = journal_section * ic->journal_section_entries + journal_entry;
2150                         ws = journal_section;
2151                         we = journal_entry;
2152                         i = 0;
2153                         do {
2154                                 struct journal_entry *je;
2155
2156                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2157                                 pos++;
2158                                 if (unlikely(pos >= ic->journal_entries))
2159                                         pos = 0;
2160
2161                                 je = access_journal_entry(ic, ws, we);
2162                                 BUG_ON(!journal_entry_is_unused(je));
2163                                 journal_entry_set_inprogress(je);
2164                                 we++;
2165                                 if (unlikely(we == ic->journal_section_entries)) {
2166                                         we = 0;
2167                                         ws++;
2168                                         wraparound_section(ic, &ws);
2169                                 }
2170                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2171
2172                         spin_unlock_irq(&ic->endio_wait.lock);
2173                         goto journal_read_write;
2174                 } else {
2175                         sector_t next_sector;
2176                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2177                         if (likely(journal_read_pos == NOT_FOUND)) {
2178                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2179                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2180                         } else {
2181                                 unsigned int i;
2182                                 unsigned int jp = journal_read_pos + 1;
2183                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2184                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2185                                                 break;
2186                                 }
2187                                 dio->range.n_sectors = i;
2188                         }
2189                 }
2190         }
2191         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2192                 /*
2193                  * We must not sleep in the request routine because it could
2194                  * stall bios on current->bio_list.
2195                  * So, we offload the bio to a workqueue if we have to sleep.
2196                  */
2197                 if (from_map) {
2198 offload_to_thread:
2199                         spin_unlock_irq(&ic->endio_wait.lock);
2200                         INIT_WORK(&dio->work, integrity_bio_wait);
2201                         queue_work(ic->wait_wq, &dio->work);
2202                         return;
2203                 }
2204                 if (journal_read_pos != NOT_FOUND)
2205                         dio->range.n_sectors = ic->sectors_per_block;
2206                 wait_and_add_new_range(ic, &dio->range);
2207                 /*
2208                  * wait_and_add_new_range drops the spinlock, so the journal
2209                  * may have been changed arbitrarily. We need to recheck.
2210                  * To simplify the code, we restrict I/O size to just one block.
2211                  */
2212                 if (journal_read_pos != NOT_FOUND) {
2213                         sector_t next_sector;
2214                         unsigned int new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2215                         if (unlikely(new_pos != journal_read_pos)) {
2216                                 remove_range_unlocked(ic, &dio->range);
2217                                 goto retry;
2218                         }
2219                 }
2220         }
2221         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2222                 sector_t next_sector;
2223                 unsigned int new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2224                 if (unlikely(new_pos != NOT_FOUND) ||
2225                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2226                         remove_range_unlocked(ic, &dio->range);
2227                         spin_unlock_irq(&ic->endio_wait.lock);
2228                         queue_work(ic->commit_wq, &ic->commit_work);
2229                         flush_workqueue(ic->commit_wq);
2230                         queue_work(ic->writer_wq, &ic->writer_work);
2231                         flush_workqueue(ic->writer_wq);
2232                         discard_retried = true;
2233                         goto lock_retry;
2234                 }
2235         }
2236         spin_unlock_irq(&ic->endio_wait.lock);
2237
2238         if (unlikely(journal_read_pos != NOT_FOUND)) {
2239                 journal_section = journal_read_pos / ic->journal_section_entries;
2240                 journal_entry = journal_read_pos % ic->journal_section_entries;
2241                 goto journal_read_write;
2242         }
2243
2244         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2245                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2246                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2247                         struct bitmap_block_status *bbs;
2248
2249                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2250                         spin_lock(&bbs->bio_queue_lock);
2251                         bio_list_add(&bbs->bio_queue, bio);
2252                         spin_unlock(&bbs->bio_queue_lock);
2253                         queue_work(ic->writer_wq, &bbs->work);
2254                         return;
2255                 }
2256         }
2257
2258         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2259
2260         if (need_sync_io) {
2261                 init_completion(&read_comp);
2262                 dio->completion = &read_comp;
2263         } else
2264                 dio->completion = NULL;
2265
2266         dm_bio_record(&dio->bio_details, bio);
2267         bio_set_dev(bio, ic->dev->bdev);
2268         bio->bi_integrity = NULL;
2269         bio->bi_opf &= ~REQ_INTEGRITY;
2270         bio->bi_end_io = integrity_end_io;
2271         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2272
2273         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2274                 integrity_metadata(&dio->work);
2275                 dm_integrity_flush_buffers(ic, false);
2276
2277                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2278                 dio->completion = NULL;
2279
2280                 submit_bio_noacct(bio);
2281
2282                 return;
2283         }
2284
2285         submit_bio_noacct(bio);
2286
2287         if (need_sync_io) {
2288                 wait_for_completion_io(&read_comp);
2289                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2290                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2291                         goto skip_check;
2292                 if (ic->mode == 'B') {
2293                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2294                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2295                                 goto skip_check;
2296                 }
2297
2298                 if (likely(!bio->bi_status))
2299                         integrity_metadata(&dio->work);
2300                 else
2301 skip_check:
2302                         dec_in_flight(dio);
2303
2304         } else {
2305                 INIT_WORK(&dio->work, integrity_metadata);
2306                 queue_work(ic->metadata_wq, &dio->work);
2307         }
2308
2309         return;
2310
2311 journal_read_write:
2312         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2313                 goto lock_retry;
2314
2315         do_endio_flush(ic, dio);
2316 }
2317
2318
2319 static void integrity_bio_wait(struct work_struct *w)
2320 {
2321         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2322
2323         dm_integrity_map_continue(dio, false);
2324 }
2325
2326 static void pad_uncommitted(struct dm_integrity_c *ic)
2327 {
2328         if (ic->free_section_entry) {
2329                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2330                 ic->free_section_entry = 0;
2331                 ic->free_section++;
2332                 wraparound_section(ic, &ic->free_section);
2333                 ic->n_uncommitted_sections++;
2334         }
2335         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2336                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2337                     ic->journal_section_entries + ic->free_sectors)) {
2338                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2339                        "n_uncommitted_sections %u, n_committed_sections %u, "
2340                        "journal_section_entries %u, free_sectors %u",
2341                        ic->journal_sections, ic->journal_section_entries,
2342                        ic->n_uncommitted_sections, ic->n_committed_sections,
2343                        ic->journal_section_entries, ic->free_sectors);
2344         }
2345 }
2346
2347 static void integrity_commit(struct work_struct *w)
2348 {
2349         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2350         unsigned int commit_start, commit_sections;
2351         unsigned int i, j, n;
2352         struct bio *flushes;
2353
2354         del_timer(&ic->autocommit_timer);
2355
2356         spin_lock_irq(&ic->endio_wait.lock);
2357         flushes = bio_list_get(&ic->flush_bio_list);
2358         if (unlikely(ic->mode != 'J')) {
2359                 spin_unlock_irq(&ic->endio_wait.lock);
2360                 dm_integrity_flush_buffers(ic, true);
2361                 goto release_flush_bios;
2362         }
2363
2364         pad_uncommitted(ic);
2365         commit_start = ic->uncommitted_section;
2366         commit_sections = ic->n_uncommitted_sections;
2367         spin_unlock_irq(&ic->endio_wait.lock);
2368
2369         if (!commit_sections)
2370                 goto release_flush_bios;
2371
2372         ic->wrote_to_journal = true;
2373
2374         i = commit_start;
2375         for (n = 0; n < commit_sections; n++) {
2376                 for (j = 0; j < ic->journal_section_entries; j++) {
2377                         struct journal_entry *je;
2378                         je = access_journal_entry(ic, i, j);
2379                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2380                 }
2381                 for (j = 0; j < ic->journal_section_sectors; j++) {
2382                         struct journal_sector *js;
2383                         js = access_journal(ic, i, j);
2384                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2385                 }
2386                 i++;
2387                 if (unlikely(i >= ic->journal_sections))
2388                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2389                 wraparound_section(ic, &i);
2390         }
2391         smp_rmb();
2392
2393         write_journal(ic, commit_start, commit_sections);
2394
2395         spin_lock_irq(&ic->endio_wait.lock);
2396         ic->uncommitted_section += commit_sections;
2397         wraparound_section(ic, &ic->uncommitted_section);
2398         ic->n_uncommitted_sections -= commit_sections;
2399         ic->n_committed_sections += commit_sections;
2400         spin_unlock_irq(&ic->endio_wait.lock);
2401
2402         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2403                 queue_work(ic->writer_wq, &ic->writer_work);
2404
2405 release_flush_bios:
2406         while (flushes) {
2407                 struct bio *next = flushes->bi_next;
2408                 flushes->bi_next = NULL;
2409                 do_endio(ic, flushes);
2410                 flushes = next;
2411         }
2412 }
2413
2414 static void complete_copy_from_journal(unsigned long error, void *context)
2415 {
2416         struct journal_io *io = context;
2417         struct journal_completion *comp = io->comp;
2418         struct dm_integrity_c *ic = comp->ic;
2419         remove_range(ic, &io->range);
2420         mempool_free(io, &ic->journal_io_mempool);
2421         if (unlikely(error != 0))
