GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS      32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
31 #define DEFAULT_BUFFER_SECTORS          128
32 #define DEFAULT_JOURNAL_WATERMARK       50
33 #define DEFAULT_SYNC_MSEC               10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS     (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
35 #define MIN_LOG2_INTERLEAVE_SECTORS     3
36 #define MAX_LOG2_INTERLEAVE_SECTORS     31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
38 #define RECALC_SECTORS                  (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
39 #define RECALC_WRITE_SUPER              16
40 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
42 #define DISCARD_FILLER                  0xf6
43
44 /*
45  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
46  * so it should not be enabled in the official kernel
47  */
48 //#define DEBUG_PRINT
49 //#define INTERNAL_VERIFY
50
51 /*
52  * On disk structures
53  */
54
55 #define SB_MAGIC                        "integrt"
56 #define SB_VERSION_1                    1
57 #define SB_VERSION_2                    2
58 #define SB_VERSION_3                    3
59 #define SB_VERSION_4                    4
60 #define SB_SECTORS                      8
61 #define MAX_SECTORS_PER_BLOCK           8
62
63 struct superblock {
64         __u8 magic[8];
65         __u8 version;
66         __u8 log2_interleave_sectors;
67         __u16 integrity_tag_size;
68         __u32 journal_sections;
69         __u64 provided_data_sectors;    /* userspace uses this value */
70         __u32 flags;
71         __u8 log2_sectors_per_block;
72         __u8 log2_blocks_per_bitmap_bit;
73         __u8 pad[2];
74         __u64 recalc_sector;
75 };
76
77 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
78 #define SB_FLAG_RECALCULATING           0x2
79 #define SB_FLAG_DIRTY_BITMAP            0x4
80 #define SB_FLAG_FIXED_PADDING           0x8
81
82 #define JOURNAL_ENTRY_ROUNDUP           8
83
84 typedef __u64 commit_id_t;
85 #define JOURNAL_MAC_PER_SECTOR          8
86
87 struct journal_entry {
88         union {
89                 struct {
90                         __u32 sector_lo;
91                         __u32 sector_hi;
92                 } s;
93                 __u64 sector;
94         } u;
95         commit_id_t last_bytes[];
96         /* __u8 tag[0]; */
97 };
98
99 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
100
101 #if BITS_PER_LONG == 64
102 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
103 #else
104 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
105 #endif
106 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
107 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
108 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
109 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
110 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
111
112 #define JOURNAL_BLOCK_SECTORS           8
113 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
114 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
115
116 struct journal_sector {
117         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
118         __u8 mac[JOURNAL_MAC_PER_SECTOR];
119         commit_id_t commit_id;
120 };
121
122 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
123
124 #define METADATA_PADDING_SECTORS        8
125
126 #define N_COMMIT_IDS                    4
127
128 static unsigned char prev_commit_seq(unsigned char seq)
129 {
130         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
131 }
132
133 static unsigned char next_commit_seq(unsigned char seq)
134 {
135         return (seq + 1) % N_COMMIT_IDS;
136 }
137
138 /*
139  * In-memory structures
140  */
141
142 struct journal_node {
143         struct rb_node node;
144         sector_t sector;
145 };
146
147 struct alg_spec {
148         char *alg_string;
149         char *key_string;
150         __u8 *key;
151         unsigned key_size;
152 };
153
154 struct dm_integrity_c {
155         struct dm_dev *dev;
156         struct dm_dev *meta_dev;
157         unsigned tag_size;
158         __s8 log2_tag_size;
159         sector_t start;
160         mempool_t journal_io_mempool;
161         struct dm_io_client *io;
162         struct dm_bufio_client *bufio;
163         struct workqueue_struct *metadata_wq;
164         struct superblock *sb;
165         unsigned journal_pages;
166         unsigned n_bitmap_blocks;
167
168         struct page_list *journal;
169         struct page_list *journal_io;
170         struct page_list *journal_xor;
171         struct page_list *recalc_bitmap;
172         struct page_list *may_write_bitmap;
173         struct bitmap_block_status *bbs;
174         unsigned bitmap_flush_interval;
175         int synchronous_mode;
176         struct bio_list synchronous_bios;
177         struct delayed_work bitmap_flush_work;
178
179         struct crypto_skcipher *journal_crypt;
180         struct scatterlist **journal_scatterlist;
181         struct scatterlist **journal_io_scatterlist;
182         struct skcipher_request **sk_requests;
183
184         struct crypto_shash *journal_mac;
185
186         struct journal_node *journal_tree;
187         struct rb_root journal_tree_root;
188
189         sector_t provided_data_sectors;
190
191         unsigned short journal_entry_size;
192         unsigned char journal_entries_per_sector;
193         unsigned char journal_section_entries;
194         unsigned short journal_section_sectors;
195         unsigned journal_sections;
196         unsigned journal_entries;
197         sector_t data_device_sectors;
198         sector_t meta_device_sectors;
199         unsigned initial_sectors;
200         unsigned metadata_run;
201         __s8 log2_metadata_run;
202         __u8 log2_buffer_sectors;
203         __u8 sectors_per_block;
204         __u8 log2_blocks_per_bitmap_bit;
205
206         unsigned char mode;
207
208         int failed;
209
210         struct crypto_shash *internal_hash;
211
212         struct dm_target *ti;
213
214         /* these variables are locked with endio_wait.lock */
215         struct rb_root in_progress;
216         struct list_head wait_list;
217         wait_queue_head_t endio_wait;
218         struct workqueue_struct *wait_wq;
219         struct workqueue_struct *offload_wq;
220
221         unsigned char commit_seq;
222         commit_id_t commit_ids[N_COMMIT_IDS];
223
224         unsigned committed_section;
225         unsigned n_committed_sections;
226
227         unsigned uncommitted_section;
228         unsigned n_uncommitted_sections;
229
230         unsigned free_section;
231         unsigned char free_section_entry;
232         unsigned free_sectors;
233
234         unsigned free_sectors_threshold;
235
236         struct workqueue_struct *commit_wq;
237         struct work_struct commit_work;
238
239         struct workqueue_struct *writer_wq;
240         struct work_struct writer_work;
241
242         struct workqueue_struct *recalc_wq;
243         struct work_struct recalc_work;
244         u8 *recalc_buffer;
245         u8 *recalc_tags;
246
247         struct bio_list flush_bio_list;
248
249         unsigned long autocommit_jiffies;
250         struct timer_list autocommit_timer;
251         unsigned autocommit_msec;
252
253         wait_queue_head_t copy_to_journal_wait;
254
255         struct completion crypto_backoff;
256
257         bool wrote_to_journal;
258         bool journal_uptodate;
259         bool just_formatted;
260         bool recalculate_flag;
261         bool discard;
262         bool fix_padding;
263         bool legacy_recalculate;
264
265         struct alg_spec internal_hash_alg;
266         struct alg_spec journal_crypt_alg;
267         struct alg_spec journal_mac_alg;
268
269         atomic64_t number_of_mismatches;
270
271         struct notifier_block reboot_notifier;
272 };
273
274 struct dm_integrity_range {
275         sector_t logical_sector;
276         sector_t n_sectors;
277         bool waiting;
278         union {
279                 struct rb_node node;
280                 struct {
281                         struct task_struct *task;
282                         struct list_head wait_entry;
283                 };
284         };
285 };
286
287 struct dm_integrity_io {
288         struct work_struct work;
289
290         struct dm_integrity_c *ic;
291         enum req_opf op;
292         bool fua;
293
294         struct dm_integrity_range range;
295
296         sector_t metadata_block;
297         unsigned metadata_offset;
298
299         atomic_t in_flight;
300         blk_status_t bi_status;
301
302         struct completion *completion;
303
304         struct dm_bio_details bio_details;
305 };
306
307 struct journal_completion {
308         struct dm_integrity_c *ic;
309         atomic_t in_flight;
310         struct completion comp;
311 };
312
313 struct journal_io {
314         struct dm_integrity_range range;
315         struct journal_completion *comp;
316 };
317
318 struct bitmap_block_status {
319         struct work_struct work;
320         struct dm_integrity_c *ic;
321         unsigned idx;
322         unsigned long *bitmap;
323         struct bio_list bio_queue;
324         spinlock_t bio_queue_lock;
325
326 };
327
328 static struct kmem_cache *journal_io_cache;
329
330 #define JOURNAL_IO_MEMPOOL      32
331
332 #ifdef DEBUG_PRINT
333 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
334 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
335 {
336         va_list args;
337         va_start(args, msg);
338         vprintk(msg, args);
339         va_end(args);
340         if (len)
341                 pr_cont(":");
342         while (len) {
343                 pr_cont(" %02x", *bytes);
344                 bytes++;
345                 len--;
346         }
347         pr_cont("\n");
348 }
349 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
350 #else
351 #define DEBUG_print(x, ...)                     do { } while (0)
352 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
353 #endif
354
355 static void dm_integrity_prepare(struct request *rq)
356 {
357 }
358
359 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
360 {
361 }
362
363 /*
364  * DM Integrity profile, protection is performed layer above (dm-crypt)
365  */
366 static const struct blk_integrity_profile dm_integrity_profile = {
367         .name                   = "DM-DIF-EXT-TAG",
368         .generate_fn            = NULL,
369         .verify_fn              = NULL,
370         .prepare_fn             = dm_integrity_prepare,
371         .complete_fn            = dm_integrity_complete,
372 };
373
374 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
375 static void integrity_bio_wait(struct work_struct *w);
376 static void dm_integrity_dtr(struct dm_target *ti);
377
378 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
379 {
380         if (err == -EILSEQ)
381                 atomic64_inc(&ic->number_of_mismatches);
382         if (!cmpxchg(&ic->failed, 0, err))
383                 DMERR("Error on %s: %d", msg, err);
384 }
385
386 static int dm_integrity_failed(struct dm_integrity_c *ic)
387 {
388         return READ_ONCE(ic->failed);
389 }
390
391 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
392 {
393         if ((ic->internal_hash_alg.key || ic->journal_mac_alg.key) &&
394             !ic->legacy_recalculate)
395                 return true;
396         return false;
397 }
398
399 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
400                                           unsigned j, unsigned char seq)
401 {
402         /*
403          * Xor the number with section and sector, so that if a piece of
404          * journal is written at wrong place, it is detected.
405          */
406         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
407 }
408
409 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
410                                 sector_t *area, sector_t *offset)
411 {
412         if (!ic->meta_dev) {
413                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
414                 *area = data_sector >> log2_interleave_sectors;
415                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
416         } else {
417                 *area = 0;
418                 *offset = data_sector;
419         }
420 }
421
422 #define sector_to_block(ic, n)                                          \
423 do {                                                                    \
424         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
425         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
426 } while (0)
427
428 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
429                                             sector_t offset, unsigned *metadata_offset)
430 {
431         __u64 ms;
432         unsigned mo;
433
434         ms = area << ic->sb->log2_interleave_sectors;
435         if (likely(ic->log2_metadata_run >= 0))
436                 ms += area << ic->log2_metadata_run;
437         else
438                 ms += area * ic->metadata_run;
439         ms >>= ic->log2_buffer_sectors;
440
441         sector_to_block(ic, offset);
442
443         if (likely(ic->log2_tag_size >= 0)) {
444                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
445                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
446         } else {
447                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
448                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
449         }
450         *metadata_offset = mo;
451         return ms;
452 }
453
454 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
455 {
456         sector_t result;
457
458         if (ic->meta_dev)
459                 return offset;
460
461         result = area << ic->sb->log2_interleave_sectors;
462         if (likely(ic->log2_metadata_run >= 0))
463                 result += (area + 1) << ic->log2_metadata_run;
464         else
465                 result += (area + 1) * ic->metadata_run;
466
467         result += (sector_t)ic->initial_sectors + offset;
468         result += ic->start;
469
470         return result;
471 }
472
473 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
474 {
475         if (unlikely(*sec_ptr >= ic->journal_sections))
476                 *sec_ptr -= ic->journal_sections;
477 }
478
479 static void sb_set_version(struct dm_integrity_c *ic)
480 {
481         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
482                 ic->sb->version = SB_VERSION_4;
483         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
484                 ic->sb->version = SB_VERSION_3;
485         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
486                 ic->sb->version = SB_VERSION_2;
487         else
488                 ic->sb->version = SB_VERSION_1;
489 }
490
491 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
492 {
493         struct dm_io_request io_req;
494         struct dm_io_region io_loc;
495
496         io_req.bi_op = op;
497         io_req.bi_op_flags = op_flags;
498         io_req.mem.type = DM_IO_KMEM;
499         io_req.mem.ptr.addr = ic->sb;
500         io_req.notify.fn = NULL;
501         io_req.client = ic->io;
502         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
503         io_loc.sector = ic->start;
504         io_loc.count = SB_SECTORS;
505
506         if (op == REQ_OP_WRITE)
507                 sb_set_version(ic);
508
509         return dm_io(&io_req, 1, &io_loc, NULL);
510 }
511
512 #define BITMAP_OP_TEST_ALL_SET          0
513 #define BITMAP_OP_TEST_ALL_CLEAR        1
514 #define BITMAP_OP_SET                   2
515 #define BITMAP_OP_CLEAR                 3
516
517 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
518                             sector_t sector, sector_t n_sectors, int mode)
519 {
520         unsigned long bit, end_bit, this_end_bit, page, end_page;
521         unsigned long *data;
522
523         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
524                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
525                         sector,
526                         n_sectors,
527                         ic->sb->log2_sectors_per_block,
528                         ic->log2_blocks_per_bitmap_bit,
529                         mode);
530                 BUG();
531         }
532
533         if (unlikely(!n_sectors))
534                 return true;
535
536         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
537         end_bit = (sector + n_sectors - 1) >>
538                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
539
540         page = bit / (PAGE_SIZE * 8);
541         bit %= PAGE_SIZE * 8;
542
543         end_page = end_bit / (PAGE_SIZE * 8);
544         end_bit %= PAGE_SIZE * 8;
545
546 repeat:
547         if (page < end_page) {
548                 this_end_bit = PAGE_SIZE * 8 - 1;
549         } else {
550                 this_end_bit = end_bit;
551         }
552
553         data = lowmem_page_address(bitmap[page].page);
554
555         if (mode == BITMAP_OP_TEST_ALL_SET) {
556                 while (bit <= this_end_bit) {
557                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
558                                 do {
559                                         if (data[bit / BITS_PER_LONG] != -1)
560                                                 return false;
561                                         bit += BITS_PER_LONG;
562                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
563                                 continue;
564                         }
565                         if (!test_bit(bit, data))
566                                 return false;
567                         bit++;
568                 }
569         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
570                 while (bit <= this_end_bit) {
571                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
572                                 do {
573                                         if (data[bit / BITS_PER_LONG] != 0)
574                                                 return false;
575                                         bit += BITS_PER_LONG;
576                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
577                                 continue;
578                         }
579                         if (test_bit(bit, data))
580                                 return false;
581                         bit++;
582                 }
583         } else if (mode == BITMAP_OP_SET) {
584                 while (bit <= this_end_bit) {
585                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
586                                 do {
587                                         data[bit / BITS_PER_LONG] = -1;
588                                         bit += BITS_PER_LONG;
589                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
590                                 continue;
591                         }
592                         __set_bit(bit, data);
593                         bit++;
594                 }
595         } else if (mode == BITMAP_OP_CLEAR) {
596                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
597                         clear_page(data);
598                 else while (bit <= this_end_bit) {
599                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
600                                 do {
601                                         data[bit / BITS_PER_LONG] = 0;
602                                         bit += BITS_PER_LONG;
603                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
604                                 continue;
605                         }
606                         __clear_bit(bit, data);
607                         bit++;
608                 }
609         } else {
610                 BUG();
611         }
612
613         if (unlikely(page < end_page)) {
614                 bit = 0;
615                 page++;
616                 goto repeat;
617         }
618
619         return true;
620 }
621
622 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
623 {
624         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
625         unsigned i;
626
627         for (i = 0; i < n_bitmap_pages; i++) {
628                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
629                 unsigned long *src_data = lowmem_page_address(src[i].page);
630                 copy_page(dst_data, src_data);
631         }
632 }
633
634 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
635 {
636         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
637         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
638
639         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
640         return &ic->bbs[bitmap_block];
641 }
642
643 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
644                                  bool e, const char *function)
645 {
646 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
647         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
648
649         if (unlikely(section >= ic->journal_sections) ||
650             unlikely(offset >= limit)) {
651                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
652                        function, section, offset, ic->journal_sections, limit);
653                 BUG();
654         }
655 #endif
656 }
657
658 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
659                                unsigned *pl_index, unsigned *pl_offset)
660 {
661         unsigned sector;
662
663         access_journal_check(ic, section, offset, false, "page_list_location");
664
665         sector = section * ic->journal_section_sectors + offset;
666
667         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
668         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
