GNU Linux-libre 6.1.24-gnu
[releases.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 #include "dm-io-tracker.h"
12
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/init.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/rwsem.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22
23 #define DM_MSG_PREFIX "cache"
24
25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26         "A percentage of time allocated for copying to and/or from cache");
27
28 /*----------------------------------------------------------------*/
29
30 /*
31  * Glossary:
32  *
33  * oblock: index of an origin block
34  * cblock: index of a cache block
35  * promotion: movement of a block from origin to cache
36  * demotion: movement of a block from cache to origin
37  * migration: movement of a block between the origin and cache device,
38  *            either direction
39  */
40
41 /*----------------------------------------------------------------*/
42
43 /*
44  * Represents a chunk of future work.  'input' allows continuations to pass
45  * values between themselves, typically error values.
46  */
47 struct continuation {
48         struct work_struct ws;
49         blk_status_t input;
50 };
51
52 static inline void init_continuation(struct continuation *k,
53                                      void (*fn)(struct work_struct *))
54 {
55         INIT_WORK(&k->ws, fn);
56         k->input = 0;
57 }
58
59 static inline void queue_continuation(struct workqueue_struct *wq,
60                                       struct continuation *k)
61 {
62         queue_work(wq, &k->ws);
63 }
64
65 /*----------------------------------------------------------------*/
66
67 /*
68  * The batcher collects together pieces of work that need a particular
69  * operation to occur before they can proceed (typically a commit).
70  */
71 struct batcher {
72         /*
73          * The operation that everyone is waiting for.
74          */
75         blk_status_t (*commit_op)(void *context);
76         void *commit_context;
77
78         /*
79          * This is how bios should be issued once the commit op is complete
80          * (accounted_request).
81          */
82         void (*issue_op)(struct bio *bio, void *context);
83         void *issue_context;
84
85         /*
86          * Queued work gets put on here after commit.
87          */
88         struct workqueue_struct *wq;
89
90         spinlock_t lock;
91         struct list_head work_items;
92         struct bio_list bios;
93         struct work_struct commit_work;
94
95         bool commit_scheduled;
96 };
97
98 static void __commit(struct work_struct *_ws)
99 {
100         struct batcher *b = container_of(_ws, struct batcher, commit_work);
101         blk_status_t r;
102         struct list_head work_items;
103         struct work_struct *ws, *tmp;
104         struct continuation *k;
105         struct bio *bio;
106         struct bio_list bios;
107
108         INIT_LIST_HEAD(&work_items);
109         bio_list_init(&bios);
110
111         /*
112          * We have to grab these before the commit_op to avoid a race
113          * condition.
114          */
115         spin_lock_irq(&b->lock);
116         list_splice_init(&b->work_items, &work_items);
117         bio_list_merge(&bios, &b->bios);
118         bio_list_init(&b->bios);
119         b->commit_scheduled = false;
120         spin_unlock_irq(&b->lock);
121
122         r = b->commit_op(b->commit_context);
123
124         list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125                 k = container_of(ws, struct continuation, ws);
126                 k->input = r;
127                 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128                 queue_work(b->wq, ws);
129         }
130
131         while ((bio = bio_list_pop(&bios))) {
132                 if (r) {
133                         bio->bi_status = r;
134                         bio_endio(bio);
135                 } else
136                         b->issue_op(bio, b->issue_context);
137         }
138 }
139
140 static void batcher_init(struct batcher *b,
141                          blk_status_t (*commit_op)(void *),
142                          void *commit_context,
143                          void (*issue_op)(struct bio *bio, void *),
144                          void *issue_context,
145                          struct workqueue_struct *wq)
146 {
147         b->commit_op = commit_op;
148         b->commit_context = commit_context;
149         b->issue_op = issue_op;
150         b->issue_context = issue_context;
151         b->wq = wq;
152
153         spin_lock_init(&b->lock);
154         INIT_LIST_HEAD(&b->work_items);
155         bio_list_init(&b->bios);
156         INIT_WORK(&b->commit_work, __commit);
157         b->commit_scheduled = false;
158 }
159
160 static void async_commit(struct batcher *b)
161 {
162         queue_work(b->wq, &b->commit_work);
163 }
164
165 static void continue_after_commit(struct batcher *b, struct continuation *k)
166 {
167         bool commit_scheduled;
168
169         spin_lock_irq(&b->lock);
170         commit_scheduled = b->commit_scheduled;
171         list_add_tail(&k->ws.entry, &b->work_items);
172         spin_unlock_irq(&b->lock);
173
174         if (commit_scheduled)
175                 async_commit(b);
176 }
177
178 /*
179  * Bios are errored if commit failed.
180  */
181 static void issue_after_commit(struct batcher *b, struct bio *bio)
182 {
183        bool commit_scheduled;
184
185        spin_lock_irq(&b->lock);
186        commit_scheduled = b->commit_scheduled;
187        bio_list_add(&b->bios, bio);
188        spin_unlock_irq(&b->lock);
189
190        if (commit_scheduled)
191                async_commit(b);
192 }
193
194 /*
195  * Call this if some urgent work is waiting for the commit to complete.
196  */
197 static void schedule_commit(struct batcher *b)
198 {
199         bool immediate;
200
201         spin_lock_irq(&b->lock);
202         immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203         b->commit_scheduled = true;
204         spin_unlock_irq(&b->lock);
205
206         if (immediate)
207                 async_commit(b);
208 }
209
210 /*
211  * There are a couple of places where we let a bio run, but want to do some
212  * work before calling its endio function.  We do this by temporarily
213  * changing the endio fn.
214  */
215 struct dm_hook_info {
216         bio_end_io_t *bi_end_io;
217 };
218
219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220                         bio_end_io_t *bi_end_io, void *bi_private)
221 {
222         h->bi_end_io = bio->bi_end_io;
223
224         bio->bi_end_io = bi_end_io;
225         bio->bi_private = bi_private;
226 }
227
228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229 {
230         bio->bi_end_io = h->bi_end_io;
231 }
232
233 /*----------------------------------------------------------------*/
234
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
238
239 /*
240  * The block size of the device holding cache data must be
241  * between 32KB and 1GB.
242  */
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245
246 enum cache_metadata_mode {
247         CM_WRITE,               /* metadata may be changed */
248         CM_READ_ONLY,           /* metadata may not be changed */
249         CM_FAIL
250 };
251
252 enum cache_io_mode {
253         /*
254          * Data is written to cached blocks only.  These blocks are marked
255          * dirty.  If you lose the cache device you will lose data.
256          * Potential performance increase for both reads and writes.
257          */
258         CM_IO_WRITEBACK,
259
260         /*
261          * Data is written to both cache and origin.  Blocks are never
262          * dirty.  Potential performance benfit for reads only.
263          */
264         CM_IO_WRITETHROUGH,
265
266         /*
267          * A degraded mode useful for various cache coherency situations
268          * (eg, rolling back snapshots).  Reads and writes always go to the
269          * origin.  If a write goes to a cached oblock, then the cache
270          * block is invalidated.
271          */
272         CM_IO_PASSTHROUGH
273 };
274
275 struct cache_features {
276         enum cache_metadata_mode mode;
277         enum cache_io_mode io_mode;
278         unsigned int metadata_version;
279         bool discard_passdown:1;
280 };
281
282 struct cache_stats {
283         atomic_t read_hit;
284         atomic_t read_miss;
285         atomic_t write_hit;
286         atomic_t write_miss;
287         atomic_t demotion;
288         atomic_t promotion;
289         atomic_t writeback;
290         atomic_t copies_avoided;
291         atomic_t cache_cell_clash;
292         atomic_t commit_count;
293         atomic_t discard_count;
294 };
295
296 struct cache {
297         struct dm_target *ti;
298         spinlock_t lock;
299
300         /*
301          * Fields for converting from sectors to blocks.
302          */
303         int sectors_per_block_shift;
304         sector_t sectors_per_block;
305
306         struct dm_cache_metadata *cmd;
307
308         /*
309          * Metadata is written to this device.
310          */
311         struct dm_dev *metadata_dev;
312
313         /*
314          * The slower of the two data devices.  Typically a spindle.
315          */
316         struct dm_dev *origin_dev;
317
318         /*
319          * The faster of the two data devices.  Typically an SSD.
320          */
321         struct dm_dev *cache_dev;
322
323         /*
324          * Size of the origin device in _complete_ blocks and native sectors.
325          */
326         dm_oblock_t origin_blocks;
327         sector_t origin_sectors;
328
329         /*
330          * Size of the cache device in blocks.
331          */
332         dm_cblock_t cache_size;
333
334         /*
335          * Invalidation fields.
336          */
337         spinlock_t invalidation_lock;
338         struct list_head invalidation_requests;
339
340         sector_t migration_threshold;
341         wait_queue_head_t migration_wait;
342         atomic_t nr_allocated_migrations;
343
344         /*
345          * The number of in flight migrations that are performing
346          * background io. eg, promotion, writeback.
347          */
348         atomic_t nr_io_migrations;
349
350         struct bio_list deferred_bios;
351
352         struct rw_semaphore quiesce_lock;
353
354         /*
355          * origin_blocks entries, discarded if set.
356          */
357         dm_dblock_t discard_nr_blocks;
358         unsigned long *discard_bitset;
359         uint32_t discard_block_size; /* a power of 2 times sectors per block */
360
361         /*
362          * Rather than reconstructing the table line for the status we just
363          * save it and regurgitate.
364          */
365         unsigned int nr_ctr_args;
366         const char **ctr_args;
367
368         struct dm_kcopyd_client *copier;
369         struct work_struct deferred_bio_worker;
370         struct work_struct migration_worker;
371         struct workqueue_struct *wq;
372         struct delayed_work waker;
373         struct dm_bio_prison_v2 *prison;
374
375         /*
376          * cache_size entries, dirty if set
377          */
378         unsigned long *dirty_bitset;
379         atomic_t nr_dirty;
380
381         unsigned int policy_nr_args;
382         struct dm_cache_policy *policy;
383
384         /*
385          * Cache features such as write-through.
386          */
387         struct cache_features features;
388
389         struct cache_stats stats;
390
391         bool need_tick_bio:1;
392         bool sized:1;
393         bool invalidate:1;
394         bool commit_requested:1;
395         bool loaded_mappings:1;
396         bool loaded_discards:1;
397
398         struct rw_semaphore background_work_lock;
399
400         struct batcher committer;
401         struct work_struct commit_ws;
402
403         struct dm_io_tracker tracker;
404
405         mempool_t migration_pool;
406
407         struct bio_set bs;
408 };
409
410 struct per_bio_data {
411         bool tick:1;
412         unsigned int req_nr:2;
413         struct dm_bio_prison_cell_v2 *cell;
414         struct dm_hook_info hook_info;
415         sector_t len;
416 };
417
418 struct dm_cache_migration {
419         struct continuation k;
420         struct cache *cache;
421
422         struct policy_work *op;
423         struct bio *overwrite_bio;
424         struct dm_bio_prison_cell_v2 *cell;
425
426         dm_cblock_t invalidate_cblock;
427         dm_oblock_t invalidate_oblock;
428 };
429
430 /*----------------------------------------------------------------*/
431
432 static bool writethrough_mode(struct cache *cache)
433 {
434         return cache->features.io_mode == CM_IO_WRITETHROUGH;
435 }
436
437 static bool writeback_mode(struct cache *cache)
438 {
439         return cache->features.io_mode == CM_IO_WRITEBACK;
440 }
441
442 static inline bool passthrough_mode(struct cache *cache)
443 {
444         return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445 }
446
447 /*----------------------------------------------------------------*/
448
449 static void wake_deferred_bio_worker(struct cache *cache)
450 {
451         queue_work(cache->wq, &cache->deferred_bio_worker);
452 }
453
454 static void wake_migration_worker(struct cache *cache)
455 {
456         if (passthrough_mode(cache))
457                 return;
458
459         queue_work(cache->wq, &cache->migration_worker);
460 }
461
462 /*----------------------------------------------------------------*/
463
464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465 {
466         return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467 }
468
469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470 {
471         dm_bio_prison_free_cell_v2(cache->prison, cell);
472 }
473
474 static struct dm_cache_migration *alloc_migration(struct cache *cache)
475 {
476         struct dm_cache_migration *mg;
477
478         mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479
480         memset(mg, 0, sizeof(*mg));
481
482         mg->cache = cache;
483         atomic_inc(&cache->nr_allocated_migrations);
484
485         return mg;
486 }
487
488 static void free_migration(struct dm_cache_migration *mg)
489 {
490         struct cache *cache = mg->cache;
491
492         if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493                 wake_up(&cache->migration_wait);
494
495         mempool_free(mg, &cache->migration_pool);
496 }
497
498 /*----------------------------------------------------------------*/
499
500 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501 {
502         return to_oblock(from_oblock(b) + 1ull);
503 }
504
505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506 {
507         key->virtual = 0;
508         key->dev = 0;
509         key->block_begin = from_oblock(begin);
510         key->block_end = from_oblock(end);
511 }
512
513 /*
514  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
515  * level 1 which prevents *both* READs and WRITEs.