2422                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2423         complete_journal_op(comp);
2424 }
2425
2426 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2427                                struct journal_entry *je)
2428 {
2429         unsigned int s = 0;
2430         do {
2431                 js->commit_id = je->last_bytes[s];
2432                 js++;
2433         } while (++s < ic->sectors_per_block);
2434 }
2435
2436 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2437                              unsigned int write_sections, bool from_replay)
2438 {
2439         unsigned int i, j, n;
2440         struct journal_completion comp;
2441         struct blk_plug plug;
2442
2443         blk_start_plug(&plug);
2444
2445         comp.ic = ic;
2446         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2447         init_completion(&comp.comp);
2448
2449         i = write_start;
2450         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2451 #ifndef INTERNAL_VERIFY
2452                 if (unlikely(from_replay))
2453 #endif
2454                         rw_section_mac(ic, i, false);
2455                 for (j = 0; j < ic->journal_section_entries; j++) {
2456                         struct journal_entry *je = access_journal_entry(ic, i, j);
2457                         sector_t sec, area, offset;
2458                         unsigned int k, l, next_loop;
2459                         sector_t metadata_block;
2460                         unsigned int metadata_offset;
2461                         struct journal_io *io;
2462
2463                         if (journal_entry_is_unused(je))
2464                                 continue;
2465                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2466                         sec = journal_entry_get_sector(je);
2467                         if (unlikely(from_replay)) {
2468                                 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2469                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2470                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2471                                 }
2472                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2473                                         journal_entry_set_unused(je);
2474                                         continue;
2475                                 }
2476                         }
2477                         get_area_and_offset(ic, sec, &area, &offset);
2478                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2479                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2480                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2481                                 sector_t sec2, area2, offset2;
2482                                 if (journal_entry_is_unused(je2))
2483                                         break;
2484                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2485                                 sec2 = journal_entry_get_sector(je2);
2486                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2487                                         break;
2488                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2489                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2490                                         break;
2491                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2492                         }
2493                         next_loop = k - 1;
2494
2495                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2496                         io->comp = &comp;
2497                         io->range.logical_sector = sec;
2498                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2499
2500                         spin_lock_irq(&ic->endio_wait.lock);
2501                         add_new_range_and_wait(ic, &io->range);
2502
2503                         if (likely(!from_replay)) {
2504                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2505
2506                                 /* don't write if there is newer committed sector */
2507                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2508                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2509
2510                                         journal_entry_set_unused(je2);
2511                                         remove_journal_node(ic, &section_node[j]);
2512                                         j++;
2513                                         sec += ic->sectors_per_block;
2514                                         offset += ic->sectors_per_block;
2515                                 }
2516                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2517                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2518
2519                                         journal_entry_set_unused(je2);
2520                                         remove_journal_node(ic, &section_node[k - 1]);
2521                                         k--;
2522                                 }
2523                                 if (j == k) {
2524                                         remove_range_unlocked(ic, &io->range);
2525                                         spin_unlock_irq(&ic->endio_wait.lock);
2526                                         mempool_free(io, &ic->journal_io_mempool);
2527                                         goto skip_io;
2528                                 }
2529                                 for (l = j; l < k; l++) {
2530                                         remove_journal_node(ic, &section_node[l]);
2531                                 }
2532                         }
2533                         spin_unlock_irq(&ic->endio_wait.lock);
2534
2535                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2536                         for (l = j; l < k; l++) {
2537                                 int r;
2538                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2539
2540                                 if (
2541 #ifndef INTERNAL_VERIFY
2542                                     unlikely(from_replay) &&
2543 #endif
2544                                     ic->internal_hash) {
2545                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2546
2547                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2548                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2549                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2550                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2551                                                 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2552                                         }
2553                                 }
2554
2555                                 journal_entry_set_unused(je2);
2556                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2557                                                         ic->tag_size, TAG_WRITE);
2558                                 if (unlikely(r)) {
2559                                         dm_integrity_io_error(ic, "reading tags", r);
2560                                 }
2561                         }
2562
2563                         atomic_inc(&comp.in_flight);
2564                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2565                                           (k - j) << ic->sb->log2_sectors_per_block,
2566                                           get_data_sector(ic, area, offset),
2567                                           complete_copy_from_journal, io);
2568 skip_io:
2569                         j = next_loop;
2570                 }
2571         }
2572
2573         dm_bufio_write_dirty_buffers_async(ic->bufio);
2574
2575         blk_finish_plug(&plug);
2576
2577         complete_journal_op(&comp);
2578         wait_for_completion_io(&comp.comp);
2579
2580         dm_integrity_flush_buffers(ic, true);
2581 }
2582
2583 static void integrity_writer(struct work_struct *w)
2584 {
2585         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2586         unsigned int write_start, write_sections;
2587
2588         unsigned int prev_free_sectors;
2589
2590         spin_lock_irq(&ic->endio_wait.lock);
2591         write_start = ic->committed_section;
2592         write_sections = ic->n_committed_sections;
2593         spin_unlock_irq(&ic->endio_wait.lock);
2594
2595         if (!write_sections)
2596                 return;
2597
2598         do_journal_write(ic, write_start, write_sections, false);
2599
2600         spin_lock_irq(&ic->endio_wait.lock);
2601
2602         ic->committed_section += write_sections;
2603         wraparound_section(ic, &ic->committed_section);
2604         ic->n_committed_sections -= write_sections;
2605
2606         prev_free_sectors = ic->free_sectors;
2607         ic->free_sectors += write_sections * ic->journal_section_entries;
2608         if (unlikely(!prev_free_sectors))
2609                 wake_up_locked(&ic->endio_wait);
2610
2611         spin_unlock_irq(&ic->endio_wait.lock);
2612 }
2613
2614 static void recalc_write_super(struct dm_integrity_c *ic)
2615 {
2616         int r;
2617
2618         dm_integrity_flush_buffers(ic, false);
2619         if (dm_integrity_failed(ic))
2620                 return;
2621
2622         r = sync_rw_sb(ic, REQ_OP_WRITE);
2623         if (unlikely(r))
2624                 dm_integrity_io_error(ic, "writing superblock", r);
2625 }
2626
2627 static void integrity_recalc(struct work_struct *w)
2628 {
2629         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2630         struct dm_integrity_range range;
2631         struct dm_io_request io_req;
2632         struct dm_io_region io_loc;
2633         sector_t area, offset;
2634         sector_t metadata_block;
2635         unsigned int metadata_offset;
2636         sector_t logical_sector, n_sectors;
2637         __u8 *t;
2638         unsigned int i;
2639         int r;
2640         unsigned int super_counter = 0;
2641
2642         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2643
2644         spin_lock_irq(&ic->endio_wait.lock);
2645
2646 next_chunk:
2647
2648         if (unlikely(dm_post_suspending(ic->ti)))
2649                 goto unlock_ret;
2650
2651         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2652         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2653                 if (ic->mode == 'B') {
2654                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2655                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2656                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2657                 }
2658                 goto unlock_ret;
2659         }
2660
2661         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2662         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2663         if (!ic->meta_dev)
2664                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2665
2666         add_new_range_and_wait(ic, &range);
2667         spin_unlock_irq(&ic->endio_wait.lock);
2668         logical_sector = range.logical_sector;
2669         n_sectors = range.n_sectors;
2670
2671         if (ic->mode == 'B') {
2672                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2673                         goto advance_and_next;
2674                 }
2675                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2676                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2677                         logical_sector += ic->sectors_per_block;
2678                         n_sectors -= ic->sectors_per_block;
2679                         cond_resched();
2680                 }
2681                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2682                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2683                         n_sectors -= ic->sectors_per_block;
2684                         cond_resched();
2685                 }
2686                 get_area_and_offset(ic, logical_sector, &area, &offset);
2687         }
2688
2689         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2690
2691         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2692                 recalc_write_super(ic);
2693                 if (ic->mode == 'B') {