669 }
670
671 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
672                                                unsigned section, unsigned offset, unsigned *n_sectors)
673 {
674         unsigned pl_index, pl_offset;
675         char *va;
676
677         page_list_location(ic, section, offset, &pl_index, &pl_offset);
678
679         if (n_sectors)
680                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
681
682         va = lowmem_page_address(pl[pl_index].page);
683
684         return (struct journal_sector *)(va + pl_offset);
685 }
686
687 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
688 {
689         return access_page_list(ic, ic->journal, section, offset, NULL);
690 }
691
692 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
693 {
694         unsigned rel_sector, offset;
695         struct journal_sector *js;
696
697         access_journal_check(ic, section, n, true, "access_journal_entry");
698
699         rel_sector = n % JOURNAL_BLOCK_SECTORS;
700         offset = n / JOURNAL_BLOCK_SECTORS;
701
702         js = access_journal(ic, section, rel_sector);
703         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
704 }
705
706 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
707 {
708         n <<= ic->sb->log2_sectors_per_block;
709
710         n += JOURNAL_BLOCK_SECTORS;
711
712         access_journal_check(ic, section, n, false, "access_journal_data");
713
714         return access_journal(ic, section, n);
715 }
716
717 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
718 {
719         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
720         int r;
721         unsigned j, size;
722
723         desc->tfm = ic->journal_mac;
724
725         r = crypto_shash_init(desc);
726         if (unlikely(r)) {
727                 dm_integrity_io_error(ic, "crypto_shash_init", r);
728                 goto err;
729         }
730
731         for (j = 0; j < ic->journal_section_entries; j++) {
732                 struct journal_entry *je = access_journal_entry(ic, section, j);
733                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
734                 if (unlikely(r)) {
735                         dm_integrity_io_error(ic, "crypto_shash_update", r);
736                         goto err;
737                 }
738         }
739
740         size = crypto_shash_digestsize(ic->journal_mac);
741
742         if (likely(size <= JOURNAL_MAC_SIZE)) {
743                 r = crypto_shash_final(desc, result);
744                 if (unlikely(r)) {
745                         dm_integrity_io_error(ic, "crypto_shash_final", r);
746                         goto err;
747                 }
748                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
749         } else {
750                 __u8 digest[HASH_MAX_DIGESTSIZE];
751
752                 if (WARN_ON(size > sizeof(digest))) {
753                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
754                         goto err;
755                 }
756                 r = crypto_shash_final(desc, digest);
757                 if (unlikely(r)) {
758                         dm_integrity_io_error(ic, "crypto_shash_final", r);
759                         goto err;
760                 }
761                 memcpy(result, digest, JOURNAL_MAC_SIZE);
762         }
763
764         return;
765 err:
766         memset(result, 0, JOURNAL_MAC_SIZE);
767 }
768
769 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
770 {
771         __u8 result[JOURNAL_MAC_SIZE];
772         unsigned j;
773
774         if (!ic->journal_mac)
775                 return;
776
777         section_mac(ic, section, result);
778
779         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
780                 struct journal_sector *js = access_journal(ic, section, j);
781
782                 if (likely(wr))
783                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
784                 else {
785                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
786                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
787                 }
788         }
789 }
790
791 static void complete_journal_op(void *context)
792 {
793         struct journal_completion *comp = context;
794         BUG_ON(!atomic_read(&comp->in_flight));
795         if (likely(atomic_dec_and_test(&comp->in_flight)))
796                 complete(&comp->comp);
797 }
798
799 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
800                         unsigned n_sections, struct journal_completion *comp)
801 {
802         struct async_submit_ctl submit;
803         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
804         unsigned pl_index, pl_offset, section_index;
805         struct page_list *source_pl, *target_pl;
806
807         if (likely(encrypt)) {
808                 source_pl = ic->journal;
809                 target_pl = ic->journal_io;
810         } else {
811                 source_pl = ic->journal_io;
812                 target_pl = ic->journal;
813         }
814
815         page_list_location(ic, section, 0, &pl_index, &pl_offset);
816
817         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
818
819         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
820
821         section_index = pl_index;
822
823         do {
824                 size_t this_step;
825                 struct page *src_pages[2];
826                 struct page *dst_page;
827
828                 while (unlikely(pl_index == section_index)) {
829                         unsigned dummy;
830                         if (likely(encrypt))
831                                 rw_section_mac(ic, section, true);
832                         section++;
833                         n_sections--;
834                         if (!n_sections)
835                                 break;
836                         page_list_location(ic, section, 0, &section_index, &dummy);
837                 }
838
839                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
840                 dst_page = target_pl[pl_index].page;
841                 src_pages[0] = source_pl[pl_index].page;
842                 src_pages[1] = ic->journal_xor[pl_index].page;
843
844                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
845
846                 pl_index++;
847                 pl_offset = 0;
848                 n_bytes -= this_step;
849         } while (n_bytes);
850
851         BUG_ON(n_sections);
852
853         async_tx_issue_pending_all();
854 }
855
856 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
857 {
858         struct journal_completion *comp = req->data;
859         if (unlikely(err)) {
860                 if (likely(err == -EINPROGRESS)) {
861                         complete(&comp->ic->crypto_backoff);
862                         return;
863                 }
864                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
865         }
866         complete_journal_op(comp);
867 }
868
869 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
870 {
871         int r;
872         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
873                                       complete_journal_encrypt, comp);
874         if (likely(encrypt))
875                 r = crypto_skcipher_encrypt(req);
876         else
877                 r = crypto_skcipher_decrypt(req);
878         if (likely(!r))
879                 return false;
880         if (likely(r == -EINPROGRESS))
881                 return true;
882         if (likely(r == -EBUSY)) {
883                 wait_for_completion(&comp->ic->crypto_backoff);
884                 reinit_completion(&comp->ic->crypto_backoff);
885                 return true;
886         }
887         dm_integrity_io_error(comp->ic, "encrypt", r);
888         return false;
889 }
890
891 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
892                           unsigned n_sections, struct journal_completion *comp)
893 {
894         struct scatterlist **source_sg;
895         struct scatterlist **target_sg;
896
897         atomic_add(2, &comp->in_flight);
898
899         if (likely(encrypt)) {
900                 source_sg = ic->journal_scatterlist;
901                 target_sg = ic->journal_io_scatterlist;
902         } else {
903                 source_sg = ic->journal_io_scatterlist;
904                 target_sg = ic->journal_scatterlist;
905         }
906
907         do {
908                 struct skcipher_request *req;
909                 unsigned ivsize;
910                 char *iv;
911
912                 if (likely(encrypt))
913                         rw_section_mac(ic, section, true);
914
915                 req = ic->sk_requests[section];
916                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
917                 iv = req->iv;
918
919                 memcpy(iv, iv + ivsize, ivsize);
920
921                 req->src = source_sg[section];
922                 req->dst = target_sg[section];
923
924                 if (unlikely(do_crypt(encrypt, req, comp)))
925                         atomic_inc(&comp->in_flight);
926
927                 section++;
928                 n_sections--;
929         } while (n_sections);
930
931         atomic_dec(&comp->in_flight);
932         complete_journal_op(comp);
933 }
934
935 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
936                             unsigned n_sections, struct journal_completion *comp)
937 {
938         if (ic->journal_xor)
939                 return xor_journal(ic, encrypt, section, n_sections, comp);
940         else
941                 return crypt_journal(ic, encrypt, section, n_sections, comp);
942 }
943
944 static void complete_journal_io(unsigned long error, void *context)
945 {
946         struct journal_completion *comp = context;
947         if (unlikely(error != 0))
948                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
949         complete_journal_op(comp);
950 }
951
952 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
953                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
954 {
955         struct dm_io_request io_req;
956         struct dm_io_region io_loc;
957         unsigned pl_index, pl_offset;
958         int r;
959
960         if (unlikely(dm_integrity_failed(ic))) {
961                 if (comp)
962                         complete_journal_io(-1UL, comp);
963                 return;
964         }
965
966         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
967         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
968
969         io_req.bi_op = op;
970         io_req.bi_op_flags = op_flags;
971         io_req.mem.type = DM_IO_PAGE_LIST;
972         if (ic->journal_io)
973                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
974         else
975                 io_req.mem.ptr.pl = &ic->journal[pl_index];
976         io_req.mem.offset = pl_offset;
977         if (likely(comp != NULL)) {
978                 io_req.notify.fn = complete_journal_io;
979                 io_req.notify.context = comp;
980         } else {
981                 io_req.notify.fn = NULL;
982         }
983         io_req.client = ic->io;
984         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
985         io_loc.sector = ic->start + SB_SECTORS + sector;
986         io_loc.count = n_sectors;
987
988         r = dm_io(&io_req, 1, &io_loc, NULL);
989         if (unlikely(r)) {
990                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
991                 if (comp) {
992                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
993                         complete_journal_io(-1UL, comp);
994                 }
995         }
996 }
997
998 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
999                        unsigned n_sections, struct journal_completion *comp)
1000 {
1001         unsigned sector, n_sectors;
1002
1003         sector = section * ic->journal_section_sectors;
1004         n_sectors = n_sections * ic->journal_section_sectors;
1005
1006         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1007 }
1008
1009 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1010 {
1011         struct journal_completion io_comp;
1012         struct journal_completion crypt_comp_1;
1013         struct journal_completion crypt_comp_2;
1014         unsigned i;
1015
1016         io_comp.ic = ic;
1017         init_completion(&io_comp.comp);
1018
1019         if (commit_start + commit_sections <= ic->journal_sections) {
1020                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1021                 if (ic->journal_io) {
1022                         crypt_comp_1.ic = ic;
1023                         init_completion(&crypt_comp_1.comp);
1024                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1025                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1026                         wait_for_completion_io(&crypt_comp_1.comp);
1027                 } else {
1028                         for (i = 0; i < commit_sections; i++)
1029                                 rw_section_mac(ic, commit_start + i, true);
1030                 }
1031                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1032                            commit_sections, &io_comp);
1033         } else {
1034                 unsigned to_end;
1035                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1036                 to_end = ic->journal_sections - commit_start;
1037                 if (ic->journal_io) {
1038                         crypt_comp_1.ic = ic;
1039                         init_completion(&crypt_comp_1.comp);
1040                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1041                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1042                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1043                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1044                                 reinit_completion(&crypt_comp_1.comp);
1045                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1046                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1047                                 wait_for_completion_io(&crypt_comp_1.comp);
1048                         } else {
1049                                 crypt_comp_2.ic = ic;
1050                                 init_completion(&crypt_comp_2.comp);
1051                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1052                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1053                                 wait_for_completion_io(&crypt_comp_1.comp);
1054                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1055                                 wait_for_completion_io(&crypt_comp_2.comp);
1056                         }
1057                 } else {
1058                         for (i = 0; i < to_end; i++)
1059                                 rw_section_mac(ic, commit_start + i, true);
1060                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1061                         for (i = 0; i < commit_sections - to_end; i++)
1062                                 rw_section_mac(ic, i, true);
1063                 }
1064                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1065         }
1066
1067         wait_for_completion_io(&io_comp.comp);
1068 }
1069
1070 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1071                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1072 {
1073         struct dm_io_request io_req;
1074         struct dm_io_region io_loc;
1075         int r;
1076         unsigned sector, pl_index, pl_offset;
1077
1078         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1079
1080         if (unlikely(dm_integrity_failed(ic))) {
1081                 fn(-1UL, data);
1082                 return;
1083         }
1084
1085         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1086
1087         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1088         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1089
1090         io_req.bi_op = REQ_OP_WRITE;
1091         io_req.bi_op_flags = 0;
1092         io_req.mem.type = DM_IO_PAGE_LIST;
1093         io_req.mem.ptr.pl = &ic->journal[pl_index];
1094         io_req.mem.offset = pl_offset;
1095         io_req.notify.fn = fn;
1096         io_req.notify.context = data;
1097         io_req.client = ic->io;
1098         io_loc.bdev = ic->dev->bdev;
1099         io_loc.sector = target;
1100         io_loc.count = n_sectors;
1101
1102         r = dm_io(&io_req, 1, &io_loc, NULL);
1103         if (unlikely(r)) {
1104                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1105                 fn(-1UL, data);
1106         }
1107 }
1108
1109 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1110 {
1111         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1112                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1113 }
1114
1115 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1116 {
1117         struct rb_node **n = &ic->in_progress.rb_node;
1118         struct rb_node *parent;
1119
1120         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1121
1122         if (likely(check_waiting)) {
1123                 struct dm_integrity_range *range;
1124                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1125                         if (unlikely(ranges_overlap(range, new_range)))
1126                                 return false;
1127                 }
1128         }
1129
1130         parent = NULL;
1131
1132         while (*n) {
1133                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1134
1135                 parent = *n;
1136                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1137                         n = &range->node.rb_left;
1138                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1139                         n = &range->node.rb_right;
1140                 } else {
1141                         return false;
1142                 }
1143         }
1144
1145         rb_link_node(&new_range->node, parent, n);
1146         rb_insert_color(&new_range->node, &ic->in_progress);
1147
1148         return true;
1149 }
1150
1151 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1152 {
1153         rb_erase(&range->node, &ic->in_progress);
1154         while (unlikely(!list_empty(&ic->wait_list))) {
1155                 struct dm_integrity_range *last_range =
1156                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1157                 struct task_struct *last_range_task;
1158                 last_range_task = last_range->task;
1159                 list_del(&last_range->wait_entry);
1160                 if (!add_new_range(ic, last_range, false)) {
1161                         last_range->task = last_range_task;
1162                         list_add(&last_range->wait_entry, &ic->wait_list);
1163                         break;
1164                 }
1165                 last_range->waiting = false;
1166                 wake_up_process(last_range_task);
1167         }
1168 }
1169
1170 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1171 {
1172         unsigned long flags;
1173
1174         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1175         remove_range_unlocked(ic, range);
1176         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1177 }
1178
1179 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1180 {
1181         new_range->waiting = true;
1182         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1183         new_range->task = current;
1184         do {
1185                 __set_current_state(TASK_UNINTERRUPTIBLE);
1186                 spin_unlock_irq(&ic->endio_wait.lock);
1187                 io_schedule();
1188                 spin_lock_irq(&ic->endio_wait.lock);
1189         } while (unlikely(new_range->waiting));
1190 }
1191
1192 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1193 {
1194         if (unlikely(!add_new_range(ic, new_range, true)))
1195                 wait_and_add_new_range(ic, new_range);
1196 }
1197
1198 static void init_journal_node(struct journal_node *node)
1199 {
1200         RB_CLEAR_NODE(&node->node);
1201         node->sector = (sector_t)-1;
1202 }
1203
1204 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1205 {
1206         struct rb_node **link;
1207         struct rb_node *parent;
1208
1209         node->sector = sector;
1210         BUG_ON(!RB_EMPTY_NODE(&node->node));
1211
1212         link = &ic->journal_tree_root.rb_node;
1213         parent = NULL;
1214
1215         while (*link) {
1216                 struct journal_node *j;
1217                 parent = *link;
1218                 j = container_of(parent, struct journal_node, node);
1219                 if (sector < j->sector)
1220                         link = &j->node.rb_left;
1221                 else
1222                         link = &j->node.rb_right;
1223         }
1224
1225         rb_link_node(&node->node, parent, link);
1226         rb_insert_color(&node->node, &ic->journal_tree_root);
1227 }
1228
1229 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1230 {
1231         BUG_ON(RB_EMPTY_NODE(&node->node));
1232         rb_erase(&node->node, &ic->journal_tree_root);
1233         init_journal_node(node);
1234 }
1235
1236 #define NOT_FOUND       (-1U)
1237
1238 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1239 {
1240         struct rb_node *n = ic->journal_tree_root.rb_node;
1241         unsigned found = NOT_FOUND;
1242         *next_sector = (sector_t)-1;
1243         while (n) {
1244                 struct journal_node *j = container_of(n, struct journal_node, node);
1245                 if (sector == j->sector) {
1246                         found = j - ic->journal_tree;
1247                 }