516  */
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
519
520 static unsigned int lock_level(struct bio *bio)
521 {
522         return bio_data_dir(bio) == WRITE ?
523                 WRITE_LOCK_LEVEL :
524                 READ_WRITE_LOCK_LEVEL;
525 }
526
527 /*----------------------------------------------------------------
528  * Per bio data
529  *--------------------------------------------------------------*/
530
531 static struct per_bio_data *get_per_bio_data(struct bio *bio)
532 {
533         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534         BUG_ON(!pb);
535         return pb;
536 }
537
538 static struct per_bio_data *init_per_bio_data(struct bio *bio)
539 {
540         struct per_bio_data *pb = get_per_bio_data(bio);
541
542         pb->tick = false;
543         pb->req_nr = dm_bio_get_target_bio_nr(bio);
544         pb->cell = NULL;
545         pb->len = 0;
546
547         return pb;
548 }
549
550 /*----------------------------------------------------------------*/
551
552 static void defer_bio(struct cache *cache, struct bio *bio)
553 {
554         spin_lock_irq(&cache->lock);
555         bio_list_add(&cache->deferred_bios, bio);
556         spin_unlock_irq(&cache->lock);
557
558         wake_deferred_bio_worker(cache);
559 }
560
561 static void defer_bios(struct cache *cache, struct bio_list *bios)
562 {
563         spin_lock_irq(&cache->lock);
564         bio_list_merge(&cache->deferred_bios, bios);
565         bio_list_init(bios);
566         spin_unlock_irq(&cache->lock);
567
568         wake_deferred_bio_worker(cache);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574 {
575         bool r;
576         struct per_bio_data *pb;
577         struct dm_cell_key_v2 key;
578         dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579         struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580
581         cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582
583         build_key(oblock, end, &key);
584         r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585         if (!r) {
586                 /*
587                  * Failed to get the lock.
588                  */
589                 free_prison_cell(cache, cell_prealloc);
590                 return r;
591         }
592
593         if (cell != cell_prealloc)
594                 free_prison_cell(cache, cell_prealloc);
595
596         pb = get_per_bio_data(bio);
597         pb->cell = cell;
598
599         return r;
600 }
601
602 /*----------------------------------------------------------------*/
603
604 static bool is_dirty(struct cache *cache, dm_cblock_t b)
605 {
606         return test_bit(from_cblock(b), cache->dirty_bitset);
607 }
608
609 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610 {
611         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612                 atomic_inc(&cache->nr_dirty);
613                 policy_set_dirty(cache->policy, cblock);
614         }
615 }
616
617 /*
618  * These two are called when setting after migrations to force the policy
619  * and dirty bitset to be in sync.
620  */
621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622 {
623         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624                 atomic_inc(&cache->nr_dirty);
625         policy_set_dirty(cache->policy, cblock);
626 }
627
628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629 {
630         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631                 if (atomic_dec_return(&cache->nr_dirty) == 0)
632                         dm_table_event(cache->ti->table);
633         }
634
635         policy_clear_dirty(cache->policy, cblock);
636 }
637
638 /*----------------------------------------------------------------*/
639
640 static bool block_size_is_power_of_two(struct cache *cache)
641 {
642         return cache->sectors_per_block_shift >= 0;
643 }
644
645 static dm_block_t block_div(dm_block_t b, uint32_t n)
646 {
647         do_div(b, n);
648
649         return b;
650 }
651
652 static dm_block_t oblocks_per_dblock(struct cache *cache)
653 {
654         dm_block_t oblocks = cache->discard_block_size;
655
656         if (block_size_is_power_of_two(cache))
657                 oblocks >>= cache->sectors_per_block_shift;
658         else
659                 oblocks = block_div(oblocks, cache->sectors_per_block);
660
661         return oblocks;
662 }
663
664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665 {
666         return to_dblock(block_div(from_oblock(oblock),
667                                    oblocks_per_dblock(cache)));
668 }
669
670 static void set_discard(struct cache *cache, dm_dblock_t b)
671 {
672         BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673         atomic_inc(&cache->stats.discard_count);
674
675         spin_lock_irq(&cache->lock);
676         set_bit(from_dblock(b), cache->discard_bitset);
677         spin_unlock_irq(&cache->lock);
678 }
679
680 static void clear_discard(struct cache *cache, dm_dblock_t b)
681 {
682         spin_lock_irq(&cache->lock);
683         clear_bit(from_dblock(b), cache->discard_bitset);
684         spin_unlock_irq(&cache->lock);
685 }
686
687 static bool is_discarded(struct cache *cache, dm_dblock_t b)
688 {
689         int r;
690         spin_lock_irq(&cache->lock);
691         r = test_bit(from_dblock(b), cache->discard_bitset);
692         spin_unlock_irq(&cache->lock);
693
694         return r;
695 }
696
697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698 {
699         int r;
700         spin_lock_irq(&cache->lock);
701         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702                      cache->discard_bitset);
703         spin_unlock_irq(&cache->lock);
704
705         return r;
706 }
707
708 /*----------------------------------------------------------------
709  * Remapping
710  *--------------------------------------------------------------*/
711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713         bio_set_dev(bio, cache->origin_dev->bdev);
714 }
715
716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717                            dm_cblock_t cblock)
718 {
719         sector_t bi_sector = bio->bi_iter.bi_sector;
720         sector_t block = from_cblock(cblock);
721
722         bio_set_dev(bio, cache->cache_dev->bdev);
723         if (!block_size_is_power_of_two(cache))
724                 bio->bi_iter.bi_sector =
725                         (block * cache->sectors_per_block) +
726                         sector_div(bi_sector, cache->sectors_per_block);
727         else
728                 bio->bi_iter.bi_sector =
729                         (block << cache->sectors_per_block_shift) |
730                         (bi_sector & (cache->sectors_per_block - 1));
731 }
732
733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735         struct per_bio_data *pb;
736
737         spin_lock_irq(&cache->lock);
738         if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739             bio_op(bio) != REQ_OP_DISCARD) {
740                 pb = get_per_bio_data(bio);
741                 pb->tick = true;
742                 cache->need_tick_bio = false;
743         }
744         spin_unlock_irq(&cache->lock);
745 }
746
747 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748                                           dm_oblock_t oblock)
749 {
750         // FIXME: check_if_tick_bio_needed() is called way too much through this interface
751         check_if_tick_bio_needed(cache, bio);
752         remap_to_origin(cache, bio);
753         if (bio_data_dir(bio) == WRITE)
754                 clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756
757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758                                  dm_oblock_t oblock, dm_cblock_t cblock)
759 {
760         check_if_tick_bio_needed(cache, bio);
761         remap_to_cache(cache, bio, cblock);
762         if (bio_data_dir(bio) == WRITE) {
763                 set_dirty(cache, cblock);
764                 clear_discard(cache, oblock_to_dblock(cache, oblock));
765         }
766 }
767
768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769 {
770         sector_t block_nr = bio->bi_iter.bi_sector;
771
772         if (!block_size_is_power_of_two(cache))
773                 (void) sector_div(block_nr, cache->sectors_per_block);
774         else
775                 block_nr >>= cache->sectors_per_block_shift;
776
777         return to_oblock(block_nr);
778 }
779
780 static bool accountable_bio(struct cache *cache, struct bio *bio)
781 {
782         return bio_op(bio) != REQ_OP_DISCARD;
783 }
784
785 static void accounted_begin(struct cache *cache, struct bio *bio)
786 {
787         struct per_bio_data *pb;
788
789         if (accountable_bio(cache, bio)) {
790                 pb = get_per_bio_data(bio);
791                 pb->len = bio_sectors(bio);
792                 dm_iot_io_begin(&cache->tracker, pb->len);
793         }
794 }
795
796 static void accounted_complete(struct cache *cache, struct bio *bio)
797 {
798         struct per_bio_data *pb = get_per_bio_data(bio);
799
800         dm_iot_io_end(&cache->tracker, pb->len);
801 }
802
803 static void accounted_request(struct cache *cache, struct bio *bio)
804 {
805         accounted_begin(cache, bio);
806         dm_submit_bio_remap(bio, NULL);
807 }
808
809 static void issue_op(struct bio *bio, void *context)
810 {
811         struct cache *cache = context;
812         accounted_request(cache, bio);
813 }
814
815 /*
816  * When running in writethrough mode we need to send writes to clean blocks
817  * to both the cache and origin devices.  Clone the bio and send them in parallel.
818  */
819 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
820                                       dm_oblock_t oblock, dm_cblock_t cblock)
821 {
822         struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
823                                                  GFP_NOIO, &cache->bs);
824
825         BUG_ON(!origin_bio);
826
827         bio_chain(origin_bio, bio);
828
829         if (bio_data_dir(origin_bio) == WRITE)
830                 clear_discard(cache, oblock_to_dblock(cache, oblock));
831         submit_bio(origin_bio);
832
833         remap_to_cache(cache, bio, cblock);
834 }
835
836 /*----------------------------------------------------------------
837  * Failure modes
838  *--------------------------------------------------------------*/
839 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
840 {
841         return cache->features.mode;
842 }
843
844 static const char *cache_device_name(struct cache *cache)
845 {
846         return dm_table_device_name(cache->ti->table);
847 }
848
849 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
850 {
851         const char *descs[] = {
852                 "write",
853                 "read-only",
854                 "fail"
855         };
856
857         dm_table_event(cache->ti->table);
858         DMINFO("%s: switching cache to %s mode",
859                cache_device_name(cache), descs[(int)mode]);
860 }
861
862 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
863 {
864         bool needs_check;
865         enum cache_metadata_mode old_mode = get_cache_mode(cache);
866
867         if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
868                 DMERR("%s: unable to read needs_check flag, setting failure mode.",
869                       cache_device_name(cache));
870                 new_mode = CM_FAIL;
871         }
872
873         if (new_mode == CM_WRITE && needs_check) {
874                 DMERR("%s: unable to switch cache to write mode until repaired.",
875                       cache_device_name(cache));
876                 if (old_mode != new_mode)
877                         new_mode = old_mode;
878                 else
879                         new_mode = CM_READ_ONLY;
880         }
881
882         /* Never move out of fail mode */
883         if (old_mode == CM_FAIL)
884                 new_mode = CM_FAIL;
885
886         switch (new_mode) {
887         case CM_FAIL:
888         case CM_READ_ONLY:
889                 dm_cache_metadata_set_read_only(cache->cmd);
890                 break;
891
892         case CM_WRITE:
893                 dm_cache_metadata_set_read_write(cache->cmd);
894                 break;
895         }
896
897         cache->features.mode = new_mode;
898
899         if (new_mode != old_mode)
900                 notify_mode_switch(cache, new_mode);
901 }
902
903 static void abort_transaction(struct cache *cache)
904 {
905         const char *dev_name = cache_device_name(cache);
906
907         if (get_cache_mode(cache) >= CM_READ_ONLY)
908                 return;
909
910         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
911         if (dm_cache_metadata_abort(cache->cmd)) {
912                 DMERR("%s: failed to abort metadata transaction", dev_name);
913                 set_cache_mode(cache, CM_FAIL);
914         }
915
916         if (dm_cache_metadata_set_needs_check(cache->cmd)) {
917                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
918                 set_cache_mode(cache, CM_FAIL);
919         }
920 }
921
922 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
923 {
924         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
925                     cache_device_name(cache), op, r);
926         abort_transaction(cache);
927         set_cache_mode(cache, CM_READ_ONLY);
928 }
929
930 /*----------------------------------------------------------------*/
931
932 static void load_stats(struct cache *cache)
933 {
934         struct dm_cache_statistics stats;
935
936         dm_cache_metadata_get_stats(cache->cmd, &stats);
937         atomic_set(&cache->stats.read_hit, stats.read_hits);
938         atomic_set(&cache->stats.read_miss, stats.read_misses);
939         atomic_set(&cache->stats.write_hit, stats.write_hits);
940         atomic_set(&cache->stats.write_miss, stats.write_misses);
941 }
942
943 static void save_stats(struct cache *cache)
944 {
945         struct dm_cache_statistics stats;
946
947         if (get_cache_mode(cache) >= CM_READ_ONLY)
948                 return;
949
950         stats.read_hits = atomic_read(&cache->stats.read_hit);
951         stats.read_misses = atomic_read(&cache->stats.read_miss);
952         stats.write_hits = atomic_read(&cache->stats.write_hit);
953         stats.write_misses = atomic_read(&cache->stats.write_miss);
954
955         dm_cache_metadata_set_stats(cache->cmd, &stats);
956 }
957
958 static void update_stats(struct cache_stats *stats, enum policy_operation op)
959 {
960         switch (op) {
961         case POLICY_PROMOTE:
962                 atomic_inc(&stats->promotion);
963                 break;
964
965         case POLICY_DEMOTE:
966                 atomic_inc(&stats->demotion);
967                 break;
968
969         case POLICY_WRITEBACK:
970                 atomic_inc(&stats->writeback);
971                 break;
972         }
973 }
974
975 /*----------------------------------------------------------------
976  * Migration processing
977  *
978  * Migration covers moving data from the origin device to the cache, or
979  * vice versa.