2694                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2695                 }
2696                 super_counter = 0;
2697         }
2698
2699         if (unlikely(dm_integrity_failed(ic)))
2700                 goto err;
2701
2702         io_req.bi_opf = REQ_OP_READ;
2703         io_req.mem.type = DM_IO_VMA;
2704         io_req.mem.ptr.addr = ic->recalc_buffer;
2705         io_req.notify.fn = NULL;
2706         io_req.client = ic->io;
2707         io_loc.bdev = ic->dev->bdev;
2708         io_loc.sector = get_data_sector(ic, area, offset);
2709         io_loc.count = n_sectors;
2710
2711         r = dm_io(&io_req, 1, &io_loc, NULL);
2712         if (unlikely(r)) {
2713                 dm_integrity_io_error(ic, "reading data", r);
2714                 goto err;
2715         }
2716
2717         t = ic->recalc_tags;
2718         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2719                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2720                 t += ic->tag_size;
2721         }
2722
2723         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2724
2725         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2726         if (unlikely(r)) {
2727                 dm_integrity_io_error(ic, "writing tags", r);
2728                 goto err;
2729         }
2730
2731         if (ic->mode == 'B') {
2732                 sector_t start, end;
2733                 start = (range.logical_sector >>
2734                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2735                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2736                 end = ((range.logical_sector + range.n_sectors) >>
2737                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2738                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2739                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2740         }
2741
2742 advance_and_next:
2743         cond_resched();
2744
2745         spin_lock_irq(&ic->endio_wait.lock);
2746         remove_range_unlocked(ic, &range);
2747         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2748         goto next_chunk;
2749
2750 err:
2751         remove_range(ic, &range);
2752         return;
2753
2754 unlock_ret:
2755         spin_unlock_irq(&ic->endio_wait.lock);
2756
2757         recalc_write_super(ic);
2758 }
2759
2760 static void bitmap_block_work(struct work_struct *w)
2761 {
2762         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2763         struct dm_integrity_c *ic = bbs->ic;
2764         struct bio *bio;
2765         struct bio_list bio_queue;
2766         struct bio_list waiting;
2767
2768         bio_list_init(&waiting);
2769
2770         spin_lock(&bbs->bio_queue_lock);
2771         bio_queue = bbs->bio_queue;
2772         bio_list_init(&bbs->bio_queue);
2773         spin_unlock(&bbs->bio_queue_lock);
2774
2775         while ((bio = bio_list_pop(&bio_queue))) {
2776                 struct dm_integrity_io *dio;
2777
2778                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2779
2780                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2781                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2782                         remove_range(ic, &dio->range);
2783                         INIT_WORK(&dio->work, integrity_bio_wait);
2784                         queue_work(ic->offload_wq, &dio->work);
2785                 } else {
2786                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2787                                         dio->range.n_sectors, BITMAP_OP_SET);
2788                         bio_list_add(&waiting, bio);
2789                 }
2790         }
2791
2792         if (bio_list_empty(&waiting))
2793                 return;
2794
2795         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2796                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2797                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2798
2799         while ((bio = bio_list_pop(&waiting))) {
2800                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2801
2802                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2803                                 dio->range.n_sectors, BITMAP_OP_SET);
2804
2805                 remove_range(ic, &dio->range);
2806                 INIT_WORK(&dio->work, integrity_bio_wait);
2807                 queue_work(ic->offload_wq, &dio->work);
2808         }
2809
2810         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2811 }
2812
2813 static void bitmap_flush_work(struct work_struct *work)
2814 {
2815         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2816         struct dm_integrity_range range;
2817         unsigned long limit;
2818         struct bio *bio;
2819
2820         dm_integrity_flush_buffers(ic, false);
2821
2822         range.logical_sector = 0;
2823         range.n_sectors = ic->provided_data_sectors;
2824
2825         spin_lock_irq(&ic->endio_wait.lock);
2826         add_new_range_and_wait(ic, &range);
2827         spin_unlock_irq(&ic->endio_wait.lock);
2828
2829         dm_integrity_flush_buffers(ic, true);
2830
2831         limit = ic->provided_data_sectors;
2832         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2833                 limit = le64_to_cpu(ic->sb->recalc_sector)
2834                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2835                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2836         }
2837         /*DEBUG_print("zeroing journal\n");*/
2838         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2839         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2840
2841         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2842                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2843
2844         spin_lock_irq(&ic->endio_wait.lock);
2845         remove_range_unlocked(ic, &range);
2846         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2847                 bio_endio(bio);
2848                 spin_unlock_irq(&ic->endio_wait.lock);
2849                 spin_lock_irq(&ic->endio_wait.lock);
2850         }
2851         spin_unlock_irq(&ic->endio_wait.lock);
2852 }
2853
2854
2855 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2856                          unsigned int n_sections, unsigned char commit_seq)
2857 {
2858         unsigned int i, j, n;
2859
2860         if (!n_sections)
2861                 return;
2862
2863         for (n = 0; n < n_sections; n++) {
2864                 i = start_section + n;
2865                 wraparound_section(ic, &i);
2866                 for (j = 0; j < ic->journal_section_sectors; j++) {
2867                         struct journal_sector *js = access_journal(ic, i, j);
2868                         BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2869                         memset(&js->sectors, 0, sizeof(js->sectors));
2870                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2871                 }
2872                 for (j = 0; j < ic->journal_section_entries; j++) {
2873                         struct journal_entry *je = access_journal_entry(ic, i, j);
2874                         journal_entry_set_unused(je);
2875                 }
2876         }
2877
2878         write_journal(ic, start_section, n_sections);
2879 }
2880
2881 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2882 {
2883         unsigned char k;
2884         for (k = 0; k < N_COMMIT_IDS; k++) {
2885                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2886                         return k;
2887         }
2888         dm_integrity_io_error(ic, "journal commit id", -EIO);
2889         return -EIO;
2890 }
2891
2892 static void replay_journal(struct dm_integrity_c *ic)
2893 {
2894         unsigned int i, j;
2895         bool used_commit_ids[N_COMMIT_IDS];
2896         unsigned int max_commit_id_sections[N_COMMIT_IDS];
2897         unsigned int write_start, write_sections;
2898         unsigned int continue_section;
2899         bool journal_empty;
2900         unsigned char unused, last_used, want_commit_seq;
2901
2902         if (ic->mode == 'R')
2903                 return;
2904
2905         if (ic->journal_uptodate)
2906                 return;
2907
2908         last_used = 0;
2909         write_start = 0;
2910
2911         if (!ic->just_formatted) {
2912                 DEBUG_print("reading journal\n");
2913                 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2914                 if (ic->journal_io)
2915                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2916                 if (ic->journal_io) {
2917                         struct journal_completion crypt_comp;
2918                         crypt_comp.ic = ic;
2919                         init_completion(&crypt_comp.comp);
2920                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2921                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2922                         wait_for_completion(&crypt_comp.comp);
2923                 }
2924                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2925         }
2926
2927         if (dm_integrity_failed(ic))
2928                 goto clear_journal;
2929
2930         journal_empty = true;
2931         memset(used_commit_ids, 0, sizeof used_commit_ids);
2932         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2933         for (i = 0; i < ic->journal_sections; i++) {
2934                 for (j = 0; j < ic->journal_section_sectors; j++) {
2935                         int k;
2936                         struct journal_sector *js = access_journal(ic, i, j);
2937                         k = find_commit_seq(ic, i, j, js->commit_id);
2938                         if (k < 0)
2939                                 goto clear_journal;
2940                         used_commit_ids[k] = true;
2941                         max_commit_id_sections[k] = i;
2942                 }
2943                 if (journal_empty) {
2944                         for (j = 0; j < ic->journal_section_entries; j++) {
2945                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2946                                 if (!journal_entry_is_unused(je)) {
2947                                         journal_empty = false;
2948                                         break;
2949                                 }
2950                         }
2951                 }
2952         }
2953
2954         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2955                 unused = N_COMMIT_IDS - 1;
2956                 while (unused && !used_commit_ids[unused - 1])
2957                         unused--;
2958         } else {
2959                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2960                         if (!used_commit_ids[unused])
2961                                 break;
2962                 if (unused == N_COMMIT_IDS) {
2963                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2964                         goto clear_journal;
2965                 }
2966         }
2967         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2968                     unused, used_commit_ids[0], used_commit_ids[1],
2969                     used_commit_ids[2], used_commit_ids[3]);
2970
2971         last_used = prev_commit_seq(unused);
2972         want_commit_seq = prev_commit_seq(last_used);
2973
2974         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2975                 journal_empty = true;
2976
2977         write_start = max_commit_id_sections[last_used] + 1;
2978         if (unlikely(write_start >= ic->journal_sections))
2979                 want_commit_seq = next_commit_seq(want_commit_seq);
2980         wraparound_section(ic, &write_start);
2981
2982         i = write_start;
2983         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2984                 for (j = 0; j < ic->journal_section_sectors; j++) {
2985                         struct journal_sector *js = access_journal(ic, i, j);
2986
2987                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2988                                 /*
2989                                  * This could be caused by crash during writing.
2990                                  * We won't replay the inconsistent part of the
2991                                  * journal.
