GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21
22 #define DM_MSG_PREFIX "cache"
23
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25         "A percentage of time allocated for copying to and/or from cache");
26
27 /*----------------------------------------------------------------*/
28
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *            either direction
38  */
39
40 /*----------------------------------------------------------------*/
41
42 struct io_tracker {
43         spinlock_t lock;
44
45         /*
46          * Sectors of in-flight IO.
47          */
48         sector_t in_flight;
49
50         /*
51          * The time, in jiffies, when this device became idle (if it is
52          * indeed idle).
53          */
54         unsigned long idle_time;
55         unsigned long last_update_time;
56 };
57
58 static void iot_init(struct io_tracker *iot)
59 {
60         spin_lock_init(&iot->lock);
61         iot->in_flight = 0ul;
62         iot->idle_time = 0ul;
63         iot->last_update_time = jiffies;
64 }
65
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68         if (iot->in_flight)
69                 return false;
70
71         return time_after(jiffies, iot->idle_time + jifs);
72 }
73
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76         bool r;
77
78         spin_lock_irq(&iot->lock);
79         r = __iot_idle_for(iot, jifs);
80         spin_unlock_irq(&iot->lock);
81
82         return r;
83 }
84
85 static void iot_io_begin(struct io_tracker *iot, sector_t len)
86 {
87         spin_lock_irq(&iot->lock);
88         iot->in_flight += len;
89         spin_unlock_irq(&iot->lock);
90 }
91
92 static void __iot_io_end(struct io_tracker *iot, sector_t len)
93 {
94         if (!len)
95                 return;
96
97         iot->in_flight -= len;
98         if (!iot->in_flight)
99                 iot->idle_time = jiffies;
100 }
101
102 static void iot_io_end(struct io_tracker *iot, sector_t len)
103 {
104         unsigned long flags;
105
106         spin_lock_irqsave(&iot->lock, flags);
107         __iot_io_end(iot, len);
108         spin_unlock_irqrestore(&iot->lock, flags);
109 }
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * Represents a chunk of future work.  'input' allows continuations to pass
115  * values between themselves, typically error values.
116  */
117 struct continuation {
118         struct work_struct ws;
119         blk_status_t input;
120 };
121
122 static inline void init_continuation(struct continuation *k,
123                                      void (*fn)(struct work_struct *))
124 {
125         INIT_WORK(&k->ws, fn);
126         k->input = 0;
127 }
128
129 static inline void queue_continuation(struct workqueue_struct *wq,
130                                       struct continuation *k)
131 {
132         queue_work(wq, &k->ws);
133 }
134
135 /*----------------------------------------------------------------*/
136
137 /*
138  * The batcher collects together pieces of work that need a particular
139  * operation to occur before they can proceed (typically a commit).
140  */
141 struct batcher {
142         /*
143          * The operation that everyone is waiting for.
144          */
145         blk_status_t (*commit_op)(void *context);
146         void *commit_context;
147
148         /*
149          * This is how bios should be issued once the commit op is complete
150          * (accounted_request).
151          */
152         void (*issue_op)(struct bio *bio, void *context);
153         void *issue_context;
154
155         /*
156          * Queued work gets put on here after commit.
157          */
158         struct workqueue_struct *wq;
159
160         spinlock_t lock;
161         struct list_head work_items;
162         struct bio_list bios;
163         struct work_struct commit_work;
164
165         bool commit_scheduled;
166 };
167
168 static void __commit(struct work_struct *_ws)
169 {
170         struct batcher *b = container_of(_ws, struct batcher, commit_work);
171         blk_status_t r;
172         struct list_head work_items;
173         struct work_struct *ws, *tmp;
174         struct continuation *k;
175         struct bio *bio;
176         struct bio_list bios;
177
178         INIT_LIST_HEAD(&work_items);
179         bio_list_init(&bios);
180
181         /*
182          * We have to grab these before the commit_op to avoid a race
183          * condition.
184          */
185         spin_lock_irq(&b->lock);
186         list_splice_init(&b->work_items, &work_items);
187         bio_list_merge(&bios, &b->bios);
188         bio_list_init(&b->bios);
189         b->commit_scheduled = false;
190         spin_unlock_irq(&b->lock);
191
192         r = b->commit_op(b->commit_context);
193
194         list_for_each_entry_safe(ws, tmp, &work_items, entry) {
195                 k = container_of(ws, struct continuation, ws);
196                 k->input = r;
197                 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
198                 queue_work(b->wq, ws);
199         }
200
201         while ((bio = bio_list_pop(&bios))) {
202                 if (r) {
203                         bio->bi_status = r;
204                         bio_endio(bio);
205                 } else
206                         b->issue_op(bio, b->issue_context);
207         }
208 }
209
210 static void batcher_init(struct batcher *b,
211                          blk_status_t (*commit_op)(void *),
212                          void *commit_context,
213                          void (*issue_op)(struct bio *bio, void *),
214                          void *issue_context,
215                          struct workqueue_struct *wq)
216 {
217         b->commit_op = commit_op;
218         b->commit_context = commit_context;
219         b->issue_op = issue_op;
220         b->issue_context = issue_context;
221         b->wq = wq;
222
223         spin_lock_init(&b->lock);
224         INIT_LIST_HEAD(&b->work_items);
225         bio_list_init(&b->bios);
226         INIT_WORK(&b->commit_work, __commit);
227         b->commit_scheduled = false;
228 }
229
230 static void async_commit(struct batcher *b)
231 {
232         queue_work(b->wq, &b->commit_work);
233 }
234
235 static void continue_after_commit(struct batcher *b, struct continuation *k)
236 {
237         bool commit_scheduled;
238
239         spin_lock_irq(&b->lock);
240         commit_scheduled = b->commit_scheduled;
241         list_add_tail(&k->ws.entry, &b->work_items);
242         spin_unlock_irq(&b->lock);
243
244         if (commit_scheduled)
245                 async_commit(b);
246 }
247
248 /*
249  * Bios are errored if commit failed.
250  */
251 static void issue_after_commit(struct batcher *b, struct bio *bio)
252 {
253        bool commit_scheduled;
254
255        spin_lock_irq(&b->lock);
256        commit_scheduled = b->commit_scheduled;
257        bio_list_add(&b->bios, bio);
258        spin_unlock_irq(&b->lock);
259
260        if (commit_scheduled)
261                async_commit(b);
262 }
263
264 /*
265  * Call this if some urgent work is waiting for the commit to complete.
266  */
267 static void schedule_commit(struct batcher *b)
268 {
269         bool immediate;
270
271         spin_lock_irq(&b->lock);
272         immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
273         b->commit_scheduled = true;
274         spin_unlock_irq(&b->lock);
275
276         if (immediate)
277                 async_commit(b);
278 }
279
280 /*
281  * There are a couple of places where we let a bio run, but want to do some
282  * work before calling its endio function.  We do this by temporarily
283  * changing the endio fn.
284  */
285 struct dm_hook_info {
286         bio_end_io_t *bi_end_io;
287 };
288
289 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
290                         bio_end_io_t *bi_end_io, void *bi_private)
291 {
292         h->bi_end_io = bio->bi_end_io;
293
294         bio->bi_end_io = bi_end_io;
295         bio->bi_private = bi_private;
296 }
297
298 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
299 {
300         bio->bi_end_io = h->bi_end_io;
301 }
302
303 /*----------------------------------------------------------------*/
304
305 #define MIGRATION_POOL_SIZE 128
306 #define COMMIT_PERIOD HZ
307 #define MIGRATION_COUNT_WINDOW 10
308
309 /*
310  * The block size of the device holding cache data must be
311  * between 32KB and 1GB.
312  */
313 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
314 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
315
316 enum cache_metadata_mode {
317         CM_WRITE,               /* metadata may be changed */
318         CM_READ_ONLY,           /* metadata may not be changed */
319         CM_FAIL
320 };
321
322 enum cache_io_mode {
323         /*
324          * Data is written to cached blocks only.  These blocks are marked
325          * dirty.  If you lose the cache device you will lose data.
326          * Potential performance increase for both reads and writes.
327          */
328         CM_IO_WRITEBACK,
329
330         /*
331          * Data is written to both cache and origin.  Blocks are never
332          * dirty.  Potential performance benfit for reads only.
333          */
334         CM_IO_WRITETHROUGH,
335
336         /*
337          * A degraded mode useful for various cache coherency situations
338          * (eg, rolling back snapshots).  Reads and writes always go to the
339          * origin.  If a write goes to a cached oblock, then the cache
340          * block is invalidated.
341          */
342         CM_IO_PASSTHROUGH
343 };
344
345 struct cache_features {
346         enum cache_metadata_mode mode;
347         enum cache_io_mode io_mode;
348         unsigned metadata_version;
349         bool discard_passdown:1;
350 };
351
352 struct cache_stats {
353         atomic_t read_hit;
354         atomic_t read_miss;
355         atomic_t write_hit;
356         atomic_t write_miss;
357         atomic_t demotion;
358         atomic_t promotion;
359         atomic_t writeback;
360         atomic_t copies_avoided;
361         atomic_t cache_cell_clash;
362         atomic_t commit_count;
363         atomic_t discard_count;
364 };
365
366 struct cache {
367         struct dm_target *ti;
368         spinlock_t lock;
369
370         /*
371          * Fields for converting from sectors to blocks.
372          */
373         int sectors_per_block_shift;
374         sector_t sectors_per_block;
375
376         struct dm_cache_metadata *cmd;
377
378         /*
379          * Metadata is written to this device.
380          */
381         struct dm_dev *metadata_dev;
382
383         /*
384          * The slower of the two data devices.  Typically a spindle.
385          */
386         struct dm_dev *origin_dev;
387
388         /*
389          * The faster of the two data devices.  Typically an SSD.
390          */
391         struct dm_dev *cache_dev;
392
393         /*
394          * Size of the origin device in _complete_ blocks and native sectors.
395          */
396         dm_oblock_t origin_blocks;
397         sector_t origin_sectors;
398
399         /*
400          * Size of the cache device in blocks.
401          */
402         dm_cblock_t cache_size;
403
404         /*
405          * Invalidation fields.
406          */
407         spinlock_t invalidation_lock;
408         struct list_head invalidation_requests;
409
410         sector_t migration_threshold;
411         wait_queue_head_t migration_wait;
412         atomic_t nr_allocated_migrations;
413
414         /*
415          * The number of in flight migrations that are performing
416          * background io. eg, promotion, writeback.
417          */
418         atomic_t nr_io_migrations;
419
420         struct bio_list deferred_bios;
421
422         struct rw_semaphore quiesce_lock;
423
424         /*
425          * origin_blocks entries, discarded if set.
426          */
427         dm_dblock_t discard_nr_blocks;
428         unsigned long *discard_bitset;
429         uint32_t discard_block_size; /* a power of 2 times sectors per block */
430
431         /*
432          * Rather than reconstructing the table line for the status we just
433          * save it and regurgitate.
434          */
435         unsigned nr_ctr_args;
436         const char **ctr_args;
437
438         struct dm_kcopyd_client *copier;
439         struct work_struct deferred_bio_worker;
440         struct work_struct migration_worker;
441         struct workqueue_struct *wq;
442         struct delayed_work waker;
443         struct dm_bio_prison_v2 *prison;
444
445         /*
446          * cache_size entries, dirty if set
447          */
448         unsigned long *dirty_bitset;
449         atomic_t nr_dirty;
450
451         unsigned policy_nr_args;
452         struct dm_cache_policy *policy;
453
454         /*
455          * Cache features such as write-through.