980  *--------------------------------------------------------------*/
981
982 static void inc_io_migrations(struct cache *cache)
983 {
984         atomic_inc(&cache->nr_io_migrations);
985 }
986
987 static void dec_io_migrations(struct cache *cache)
988 {
989         atomic_dec(&cache->nr_io_migrations);
990 }
991
992 static bool discard_or_flush(struct bio *bio)
993 {
994         return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
995 }
996
997 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
998                                      dm_dblock_t *b, dm_dblock_t *e)
999 {
1000         sector_t sb = bio->bi_iter.bi_sector;
1001         sector_t se = bio_end_sector(bio);
1002
1003         *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1004
1005         if (se - sb < cache->discard_block_size)
1006                 *e = *b;
1007         else
1008                 *e = to_dblock(block_div(se, cache->discard_block_size));
1009 }
1010
1011 /*----------------------------------------------------------------*/
1012
1013 static void prevent_background_work(struct cache *cache)
1014 {
1015         lockdep_off();
1016         down_write(&cache->background_work_lock);
1017         lockdep_on();
1018 }
1019
1020 static void allow_background_work(struct cache *cache)
1021 {
1022         lockdep_off();
1023         up_write(&cache->background_work_lock);
1024         lockdep_on();
1025 }
1026
1027 static bool background_work_begin(struct cache *cache)
1028 {
1029         bool r;
1030
1031         lockdep_off();
1032         r = down_read_trylock(&cache->background_work_lock);
1033         lockdep_on();
1034
1035         return r;
1036 }
1037
1038 static void background_work_end(struct cache *cache)
1039 {
1040         lockdep_off();
1041         up_read(&cache->background_work_lock);
1042         lockdep_on();
1043 }
1044
1045 /*----------------------------------------------------------------*/
1046
1047 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1048 {
1049         return (bio_data_dir(bio) == WRITE) &&
1050                 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1051 }
1052
1053 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1054 {
1055         return writeback_mode(cache) &&
1056                 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1057 }
1058
1059 static void quiesce(struct dm_cache_migration *mg,
1060                     void (*continuation)(struct work_struct *))
1061 {
1062         init_continuation(&mg->k, continuation);
1063         dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1064 }
1065
1066 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1067 {
1068         struct continuation *k = container_of(ws, struct continuation, ws);
1069         return container_of(k, struct dm_cache_migration, k);
1070 }
1071
1072 static void copy_complete(int read_err, unsigned long write_err, void *context)
1073 {
1074         struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1075
1076         if (read_err || write_err)
1077                 mg->k.input = BLK_STS_IOERR;
1078
1079         queue_continuation(mg->cache->wq, &mg->k);
1080 }
1081
1082 static void copy(struct dm_cache_migration *mg, bool promote)
1083 {
1084         struct dm_io_region o_region, c_region;
1085         struct cache *cache = mg->cache;
1086
1087         o_region.bdev = cache->origin_dev->bdev;
1088         o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1089         o_region.count = cache->sectors_per_block;
1090
1091         c_region.bdev = cache->cache_dev->bdev;
1092         c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1093         c_region.count = cache->sectors_per_block;
1094
1095         if (promote)
1096                 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1097         else
1098                 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1099 }
1100
1101 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1102 {
1103         struct per_bio_data *pb = get_per_bio_data(bio);
1104
1105         if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1106                 free_prison_cell(cache, pb->cell);
1107         pb->cell = NULL;
1108 }
1109
1110 static void overwrite_endio(struct bio *bio)
1111 {
1112         struct dm_cache_migration *mg = bio->bi_private;
1113         struct cache *cache = mg->cache;
1114         struct per_bio_data *pb = get_per_bio_data(bio);
1115
1116         dm_unhook_bio(&pb->hook_info, bio);
1117
1118         if (bio->bi_status)
1119                 mg->k.input = bio->bi_status;
1120
1121         queue_continuation(cache->wq, &mg->k);
1122 }
1123
1124 static void overwrite(struct dm_cache_migration *mg,
1125                       void (*continuation)(struct work_struct *))
1126 {
1127         struct bio *bio = mg->overwrite_bio;
1128         struct per_bio_data *pb = get_per_bio_data(bio);
1129
1130         dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1131
1132         /*
1133          * The overwrite bio is part of the copy operation, as such it does
1134          * not set/clear discard or dirty flags.
1135          */
1136         if (mg->op->op == POLICY_PROMOTE)
1137                 remap_to_cache(mg->cache, bio, mg->op->cblock);
1138         else
1139                 remap_to_origin(mg->cache, bio);
1140
1141         init_continuation(&mg->k, continuation);
1142         accounted_request(mg->cache, bio);
1143 }
1144
1145 /*
1146  * Migration steps:
1147  *
1148  * 1) exclusive lock preventing WRITEs
1149  * 2) quiesce
1150  * 3) copy or issue overwrite bio
1151  * 4) upgrade to exclusive lock preventing READs and WRITEs
1152  * 5) quiesce
1153  * 6) update metadata and commit
1154  * 7) unlock
1155  */
1156 static void mg_complete(struct dm_cache_migration *mg, bool success)
1157 {
1158         struct bio_list bios;
1159         struct cache *cache = mg->cache;
1160         struct policy_work *op = mg->op;
1161         dm_cblock_t cblock = op->cblock;
1162
1163         if (success)
1164                 update_stats(&cache->stats, op->op);
1165
1166         switch (op->op) {
1167         case POLICY_PROMOTE:
1168                 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1169                 policy_complete_background_work(cache->policy, op, success);
1170
1171                 if (mg->overwrite_bio) {
1172                         if (success)
1173                                 force_set_dirty(cache, cblock);
1174                         else if (mg->k.input)
1175                                 mg->overwrite_bio->bi_status = mg->k.input;
1176                         else
1177                                 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1178                         bio_endio(mg->overwrite_bio);
1179                 } else {
1180                         if (success)
1181                                 force_clear_dirty(cache, cblock);
1182                         dec_io_migrations(cache);
1183                 }
1184                 break;
1185
1186         case POLICY_DEMOTE:
1187                 /*
1188                  * We clear dirty here to update the nr_dirty counter.
1189                  */
1190                 if (success)
1191                         force_clear_dirty(cache, cblock);
1192                 policy_complete_background_work(cache->policy, op, success);
1193                 dec_io_migrations(cache);
1194                 break;
1195
1196         case POLICY_WRITEBACK:
1197                 if (success)
1198                         force_clear_dirty(cache, cblock);
1199                 policy_complete_background_work(cache->policy, op, success);
1200                 dec_io_migrations(cache);
1201                 break;
1202         }
1203
1204         bio_list_init(&bios);
1205         if (mg->cell) {
1206                 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1207                         free_prison_cell(cache, mg->cell);
1208         }
1209
1210         free_migration(mg);
1211         defer_bios(cache, &bios);
1212         wake_migration_worker(cache);
1213
1214         background_work_end(cache);
1215 }
1216
1217 static void mg_success(struct work_struct *ws)
1218 {
1219         struct dm_cache_migration *mg = ws_to_mg(ws);
1220         mg_complete(mg, mg->k.input == 0);
1221 }
1222
1223 static void mg_update_metadata(struct work_struct *ws)
1224 {
1225         int r;
1226         struct dm_cache_migration *mg = ws_to_mg(ws);
1227         struct cache *cache = mg->cache;
1228         struct policy_work *op = mg->op;
1229
1230         switch (op->op) {
1231         case POLICY_PROMOTE:
1232                 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1233                 if (r) {
1234                         DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1235                                     cache_device_name(cache));
1236                         metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1237
1238                         mg_complete(mg, false);
1239                         return;
1240                 }
1241                 mg_complete(mg, true);
1242                 break;
1243
1244         case POLICY_DEMOTE:
1245                 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1246                 if (r) {
1247                         DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1248                                     cache_device_name(cache));
1249                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1250
1251                         mg_complete(mg, false);
1252                         return;
1253                 }
1254
1255                 /*
1256                  * It would be nice if we only had to commit when a REQ_FLUSH
1257                  * comes through.  But there's one scenario that we have to
1258                  * look out for:
1259                  *
1260                  * - vblock x in a cache block
1261                  * - domotion occurs
1262                  * - cache block gets reallocated and over written
1263                  * - crash
1264                  *
1265                  * When we recover, because there was no commit the cache will
1266                  * rollback to having the data for vblock x in the cache block.
1267                  * But the cache block has since been overwritten, so it'll end
1268                  * up pointing to data that was never in 'x' during the history
1269                  * of the device.
1270                  *
1271                  * To avoid this issue we require a commit as part of the
1272                  * demotion operation.
1273                  */
1274                 init_continuation(&mg->k, mg_success);
1275                 continue_after_commit(&cache->committer, &mg->k);
1276                 schedule_commit(&cache->committer);
1277                 break;
1278
1279         case POLICY_WRITEBACK:
1280                 mg_complete(mg, true);
1281                 break;
1282         }
1283 }
1284
1285 static void mg_update_metadata_after_copy(struct work_struct *ws)
1286 {
1287         struct dm_cache_migration *mg = ws_to_mg(ws);
1288
1289         /*
1290          * Did the copy succeed?
1291          */
1292         if (mg->k.input)
1293                 mg_complete(mg, false);
1294         else
1295                 mg_update_metadata(ws);
1296 }
1297
1298 static void mg_upgrade_lock(struct work_struct *ws)
1299 {
1300         int r;
1301         struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303         /*
1304          * Did the copy succeed?
1305          */
1306         if (mg->k.input)
1307                 mg_complete(mg, false);
1308
1309         else {
1310                 /*
1311                  * Now we want the lock to prevent both reads and writes.
1312                  */
1313                 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1314                                             READ_WRITE_LOCK_LEVEL);
1315                 if (r < 0)
1316                         mg_complete(mg, false);
1317
1318                 else if (r)
1319                         quiesce(mg, mg_update_metadata);
1320
1321                 else
1322                         mg_update_metadata(ws);
1323         }
1324 }
1325
1326 static void mg_full_copy(struct work_struct *ws)
1327 {
1328         struct dm_cache_migration *mg = ws_to_mg(ws);
1329         struct cache *cache = mg->cache;
1330         struct policy_work *op = mg->op;
1331         bool is_policy_promote = (op->op == POLICY_PROMOTE);
1332
1333         if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1334             is_discarded_oblock(cache, op->oblock)) {
1335                 mg_upgrade_lock(ws);
1336                 return;
1337         }
1338
1339         init_continuation(&mg->k, mg_upgrade_lock);
1340         copy(mg, is_policy_promote);
1341 }
1342
1343 static void mg_copy(struct work_struct *ws)
1344 {
1345         struct dm_cache_migration *mg = ws_to_mg(ws);
1346
1347         if (mg->overwrite_bio) {
1348                 /*
1349                  * No exclusive lock was held when we last checked if the bio
1350                  * was optimisable.  So we have to check again in case things
1351                  * have changed (eg, the block may no longer be discarded).