2992                                  */
2993                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2994                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2995                                 goto brk;
2996                         }
2997                 }
2998                 i++;
2999                 if (unlikely(i >= ic->journal_sections))
3000                         want_commit_seq = next_commit_seq(want_commit_seq);
3001                 wraparound_section(ic, &i);
3002         }
3003 brk:
3004
3005         if (!journal_empty) {
3006                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3007                             write_sections, write_start, want_commit_seq);
3008                 do_journal_write(ic, write_start, write_sections, true);
3009         }
3010
3011         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3012                 continue_section = write_start;
3013                 ic->commit_seq = want_commit_seq;
3014                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3015         } else {
3016                 unsigned int s;
3017                 unsigned char erase_seq;
3018 clear_journal:
3019                 DEBUG_print("clearing journal\n");
3020
3021                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3022                 s = write_start;
3023                 init_journal(ic, s, 1, erase_seq);
3024                 s++;
3025                 wraparound_section(ic, &s);
3026                 if (ic->journal_sections >= 2) {
3027                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3028                         s += ic->journal_sections - 2;
3029                         wraparound_section(ic, &s);
3030                         init_journal(ic, s, 1, erase_seq);
3031                 }
3032
3033                 continue_section = 0;
3034                 ic->commit_seq = next_commit_seq(erase_seq);
3035         }
3036
3037         ic->committed_section = continue_section;
3038         ic->n_committed_sections = 0;
3039
3040         ic->uncommitted_section = continue_section;
3041         ic->n_uncommitted_sections = 0;
3042
3043         ic->free_section = continue_section;
3044         ic->free_section_entry = 0;
3045         ic->free_sectors = ic->journal_entries;
3046
3047         ic->journal_tree_root = RB_ROOT;
3048         for (i = 0; i < ic->journal_entries; i++)
3049                 init_journal_node(&ic->journal_tree[i]);
3050 }
3051
3052 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3053 {
3054         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3055
3056         if (ic->mode == 'B') {
3057                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3058                 ic->synchronous_mode = 1;
3059
3060                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3061                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3062                 flush_workqueue(ic->commit_wq);
3063         }
3064 }
3065
3066 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3067 {
3068         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3069
3070         DEBUG_print("dm_integrity_reboot\n");
3071
3072         dm_integrity_enter_synchronous_mode(ic);
3073
3074         return NOTIFY_DONE;
3075 }
3076
3077 static void dm_integrity_postsuspend(struct dm_target *ti)
3078 {
3079         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3080         int r;
3081
3082         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3083
3084         del_timer_sync(&ic->autocommit_timer);
3085
3086         if (ic->recalc_wq)
3087                 drain_workqueue(ic->recalc_wq);
3088
3089         if (ic->mode == 'B')
3090                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3091
3092         queue_work(ic->commit_wq, &ic->commit_work);
3093         drain_workqueue(ic->commit_wq);
3094
3095         if (ic->mode == 'J') {
3096                 queue_work(ic->writer_wq, &ic->writer_work);
3097                 drain_workqueue(ic->writer_wq);
3098                 dm_integrity_flush_buffers(ic, true);
3099                 if (ic->wrote_to_journal) {
3100                         init_journal(ic, ic->free_section,
3101                                      ic->journal_sections - ic->free_section, ic->commit_seq);
3102                         if (ic->free_section) {
3103                                 init_journal(ic, 0, ic->free_section,
3104                                              next_commit_seq(ic->commit_seq));
3105                         }
3106                 }
3107         }
3108
3109         if (ic->mode == 'B') {
3110                 dm_integrity_flush_buffers(ic, true);
3111 #if 1
3112                 /* set to 0 to test bitmap replay code */
3113                 init_journal(ic, 0, ic->journal_sections, 0);
3114                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3115                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3116                 if (unlikely(r))
3117                         dm_integrity_io_error(ic, "writing superblock", r);
3118 #endif
3119         }
3120
3121         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3122
3123         ic->journal_uptodate = true;
3124 }
3125
3126 static void dm_integrity_resume(struct dm_target *ti)
3127 {
3128         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3129         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3130         int r;
3131
3132         DEBUG_print("resume\n");
3133
3134         ic->wrote_to_journal = false;
3135
3136         if (ic->provided_data_sectors != old_provided_data_sectors) {
3137                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3138                     ic->mode == 'B' &&
3139                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3140                         rw_journal_sectors(ic, REQ_OP_READ, 0,
3141                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3142                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3143                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3144                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3145                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3146                 }
3147
3148                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3149                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3150                 if (unlikely(r))
3151                         dm_integrity_io_error(ic, "writing superblock", r);
3152         }
3153
3154         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3155                 DEBUG_print("resume dirty_bitmap\n");
3156                 rw_journal_sectors(ic, REQ_OP_READ, 0,
3157                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3158                 if (ic->mode == 'B') {
3159                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3160                             !ic->reset_recalculate_flag) {
3161                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3162                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3163                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3164                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3165                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3166                                         ic->sb->recalc_sector = cpu_to_le64(0);
3167                                 }
3168                         } else {
3169                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3170                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3171                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3172                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3173                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3174                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3175                                 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3176                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3177                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3178                                 ic->sb->recalc_sector = cpu_to_le64(0);
3179                         }
3180                 } else {
3181                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3182                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3183                             ic->reset_recalculate_flag) {
3184                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3185                                 ic->sb->recalc_sector = cpu_to_le64(0);
3186                         }
3187                         init_journal(ic, 0, ic->journal_sections, 0);
3188                         replay_journal(ic);
3189                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3190                 }
3191                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3192                 if (unlikely(r))
3193                         dm_integrity_io_error(ic, "writing superblock", r);
3194         } else {
3195                 replay_journal(ic);
3196                 if (ic->reset_recalculate_flag) {
3197                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3198                         ic->sb->recalc_sector = cpu_to_le64(0);
3199                 }
3200                 if (ic->mode == 'B') {
3201                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3202                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3203                         r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3204                         if (unlikely(r))
3205                                 dm_integrity_io_error(ic, "writing superblock", r);
3206
3207                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3208                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3209                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3210                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3211                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3212                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3213                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3214                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3215                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3216                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3217                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3218                         }
3219                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3220                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3221                 }
3222         }
3223
3224         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3225         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3226                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3227                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3228                 if (recalc_pos < ic->provided_data_sectors) {
3229                         queue_work(ic->recalc_wq, &ic->recalc_work);
3230                 } else if (recalc_pos > ic->provided_data_sectors) {
3231                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3232                         recalc_write_super(ic);
3233                 }
3234         }
3235
3236         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3237         ic->reboot_notifier.next = NULL;
3238         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3239         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3240
3241 #if 0
3242         /* set to 1 to stress test synchronous mode */
3243         dm_integrity_enter_synchronous_mode(ic);
3244 #endif
3245 }
3246
3247 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3248                                 unsigned int status_flags, char *result, unsigned int maxlen)
3249 {
3250         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3251         unsigned int arg_count;
3252         size_t sz = 0;
3253
3254         switch (type) {
3255         case STATUSTYPE_INFO:
3256                 DMEMIT("%llu %llu",
3257                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3258                         ic->provided_data_sectors);
3259                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3260                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3261                 else
3262                         DMEMIT(" -");
3263                 break;
3264
3265         case STATUSTYPE_TABLE: {
3266                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3267                 watermark_percentage += ic->journal_entries / 2;
3268                 do_div(watermark_percentage, ic->journal_entries);
3269                 arg_count = 3;
3270                 arg_count += !!ic->meta_dev;
3271                 arg_count += ic->sectors_per_block != 1;
3272                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3273                 arg_count += ic->reset_recalculate_flag;
3274                 arg_count += ic->discard;
3275                 arg_count += ic->mode == 'J';
3276                 arg_count += ic->mode == 'J';
3277                 arg_count += ic->mode == 'B';
3278                 arg_count += ic->mode == 'B';
3279                 arg_count += !!ic->internal_hash_alg.alg_string;
3280                 arg_count += !!ic->journal_crypt_alg.alg_string;
3281                 arg_count += !!ic->journal_mac_alg.alg_string;
3282                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3283                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3284                 arg_count += ic->legacy_recalculate;
3285                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3286                        ic->tag_size, ic->mode, arg_count);
3287                 if (ic->meta_dev)
3288                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3289                 if (ic->sectors_per_block != 1)
3290                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3291                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3292                         DMEMIT(" recalculate");
3293                 if (ic->reset_recalculate_flag)
3294                         DMEMIT(" reset_recalculate");
3295                 if (ic->discard)
3296                         DMEMIT(" allow_discards");
3297                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3298                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3299                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3300                 if (ic->mode == 'J') {