456          */
457         struct cache_features features;
458
459         struct cache_stats stats;
460
461         bool need_tick_bio:1;
462         bool sized:1;
463         bool invalidate:1;
464         bool commit_requested:1;
465         bool loaded_mappings:1;
466         bool loaded_discards:1;
467
468         struct rw_semaphore background_work_lock;
469
470         struct batcher committer;
471         struct work_struct commit_ws;
472
473         struct io_tracker tracker;
474
475         mempool_t migration_pool;
476
477         struct bio_set bs;
478 };
479
480 struct per_bio_data {
481         bool tick:1;
482         unsigned req_nr:2;
483         struct dm_bio_prison_cell_v2 *cell;
484         struct dm_hook_info hook_info;
485         sector_t len;
486 };
487
488 struct dm_cache_migration {
489         struct continuation k;
490         struct cache *cache;
491
492         struct policy_work *op;
493         struct bio *overwrite_bio;
494         struct dm_bio_prison_cell_v2 *cell;
495
496         dm_cblock_t invalidate_cblock;
497         dm_oblock_t invalidate_oblock;
498 };
499
500 /*----------------------------------------------------------------*/
501
502 static bool writethrough_mode(struct cache *cache)
503 {
504         return cache->features.io_mode == CM_IO_WRITETHROUGH;
505 }
506
507 static bool writeback_mode(struct cache *cache)
508 {
509         return cache->features.io_mode == CM_IO_WRITEBACK;
510 }
511
512 static inline bool passthrough_mode(struct cache *cache)
513 {
514         return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
515 }
516
517 /*----------------------------------------------------------------*/
518
519 static void wake_deferred_bio_worker(struct cache *cache)
520 {
521         queue_work(cache->wq, &cache->deferred_bio_worker);
522 }
523
524 static void wake_migration_worker(struct cache *cache)
525 {
526         if (passthrough_mode(cache))
527                 return;
528
529         queue_work(cache->wq, &cache->migration_worker);
530 }
531
532 /*----------------------------------------------------------------*/
533
534 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
535 {
536         return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
537 }
538
539 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
540 {
541         dm_bio_prison_free_cell_v2(cache->prison, cell);
542 }
543
544 static struct dm_cache_migration *alloc_migration(struct cache *cache)
545 {
546         struct dm_cache_migration *mg;
547
548         mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
549
550         memset(mg, 0, sizeof(*mg));
551
552         mg->cache = cache;
553         atomic_inc(&cache->nr_allocated_migrations);
554
555         return mg;
556 }
557
558 static void free_migration(struct dm_cache_migration *mg)
559 {
560         struct cache *cache = mg->cache;
561
562         if (atomic_dec_and_test(&cache->nr_allocated_migrations))
563                 wake_up(&cache->migration_wait);
564
565         mempool_free(mg, &cache->migration_pool);
566 }
567
568 /*----------------------------------------------------------------*/
569
570 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
571 {
572         return to_oblock(from_oblock(b) + 1ull);
573 }
574
575 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
576 {
577         key->virtual = 0;
578         key->dev = 0;
579         key->block_begin = from_oblock(begin);
580         key->block_end = from_oblock(end);
581 }
582
583 /*
584  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
585  * level 1 which prevents *both* READs and WRITEs.
586  */
587 #define WRITE_LOCK_LEVEL 0
588 #define READ_WRITE_LOCK_LEVEL 1
589
590 static unsigned lock_level(struct bio *bio)
591 {
592         return bio_data_dir(bio) == WRITE ?
593                 WRITE_LOCK_LEVEL :
594                 READ_WRITE_LOCK_LEVEL;
595 }
596
597 /*----------------------------------------------------------------
598  * Per bio data
599  *--------------------------------------------------------------*/
600
601 static struct per_bio_data *get_per_bio_data(struct bio *bio)
602 {
603         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
604         BUG_ON(!pb);
605         return pb;
606 }
607
608 static struct per_bio_data *init_per_bio_data(struct bio *bio)
609 {
610         struct per_bio_data *pb = get_per_bio_data(bio);
611
612         pb->tick = false;
613         pb->req_nr = dm_bio_get_target_bio_nr(bio);
614         pb->cell = NULL;
615         pb->len = 0;
616
617         return pb;
618 }
619
620 /*----------------------------------------------------------------*/
621
622 static void defer_bio(struct cache *cache, struct bio *bio)
623 {
624         spin_lock_irq(&cache->lock);
625         bio_list_add(&cache->deferred_bios, bio);
626         spin_unlock_irq(&cache->lock);
627
628         wake_deferred_bio_worker(cache);
629 }
630
631 static void defer_bios(struct cache *cache, struct bio_list *bios)
632 {
633         spin_lock_irq(&cache->lock);
634         bio_list_merge(&cache->deferred_bios, bios);
635         bio_list_init(bios);
636         spin_unlock_irq(&cache->lock);
637
638         wake_deferred_bio_worker(cache);
639 }
640
641 /*----------------------------------------------------------------*/
642
643 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
644 {
645         bool r;
646         struct per_bio_data *pb;
647         struct dm_cell_key_v2 key;
648         dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
649         struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
650
651         cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
652
653         build_key(oblock, end, &key);
654         r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
655         if (!r) {
656                 /*
657                  * Failed to get the lock.
658                  */
659                 free_prison_cell(cache, cell_prealloc);
660                 return r;
661         }
662
663         if (cell != cell_prealloc)
664                 free_prison_cell(cache, cell_prealloc);
665
666         pb = get_per_bio_data(bio);
667         pb->cell = cell;
668
669         return r;
670 }
671
672 /*----------------------------------------------------------------*/
673
674 static bool is_dirty(struct cache *cache, dm_cblock_t b)
675 {
676         return test_bit(from_cblock(b), cache->dirty_bitset);
677 }
678
679 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
680 {
681         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
682                 atomic_inc(&cache->nr_dirty);
683                 policy_set_dirty(cache->policy, cblock);
684         }
685 }
686
687 /*
688  * These two are called when setting after migrations to force the policy
689  * and dirty bitset to be in sync.
690  */
691 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
692 {
693         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
694                 atomic_inc(&cache->nr_dirty);
695         policy_set_dirty(cache->policy, cblock);
696 }
697
698 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
699 {
700         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
701                 if (atomic_dec_return(&cache->nr_dirty) == 0)
702                         dm_table_event(cache->ti->table);
703         }
704
705         policy_clear_dirty(cache->policy, cblock);
706 }
707
708 /*----------------------------------------------------------------*/
709
710 static bool block_size_is_power_of_two(struct cache *cache)
711 {
712         return cache->sectors_per_block_shift >= 0;
713 }
714
715 static dm_block_t block_div(dm_block_t b, uint32_t n)
716 {
717         do_div(b, n);
718
719         return b;
720 }
721
722 static dm_block_t oblocks_per_dblock(struct cache *cache)
723 {
724         dm_block_t oblocks = cache->discard_block_size;
725
726         if (block_size_is_power_of_two(cache))
727                 oblocks >>= cache->sectors_per_block_shift;
728         else
729                 oblocks = block_div(oblocks, cache->sectors_per_block);
730
731         return oblocks;
732 }
733
734 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
735 {
736         return to_dblock(block_div(from_oblock(oblock),
737                                    oblocks_per_dblock(cache)));
738 }
739
740 static void set_discard(struct cache *cache, dm_dblock_t b)
741 {
742         BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
743         atomic_inc(&cache->stats.discard_count);
744
745         spin_lock_irq(&cache->lock);
746         set_bit(from_dblock(b), cache->discard_bitset);
747         spin_unlock_irq(&cache->lock);
748 }
749
750 static void clear_discard(struct cache *cache, dm_dblock_t b)
751 {
752         spin_lock_irq(&cache->lock);
753         clear_bit(from_dblock(b), cache->discard_bitset);
754         spin_unlock_irq(&cache->lock);
755 }
756
757 static bool is_discarded(struct cache *cache, dm_dblock_t b)
758 {
759         int r;
760         spin_lock_irq(&cache->lock);
761         r = test_bit(from_dblock(b), cache->discard_bitset);
762         spin_unlock_irq(&cache->lock);
763
764         return r;
765 }
766
767 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
768 {
769         int r;
770         spin_lock_irq(&cache->lock);
771         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
772                      cache->discard_bitset);
773         spin_unlock_irq(&cache->lock);
774
775         return r;
776 }
777
778 /*----------------------------------------------------------------
779  * Remapping
780  *--------------------------------------------------------------*/
781 static void remap_to_origin(struct cache *cache, struct bio *bio)
782 {
783         bio_set_dev(bio, cache->origin_dev->bdev);
784 }
785
786 static void remap_to_cache(struct cache *cache, struct bio *bio,
787                            dm_cblock_t cblock)
788 {
789         sector_t bi_sector = bio->bi_iter.bi_sector;
790         sector_t block = from_cblock(cblock);
791
792         bio_set_dev(bio, cache->cache_dev->bdev);
793         if (!block_size_is_power_of_two(cache))
794                 bio->bi_iter.bi_sector =
795                         (block * cache->sectors_per_block) +
796                         sector_div(bi_sector, cache->sectors_per_block);
797         else
798                 bio->bi_iter.bi_sector =
799                         (block << cache->sectors_per_block_shift) |
800                         (bi_sector & (cache->sectors_per_block - 1));
801 }
802
803 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
804 {
805         struct per_bio_data *pb;
806
807         spin_lock_irq(&cache->lock);
808         if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
809             bio_op(bio) != REQ_OP_DISCARD) {
810                 pb = get_per_bio_data(bio);
811                 pb->tick = true;
812                 cache->need_tick_bio = false;
813         }
814         spin_unlock_irq(&cache->lock);
815 }
816
817 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
818                                             dm_oblock_t oblock, bool bio_has_pbd)
819 {
820         if (bio_has_pbd)
821                 check_if_tick_bio_needed(cache, bio);
822         remap_to_origin(cache, bio);
823         if (bio_data_dir(bio) == WRITE)
824                 clear_discard(cache, oblock_to_dblock(cache, oblock));
825 }
826
827 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
828                                           dm_oblock_t oblock)
829 {
830         // FIXME: check_if_tick_bio_needed() is called way too much through this interface
831         __remap_to_origin_clear_discard(cache, bio, oblock, true);
832 }
833
834 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
835                                  dm_oblock_t oblock, dm_cblock_t cblock)
836 {
837         check_if_tick_bio_needed(cache, bio);
838         remap_to_cache(cache, bio, cblock);
839         if (bio_data_dir(bio) == WRITE) {
840                 set_dirty(cache, cblock);
841                 clear_discard(cache, oblock_to_dblock(cache, oblock));
842         }
843 }
844
845 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
846 {
847         sector_t block_nr = bio->bi_iter.bi_sector;
848
849         if (!block_size_is_power_of_two(cache))
850                 (void) sector_div(block_nr, cache->sectors_per_block);
851         else
852                 block_nr >>= cache->sectors_per_block_shift;
853
854         return to_oblock(block_nr);
855 }
856
857 static bool accountable_bio(struct cache *cache, struct bio *bio)
858 {
859         return bio_op(bio) != REQ_OP_DISCARD;
860 }
861
862 static void accounted_begin(struct cache *cache, struct bio *bio)
863 {
864         struct per_bio_data *pb;
865
866         if (accountable_bio(cache, bio)) {
867                 pb = get_per_bio_data(bio);
868                 pb->len = bio_sectors(bio);
869                 iot_io_begin(&cache->tracker, pb->len);
870         }
871 }
872
873 static void accounted_complete(struct cache *cache, struct bio *bio)
874 {
875         struct per_bio_data *pb = get_per_bio_data(bio);
876
877         iot_io_end(&cache->tracker, pb->len);
878 }
879
880 static void accounted_request(struct cache *cache, struct bio *bio)
881 {
882         accounted_begin(cache, bio);
883         submit_bio_noacct(bio);
884 }
885
886 static void issue_op(struct bio *bio, void *context)
887 {
888         struct cache *cache = context;
889         accounted_request(cache, bio);
890 }
891
892 /*
893  * When running in writethrough mode we need to send writes to clean blocks
894  * to both the cache and origin devices.  Clone the bio and send them in parallel.