1352                  */
1353                 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1354                         /*
1355                          * Fallback to a real full copy after doing some tidying up.
1356                          */
1357                         bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1358                         BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1359                         mg->overwrite_bio = NULL;
1360                         inc_io_migrations(mg->cache);
1361                         mg_full_copy(ws);
1362                         return;
1363                 }
1364
1365                 /*
1366                  * It's safe to do this here, even though it's new data
1367                  * because all IO has been locked out of the block.
1368                  *
1369                  * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1370                  * so _not_ using mg_upgrade_lock() as continutation.
1371                  */
1372                 overwrite(mg, mg_update_metadata_after_copy);
1373
1374         } else
1375                 mg_full_copy(ws);
1376 }
1377
1378 static int mg_lock_writes(struct dm_cache_migration *mg)
1379 {
1380         int r;
1381         struct dm_cell_key_v2 key;
1382         struct cache *cache = mg->cache;
1383         struct dm_bio_prison_cell_v2 *prealloc;
1384
1385         prealloc = alloc_prison_cell(cache);
1386
1387         /*
1388          * Prevent writes to the block, but allow reads to continue.
1389          * Unless we're using an overwrite bio, in which case we lock
1390          * everything.
1391          */
1392         build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1393         r = dm_cell_lock_v2(cache->prison, &key,
1394                             mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1395                             prealloc, &mg->cell);
1396         if (r < 0) {
1397                 free_prison_cell(cache, prealloc);
1398                 mg_complete(mg, false);
1399                 return r;
1400         }
1401
1402         if (mg->cell != prealloc)
1403                 free_prison_cell(cache, prealloc);
1404
1405         if (r == 0)
1406                 mg_copy(&mg->k.ws);
1407         else
1408                 quiesce(mg, mg_copy);
1409
1410         return 0;
1411 }
1412
1413 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1414 {
1415         struct dm_cache_migration *mg;
1416
1417         if (!background_work_begin(cache)) {
1418                 policy_complete_background_work(cache->policy, op, false);
1419                 return -EPERM;
1420         }
1421
1422         mg = alloc_migration(cache);
1423
1424         mg->op = op;
1425         mg->overwrite_bio = bio;
1426
1427         if (!bio)
1428                 inc_io_migrations(cache);
1429
1430         return mg_lock_writes(mg);
1431 }
1432
1433 /*----------------------------------------------------------------
1434  * invalidation processing
1435  *--------------------------------------------------------------*/
1436
1437 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1438 {
1439         struct bio_list bios;
1440         struct cache *cache = mg->cache;
1441
1442         bio_list_init(&bios);
1443         if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1444                 free_prison_cell(cache, mg->cell);
1445
1446         if (!success && mg->overwrite_bio)
1447                 bio_io_error(mg->overwrite_bio);
1448
1449         free_migration(mg);
1450         defer_bios(cache, &bios);
1451
1452         background_work_end(cache);
1453 }
1454
1455 static void invalidate_completed(struct work_struct *ws)
1456 {
1457         struct dm_cache_migration *mg = ws_to_mg(ws);
1458         invalidate_complete(mg, !mg->k.input);
1459 }
1460
1461 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1462 {
1463         int r = policy_invalidate_mapping(cache->policy, cblock);
1464         if (!r) {
1465                 r = dm_cache_remove_mapping(cache->cmd, cblock);
1466                 if (r) {
1467                         DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1468                                     cache_device_name(cache));
1469                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1470                 }
1471
1472         } else if (r == -ENODATA) {
1473                 /*
1474                  * Harmless, already unmapped.
1475                  */
1476                 r = 0;
1477
1478         } else
1479                 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1480
1481         return r;
1482 }
1483
1484 static void invalidate_remove(struct work_struct *ws)
1485 {
1486         int r;
1487         struct dm_cache_migration *mg = ws_to_mg(ws);
1488         struct cache *cache = mg->cache;
1489
1490         r = invalidate_cblock(cache, mg->invalidate_cblock);
1491         if (r) {
1492                 invalidate_complete(mg, false);
1493                 return;
1494         }
1495
1496         init_continuation(&mg->k, invalidate_completed);
1497         continue_after_commit(&cache->committer, &mg->k);
1498         remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1499         mg->overwrite_bio = NULL;
1500         schedule_commit(&cache->committer);
1501 }
1502
1503 static int invalidate_lock(struct dm_cache_migration *mg)
1504 {
1505         int r;
1506         struct dm_cell_key_v2 key;
1507         struct cache *cache = mg->cache;
1508         struct dm_bio_prison_cell_v2 *prealloc;
1509
1510         prealloc = alloc_prison_cell(cache);
1511
1512         build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1513         r = dm_cell_lock_v2(cache->prison, &key,
1514                             READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1515         if (r < 0) {
1516                 free_prison_cell(cache, prealloc);
1517                 invalidate_complete(mg, false);
1518                 return r;
1519         }
1520
1521         if (mg->cell != prealloc)
1522                 free_prison_cell(cache, prealloc);
1523
1524         if (r)
1525                 quiesce(mg, invalidate_remove);
1526
1527         else {
1528                 /*
1529                  * We can't call invalidate_remove() directly here because we
1530                  * might still be in request context.
1531                  */
1532                 init_continuation(&mg->k, invalidate_remove);
1533                 queue_work(cache->wq, &mg->k.ws);
1534         }
1535
1536         return 0;
1537 }
1538
1539 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1540                             dm_oblock_t oblock, struct bio *bio)
1541 {
1542         struct dm_cache_migration *mg;
1543
1544         if (!background_work_begin(cache))
1545                 return -EPERM;
1546
1547         mg = alloc_migration(cache);
1548
1549         mg->overwrite_bio = bio;
1550         mg->invalidate_cblock = cblock;
1551         mg->invalidate_oblock = oblock;
1552
1553         return invalidate_lock(mg);
1554 }
1555
1556 /*----------------------------------------------------------------
1557  * bio processing
1558  *--------------------------------------------------------------*/
1559
1560 enum busy {
1561         IDLE,
1562         BUSY
1563 };
1564
1565 static enum busy spare_migration_bandwidth(struct cache *cache)
1566 {
1567         bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1568         sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1569                 cache->sectors_per_block;
1570
1571         if (idle && current_volume <= cache->migration_threshold)
1572                 return IDLE;
1573         else
1574                 return BUSY;
1575 }
1576
1577 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1578 {
1579         atomic_inc(bio_data_dir(bio) == READ ?
1580                    &cache->stats.read_hit : &cache->stats.write_hit);
1581 }
1582
1583 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1584 {
1585         atomic_inc(bio_data_dir(bio) == READ ?
1586                    &cache->stats.read_miss : &cache->stats.write_miss);
1587 }
1588
1589 /*----------------------------------------------------------------*/
1590
1591 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1592                    bool *commit_needed)
1593 {
1594         int r, data_dir;
1595         bool rb, background_queued;
1596         dm_cblock_t cblock;
1597
1598         *commit_needed = false;
1599
1600         rb = bio_detain_shared(cache, block, bio);
1601         if (!rb) {
1602                 /*
1603                  * An exclusive lock is held for this block, so we have to
1604                  * wait.  We set the commit_needed flag so the current
1605                  * transaction will be committed asap, allowing this lock
1606                  * to be dropped.
1607                  */
1608                 *commit_needed = true;
1609                 return DM_MAPIO_SUBMITTED;
1610         }
1611
1612         data_dir = bio_data_dir(bio);
1613
1614         if (optimisable_bio(cache, bio, block)) {
1615                 struct policy_work *op = NULL;
1616
1617                 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1618                 if (unlikely(r && r != -ENOENT)) {
1619                         DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1620                                     cache_device_name(cache), r);
1621                         bio_io_error(bio);
1622                         return DM_MAPIO_SUBMITTED;
1623                 }
1624
1625                 if (r == -ENOENT && op) {
1626                         bio_drop_shared_lock(cache, bio);
1627                         BUG_ON(op->op != POLICY_PROMOTE);
1628                         mg_start(cache, op, bio);
1629                         return DM_MAPIO_SUBMITTED;
1630                 }
1631         } else {
1632                 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1633                 if (unlikely(r && r != -ENOENT)) {
1634                         DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1635                                     cache_device_name(cache), r);
1636                         bio_io_error(bio);
1637                         return DM_MAPIO_SUBMITTED;
1638                 }
1639
1640                 if (background_queued)
1641                         wake_migration_worker(cache);
1642         }
1643
1644         if (r == -ENOENT) {
1645                 struct per_bio_data *pb = get_per_bio_data(bio);
1646
1647                 /*
1648                  * Miss.
1649                  */
1650                 inc_miss_counter(cache, bio);
1651                 if (pb->req_nr == 0) {
1652                         accounted_begin(cache, bio);
1653                         remap_to_origin_clear_discard(cache, bio, block);
1654                 } else {
1655                         /*
1656                          * This is a duplicate writethrough io that is no
1657                          * longer needed because the block has been demoted.
1658                          */
1659                         bio_endio(bio);
1660                         return DM_MAPIO_SUBMITTED;
1661                 }
1662         } else {
1663                 /*
1664                  * Hit.
1665                  */
1666                 inc_hit_counter(cache, bio);
1667
1668                 /*
1669                  * Passthrough always maps to the origin, invalidating any
1670                  * cache blocks that are written to.
1671                  */
1672                 if (passthrough_mode(cache)) {
1673                         if (bio_data_dir(bio) == WRITE) {
1674                                 bio_drop_shared_lock(cache, bio);
1675                                 atomic_inc(&cache->stats.demotion);
1676                                 invalidate_start(cache, cblock, block, bio);
1677                         } else
1678                                 remap_to_origin_clear_discard(cache, bio, block);
1679                 } else {
1680                         if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1681                             !is_dirty(cache, cblock)) {
1682                                 remap_to_origin_and_cache(cache, bio, block, cblock);
1683                                 accounted_begin(cache, bio);
1684                         } else
1685                                 remap_to_cache_dirty(cache, bio, block, cblock);
1686                 }
1687         }
1688
1689         /*
1690          * dm core turns FUA requests into a separate payload and FLUSH req.
1691          */
1692         if (bio->bi_opf & REQ_FUA) {
1693                 /*
1694                  * issue_after_commit will call accounted_begin a second time.  So
1695                  * we call accounted_complete() to avoid double accounting.
1696                  */
1697                 accounted_complete(cache, bio);
1698                 issue_after_commit(&cache->committer, bio);
1699                 *commit_needed = true;
1700                 return DM_MAPIO_SUBMITTED;
1701         }
1702
1703         return DM_MAPIO_REMAPPED;
1704 }
1705
1706 static bool process_bio(struct cache *cache, struct bio *bio)
1707 {
1708         bool commit_needed;
1709
1710         if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1711                 dm_submit_bio_remap(bio, NULL);
1712
1713         return commit_needed;
1714 }
1715
1716 /*
1717  * A non-zero return indicates read_only or fail_io mode.
1718  */
1719 static int commit(struct cache *cache, bool clean_shutdown)
1720 {
1721         int r;
1722
1723         if (get_cache_mode(cache) >= CM_READ_ONLY)
1724                 return -EINVAL;
1725
1726         atomic_inc(&cache->stats.commit_count);
1727         r = dm_cache_commit(cache->cmd, clean_shutdown);
1728         if (r)
1729                 metadata_operation_failed(cache, "dm_cache_commit", r);
1730
1731         return r;
1732 }
1733
1734 /*
1735  * Used by the batcher.