3301                         DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3302                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3303                 }
3304                 if (ic->mode == 'B') {
3305                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3306                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3307                 }
3308                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3309                         DMEMIT(" fix_padding");
3310                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3311                         DMEMIT(" fix_hmac");
3312                 if (ic->legacy_recalculate)
3313                         DMEMIT(" legacy_recalculate");
3314
3315 #define EMIT_ALG(a, n)                                                  \
3316                 do {                                                    \
3317                         if (ic->a.alg_string) {                         \
3318                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3319                                 if (ic->a.key_string)                   \
3320                                         DMEMIT(":%s", ic->a.key_string);\
3321                         }                                               \
3322                 } while (0)
3323                 EMIT_ALG(internal_hash_alg, "internal_hash");
3324                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3325                 EMIT_ALG(journal_mac_alg, "journal_mac");
3326                 break;
3327         }
3328         case STATUSTYPE_IMA:
3329                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3330                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3331                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3332
3333                 if (ic->meta_dev)
3334                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3335                 if (ic->sectors_per_block != 1)
3336                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3337
3338                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3339                        'y' : 'n');
3340                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3341                 DMEMIT(",fix_padding=%c",
3342                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3343                 DMEMIT(",fix_hmac=%c",
3344                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3345                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3346
3347                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3348                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3349                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3350                 DMEMIT(";");
3351                 break;
3352         }
3353 }
3354
3355 static int dm_integrity_iterate_devices(struct dm_target *ti,
3356                                         iterate_devices_callout_fn fn, void *data)
3357 {
3358         struct dm_integrity_c *ic = ti->private;
3359
3360         if (!ic->meta_dev)
3361                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3362         else
3363                 return fn(ti, ic->dev, 0, ti->len, data);
3364 }
3365
3366 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3367 {
3368         struct dm_integrity_c *ic = ti->private;
3369
3370         if (ic->sectors_per_block > 1) {
3371                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3372                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3373                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3374                 limits->dma_alignment = limits->logical_block_size - 1;
3375         }
3376 }
3377
3378 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3379 {
3380         unsigned int sector_space = JOURNAL_SECTOR_DATA;
3381
3382         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3383         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3384                                          JOURNAL_ENTRY_ROUNDUP);
3385
3386         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3387                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3388         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3389         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3390         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3391         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3392 }
3393
3394 static int calculate_device_limits(struct dm_integrity_c *ic)
3395 {
3396         __u64 initial_sectors;
3397
3398         calculate_journal_section_size(ic);
3399         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3400         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3401                 return -EINVAL;
3402         ic->initial_sectors = initial_sectors;
3403
3404         if (!ic->meta_dev) {
3405                 sector_t last_sector, last_area, last_offset;
3406
3407                 /* we have to maintain excessive padding for compatibility with existing volumes */
3408                 __u64 metadata_run_padding =
3409                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3410                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3411                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3412
3413                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3414                                             metadata_run_padding) >> SECTOR_SHIFT;
3415                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3416                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3417                 else
3418                         ic->log2_metadata_run = -1;
3419
3420                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3421                 last_sector = get_data_sector(ic, last_area, last_offset);
3422                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3423                         return -EINVAL;
3424         } else {
3425                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3426                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3427                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3428                 meta_size <<= ic->log2_buffer_sectors;
3429                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3430                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3431                         return -EINVAL;
3432                 ic->metadata_run = 1;
3433                 ic->log2_metadata_run = 0;
3434         }
3435
3436         return 0;
3437 }
3438
3439 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3440 {
3441         if (!ic->meta_dev) {
3442                 int test_bit;
3443                 ic->provided_data_sectors = 0;
3444                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3445                         __u64 prev_data_sectors = ic->provided_data_sectors;
3446
3447                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3448                         if (calculate_device_limits(ic))
3449                                 ic->provided_data_sectors = prev_data_sectors;
3450                 }
3451         } else {
3452                 ic->provided_data_sectors = ic->data_device_sectors;
3453                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3454         }
3455 }
3456
3457 static int initialize_superblock(struct dm_integrity_c *ic,
3458                                  unsigned int journal_sectors, unsigned int interleave_sectors)
3459 {
3460         unsigned int journal_sections;
3461         int test_bit;
3462
3463         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3464         memcpy(ic->sb->magic, SB_MAGIC, 8);
3465         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3466         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3467         if (ic->journal_mac_alg.alg_string)
3468                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3469
3470         calculate_journal_section_size(ic);
3471         journal_sections = journal_sectors / ic->journal_section_sectors;
3472         if (!journal_sections)
3473                 journal_sections = 1;
3474
3475         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3476                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3477                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3478         }
3479
3480         if (!ic->meta_dev) {
3481                 if (ic->fix_padding)
3482                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3483                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3484                 if (!interleave_sectors)
3485                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3486                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3487                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3488                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3489
3490                 get_provided_data_sectors(ic);
3491                 if (!ic->provided_data_sectors)
3492                         return -EINVAL;
3493         } else {
3494                 ic->sb->log2_interleave_sectors = 0;
3495
3496                 get_provided_data_sectors(ic);
3497                 if (!ic->provided_data_sectors)
3498                         return -EINVAL;
3499
3500 try_smaller_buffer:
3501                 ic->sb->journal_sections = cpu_to_le32(0);
3502                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3503                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3504                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3505                         if (test_journal_sections > journal_sections)
3506                                 continue;
3507                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3508                         if (calculate_device_limits(ic))
3509                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3510
3511                 }
3512                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3513                         if (ic->log2_buffer_sectors > 3) {
3514                                 ic->log2_buffer_sectors--;
3515                                 goto try_smaller_buffer;
3516                         }
3517                         return -EINVAL;
3518                 }
3519         }
3520
3521         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3522
3523         sb_set_version(ic);
3524
3525         return 0;
3526 }
3527
3528 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3529 {
3530         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3531         struct blk_integrity bi;
3532
3533         memset(&bi, 0, sizeof(bi));
3534         bi.profile = &dm_integrity_profile;
3535         bi.tuple_size = ic->tag_size;
3536         bi.tag_size = bi.tuple_size;
3537         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3538
3539         blk_integrity_register(disk, &bi);
3540         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3541 }
3542
3543 static void dm_integrity_free_page_list(struct page_list *pl)
3544 {
3545         unsigned int i;
3546
3547         if (!pl)
3548                 return;
3549         for (i = 0; pl[i].page; i++)
3550                 __free_page(pl[i].page);
3551         kvfree(pl);
3552 }
3553
3554 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3555 {
3556         struct page_list *pl;
3557         unsigned int i;
3558
3559         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3560         if (!pl)
3561                 return NULL;
3562
3563         for (i = 0; i < n_pages; i++) {
3564                 pl[i].page = alloc_page(GFP_KERNEL);
3565                 if (!pl[i].page) {
3566                         dm_integrity_free_page_list(pl);
3567                         return NULL;
3568                 }
3569                 if (i)
3570                         pl[i - 1].next = &pl[i];
3571         }
3572         pl[i].page = NULL;
3573         pl[i].next = NULL;
3574
3575         return pl;
3576 }
3577
3578 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3579 {
3580         unsigned int i;
3581         for (i = 0; i < ic->journal_sections; i++)
3582                 kvfree(sl[i]);
3583         kvfree(sl);
3584 }
3585
3586 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3587                                                                    struct page_list *pl)
3588 {
3589         struct scatterlist **sl;
3590         unsigned int i;
3591
3592         sl = kvmalloc_array(ic->journal_sections,
3593                             sizeof(struct scatterlist *),
3594                             GFP_KERNEL | __GFP_ZERO);
3595         if (!sl)
3596                 return NULL;
3597
3598         for (i = 0; i < ic->journal_sections; i++) {
3599                 struct scatterlist *s;
3600                 unsigned int start_index, start_offset;
3601                 unsigned int end_index, end_offset;
3602                 unsigned int n_pages;
3603                 unsigned int idx;
3604
3605                 page_list_location(ic, i, 0, &start_index, &start_offset);
3606                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3607                                    &end_index, &end_offset);
3608
3609                 n_pages = (end_index - start_index + 1);
3610
3611                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3612                                    GFP_KERNEL);
3613                 if (!s) {
3614                         dm_integrity_free_journal_scatterlist(ic, sl);
3615                         return NULL;
3616                 }
3617
3618                 sg_init_table(s, n_pages);
3619                 for (idx = start_index; idx <= end_index; idx++) {
3620                         char *va = lowmem_page_address(pl[idx].page);
3621                         unsigned int start = 0, end = PAGE_SIZE;
3622                         if (idx == start_index)
3623                                 start = start_offset;
3624                         if (idx == end_index)
3625                                 end = end_offset + (1 << SECTOR_SHIFT);
3626                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3627                 }
3628
3629                 sl[i] = s;
3630         }
3631
3632         return sl;
3633 }
3634
3635 static void free_alg(struct alg_spec *a)
3636 {
3637         kfree_sensitive(a->alg_string);
3638         kfree_sensitive(a->key);
3639         memset(a, 0, sizeof *a);
3640 }
3641
3642 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3643 {
3644         char *k;
3645
3646         free_alg(a);
3647
3648         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3649         if (!a->alg_string)