895  */
896 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
897                                       dm_oblock_t oblock, dm_cblock_t cblock)
898 {
899         struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
900
901         BUG_ON(!origin_bio);
902
903         bio_chain(origin_bio, bio);
904         /*
905          * Passing false to __remap_to_origin_clear_discard() skips
906          * all code that might use per_bio_data (since clone doesn't have it)
907          */
908         __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
909         submit_bio(origin_bio);
910
911         remap_to_cache(cache, bio, cblock);
912 }
913
914 /*----------------------------------------------------------------
915  * Failure modes
916  *--------------------------------------------------------------*/
917 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
918 {
919         return cache->features.mode;
920 }
921
922 static const char *cache_device_name(struct cache *cache)
923 {
924         return dm_table_device_name(cache->ti->table);
925 }
926
927 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
928 {
929         const char *descs[] = {
930                 "write",
931                 "read-only",
932                 "fail"
933         };
934
935         dm_table_event(cache->ti->table);
936         DMINFO("%s: switching cache to %s mode",
937                cache_device_name(cache), descs[(int)mode]);
938 }
939
940 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
941 {
942         bool needs_check;
943         enum cache_metadata_mode old_mode = get_cache_mode(cache);
944
945         if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
946                 DMERR("%s: unable to read needs_check flag, setting failure mode.",
947                       cache_device_name(cache));
948                 new_mode = CM_FAIL;
949         }
950
951         if (new_mode == CM_WRITE && needs_check) {
952                 DMERR("%s: unable to switch cache to write mode until repaired.",
953                       cache_device_name(cache));
954                 if (old_mode != new_mode)
955                         new_mode = old_mode;
956                 else
957                         new_mode = CM_READ_ONLY;
958         }
959
960         /* Never move out of fail mode */
961         if (old_mode == CM_FAIL)
962                 new_mode = CM_FAIL;
963
964         switch (new_mode) {
965         case CM_FAIL:
966         case CM_READ_ONLY:
967                 dm_cache_metadata_set_read_only(cache->cmd);
968                 break;
969
970         case CM_WRITE:
971                 dm_cache_metadata_set_read_write(cache->cmd);
972                 break;
973         }
974
975         cache->features.mode = new_mode;
976
977         if (new_mode != old_mode)
978                 notify_mode_switch(cache, new_mode);
979 }
980
981 static void abort_transaction(struct cache *cache)
982 {
983         const char *dev_name = cache_device_name(cache);
984
985         if (get_cache_mode(cache) >= CM_READ_ONLY)
986                 return;
987
988         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
989         if (dm_cache_metadata_abort(cache->cmd)) {
990                 DMERR("%s: failed to abort metadata transaction", dev_name);
991                 set_cache_mode(cache, CM_FAIL);
992         }
993
994         if (dm_cache_metadata_set_needs_check(cache->cmd)) {
995                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
996                 set_cache_mode(cache, CM_FAIL);
997         }
998 }
999
1000 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1001 {
1002         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1003                     cache_device_name(cache), op, r);
1004         abort_transaction(cache);
1005         set_cache_mode(cache, CM_READ_ONLY);
1006 }
1007
1008 /*----------------------------------------------------------------*/
1009
1010 static void load_stats(struct cache *cache)
1011 {
1012         struct dm_cache_statistics stats;
1013
1014         dm_cache_metadata_get_stats(cache->cmd, &stats);
1015         atomic_set(&cache->stats.read_hit, stats.read_hits);
1016         atomic_set(&cache->stats.read_miss, stats.read_misses);
1017         atomic_set(&cache->stats.write_hit, stats.write_hits);
1018         atomic_set(&cache->stats.write_miss, stats.write_misses);
1019 }
1020
1021 static void save_stats(struct cache *cache)
1022 {
1023         struct dm_cache_statistics stats;
1024
1025         if (get_cache_mode(cache) >= CM_READ_ONLY)
1026                 return;
1027
1028         stats.read_hits = atomic_read(&cache->stats.read_hit);
1029         stats.read_misses = atomic_read(&cache->stats.read_miss);
1030         stats.write_hits = atomic_read(&cache->stats.write_hit);
1031         stats.write_misses = atomic_read(&cache->stats.write_miss);
1032
1033         dm_cache_metadata_set_stats(cache->cmd, &stats);
1034 }
1035
1036 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1037 {
1038         switch (op) {
1039         case POLICY_PROMOTE:
1040                 atomic_inc(&stats->promotion);
1041                 break;
1042
1043         case POLICY_DEMOTE:
1044                 atomic_inc(&stats->demotion);
1045                 break;
1046
1047         case POLICY_WRITEBACK:
1048                 atomic_inc(&stats->writeback);
1049                 break;
1050         }
1051 }
1052
1053 /*----------------------------------------------------------------
1054  * Migration processing
1055  *
1056  * Migration covers moving data from the origin device to the cache, or
1057  * vice versa.
1058  *--------------------------------------------------------------*/
1059
1060 static void inc_io_migrations(struct cache *cache)
1061 {
1062         atomic_inc(&cache->nr_io_migrations);
1063 }
1064
1065 static void dec_io_migrations(struct cache *cache)
1066 {
1067         atomic_dec(&cache->nr_io_migrations);
1068 }
1069
1070 static bool discard_or_flush(struct bio *bio)
1071 {
1072         return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1073 }
1074
1075 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1076                                      dm_dblock_t *b, dm_dblock_t *e)
1077 {
1078         sector_t sb = bio->bi_iter.bi_sector;
1079         sector_t se = bio_end_sector(bio);
1080
1081         *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1082
1083         if (se - sb < cache->discard_block_size)
1084                 *e = *b;
1085         else
1086                 *e = to_dblock(block_div(se, cache->discard_block_size));
1087 }
1088
1089 /*----------------------------------------------------------------*/
1090
1091 static void prevent_background_work(struct cache *cache)
1092 {
1093         lockdep_off();
1094         down_write(&cache->background_work_lock);
1095         lockdep_on();
1096 }
1097
1098 static void allow_background_work(struct cache *cache)
1099 {
1100         lockdep_off();
1101         up_write(&cache->background_work_lock);
1102         lockdep_on();
1103 }
1104
1105 static bool background_work_begin(struct cache *cache)
1106 {
1107         bool r;
1108
1109         lockdep_off();
1110         r = down_read_trylock(&cache->background_work_lock);
1111         lockdep_on();
1112
1113         return r;
1114 }
1115
1116 static void background_work_end(struct cache *cache)
1117 {
1118         lockdep_off();
1119         up_read(&cache->background_work_lock);
1120         lockdep_on();
1121 }
1122
1123 /*----------------------------------------------------------------*/
1124
1125 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1126 {
1127         return (bio_data_dir(bio) == WRITE) &&
1128                 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1129 }
1130
1131 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1132 {
1133         return writeback_mode(cache) &&
1134                 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1135 }
1136
1137 static void quiesce(struct dm_cache_migration *mg,
1138                     void (*continuation)(struct work_struct *))
1139 {
1140         init_continuation(&mg->k, continuation);
1141         dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1142 }
1143
1144 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1145 {
1146         struct continuation *k = container_of(ws, struct continuation, ws);
1147         return container_of(k, struct dm_cache_migration, k);
1148 }
1149
1150 static void copy_complete(int read_err, unsigned long write_err, void *context)
1151 {
1152         struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1153
1154         if (read_err || write_err)
1155                 mg->k.input = BLK_STS_IOERR;
1156
1157         queue_continuation(mg->cache->wq, &mg->k);
1158 }
1159
1160 static void copy(struct dm_cache_migration *mg, bool promote)
1161 {
1162         struct dm_io_region o_region, c_region;
1163         struct cache *cache = mg->cache;
1164
1165         o_region.bdev = cache->origin_dev->bdev;
1166         o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1167         o_region.count = cache->sectors_per_block;
1168
1169         c_region.bdev = cache->cache_dev->bdev;
1170         c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1171         c_region.count = cache->sectors_per_block;
1172
1173         if (promote)
1174                 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1175         else
1176                 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1177 }
1178
1179 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1180 {
1181         struct per_bio_data *pb = get_per_bio_data(bio);
1182
1183         if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1184                 free_prison_cell(cache, pb->cell);
1185         pb->cell = NULL;
1186 }
1187
1188 static void overwrite_endio(struct bio *bio)
1189 {
1190         struct dm_cache_migration *mg = bio->bi_private;
1191         struct cache *cache = mg->cache;
1192         struct per_bio_data *pb = get_per_bio_data(bio);
1193
1194         dm_unhook_bio(&pb->hook_info, bio);
1195
1196         if (bio->bi_status)
1197                 mg->k.input = bio->bi_status;
1198
1199         queue_continuation(cache->wq, &mg->k);
1200 }
1201
1202 static void overwrite(struct dm_cache_migration *mg,
1203                       void (*continuation)(struct work_struct *))
1204 {
1205         struct bio *bio = mg->overwrite_bio;
1206         struct per_bio_data *pb = get_per_bio_data(bio);
1207
1208         dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1209
1210         /*
1211          * The overwrite bio is part of the copy operation, as such it does
1212          * not set/clear discard or dirty flags.
1213          */
1214         if (mg->op->op == POLICY_PROMOTE)
1215                 remap_to_cache(mg->cache, bio, mg->op->cblock);
1216         else
1217                 remap_to_origin(mg->cache, bio);
1218
1219         init_continuation(&mg->k, continuation);
1220         accounted_request(mg->cache, bio);
1221 }
1222
1223 /*
1224  * Migration steps:
1225  *
1226  * 1) exclusive lock preventing WRITEs
1227  * 2) quiesce
1228  * 3) copy or issue overwrite bio
1229  * 4) upgrade to exclusive lock preventing READs and WRITEs
1230  * 5) quiesce
1231  * 6) update metadata and commit
1232  * 7) unlock
1233  */
1234 static void mg_complete(struct dm_cache_migration *mg, bool success)
1235 {
1236         struct bio_list bios;
1237         struct cache *cache = mg->cache;
1238         struct policy_work *op = mg->op;
1239         dm_cblock_t cblock = op->cblock;
1240
1241         if (success)
1242                 update_stats(&cache->stats, op->op);
1243
1244         switch (op->op) {
1245         case POLICY_PROMOTE:
1246                 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1247                 policy_complete_background_work(cache->policy, op, success);
1248
1249                 if (mg->overwrite_bio) {
1250                         if (success)
1251                                 force_set_dirty(cache, cblock);
1252                         else if (mg->k.input)
1253                                 mg->overwrite_bio->bi_status = mg->k.input;
1254                         else
1255                                 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1256                         bio_endio(mg->overwrite_bio);
1257                 } else {
1258                         if (success)
1259                                 force_clear_dirty(cache, cblock);
1260                         dec_io_migrations(cache);
1261                 }
1262                 break;
1263
1264         case POLICY_DEMOTE:
1265                 /*
1266                  * We clear dirty here to update the nr_dirty counter.
1267                  */
1268                 if (success)
1269                         force_clear_dirty(cache, cblock);
1270                 policy_complete_background_work(cache->policy, op, success);
1271                 dec_io_migrations(cache);
1272                 break;
1273
1274         case POLICY_WRITEBACK:
1275                 if (success)
1276                         force_clear_dirty(cache, cblock);
1277                 policy_complete_background_work(cache->policy, op, success);
1278                 dec_io_migrations(cache);
1279                 break;
1280         }
1281
1282         bio_list_init(&bios);
1283         if (mg->cell) {
1284                 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1285                         free_prison_cell(cache, mg->cell);
1286         }
1287
1288         free_migration(mg);
1289         defer_bios(cache, &bios);
1290         wake_migration_worker(cache);
1291
1292         background_work_end(cache);
1293 }
1294
1295 static void mg_success(struct work_struct *ws)
1296 {
1297         struct dm_cache_migration *mg = ws_to_mg(ws);
1298         mg_complete(mg, mg->k.input == 0);
1299 }
1300
1301 static void mg_update_metadata(struct work_struct *ws)
1302 {
1303         int r;
1304         struct dm_cache_migration *mg = ws_to_mg(ws);
1305         struct cache *cache = mg->cache;
1306         struct policy_work *op = mg->op;
1307
1308         switch (op->op) {
1309         case POLICY_PROMOTE:
1310                 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1311                 if (r) {
1312                         DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1313                                     cache_device_name(cache));
1314                         metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1315
1316                         mg_complete(mg, false);
1317                         return;
1318                 }
1319                 mg_complete(mg, true);
1320                 break;
1321
1322         case POLICY_DEMOTE:
1323                 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1324                 if (r) {
1325                         DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1326                                     cache_device_name(cache));
1327                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1328
1329                         mg_complete(mg, false);
1330                         return;
1331                 }
1332
1333                 /*
1334                  * It would be nice if we only had to commit when a REQ_FLUSH
1335                  * comes through.  But there's one scenario that we have to
1336                  * look out for:
1337                  *
1338                  * - vblock x in a cache block
1339                  * - domotion occurs
1340                  * - cache block gets reallocated and over written
1341                  * - crash
1342                  *
1343                  * When we recover, because there was no commit the cache will
1344                  * rollback to having the data for vblock x in the cache block.
1345                  * But the cache block has since been overwritten, so it'll end
1346                  * up pointing to data that was never in 'x' during the history
1347                  * of the device.
1348                  *
1349                  * To avoid this issue we require a commit as part of the
1350                  * demotion operation.
1351                  */
1352                 init_continuation(&mg->k, mg_success);
1353                 continue_after_commit(&cache->committer, &mg->k);
1354                 schedule_commit(&cache->committer);
1355                 break;
1356
1357         case POLICY_WRITEBACK:
1358                 mg_complete(mg, true);
1359                 break;
1360         }
1361 }
1362
1363 static void mg_update_metadata_after_copy(struct work_struct *ws)
1364 {
1365         struct dm_cache_migration *mg = ws_to_mg(ws);
1366
1367         /*
1368          * Did the copy succeed?