1736  */
1737 static blk_status_t commit_op(void *context)
1738 {
1739         struct cache *cache = context;
1740
1741         if (dm_cache_changed_this_transaction(cache->cmd))
1742                 return errno_to_blk_status(commit(cache, false));
1743
1744         return 0;
1745 }
1746
1747 /*----------------------------------------------------------------*/
1748
1749 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1750 {
1751         struct per_bio_data *pb = get_per_bio_data(bio);
1752
1753         if (!pb->req_nr)
1754                 remap_to_origin(cache, bio);
1755         else
1756                 remap_to_cache(cache, bio, 0);
1757
1758         issue_after_commit(&cache->committer, bio);
1759         return true;
1760 }
1761
1762 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1763 {
1764         dm_dblock_t b, e;
1765
1766         // FIXME: do we need to lock the region?  Or can we just assume the
1767         // user wont be so foolish as to issue discard concurrently with
1768         // other IO?
1769         calc_discard_block_range(cache, bio, &b, &e);
1770         while (b != e) {
1771                 set_discard(cache, b);
1772                 b = to_dblock(from_dblock(b) + 1);
1773         }
1774
1775         if (cache->features.discard_passdown) {
1776                 remap_to_origin(cache, bio);
1777                 dm_submit_bio_remap(bio, NULL);
1778         } else
1779                 bio_endio(bio);
1780
1781         return false;
1782 }
1783
1784 static void process_deferred_bios(struct work_struct *ws)
1785 {
1786         struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1787
1788         bool commit_needed = false;
1789         struct bio_list bios;
1790         struct bio *bio;
1791
1792         bio_list_init(&bios);
1793
1794         spin_lock_irq(&cache->lock);
1795         bio_list_merge(&bios, &cache->deferred_bios);
1796         bio_list_init(&cache->deferred_bios);
1797         spin_unlock_irq(&cache->lock);
1798
1799         while ((bio = bio_list_pop(&bios))) {
1800                 if (bio->bi_opf & REQ_PREFLUSH)
1801                         commit_needed = process_flush_bio(cache, bio) || commit_needed;
1802
1803                 else if (bio_op(bio) == REQ_OP_DISCARD)
1804                         commit_needed = process_discard_bio(cache, bio) || commit_needed;
1805
1806                 else
1807                         commit_needed = process_bio(cache, bio) || commit_needed;
1808                 cond_resched();
1809         }
1810
1811         if (commit_needed)
1812                 schedule_commit(&cache->committer);
1813 }
1814
1815 /*----------------------------------------------------------------
1816  * Main worker loop
1817  *--------------------------------------------------------------*/
1818
1819 static void requeue_deferred_bios(struct cache *cache)
1820 {
1821         struct bio *bio;
1822         struct bio_list bios;
1823
1824         bio_list_init(&bios);
1825         bio_list_merge(&bios, &cache->deferred_bios);
1826         bio_list_init(&cache->deferred_bios);
1827
1828         while ((bio = bio_list_pop(&bios))) {
1829                 bio->bi_status = BLK_STS_DM_REQUEUE;
1830                 bio_endio(bio);
1831                 cond_resched();
1832         }
1833 }
1834
1835 /*
1836  * We want to commit periodically so that not too much
1837  * unwritten metadata builds up.
1838  */
1839 static void do_waker(struct work_struct *ws)
1840 {
1841         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1842
1843         policy_tick(cache->policy, true);
1844         wake_migration_worker(cache);
1845         schedule_commit(&cache->committer);
1846         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1847 }
1848
1849 static void check_migrations(struct work_struct *ws)
1850 {
1851         int r;
1852         struct policy_work *op;
1853         struct cache *cache = container_of(ws, struct cache, migration_worker);
1854         enum busy b;
1855
1856         for (;;) {
1857                 b = spare_migration_bandwidth(cache);
1858
1859                 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1860                 if (r == -ENODATA)
1861                         break;
1862
1863                 if (r) {
1864                         DMERR_LIMIT("%s: policy_background_work failed",
1865                                     cache_device_name(cache));
1866                         break;
1867                 }
1868
1869                 r = mg_start(cache, op, NULL);
1870                 if (r)
1871                         break;
1872
1873                 cond_resched();
1874         }
1875 }
1876
1877 /*----------------------------------------------------------------
1878  * Target methods
1879  *--------------------------------------------------------------*/
1880
1881 /*
1882  * This function gets called on the error paths of the constructor, so we
1883  * have to cope with a partially initialised struct.
1884  */
1885 static void destroy(struct cache *cache)
1886 {
1887         unsigned int i;
1888
1889         mempool_exit(&cache->migration_pool);
1890
1891         if (cache->prison)
1892                 dm_bio_prison_destroy_v2(cache->prison);
1893
1894         cancel_delayed_work_sync(&cache->waker);
1895         if (cache->wq)
1896                 destroy_workqueue(cache->wq);
1897
1898         if (cache->dirty_bitset)
1899                 free_bitset(cache->dirty_bitset);
1900
1901         if (cache->discard_bitset)
1902                 free_bitset(cache->discard_bitset);
1903
1904         if (cache->copier)
1905                 dm_kcopyd_client_destroy(cache->copier);
1906
1907         if (cache->cmd)
1908                 dm_cache_metadata_close(cache->cmd);
1909
1910         if (cache->metadata_dev)
1911                 dm_put_device(cache->ti, cache->metadata_dev);
1912
1913         if (cache->origin_dev)
1914                 dm_put_device(cache->ti, cache->origin_dev);
1915
1916         if (cache->cache_dev)
1917                 dm_put_device(cache->ti, cache->cache_dev);
1918
1919         if (cache->policy)
1920                 dm_cache_policy_destroy(cache->policy);
1921
1922         for (i = 0; i < cache->nr_ctr_args ; i++)
1923                 kfree(cache->ctr_args[i]);
1924         kfree(cache->ctr_args);
1925
1926         bioset_exit(&cache->bs);
1927
1928         kfree(cache);
1929 }
1930
1931 static void cache_dtr(struct dm_target *ti)
1932 {
1933         struct cache *cache = ti->private;
1934
1935         destroy(cache);
1936 }
1937
1938 static sector_t get_dev_size(struct dm_dev *dev)
1939 {
1940         return bdev_nr_sectors(dev->bdev);
1941 }
1942
1943 /*----------------------------------------------------------------*/
1944
1945 /*
1946  * Construct a cache device mapping.
1947  *
1948  * cache <metadata dev> <cache dev> <origin dev> <block size>
1949  *       <#feature args> [<feature arg>]*
1950  *       <policy> <#policy args> [<policy arg>]*
1951  *
1952  * metadata dev    : fast device holding the persistent metadata
1953  * cache dev       : fast device holding cached data blocks
1954  * origin dev      : slow device holding original data blocks
1955  * block size      : cache unit size in sectors
1956  *
1957  * #feature args   : number of feature arguments passed
1958  * feature args    : writethrough.  (The default is writeback.)
1959  *
1960  * policy          : the replacement policy to use
1961  * #policy args    : an even number of policy arguments corresponding
1962  *                   to key/value pairs passed to the policy
1963  * policy args     : key/value pairs passed to the policy
1964  *                   E.g. 'sequential_threshold 1024'
1965  *                   See cache-policies.txt for details.
1966  *
1967  * Optional feature arguments are:
1968  *   writethrough  : write through caching that prohibits cache block
1969  *                   content from being different from origin block content.
1970  *                   Without this argument, the default behaviour is to write
1971  *                   back cache block contents later for performance reasons,
1972  *                   so they may differ from the corresponding origin blocks.
1973  */
1974 struct cache_args {
1975         struct dm_target *ti;
1976
1977         struct dm_dev *metadata_dev;
1978
1979         struct dm_dev *cache_dev;
1980         sector_t cache_sectors;
1981
1982         struct dm_dev *origin_dev;
1983         sector_t origin_sectors;
1984
1985         uint32_t block_size;
1986
1987         const char *policy_name;
1988         int policy_argc;
1989         const char **policy_argv;
1990
1991         struct cache_features features;
1992 };
1993
1994 static void destroy_cache_args(struct cache_args *ca)
1995 {
1996         if (ca->metadata_dev)
1997                 dm_put_device(ca->ti, ca->metadata_dev);
1998
1999         if (ca->cache_dev)
2000                 dm_put_device(ca->ti, ca->cache_dev);
2001
2002         if (ca->origin_dev)
2003                 dm_put_device(ca->ti, ca->origin_dev);
2004
2005         kfree(ca);
2006 }
2007
2008 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2009 {
2010         if (!as->argc) {
2011                 *error = "Insufficient args";
2012                 return false;
2013         }
2014
2015         return true;
2016 }
2017
2018 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2019                               char **error)
2020 {
2021         int r;
2022         sector_t metadata_dev_size;
2023
2024         if (!at_least_one_arg(as, error))
2025                 return -EINVAL;
2026
2027         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2028                           &ca->metadata_dev);
2029         if (r) {
2030                 *error = "Error opening metadata device";
2031                 return r;
2032         }
2033
2034         metadata_dev_size = get_dev_size(ca->metadata_dev);
2035         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2036                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2037                        ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2038
2039         return 0;
2040 }
2041
2042 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2043                            char **error)
2044 {
2045         int r;
2046
2047         if (!at_least_one_arg(as, error))
2048                 return -EINVAL;
2049
2050         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2051                           &ca->cache_dev);
2052         if (r) {
2053                 *error = "Error opening cache device";
2054                 return r;
2055         }
2056         ca->cache_sectors = get_dev_size(ca->cache_dev);
2057
2058         return 0;
2059 }
2060
2061 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2062                             char **error)
2063 {
2064         int r;
2065
2066         if (!at_least_one_arg(as, error))
2067                 return -EINVAL;
2068
2069         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2070                           &ca->origin_dev);
2071         if (r) {
2072                 *error = "Error opening origin device";
2073                 return r;
2074         }
2075
2076         ca->origin_sectors = get_dev_size(ca->origin_dev);
2077         if (ca->ti->len > ca->origin_sectors) {
2078                 *error = "Device size larger than cached device";
2079                 return -EINVAL;
2080         }
2081
2082         return 0;
2083 }
2084
2085 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2086                             char **error)
2087 {
2088         unsigned long block_size;
2089
2090         if (!at_least_one_arg(as, error))
2091                 return -EINVAL;
2092
2093         if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2094             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2095             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2096             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2097                 *error = "Invalid data block size";
2098                 return -EINVAL;
2099         }
2100
2101         if (block_size > ca->cache_sectors) {
2102                 *error = "Data block size is larger than the cache device";
2103                 return -EINVAL;
2104         }
2105
2106         ca->block_size = block_size;
2107
2108         return 0;
2109 }
2110
2111 static void init_features(struct cache_features *cf)
2112 {
2113         cf->mode = CM_WRITE;
2114         cf->io_mode = CM_IO_WRITEBACK;
2115         cf->metadata_version = 1;
2116         cf->discard_passdown = true;
2117 }
2118
2119 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2120                           char **error)
2121 {
2122         static const struct dm_arg _args[] = {
2123                 {0, 3, "Invalid number of cache feature arguments"},
2124         };
2125
2126         int r, mode_ctr = 0;
2127         unsigned int argc;
2128         const char *arg;
2129         struct cache_features *cf = &ca->features;
2130
2131         init_features(cf);
2132
2133         r = dm_read_arg_group(_args, as, &argc, error);
2134         if (r)
2135                 return -EINVAL;
2136
2137         while (argc--) {
2138                 arg = dm_shift_arg(as);
2139
2140                 if (!strcasecmp(arg, "writeback")) {
2141                         cf->io_mode = CM_IO_WRITEBACK;
2142                         mode_ctr++;
2143                 }
2144
2145                 else if (!strcasecmp(arg, "writethrough")) {
2146                         cf->io_mode = CM_IO_WRITETHROUGH;
2147                         mode_ctr++;
2148                 }
2149
2150                 else if (!strcasecmp(arg, "passthrough")) {
2151                         cf->io_mode = CM_IO_PASSTHROUGH;
2152                         mode_ctr++;
2153                 }
2154
2155                 else if (!strcasecmp(arg, "metadata2"))
2156                         cf->metadata_version = 2;
2157
2158                 else if (!strcasecmp(arg, "no_discard_passdown"))
2159                         cf->discard_passdown = false;
2160
2161                 else {
2162                         *error = "Unrecognised cache feature requested";
2163                         return -EINVAL;
2164                 }
2165         }
2166
2167         if (mode_ctr > 1) {
2168                 *error = "Duplicate cache io_mode features requested";
2169                 return -EINVAL;
2170         }
2171
2172         return 0;
2173 }
2174
2175 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2176                         char **error)
2177 {
2178         static const struct dm_arg _args[] = {
2179                 {0, 1024, "Invalid number of policy arguments"},
2180         };
2181
2182         int r;
2183
2184         if (!at_least_one_arg(as, error))
2185                 return -EINVAL;
2186
2187         ca->policy_name = dm_shift_arg(as);
2188
2189         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2190         if (r)
2191                 return -EINVAL;
2192
2193         ca->policy_argv = (const char **)as->argv;
2194         dm_consume_args(as, ca->policy_argc);
2195
2196         return 0;
2197 }
2198
2199 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2200                             char **error)
2201 {
2202         int r;
2203         struct dm_arg_set as;
2204
2205         as.argc = argc;
2206         as.argv = argv;
2207
2208         r = parse_metadata_dev(ca, &as, error);
2209         if (r)
2210                 return r;
2211
2212         r = parse_cache_dev(ca, &as, error);
2213         if (r)
2214                 return r;
2215
2216         r = parse_origin_dev(ca, &as, error);
2217         if (r)
2218                 return r;
2219
2220         r = parse_block_size(ca, &as, error);
2221         if (r)
2222                 return r;
2223
2224         r = parse_features(ca, &as, error);
2225         if (r)
2226                 return r;
2227
2228         r = parse_policy(ca, &as, error);
2229         if (r)
2230                 return r;
2231
2232         return 0;
2233 }
2234
2235 /*----------------------------------------------------------------*/
2236
2237 static struct kmem_cache *migration_cache;
2238
2239 #define NOT_CORE_OPTION 1
2240
2241 static int process_config_option(struct cache *cache, const char *key, const char *value)
2242 {
2243         unsigned long tmp;
2244
2245         if (!strcasecmp(key, "migration_threshold")) {
2246                 if (kstrtoul(value, 10, &tmp))
2247                         return -EINVAL;
2248
2249                 cache->migration_threshold = tmp;
2250                 return 0;
2251         }
2252
2253         return NOT_CORE_OPTION;
2254 }
2255
2256 static int set_config_value(struct cache *cache, const char *key, const char *value)
2257 {
2258         int r = process_config_option(cache, key, value);
2259
2260         if (r == NOT_CORE_OPTION)
2261                 r = policy_set_config_value(cache->policy, key, value);
2262
2263         if (r)
2264                 DMWARN("bad config value for %s: %s", key, value);
2265
2266         return r;
2267 }
2268
2269 static int set_config_values(struct cache *cache, int argc, const char **argv)
2270 {
2271         int r = 0;
2272
2273         if (argc & 1) {
2274                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2275                 return -EINVAL;
2276         }
2277
2278         while (argc) {
2279                 r = set_config_value(cache, argv[0], argv[1]);
2280                 if (r)
2281                         break;
2282
2283                 argc -= 2;
2284                 argv += 2;
2285         }
2286
2287         return r;
2288 }
2289
2290 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2291                                char **error)
2292 {
2293         struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2294                                                            cache->cache_size,
2295                                                            cache->origin_sectors,
2296                                                            cache->sectors_per_block);
2297         if (IS_ERR(p)) {
2298                 *error = "Error creating cache's policy";
2299                 return PTR_ERR(p);
2300         }
2301         cache->policy = p;
2302         BUG_ON(!cache->policy);
2303
2304         return 0;
2305 }
2306
2307 /*
2308  * We want the discard block size to be at least the size of the cache
2309  * block size and have no more than 2^14 discard blocks across the origin.