3650                 goto nomem;
3651
3652         k = strchr(a->alg_string, ':');
3653         if (k) {
3654                 *k = 0;
3655                 a->key_string = k + 1;
3656                 if (strlen(a->key_string) & 1)
3657                         goto inval;
3658
3659                 a->key_size = strlen(a->key_string) / 2;
3660                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3661                 if (!a->key)
3662                         goto nomem;
3663                 if (hex2bin(a->key, a->key_string, a->key_size))
3664                         goto inval;
3665         }
3666
3667         return 0;
3668 inval:
3669         *error = error_inval;
3670         return -EINVAL;
3671 nomem:
3672         *error = "Out of memory for an argument";
3673         return -ENOMEM;
3674 }
3675
3676 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3677                    char *error_alg, char *error_key)
3678 {
3679         int r;
3680
3681         if (a->alg_string) {
3682                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3683                 if (IS_ERR(*hash)) {
3684                         *error = error_alg;
3685                         r = PTR_ERR(*hash);
3686                         *hash = NULL;
3687                         return r;
3688                 }
3689
3690                 if (a->key) {
3691                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3692                         if (r) {
3693                                 *error = error_key;
3694                                 return r;
3695                         }
3696                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3697                         *error = error_key;
3698                         return -ENOKEY;
3699                 }
3700         }
3701
3702         return 0;
3703 }
3704
3705 static int create_journal(struct dm_integrity_c *ic, char **error)
3706 {
3707         int r = 0;
3708         unsigned int i;
3709         __u64 journal_pages, journal_desc_size, journal_tree_size;
3710         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3711         struct skcipher_request *req = NULL;
3712
3713         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3714         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3715         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3716         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3717
3718         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3719                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3720         journal_desc_size = journal_pages * sizeof(struct page_list);
3721         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3722                 *error = "Journal doesn't fit into memory";
3723                 r = -ENOMEM;
3724                 goto bad;
3725         }
3726         ic->journal_pages = journal_pages;
3727
3728         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3729         if (!ic->journal) {
3730                 *error = "Could not allocate memory for journal";
3731                 r = -ENOMEM;
3732                 goto bad;
3733         }
3734         if (ic->journal_crypt_alg.alg_string) {
3735                 unsigned int ivsize, blocksize;
3736                 struct journal_completion comp;
3737
3738                 comp.ic = ic;
3739                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3740                 if (IS_ERR(ic->journal_crypt)) {
3741                         *error = "Invalid journal cipher";
3742                         r = PTR_ERR(ic->journal_crypt);
3743                         ic->journal_crypt = NULL;
3744                         goto bad;
3745                 }
3746                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3747                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3748
3749                 if (ic->journal_crypt_alg.key) {
3750                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3751                                                    ic->journal_crypt_alg.key_size);
3752                         if (r) {
3753                                 *error = "Error setting encryption key";
3754                                 goto bad;
3755                         }
3756                 }
3757                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3758                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3759
3760                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3761                 if (!ic->journal_io) {
3762                         *error = "Could not allocate memory for journal io";
3763                         r = -ENOMEM;
3764                         goto bad;
3765                 }
3766
3767                 if (blocksize == 1) {
3768                         struct scatterlist *sg;
3769
3770                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3771                         if (!req) {
3772                                 *error = "Could not allocate crypt request";
3773                                 r = -ENOMEM;
3774                                 goto bad;
3775                         }
3776
3777                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3778                         if (!crypt_iv) {
3779                                 *error = "Could not allocate iv";
3780                                 r = -ENOMEM;
3781                                 goto bad;
3782                         }
3783
3784                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3785                         if (!ic->journal_xor) {
3786                                 *error = "Could not allocate memory for journal xor";
3787                                 r = -ENOMEM;
3788                                 goto bad;
3789                         }
3790
3791                         sg = kvmalloc_array(ic->journal_pages + 1,
3792                                             sizeof(struct scatterlist),
3793                                             GFP_KERNEL);
3794                         if (!sg) {
3795                                 *error = "Unable to allocate sg list";
3796                                 r = -ENOMEM;
3797                                 goto bad;
3798                         }
3799                         sg_init_table(sg, ic->journal_pages + 1);
3800                         for (i = 0; i < ic->journal_pages; i++) {
3801                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3802                                 clear_page(va);
3803                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3804                         }
3805                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3806
3807                         skcipher_request_set_crypt(req, sg, sg,
3808                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3809                         init_completion(&comp.comp);
3810                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3811                         if (do_crypt(true, req, &comp))
3812                                 wait_for_completion(&comp.comp);
3813                         kvfree(sg);
3814                         r = dm_integrity_failed(ic);
3815                         if (r) {
3816                                 *error = "Unable to encrypt journal";
3817                                 goto bad;
3818                         }
3819                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3820
3821                         crypto_free_skcipher(ic->journal_crypt);
3822                         ic->journal_crypt = NULL;
3823                 } else {
3824                         unsigned int crypt_len = roundup(ivsize, blocksize);
3825
3826                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3827                         if (!req) {
3828                                 *error = "Could not allocate crypt request";
3829                                 r = -ENOMEM;
3830                                 goto bad;
3831                         }
3832
3833                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3834                         if (!crypt_iv) {
3835                                 *error = "Could not allocate iv";
3836                                 r = -ENOMEM;
3837                                 goto bad;
3838                         }
3839
3840                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3841                         if (!crypt_data) {
3842                                 *error = "Unable to allocate crypt data";
3843                                 r = -ENOMEM;
3844                                 goto bad;
3845                         }
3846
3847                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3848                         if (!ic->journal_scatterlist) {
3849                                 *error = "Unable to allocate sg list";
3850                                 r = -ENOMEM;
3851                                 goto bad;
3852                         }
3853                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3854                         if (!ic->journal_io_scatterlist) {
3855                                 *error = "Unable to allocate sg list";
3856                                 r = -ENOMEM;
3857                                 goto bad;
3858                         }
3859                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3860                                                          sizeof(struct skcipher_request *),
3861                                                          GFP_KERNEL | __GFP_ZERO);
3862                         if (!ic->sk_requests) {
3863                                 *error = "Unable to allocate sk requests";
3864                                 r = -ENOMEM;
3865                                 goto bad;
3866                         }
3867                         for (i = 0; i < ic->journal_sections; i++) {
3868                                 struct scatterlist sg;
3869                                 struct skcipher_request *section_req;
3870                                 __le32 section_le = cpu_to_le32(i);
3871
3872                                 memset(crypt_iv, 0x00, ivsize);
3873                                 memset(crypt_data, 0x00, crypt_len);
3874                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3875
3876                                 sg_init_one(&sg, crypt_data, crypt_len);
3877                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3878                                 init_completion(&comp.comp);
3879                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3880                                 if (do_crypt(true, req, &comp))
3881                                         wait_for_completion(&comp.comp);
3882
3883                                 r = dm_integrity_failed(ic);
3884                                 if (r) {
3885                                         *error = "Unable to generate iv";
3886                                         goto bad;
3887                                 }
3888
3889                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3890                                 if (!section_req) {
3891                                         *error = "Unable to allocate crypt request";
3892                                         r = -ENOMEM;
3893                                         goto bad;
3894                                 }
3895                                 section_req->iv = kmalloc_array(ivsize, 2,
3896                                                                 GFP_KERNEL);
3897                                 if (!section_req->iv) {
3898                                         skcipher_request_free(section_req);
3899                                         *error = "Unable to allocate iv";
3900                                         r = -ENOMEM;
3901                                         goto bad;
3902                                 }
3903                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3904                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3905                                 ic->sk_requests[i] = section_req;
3906                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3907                         }
3908                 }
3909         }
3910
3911         for (i = 0; i < N_COMMIT_IDS; i++) {
3912                 unsigned int j;
3913 retest_commit_id:
3914                 for (j = 0; j < i; j++) {
3915                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3916                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3917                                 goto retest_commit_id;
3918                         }
3919                 }
3920                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3921         }
3922
3923         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3924         if (journal_tree_size > ULONG_MAX) {
3925                 *error = "Journal doesn't fit into memory";
3926                 r = -ENOMEM;
3927                 goto bad;
3928         }
3929         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3930         if (!ic->journal_tree) {
3931                 *error = "Could not allocate memory for journal tree";
3932                 r = -ENOMEM;
3933         }
3934 bad:
3935         kfree(crypt_data);
3936         kfree(crypt_iv);
3937         skcipher_request_free(req);
3938
3939         return r;
3940 }
3941
3942 /*
3943  * Construct a integrity mapping
3944  *
3945  * Arguments:
3946  *      device
3947  *      offset from the start of the device
3948  *      tag size
3949  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3950  *      number of optional arguments
3951  *      optional arguments:
3952  *              journal_sectors
3953  *              interleave_sectors
3954  *              buffer_sectors
3955  *              journal_watermark
3956  *              commit_time
3957  *              meta_device
3958  *              block_size
3959  *              sectors_per_bit
3960  *              bitmap_flush_interval
3961  *              internal_hash
3962  *              journal_crypt
3963  *              journal_mac
3964  *              recalculate
3965  */
3966 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3967 {
3968         struct dm_integrity_c *ic;
3969         char dummy;
3970         int r;
3971         unsigned int extra_args;
3972         struct dm_arg_set as;
3973         static const struct dm_arg _args[] = {
3974                 {0, 18, "Invalid number of feature args"},
3975         };
3976         unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3977         bool should_write_sb;
3978         __u64 threshold;