1369          */
1370         if (mg->k.input)
1371                 mg_complete(mg, false);
1372         else
1373                 mg_update_metadata(ws);
1374 }
1375
1376 static void mg_upgrade_lock(struct work_struct *ws)
1377 {
1378         int r;
1379         struct dm_cache_migration *mg = ws_to_mg(ws);
1380
1381         /*
1382          * Did the copy succeed?
1383          */
1384         if (mg->k.input)
1385                 mg_complete(mg, false);
1386
1387         else {
1388                 /*
1389                  * Now we want the lock to prevent both reads and writes.
1390                  */
1391                 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1392                                             READ_WRITE_LOCK_LEVEL);
1393                 if (r < 0)
1394                         mg_complete(mg, false);
1395
1396                 else if (r)
1397                         quiesce(mg, mg_update_metadata);
1398
1399                 else
1400                         mg_update_metadata(ws);
1401         }
1402 }
1403
1404 static void mg_full_copy(struct work_struct *ws)
1405 {
1406         struct dm_cache_migration *mg = ws_to_mg(ws);
1407         struct cache *cache = mg->cache;
1408         struct policy_work *op = mg->op;
1409         bool is_policy_promote = (op->op == POLICY_PROMOTE);
1410
1411         if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1412             is_discarded_oblock(cache, op->oblock)) {
1413                 mg_upgrade_lock(ws);
1414                 return;
1415         }
1416
1417         init_continuation(&mg->k, mg_upgrade_lock);
1418         copy(mg, is_policy_promote);
1419 }
1420
1421 static void mg_copy(struct work_struct *ws)
1422 {
1423         struct dm_cache_migration *mg = ws_to_mg(ws);
1424
1425         if (mg->overwrite_bio) {
1426                 /*
1427                  * No exclusive lock was held when we last checked if the bio
1428                  * was optimisable.  So we have to check again in case things
1429                  * have changed (eg, the block may no longer be discarded).
1430                  */
1431                 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1432                         /*
1433                          * Fallback to a real full copy after doing some tidying up.
1434                          */
1435                         bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1436                         BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1437                         mg->overwrite_bio = NULL;
1438                         inc_io_migrations(mg->cache);
1439                         mg_full_copy(ws);
1440                         return;
1441                 }
1442
1443                 /*
1444                  * It's safe to do this here, even though it's new data
1445                  * because all IO has been locked out of the block.
1446                  *
1447                  * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1448                  * so _not_ using mg_upgrade_lock() as continutation.
1449                  */
1450                 overwrite(mg, mg_update_metadata_after_copy);
1451
1452         } else
1453                 mg_full_copy(ws);
1454 }
1455
1456 static int mg_lock_writes(struct dm_cache_migration *mg)
1457 {
1458         int r;
1459         struct dm_cell_key_v2 key;
1460         struct cache *cache = mg->cache;
1461         struct dm_bio_prison_cell_v2 *prealloc;
1462
1463         prealloc = alloc_prison_cell(cache);
1464
1465         /*
1466          * Prevent writes to the block, but allow reads to continue.
1467          * Unless we're using an overwrite bio, in which case we lock
1468          * everything.
1469          */
1470         build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1471         r = dm_cell_lock_v2(cache->prison, &key,
1472                             mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1473                             prealloc, &mg->cell);
1474         if (r < 0) {
1475                 free_prison_cell(cache, prealloc);
1476                 mg_complete(mg, false);
1477                 return r;
1478         }
1479
1480         if (mg->cell != prealloc)
1481                 free_prison_cell(cache, prealloc);
1482
1483         if (r == 0)
1484                 mg_copy(&mg->k.ws);
1485         else
1486                 quiesce(mg, mg_copy);
1487
1488         return 0;
1489 }
1490
1491 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1492 {
1493         struct dm_cache_migration *mg;
1494
1495         if (!background_work_begin(cache)) {
1496                 policy_complete_background_work(cache->policy, op, false);
1497                 return -EPERM;
1498         }
1499
1500         mg = alloc_migration(cache);
1501
1502         mg->op = op;
1503         mg->overwrite_bio = bio;
1504
1505         if (!bio)
1506                 inc_io_migrations(cache);
1507
1508         return mg_lock_writes(mg);
1509 }
1510
1511 /*----------------------------------------------------------------
1512  * invalidation processing
1513  *--------------------------------------------------------------*/
1514
1515 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1516 {
1517         struct bio_list bios;
1518         struct cache *cache = mg->cache;
1519
1520         bio_list_init(&bios);
1521         if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1522                 free_prison_cell(cache, mg->cell);
1523
1524         if (!success && mg->overwrite_bio)
1525                 bio_io_error(mg->overwrite_bio);
1526
1527         free_migration(mg);
1528         defer_bios(cache, &bios);
1529
1530         background_work_end(cache);
1531 }
1532
1533 static void invalidate_completed(struct work_struct *ws)
1534 {
1535         struct dm_cache_migration *mg = ws_to_mg(ws);
1536         invalidate_complete(mg, !mg->k.input);
1537 }
1538
1539 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1540 {
1541         int r = policy_invalidate_mapping(cache->policy, cblock);
1542         if (!r) {
1543                 r = dm_cache_remove_mapping(cache->cmd, cblock);
1544                 if (r) {
1545                         DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1546                                     cache_device_name(cache));
1547                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1548                 }
1549
1550         } else if (r == -ENODATA) {
1551                 /*
1552                  * Harmless, already unmapped.
1553                  */
1554                 r = 0;
1555
1556         } else
1557                 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1558
1559         return r;
1560 }
1561
1562 static void invalidate_remove(struct work_struct *ws)
1563 {
1564         int r;
1565         struct dm_cache_migration *mg = ws_to_mg(ws);
1566         struct cache *cache = mg->cache;
1567
1568         r = invalidate_cblock(cache, mg->invalidate_cblock);
1569         if (r) {
1570                 invalidate_complete(mg, false);
1571                 return;
1572         }
1573
1574         init_continuation(&mg->k, invalidate_completed);
1575         continue_after_commit(&cache->committer, &mg->k);
1576         remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1577         mg->overwrite_bio = NULL;
1578         schedule_commit(&cache->committer);
1579 }
1580
1581 static int invalidate_lock(struct dm_cache_migration *mg)
1582 {
1583         int r;
1584         struct dm_cell_key_v2 key;
1585         struct cache *cache = mg->cache;
1586         struct dm_bio_prison_cell_v2 *prealloc;
1587
1588         prealloc = alloc_prison_cell(cache);
1589
1590         build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1591         r = dm_cell_lock_v2(cache->prison, &key,
1592                             READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1593         if (r < 0) {
1594                 free_prison_cell(cache, prealloc);
1595                 invalidate_complete(mg, false);
1596                 return r;
1597         }
1598
1599         if (mg->cell != prealloc)
1600                 free_prison_cell(cache, prealloc);
1601
1602         if (r)
1603                 quiesce(mg, invalidate_remove);
1604
1605         else {
1606                 /*
1607                  * We can't call invalidate_remove() directly here because we
1608                  * might still be in request context.
1609                  */
1610                 init_continuation(&mg->k, invalidate_remove);
1611                 queue_work(cache->wq, &mg->k.ws);
1612         }
1613
1614         return 0;
1615 }
1616
1617 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1618                             dm_oblock_t oblock, struct bio *bio)
1619 {
1620         struct dm_cache_migration *mg;
1621
1622         if (!background_work_begin(cache))
1623                 return -EPERM;
1624
1625         mg = alloc_migration(cache);
1626
1627         mg->overwrite_bio = bio;
1628         mg->invalidate_cblock = cblock;
1629         mg->invalidate_oblock = oblock;
1630
1631         return invalidate_lock(mg);
1632 }
1633
1634 /*----------------------------------------------------------------
1635  * bio processing
1636  *--------------------------------------------------------------*/
1637
1638 enum busy {
1639         IDLE,
1640         BUSY
1641 };
1642
1643 static enum busy spare_migration_bandwidth(struct cache *cache)
1644 {
1645         bool idle = iot_idle_for(&cache->tracker, HZ);
1646         sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1647                 cache->sectors_per_block;
1648
1649         if (idle && current_volume <= cache->migration_threshold)
1650                 return IDLE;
1651         else
1652                 return BUSY;
1653 }
1654
1655 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1656 {
1657         atomic_inc(bio_data_dir(bio) == READ ?
1658                    &cache->stats.read_hit : &cache->stats.write_hit);
1659 }
1660
1661 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1662 {
1663         atomic_inc(bio_data_dir(bio) == READ ?
1664                    &cache->stats.read_miss : &cache->stats.write_miss);
1665 }
1666
1667 /*----------------------------------------------------------------*/
1668
1669 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1670                    bool *commit_needed)
1671 {
1672         int r, data_dir;
1673         bool rb, background_queued;
1674         dm_cblock_t cblock;
1675
1676         *commit_needed = false;
1677
1678         rb = bio_detain_shared(cache, block, bio);
1679         if (!rb) {
1680                 /*
1681                  * An exclusive lock is held for this block, so we have to
1682                  * wait.  We set the commit_needed flag so the current
1683                  * transaction will be committed asap, allowing this lock
1684                  * to be dropped.
1685                  */
1686                 *commit_needed = true;
1687                 return DM_MAPIO_SUBMITTED;
1688         }
1689
1690         data_dir = bio_data_dir(bio);
1691
1692         if (optimisable_bio(cache, bio, block)) {
1693                 struct policy_work *op = NULL;
1694
1695                 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1696                 if (unlikely(r && r != -ENOENT)) {
1697                         DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1698                                     cache_device_name(cache), r);
1699                         bio_io_error(bio);
1700                         return DM_MAPIO_SUBMITTED;
1701                 }
1702
1703                 if (r == -ENOENT && op) {
1704                         bio_drop_shared_lock(cache, bio);
1705                         BUG_ON(op->op != POLICY_PROMOTE);
1706                         mg_start(cache, op, bio);
1707                         return DM_MAPIO_SUBMITTED;
1708                 }
1709         } else {
1710                 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1711                 if (unlikely(r && r != -ENOENT)) {
1712                         DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1713                                     cache_device_name(cache), r);
1714                         bio_io_error(bio);
1715                         return DM_MAPIO_SUBMITTED;
1716                 }
1717
1718                 if (background_queued)
1719                         wake_migration_worker(cache);
1720         }
1721
1722         if (r == -ENOENT) {
1723                 struct per_bio_data *pb = get_per_bio_data(bio);
1724
1725                 /*
1726                  * Miss.
1727                  */
1728                 inc_miss_counter(cache, bio);
1729                 if (pb->req_nr == 0) {
1730                         accounted_begin(cache, bio);
1731                         remap_to_origin_clear_discard(cache, bio, block);
1732                 } else {
1733                         /*
1734                          * This is a duplicate writethrough io that is no
1735                          * longer needed because the block has been demoted.
1736                          */
1737                         bio_endio(bio);
1738                         return DM_MAPIO_SUBMITTED;
1739                 }
1740         } else {
1741                 /*
1742                  * Hit.
1743                  */
1744                 inc_hit_counter(cache, bio);
1745
1746                 /*
1747                  * Passthrough always maps to the origin, invalidating any
1748                  * cache blocks that are written to.
1749                  */
1750                 if (passthrough_mode(cache)) {
1751                         if (bio_data_dir(bio) == WRITE) {
1752                                 bio_drop_shared_lock(cache, bio);
1753                                 atomic_inc(&cache->stats.demotion);
1754                                 invalidate_start(cache, cblock, block, bio);
1755                         } else
1756                                 remap_to_origin_clear_discard(cache, bio, block);
1757                 } else {
1758                         if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1759                             !is_dirty(cache, cblock)) {
1760                                 remap_to_origin_and_cache(cache, bio, block, cblock);
1761                                 accounted_begin(cache, bio);
1762                         } else
1763                                 remap_to_cache_dirty(cache, bio, block, cblock);
1764                 }
1765         }
1766
1767         /*
1768          * dm core turns FUA requests into a separate payload and FLUSH req.
1769          */
1770         if (bio->bi_opf & REQ_FUA) {
1771                 /*
1772                  * issue_after_commit will call accounted_begin a second time.  So
1773                  * we call accounted_complete() to avoid double accounting.