1248                 if (sector < j->sector) {
1249                         *next_sector = j->sector;
1250                         n = j->node.rb_left;
1251                 } else {
1252                         n = j->node.rb_right;
1253                 }
1254         }
1255
1256         return found;
1257 }
1258
1259 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1260 {
1261         struct journal_node *node, *next_node;
1262         struct rb_node *next;
1263
1264         if (unlikely(pos >= ic->journal_entries))
1265                 return false;
1266         node = &ic->journal_tree[pos];
1267         if (unlikely(RB_EMPTY_NODE(&node->node)))
1268                 return false;
1269         if (unlikely(node->sector != sector))
1270                 return false;
1271
1272         next = rb_next(&node->node);
1273         if (unlikely(!next))
1274                 return true;
1275
1276         next_node = container_of(next, struct journal_node, node);
1277         return next_node->sector != sector;
1278 }
1279
1280 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1281 {
1282         struct rb_node *next;
1283         struct journal_node *next_node;
1284         unsigned next_section;
1285
1286         BUG_ON(RB_EMPTY_NODE(&node->node));
1287
1288         next = rb_next(&node->node);
1289         if (unlikely(!next))
1290                 return false;
1291
1292         next_node = container_of(next, struct journal_node, node);
1293
1294         if (next_node->sector != node->sector)
1295                 return false;
1296
1297         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1298         if (next_section >= ic->committed_section &&
1299             next_section < ic->committed_section + ic->n_committed_sections)
1300                 return true;
1301         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1302                 return true;
1303
1304         return false;
1305 }
1306
1307 #define TAG_READ        0
1308 #define TAG_WRITE       1
1309 #define TAG_CMP         2
1310
1311 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1312                                unsigned *metadata_offset, unsigned total_size, int op)
1313 {
1314 #define MAY_BE_FILLER           1
1315 #define MAY_BE_HASH             2
1316         unsigned hash_offset = 0;
1317         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1318
1319         do {
1320                 unsigned char *data, *dp;
1321                 struct dm_buffer *b;
1322                 unsigned to_copy;
1323                 int r;
1324
1325                 r = dm_integrity_failed(ic);
1326                 if (unlikely(r))
1327                         return r;
1328
1329                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1330                 if (IS_ERR(data))
1331                         return PTR_ERR(data);
1332
1333                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1334                 dp = data + *metadata_offset;
1335                 if (op == TAG_READ) {
1336                         memcpy(tag, dp, to_copy);
1337                 } else if (op == TAG_WRITE) {
1338                         memcpy(dp, tag, to_copy);
1339                         dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1340                 } else {
1341                         /* e.g.: op == TAG_CMP */
1342
1343                         if (likely(is_power_of_2(ic->tag_size))) {
1344                                 if (unlikely(memcmp(dp, tag, to_copy)))
1345                                         if (unlikely(!ic->discard) ||
1346                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1347                                                 goto thorough_test;
1348                                 }
1349                         } else {
1350                                 unsigned i, ts;
1351 thorough_test:
1352                                 ts = total_size;
1353
1354                                 for (i = 0; i < to_copy; i++, ts--) {
1355                                         if (unlikely(dp[i] != tag[i]))
1356                                                 may_be &= ~MAY_BE_HASH;
1357                                         if (likely(dp[i] != DISCARD_FILLER))
1358                                                 may_be &= ~MAY_BE_FILLER;
1359                                         hash_offset++;
1360                                         if (unlikely(hash_offset == ic->tag_size)) {
1361                                                 if (unlikely(!may_be)) {
1362                                                         dm_bufio_release(b);
1363                                                         return ts;
1364                                                 }
1365                                                 hash_offset = 0;
1366                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1367                                         }
1368                                 }
1369                         }
1370                 }
1371                 dm_bufio_release(b);
1372
1373                 tag += to_copy;
1374                 *metadata_offset += to_copy;
1375                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1376                         (*metadata_block)++;
1377                         *metadata_offset = 0;
1378                 }
1379
1380                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1381                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1382                 }
1383
1384                 total_size -= to_copy;
1385         } while (unlikely(total_size));
1386
1387         return 0;
1388 #undef MAY_BE_FILLER
1389 #undef MAY_BE_HASH
1390 }
1391
1392 struct flush_request {
1393         struct dm_io_request io_req;
1394         struct dm_io_region io_reg;
1395         struct dm_integrity_c *ic;
1396         struct completion comp;
1397 };
1398
1399 static void flush_notify(unsigned long error, void *fr_)
1400 {
1401         struct flush_request *fr = fr_;
1402         if (unlikely(error != 0))
1403                 dm_integrity_io_error(fr->ic, "flusing disk cache", -EIO);
1404         complete(&fr->comp);
1405 }
1406
1407 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1408 {
1409         int r;
1410
1411         struct flush_request fr;
1412
1413         if (!ic->meta_dev)
1414                 flush_data = false;
1415         if (flush_data) {
1416                 fr.io_req.bi_op = REQ_OP_WRITE,
1417                 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1418                 fr.io_req.mem.type = DM_IO_KMEM,
1419                 fr.io_req.mem.ptr.addr = NULL,
1420                 fr.io_req.notify.fn = flush_notify,
1421                 fr.io_req.notify.context = &fr;
1422                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1423                 fr.io_reg.bdev = ic->dev->bdev,
1424                 fr.io_reg.sector = 0,
1425                 fr.io_reg.count = 0,
1426                 fr.ic = ic;
1427                 init_completion(&fr.comp);
1428                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1429                 BUG_ON(r);
1430         }
1431
1432         r = dm_bufio_write_dirty_buffers(ic->bufio);
1433         if (unlikely(r))
1434                 dm_integrity_io_error(ic, "writing tags", r);
1435
1436         if (flush_data)
1437                 wait_for_completion(&fr.comp);
1438 }
1439
1440 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1441 {
1442         DECLARE_WAITQUEUE(wait, current);
1443         __add_wait_queue(&ic->endio_wait, &wait);
1444         __set_current_state(TASK_UNINTERRUPTIBLE);
1445         spin_unlock_irq(&ic->endio_wait.lock);
1446         io_schedule();
1447         spin_lock_irq(&ic->endio_wait.lock);
1448         __remove_wait_queue(&ic->endio_wait, &wait);
1449 }
1450
1451 static void autocommit_fn(struct timer_list *t)
1452 {
1453         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1454
1455         if (likely(!dm_integrity_failed(ic)))
1456                 queue_work(ic->commit_wq, &ic->commit_work);
1457 }
1458
1459 static void schedule_autocommit(struct dm_integrity_c *ic)
1460 {
1461         if (!timer_pending(&ic->autocommit_timer))
1462                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1463 }
1464
1465 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1466 {
1467         struct bio *bio;
1468         unsigned long flags;
1469
1470         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1471         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1472         bio_list_add(&ic->flush_bio_list, bio);
1473         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1474
1475         queue_work(ic->commit_wq, &ic->commit_work);
1476 }
1477
1478 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1479 {
1480         int r = dm_integrity_failed(ic);
1481         if (unlikely(r) && !bio->bi_status)
1482                 bio->bi_status = errno_to_blk_status(r);
1483         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1484                 unsigned long flags;
1485                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1486                 bio_list_add(&ic->synchronous_bios, bio);
1487                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1488                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1489                 return;
1490         }
1491         bio_endio(bio);
1492 }
1493
1494 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1495 {
1496         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1497
1498         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1499                 submit_flush_bio(ic, dio);
1500         else
1501                 do_endio(ic, bio);
1502 }
1503
1504 static void dec_in_flight(struct dm_integrity_io *dio)
1505 {
1506         if (atomic_dec_and_test(&dio->in_flight)) {
1507                 struct dm_integrity_c *ic = dio->ic;
1508                 struct bio *bio;
1509
1510                 remove_range(ic, &dio->range);
1511
1512                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1513                         schedule_autocommit(ic);
1514
1515                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1516
1517                 if (unlikely(dio->bi_status) && !bio->bi_status)
1518                         bio->bi_status = dio->bi_status;
1519                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1520                         dio->range.logical_sector += dio->range.n_sectors;
1521                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1522                         INIT_WORK(&dio->work, integrity_bio_wait);
1523                         queue_work(ic->offload_wq, &dio->work);
1524                         return;
1525                 }
1526                 do_endio_flush(ic, dio);
1527         }
1528 }
1529
1530 static void integrity_end_io(struct bio *bio)
1531 {
1532         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1533
1534         dm_bio_restore(&dio->bio_details, bio);
1535         if (bio->bi_integrity)
1536                 bio->bi_opf |= REQ_INTEGRITY;
1537
1538         if (dio->completion)
1539                 complete(dio->completion);
1540
1541         dec_in_flight(dio);
1542 }
1543
1544 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1545                                       const char *data, char *result)
1546 {
1547         __u64 sector_le = cpu_to_le64(sector);
1548         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1549         int r;
1550         unsigned digest_size;
1551
1552         req->tfm = ic->internal_hash;
1553
1554         r = crypto_shash_init(req);
1555         if (unlikely(r < 0)) {
1556                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1557                 goto failed;
1558         }
1559
1560         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1561         if (unlikely(r < 0)) {
1562                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1563                 goto failed;
1564         }
1565
1566         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1567         if (unlikely(r < 0)) {
1568                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1569                 goto failed;
1570         }
1571
1572         r = crypto_shash_final(req, result);
1573         if (unlikely(r < 0)) {
1574                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1575                 goto failed;
1576         }
1577
1578         digest_size = crypto_shash_digestsize(ic->internal_hash);
1579         if (unlikely(digest_size < ic->tag_size))
1580                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1581
1582         return;
1583
1584 failed:
1585         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1586         get_random_bytes(result, ic->tag_size);
1587 }
1588
1589 static void integrity_metadata(struct work_struct *w)
1590 {
1591         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1592         struct dm_integrity_c *ic = dio->ic;
1593
1594         int r;
1595
1596         if (ic->internal_hash) {
1597                 struct bvec_iter iter;
1598                 struct bio_vec bv;
1599                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1600                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1601                 char *checksums;
1602                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1603                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1604                 sector_t sector;
1605                 unsigned sectors_to_process;
1606
1607                 if (unlikely(ic->mode == 'R'))
1608                         goto skip_io;
1609
1610                 if (likely(dio->op != REQ_OP_DISCARD))
1611                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1612                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1613                 else
1614                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1615                 if (!checksums) {
1616                         checksums = checksums_onstack;
1617                         if (WARN_ON(extra_space &&
1618                                     digest_size > sizeof(checksums_onstack))) {
1619                                 r = -EINVAL;
1620                                 goto error;
1621                         }
1622                 }
1623
1624                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1625                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1626                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1627                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1628                         unsigned max_blocks = max_size / ic->tag_size;
1629                         memset(checksums, DISCARD_FILLER, max_size);
1630
1631                         while (bi_size) {
1632                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1633                                 this_step_blocks = min(this_step_blocks, max_blocks);
1634                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1635                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1636                                 if (unlikely(r)) {
1637                                         if (likely(checksums != checksums_onstack))
1638                                                 kfree(checksums);
1639                                         goto error;
1640                                 }
1641
1642                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1643                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1644                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1645                                         BUG();
1646                                 }*/
1647                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1648                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1649                         }
1650
1651                         if (likely(checksums != checksums_onstack))
1652                                 kfree(checksums);
1653                         goto skip_io;
1654                 }
1655
1656                 sector = dio->range.logical_sector;
1657                 sectors_to_process = dio->range.n_sectors;
1658
1659                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1660                         struct bio_vec bv_copy = bv;
1661                         unsigned pos;
1662                         char *mem, *checksums_ptr;
1663
1664 again:
1665                         mem = (char *)kmap_atomic(bv_copy.bv_page) + bv_copy.bv_offset;
1666                         pos = 0;
1667                         checksums_ptr = checksums;
1668                         do {
1669                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1670                                 checksums_ptr += ic->tag_size;
1671                                 sectors_to_process -= ic->sectors_per_block;
1672                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1673                                 sector += ic->sectors_per_block;
1674                         } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1675                         kunmap_atomic(mem);
1676
1677                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1678                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1679                         if (unlikely(r)) {
1680                                 if (r > 0) {
1681                                         char b[BDEVNAME_SIZE];
1682                                         DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1683                                                     (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1684                                         r = -EILSEQ;
1685                                         atomic64_inc(&ic->number_of_mismatches);
1686                                 }
1687                                 if (likely(checksums != checksums_onstack))
1688                                         kfree(checksums);
1689                                 goto error;
1690                         }
1691
1692                         if (!sectors_to_process)
1693                                 break;
1694
1695                         if (unlikely(pos < bv_copy.bv_len)) {
1696                                 bv_copy.bv_offset += pos;
1697                                 bv_copy.bv_len -= pos;
1698                                 goto again;
1699                         }
1700                 }
1701
1702                 if (likely(checksums != checksums_onstack))
1703                         kfree(checksums);
1704         } else {
1705                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1706
1707                 if (bip) {
1708                         struct bio_vec biv;
1709                         struct bvec_iter iter;
1710                         unsigned data_to_process = dio->range.n_sectors;
1711                         sector_to_block(ic, data_to_process);
1712                         data_to_process *= ic->tag_size;
1713
1714                         bip_for_each_vec(biv, bip, iter) {
1715                                 unsigned char *tag;
1716                                 unsigned this_len;
1717
1718                                 BUG_ON(PageHighMem(biv.bv_page));
1719                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1720                                 this_len = min(biv.bv_len, data_to_process);
1721                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1722                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1723                                 if (unlikely(r))
1724                                         goto error;
1725                                 data_to_process -= this_len;
1726                                 if (!data_to_process)
1727                                         break;
1728                         }
1729                 }
1730         }
1731 skip_io:
1732         dec_in_flight(dio);
1733         return;
1734 error:
1735         dio->bi_status = errno_to_blk_status(r);
1736         dec_in_flight(dio);
1737 }
1738
1739 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1740 {
1741         struct dm_integrity_c *ic = ti->private;
1742         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1743         struct bio_integrity_payload *bip;
1744
1745         sector_t area, offset;
1746
1747         dio->ic = ic;
1748         dio->bi_status = 0;
1749         dio->op = bio_op(bio);
1750
1751         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1752                 if (ti->max_io_len) {
1753                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1754                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1755                         sector_t start_boundary = sec >> log2_max_io_len;
1756                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1757                         if (start_boundary < end_boundary) {
1758                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1759                                 dm_accept_partial_bio(bio, len);
1760                         }
1761                 }
1762         }
1763
1764         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1765                 submit_flush_bio(ic, dio);
1766                 return DM_MAPIO_SUBMITTED;
1767         }
1768
1769         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1770         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1771         if (unlikely(dio->fua)) {
1772                 /*
1773                  * Don't pass down the FUA flag because we have to flush
1774                  * disk cache anyway.