3979         unsigned long long start;
3980         __s8 log2_sectors_per_bitmap_bit = -1;
3981         __s8 log2_blocks_per_bitmap_bit;
3982         __u64 bits_in_journal;
3983         __u64 n_bitmap_bits;
3984
3985 #define DIRECT_ARGUMENTS        4
3986
3987         if (argc <= DIRECT_ARGUMENTS) {
3988                 ti->error = "Invalid argument count";
3989                 return -EINVAL;
3990         }
3991
3992         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3993         if (!ic) {
3994                 ti->error = "Cannot allocate integrity context";
3995                 return -ENOMEM;
3996         }
3997         ti->private = ic;
3998         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3999         ic->ti = ti;
4000
4001         ic->in_progress = RB_ROOT;
4002         INIT_LIST_HEAD(&ic->wait_list);
4003         init_waitqueue_head(&ic->endio_wait);
4004         bio_list_init(&ic->flush_bio_list);
4005         init_waitqueue_head(&ic->copy_to_journal_wait);
4006         init_completion(&ic->crypto_backoff);
4007         atomic64_set(&ic->number_of_mismatches, 0);
4008         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4009
4010         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4011         if (r) {
4012                 ti->error = "Device lookup failed";
4013                 goto bad;
4014         }
4015
4016         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4017                 ti->error = "Invalid starting offset";
4018                 r = -EINVAL;
4019                 goto bad;
4020         }
4021         ic->start = start;
4022
4023         if (strcmp(argv[2], "-")) {
4024                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4025                         ti->error = "Invalid tag size";
4026                         r = -EINVAL;
4027                         goto bad;
4028                 }
4029         }
4030
4031         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4032             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4033                 ic->mode = argv[3][0];
4034         } else {
4035                 ti->error = "Invalid mode (expecting J, B, D, R)";
4036                 r = -EINVAL;
4037                 goto bad;
4038         }
4039
4040         journal_sectors = 0;
4041         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4042         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4043         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4044         sync_msec = DEFAULT_SYNC_MSEC;
4045         ic->sectors_per_block = 1;
4046
4047         as.argc = argc - DIRECT_ARGUMENTS;
4048         as.argv = argv + DIRECT_ARGUMENTS;
4049         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4050         if (r)
4051                 goto bad;
4052
4053         while (extra_args--) {
4054                 const char *opt_string;
4055                 unsigned int val;
4056                 unsigned long long llval;
4057                 opt_string = dm_shift_arg(&as);
4058                 if (!opt_string) {
4059                         r = -EINVAL;
4060                         ti->error = "Not enough feature arguments";
4061                         goto bad;
4062                 }
4063                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4064                         journal_sectors = val ? val : 1;
4065                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4066                         interleave_sectors = val;
4067                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4068                         buffer_sectors = val;
4069                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4070                         journal_watermark = val;
4071                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4072                         sync_msec = val;
4073                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4074                         if (ic->meta_dev) {
4075                                 dm_put_device(ti, ic->meta_dev);
4076                                 ic->meta_dev = NULL;
4077                         }
4078                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4079                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4080                         if (r) {
4081                                 ti->error = "Device lookup failed";
4082                                 goto bad;
4083                         }
4084                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4085                         if (val < 1 << SECTOR_SHIFT ||
4086                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4087                             (val & (val -1))) {
4088                                 r = -EINVAL;
4089                                 ti->error = "Invalid block_size argument";
4090                                 goto bad;
4091                         }
4092                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4093                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4094                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4095                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4096                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4097                                 r = -EINVAL;
4098                                 ti->error = "Invalid bitmap_flush_interval argument";
4099                                 goto bad;
4100                         }
4101                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4102                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4103                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4104                                             "Invalid internal_hash argument");
4105                         if (r)
4106                                 goto bad;
4107                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4108                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4109                                             "Invalid journal_crypt argument");
4110                         if (r)
4111                                 goto bad;
4112                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4113                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4114                                             "Invalid journal_mac argument");
4115                         if (r)
4116                                 goto bad;
4117                 } else if (!strcmp(opt_string, "recalculate")) {
4118                         ic->recalculate_flag = true;
4119                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4120                         ic->recalculate_flag = true;
4121                         ic->reset_recalculate_flag = true;
4122                 } else if (!strcmp(opt_string, "allow_discards")) {
4123                         ic->discard = true;
4124                 } else if (!strcmp(opt_string, "fix_padding")) {
4125                         ic->fix_padding = true;
4126                 } else if (!strcmp(opt_string, "fix_hmac")) {
4127                         ic->fix_hmac = true;
4128                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4129                         ic->legacy_recalculate = true;
4130                 } else {
4131                         r = -EINVAL;
4132                         ti->error = "Invalid argument";
4133                         goto bad;
4134                 }
4135         }
4136
4137         ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4138         if (!ic->meta_dev)
4139                 ic->meta_device_sectors = ic->data_device_sectors;
4140         else
4141                 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4142
4143         if (!journal_sectors) {
4144                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4145                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4146         }
4147
4148         if (!buffer_sectors)
4149                 buffer_sectors = 1;
4150         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4151
4152         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4153                     "Invalid internal hash", "Error setting internal hash key");
4154         if (r)
4155                 goto bad;
4156
4157         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4158                     "Invalid journal mac", "Error setting journal mac key");
4159         if (r)
4160                 goto bad;
4161
4162         if (!ic->tag_size) {
4163                 if (!ic->internal_hash) {
4164                         ti->error = "Unknown tag size";
4165                         r = -EINVAL;
4166                         goto bad;
4167                 }
4168                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4169         }
4170         if (ic->tag_size > MAX_TAG_SIZE) {
4171                 ti->error = "Too big tag size";
4172                 r = -EINVAL;
4173                 goto bad;
4174         }
4175         if (!(ic->tag_size & (ic->tag_size - 1)))
4176                 ic->log2_tag_size = __ffs(ic->tag_size);
4177         else
4178                 ic->log2_tag_size = -1;
4179
4180         if (ic->mode == 'B' && !ic->internal_hash) {
4181                 r = -EINVAL;
4182                 ti->error = "Bitmap mode can be only used with internal hash";
4183                 goto bad;
4184         }
4185
4186         if (ic->discard && !ic->internal_hash) {
4187                 r = -EINVAL;
4188                 ti->error = "Discard can be only used with internal hash";
4189                 goto bad;
4190         }
4191
4192         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4193         ic->autocommit_msec = sync_msec;
4194         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4195
4196         ic->io = dm_io_client_create();
4197         if (IS_ERR(ic->io)) {
4198                 r = PTR_ERR(ic->io);
4199                 ic->io = NULL;
4200                 ti->error = "Cannot allocate dm io";
4201                 goto bad;
4202         }
4203
4204         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4205         if (r) {
4206                 ti->error = "Cannot allocate mempool";
4207                 goto bad;
4208         }
4209
4210         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4211                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4212         if (!ic->metadata_wq) {
4213                 ti->error = "Cannot allocate workqueue";
4214                 r = -ENOMEM;
4215                 goto bad;
4216         }
4217
4218         /*
4219          * If this workqueue were percpu, it would cause bio reordering
4220          * and reduced performance.
4221          */
4222         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4223         if (!ic->wait_wq) {
4224                 ti->error = "Cannot allocate workqueue";
4225                 r = -ENOMEM;
4226                 goto bad;
4227         }
4228
4229         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4230                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4231         if (!ic->offload_wq) {
4232                 ti->error = "Cannot allocate workqueue";
4233                 r = -ENOMEM;
4234                 goto bad;
4235         }
4236
4237         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4238         if (!ic->commit_wq) {
4239                 ti->error = "Cannot allocate workqueue";
4240                 r = -ENOMEM;
4241                 goto bad;
4242         }
4243         INIT_WORK(&ic->commit_work, integrity_commit);
4244
4245         if (ic->mode == 'J' || ic->mode == 'B') {
4246                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4247                 if (!ic->writer_wq) {
4248                         ti->error = "Cannot allocate workqueue";
4249                         r = -ENOMEM;
4250                         goto bad;
4251                 }
4252                 INIT_WORK(&ic->writer_work, integrity_writer);
4253         }
4254
4255         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4256         if (!ic->sb) {
4257                 r = -ENOMEM;
4258                 ti->error = "Cannot allocate superblock area";
4259                 goto bad;
4260         }
4261
4262         r = sync_rw_sb(ic, REQ_OP_READ);
4263         if (r) {
4264                 ti->error = "Error reading superblock";
4265                 goto bad;
4266         }
4267         should_write_sb = false;
4268         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4269                 if (ic->mode != 'R') {
4270                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4271                                 r = -EINVAL;
4272                                 ti->error = "The device is not initialized";
4273                                 goto bad;
4274                         }
4275                 }
4276
4277                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4278                 if (r) {
4279                         ti->error = "Could not initialize superblock";
4280                         goto bad;
4281                 }
4282                 if (ic->mode != 'R')
4283                         should_write_sb = true;
4284         }
4285
4286         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4287                 r = -EINVAL;
4288                 ti->error = "Unknown version";
4289                 goto bad;
4290         }
4291         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4292                 r = -EINVAL;
4293                 ti->error = "Tag size doesn't match the information in superblock";
4294                 goto bad;
4295         }
4296         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4297                 r = -EINVAL;
4298                 ti->error = "Block size doesn't match the information in superblock";
4299                 goto bad;
4300         }
4301         if (!le32_to_cpu(ic->sb->journal_sections)) {
4302                 r = -EINVAL;
4303                 ti->error = "Corrupted superblock, journal_sections is 0";
4304                 goto bad;
4305         }
4306         /* make sure that ti->max_io_len doesn't overflow */
4307         if (!ic->meta_dev) {
4308                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4309                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4310                         r = -EINVAL;
4311                         ti->error = "Invalid interleave_sectors in the superblock";
4312                         goto bad;
4313                 }
4314         } else {
4315                 if (ic->sb->log2_interleave_sectors) {
4316                         r = -EINVAL;
4317                         ti->error = "Invalid interleave_sectors in the superblock";