1774                  */
1775                 accounted_complete(cache, bio);
1776                 issue_after_commit(&cache->committer, bio);
1777                 *commit_needed = true;
1778                 return DM_MAPIO_SUBMITTED;
1779         }
1780
1781         return DM_MAPIO_REMAPPED;
1782 }
1783
1784 static bool process_bio(struct cache *cache, struct bio *bio)
1785 {
1786         bool commit_needed;
1787
1788         if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1789                 submit_bio_noacct(bio);
1790
1791         return commit_needed;
1792 }
1793
1794 /*
1795  * A non-zero return indicates read_only or fail_io mode.
1796  */
1797 static int commit(struct cache *cache, bool clean_shutdown)
1798 {
1799         int r;
1800
1801         if (get_cache_mode(cache) >= CM_READ_ONLY)
1802                 return -EINVAL;
1803
1804         atomic_inc(&cache->stats.commit_count);
1805         r = dm_cache_commit(cache->cmd, clean_shutdown);
1806         if (r)
1807                 metadata_operation_failed(cache, "dm_cache_commit", r);
1808
1809         return r;
1810 }
1811
1812 /*
1813  * Used by the batcher.
1814  */
1815 static blk_status_t commit_op(void *context)
1816 {
1817         struct cache *cache = context;
1818
1819         if (dm_cache_changed_this_transaction(cache->cmd))
1820                 return errno_to_blk_status(commit(cache, false));
1821
1822         return 0;
1823 }
1824
1825 /*----------------------------------------------------------------*/
1826
1827 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1828 {
1829         struct per_bio_data *pb = get_per_bio_data(bio);
1830
1831         if (!pb->req_nr)
1832                 remap_to_origin(cache, bio);
1833         else
1834                 remap_to_cache(cache, bio, 0);
1835
1836         issue_after_commit(&cache->committer, bio);
1837         return true;
1838 }
1839
1840 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1841 {
1842         dm_dblock_t b, e;
1843
1844         // FIXME: do we need to lock the region?  Or can we just assume the
1845         // user wont be so foolish as to issue discard concurrently with
1846         // other IO?
1847         calc_discard_block_range(cache, bio, &b, &e);
1848         while (b != e) {
1849                 set_discard(cache, b);
1850                 b = to_dblock(from_dblock(b) + 1);
1851         }
1852
1853         if (cache->features.discard_passdown) {
1854                 remap_to_origin(cache, bio);
1855                 submit_bio_noacct(bio);
1856         } else
1857                 bio_endio(bio);
1858
1859         return false;
1860 }
1861
1862 static void process_deferred_bios(struct work_struct *ws)
1863 {
1864         struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1865
1866         bool commit_needed = false;
1867         struct bio_list bios;
1868         struct bio *bio;
1869
1870         bio_list_init(&bios);
1871
1872         spin_lock_irq(&cache->lock);
1873         bio_list_merge(&bios, &cache->deferred_bios);
1874         bio_list_init(&cache->deferred_bios);
1875         spin_unlock_irq(&cache->lock);
1876
1877         while ((bio = bio_list_pop(&bios))) {
1878                 if (bio->bi_opf & REQ_PREFLUSH)
1879                         commit_needed = process_flush_bio(cache, bio) || commit_needed;
1880
1881                 else if (bio_op(bio) == REQ_OP_DISCARD)
1882                         commit_needed = process_discard_bio(cache, bio) || commit_needed;
1883
1884                 else
1885                         commit_needed = process_bio(cache, bio) || commit_needed;
1886                 cond_resched();
1887         }
1888
1889         if (commit_needed)
1890                 schedule_commit(&cache->committer);
1891 }
1892
1893 /*----------------------------------------------------------------
1894  * Main worker loop
1895  *--------------------------------------------------------------*/
1896
1897 static void requeue_deferred_bios(struct cache *cache)
1898 {
1899         struct bio *bio;
1900         struct bio_list bios;
1901
1902         bio_list_init(&bios);
1903         bio_list_merge(&bios, &cache->deferred_bios);
1904         bio_list_init(&cache->deferred_bios);
1905
1906         while ((bio = bio_list_pop(&bios))) {
1907                 bio->bi_status = BLK_STS_DM_REQUEUE;
1908                 bio_endio(bio);
1909                 cond_resched();
1910         }
1911 }
1912
1913 /*
1914  * We want to commit periodically so that not too much
1915  * unwritten metadata builds up.
1916  */
1917 static void do_waker(struct work_struct *ws)
1918 {
1919         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1920
1921         policy_tick(cache->policy, true);
1922         wake_migration_worker(cache);
1923         schedule_commit(&cache->committer);
1924         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1925 }
1926
1927 static void check_migrations(struct work_struct *ws)
1928 {
1929         int r;
1930         struct policy_work *op;
1931         struct cache *cache = container_of(ws, struct cache, migration_worker);
1932         enum busy b;
1933
1934         for (;;) {
1935                 b = spare_migration_bandwidth(cache);
1936
1937                 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1938                 if (r == -ENODATA)
1939                         break;
1940
1941                 if (r) {
1942                         DMERR_LIMIT("%s: policy_background_work failed",
1943                                     cache_device_name(cache));
1944                         break;
1945                 }
1946
1947                 r = mg_start(cache, op, NULL);
1948                 if (r)
1949                         break;
1950
1951                 cond_resched();
1952         }
1953 }
1954
1955 /*----------------------------------------------------------------
1956  * Target methods
1957  *--------------------------------------------------------------*/
1958
1959 /*
1960  * This function gets called on the error paths of the constructor, so we
1961  * have to cope with a partially initialised struct.
1962  */
1963 static void destroy(struct cache *cache)
1964 {
1965         unsigned i;
1966
1967         mempool_exit(&cache->migration_pool);
1968
1969         if (cache->prison)
1970                 dm_bio_prison_destroy_v2(cache->prison);
1971
1972         cancel_delayed_work_sync(&cache->waker);
1973         if (cache->wq)
1974                 destroy_workqueue(cache->wq);
1975
1976         if (cache->dirty_bitset)
1977                 free_bitset(cache->dirty_bitset);
1978
1979         if (cache->discard_bitset)
1980                 free_bitset(cache->discard_bitset);
1981
1982         if (cache->copier)
1983                 dm_kcopyd_client_destroy(cache->copier);
1984
1985         if (cache->cmd)
1986                 dm_cache_metadata_close(cache->cmd);
1987
1988         if (cache->metadata_dev)
1989                 dm_put_device(cache->ti, cache->metadata_dev);
1990
1991         if (cache->origin_dev)
1992                 dm_put_device(cache->ti, cache->origin_dev);
1993
1994         if (cache->cache_dev)
1995                 dm_put_device(cache->ti, cache->cache_dev);
1996
1997         if (cache->policy)
1998                 dm_cache_policy_destroy(cache->policy);
1999
2000         for (i = 0; i < cache->nr_ctr_args ; i++)
2001                 kfree(cache->ctr_args[i]);
2002         kfree(cache->ctr_args);
2003
2004         bioset_exit(&cache->bs);
2005
2006         kfree(cache);
2007 }
2008
2009 static void cache_dtr(struct dm_target *ti)
2010 {
2011         struct cache *cache = ti->private;
2012
2013         destroy(cache);
2014 }
2015
2016 static sector_t get_dev_size(struct dm_dev *dev)
2017 {
2018         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2019 }
2020
2021 /*----------------------------------------------------------------*/
2022
2023 /*
2024  * Construct a cache device mapping.
2025  *
2026  * cache <metadata dev> <cache dev> <origin dev> <block size>
2027  *       <#feature args> [<feature arg>]*
2028  *       <policy> <#policy args> [<policy arg>]*
2029  *
2030  * metadata dev    : fast device holding the persistent metadata
2031  * cache dev       : fast device holding cached data blocks
2032  * origin dev      : slow device holding original data blocks
2033  * block size      : cache unit size in sectors
2034  *
2035  * #feature args   : number of feature arguments passed
2036  * feature args    : writethrough.  (The default is writeback.)
2037  *
2038  * policy          : the replacement policy to use
2039  * #policy args    : an even number of policy arguments corresponding
2040  *                   to key/value pairs passed to the policy
2041  * policy args     : key/value pairs passed to the policy
2042  *                   E.g. 'sequential_threshold 1024'
2043  *                   See cache-policies.txt for details.
2044  *
2045  * Optional feature arguments are:
2046  *   writethrough  : write through caching that prohibits cache block
2047  *                   content from being different from origin block content.
2048  *                   Without this argument, the default behaviour is to write
2049  *                   back cache block contents later for performance reasons,
2050  *                   so they may differ from the corresponding origin blocks.
2051  */
2052 struct cache_args {
2053         struct dm_target *ti;
2054
2055         struct dm_dev *metadata_dev;
2056
2057         struct dm_dev *cache_dev;
2058         sector_t cache_sectors;
2059
2060         struct dm_dev *origin_dev;
2061         sector_t origin_sectors;
2062
2063         uint32_t block_size;
2064
2065         const char *policy_name;
2066         int policy_argc;
2067         const char **policy_argv;
2068
2069         struct cache_features features;
2070 };
2071
2072 static void destroy_cache_args(struct cache_args *ca)
2073 {
2074         if (ca->metadata_dev)
2075                 dm_put_device(ca->ti, ca->metadata_dev);
2076
2077         if (ca->cache_dev)
2078                 dm_put_device(ca->ti, ca->cache_dev);
2079
2080         if (ca->origin_dev)
2081                 dm_put_device(ca->ti, ca->origin_dev);
2082
2083         kfree(ca);
2084 }
2085
2086 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2087 {
2088         if (!as->argc) {
2089                 *error = "Insufficient args";
2090                 return false;
2091         }
2092
2093         return true;
2094 }
2095
2096 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2097                               char **error)
2098 {
2099         int r;
2100         sector_t metadata_dev_size;
2101         char b[BDEVNAME_SIZE];
2102
2103         if (!at_least_one_arg(as, error))
2104                 return -EINVAL;
2105
2106         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2107                           &ca->metadata_dev);
2108         if (r) {
2109                 *error = "Error opening metadata device";
2110                 return r;
2111         }
2112
2113         metadata_dev_size = get_dev_size(ca->metadata_dev);
2114         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2115                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2116                        bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2117
2118         return 0;
2119 }
2120
2121 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2122                            char **error)
2123 {
2124         int r;
2125
2126         if (!at_least_one_arg(as, error))
2127                 return -EINVAL;
2128
2129         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2130                           &ca->cache_dev);
2131         if (r) {
2132                 *error = "Error opening cache device";
2133                 return r;
2134         }
2135         ca->cache_sectors = get_dev_size(ca->cache_dev);
2136
2137         return 0;
2138 }
2139
2140 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2141                             char **error)
2142 {
2143         int r;
2144
2145         if (!at_least_one_arg(as, error))
2146                 return -EINVAL;
2147
2148         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2149                           &ca->origin_dev);
2150         if (r) {
2151                 *error = "Error opening origin device";
2152                 return r;
2153         }
2154
2155         ca->origin_sectors = get_dev_size(ca->origin_dev);
2156         if (ca->ti->len > ca->origin_sectors) {
2157                 *error = "Device size larger than cached device";
2158                 return -EINVAL;
2159         }
2160
2161         return 0;
2162 }
2163
2164 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2165                             char **error)
2166 {
2167         unsigned long block_size;
2168
2169         if (!at_least_one_arg(as, error))
2170                 return -EINVAL;
2171
2172         if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2173             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2174             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2175             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2176                 *error = "Invalid data block size";
2177                 return -EINVAL;
2178         }
2179
2180         if (block_size > ca->cache_sectors) {
2181                 *error = "Data block size is larger than the cache device";
2182                 return -EINVAL;
2183         }
2184
2185         ca->block_size = block_size;
2186
2187         return 0;
2188 }
2189
2190 static void init_features(struct cache_features *cf)
2191 {
2192         cf->mode = CM_WRITE;
2193         cf->io_mode = CM_IO_WRITEBACK;
2194         cf->metadata_version = 1;
2195         cf->discard_passdown = true;
2196 }
2197
2198 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2199                           char **error)
2200 {
2201         static const struct dm_arg _args[] = {
2202                 {0, 3, "Invalid number of cache feature arguments"},
2203         };
2204
2205         int r, mode_ctr = 0;
2206         unsigned argc;
2207         const char *arg;
2208         struct cache_features *cf = &ca->features;
2209
2210         init_features(cf);
2211
2212         r = dm_read_arg_group(_args, as, &argc, error);
2213         if (r)
2214                 return -EINVAL;
2215
2216         while (argc--) {
2217                 arg = dm_shift_arg(as);
2218
2219                 if (!strcasecmp(arg, "writeback")) {
2220                         cf->io_mode = CM_IO_WRITEBACK;
2221                         mode_ctr++;
2222                 }
2223
2224                 else if (!strcasecmp(arg, "writethrough")) {
2225                         cf->io_mode = CM_IO_WRITETHROUGH;
2226                         mode_ctr++;
2227                 }
2228
2229                 else if (!strcasecmp(arg, "passthrough")) {
2230                         cf->io_mode = CM_IO_PASSTHROUGH;
2231                         mode_ctr++;
2232                 }
2233
2234                 else if (!strcasecmp(arg, "metadata2"))
2235                         cf->metadata_version = 2;
2236
2237                 else if (!strcasecmp(arg, "no_discard_passdown"))
2238                         cf->discard_passdown = false;
2239
2240                 else {
2241                         *error = "Unrecognised cache feature requested";
2242                         return -EINVAL;
2243                 }
2244         }
2245
2246         if (mode_ctr > 1) {
2247                 *error = "Duplicate cache io_mode features requested";
2248                 return -EINVAL;