2310  */
2311 #define MAX_DISCARD_BLOCKS (1 << 14)
2312
2313 static bool too_many_discard_blocks(sector_t discard_block_size,
2314                                     sector_t origin_size)
2315 {
2316         (void) sector_div(origin_size, discard_block_size);
2317
2318         return origin_size > MAX_DISCARD_BLOCKS;
2319 }
2320
2321 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2322                                              sector_t origin_size)
2323 {
2324         sector_t discard_block_size = cache_block_size;
2325
2326         if (origin_size)
2327                 while (too_many_discard_blocks(discard_block_size, origin_size))
2328                         discard_block_size *= 2;
2329
2330         return discard_block_size;
2331 }
2332
2333 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2334 {
2335         dm_block_t nr_blocks = from_cblock(size);
2336
2337         if (nr_blocks > (1 << 20) && cache->cache_size != size)
2338                 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2339                              "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2340                              "Please consider increasing the cache block size to reduce the overall cache block count.",
2341                              (unsigned long long) nr_blocks);
2342
2343         cache->cache_size = size;
2344 }
2345
2346 #define DEFAULT_MIGRATION_THRESHOLD 2048
2347
2348 static int cache_create(struct cache_args *ca, struct cache **result)
2349 {
2350         int r = 0;
2351         char **error = &ca->ti->error;
2352         struct cache *cache;
2353         struct dm_target *ti = ca->ti;
2354         dm_block_t origin_blocks;
2355         struct dm_cache_metadata *cmd;
2356         bool may_format = ca->features.mode == CM_WRITE;
2357
2358         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2359         if (!cache)
2360                 return -ENOMEM;
2361
2362         cache->ti = ca->ti;
2363         ti->private = cache;
2364         ti->accounts_remapped_io = true;
2365         ti->num_flush_bios = 2;
2366         ti->flush_supported = true;
2367
2368         ti->num_discard_bios = 1;
2369         ti->discards_supported = true;
2370
2371         ti->per_io_data_size = sizeof(struct per_bio_data);
2372
2373         cache->features = ca->features;
2374         if (writethrough_mode(cache)) {
2375                 /* Create bioset for writethrough bios issued to origin */
2376                 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2377                 if (r)
2378                         goto bad;
2379         }
2380
2381         cache->metadata_dev = ca->metadata_dev;
2382         cache->origin_dev = ca->origin_dev;
2383         cache->cache_dev = ca->cache_dev;
2384
2385         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2386
2387         origin_blocks = cache->origin_sectors = ca->origin_sectors;
2388         origin_blocks = block_div(origin_blocks, ca->block_size);
2389         cache->origin_blocks = to_oblock(origin_blocks);
2390
2391         cache->sectors_per_block = ca->block_size;
2392         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2393                 r = -EINVAL;
2394                 goto bad;
2395         }
2396
2397         if (ca->block_size & (ca->block_size - 1)) {
2398                 dm_block_t cache_size = ca->cache_sectors;
2399
2400                 cache->sectors_per_block_shift = -1;
2401                 cache_size = block_div(cache_size, ca->block_size);
2402                 set_cache_size(cache, to_cblock(cache_size));
2403         } else {
2404                 cache->sectors_per_block_shift = __ffs(ca->block_size);
2405                 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2406         }
2407
2408         r = create_cache_policy(cache, ca, error);
2409         if (r)
2410                 goto bad;
2411
2412         cache->policy_nr_args = ca->policy_argc;
2413         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2414
2415         r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2416         if (r) {
2417                 *error = "Error setting cache policy's config values";
2418                 goto bad;
2419         }
2420
2421         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2422                                      ca->block_size, may_format,
2423                                      dm_cache_policy_get_hint_size(cache->policy),
2424                                      ca->features.metadata_version);
2425         if (IS_ERR(cmd)) {
2426                 *error = "Error creating metadata object";
2427                 r = PTR_ERR(cmd);
2428                 goto bad;
2429         }
2430         cache->cmd = cmd;
2431         set_cache_mode(cache, CM_WRITE);
2432         if (get_cache_mode(cache) != CM_WRITE) {
2433                 *error = "Unable to get write access to metadata, please check/repair metadata.";
2434                 r = -EINVAL;
2435                 goto bad;
2436         }
2437
2438         if (passthrough_mode(cache)) {
2439                 bool all_clean;
2440
2441                 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2442                 if (r) {
2443                         *error = "dm_cache_metadata_all_clean() failed";
2444                         goto bad;
2445                 }
2446
2447                 if (!all_clean) {
2448                         *error = "Cannot enter passthrough mode unless all blocks are clean";
2449                         r = -EINVAL;
2450                         goto bad;
2451                 }
2452
2453                 policy_allow_migrations(cache->policy, false);
2454         }
2455
2456         spin_lock_init(&cache->lock);
2457         bio_list_init(&cache->deferred_bios);
2458         atomic_set(&cache->nr_allocated_migrations, 0);
2459         atomic_set(&cache->nr_io_migrations, 0);
2460         init_waitqueue_head(&cache->migration_wait);
2461
2462         r = -ENOMEM;
2463         atomic_set(&cache->nr_dirty, 0);
2464         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2465         if (!cache->dirty_bitset) {
2466                 *error = "could not allocate dirty bitset";
2467                 goto bad;
2468         }
2469         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2470
2471         cache->discard_block_size =
2472                 calculate_discard_block_size(cache->sectors_per_block,
2473                                              cache->origin_sectors);
2474         cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2475                                                               cache->discard_block_size));
2476         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2477         if (!cache->discard_bitset) {
2478                 *error = "could not allocate discard bitset";
2479                 goto bad;
2480         }
2481         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2482
2483         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2484         if (IS_ERR(cache->copier)) {
2485                 *error = "could not create kcopyd client";
2486                 r = PTR_ERR(cache->copier);
2487                 goto bad;
2488         }
2489
2490         cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2491         if (!cache->wq) {
2492                 *error = "could not create workqueue for metadata object";
2493                 goto bad;
2494         }
2495         INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2496         INIT_WORK(&cache->migration_worker, check_migrations);
2497         INIT_DELAYED_WORK(&cache->waker, do_waker);
2498
2499         cache->prison = dm_bio_prison_create_v2(cache->wq);
2500         if (!cache->prison) {
2501                 *error = "could not create bio prison";
2502                 goto bad;
2503         }
2504
2505         r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2506                                    migration_cache);
2507         if (r) {
2508                 *error = "Error creating cache's migration mempool";
2509                 goto bad;
2510         }
2511
2512         cache->need_tick_bio = true;
2513         cache->sized = false;
2514         cache->invalidate = false;
2515         cache->commit_requested = false;
2516         cache->loaded_mappings = false;
2517         cache->loaded_discards = false;
2518
2519         load_stats(cache);
2520
2521         atomic_set(&cache->stats.demotion, 0);
2522         atomic_set(&cache->stats.promotion, 0);
2523         atomic_set(&cache->stats.copies_avoided, 0);
2524         atomic_set(&cache->stats.cache_cell_clash, 0);
2525         atomic_set(&cache->stats.commit_count, 0);
2526         atomic_set(&cache->stats.discard_count, 0);
2527
2528         spin_lock_init(&cache->invalidation_lock);
2529         INIT_LIST_HEAD(&cache->invalidation_requests);
2530
2531         batcher_init(&cache->committer, commit_op, cache,
2532                      issue_op, cache, cache->wq);
2533         dm_iot_init(&cache->tracker);
2534
2535         init_rwsem(&cache->background_work_lock);
2536         prevent_background_work(cache);
2537
2538         *result = cache;
2539         return 0;
2540 bad:
2541         destroy(cache);
2542         return r;
2543 }
2544
2545 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2546 {
2547         unsigned int i;
2548         const char **copy;
2549
2550         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2551         if (!copy)
2552                 return -ENOMEM;
2553         for (i = 0; i < argc; i++) {
2554                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2555                 if (!copy[i]) {
2556                         while (i--)
2557                                 kfree(copy[i]);
2558                         kfree(copy);
2559                         return -ENOMEM;
2560                 }
2561         }
2562
2563         cache->nr_ctr_args = argc;
2564         cache->ctr_args = copy;
2565
2566         return 0;
2567 }
2568
2569 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2570 {
2571         int r = -EINVAL;
2572         struct cache_args *ca;
2573         struct cache *cache = NULL;
2574
2575         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2576         if (!ca) {
2577                 ti->error = "Error allocating memory for cache";
2578                 return -ENOMEM;
2579         }
2580         ca->ti = ti;
2581
2582         r = parse_cache_args(ca, argc, argv, &ti->error);
2583         if (r)
2584                 goto out;
2585
2586         r = cache_create(ca, &cache);
2587         if (r)
2588                 goto out;
2589
2590         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2591         if (r) {
2592                 destroy(cache);
2593                 goto out;
2594         }
2595
2596         ti->private = cache;
2597 out:
2598         destroy_cache_args(ca);
2599         return r;
2600 }
2601
2602 /*----------------------------------------------------------------*/
2603
2604 static int cache_map(struct dm_target *ti, struct bio *bio)
2605 {
2606         struct cache *cache = ti->private;
2607
2608         int r;
2609         bool commit_needed;
2610         dm_oblock_t block = get_bio_block(cache, bio);
2611
2612         init_per_bio_data(bio);
2613         if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2614                 /*
2615                  * This can only occur if the io goes to a partial block at
2616                  * the end of the origin device.  We don't cache these.