4318                         goto bad;
4319                 }
4320         }
4321         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4322                 r = -EINVAL;
4323                 ti->error = "Journal mac mismatch";
4324                 goto bad;
4325         }
4326
4327         get_provided_data_sectors(ic);
4328         if (!ic->provided_data_sectors) {
4329                 r = -EINVAL;
4330                 ti->error = "The device is too small";
4331                 goto bad;
4332         }
4333
4334 try_smaller_buffer:
4335         r = calculate_device_limits(ic);
4336         if (r) {
4337                 if (ic->meta_dev) {
4338                         if (ic->log2_buffer_sectors > 3) {
4339                                 ic->log2_buffer_sectors--;
4340                                 goto try_smaller_buffer;
4341                         }
4342                 }
4343                 ti->error = "The device is too small";
4344                 goto bad;
4345         }
4346
4347         if (log2_sectors_per_bitmap_bit < 0)
4348                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4349         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4350                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4351
4352         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4353         if (bits_in_journal > UINT_MAX)
4354                 bits_in_journal = UINT_MAX;
4355         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4356                 log2_sectors_per_bitmap_bit++;
4357
4358         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4359         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4360         if (should_write_sb) {
4361                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4362         }
4363         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4364                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4365         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4366
4367         if (!ic->meta_dev)
4368                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4369
4370         if (ti->len > ic->provided_data_sectors) {
4371                 r = -EINVAL;
4372                 ti->error = "Not enough provided sectors for requested mapping size";
4373                 goto bad;
4374         }
4375
4376
4377         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4378         threshold += 50;
4379         do_div(threshold, 100);
4380         ic->free_sectors_threshold = threshold;
4381
4382         DEBUG_print("initialized:\n");
4383         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4384         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4385         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4386         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4387         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4388         DEBUG_print("   journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4389         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4390         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4391         DEBUG_print("   data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4392         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4393         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4394         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4395         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4396         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4397         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4398
4399         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4400                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4401                 ic->sb->recalc_sector = cpu_to_le64(0);
4402         }
4403
4404         if (ic->internal_hash) {
4405                 size_t recalc_tags_size;
4406                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4407                 if (!ic->recalc_wq ) {
4408                         ti->error = "Cannot allocate workqueue";
4409                         r = -ENOMEM;
4410                         goto bad;
4411                 }
4412                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4413                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4414                 if (!ic->recalc_buffer) {
4415                         ti->error = "Cannot allocate buffer for recalculating";
4416                         r = -ENOMEM;
4417                         goto bad;
4418                 }
4419                 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4420                 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4421                         recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4422                 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4423                 if (!ic->recalc_tags) {
4424                         ti->error = "Cannot allocate tags for recalculating";
4425                         r = -ENOMEM;
4426                         goto bad;
4427                 }
4428         } else {
4429                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4430                         ti->error = "Recalculate can only be specified with internal_hash";
4431                         r = -EINVAL;
4432                         goto bad;
4433                 }
4434         }
4435
4436         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4437             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4438             dm_integrity_disable_recalculate(ic)) {
4439                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4440                 r = -EOPNOTSUPP;
4441                 goto bad;
4442         }
4443
4444         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4445                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4446         if (IS_ERR(ic->bufio)) {
4447                 r = PTR_ERR(ic->bufio);
4448                 ti->error = "Cannot initialize dm-bufio";
4449                 ic->bufio = NULL;
4450                 goto bad;
4451         }
4452         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4453
4454         if (ic->mode != 'R') {
4455                 r = create_journal(ic, &ti->error);
4456                 if (r)
4457                         goto bad;
4458
4459         }
4460
4461         if (ic->mode == 'B') {
4462                 unsigned int i;
4463                 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4464
4465                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4466                 if (!ic->recalc_bitmap) {
4467                         r = -ENOMEM;
4468                         goto bad;
4469                 }
4470                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4471                 if (!ic->may_write_bitmap) {
4472                         r = -ENOMEM;
4473                         goto bad;
4474                 }
4475                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4476                 if (!ic->bbs) {
4477                         r = -ENOMEM;
4478                         goto bad;
4479                 }
4480                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4481                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4482                         struct bitmap_block_status *bbs = &ic->bbs[i];
4483                         unsigned int sector, pl_index, pl_offset;
4484
4485                         INIT_WORK(&bbs->work, bitmap_block_work);
4486                         bbs->ic = ic;
4487                         bbs->idx = i;
4488                         bio_list_init(&bbs->bio_queue);
4489                         spin_lock_init(&bbs->bio_queue_lock);
4490
4491                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4492                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4493                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4494
4495                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4496                 }
4497         }
4498
4499         if (should_write_sb) {
4500                 init_journal(ic, 0, ic->journal_sections, 0);
4501                 r = dm_integrity_failed(ic);
4502                 if (unlikely(r)) {
4503                         ti->error = "Error initializing journal";
4504                         goto bad;
4505                 }
4506                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4507                 if (r) {
4508                         ti->error = "Error initializing superblock";
4509                         goto bad;
4510                 }
4511                 ic->just_formatted = true;
4512         }
4513
4514         if (!ic->meta_dev) {
4515                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4516                 if (r)
4517                         goto bad;
4518         }
4519         if (ic->mode == 'B') {
4520                 unsigned int max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4521                 if (!max_io_len)
4522                         max_io_len = 1U << 31;
4523                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4524                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4525                         r = dm_set_target_max_io_len(ti, max_io_len);
4526                         if (r)
4527                                 goto bad;
4528                 }
4529         }
4530
4531         if (!ic->internal_hash)
4532                 dm_integrity_set(ti, ic);
4533
4534         ti->num_flush_bios = 1;
4535         ti->flush_supported = true;
4536         if (ic->discard)
4537                 ti->num_discard_bios = 1;
4538
4539         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4540         return 0;
4541
4542 bad:
4543         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4544         dm_integrity_dtr(ti);
4545         return r;
4546 }
4547
4548 static void dm_integrity_dtr(struct dm_target *ti)
4549 {
4550         struct dm_integrity_c *ic = ti->private;
4551
4552         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4553         BUG_ON(!list_empty(&ic->wait_list));
4554
4555         if (ic->mode == 'B')
4556                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4557         if (ic->metadata_wq)
4558                 destroy_workqueue(ic->metadata_wq);
4559         if (ic->wait_wq)
4560                 destroy_workqueue(ic->wait_wq);
4561         if (ic->offload_wq)
4562                 destroy_workqueue(ic->offload_wq);
4563         if (ic->commit_wq)
4564                 destroy_workqueue(ic->commit_wq);
4565         if (ic->writer_wq)
4566                 destroy_workqueue(ic->writer_wq);
4567         if (ic->recalc_wq)
4568                 destroy_workqueue(ic->recalc_wq);
4569         vfree(ic->recalc_buffer);
4570         kvfree(ic->recalc_tags);
4571         kvfree(ic->bbs);
4572         if (ic->bufio)
4573                 dm_bufio_client_destroy(ic->bufio);
4574         mempool_exit(&ic->journal_io_mempool);
4575         if (ic->io)
4576                 dm_io_client_destroy(ic->io);
4577         if (ic->dev)
4578                 dm_put_device(ti, ic->dev);
4579         if (ic->meta_dev)
4580                 dm_put_device(ti, ic->meta_dev);
4581         dm_integrity_free_page_list(ic->journal);
4582         dm_integrity_free_page_list(ic->journal_io);
4583         dm_integrity_free_page_list(ic->journal_xor);
4584         dm_integrity_free_page_list(ic->recalc_bitmap);
4585         dm_integrity_free_page_list(ic->may_write_bitmap);
4586         if (ic->journal_scatterlist)
4587                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4588         if (ic->journal_io_scatterlist)
4589                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4590         if (ic->sk_requests) {
4591                 unsigned int i;
4592
4593                 for (i = 0; i < ic->journal_sections; i++) {
4594                         struct skcipher_request *req = ic->sk_requests[i];
4595                         if (req) {
4596                                 kfree_sensitive(req->iv);
4597                                 skcipher_request_free(req);
4598                         }
4599                 }
4600                 kvfree(ic->sk_requests);
4601         }
4602         kvfree(ic->journal_tree);
4603         if (ic->sb)
4604                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4605
4606         if (ic->internal_hash)
4607                 crypto_free_shash(ic->internal_hash);
4608         free_alg(&ic->internal_hash_alg);
4609
4610         if (ic->journal_crypt)
4611                 crypto_free_skcipher(ic->journal_crypt);
4612         free_alg(&ic->journal_crypt_alg);
4613
4614         if (ic->journal_mac)
4615                 crypto_free_shash(ic->journal_mac);
4616         free_alg(&ic->journal_mac_alg);
4617
4618         kfree(ic);
4619         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4620 }
4621
4622 static struct target_type integrity_target = {
4623         .name                   = "integrity",
4624         .version                = {1, 10, 0},
4625         .module                 = THIS_MODULE,
4626         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4627         .ctr                    = dm_integrity_ctr,
4628         .dtr                    = dm_integrity_dtr,
4629         .map                    = dm_integrity_map,
4630         .postsuspend            = dm_integrity_postsuspend,
4631         .resume                 = dm_integrity_resume,
4632         .status                 = dm_integrity_status,
4633         .iterate_devices        = dm_integrity_iterate_devices,
4634         .io_hints               = dm_integrity_io_hints,
4635 };
4636
4637 static int __init dm_integrity_init(void)
4638 {
4639         int r;
4640
4641         journal_io_cache = kmem_cache_create("integrity_journal_io",
4642                                              sizeof(struct journal_io), 0, 0, NULL);
4643         if (!journal_io_cache) {
4644                 DMERR("can't allocate journal io cache");
4645                 return -ENOMEM;
4646         }
4647
4648         r = dm_register_target(&integrity_target);
4649
4650         if (r < 0)
4651                 DMERR("register failed %d", r);
4652
4653         return r;
4654 }
4655
4656 static void __exit dm_integrity_exit(void)
4657 {
4658         dm_unregister_target(&integrity_target);
4659         kmem_cache_destroy(journal_io_cache);
4660 }
4661
4662 module_init(dm_integrity_init);
4663 module_exit(dm_integrity_exit);
4664
4665 MODULE_AUTHOR("Milan Broz");
4666 MODULE_AUTHOR("Mikulas Patocka");
4667 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4668 MODULE_LICENSE("GPL");