2249         }
2250
2251         return 0;
2252 }
2253
2254 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2255                         char **error)
2256 {
2257         static const struct dm_arg _args[] = {
2258                 {0, 1024, "Invalid number of policy arguments"},
2259         };
2260
2261         int r;
2262
2263         if (!at_least_one_arg(as, error))
2264                 return -EINVAL;
2265
2266         ca->policy_name = dm_shift_arg(as);
2267
2268         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2269         if (r)
2270                 return -EINVAL;
2271
2272         ca->policy_argv = (const char **)as->argv;
2273         dm_consume_args(as, ca->policy_argc);
2274
2275         return 0;
2276 }
2277
2278 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2279                             char **error)
2280 {
2281         int r;
2282         struct dm_arg_set as;
2283
2284         as.argc = argc;
2285         as.argv = argv;
2286
2287         r = parse_metadata_dev(ca, &as, error);
2288         if (r)
2289                 return r;
2290
2291         r = parse_cache_dev(ca, &as, error);
2292         if (r)
2293                 return r;
2294
2295         r = parse_origin_dev(ca, &as, error);
2296         if (r)
2297                 return r;
2298
2299         r = parse_block_size(ca, &as, error);
2300         if (r)
2301                 return r;
2302
2303         r = parse_features(ca, &as, error);
2304         if (r)
2305                 return r;
2306
2307         r = parse_policy(ca, &as, error);
2308         if (r)
2309                 return r;
2310
2311         return 0;
2312 }
2313
2314 /*----------------------------------------------------------------*/
2315
2316 static struct kmem_cache *migration_cache;
2317
2318 #define NOT_CORE_OPTION 1
2319
2320 static int process_config_option(struct cache *cache, const char *key, const char *value)
2321 {
2322         unsigned long tmp;
2323
2324         if (!strcasecmp(key, "migration_threshold")) {
2325                 if (kstrtoul(value, 10, &tmp))
2326                         return -EINVAL;
2327
2328                 cache->migration_threshold = tmp;
2329                 return 0;
2330         }
2331
2332         return NOT_CORE_OPTION;
2333 }
2334
2335 static int set_config_value(struct cache *cache, const char *key, const char *value)
2336 {
2337         int r = process_config_option(cache, key, value);
2338
2339         if (r == NOT_CORE_OPTION)
2340                 r = policy_set_config_value(cache->policy, key, value);
2341
2342         if (r)
2343                 DMWARN("bad config value for %s: %s", key, value);
2344
2345         return r;
2346 }
2347
2348 static int set_config_values(struct cache *cache, int argc, const char **argv)
2349 {
2350         int r = 0;
2351
2352         if (argc & 1) {
2353                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2354                 return -EINVAL;
2355         }
2356
2357         while (argc) {
2358                 r = set_config_value(cache, argv[0], argv[1]);
2359                 if (r)
2360                         break;
2361
2362                 argc -= 2;
2363                 argv += 2;
2364         }
2365
2366         return r;
2367 }
2368
2369 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2370                                char **error)
2371 {
2372         struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2373                                                            cache->cache_size,
2374                                                            cache->origin_sectors,
2375                                                            cache->sectors_per_block);
2376         if (IS_ERR(p)) {
2377                 *error = "Error creating cache's policy";
2378                 return PTR_ERR(p);
2379         }
2380         cache->policy = p;
2381         BUG_ON(!cache->policy);
2382
2383         return 0;
2384 }
2385
2386 /*
2387  * We want the discard block size to be at least the size of the cache
2388  * block size and have no more than 2^14 discard blocks across the origin.
2389  */
2390 #define MAX_DISCARD_BLOCKS (1 << 14)
2391
2392 static bool too_many_discard_blocks(sector_t discard_block_size,
2393                                     sector_t origin_size)
2394 {
2395         (void) sector_div(origin_size, discard_block_size);
2396
2397         return origin_size > MAX_DISCARD_BLOCKS;
2398 }
2399
2400 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2401                                              sector_t origin_size)
2402 {
2403         sector_t discard_block_size = cache_block_size;
2404
2405         if (origin_size)
2406                 while (too_many_discard_blocks(discard_block_size, origin_size))
2407                         discard_block_size *= 2;
2408
2409         return discard_block_size;
2410 }
2411
2412 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2413 {
2414         dm_block_t nr_blocks = from_cblock(size);
2415
2416         if (nr_blocks > (1 << 20) && cache->cache_size != size)
2417                 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2418                              "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2419                              "Please consider increasing the cache block size to reduce the overall cache block count.",
2420                              (unsigned long long) nr_blocks);
2421
2422         cache->cache_size = size;
2423 }
2424
2425 #define DEFAULT_MIGRATION_THRESHOLD 2048
2426
2427 static int cache_create(struct cache_args *ca, struct cache **result)
2428 {
2429         int r = 0;
2430         char **error = &ca->ti->error;
2431         struct cache *cache;
2432         struct dm_target *ti = ca->ti;
2433         dm_block_t origin_blocks;
2434         struct dm_cache_metadata *cmd;
2435         bool may_format = ca->features.mode == CM_WRITE;
2436
2437         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2438         if (!cache)
2439                 return -ENOMEM;
2440
2441         cache->ti = ca->ti;
2442         ti->private = cache;
2443         ti->num_flush_bios = 2;
2444         ti->flush_supported = true;
2445
2446         ti->num_discard_bios = 1;
2447         ti->discards_supported = true;
2448
2449         ti->per_io_data_size = sizeof(struct per_bio_data);
2450
2451         cache->features = ca->features;
2452         if (writethrough_mode(cache)) {
2453                 /* Create bioset for writethrough bios issued to origin */
2454                 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2455                 if (r)
2456                         goto bad;
2457         }
2458
2459         cache->metadata_dev = ca->metadata_dev;
2460         cache->origin_dev = ca->origin_dev;
2461         cache->cache_dev = ca->cache_dev;
2462
2463         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2464
2465         origin_blocks = cache->origin_sectors = ca->origin_sectors;
2466         origin_blocks = block_div(origin_blocks, ca->block_size);
2467         cache->origin_blocks = to_oblock(origin_blocks);
2468
2469         cache->sectors_per_block = ca->block_size;
2470         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2471                 r = -EINVAL;
2472                 goto bad;
2473         }
2474
2475         if (ca->block_size & (ca->block_size - 1)) {
2476                 dm_block_t cache_size = ca->cache_sectors;
2477
2478                 cache->sectors_per_block_shift = -1;
2479                 cache_size = block_div(cache_size, ca->block_size);
2480                 set_cache_size(cache, to_cblock(cache_size));
2481         } else {
2482                 cache->sectors_per_block_shift = __ffs(ca->block_size);
2483                 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2484         }
2485
2486         r = create_cache_policy(cache, ca, error);
2487         if (r)
2488                 goto bad;
2489
2490         cache->policy_nr_args = ca->policy_argc;
2491         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2492
2493         r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2494         if (r) {
2495                 *error = "Error setting cache policy's config values";
2496                 goto bad;
2497         }
2498
2499         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2500                                      ca->block_size, may_format,
2501                                      dm_cache_policy_get_hint_size(cache->policy),
2502                                      ca->features.metadata_version);
2503         if (IS_ERR(cmd)) {
2504                 *error = "Error creating metadata object";
2505                 r = PTR_ERR(cmd);
2506                 goto bad;
2507         }
2508         cache->cmd = cmd;
2509         set_cache_mode(cache, CM_WRITE);
2510         if (get_cache_mode(cache) != CM_WRITE) {
2511                 *error = "Unable to get write access to metadata, please check/repair metadata.";
2512                 r = -EINVAL;
2513                 goto bad;
2514         }
2515
2516         if (passthrough_mode(cache)) {
2517                 bool all_clean;
2518
2519                 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2520                 if (r) {
2521                         *error = "dm_cache_metadata_all_clean() failed";
2522                         goto bad;
2523                 }
2524
2525                 if (!all_clean) {
2526                         *error = "Cannot enter passthrough mode unless all blocks are clean";
2527                         r = -EINVAL;
2528                         goto bad;
2529                 }
2530
2531                 policy_allow_migrations(cache->policy, false);
2532         }
2533
2534         spin_lock_init(&cache->lock);
2535         bio_list_init(&cache->deferred_bios);
2536         atomic_set(&cache->nr_allocated_migrations, 0);
2537         atomic_set(&cache->nr_io_migrations, 0);
2538         init_waitqueue_head(&cache->migration_wait);
2539
2540         r = -ENOMEM;
2541         atomic_set(&cache->nr_dirty, 0);
2542         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2543         if (!cache->dirty_bitset) {
2544                 *error = "could not allocate dirty bitset";
2545                 goto bad;
2546         }
2547         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2548
2549         cache->discard_block_size =
2550                 calculate_discard_block_size(cache->sectors_per_block,
2551                                              cache->origin_sectors);
2552         cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2553                                                               cache->discard_block_size));
2554         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2555         if (!cache->discard_bitset) {
2556                 *error = "could not allocate discard bitset";
2557                 goto bad;
2558         }
2559         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2560
2561         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2562         if (IS_ERR(cache->copier)) {
2563                 *error = "could not create kcopyd client";
2564                 r = PTR_ERR(cache->copier);
2565                 goto bad;
2566         }
2567
2568         cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2569         if (!cache->wq) {
2570                 *error = "could not create workqueue for metadata object";
2571                 goto bad;
2572         }
2573         INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2574         INIT_WORK(&cache->migration_worker, check_migrations);
2575         INIT_DELAYED_WORK(&cache->waker, do_waker);
2576
2577         cache->prison = dm_bio_prison_create_v2(cache->wq);
2578         if (!cache->prison) {
2579                 *error = "could not create bio prison";
2580                 goto bad;
2581         }
2582
2583         r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2584                                    migration_cache);
2585         if (r) {
2586                 *error = "Error creating cache's migration mempool";
2587                 goto bad;
2588         }
2589
2590         cache->need_tick_bio = true;
2591         cache->sized = false;
2592         cache->invalidate = false;
2593         cache->commit_requested = false;
2594         cache->loaded_mappings = false;
2595         cache->loaded_discards = false;
2596
2597         load_stats(cache);
2598
2599         atomic_set(&cache->stats.demotion, 0);
2600         atomic_set(&cache->stats.promotion, 0);
2601         atomic_set(&cache->stats.copies_avoided, 0);
2602         atomic_set(&cache->stats.cache_cell_clash, 0);
2603         atomic_set(&cache->stats.commit_count, 0);
2604         atomic_set(&cache->stats.discard_count, 0);
2605
2606         spin_lock_init(&cache->invalidation_lock);
2607         INIT_LIST_HEAD(&cache->invalidation_requests);
2608
2609         batcher_init(&cache->committer, commit_op, cache,
2610                      issue_op, cache, cache->wq);
2611         iot_init(&cache->tracker);
2612
2613         init_rwsem(&cache->background_work_lock);
2614         prevent_background_work(cache);
2615
2616         *result = cache;
2617         return 0;
2618 bad:
2619         destroy(cache);
2620         return r;
2621 }
2622
2623 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2624 {
2625         unsigned i;
2626         const char **copy;
2627
2628         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2629         if (!copy)
2630                 return -ENOMEM;
2631         for (i = 0; i < argc; i++) {
2632                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2633                 if (!copy[i]) {
2634                         while (i--)
2635                                 kfree(copy[i]);
2636                         kfree(copy);
2637                         return -ENOMEM;
2638                 }
2639         }
2640
2641         cache->nr_ctr_args = argc;
2642         cache->ctr_args = copy;
2643
2644         return 0;
2645 }
2646
2647 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2648 {
2649         int r = -EINVAL;
2650         struct cache_args *ca;
2651         struct cache *cache = NULL;
2652
2653         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2654         if (!ca) {
2655                 ti->error = "Error allocating memory for cache";
2656                 return -ENOMEM;
2657         }
2658         ca->ti = ti;
2659
2660         r = parse_cache_args(ca, argc, argv, &ti->error);
2661         if (r)
2662                 goto out;
2663
2664         r = cache_create(ca, &cache);
2665         if (r)
2666                 goto out;
2667
2668         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2669         if (r) {
2670                 destroy(cache);
2671                 goto out;
2672         }
2673
2674         ti->private = cache;
2675 out:
2676         destroy_cache_args(ca);
2677         return r;
2678 }
2679
2680 /*----------------------------------------------------------------*/
2681
2682 static int cache_map(struct dm_target *ti, struct bio *bio)
2683 {
2684         struct cache *cache = ti->private;
2685
2686         int r;
2687         bool commit_needed;
2688         dm_oblock_t block = get_bio_block(cache, bio);
2689
2690         init_per_bio_data(bio);
2691         if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2692                 /*
2693                  * This can only occur if the io goes to a partial block at
2694                  * the end of the origin device.  We don't cache these.
