GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / md / dm-bufio.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009-2011 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * This file is released under the GPL.
8  */
9
10 #include <linux/dm-bufio.h>
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23
24 #include "dm.h"
25
26 #define DM_MSG_PREFIX "bufio"
27
28 /*
29  * Memory management policy:
30  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34  *      dirty buffers.
35  */
36 #define DM_BUFIO_MIN_BUFFERS            8
37
38 #define DM_BUFIO_MEMORY_PERCENT         2
39 #define DM_BUFIO_VMALLOC_PERCENT        25
40 #define DM_BUFIO_WRITEBACK_RATIO        3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO    16
42
43 /*
44  * Check buffer ages in this interval (seconds)
45  */
46 #define DM_BUFIO_WORK_TIMER_SECS        30
47
48 /*
49  * Free buffers when they are older than this (seconds)
50  */
51 #define DM_BUFIO_DEFAULT_AGE_SECS       300
52
53 /*
54  * The nr of bytes of cached data to keep around.
55  */
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
57
58 /*
59  * Align buffer writes to this boundary.
60  * Tests show that SSDs have the highest IOPS when using 4k writes.
61  */
62 #define DM_BUFIO_WRITE_ALIGN            4096
63
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN      0
68 #define LIST_DIRTY      1
69 #define LIST_SIZE       2
70
71 /*--------------------------------------------------------------*/
72
73 /*
74  * Rather than use an LRU list, we use a clock algorithm where entries
75  * are held in a circular list.  When an entry is 'hit' a reference bit
76  * is set.  The least recently used entry is approximated by running a
77  * cursor around the list selecting unreferenced entries. Referenced
78  * entries have their reference bit cleared as the cursor passes them.
79  */
80 struct lru_entry {
81         struct list_head list;
82         atomic_t referenced;
83 };
84
85 struct lru_iter {
86         struct lru *lru;
87         struct list_head list;
88         struct lru_entry *stop;
89         struct lru_entry *e;
90 };
91
92 struct lru {
93         struct list_head *cursor;
94         unsigned long count;
95
96         struct list_head iterators;
97 };
98
99 /*--------------*/
100
101 static void lru_init(struct lru *lru)
102 {
103         lru->cursor = NULL;
104         lru->count = 0;
105         INIT_LIST_HEAD(&lru->iterators);
106 }
107
108 static void lru_destroy(struct lru *lru)
109 {
110         WARN_ON_ONCE(lru->cursor);
111         WARN_ON_ONCE(!list_empty(&lru->iterators));
112 }
113
114 /*
115  * Insert a new entry into the lru.
116  */
117 static void lru_insert(struct lru *lru, struct lru_entry *le)
118 {
119         /*
120          * Don't be tempted to set to 1, makes the lru aspect
121          * perform poorly.
122          */
123         atomic_set(&le->referenced, 0);
124
125         if (lru->cursor) {
126                 list_add_tail(&le->list, lru->cursor);
127         } else {
128                 INIT_LIST_HEAD(&le->list);
129                 lru->cursor = &le->list;
130         }
131         lru->count++;
132 }
133
134 /*--------------*/
135
136 /*
137  * Convert a list_head pointer to an lru_entry pointer.
138  */
139 static inline struct lru_entry *to_le(struct list_head *l)
140 {
141         return container_of(l, struct lru_entry, list);
142 }
143
144 /*
145  * Initialize an lru_iter and add it to the list of cursors in the lru.
146  */
147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
148 {
149         it->lru = lru;
150         it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
151         it->e = lru->cursor ? to_le(lru->cursor) : NULL;
152         list_add(&it->list, &lru->iterators);
153 }
154
155 /*
156  * Remove an lru_iter from the list of cursors in the lru.
157  */
158 static inline void lru_iter_end(struct lru_iter *it)
159 {
160         list_del(&it->list);
161 }
162
163 /* Predicate function type to be used with lru_iter_next */
164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
165
166 /*
167  * Advance the cursor to the next entry that passes the
168  * predicate, and return that entry.  Returns NULL if the
169  * iteration is complete.