2617                  * Just remap to the origin and carry on.
2618                  */
2619                 remap_to_origin(cache, bio);
2620                 accounted_begin(cache, bio);
2621                 return DM_MAPIO_REMAPPED;
2622         }
2623
2624         if (discard_or_flush(bio)) {
2625                 defer_bio(cache, bio);
2626                 return DM_MAPIO_SUBMITTED;
2627         }
2628
2629         r = map_bio(cache, bio, block, &commit_needed);
2630         if (commit_needed)
2631                 schedule_commit(&cache->committer);
2632
2633         return r;
2634 }
2635
2636 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2637 {
2638         struct cache *cache = ti->private;
2639         unsigned long flags;
2640         struct per_bio_data *pb = get_per_bio_data(bio);
2641
2642         if (pb->tick) {
2643                 policy_tick(cache->policy, false);
2644
2645                 spin_lock_irqsave(&cache->lock, flags);
2646                 cache->need_tick_bio = true;
2647                 spin_unlock_irqrestore(&cache->lock, flags);
2648         }
2649
2650         bio_drop_shared_lock(cache, bio);
2651         accounted_complete(cache, bio);
2652
2653         return DM_ENDIO_DONE;
2654 }
2655
2656 static int write_dirty_bitset(struct cache *cache)
2657 {
2658         int r;
2659
2660         if (get_cache_mode(cache) >= CM_READ_ONLY)
2661                 return -EINVAL;
2662
2663         r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2664         if (r)
2665                 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2666
2667         return r;
2668 }
2669
2670 static int write_discard_bitset(struct cache *cache)
2671 {
2672         unsigned int i, r;
2673
2674         if (get_cache_mode(cache) >= CM_READ_ONLY)
2675                 return -EINVAL;
2676
2677         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2678                                            cache->discard_nr_blocks);
2679         if (r) {
2680                 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2681                 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2682                 return r;
2683         }
2684
2685         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2686                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2687                                          is_discarded(cache, to_dblock(i)));
2688                 if (r) {
2689                         metadata_operation_failed(cache, "dm_cache_set_discard", r);
2690                         return r;
2691                 }
2692         }
2693
2694         return 0;
2695 }
2696
2697 static int write_hints(struct cache *cache)
2698 {
2699         int r;
2700
2701         if (get_cache_mode(cache) >= CM_READ_ONLY)
2702                 return -EINVAL;
2703
2704         r = dm_cache_write_hints(cache->cmd, cache->policy);
2705         if (r) {
2706                 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2707                 return r;
2708         }
2709
2710         return 0;
2711 }
2712
2713 /*
2714  * returns true on success
2715  */
2716 static bool sync_metadata(struct cache *cache)
2717 {
2718         int r1, r2, r3, r4;
2719
2720         r1 = write_dirty_bitset(cache);
2721         if (r1)
2722                 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2723
2724         r2 = write_discard_bitset(cache);
2725         if (r2)
2726                 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2727
2728         save_stats(cache);
2729
2730         r3 = write_hints(cache);
2731         if (r3)
2732                 DMERR("%s: could not write hints", cache_device_name(cache));
2733
2734         /*
2735          * If writing the above metadata failed, we still commit, but don't
2736          * set the clean shutdown flag.  This will effectively force every
2737          * dirty bit to be set on reload.
2738          */
2739         r4 = commit(cache, !r1 && !r2 && !r3);
2740         if (r4)
2741                 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2742
2743         return !r1 && !r2 && !r3 && !r4;
2744 }
2745
2746 static void cache_postsuspend(struct dm_target *ti)
2747 {
2748         struct cache *cache = ti->private;
2749
2750         prevent_background_work(cache);
2751         BUG_ON(atomic_read(&cache->nr_io_migrations));
2752
2753         cancel_delayed_work_sync(&cache->waker);
2754         drain_workqueue(cache->wq);
2755         WARN_ON(cache->tracker.in_flight);
2756
2757         /*
2758          * If it's a flush suspend there won't be any deferred bios, so this
2759          * call is harmless.
2760          */
2761         requeue_deferred_bios(cache);
2762
2763         if (get_cache_mode(cache) == CM_WRITE)
2764                 (void) sync_metadata(cache);
2765 }
2766
2767 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2768                         bool dirty, uint32_t hint, bool hint_valid)
2769 {
2770         struct cache *cache = context;
2771
2772         if (dirty) {
2773                 set_bit(from_cblock(cblock), cache->dirty_bitset);
2774                 atomic_inc(&cache->nr_dirty);
2775         } else
2776                 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2777
2778         return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2779 }
2780
2781 /*
2782  * The discard block size in the on disk metadata is not
2783  * necessarily the same as we're currently using.  So we have to
2784  * be careful to only set the discarded attribute if we know it
2785  * covers a complete block of the new size.
2786  */
2787 struct discard_load_info {
2788         struct cache *cache;
2789
2790         /*
2791          * These blocks are sized using the on disk dblock size, rather
2792          * than the current one.
2793          */
2794         dm_block_t block_size;
2795         dm_block_t discard_begin, discard_end;
2796 };
2797
2798 static void discard_load_info_init(struct cache *cache,
2799                                    struct discard_load_info *li)
2800 {
2801         li->cache = cache;
2802         li->discard_begin = li->discard_end = 0;
2803 }
2804
2805 static void set_discard_range(struct discard_load_info *li)
2806 {
2807         sector_t b, e;
2808
2809         if (li->discard_begin == li->discard_end)
2810                 return;
2811
2812         /*
2813          * Convert to sectors.
2814          */
2815         b = li->discard_begin * li->block_size;
2816         e = li->discard_end * li->block_size;
2817
2818         /*
2819          * Then convert back to the current dblock size.
2820          */
2821         b = dm_sector_div_up(b, li->cache->discard_block_size);
2822         sector_div(e, li->cache->discard_block_size);
2823
2824         /*
2825          * The origin may have shrunk, so we need to check we're still in
2826          * bounds.
2827          */
2828         if (e > from_dblock(li->cache->discard_nr_blocks))
2829                 e = from_dblock(li->cache->discard_nr_blocks);
2830
2831         for (; b < e; b++)
2832                 set_discard(li->cache, to_dblock(b));
2833 }
2834
2835 static int load_discard(void *context, sector_t discard_block_size,
2836                         dm_dblock_t dblock, bool discard)
2837 {
2838         struct discard_load_info *li = context;
2839
2840         li->block_size = discard_block_size;
2841
2842         if (discard) {
2843                 if (from_dblock(dblock) == li->discard_end)
2844                         /*
2845                          * We're already in a discard range, just extend it.
2846                          */
2847                         li->discard_end = li->discard_end + 1ULL;
2848
2849                 else {
2850                         /*
2851                          * Emit the old range and start a new one.
2852                          */
2853                         set_discard_range(li);
2854                         li->discard_begin = from_dblock(dblock);
2855                         li->discard_end = li->discard_begin + 1ULL;
2856                 }
2857         } else {
2858                 set_discard_range(li);
2859                 li->discard_begin = li->discard_end = 0;
2860         }
2861
2862         return 0;
2863 }
2864
2865 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2866 {
2867         sector_t size = get_dev_size(cache->cache_dev);
2868         (void) sector_div(size, cache->sectors_per_block);
2869         return to_cblock(size);
2870 }
2871
2872 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2873 {
2874         if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2875                 if (cache->sized) {
2876                         DMERR("%s: unable to extend cache due to missing cache table reload",
2877                               cache_device_name(cache));
2878                         return false;
2879                 }
2880         }
2881
2882         /*
2883          * We can't drop a dirty block when shrinking the cache.
2884          */
2885         while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2886                 new_size = to_cblock(from_cblock(new_size) + 1);
2887                 if (is_dirty(cache, new_size)) {
2888                         DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2889                               cache_device_name(cache),
2890                               (unsigned long long) from_cblock(new_size));
2891                         return false;
2892                 }
2893         }
2894
2895         return true;
2896 }
2897
2898 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2899 {
2900         int r;
2901
2902         r = dm_cache_resize(cache->cmd, new_size);
2903         if (r) {
2904                 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2905                 metadata_operation_failed(cache, "dm_cache_resize", r);
2906                 return r;
2907         }
2908
2909         set_cache_size(cache, new_size);
2910
2911         return 0;
2912 }
2913
2914 static int cache_preresume(struct dm_target *ti)
2915 {
2916         int r = 0;
2917         struct cache *cache = ti->private;
2918         dm_cblock_t csize = get_cache_dev_size(cache);
2919
2920         /*
2921          * Check to see if the cache has resized.
2922          */
2923         if (!cache->sized) {
2924                 r = resize_cache_dev(cache, csize);
2925                 if (r)
2926                         return r;
2927
2928                 cache->sized = true;
2929
2930         } else if (csize != cache->cache_size) {
2931                 if (!can_resize(cache, csize))
2932                         return -EINVAL;
2933
2934                 r = resize_cache_dev(cache, csize);
2935                 if (r)
2936                         return r;
2937         }
2938
2939         if (!cache->loaded_mappings) {
2940                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2941                                            load_mapping, cache);
2942                 if (r) {
2943                         DMERR("%s: could not load cache mappings", cache_device_name(cache));
2944                         metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2945                         return r;
2946                 }
2947
2948                 cache->loaded_mappings = true;
2949         }
2950
2951         if (!cache->loaded_discards) {
2952                 struct discard_load_info li;
2953
2954                 /*
2955                  * The discard bitset could have been resized, or the
2956                  * discard block size changed.  To be safe we start by
2957                  * setting every dblock to not discarded.