2695                  * Just remap to the origin and carry on.
2696                  */
2697                 remap_to_origin(cache, bio);
2698                 accounted_begin(cache, bio);
2699                 return DM_MAPIO_REMAPPED;
2700         }
2701
2702         if (discard_or_flush(bio)) {
2703                 defer_bio(cache, bio);
2704                 return DM_MAPIO_SUBMITTED;
2705         }
2706
2707         r = map_bio(cache, bio, block, &commit_needed);
2708         if (commit_needed)
2709                 schedule_commit(&cache->committer);
2710
2711         return r;
2712 }
2713
2714 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2715 {
2716         struct cache *cache = ti->private;
2717         unsigned long flags;
2718         struct per_bio_data *pb = get_per_bio_data(bio);
2719
2720         if (pb->tick) {
2721                 policy_tick(cache->policy, false);
2722
2723                 spin_lock_irqsave(&cache->lock, flags);
2724                 cache->need_tick_bio = true;
2725                 spin_unlock_irqrestore(&cache->lock, flags);
2726         }
2727
2728         bio_drop_shared_lock(cache, bio);
2729         accounted_complete(cache, bio);
2730
2731         return DM_ENDIO_DONE;
2732 }
2733
2734 static int write_dirty_bitset(struct cache *cache)
2735 {
2736         int r;
2737
2738         if (get_cache_mode(cache) >= CM_READ_ONLY)
2739                 return -EINVAL;
2740
2741         r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2742         if (r)
2743                 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2744
2745         return r;
2746 }
2747
2748 static int write_discard_bitset(struct cache *cache)
2749 {
2750         unsigned i, r;
2751
2752         if (get_cache_mode(cache) >= CM_READ_ONLY)
2753                 return -EINVAL;
2754
2755         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2756                                            cache->discard_nr_blocks);
2757         if (r) {
2758                 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2759                 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2760                 return r;
2761         }
2762
2763         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2764                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2765                                          is_discarded(cache, to_dblock(i)));
2766                 if (r) {
2767                         metadata_operation_failed(cache, "dm_cache_set_discard", r);
2768                         return r;
2769                 }
2770         }
2771
2772         return 0;
2773 }
2774
2775 static int write_hints(struct cache *cache)
2776 {
2777         int r;
2778
2779         if (get_cache_mode(cache) >= CM_READ_ONLY)
2780                 return -EINVAL;
2781
2782         r = dm_cache_write_hints(cache->cmd, cache->policy);
2783         if (r) {
2784                 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2785                 return r;
2786         }
2787
2788         return 0;
2789 }
2790
2791 /*
2792  * returns true on success
2793  */
2794 static bool sync_metadata(struct cache *cache)
2795 {
2796         int r1, r2, r3, r4;
2797
2798         r1 = write_dirty_bitset(cache);
2799         if (r1)
2800                 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2801
2802         r2 = write_discard_bitset(cache);
2803         if (r2)
2804                 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2805
2806         save_stats(cache);
2807
2808         r3 = write_hints(cache);
2809         if (r3)
2810                 DMERR("%s: could not write hints", cache_device_name(cache));
2811
2812         /*
2813          * If writing the above metadata failed, we still commit, but don't
2814          * set the clean shutdown flag.  This will effectively force every
2815          * dirty bit to be set on reload.
2816          */
2817         r4 = commit(cache, !r1 && !r2 && !r3);
2818         if (r4)
2819                 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2820
2821         return !r1 && !r2 && !r3 && !r4;
2822 }
2823
2824 static void cache_postsuspend(struct dm_target *ti)
2825 {
2826         struct cache *cache = ti->private;
2827
2828         prevent_background_work(cache);
2829         BUG_ON(atomic_read(&cache->nr_io_migrations));
2830
2831         cancel_delayed_work_sync(&cache->waker);
2832         drain_workqueue(cache->wq);
2833         WARN_ON(cache->tracker.in_flight);
2834
2835         /*
2836          * If it's a flush suspend there won't be any deferred bios, so this
2837          * call is harmless.
2838          */
2839         requeue_deferred_bios(cache);
2840
2841         if (get_cache_mode(cache) == CM_WRITE)
2842                 (void) sync_metadata(cache);
2843 }
2844
2845 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2846                         bool dirty, uint32_t hint, bool hint_valid)
2847 {
2848         int r;
2849         struct cache *cache = context;
2850
2851         if (dirty) {
2852                 set_bit(from_cblock(cblock), cache->dirty_bitset);
2853                 atomic_inc(&cache->nr_dirty);
2854         } else
2855                 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2856
2857         r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2858         if (r)
2859                 return r;
2860
2861         return 0;
2862 }
2863
2864 /*
2865  * The discard block size in the on disk metadata is not
2866  * neccessarily the same as we're currently using.  So we have to
2867  * be careful to only set the discarded attribute if we know it
2868  * covers a complete block of the new size.
2869  */
2870 struct discard_load_info {
2871         struct cache *cache;
2872
2873         /*
2874          * These blocks are sized using the on disk dblock size, rather
2875          * than the current one.
2876          */
2877         dm_block_t block_size;
2878         dm_block_t discard_begin, discard_end;
2879 };
2880
2881 static void discard_load_info_init(struct cache *cache,
2882                                    struct discard_load_info *li)
2883 {
2884         li->cache = cache;
2885         li->discard_begin = li->discard_end = 0;
2886 }
2887
2888 static void set_discard_range(struct discard_load_info *li)
2889 {
2890         sector_t b, e;
2891
2892         if (li->discard_begin == li->discard_end)
2893                 return;
2894
2895         /*
2896          * Convert to sectors.
2897          */
2898         b = li->discard_begin * li->block_size;
2899         e = li->discard_end * li->block_size;
2900
2901         /*
2902          * Then convert back to the current dblock size.
2903          */
2904         b = dm_sector_div_up(b, li->cache->discard_block_size);
2905         sector_div(e, li->cache->discard_block_size);
2906
2907         /*
2908          * The origin may have shrunk, so we need to check we're still in
2909          * bounds.
2910          */
2911         if (e > from_dblock(li->cache->discard_nr_blocks))
2912                 e = from_dblock(li->cache->discard_nr_blocks);
2913
2914         for (; b < e; b++)
2915                 set_discard(li->cache, to_dblock(b));
2916 }
2917
2918 static int load_discard(void *context, sector_t discard_block_size,
2919                         dm_dblock_t dblock, bool discard)
2920 {
2921         struct discard_load_info *li = context;
2922
2923         li->block_size = discard_block_size;
2924
2925         if (discard) {
2926                 if (from_dblock(dblock) == li->discard_end)
2927                         /*
2928                          * We're already in a discard range, just extend it.
2929                          */
2930                         li->discard_end = li->discard_end + 1ULL;
2931
2932                 else {
2933                         /*
2934                          * Emit the old range and start a new one.
2935                          */
2936                         set_discard_range(li);
2937                         li->discard_begin = from_dblock(dblock);
2938                         li->discard_end = li->discard_begin + 1ULL;
2939                 }
2940         } else {
2941                 set_discard_range(li);
2942                 li->discard_begin = li->discard_end = 0;
2943         }
2944
2945         return 0;
2946 }
2947
2948 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2949 {
2950         sector_t size = get_dev_size(cache->cache_dev);
2951         (void) sector_div(size, cache->sectors_per_block);
2952         return to_cblock(size);
2953 }
2954
2955 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2956 {
2957         if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2958                 if (cache->sized) {
2959                         DMERR("%s: unable to extend cache due to missing cache table reload",
2960                               cache_device_name(cache));
2961                         return false;
2962                 }
2963         }
2964
2965         /*
2966          * We can't drop a dirty block when shrinking the cache.
2967          */
2968         while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2969                 new_size = to_cblock(from_cblock(new_size) + 1);
2970                 if (is_dirty(cache, new_size)) {
2971                         DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2972                               cache_device_name(cache),
2973                               (unsigned long long) from_cblock(new_size));
2974                         return false;
2975                 }
2976         }
2977
2978         return true;
2979 }
2980
2981 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2982 {
2983         int r;
2984
2985         r = dm_cache_resize(cache->cmd, new_size);
2986         if (r) {
2987                 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2988                 metadata_operation_failed(cache, "dm_cache_resize", r);
2989                 return r;
2990         }
2991
2992         set_cache_size(cache, new_size);
2993
2994         return 0;
2995 }
2996
2997 static int cache_preresume(struct dm_target *ti)
2998 {
2999         int r = 0;
3000         struct cache *cache = ti->private;
3001         dm_cblock_t csize = get_cache_dev_size(cache);
3002
3003         /*
3004          * Check to see if the cache has resized.
3005          */
3006         if (!cache->sized) {
3007                 r = resize_cache_dev(cache, csize);
3008                 if (r)
3009                         return r;
3010
3011                 cache->sized = true;
3012
3013         } else if (csize != cache->cache_size) {
3014                 if (!can_resize(cache, csize))
3015                         return -EINVAL;
3016
3017                 r = resize_cache_dev(cache, csize);
3018                 if (r)
3019                         return r;
3020         }
3021
3022         if (!cache->loaded_mappings) {
3023                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3024                                            load_mapping, cache);
3025                 if (r) {
3026                         DMERR("%s: could not load cache mappings", cache_device_name(cache));
3027                         metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3028                         return r;
3029                 }
3030
3031                 cache->loaded_mappings = true;
3032         }
3033
3034         if (!cache->loaded_discards) {
3035                 struct discard_load_info li;
3036
3037                 /*
3038                  * The discard bitset could have been resized, or the
3039                  * discard block size changed.  To be safe we start by
3040                  * setting every dblock to not discarded.