1775                  */
1776                 bio->bi_opf &= ~REQ_FUA;
1777         }
1778         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1779                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1780                       dio->range.logical_sector, bio_sectors(bio),
1781                       ic->provided_data_sectors);
1782                 return DM_MAPIO_KILL;
1783         }
1784         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1785                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1786                       ic->sectors_per_block,
1787                       dio->range.logical_sector, bio_sectors(bio));
1788                 return DM_MAPIO_KILL;
1789         }
1790
1791         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1792                 struct bvec_iter iter;
1793                 struct bio_vec bv;
1794                 bio_for_each_segment(bv, bio, iter) {
1795                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1796                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1797                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1798                                 return DM_MAPIO_KILL;
1799                         }
1800                 }
1801         }
1802
1803         bip = bio_integrity(bio);
1804         if (!ic->internal_hash) {
1805                 if (bip) {
1806                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1807                         if (ic->log2_tag_size >= 0)
1808                                 wanted_tag_size <<= ic->log2_tag_size;
1809                         else
1810                                 wanted_tag_size *= ic->tag_size;
1811                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1812                                 DMERR("Invalid integrity data size %u, expected %u",
1813                                       bip->bip_iter.bi_size, wanted_tag_size);
1814                                 return DM_MAPIO_KILL;
1815                         }
1816                 }
1817         } else {
1818                 if (unlikely(bip != NULL)) {
1819                         DMERR("Unexpected integrity data when using internal hash");
1820                         return DM_MAPIO_KILL;
1821                 }
1822         }
1823
1824         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1825                 return DM_MAPIO_KILL;
1826
1827         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1828         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1829         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1830
1831         dm_integrity_map_continue(dio, true);
1832         return DM_MAPIO_SUBMITTED;
1833 }
1834
1835 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1836                                  unsigned journal_section, unsigned journal_entry)
1837 {
1838         struct dm_integrity_c *ic = dio->ic;
1839         sector_t logical_sector;
1840         unsigned n_sectors;
1841
1842         logical_sector = dio->range.logical_sector;
1843         n_sectors = dio->range.n_sectors;
1844         do {
1845                 struct bio_vec bv = bio_iovec(bio);
1846                 char *mem;
1847
1848                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1849                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1850                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1851                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1852 retry_kmap:
1853                 mem = kmap_atomic(bv.bv_page);
1854                 if (likely(dio->op == REQ_OP_WRITE))
1855                         flush_dcache_page(bv.bv_page);
1856
1857                 do {
1858                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1859
1860                         if (unlikely(dio->op == REQ_OP_READ)) {
1861                                 struct journal_sector *js;
1862                                 char *mem_ptr;
1863                                 unsigned s;
1864
1865                                 if (unlikely(journal_entry_is_inprogress(je))) {
1866                                         flush_dcache_page(bv.bv_page);
1867                                         kunmap_atomic(mem);
1868
1869                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1870                                         goto retry_kmap;
1871                                 }
1872                                 smp_rmb();
1873                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1874                                 js = access_journal_data(ic, journal_section, journal_entry);
1875                                 mem_ptr = mem + bv.bv_offset;
1876                                 s = 0;
1877                                 do {
1878                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1879                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1880                                         js++;
1881                                         mem_ptr += 1 << SECTOR_SHIFT;
1882                                 } while (++s < ic->sectors_per_block);
1883 #ifdef INTERNAL_VERIFY
1884                                 if (ic->internal_hash) {
1885                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1886
1887                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1888                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1889                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1890                                                             logical_sector);
1891                                         }
1892                                 }
1893 #endif
1894                         }
1895
1896                         if (!ic->internal_hash) {
1897                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1898                                 unsigned tag_todo = ic->tag_size;
1899                                 char *tag_ptr = journal_entry_tag(ic, je);
1900
1901                                 if (bip) do {
1902                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1903                                         unsigned tag_now = min(biv.bv_len, tag_todo);
1904                                         char *tag_addr;
1905                                         BUG_ON(PageHighMem(biv.bv_page));
1906                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1907                                         if (likely(dio->op == REQ_OP_WRITE))
1908                                                 memcpy(tag_ptr, tag_addr, tag_now);
1909                                         else
1910                                                 memcpy(tag_addr, tag_ptr, tag_now);
1911                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1912                                         tag_ptr += tag_now;
1913                                         tag_todo -= tag_now;
1914                                 } while (unlikely(tag_todo)); else {
1915                                         if (likely(dio->op == REQ_OP_WRITE))
1916                                                 memset(tag_ptr, 0, tag_todo);
1917                                 }
1918                         }
1919
1920                         if (likely(dio->op == REQ_OP_WRITE)) {
1921                                 struct journal_sector *js;
1922                                 unsigned s;
1923
1924                                 js = access_journal_data(ic, journal_section, journal_entry);
1925                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1926
1927                                 s = 0;
1928                                 do {
1929                                         je->last_bytes[s] = js[s].commit_id;
1930                                 } while (++s < ic->sectors_per_block);
1931
1932                                 if (ic->internal_hash) {
1933                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1934                                         if (unlikely(digest_size > ic->tag_size)) {
1935                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1936                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1937                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1938                                         } else
1939                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1940                                 }
1941
1942                                 journal_entry_set_sector(je, logical_sector);
1943                         }
1944                         logical_sector += ic->sectors_per_block;
1945
1946                         journal_entry++;
1947                         if (unlikely(journal_entry == ic->journal_section_entries)) {
1948                                 journal_entry = 0;
1949                                 journal_section++;
1950                                 wraparound_section(ic, &journal_section);
1951                         }
1952
1953                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1954                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1955
1956                 if (unlikely(dio->op == REQ_OP_READ))
1957                         flush_dcache_page(bv.bv_page);
1958                 kunmap_atomic(mem);
1959         } while (n_sectors);
1960
1961         if (likely(dio->op == REQ_OP_WRITE)) {
1962                 smp_mb();
1963                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1964                         wake_up(&ic->copy_to_journal_wait);
1965                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1966                         queue_work(ic->commit_wq, &ic->commit_work);
1967                 } else {
1968                         schedule_autocommit(ic);
1969                 }
1970         } else {
1971                 remove_range(ic, &dio->range);
1972         }
1973
1974         if (unlikely(bio->bi_iter.bi_size)) {
1975                 sector_t area, offset;
1976
1977                 dio->range.logical_sector = logical_sector;
1978                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1979                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1980                 return true;
1981         }
1982
1983         return false;
1984 }
1985
1986 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1987 {
1988         struct dm_integrity_c *ic = dio->ic;
1989         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1990         unsigned journal_section, journal_entry;
1991         unsigned journal_read_pos;
1992         struct completion read_comp;
1993         bool discard_retried = false;
1994         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
1995         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
1996                 need_sync_io = true;
1997
1998         if (need_sync_io && from_map) {
1999                 INIT_WORK(&dio->work, integrity_bio_wait);
2000                 queue_work(ic->offload_wq, &dio->work);
2001                 return;
2002         }
2003
2004 lock_retry:
2005         spin_lock_irq(&ic->endio_wait.lock);
2006 retry:
2007         if (unlikely(dm_integrity_failed(ic))) {
2008                 spin_unlock_irq(&ic->endio_wait.lock);
2009                 do_endio(ic, bio);
2010                 return;
2011         }
2012         dio->range.n_sectors = bio_sectors(bio);
2013         journal_read_pos = NOT_FOUND;
2014         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2015                 if (dio->op == REQ_OP_WRITE) {
2016                         unsigned next_entry, i, pos;
2017                         unsigned ws, we, range_sectors;
2018
2019                         dio->range.n_sectors = min(dio->range.n_sectors,
2020                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2021                         if (unlikely(!dio->range.n_sectors)) {
2022                                 if (from_map)
2023                                         goto offload_to_thread;
2024                                 sleep_on_endio_wait(ic);
2025                                 goto retry;
2026                         }
2027                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2028                         ic->free_sectors -= range_sectors;
2029                         journal_section = ic->free_section;
2030                         journal_entry = ic->free_section_entry;
2031
2032                         next_entry = ic->free_section_entry + range_sectors;
2033                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2034                         ic->free_section += next_entry / ic->journal_section_entries;
2035                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2036                         wraparound_section(ic, &ic->free_section);
2037
2038                         pos = journal_section * ic->journal_section_entries + journal_entry;
2039                         ws = journal_section;
2040                         we = journal_entry;
2041                         i = 0;
2042                         do {
2043                                 struct journal_entry *je;
2044
2045                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2046                                 pos++;
2047                                 if (unlikely(pos >= ic->journal_entries))
2048                                         pos = 0;
2049
2050                                 je = access_journal_entry(ic, ws, we);
2051                                 BUG_ON(!journal_entry_is_unused(je));
2052                                 journal_entry_set_inprogress(je);
2053                                 we++;
2054                                 if (unlikely(we == ic->journal_section_entries)) {
2055                                         we = 0;
2056                                         ws++;
2057                                         wraparound_section(ic, &ws);
2058                                 }
2059                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2060
2061                         spin_unlock_irq(&ic->endio_wait.lock);
2062                         goto journal_read_write;
2063                 } else {
2064                         sector_t next_sector;
2065                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2066                         if (likely(journal_read_pos == NOT_FOUND)) {
2067                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2068                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2069                         } else {
2070                                 unsigned i;
2071                                 unsigned jp = journal_read_pos + 1;
2072                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2073                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2074                                                 break;
2075                                 }
2076                                 dio->range.n_sectors = i;
2077                         }
2078                 }
2079         }
2080         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2081                 /*
2082                  * We must not sleep in the request routine because it could
2083                  * stall bios on current->bio_list.
2084                  * So, we offload the bio to a workqueue if we have to sleep.
2085                  */
2086                 if (from_map) {
2087 offload_to_thread:
2088                         spin_unlock_irq(&ic->endio_wait.lock);
2089                         INIT_WORK(&dio->work, integrity_bio_wait);
2090                         queue_work(ic->wait_wq, &dio->work);
2091                         return;
2092                 }
2093                 if (journal_read_pos != NOT_FOUND)
2094                         dio->range.n_sectors = ic->sectors_per_block;
2095                 wait_and_add_new_range(ic, &dio->range);
2096                 /*
2097                  * wait_and_add_new_range drops the spinlock, so the journal
2098                  * may have been changed arbitrarily. We need to recheck.
2099                  * To simplify the code, we restrict I/O size to just one block.
2100                  */
2101                 if (journal_read_pos != NOT_FOUND) {
2102                         sector_t next_sector;
2103                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2104                         if (unlikely(new_pos != journal_read_pos)) {
2105                                 remove_range_unlocked(ic, &dio->range);
2106                                 goto retry;
2107                         }
2108                 }
2109         }
2110         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2111                 sector_t next_sector;
2112                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2113                 if (unlikely(new_pos != NOT_FOUND) ||
2114                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2115                         remove_range_unlocked(ic, &dio->range);
2116                         spin_unlock_irq(&ic->endio_wait.lock);
2117                         queue_work(ic->commit_wq, &ic->commit_work);
2118                         flush_workqueue(ic->commit_wq);
2119                         queue_work(ic->writer_wq, &ic->writer_work);
2120                         flush_workqueue(ic->writer_wq);
2121                         discard_retried = true;
2122                         goto lock_retry;
2123                 }
2124         }
2125         spin_unlock_irq(&ic->endio_wait.lock);
2126
2127         if (unlikely(journal_read_pos != NOT_FOUND)) {
2128                 journal_section = journal_read_pos / ic->journal_section_entries;
2129                 journal_entry = journal_read_pos % ic->journal_section_entries;
2130                 goto journal_read_write;
2131         }
2132
2133         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2134                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2135                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2136                         struct bitmap_block_status *bbs;
2137
2138                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2139                         spin_lock(&bbs->bio_queue_lock);
2140                         bio_list_add(&bbs->bio_queue, bio);
2141                         spin_unlock(&bbs->bio_queue_lock);
2142                         queue_work(ic->writer_wq, &bbs->work);
2143                         return;
2144                 }
2145         }
2146
2147         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2148
2149         if (need_sync_io) {
2150                 init_completion(&read_comp);
2151                 dio->completion = &read_comp;
2152         } else
2153                 dio->completion = NULL;
2154
2155         dm_bio_record(&dio->bio_details, bio);
2156         bio_set_dev(bio, ic->dev->bdev);
2157         bio->bi_integrity = NULL;
2158         bio->bi_opf &= ~REQ_INTEGRITY;
2159         bio->bi_end_io = integrity_end_io;
2160         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2161
2162         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2163                 integrity_metadata(&dio->work);
2164                 dm_integrity_flush_buffers(ic, false);
2165
2166                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2167                 dio->completion = NULL;
2168
2169                 submit_bio_noacct(bio);
2170
2171                 return;
2172         }
2173
2174         submit_bio_noacct(bio);
2175
2176         if (need_sync_io) {
2177                 wait_for_completion_io(&read_comp);
2178                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2179                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2180                         goto skip_check;
2181                 if (ic->mode == 'B') {
2182                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2183                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2184                                 goto skip_check;
2185                 }
2186
2187                 if (likely(!bio->bi_status))
2188                         integrity_metadata(&dio->work);
2189                 else
2190 skip_check:
2191                         dec_in_flight(dio);
2192
2193         } else {
2194                 INIT_WORK(&dio->work, integrity_metadata);
2195                 queue_work(ic->metadata_wq, &dio->work);
2196         }
2197
2198         return;
2199
2200 journal_read_write:
2201         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2202                 goto lock_retry;
2203
2204         do_endio_flush(ic, dio);
2205 }
2206
2207
2208 static void integrity_bio_wait(struct work_struct *w)
2209 {
2210         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2211
2212         dm_integrity_map_continue(dio, false);
2213 }
2214
2215 static void pad_uncommitted(struct dm_integrity_c *ic)
2216 {
2217         if (ic->free_section_entry) {
2218                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2219                 ic->free_section_entry = 0;
2220                 ic->free_section++;
2221                 wraparound_section(ic, &ic->free_section);
2222                 ic->n_uncommitted_sections++;
2223         }
2224         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2225                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2226                     ic->journal_section_entries + ic->free_sectors)) {
2227                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2228                        "n_uncommitted_sections %u, n_committed_sections %u, "
2229                        "journal_section_entries %u, free_sectors %u",
2230                        ic->journal_sections, ic->journal_section_entries,
2231                        ic->n_uncommitted_sections, ic->n_committed_sections,
2232                        ic->journal_section_entries, ic->free_sectors);
2233         }
2234 }
2235
2236 static void integrity_commit(struct work_struct *w)
2237 {
2238         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2239         unsigned commit_start, commit_sections;
2240         unsigned i, j, n;
2241         struct bio *flushes;
2242
2243         del_timer(&ic->autocommit_timer);
2244
2245         spin_lock_irq(&ic->endio_wait.lock);
2246         flushes = bio_list_get(&ic->flush_bio_list);
2247         if (unlikely(ic->mode != 'J')) {
2248                 spin_unlock_irq(&ic->endio_wait.lock);
2249                 dm_integrity_flush_buffers(ic, true);
2250                 goto release_flush_bios;
2251         }
2252
2253         pad_uncommitted(ic);
2254         commit_start = ic->uncommitted_section;
2255         commit_sections = ic->n_uncommitted_sections;
2256         spin_unlock_irq(&ic->endio_wait.lock);
2257
2258         if (!commit_sections)
2259                 goto release_flush_bios;
2260
2261         ic->wrote_to_journal = true;
2262
2263         i = commit_start;
2264         for (n = 0; n < commit_sections; n++) {
2265                 for (j = 0; j < ic->journal_section_entries; j++) {
2266                         struct journal_entry *je;
2267                         je = access_journal_entry(ic, i, j);
2268                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2269                 }
2270                 for (j = 0; j < ic->journal_section_sectors; j++) {
2271                         struct journal_sector *js;
2272                         js = access_journal(ic, i, j);
2273                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2274                 }
2275                 i++;
2276                 if (unlikely(i >= ic->journal_sections))
2277                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2278                 wraparound_section(ic, &i);
2279         }
2280         smp_rmb();
2281
2282         write_journal(ic, commit_start, commit_sections);
2283
2284         spin_lock_irq(&ic->endio_wait.lock);
2285         ic->uncommitted_section += commit_sections;
2286         wraparound_section(ic, &ic->uncommitted_section);
2287         ic->n_uncommitted_sections -= commit_sections;
2288         ic->n_committed_sections += commit_sections;
2289         spin_unlock_irq(&ic->endio_wait.lock);
2290
2291         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2292                 queue_work(ic->writer_wq, &ic->writer_work);
2293
2294 release_flush_bios:
2295         while (flushes) {
2296                 struct bio *next = flushes->bi_next;
2297                 flushes->bi_next = NULL;
2298                 do_endio(ic, flushes);
2299                 flushes = next;