2958                  */
2959                 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2960
2961                 discard_load_info_init(cache, &li);
2962                 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2963                 if (r) {
2964                         DMERR("%s: could not load origin discards", cache_device_name(cache));
2965                         metadata_operation_failed(cache, "dm_cache_load_discards", r);
2966                         return r;
2967                 }
2968                 set_discard_range(&li);
2969
2970                 cache->loaded_discards = true;
2971         }
2972
2973         return r;
2974 }
2975
2976 static void cache_resume(struct dm_target *ti)
2977 {
2978         struct cache *cache = ti->private;
2979
2980         cache->need_tick_bio = true;
2981         allow_background_work(cache);
2982         do_waker(&cache->waker.work);
2983 }
2984
2985 static void emit_flags(struct cache *cache, char *result,
2986                        unsigned int maxlen, ssize_t *sz_ptr)
2987 {
2988         ssize_t sz = *sz_ptr;
2989         struct cache_features *cf = &cache->features;
2990         unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2991
2992         DMEMIT("%u ", count);
2993
2994         if (cf->metadata_version == 2)
2995                 DMEMIT("metadata2 ");
2996
2997         if (writethrough_mode(cache))
2998                 DMEMIT("writethrough ");
2999
3000         else if (passthrough_mode(cache))
3001                 DMEMIT("passthrough ");
3002
3003         else if (writeback_mode(cache))
3004                 DMEMIT("writeback ");
3005
3006         else {
3007                 DMEMIT("unknown ");
3008                 DMERR("%s: internal error: unknown io mode: %d",
3009                       cache_device_name(cache), (int) cf->io_mode);
3010         }
3011
3012         if (!cf->discard_passdown)
3013                 DMEMIT("no_discard_passdown ");
3014
3015         *sz_ptr = sz;
3016 }
3017
3018 /*
3019  * Status format:
3020  *
3021  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3022  * <cache block size> <#used cache blocks>/<#total cache blocks>
3023  * <#read hits> <#read misses> <#write hits> <#write misses>
3024  * <#demotions> <#promotions> <#dirty>
3025  * <#features> <features>*
3026  * <#core args> <core args>
3027  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3028  */
3029 static void cache_status(struct dm_target *ti, status_type_t type,
3030                          unsigned int status_flags, char *result, unsigned int maxlen)
3031 {
3032         int r = 0;
3033         unsigned int i;
3034         ssize_t sz = 0;
3035         dm_block_t nr_free_blocks_metadata = 0;
3036         dm_block_t nr_blocks_metadata = 0;
3037         char buf[BDEVNAME_SIZE];
3038         struct cache *cache = ti->private;
3039         dm_cblock_t residency;
3040         bool needs_check;
3041
3042         switch (type) {
3043         case STATUSTYPE_INFO:
3044                 if (get_cache_mode(cache) == CM_FAIL) {
3045                         DMEMIT("Fail");
3046                         break;
3047                 }
3048
3049                 /* Commit to ensure statistics aren't out-of-date */
3050                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3051                         (void) commit(cache, false);
3052
3053                 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3054                 if (r) {
3055                         DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3056                               cache_device_name(cache), r);
3057                         goto err;
3058                 }
3059
3060                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3061                 if (r) {
3062                         DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3063                               cache_device_name(cache), r);
3064                         goto err;
3065                 }
3066
3067                 residency = policy_residency(cache->policy);
3068
3069                 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3070                        (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3071                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3072                        (unsigned long long)nr_blocks_metadata,
3073                        (unsigned long long)cache->sectors_per_block,
3074                        (unsigned long long) from_cblock(residency),
3075                        (unsigned long long) from_cblock(cache->cache_size),
3076                        (unsigned int) atomic_read(&cache->stats.read_hit),
3077                        (unsigned int) atomic_read(&cache->stats.read_miss),
3078                        (unsigned int) atomic_read(&cache->stats.write_hit),
3079                        (unsigned int) atomic_read(&cache->stats.write_miss),
3080                        (unsigned int) atomic_read(&cache->stats.demotion),
3081                        (unsigned int) atomic_read(&cache->stats.promotion),
3082                        (unsigned long) atomic_read(&cache->nr_dirty));
3083
3084                 emit_flags(cache, result, maxlen, &sz);
3085
3086                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3087
3088                 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3089                 if (sz < maxlen) {
3090                         r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3091                         if (r)
3092                                 DMERR("%s: policy_emit_config_values returned %d",
3093                                       cache_device_name(cache), r);
3094                 }
3095
3096                 if (get_cache_mode(cache) == CM_READ_ONLY)
3097                         DMEMIT("ro ");
3098                 else
3099                         DMEMIT("rw ");
3100
3101                 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3102
3103                 if (r || needs_check)
3104                         DMEMIT("needs_check ");
3105                 else
3106                         DMEMIT("- ");
3107
3108                 break;
3109
3110         case STATUSTYPE_TABLE:
3111                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3112                 DMEMIT("%s ", buf);
3113                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3114                 DMEMIT("%s ", buf);
3115                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3116                 DMEMIT("%s", buf);
3117
3118                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3119                         DMEMIT(" %s", cache->ctr_args[i]);
3120                 if (cache->nr_ctr_args)
3121                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3122                 break;
3123
3124         case STATUSTYPE_IMA:
3125                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3126                 if (get_cache_mode(cache) == CM_FAIL)
3127                         DMEMIT(",metadata_mode=fail");
3128                 else if (get_cache_mode(cache) == CM_READ_ONLY)
3129                         DMEMIT(",metadata_mode=ro");
3130                 else
3131                         DMEMIT(",metadata_mode=rw");
3132
3133                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3134                 DMEMIT(",cache_metadata_device=%s", buf);
3135                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3136                 DMEMIT(",cache_device=%s", buf);
3137                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3138                 DMEMIT(",cache_origin_device=%s", buf);
3139                 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3140                 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3141                 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3142                 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3143                 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3144                 DMEMIT(";");
3145                 break;
3146         }
3147
3148         return;
3149
3150 err:
3151         DMEMIT("Error");
3152 }
3153
3154 /*
3155  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3156  * the one-past-the-end value.
3157  */
3158 struct cblock_range {
3159         dm_cblock_t begin;
3160         dm_cblock_t end;
3161 };
3162
3163 /*
3164  * A cache block range can take two forms:
3165  *
3166  * i) A single cblock, eg. '3456'
3167  * ii) A begin and end cblock with a dash between, eg. 123-234
3168  */
3169 static int parse_cblock_range(struct cache *cache, const char *str,
3170                               struct cblock_range *result)
3171 {
3172         char dummy;
3173         uint64_t b, e;
3174         int r;
3175
3176         /*
3177          * Try and parse form (ii) first.
3178          */
3179         r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3180         if (r < 0)
3181                 return r;
3182
3183         if (r == 2) {
3184                 result->begin = to_cblock(b);
3185                 result->end = to_cblock(e);
3186                 return 0;
3187         }
3188
3189         /*
3190          * That didn't work, try form (i).
3191          */
3192         r = sscanf(str, "%llu%c", &b, &dummy);
3193         if (r < 0)
3194                 return r;
3195
3196         if (r == 1) {
3197                 result->begin = to_cblock(b);
3198                 result->end = to_cblock(from_cblock(result->begin) + 1u);
3199                 return 0;
3200         }
3201
3202         DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3203         return -EINVAL;
3204 }
3205
3206 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3207 {
3208         uint64_t b = from_cblock(range->begin);
3209         uint64_t e = from_cblock(range->end);
3210         uint64_t n = from_cblock(cache->cache_size);
3211
3212         if (b >= n) {
3213                 DMERR("%s: begin cblock out of range: %llu >= %llu",
3214                       cache_device_name(cache), b, n);
3215                 return -EINVAL;
3216         }
3217
3218         if (e > n) {
3219                 DMERR("%s: end cblock out of range: %llu > %llu",
3220                       cache_device_name(cache), e, n);
3221                 return -EINVAL;
3222         }
3223
3224         if (b >= e) {
3225                 DMERR("%s: invalid cblock range: %llu >= %llu",
3226                       cache_device_name(cache), b, e);
3227                 return -EINVAL;
3228         }
3229
3230         return 0;
3231 }
3232
3233 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3234 {
3235         return to_cblock(from_cblock(b) + 1);
3236 }
3237
3238 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3239 {
3240         int r = 0;
3241
3242         /*
3243          * We don't need to do any locking here because we know we're in
3244          * passthrough mode.  There's is potential for a race between an
3245          * invalidation triggered by an io and an invalidation message.  This
3246          * is harmless, we must not worry if the policy call fails.
3247          */
3248         while (range->begin != range->end) {
3249                 r = invalidate_cblock(cache, range->begin);
3250                 if (r)
3251                         return r;
3252
3253                 range->begin = cblock_succ(range->begin);
3254         }
3255
3256         cache->commit_requested = true;
3257         return r;
3258 }
3259
3260 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3261                                               const char **cblock_ranges)
3262 {
3263         int r = 0;
3264         unsigned int i;
3265         struct cblock_range range;
3266
3267         if (!passthrough_mode(cache)) {
3268                 DMERR("%s: cache has to be in passthrough mode for invalidation",
3269                       cache_device_name(cache));
3270                 return -EPERM;
3271         }
3272
3273         for (i = 0; i < count; i++) {
3274                 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3275                 if (r)
3276                         break;
3277
3278                 r = validate_cblock_range(cache, &range);
3279                 if (r)
3280                         break;
3281
3282                 /*
3283                  * Pass begin and end origin blocks to the worker and wake it.
3284                  */
3285                 r = request_invalidation(cache, &range);
3286                 if (r)
3287                         break;
3288         }
3289
3290         return r;
3291 }
3292
3293 /*
3294  * Supports
3295  *      "<key> <value>"
3296  * and
3297  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3298  *
3299  * The key migration_threshold is supported by the cache target core.
3300  */
3301 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3302                          char *result, unsigned int maxlen)
3303 {
3304         struct cache *cache = ti->private;
3305
3306         if (!argc)
3307                 return -EINVAL;
3308
3309         if (get_cache_mode(cache) >= CM_READ_ONLY) {
3310                 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3311                       cache_device_name(cache));
3312                 return -EOPNOTSUPP;
3313         }
3314
3315         if (!strcasecmp(argv[0], "invalidate_cblocks"))
3316                 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3317
3318         if (argc != 2)
3319                 return -EINVAL;
3320
3321         return set_config_value(cache, argv[0], argv[1]);
3322 }
3323
3324 static int cache_iterate_devices(struct dm_target *ti,
3325                                  iterate_devices_callout_fn fn, void *data)
3326 {
3327         int r = 0;
3328         struct cache *cache = ti->private;
3329
3330         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3331         if (!r)
3332                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3333
3334         return r;
3335 }
3336
3337 /*
3338  * If discard_passdown was enabled verify that the origin device
3339  * supports discards.  Disable discard_passdown if not.
3340  */
3341 static void disable_passdown_if_not_supported(struct cache *cache)
3342 {
3343         struct block_device *origin_bdev = cache->origin_dev->bdev;
3344         struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3345         const char *reason = NULL;
3346
3347         if (!cache->features.discard_passdown)
3348                 return;
3349
3350         if (!bdev_max_discard_sectors(origin_bdev))
3351                 reason = "discard unsupported";
3352
3353         else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3354                 reason = "max discard sectors smaller than a block";
3355
3356         if (reason) {
3357                 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3358                        origin_bdev, reason);
3359                 cache->features.discard_passdown = false;
3360         }
3361 }
3362
3363 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3364 {
3365         struct block_device *origin_bdev = cache->origin_dev->bdev;
3366         struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3367
3368         if (!cache->features.discard_passdown) {
3369                 /* No passdown is done so setting own virtual limits */
3370                 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3371                                                     cache->origin_sectors);
3372                 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3373                 return;
3374         }
3375
3376         /*
3377          * cache_iterate_devices() is stacking both origin and fast device limits
3378          * but discards aren't passed to fast device, so inherit origin's limits.
3379          */
3380         limits->max_discard_sectors = origin_limits->max_discard_sectors;
3381         limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3382         limits->discard_granularity = origin_limits->discard_granularity;
3383         limits->discard_alignment = origin_limits->discard_alignment;
3384         limits->discard_misaligned = origin_limits->discard_misaligned;
3385 }
3386
3387 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3388 {
3389         struct cache *cache = ti->private;
3390         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3391
3392         /*
3393          * If the system-determined stacked limits are compatible with the
3394          * cache's blocksize (io_opt is a factor) do not override them.
3395          */
3396         if (io_opt_sectors < cache->sectors_per_block ||
3397             do_div(io_opt_sectors, cache->sectors_per_block)) {
3398                 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3399                 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3400         }
3401
3402         disable_passdown_if_not_supported(cache);
3403         set_discard_limits(cache, limits);
3404 }
3405
3406 /*----------------------------------------------------------------*/
3407
3408 static struct target_type cache_target = {
3409         .name = "cache",
3410         .version = {2, 2, 0},
3411         .module = THIS_MODULE,
3412         .ctr = cache_ctr,
3413         .dtr = cache_dtr,
3414         .map = cache_map,
3415         .end_io = cache_end_io,
3416         .postsuspend = cache_postsuspend,
3417         .preresume = cache_preresume,
3418         .resume = cache_resume,
3419         .status = cache_status,
3420         .message = cache_message,
3421         .iterate_devices = cache_iterate_devices,
3422         .io_hints = cache_io_hints,
3423 };
3424
3425 static int __init dm_cache_init(void)
3426 {
3427         int r;
3428
3429         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3430         if (!migration_cache)
3431                 return -ENOMEM;
3432
3433         r = dm_register_target(&cache_target);
3434         if (r) {
3435                 DMERR("cache target registration failed: %d", r);
3436                 kmem_cache_destroy(migration_cache);
3437                 return r;
3438         }
3439
3440         return 0;
3441 }
3442
3443 static void __exit dm_cache_exit(void)
3444 {
3445         dm_unregister_target(&cache_target);
3446         kmem_cache_destroy(migration_cache);
3447 }
3448
3449 module_init(dm_cache_init);
3450 module_exit(dm_cache_exit);
3451
3452 MODULE_DESCRIPTION(DM_NAME " cache target");
3453 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3454 MODULE_LICENSE("GPL");