3041                  */
3042                 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3043
3044                 discard_load_info_init(cache, &li);
3045                 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3046                 if (r) {
3047                         DMERR("%s: could not load origin discards", cache_device_name(cache));
3048                         metadata_operation_failed(cache, "dm_cache_load_discards", r);
3049                         return r;
3050                 }
3051                 set_discard_range(&li);
3052
3053                 cache->loaded_discards = true;
3054         }
3055
3056         return r;
3057 }
3058
3059 static void cache_resume(struct dm_target *ti)
3060 {
3061         struct cache *cache = ti->private;
3062
3063         cache->need_tick_bio = true;
3064         allow_background_work(cache);
3065         do_waker(&cache->waker.work);
3066 }
3067
3068 static void emit_flags(struct cache *cache, char *result,
3069                        unsigned maxlen, ssize_t *sz_ptr)
3070 {
3071         ssize_t sz = *sz_ptr;
3072         struct cache_features *cf = &cache->features;
3073         unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3074
3075         DMEMIT("%u ", count);
3076
3077         if (cf->metadata_version == 2)
3078                 DMEMIT("metadata2 ");
3079
3080         if (writethrough_mode(cache))
3081                 DMEMIT("writethrough ");
3082
3083         else if (passthrough_mode(cache))
3084                 DMEMIT("passthrough ");
3085
3086         else if (writeback_mode(cache))
3087                 DMEMIT("writeback ");
3088
3089         else {
3090                 DMEMIT("unknown ");
3091                 DMERR("%s: internal error: unknown io mode: %d",
3092                       cache_device_name(cache), (int) cf->io_mode);
3093         }
3094
3095         if (!cf->discard_passdown)
3096                 DMEMIT("no_discard_passdown ");
3097
3098         *sz_ptr = sz;
3099 }
3100
3101 /*
3102  * Status format:
3103  *
3104  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3105  * <cache block size> <#used cache blocks>/<#total cache blocks>
3106  * <#read hits> <#read misses> <#write hits> <#write misses>
3107  * <#demotions> <#promotions> <#dirty>
3108  * <#features> <features>*
3109  * <#core args> <core args>
3110  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3111  */
3112 static void cache_status(struct dm_target *ti, status_type_t type,
3113                          unsigned status_flags, char *result, unsigned maxlen)
3114 {
3115         int r = 0;
3116         unsigned i;
3117         ssize_t sz = 0;
3118         dm_block_t nr_free_blocks_metadata = 0;
3119         dm_block_t nr_blocks_metadata = 0;
3120         char buf[BDEVNAME_SIZE];
3121         struct cache *cache = ti->private;
3122         dm_cblock_t residency;
3123         bool needs_check;
3124
3125         switch (type) {
3126         case STATUSTYPE_INFO:
3127                 if (get_cache_mode(cache) == CM_FAIL) {
3128                         DMEMIT("Fail");
3129                         break;
3130                 }
3131
3132                 /* Commit to ensure statistics aren't out-of-date */
3133                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3134                         (void) commit(cache, false);
3135
3136                 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3137                 if (r) {
3138                         DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3139                               cache_device_name(cache), r);
3140                         goto err;
3141                 }
3142
3143                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3144                 if (r) {
3145                         DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3146                               cache_device_name(cache), r);
3147                         goto err;
3148                 }
3149
3150                 residency = policy_residency(cache->policy);
3151
3152                 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3153                        (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3154                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3155                        (unsigned long long)nr_blocks_metadata,
3156                        (unsigned long long)cache->sectors_per_block,
3157                        (unsigned long long) from_cblock(residency),
3158                        (unsigned long long) from_cblock(cache->cache_size),
3159                        (unsigned) atomic_read(&cache->stats.read_hit),
3160                        (unsigned) atomic_read(&cache->stats.read_miss),
3161                        (unsigned) atomic_read(&cache->stats.write_hit),
3162                        (unsigned) atomic_read(&cache->stats.write_miss),
3163                        (unsigned) atomic_read(&cache->stats.demotion),
3164                        (unsigned) atomic_read(&cache->stats.promotion),
3165                        (unsigned long) atomic_read(&cache->nr_dirty));
3166
3167                 emit_flags(cache, result, maxlen, &sz);
3168
3169                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3170
3171                 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3172                 if (sz < maxlen) {
3173                         r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3174                         if (r)
3175                                 DMERR("%s: policy_emit_config_values returned %d",
3176                                       cache_device_name(cache), r);
3177                 }
3178
3179                 if (get_cache_mode(cache) == CM_READ_ONLY)
3180                         DMEMIT("ro ");
3181                 else
3182                         DMEMIT("rw ");
3183
3184                 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3185
3186                 if (r || needs_check)
3187                         DMEMIT("needs_check ");
3188                 else
3189                         DMEMIT("- ");
3190
3191                 break;
3192
3193         case STATUSTYPE_TABLE:
3194                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3195                 DMEMIT("%s ", buf);
3196                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3197                 DMEMIT("%s ", buf);
3198                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3199                 DMEMIT("%s", buf);
3200
3201                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3202                         DMEMIT(" %s", cache->ctr_args[i]);
3203                 if (cache->nr_ctr_args)
3204                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3205         }
3206
3207         return;
3208
3209 err:
3210         DMEMIT("Error");
3211 }
3212
3213 /*
3214  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3215  * the one-past-the-end value.
3216  */
3217 struct cblock_range {
3218         dm_cblock_t begin;
3219         dm_cblock_t end;
3220 };
3221
3222 /*
3223  * A cache block range can take two forms:
3224  *
3225  * i) A single cblock, eg. '3456'
3226  * ii) A begin and end cblock with a dash between, eg. 123-234
3227  */
3228 static int parse_cblock_range(struct cache *cache, const char *str,
3229                               struct cblock_range *result)
3230 {
3231         char dummy;
3232         uint64_t b, e;
3233         int r;
3234
3235         /*
3236          * Try and parse form (ii) first.
3237          */
3238         r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3239         if (r < 0)
3240                 return r;
3241
3242         if (r == 2) {
3243                 result->begin = to_cblock(b);
3244                 result->end = to_cblock(e);
3245                 return 0;
3246         }
3247
3248         /*
3249          * That didn't work, try form (i).
3250          */
3251         r = sscanf(str, "%llu%c", &b, &dummy);
3252         if (r < 0)
3253                 return r;
3254
3255         if (r == 1) {
3256                 result->begin = to_cblock(b);
3257                 result->end = to_cblock(from_cblock(result->begin) + 1u);
3258                 return 0;
3259         }
3260
3261         DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3262         return -EINVAL;
3263 }
3264
3265 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3266 {
3267         uint64_t b = from_cblock(range->begin);
3268         uint64_t e = from_cblock(range->end);
3269         uint64_t n = from_cblock(cache->cache_size);
3270
3271         if (b >= n) {
3272                 DMERR("%s: begin cblock out of range: %llu >= %llu",
3273                       cache_device_name(cache), b, n);
3274                 return -EINVAL;
3275         }
3276
3277         if (e > n) {
3278                 DMERR("%s: end cblock out of range: %llu > %llu",
3279                       cache_device_name(cache), e, n);
3280                 return -EINVAL;
3281         }
3282
3283         if (b >= e) {
3284                 DMERR("%s: invalid cblock range: %llu >= %llu",
3285                       cache_device_name(cache), b, e);
3286                 return -EINVAL;
3287         }
3288
3289         return 0;
3290 }
3291
3292 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3293 {
3294         return to_cblock(from_cblock(b) + 1);
3295 }
3296
3297 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3298 {
3299         int r = 0;
3300
3301         /*
3302          * We don't need to do any locking here because we know we're in
3303          * passthrough mode.  There's is potential for a race between an
3304          * invalidation triggered by an io and an invalidation message.  This
3305          * is harmless, we must not worry if the policy call fails.
3306          */
3307         while (range->begin != range->end) {
3308                 r = invalidate_cblock(cache, range->begin);
3309                 if (r)
3310                         return r;
3311
3312                 range->begin = cblock_succ(range->begin);
3313         }
3314
3315         cache->commit_requested = true;
3316         return r;
3317 }
3318
3319 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3320                                               const char **cblock_ranges)
3321 {
3322         int r = 0;
3323         unsigned i;
3324         struct cblock_range range;
3325
3326         if (!passthrough_mode(cache)) {
3327                 DMERR("%s: cache has to be in passthrough mode for invalidation",
3328                       cache_device_name(cache));
3329                 return -EPERM;
3330         }
3331
3332         for (i = 0; i < count; i++) {
3333                 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3334                 if (r)
3335                         break;
3336
3337                 r = validate_cblock_range(cache, &range);
3338                 if (r)
3339                         break;
3340
3341                 /*
3342                  * Pass begin and end origin blocks to the worker and wake it.
3343                  */
3344                 r = request_invalidation(cache, &range);
3345                 if (r)
3346                         break;
3347         }
3348
3349         return r;
3350 }
3351
3352 /*
3353  * Supports
3354  *      "<key> <value>"
3355  * and
3356  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3357  *
3358  * The key migration_threshold is supported by the cache target core.
3359  */
3360 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3361                          char *result, unsigned maxlen)
3362 {
3363         struct cache *cache = ti->private;
3364
3365         if (!argc)
3366                 return -EINVAL;
3367
3368         if (get_cache_mode(cache) >= CM_READ_ONLY) {
3369                 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3370                       cache_device_name(cache));
3371                 return -EOPNOTSUPP;
3372         }
3373
3374         if (!strcasecmp(argv[0], "invalidate_cblocks"))
3375                 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3376
3377         if (argc != 2)
3378                 return -EINVAL;
3379
3380         return set_config_value(cache, argv[0], argv[1]);
3381 }
3382
3383 static int cache_iterate_devices(struct dm_target *ti,
3384                                  iterate_devices_callout_fn fn, void *data)
3385 {
3386         int r = 0;
3387         struct cache *cache = ti->private;
3388
3389         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3390         if (!r)
3391                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3392
3393         return r;
3394 }
3395
3396 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3397 {
3398         struct request_queue *q = bdev_get_queue(origin_bdev);
3399
3400         return q && blk_queue_discard(q);
3401 }
3402
3403 /*
3404  * If discard_passdown was enabled verify that the origin device
3405  * supports discards.  Disable discard_passdown if not.
3406  */
3407 static void disable_passdown_if_not_supported(struct cache *cache)
3408 {
3409         struct block_device *origin_bdev = cache->origin_dev->bdev;
3410         struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3411         const char *reason = NULL;
3412         char buf[BDEVNAME_SIZE];
3413
3414         if (!cache->features.discard_passdown)
3415                 return;
3416
3417         if (!origin_dev_supports_discard(origin_bdev))
3418                 reason = "discard unsupported";
3419
3420         else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3421                 reason = "max discard sectors smaller than a block";
3422
3423         if (reason) {
3424                 DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3425                        bdevname(origin_bdev, buf), reason);
3426                 cache->features.discard_passdown = false;
3427         }
3428 }
3429
3430 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3431 {
3432         struct block_device *origin_bdev = cache->origin_dev->bdev;
3433         struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3434
3435         if (!cache->features.discard_passdown) {
3436                 /* No passdown is done so setting own virtual limits */
3437                 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3438                                                     cache->origin_sectors);
3439                 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3440                 return;
3441         }
3442
3443         /*
3444          * cache_iterate_devices() is stacking both origin and fast device limits
3445          * but discards aren't passed to fast device, so inherit origin's limits.
3446          */
3447         limits->max_discard_sectors = origin_limits->max_discard_sectors;
3448         limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3449         limits->discard_granularity = origin_limits->discard_granularity;
3450         limits->discard_alignment = origin_limits->discard_alignment;
3451         limits->discard_misaligned = origin_limits->discard_misaligned;
3452 }
3453
3454 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3455 {
3456         struct cache *cache = ti->private;
3457         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3458
3459         /*
3460          * If the system-determined stacked limits are compatible with the
3461          * cache's blocksize (io_opt is a factor) do not override them.
3462          */
3463         if (io_opt_sectors < cache->sectors_per_block ||
3464             do_div(io_opt_sectors, cache->sectors_per_block)) {
3465                 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3466                 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3467         }
3468
3469         disable_passdown_if_not_supported(cache);
3470         set_discard_limits(cache, limits);
3471 }
3472
3473 /*----------------------------------------------------------------*/
3474
3475 static struct target_type cache_target = {
3476         .name = "cache",
3477         .version = {2, 2, 0},
3478         .module = THIS_MODULE,
3479         .ctr = cache_ctr,
3480         .dtr = cache_dtr,
3481         .map = cache_map,
3482         .end_io = cache_end_io,
3483         .postsuspend = cache_postsuspend,
3484         .preresume = cache_preresume,
3485         .resume = cache_resume,
3486         .status = cache_status,
3487         .message = cache_message,
3488         .iterate_devices = cache_iterate_devices,
3489         .io_hints = cache_io_hints,
3490 };
3491
3492 static int __init dm_cache_init(void)
3493 {
3494         int r;
3495
3496         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3497         if (!migration_cache)
3498                 return -ENOMEM;
3499
3500         r = dm_register_target(&cache_target);
3501         if (r) {
3502                 DMERR("cache target registration failed: %d", r);
3503                 kmem_cache_destroy(migration_cache);
3504                 return r;
3505         }
3506
3507         return 0;
3508 }
3509
3510 static void __exit dm_cache_exit(void)
3511 {
3512         dm_unregister_target(&cache_target);
3513         kmem_cache_destroy(migration_cache);
3514 }
3515
3516 module_init(dm_cache_init);
3517 module_exit(dm_cache_exit);
3518
3519 MODULE_DESCRIPTION(DM_NAME " cache target");
3520 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3521 MODULE_LICENSE("GPL");