2300         }
2301 }
2302
2303 static void complete_copy_from_journal(unsigned long error, void *context)
2304 {
2305         struct journal_io *io = context;
2306         struct journal_completion *comp = io->comp;
2307         struct dm_integrity_c *ic = comp->ic;
2308         remove_range(ic, &io->range);
2309         mempool_free(io, &ic->journal_io_mempool);
2310         if (unlikely(error != 0))
2311                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2312         complete_journal_op(comp);
2313 }
2314
2315 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2316                                struct journal_entry *je)
2317 {
2318         unsigned s = 0;
2319         do {
2320                 js->commit_id = je->last_bytes[s];
2321                 js++;
2322         } while (++s < ic->sectors_per_block);
2323 }
2324
2325 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2326                              unsigned write_sections, bool from_replay)
2327 {
2328         unsigned i, j, n;
2329         struct journal_completion comp;
2330         struct blk_plug plug;
2331
2332         blk_start_plug(&plug);
2333
2334         comp.ic = ic;
2335         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2336         init_completion(&comp.comp);
2337
2338         i = write_start;
2339         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2340 #ifndef INTERNAL_VERIFY
2341                 if (unlikely(from_replay))
2342 #endif
2343                         rw_section_mac(ic, i, false);
2344                 for (j = 0; j < ic->journal_section_entries; j++) {
2345                         struct journal_entry *je = access_journal_entry(ic, i, j);
2346                         sector_t sec, area, offset;
2347                         unsigned k, l, next_loop;
2348                         sector_t metadata_block;
2349                         unsigned metadata_offset;
2350                         struct journal_io *io;
2351
2352                         if (journal_entry_is_unused(je))
2353                                 continue;
2354                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2355                         sec = journal_entry_get_sector(je);
2356                         if (unlikely(from_replay)) {
2357                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2358                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2359                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2360                                 }
2361                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2362                                         journal_entry_set_unused(je);
2363                                         continue;
2364                                 }
2365                         }
2366                         get_area_and_offset(ic, sec, &area, &offset);
2367                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2368                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2369                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2370                                 sector_t sec2, area2, offset2;
2371                                 if (journal_entry_is_unused(je2))
2372                                         break;
2373                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2374                                 sec2 = journal_entry_get_sector(je2);
2375                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2376                                         break;
2377                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2378                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2379                                         break;
2380                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2381                         }
2382                         next_loop = k - 1;
2383
2384                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2385                         io->comp = &comp;
2386                         io->range.logical_sector = sec;
2387                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2388
2389                         spin_lock_irq(&ic->endio_wait.lock);
2390                         add_new_range_and_wait(ic, &io->range);
2391
2392                         if (likely(!from_replay)) {
2393                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2394
2395                                 /* don't write if there is newer committed sector */
2396                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2397                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2398
2399                                         journal_entry_set_unused(je2);
2400                                         remove_journal_node(ic, &section_node[j]);
2401                                         j++;
2402                                         sec += ic->sectors_per_block;
2403                                         offset += ic->sectors_per_block;
2404                                 }
2405                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2406                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2407
2408                                         journal_entry_set_unused(je2);
2409                                         remove_journal_node(ic, &section_node[k - 1]);
2410                                         k--;
2411                                 }
2412                                 if (j == k) {
2413                                         remove_range_unlocked(ic, &io->range);
2414                                         spin_unlock_irq(&ic->endio_wait.lock);
2415                                         mempool_free(io, &ic->journal_io_mempool);
2416                                         goto skip_io;
2417                                 }
2418                                 for (l = j; l < k; l++) {
2419                                         remove_journal_node(ic, &section_node[l]);
2420                                 }
2421                         }
2422                         spin_unlock_irq(&ic->endio_wait.lock);
2423
2424                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2425                         for (l = j; l < k; l++) {
2426                                 int r;
2427                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2428
2429                                 if (
2430 #ifndef INTERNAL_VERIFY
2431                                     unlikely(from_replay) &&
2432 #endif
2433                                     ic->internal_hash) {
2434                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2435
2436                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2437                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2438                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2439                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2440                                 }
2441
2442                                 journal_entry_set_unused(je2);
2443                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2444                                                         ic->tag_size, TAG_WRITE);
2445                                 if (unlikely(r)) {
2446                                         dm_integrity_io_error(ic, "reading tags", r);
2447                                 }
2448                         }
2449
2450                         atomic_inc(&comp.in_flight);
2451                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2452                                           (k - j) << ic->sb->log2_sectors_per_block,
2453                                           get_data_sector(ic, area, offset),
2454                                           complete_copy_from_journal, io);
2455 skip_io:
2456                         j = next_loop;
2457                 }
2458         }
2459
2460         dm_bufio_write_dirty_buffers_async(ic->bufio);
2461
2462         blk_finish_plug(&plug);
2463
2464         complete_journal_op(&comp);
2465         wait_for_completion_io(&comp.comp);
2466
2467         dm_integrity_flush_buffers(ic, true);
2468 }
2469
2470 static void integrity_writer(struct work_struct *w)
2471 {
2472         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2473         unsigned write_start, write_sections;
2474
2475         unsigned prev_free_sectors;
2476
2477         spin_lock_irq(&ic->endio_wait.lock);
2478         write_start = ic->committed_section;
2479         write_sections = ic->n_committed_sections;
2480         spin_unlock_irq(&ic->endio_wait.lock);
2481
2482         if (!write_sections)
2483                 return;
2484
2485         do_journal_write(ic, write_start, write_sections, false);
2486
2487         spin_lock_irq(&ic->endio_wait.lock);
2488
2489         ic->committed_section += write_sections;
2490         wraparound_section(ic, &ic->committed_section);
2491         ic->n_committed_sections -= write_sections;
2492
2493         prev_free_sectors = ic->free_sectors;
2494         ic->free_sectors += write_sections * ic->journal_section_entries;
2495         if (unlikely(!prev_free_sectors))
2496                 wake_up_locked(&ic->endio_wait);
2497
2498         spin_unlock_irq(&ic->endio_wait.lock);
2499 }
2500
2501 static void recalc_write_super(struct dm_integrity_c *ic)
2502 {
2503         int r;
2504
2505         dm_integrity_flush_buffers(ic, false);
2506         if (dm_integrity_failed(ic))
2507                 return;
2508
2509         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2510         if (unlikely(r))
2511                 dm_integrity_io_error(ic, "writing superblock", r);
2512 }
2513
2514 static void integrity_recalc(struct work_struct *w)
2515 {
2516         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2517         struct dm_integrity_range range;
2518         struct dm_io_request io_req;
2519         struct dm_io_region io_loc;
2520         sector_t area, offset;
2521         sector_t metadata_block;
2522         unsigned metadata_offset;
2523         sector_t logical_sector, n_sectors;
2524         __u8 *t;
2525         unsigned i;
2526         int r;
2527         unsigned super_counter = 0;
2528
2529         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2530
2531         spin_lock_irq(&ic->endio_wait.lock);
2532
2533 next_chunk:
2534
2535         if (unlikely(dm_post_suspending(ic->ti)))
2536                 goto unlock_ret;
2537
2538         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2539         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2540                 if (ic->mode == 'B') {
2541                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2542                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2543                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2544                 }
2545                 goto unlock_ret;
2546         }
2547
2548         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2549         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2550         if (!ic->meta_dev)
2551                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2552
2553         add_new_range_and_wait(ic, &range);
2554         spin_unlock_irq(&ic->endio_wait.lock);
2555         logical_sector = range.logical_sector;
2556         n_sectors = range.n_sectors;
2557
2558         if (ic->mode == 'B') {
2559                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2560                         goto advance_and_next;
2561                 }
2562                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2563                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2564                         logical_sector += ic->sectors_per_block;
2565                         n_sectors -= ic->sectors_per_block;
2566                         cond_resched();
2567                 }
2568                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2569                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2570                         n_sectors -= ic->sectors_per_block;
2571                         cond_resched();
2572                 }
2573                 get_area_and_offset(ic, logical_sector, &area, &offset);
2574         }
2575
2576         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2577
2578         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2579                 recalc_write_super(ic);
2580                 if (ic->mode == 'B') {
2581                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2582                 }
2583                 super_counter = 0;
2584         }
2585
2586         if (unlikely(dm_integrity_failed(ic)))
2587                 goto err;
2588
2589         io_req.bi_op = REQ_OP_READ;
2590         io_req.bi_op_flags = 0;
2591         io_req.mem.type = DM_IO_VMA;
2592         io_req.mem.ptr.addr = ic->recalc_buffer;
2593         io_req.notify.fn = NULL;
2594         io_req.client = ic->io;
2595         io_loc.bdev = ic->dev->bdev;
2596         io_loc.sector = get_data_sector(ic, area, offset);
2597         io_loc.count = n_sectors;
2598
2599         r = dm_io(&io_req, 1, &io_loc, NULL);
2600         if (unlikely(r)) {
2601                 dm_integrity_io_error(ic, "reading data", r);
2602                 goto err;
2603         }
2604
2605         t = ic->recalc_tags;
2606         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2607                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2608                 t += ic->tag_size;
2609         }
2610
2611         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2612
2613         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2614         if (unlikely(r)) {
2615                 dm_integrity_io_error(ic, "writing tags", r);
2616                 goto err;
2617         }
2618
2619         if (ic->mode == 'B') {
2620                 sector_t start, end;
2621                 start = (range.logical_sector >>
2622                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2623                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2624                 end = ((range.logical_sector + range.n_sectors) >>
2625                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2626                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2627                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2628         }
2629
2630 advance_and_next:
2631         cond_resched();
2632
2633         spin_lock_irq(&ic->endio_wait.lock);
2634         remove_range_unlocked(ic, &range);
2635         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2636         goto next_chunk;
2637
2638 err:
2639         remove_range(ic, &range);
2640         return;
2641
2642 unlock_ret:
2643         spin_unlock_irq(&ic->endio_wait.lock);
2644
2645         recalc_write_super(ic);
2646 }
2647
2648 static void bitmap_block_work(struct work_struct *w)
2649 {
2650         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2651         struct dm_integrity_c *ic = bbs->ic;
2652         struct bio *bio;
2653         struct bio_list bio_queue;
2654         struct bio_list waiting;
2655
2656         bio_list_init(&waiting);
2657
2658         spin_lock(&bbs->bio_queue_lock);
2659         bio_queue = bbs->bio_queue;
2660         bio_list_init(&bbs->bio_queue);
2661         spin_unlock(&bbs->bio_queue_lock);
2662
2663         while ((bio = bio_list_pop(&bio_queue))) {
2664                 struct dm_integrity_io *dio;
2665
2666                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2667
2668                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2669                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2670                         remove_range(ic, &dio->range);
2671                         INIT_WORK(&dio->work, integrity_bio_wait);
2672                         queue_work(ic->offload_wq, &dio->work);
2673                 } else {
2674                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2675                                         dio->range.n_sectors, BITMAP_OP_SET);
2676                         bio_list_add(&waiting, bio);
2677                 }
2678         }
2679
2680         if (bio_list_empty(&waiting))
2681                 return;
2682
2683         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2684                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2685                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2686
2687         while ((bio = bio_list_pop(&waiting))) {
2688                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2689
2690                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2691                                 dio->range.n_sectors, BITMAP_OP_SET);
2692
2693                 remove_range(ic, &dio->range);
2694                 INIT_WORK(&dio->work, integrity_bio_wait);
2695                 queue_work(ic->offload_wq, &dio->work);
2696         }
2697
2698         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2699 }
2700
2701 static void bitmap_flush_work(struct work_struct *work)
2702 {
2703         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2704         struct dm_integrity_range range;
2705         unsigned long limit;
2706         struct bio *bio;
2707
2708         dm_integrity_flush_buffers(ic, false);
2709
2710         range.logical_sector = 0;
2711         range.n_sectors = ic->provided_data_sectors;
2712
2713         spin_lock_irq(&ic->endio_wait.lock);
2714         add_new_range_and_wait(ic, &range);
2715         spin_unlock_irq(&ic->endio_wait.lock);
2716
2717         dm_integrity_flush_buffers(ic, true);
2718
2719         limit = ic->provided_data_sectors;
2720         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2721                 limit = le64_to_cpu(ic->sb->recalc_sector)
2722                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2723                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2724         }
2725         /*DEBUG_print("zeroing journal\n");*/
2726         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2727         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2728
2729         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2730                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2731
2732         spin_lock_irq(&ic->endio_wait.lock);
2733         remove_range_unlocked(ic, &range);
2734         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2735                 bio_endio(bio);
2736                 spin_unlock_irq(&ic->endio_wait.lock);
2737                 spin_lock_irq(&ic->endio_wait.lock);
2738         }
2739         spin_unlock_irq(&ic->endio_wait.lock);
2740 }
2741
2742
2743 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2744                          unsigned n_sections, unsigned char commit_seq)
2745 {
2746         unsigned i, j, n;
2747
2748         if (!n_sections)
2749                 return;
2750
2751         for (n = 0; n < n_sections; n++) {
2752                 i = start_section + n;
2753                 wraparound_section(ic, &i);
2754                 for (j = 0; j < ic->journal_section_sectors; j++) {
2755                         struct journal_sector *js = access_journal(ic, i, j);
2756                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2757                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2758                 }
2759                 for (j = 0; j < ic->journal_section_entries; j++) {
2760                         struct journal_entry *je = access_journal_entry(ic, i, j);
2761                         journal_entry_set_unused(je);
2762                 }
2763         }
2764
2765         write_journal(ic, start_section, n_sections);
2766 }
2767
2768 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2769 {
2770         unsigned char k;
2771         for (k = 0; k < N_COMMIT_IDS; k++) {
2772                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2773                         return k;
2774         }
2775         dm_integrity_io_error(ic, "journal commit id", -EIO);
2776         return -EIO;
2777 }
2778
2779 static void replay_journal(struct dm_integrity_c *ic)
2780 {
2781         unsigned i, j;
2782         bool used_commit_ids[N_COMMIT_IDS];
2783         unsigned max_commit_id_sections[N_COMMIT_IDS];
2784         unsigned write_start, write_sections;
2785         unsigned continue_section;
2786         bool journal_empty;
2787         unsigned char unused, last_used, want_commit_seq;
2788
2789         if (ic->mode == 'R')
2790                 return;
2791
2792         if (ic->journal_uptodate)
2793                 return;
2794
2795         last_used = 0;
2796         write_start = 0;
2797
2798         if (!ic->just_formatted) {
2799                 DEBUG_print("reading journal\n");
2800                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2801                 if (ic->journal_io)
2802                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2803                 if (ic->journal_io) {
2804                         struct journal_completion crypt_comp;
2805                         crypt_comp.ic = ic;
2806                         init_completion(&crypt_comp.comp);
2807                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2808                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2809                         wait_for_completion(&crypt_comp.comp);
2810                 }
2811                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2812         }
2813
2814         if (dm_integrity_failed(ic))
2815                 goto clear_journal;
2816
2817         journal_empty = true;
2818         memset(used_commit_ids, 0, sizeof used_commit_ids);
2819         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2820         for (i = 0; i < ic->journal_sections; i++) {
2821                 for (j = 0; j < ic->journal_section_sectors; j++) {
2822                         int k;
2823                         struct journal_sector *js = access_journal(ic, i, j);
2824                         k = find_commit_seq(ic, i, j, js->commit_id);
2825                         if (k < 0)
2826                                 goto clear_journal;
2827                         used_commit_ids[k] = true;
2828                         max_commit_id_sections[k] = i;
2829                 }
2830                 if (journal_empty) {
2831                         for (j = 0; j < ic->journal_section_entries; j++) {
2832                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2833                                 if (!journal_entry_is_unused(je)) {
2834                                         journal_empty = false;
2835                                         break;
2836                                 }
2837                         }
2838                 }
2839         }
2840
2841         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2842                 unused = N_COMMIT_IDS - 1;
2843                 while (unused && !used_commit_ids[unused - 1])
2844                         unused--;
2845         } else {
2846                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2847                         if (!used_commit_ids[unused])
2848                                 break;
2849                 if (unused == N_COMMIT_IDS) {
2850                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2851                         goto clear_journal;
2852                 }
2853         }
2854         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2855                     unused, used_commit_ids[0], used_commit_ids[1],
2856                     used_commit_ids[2], used_commit_ids[3]);
2857
2858         last_used = prev_commit_seq(unused);
2859         want_commit_seq = prev_commit_seq(last_used);
2860
2861         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2862                 journal_empty = true;
2863
2864         write_start = max_commit_id_sections[last_used] + 1;
2865         if (unlikely(write_start >= ic->journal_sections))
2866                 want_commit_seq = next_commit_seq(want_commit_seq);
2867         wraparound_section(ic, &write_start);
2868
2869         i = write_start;
2870         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2871                 for (j = 0; j < ic->journal_section_sectors; j++) {
2872                         struct journal_sector *js = access_journal(ic, i, j);
2873
2874                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2875                                 /*
2876                                  * This could be caused by crash during writing.
2877                                  * We won't replay the inconsistent part of the
2878                                  * journal.
2879                                  */
2880                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2881                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2882                                 goto brk;
2883                         }
2884                 }
2885                 i++;
2886                 if (unlikely(i >= ic->journal_sections))
2887                         want_commit_seq = next_commit_seq(want_commit_seq);
2888                 wraparound_section(ic, &i);
2889         }
2890 brk:
2891
2892         if (!journal_empty) {
2893                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2894                             write_sections, write_start, want_commit_seq);
2895                 do_journal_write(ic, write_start, write_sections, true);
2896         }
2897
2898         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2899                 continue_section = write_start;
2900                 ic->commit_seq = want_commit_seq;
2901                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2902         } else {
2903                 unsigned s;
2904                 unsigned char erase_seq;
2905 clear_journal:
2906                 DEBUG_print("clearing journal\n");
2907
2908                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2909                 s = write_start;
2910                 init_journal(ic, s, 1, erase_seq);
2911                 s++;
2912                 wraparound_section(ic, &s);
2913                 if (ic->journal_sections >= 2) {
2914                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2915                         s += ic->journal_sections - 2;
2916                         wraparound_section(ic, &s);
2917                         init_journal(ic, s, 1, erase_seq);
2918                 }
2919
2920                 continue_section = 0;
2921                 ic->commit_seq = next_commit_seq(erase_seq);
2922         }
2923
2924         ic->committed_section = continue_section;
2925         ic->n_committed_sections = 0;
2926
2927         ic->uncommitted_section = continue_section;
2928         ic->n_uncommitted_sections = 0;
2929
2930         ic->free_section = continue_section;
2931         ic->free_section_entry = 0;
2932         ic->free_sectors = ic->journal_entries;
2933
2934         ic->journal_tree_root = RB_ROOT;
2935         for (i = 0; i < ic->journal_entries; i++)
2936                 init_journal_node(&ic->journal_tree[i]);
2937 }
2938
2939 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2940 {
2941         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2942
2943         if (ic->mode == 'B') {
2944                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2945                 ic->synchronous_mode = 1;
2946
2947                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2948                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2949                 flush_workqueue(ic->commit_wq);
2950         }
2951 }
2952
2953 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2954 {
2955         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2956
2957         DEBUG_print("dm_integrity_reboot\n");
2958
2959         dm_integrity_enter_synchronous_mode(ic);
2960
2961         return NOTIFY_DONE;
2962 }
2963
2964 static void dm_integrity_postsuspend(struct dm_target *ti)
2965 {
2966         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2967         int r;
2968
2969         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2970
2971         del_timer_sync(&ic->autocommit_timer);
2972
2973         if (ic->recalc_wq)
2974                 drain_workqueue(ic->recalc_wq);
2975
2976         if (ic->mode == 'B')
2977                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2978
2979         queue_work(ic->commit_wq, &ic->commit_work);
2980         drain_workqueue(ic->commit_wq);
2981
2982         if (ic->mode == 'J') {
2983                 queue_work(ic->writer_wq, &ic->writer_work);
2984                 drain_workqueue(ic->writer_wq);
2985                 dm_integrity_flush_buffers(ic, true);
2986                 if (ic->wrote_to_journal) {
2987                         init_journal(ic, ic->free_section,
2988                                      ic->journal_sections - ic->free_section, ic->commit_seq);
2989                         if (ic->free_section) {
2990                                 init_journal(ic, 0, ic->free_section,
2991                                              next_commit_seq(ic->commit_seq));
2992                         }
2993                 }
2994         }
2995
2996         if (ic->mode == 'B') {
2997                 dm_integrity_flush_buffers(ic, true);
2998 #if 1
2999                 /* set to 0 to test bitmap replay code */
3000                 init_journal(ic, 0, ic->journal_sections, 0);
3001                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3002                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3003                 if (unlikely(r))
3004                         dm_integrity_io_error(ic, "writing superblock", r);
3005 #endif
3006         }
3007
3008         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3009
3010         ic->journal_uptodate = true;
3011 }
3012
3013 static void dm_integrity_resume(struct dm_target *ti)
3014 {
3015         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3016         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3017         int r;
3018
3019         DEBUG_print("resume\n");
3020
3021         ic->wrote_to_journal = false;
3022
3023         if (ic->provided_data_sectors != old_provided_data_sectors) {
3024                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3025                     ic->mode == 'B' &&
3026                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3027                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3028                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3029                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3030                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3031                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3032                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3033                 }
3034
3035                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3036                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3037                 if (unlikely(r))
3038                         dm_integrity_io_error(ic, "writing superblock", r);
3039         }
3040
3041         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3042                 DEBUG_print("resume dirty_bitmap\n");
3043                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3044                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3045                 if (ic->mode == 'B') {
3046                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3047                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3048                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3049                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3050                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3051                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3052                                         ic->sb->recalc_sector = cpu_to_le64(0);
3053                                 }
3054                         } else {
3055                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3056                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3057                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3058                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3059                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3060                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3061                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3062                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3063                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3064                                 ic->sb->recalc_sector = cpu_to_le64(0);
3065                         }
3066                 } else {
3067                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3068                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3069                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3070                                 ic->sb->recalc_sector = cpu_to_le64(0);
3071                         }
3072                         init_journal(ic, 0, ic->journal_sections, 0);
3073                         replay_journal(ic);
3074                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3075                 }
3076                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3077                 if (unlikely(r))
3078                         dm_integrity_io_error(ic, "writing superblock", r);
3079         } else {
3080                 replay_journal(ic);
3081                 if (ic->mode == 'B') {
3082                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3083                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3084                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3085                         if (unlikely(r))
3086                                 dm_integrity_io_error(ic, "writing superblock", r);
3087
3088                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3089                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3090                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3091                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3092                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3093                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3094                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3095                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3096                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3097                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3098                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3099                         }
3100                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3101                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3102                 }
3103         }
3104
3105         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3106         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3107                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3108                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3109                 if (recalc_pos < ic->provided_data_sectors) {
3110                         queue_work(ic->recalc_wq, &ic->recalc_work);
3111                 } else if (recalc_pos > ic->provided_data_sectors) {
3112                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3113                         recalc_write_super(ic);
3114                 }
3115         }
3116
3117         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3118         ic->reboot_notifier.next = NULL;
3119         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3120         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3121
3122 #if 0
3123         /* set to 1 to stress test synchronous mode */
3124         dm_integrity_enter_synchronous_mode(ic);
3125 #endif
3126 }
3127
3128 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3129                                 unsigned status_flags, char *result, unsigned maxlen)
3130 {
3131         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3132         unsigned arg_count;
3133         size_t sz = 0;
3134
3135         switch (type) {
3136         case STATUSTYPE_INFO:
3137                 DMEMIT("%llu %llu",
3138                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3139                         ic->provided_data_sectors);
3140                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3141                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3142                 else
3143                         DMEMIT(" -");
3144                 break;
3145
3146         case STATUSTYPE_TABLE: {
3147                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3148                 watermark_percentage += ic->journal_entries / 2;
3149                 do_div(watermark_percentage, ic->journal_entries);
3150                 arg_count = 3;
3151                 arg_count += !!ic->meta_dev;
3152                 arg_count += ic->sectors_per_block != 1;
3153                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3154                 arg_count += ic->discard;
3155                 arg_count += ic->mode == 'J';
3156                 arg_count += ic->mode == 'J';
3157                 arg_count += ic->mode == 'B';
3158                 arg_count += ic->mode == 'B';
3159                 arg_count += !!ic->internal_hash_alg.alg_string;
3160                 arg_count += !!ic->journal_crypt_alg.alg_string;
3161                 arg_count += !!ic->journal_mac_alg.alg_string;
3162                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3163                 arg_count += ic->legacy_recalculate;
3164                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3165                        ic->tag_size, ic->mode, arg_count);
3166                 if (ic->meta_dev)
3167                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3168                 if (ic->sectors_per_block != 1)
3169                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3170                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3171                         DMEMIT(" recalculate");
3172                 if (ic->discard)
3173                         DMEMIT(" allow_discards");
3174                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3175                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3176                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3177                 if (ic->mode == 'J') {
3178                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3179                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3180                 }
3181                 if (ic->mode == 'B') {
3182                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3183                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3184                 }
3185                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3186                         DMEMIT(" fix_padding");
3187                 if (ic->legacy_recalculate)
3188                         DMEMIT(" legacy_recalculate");
3189
3190 #define EMIT_ALG(a, n)                                                  \
3191                 do {                                                    \
3192                         if (ic->a.alg_string) {                         \
3193                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3194                                 if (ic->a.key_string)                   \
3195                                         DMEMIT(":%s", ic->a.key_string);\
3196                         }                                               \
3197                 } while (0)
3198                 EMIT_ALG(internal_hash_alg, "internal_hash");
3199                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3200                 EMIT_ALG(journal_mac_alg, "journal_mac");
3201                 break;
3202         }
3203         }
3204 }
3205
3206 static int dm_integrity_iterate_devices(struct dm_target *ti,
3207                                         iterate_devices_callout_fn fn, void *data)
3208 {
3209         struct dm_integrity_c *ic = ti->private;
3210
3211         if (!ic->meta_dev)
3212                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3213         else
3214                 return fn(ti, ic->dev, 0, ti->len, data);
3215 }
3216
3217 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3218 {
3219         struct dm_integrity_c *ic = ti->private;
3220
3221         if (ic->sectors_per_block > 1) {
3222                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3223                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3224                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3225         }
3226 }
3227
3228 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3229 {
3230         unsigned sector_space = JOURNAL_SECTOR_DATA;
3231
3232         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3233         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3234                                          JOURNAL_ENTRY_ROUNDUP);
3235
3236         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3237                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3238         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3239         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3240         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3241         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3242 }
3243
3244 static int calculate_device_limits(struct dm_integrity_c *ic)
3245 {
3246         __u64 initial_sectors;
3247
3248         calculate_journal_section_size(ic);
3249         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3250         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3251                 return -EINVAL;
3252         ic->initial_sectors = initial_sectors;
3253
3254         if (!ic->meta_dev) {
3255                 sector_t last_sector, last_area, last_offset;
3256
3257                 /* we have to maintain excessive padding for compatibility with existing volumes */
3258                 __u64 metadata_run_padding =
3259                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3260                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3261                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3262
3263                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3264                                             metadata_run_padding) >> SECTOR_SHIFT;
3265                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3266                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3267                 else
3268                         ic->log2_metadata_run = -1;
3269
3270                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3271                 last_sector = get_data_sector(ic, last_area, last_offset);
3272                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3273                         return -EINVAL;
3274         } else {
3275                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3276                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3277                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3278                 meta_size <<= ic->log2_buffer_sectors;
3279                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3280                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3281                         return -EINVAL;
3282                 ic->metadata_run = 1;
3283                 ic->log2_metadata_run = 0;
3284         }
3285
3286         return 0;
3287 }
3288
3289 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3290 {
3291         if (!ic->meta_dev) {
3292                 int test_bit;
3293                 ic->provided_data_sectors = 0;
3294                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3295                         __u64 prev_data_sectors = ic->provided_data_sectors;
3296
3297                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3298                         if (calculate_device_limits(ic))
3299                                 ic->provided_data_sectors = prev_data_sectors;
3300                 }
3301         } else {
3302                 ic->provided_data_sectors = ic->data_device_sectors;
3303                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3304         }
3305 }
3306
3307 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3308 {
3309         unsigned journal_sections;
3310         int test_bit;
3311
3312         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3313         memcpy(ic->sb->magic, SB_MAGIC, 8);
3314         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3315         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3316         if (ic->journal_mac_alg.alg_string)
3317                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3318
3319         calculate_journal_section_size(ic);
3320         journal_sections = journal_sectors / ic->journal_section_sectors;
3321         if (!journal_sections)
3322                 journal_sections = 1;
3323
3324         if (!ic->meta_dev) {
3325                 if (ic->fix_padding)
3326                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3327                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3328                 if (!interleave_sectors)
3329                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3330                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3331                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3332                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3333
3334                 get_provided_data_sectors(ic);
3335                 if (!ic->provided_data_sectors)
3336                         return -EINVAL;
3337         } else {
3338                 ic->sb->log2_interleave_sectors = 0;
3339
3340                 get_provided_data_sectors(ic);
3341                 if (!ic->provided_data_sectors)
3342                         return -EINVAL;
3343
3344 try_smaller_buffer:
3345                 ic->sb->journal_sections = cpu_to_le32(0);
3346                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3347                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3348                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3349                         if (test_journal_sections > journal_sections)
3350                                 continue;
3351                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3352                         if (calculate_device_limits(ic))
3353                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3354
3355                 }
3356                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3357                         if (ic->log2_buffer_sectors > 3) {
3358                                 ic->log2_buffer_sectors--;
3359                                 goto try_smaller_buffer;
3360                         }
3361                         return -EINVAL;
3362                 }
3363         }
3364
3365         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3366
3367         sb_set_version(ic);
3368
3369         return 0;
3370 }
3371
3372 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3373 {
3374         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3375         struct blk_integrity bi;
3376
3377         memset(&bi, 0, sizeof(bi));
3378         bi.profile = &dm_integrity_profile;
3379         bi.tuple_size = ic->tag_size;
3380         bi.tag_size = bi.tuple_size;
3381         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3382
3383         blk_integrity_register(disk, &bi);
3384         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3385 }
3386
3387 static void dm_integrity_free_page_list(struct page_list *pl)
3388 {
3389         unsigned i;
3390
3391         if (!pl)
3392                 return;
3393         for (i = 0; pl[i].page; i++)
3394                 __free_page(pl[i].page);
3395         kvfree(pl);
3396 }
3397
3398 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3399 {
3400         struct page_list *pl;
3401         unsigned i;
3402
3403         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3404         if (!pl)
3405                 return NULL;
3406
3407         for (i = 0; i < n_pages; i++) {
3408                 pl[i].page = alloc_page(GFP_KERNEL);
3409                 if (!pl[i].page) {
3410                         dm_integrity_free_page_list(pl);
3411                         return NULL;
3412                 }
3413                 if (i)
3414                         pl[i - 1].next = &pl[i];
3415         }
3416         pl[i].page = NULL;
3417         pl[i].next = NULL;
3418
3419         return pl;
3420 }
3421
3422 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3423 {
3424         unsigned i;
3425         for (i = 0; i < ic->journal_sections; i++)
3426                 kvfree(sl[i]);
3427         kvfree(sl);
3428 }
3429
3430 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3431                                                                    struct page_list *pl)
3432 {
3433         struct scatterlist **sl;
3434         unsigned i;
3435
3436         sl = kvmalloc_array(ic->journal_sections,
3437                             sizeof(struct scatterlist *),
3438                             GFP_KERNEL | __GFP_ZERO);
3439         if (!sl)
3440                 return NULL;
3441
3442         for (i = 0; i < ic->journal_sections; i++) {
3443                 struct scatterlist *s;
3444                 unsigned start_index, start_offset;
3445                 unsigned end_index, end_offset;
3446                 unsigned n_pages;
3447                 unsigned idx;
3448
3449                 page_list_location(ic, i, 0, &start_index, &start_offset);
3450                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3451                                    &end_index, &end_offset);
3452
3453                 n_pages = (end_index - start_index + 1);
3454
3455                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3456                                    GFP_KERNEL);
3457                 if (!s) {
3458                         dm_integrity_free_journal_scatterlist(ic, sl);
3459                         return NULL;
3460                 }
3461
3462                 sg_init_table(s, n_pages);
3463                 for (idx = start_index; idx <= end_index; idx++) {
3464                         char *va = lowmem_page_address(pl[idx].page);
3465                         unsigned start = 0, end = PAGE_SIZE;
3466                         if (idx == start_index)
3467                                 start = start_offset;
3468                         if (idx == end_index)
3469                                 end = end_offset + (1 << SECTOR_SHIFT);
3470                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3471                 }
3472
3473                 sl[i] = s;
3474         }
3475
3476         return sl;
3477 }
3478
3479 static void free_alg(struct alg_spec *a)
3480 {
3481         kfree_sensitive(a->alg_string);
3482         kfree_sensitive(a->key);
3483         memset(a, 0, sizeof *a);
3484 }
3485
3486 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3487 {
3488         char *k;
3489
3490         free_alg(a);
3491
3492         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3493         if (!a->alg_string)
3494                 goto nomem;
3495
3496         k = strchr(a->alg_string, ':');
3497         if (k) {
3498                 *k = 0;
3499                 a->key_string = k + 1;
3500                 if (strlen(a->key_string) & 1)
3501                         goto inval;
3502
3503                 a->key_size = strlen(a->key_string) / 2;
3504                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3505                 if (!a->key)
3506                         goto nomem;
3507                 if (hex2bin(a->key, a->key_string, a->key_size))
3508                         goto inval;
3509         }
3510
3511         return 0;
3512 inval:
3513         *error = error_inval;
3514         return -EINVAL;
3515 nomem:
3516         *error = "Out of memory for an argument";
3517         return -ENOMEM;
3518 }
3519
3520 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3521                    char *error_alg, char *error_key)
3522 {
3523         int r;
3524
3525         if (a->alg_string) {
3526                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3527                 if (IS_ERR(*hash)) {
3528                         *error = error_alg;
3529                         r = PTR_ERR(*hash);
3530                         *hash = NULL;
3531                         return r;
3532                 }
3533
3534                 if (a->key) {
3535                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3536                         if (r) {
3537                                 *error = error_key;
3538                                 return r;
3539                         }
3540                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3541                         *error = error_key;
3542                         return -ENOKEY;
3543                 }
3544         }
3545
3546         return 0;
3547 }
3548
3549 static int create_journal(struct dm_integrity_c *ic, char **error)
3550 {
3551         int r = 0;
3552         unsigned i;
3553         __u64 journal_pages, journal_desc_size, journal_tree_size;
3554         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3555         struct skcipher_request *req = NULL;
3556
3557         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3558         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3559         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3560         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3561
3562         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3563                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3564         journal_desc_size = journal_pages * sizeof(struct page_list);
3565         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3566                 *error = "Journal doesn't fit into memory";
3567                 r = -ENOMEM;
3568                 goto bad;
3569         }
3570         ic->journal_pages = journal_pages;
3571
3572         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3573         if (!ic->journal) {
3574                 *error = "Could not allocate memory for journal";
3575                 r = -ENOMEM;
3576                 goto bad;
3577         }
3578         if (ic->journal_crypt_alg.alg_string) {
3579                 unsigned ivsize, blocksize;
3580                 struct journal_completion comp;
3581
3582                 comp.ic = ic;
3583                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3584                 if (IS_ERR(ic->journal_crypt)) {
3585                         *error = "Invalid journal cipher";
3586                         r = PTR_ERR(ic->journal_crypt);
3587                         ic->journal_crypt = NULL;
3588                         goto bad;
3589                 }
3590                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3591                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3592
3593                 if (ic->journal_crypt_alg.key) {
3594                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3595                                                    ic->journal_crypt_alg.key_size);
3596                         if (r) {
3597                                 *error = "Error setting encryption key";
3598                                 goto bad;
3599                         }
3600                 }
3601                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3602                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3603
3604                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3605                 if (!ic->journal_io) {
3606                         *error = "Could not allocate memory for journal io";
3607                         r = -ENOMEM;
3608                         goto bad;
3609                 }
3610
3611                 if (blocksize == 1) {
3612                         struct scatterlist *sg;
3613
3614                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3615                         if (!req) {
3616                                 *error = "Could not allocate crypt request";
3617                                 r = -ENOMEM;
3618                                 goto bad;
3619                         }
3620
3621                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3622                         if (!crypt_iv) {
3623                                 *error = "Could not allocate iv";
3624                                 r = -ENOMEM;
3625                                 goto bad;
3626                         }
3627
3628                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3629                         if (!ic->journal_xor) {
3630                                 *error = "Could not allocate memory for journal xor";
3631                                 r = -ENOMEM;
3632                                 goto bad;
3633                         }
3634
3635                         sg = kvmalloc_array(ic->journal_pages + 1,
3636                                             sizeof(struct scatterlist),
3637                                             GFP_KERNEL);
3638                         if (!sg) {
3639                                 *error = "Unable to allocate sg list";
3640                                 r = -ENOMEM;
3641                                 goto bad;
3642                         }
3643                         sg_init_table(sg, ic->journal_pages + 1);
3644                         for (i = 0; i < ic->journal_pages; i++) {
3645                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3646                                 clear_page(va);
3647                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3648                         }
3649                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3650
3651                         skcipher_request_set_crypt(req, sg, sg,
3652                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3653                         init_completion(&comp.comp);
3654                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3655                         if (do_crypt(true, req, &comp))
3656                                 wait_for_completion(&comp.comp);
3657                         kvfree(sg);
3658                         r = dm_integrity_failed(ic);
3659                         if (r) {
3660                                 *error = "Unable to encrypt journal";
3661                                 goto bad;
3662                         }
3663                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3664
3665                         crypto_free_skcipher(ic->journal_crypt);
3666                         ic->journal_crypt = NULL;
3667                 } else {
3668                         unsigned crypt_len = roundup(ivsize, blocksize);
3669
3670                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3671                         if (!req) {
3672                                 *error = "Could not allocate crypt request";
3673                                 r = -ENOMEM;
3674                                 goto bad;
3675                         }
3676
3677                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3678                         if (!crypt_iv) {
3679                                 *error = "Could not allocate iv";
3680                                 r = -ENOMEM;
3681                                 goto bad;
3682                         }
3683
3684                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3685                         if (!crypt_data) {
3686                                 *error = "Unable to allocate crypt data";
3687                                 r = -ENOMEM;
3688                                 goto bad;
3689                         }
3690
3691                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3692                         if (!ic->journal_scatterlist) {
3693                                 *error = "Unable to allocate sg list";
3694                                 r = -ENOMEM;
3695                                 goto bad;
3696                         }
3697                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3698                         if (!ic->journal_io_scatterlist) {
3699                                 *error = "Unable to allocate sg list";
3700                                 r = -ENOMEM;
3701                                 goto bad;
3702                         }
3703                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3704                                                          sizeof(struct skcipher_request *),
3705                                                          GFP_KERNEL | __GFP_ZERO);
3706                         if (!ic->sk_requests) {
3707                                 *error = "Unable to allocate sk requests";
3708                                 r = -ENOMEM;
3709                                 goto bad;
3710                         }
3711                         for (i = 0; i < ic->journal_sections; i++) {
3712                                 struct scatterlist sg;
3713                                 struct skcipher_request *section_req;
3714                                 __u32 section_le = cpu_to_le32(i);
3715
3716                                 memset(crypt_iv, 0x00, ivsize);
3717                                 memset(crypt_data, 0x00, crypt_len);
3718                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3719
3720                                 sg_init_one(&sg, crypt_data, crypt_len);
3721                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3722                                 init_completion(&comp.comp);
3723                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3724                                 if (do_crypt(true, req, &comp))
3725                                         wait_for_completion(&comp.comp);
3726
3727                                 r = dm_integrity_failed(ic);
3728                                 if (r) {
3729                                         *error = "Unable to generate iv";
3730                                         goto bad;
3731                                 }
3732
3733                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3734                                 if (!section_req) {
3735                                         *error = "Unable to allocate crypt request";
3736                                         r = -ENOMEM;
3737                                         goto bad;
3738                                 }
3739                                 section_req->iv = kmalloc_array(ivsize, 2,
3740                                                                 GFP_KERNEL);
3741                                 if (!section_req->iv) {
3742                                         skcipher_request_free(section_req);
3743                                         *error = "Unable to allocate iv";
3744                                         r = -ENOMEM;
3745                                         goto bad;
3746                                 }
3747                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3748                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3749                                 ic->sk_requests[i] = section_req;
3750                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3751                         }
3752                 }
3753         }
3754
3755         for (i = 0; i < N_COMMIT_IDS; i++) {
3756                 unsigned j;
3757 retest_commit_id:
3758                 for (j = 0; j < i; j++) {
3759                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3760                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3761                                 goto retest_commit_id;
3762                         }
3763                 }
3764                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3765         }
3766
3767         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3768         if (journal_tree_size > ULONG_MAX) {
3769                 *error = "Journal doesn't fit into memory";
3770                 r = -ENOMEM;
3771                 goto bad;
3772         }
3773         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3774         if (!ic->journal_tree) {
3775                 *error = "Could not allocate memory for journal tree";
3776                 r = -ENOMEM;
3777         }
3778 bad:
3779         kfree(crypt_data);
3780         kfree(crypt_iv);
3781         skcipher_request_free(req);
3782
3783         return r;
3784 }
3785
3786 /*
3787  * Construct a integrity mapping
3788  *
3789  * Arguments:
3790  *      device
3791  *      offset from the start of the device
3792  *      tag size
3793  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3794  *      number of optional arguments
3795  *      optional arguments:
3796  *              journal_sectors
3797  *              interleave_sectors
3798  *              buffer_sectors
3799  *              journal_watermark
3800  *              commit_time
3801  *              meta_device
3802  *              block_size
3803  *              sectors_per_bit
3804  *              bitmap_flush_interval
3805  *              internal_hash
3806  *              journal_crypt
3807  *              journal_mac
3808  *              recalculate
3809  */
3810 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3811 {
3812         struct dm_integrity_c *ic;
3813         char dummy;
3814         int r;
3815         unsigned extra_args;
3816         struct dm_arg_set as;
3817         static const struct dm_arg _args[] = {
3818                 {0, 16, "Invalid number of feature args"},
3819         };
3820         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3821         bool should_write_sb;
3822         __u64 threshold;
3823         unsigned long long start;
3824         __s8 log2_sectors_per_bitmap_bit = -1;
3825         __s8 log2_blocks_per_bitmap_bit;
3826         __u64 bits_in_journal;
3827         __u64 n_bitmap_bits;
3828
3829 #define DIRECT_ARGUMENTS        4
3830
3831         if (argc <= DIRECT_ARGUMENTS) {
3832                 ti->error = "Invalid argument count";
3833                 return -EINVAL;
3834         }
3835
3836         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3837         if (!ic) {
3838                 ti->error = "Cannot allocate integrity context";
3839                 return -ENOMEM;
3840         }
3841         ti->private = ic;
3842         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3843         ic->ti = ti;
3844
3845         ic->in_progress = RB_ROOT;
3846         INIT_LIST_HEAD(&ic->wait_list);
3847         init_waitqueue_head(&ic->endio_wait);
3848         bio_list_init(&ic->flush_bio_list);
3849         init_waitqueue_head(&ic->copy_to_journal_wait);
3850         init_completion(&ic->crypto_backoff);
3851         atomic64_set(&ic->number_of_mismatches, 0);
3852         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3853
3854         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3855         if (r) {
3856                 ti->error = "Device lookup failed";
3857                 goto bad;
3858         }
3859
3860         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3861                 ti->error = "Invalid starting offset";
3862                 r = -EINVAL;
3863                 goto bad;
3864         }
3865         ic->start = start;
3866
3867         if (strcmp(argv[2], "-")) {
3868                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3869                         ti->error = "Invalid tag size";
3870                         r = -EINVAL;
3871                         goto bad;
3872                 }
3873         }
3874
3875         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3876             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3877                 ic->mode = argv[3][0];
3878         } else {
3879                 ti->error = "Invalid mode (expecting J, B, D, R)";
3880                 r = -EINVAL;
3881                 goto bad;
3882         }
3883
3884         journal_sectors = 0;
3885         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3886         buffer_sectors = DEFAULT_BUFFER_SECTORS;
3887         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3888         sync_msec = DEFAULT_SYNC_MSEC;
3889         ic->sectors_per_block = 1;
3890
3891         as.argc = argc - DIRECT_ARGUMENTS;
3892         as.argv = argv + DIRECT_ARGUMENTS;
3893         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3894         if (r)
3895                 goto bad;
3896
3897         while (extra_args--) {
3898                 const char *opt_string;
3899                 unsigned val;
3900                 unsigned long long llval;
3901                 opt_string = dm_shift_arg(&as);
3902                 if (!opt_string) {
3903                         r = -EINVAL;
3904                         ti->error = "Not enough feature arguments";
3905                         goto bad;
3906                 }
3907                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3908                         journal_sectors = val ? val : 1;
3909                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3910                         interleave_sectors = val;
3911                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3912                         buffer_sectors = val;
3913                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3914                         journal_watermark = val;
3915                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3916                         sync_msec = val;
3917                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3918                         if (ic->meta_dev) {
3919                                 dm_put_device(ti, ic->meta_dev);
3920                                 ic->meta_dev = NULL;
3921                         }
3922                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3923                                           dm_table_get_mode(ti->table), &ic->meta_dev);
3924                         if (r) {
3925                                 ti->error = "Device lookup failed";
3926                                 goto bad;
3927                         }
3928                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3929                         if (val < 1 << SECTOR_SHIFT ||
3930                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3931                             (val & (val -1))) {
3932                                 r = -EINVAL;
3933                                 ti->error = "Invalid block_size argument";
3934                                 goto bad;
3935                         }
3936                         ic->sectors_per_block = val >> SECTOR_SHIFT;
3937                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3938                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3939                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3940                         if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3941                                 r = -EINVAL;
3942                                 ti->error = "Invalid bitmap_flush_interval argument";
3943                                 goto bad;
3944                         }
3945                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
3946                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3947                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3948                                             "Invalid internal_hash argument");
3949                         if (r)
3950                                 goto bad;
3951                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3952                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3953                                             "Invalid journal_crypt argument");
3954                         if (r)
3955                                 goto bad;
3956                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3957                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3958                                             "Invalid journal_mac argument");
3959                         if (r)
3960                                 goto bad;
3961                 } else if (!strcmp(opt_string, "recalculate")) {
3962                         ic->recalculate_flag = true;
3963                 } else if (!strcmp(opt_string, "allow_discards")) {
3964                         ic->discard = true;
3965                 } else if (!strcmp(opt_string, "fix_padding")) {
3966                         ic->fix_padding = true;
3967                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
3968                         ic->legacy_recalculate = true;
3969                 } else {
3970                         r = -EINVAL;
3971                         ti->error = "Invalid argument";
3972                         goto bad;
3973                 }
3974         }
3975
3976         ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3977         if (!ic->meta_dev)
3978                 ic->meta_device_sectors = ic->data_device_sectors;
3979         else
3980                 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3981
3982         if (!journal_sectors) {
3983                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3984                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3985         }
3986
3987         if (!buffer_sectors)
3988                 buffer_sectors = 1;
3989         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3990
3991         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3992                     "Invalid internal hash", "Error setting internal hash key");
3993         if (r)
3994                 goto bad;
3995
3996         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3997                     "Invalid journal mac", "Error setting journal mac key");
3998         if (r)
3999                 goto bad;
4000
4001         if (!ic->tag_size) {
4002                 if (!ic->internal_hash) {
4003                         ti->error = "Unknown tag size";
4004                         r = -EINVAL;
4005                         goto bad;
4006                 }
4007                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4008         }
4009         if (ic->tag_size > MAX_TAG_SIZE) {
4010                 ti->error = "Too big tag size";
4011                 r = -EINVAL;
4012                 goto bad;
4013         }
4014         if (!(ic->tag_size & (ic->tag_size - 1)))
4015                 ic->log2_tag_size = __ffs(ic->tag_size);
4016         else
4017                 ic->log2_tag_size = -1;
4018
4019         if (ic->mode == 'B' && !ic->internal_hash) {
4020                 r = -EINVAL;
4021                 ti->error = "Bitmap mode can be only used with internal hash";
4022                 goto bad;
4023         }
4024
4025         if (ic->discard && !ic->internal_hash) {
4026                 r = -EINVAL;
4027                 ti->error = "Discard can be only used with internal hash";
4028                 goto bad;
4029         }
4030
4031         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4032         ic->autocommit_msec = sync_msec;
4033         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4034
4035         ic->io = dm_io_client_create();
4036         if (IS_ERR(ic->io)) {
4037                 r = PTR_ERR(ic->io);
4038                 ic->io = NULL;
4039                 ti->error = "Cannot allocate dm io";
4040                 goto bad;
4041         }
4042
4043         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4044         if (r) {
4045                 ti->error = "Cannot allocate mempool";
4046                 goto bad;
4047         }
4048
4049         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4050                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4051         if (!ic->metadata_wq) {
4052                 ti->error = "Cannot allocate workqueue";
4053                 r = -ENOMEM;
4054                 goto bad;
4055         }
4056
4057         /*
4058          * If this workqueue were percpu, it would cause bio reordering
4059          * and reduced performance.
4060          */
4061         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4062         if (!ic->wait_wq) {
4063                 ti->error = "Cannot allocate workqueue";
4064                 r = -ENOMEM;
4065                 goto bad;
4066         }
4067
4068         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4069                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4070         if (!ic->offload_wq) {
4071                 ti->error = "Cannot allocate workqueue";
4072                 r = -ENOMEM;
4073                 goto bad;
4074         }
4075
4076         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4077         if (!ic->commit_wq) {
4078                 ti->error = "Cannot allocate workqueue";
4079                 r = -ENOMEM;
4080                 goto bad;
4081         }
4082         INIT_WORK(&ic->commit_work, integrity_commit);
4083
4084         if (ic->mode == 'J' || ic->mode == 'B') {
4085                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4086                 if (!ic->writer_wq) {
4087                         ti->error = "Cannot allocate workqueue";
4088                         r = -ENOMEM;
4089                         goto bad;
4090                 }
4091                 INIT_WORK(&ic->writer_work, integrity_writer);
4092         }
4093
4094         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4095         if (!ic->sb) {
4096                 r = -ENOMEM;
4097                 ti->error = "Cannot allocate superblock area";
4098                 goto bad;
4099         }
4100
4101         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4102         if (r) {
4103                 ti->error = "Error reading superblock";
4104                 goto bad;
4105         }
4106         should_write_sb = false;
4107         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4108                 if (ic->mode != 'R') {
4109                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4110                                 r = -EINVAL;
4111                                 ti->error = "The device is not initialized";
4112                                 goto bad;
4113                         }
4114                 }
4115
4116                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4117                 if (r) {
4118                         ti->error = "Could not initialize superblock";
4119                         goto bad;
4120                 }
4121                 if (ic->mode != 'R')
4122                         should_write_sb = true;
4123         }
4124
4125         if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
4126                 r = -EINVAL;
4127                 ti->error = "Unknown version";
4128                 goto bad;
4129         }
4130         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4131                 r = -EINVAL;
4132                 ti->error = "Tag size doesn't match the information in superblock";
4133                 goto bad;
4134         }
4135         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4136                 r = -EINVAL;
4137                 ti->error = "Block size doesn't match the information in superblock";
4138                 goto bad;
4139         }
4140         if (!le32_to_cpu(ic->sb->journal_sections)) {
4141                 r = -EINVAL;
4142                 ti->error = "Corrupted superblock, journal_sections is 0";
4143                 goto bad;
4144         }
4145         /* make sure that ti->max_io_len doesn't overflow */
4146         if (!ic->meta_dev) {
4147                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4148                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4149                         r = -EINVAL;
4150                         ti->error = "Invalid interleave_sectors in the superblock";
4151                         goto bad;
4152                 }
4153         } else {
4154                 if (ic->sb->log2_interleave_sectors) {
4155                         r = -EINVAL;
4156                         ti->error = "Invalid interleave_sectors in the superblock";
4157                         goto bad;
4158                 }
4159         }
4160         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4161                 r = -EINVAL;
4162                 ti->error = "Journal mac mismatch";
4163                 goto bad;
4164         }
4165
4166         get_provided_data_sectors(ic);
4167         if (!ic->provided_data_sectors) {
4168                 r = -EINVAL;
4169                 ti->error = "The device is too small";
4170                 goto bad;
4171         }
4172
4173 try_smaller_buffer:
4174         r = calculate_device_limits(ic);
4175         if (r) {
4176                 if (ic->meta_dev) {
4177                         if (ic->log2_buffer_sectors > 3) {
4178                                 ic->log2_buffer_sectors--;
4179                                 goto try_smaller_buffer;
4180                         }
4181                 }
4182                 ti->error = "The device is too small";
4183                 goto bad;
4184         }
4185
4186         if (log2_sectors_per_bitmap_bit < 0)
4187                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4188         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4189                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4190
4191         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4192         if (bits_in_journal > UINT_MAX)
4193                 bits_in_journal = UINT_MAX;
4194         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4195                 log2_sectors_per_bitmap_bit++;
4196
4197         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4198         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4199         if (should_write_sb) {
4200                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4201         }
4202         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4203                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4204         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4205
4206         if (!ic->meta_dev)
4207                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4208
4209         if (ti->len > ic->provided_data_sectors) {
4210                 r = -EINVAL;
4211                 ti->error = "Not enough provided sectors for requested mapping size";
4212                 goto bad;
4213         }
4214
4215
4216         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4217         threshold += 50;
4218         do_div(threshold, 100);
4219         ic->free_sectors_threshold = threshold;
4220
4221         DEBUG_print("initialized:\n");
4222         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4223         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4224         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4225         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4226         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4227         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4228         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4229         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4230         DEBUG_print("   data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4231         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4232         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4233         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4234         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4235         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4236         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4237
4238         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4239                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4240                 ic->sb->recalc_sector = cpu_to_le64(0);
4241         }
4242
4243         if (ic->internal_hash) {
4244                 size_t recalc_tags_size;
4245                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4246                 if (!ic->recalc_wq ) {
4247                         ti->error = "Cannot allocate workqueue";
4248                         r = -ENOMEM;
4249                         goto bad;
4250                 }
4251                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4252                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4253                 if (!ic->recalc_buffer) {
4254                         ti->error = "Cannot allocate buffer for recalculating";
4255                         r = -ENOMEM;
4256                         goto bad;
4257                 }
4258                 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4259                 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4260                         recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4261                 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4262                 if (!ic->recalc_tags) {
4263                         ti->error = "Cannot allocate tags for recalculating";
4264                         r = -ENOMEM;
4265                         goto bad;
4266                 }
4267         } else {
4268                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4269                         ti->error = "Recalculate can only be specified with internal_hash";
4270                         r = -EINVAL;
4271                         goto bad;
4272                 }
4273         }
4274
4275         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4276             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4277             dm_integrity_disable_recalculate(ic)) {
4278                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4279                 r = -EOPNOTSUPP;
4280                 goto bad;
4281         }
4282
4283         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4284                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4285         if (IS_ERR(ic->bufio)) {
4286                 r = PTR_ERR(ic->bufio);
4287                 ti->error = "Cannot initialize dm-bufio";
4288                 ic->bufio = NULL;
4289                 goto bad;
4290         }
4291         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4292
4293         if (ic->mode != 'R') {
4294                 r = create_journal(ic, &ti->error);
4295                 if (r)
4296                         goto bad;
4297
4298         }
4299
4300         if (ic->mode == 'B') {
4301                 unsigned i;
4302                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4303
4304                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4305                 if (!ic->recalc_bitmap) {
4306                         r = -ENOMEM;
4307                         goto bad;
4308                 }
4309                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4310                 if (!ic->may_write_bitmap) {
4311                         r = -ENOMEM;
4312                         goto bad;
4313                 }
4314                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4315                 if (!ic->bbs) {
4316                         r = -ENOMEM;
4317                         goto bad;
4318                 }
4319                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4320                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4321                         struct bitmap_block_status *bbs = &ic->bbs[i];
4322                         unsigned sector, pl_index, pl_offset;
4323
4324                         INIT_WORK(&bbs->work, bitmap_block_work);
4325                         bbs->ic = ic;
4326                         bbs->idx = i;
4327                         bio_list_init(&bbs->bio_queue);
4328                         spin_lock_init(&bbs->bio_queue_lock);
4329
4330                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4331                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4332                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4333
4334                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4335                 }
4336         }
4337
4338         if (should_write_sb) {
4339                 init_journal(ic, 0, ic->journal_sections, 0);
4340                 r = dm_integrity_failed(ic);
4341                 if (unlikely(r)) {
4342                         ti->error = "Error initializing journal";
4343                         goto bad;
4344                 }
4345                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4346                 if (r) {
4347                         ti->error = "Error initializing superblock";
4348                         goto bad;
4349                 }
4350                 ic->just_formatted = true;
4351         }
4352
4353         if (!ic->meta_dev) {
4354                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4355                 if (r)
4356                         goto bad;
4357         }
4358         if (ic->mode == 'B') {
4359                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4360                 if (!max_io_len)
4361                         max_io_len = 1U << 31;
4362                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4363                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4364                         r = dm_set_target_max_io_len(ti, max_io_len);
4365                         if (r)
4366                                 goto bad;
4367                 }
4368         }
4369
4370         if (!ic->internal_hash)
4371                 dm_integrity_set(ti, ic);
4372
4373         ti->num_flush_bios = 1;
4374         ti->flush_supported = true;
4375         if (ic->discard)
4376                 ti->num_discard_bios = 1;
4377
4378         return 0;
4379
4380 bad:
4381         dm_integrity_dtr(ti);
4382         return r;
4383 }
4384
4385 static void dm_integrity_dtr(struct dm_target *ti)
4386 {
4387         struct dm_integrity_c *ic = ti->private;
4388
4389         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4390         BUG_ON(!list_empty(&ic->wait_list));
4391
4392         if (ic->mode == 'B')
4393                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4394         if (ic->metadata_wq)
4395                 destroy_workqueue(ic->metadata_wq);
4396         if (ic->wait_wq)
4397                 destroy_workqueue(ic->wait_wq);
4398         if (ic->offload_wq)
4399                 destroy_workqueue(ic->offload_wq);
4400         if (ic->commit_wq)
4401                 destroy_workqueue(ic->commit_wq);
4402         if (ic->writer_wq)
4403                 destroy_workqueue(ic->writer_wq);
4404         if (ic->recalc_wq)
4405                 destroy_workqueue(ic->recalc_wq);
4406         vfree(ic->recalc_buffer);
4407         kvfree(ic->recalc_tags);
4408         kvfree(ic->bbs);
4409         if (ic->bufio)
4410                 dm_bufio_client_destroy(ic->bufio);
4411         mempool_exit(&ic->journal_io_mempool);
4412         if (ic->io)
4413                 dm_io_client_destroy(ic->io);
4414         if (ic->dev)
4415                 dm_put_device(ti, ic->dev);
4416         if (ic->meta_dev)
4417                 dm_put_device(ti, ic->meta_dev);
4418         dm_integrity_free_page_list(ic->journal);
4419         dm_integrity_free_page_list(ic->journal_io);
4420         dm_integrity_free_page_list(ic->journal_xor);
4421         dm_integrity_free_page_list(ic->recalc_bitmap);
4422         dm_integrity_free_page_list(ic->may_write_bitmap);
4423         if (ic->journal_scatterlist)
4424                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4425         if (ic->journal_io_scatterlist)
4426                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4427         if (ic->sk_requests) {
4428                 unsigned i;
4429
4430                 for (i = 0; i < ic->journal_sections; i++) {
4431                         struct skcipher_request *req = ic->sk_requests[i];
4432                         if (req) {
4433                                 kfree_sensitive(req->iv);
4434                                 skcipher_request_free(req);
4435                         }
4436                 }
4437                 kvfree(ic->sk_requests);
4438         }
4439         kvfree(ic->journal_tree);
4440         if (ic->sb)
4441                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4442
4443         if (ic->internal_hash)
4444                 crypto_free_shash(ic->internal_hash);
4445         free_alg(&ic->internal_hash_alg);
4446
4447         if (ic->journal_crypt)
4448                 crypto_free_skcipher(ic->journal_crypt);
4449         free_alg(&ic->journal_crypt_alg);
4450
4451         if (ic->journal_mac)
4452                 crypto_free_shash(ic->journal_mac);
4453         free_alg(&ic->journal_mac_alg);
4454
4455         kfree(ic);
4456 }
4457
4458 static struct target_type integrity_target = {
4459         .name                   = "integrity",
4460         .version                = {1, 6, 0},
4461         .module                 = THIS_MODULE,
4462         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4463         .ctr                    = dm_integrity_ctr,
4464         .dtr                    = dm_integrity_dtr,
4465         .map                    = dm_integrity_map,
4466         .postsuspend            = dm_integrity_postsuspend,
4467         .resume                 = dm_integrity_resume,
4468         .status                 = dm_integrity_status,
4469         .iterate_devices        = dm_integrity_iterate_devices,
4470         .io_hints               = dm_integrity_io_hints,
4471 };
4472
4473 static int __init dm_integrity_init(void)
4474 {
4475         int r;
4476
4477         journal_io_cache = kmem_cache_create("integrity_journal_io",
4478                                              sizeof(struct journal_io), 0, 0, NULL);
4479         if (!journal_io_cache) {
4480                 DMERR("can't allocate journal io cache");
4481                 return -ENOMEM;
4482         }
4483
4484         r = dm_register_target(&integrity_target);
4485         if (r < 0) {
4486                 DMERR("register failed %d", r);
4487                 kmem_cache_destroy(journal_io_cache);
4488                 return r;
4489         }
4490
4491         return 0;
4492 }
4493
4494 static void __exit dm_integrity_exit(void)
4495 {
4496         dm_unregister_target(&integrity_target);
4497         kmem_cache_destroy(journal_io_cache);
4498 }
4499
4500 module_init(dm_integrity_init);
4501 module_exit(dm_integrity_exit);
4502
4503 MODULE_AUTHOR("Milan Broz");
4504 MODULE_AUTHOR("Mikulas Patocka");
4505 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4506 MODULE_LICENSE("GPL");