170  */
171 static struct lru_entry *lru_iter_next(struct lru_iter *it,
172                                        iter_predicate pred, void *context)
173 {
174         struct lru_entry *e;
175
176         while (it->e) {
177                 e = it->e;
178
179                 /* advance the cursor */
180                 if (it->e == it->stop)
181                         it->e = NULL;
182                 else
183                         it->e = to_le(it->e->list.next);
184
185                 if (pred(e, context))
186                         return e;
187         }
188
189         return NULL;
190 }
191
192 /*
193  * Invalidate a specific lru_entry and update all cursors in
194  * the lru accordingly.
195  */
196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
197 {
198         struct lru_iter *it;
199
200         list_for_each_entry(it, &lru->iterators, list) {
201                 /* Move c->e forwards if necc. */
202                 if (it->e == e) {
203                         it->e = to_le(it->e->list.next);
204                         if (it->e == e)
205                                 it->e = NULL;
206                 }
207
208                 /* Move it->stop backwards if necc. */
209                 if (it->stop == e) {
210                         it->stop = to_le(it->stop->list.prev);
211                         if (it->stop == e)
212                                 it->stop = NULL;
213                 }
214         }
215 }
216
217 /*--------------*/
218
219 /*
220  * Remove a specific entry from the lru.
221  */
222 static void lru_remove(struct lru *lru, struct lru_entry *le)
223 {
224         lru_iter_invalidate(lru, le);
225         if (lru->count == 1) {
226                 lru->cursor = NULL;
227         } else {
228                 if (lru->cursor == &le->list)
229                         lru->cursor = lru->cursor->next;
230                 list_del(&le->list);
231         }
232         lru->count--;
233 }
234
235 /*
236  * Mark as referenced.
237  */
238 static inline void lru_reference(struct lru_entry *le)
239 {
240         atomic_set(&le->referenced, 1);
241 }
242
243 /*--------------*/
244
245 /*
246  * Remove the least recently used entry (approx), that passes the predicate.
247  * Returns NULL on failure.
248  */
249 enum evict_result {
250         ER_EVICT,
251         ER_DONT_EVICT,
252         ER_STOP, /* stop looking for something to evict */
253 };
254
255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
256
257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
258 {
259         unsigned long tested = 0;
260         struct list_head *h = lru->cursor;
261         struct lru_entry *le;
262
263         if (!h)
264                 return NULL;
265         /*
266          * In the worst case we have to loop around twice. Once to clear
267          * the reference flags, and then again to discover the predicate
268          * fails for all entries.
269          */
270         while (tested < lru->count) {
271                 le = container_of(h, struct lru_entry, list);
272
273                 if (atomic_read(&le->referenced)) {
274                         atomic_set(&le->referenced, 0);
275                 } else {
276                         tested++;
277                         switch (pred(le, context)) {
278                         case ER_EVICT:
279                                 /*
280                                  * Adjust the cursor, so we start the next
281                                  * search from here.
282                                  */
283                                 lru->cursor = le->list.next;
284                                 lru_remove(lru, le);
285                                 return le;
286
287                         case ER_DONT_EVICT:
288                                 break;
289
290                         case ER_STOP:
291                                 lru->cursor = le->list.next;
292                                 return NULL;
293                         }
294                 }
295
296                 h = h->next;
297
298                 if (!no_sleep)
299                         cond_resched();
300         }
301
302         return NULL;
303 }
304
305 /*--------------------------------------------------------------*/
306
307 /*
308  * Buffer state bits.
309  */
310 #define B_READING       0
311 #define B_WRITING       1
312 #define B_DIRTY         2
313
314 /*
315  * Describes how the block was allocated:
316  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
317  * See the comment at alloc_buffer_data.
318  */
319 enum data_mode {
320         DATA_MODE_SLAB = 0,
321         DATA_MODE_GET_FREE_PAGES = 1,
322         DATA_MODE_VMALLOC = 2,
323         DATA_MODE_LIMIT = 3
324 };
325
326 struct dm_buffer {
327         /* protected by the locks in dm_buffer_cache */
328         struct rb_node node;
329
330         /* immutable, so don't need protecting */
331         sector_t block;
332         void *data;
333         unsigned char data_mode;                /* DATA_MODE_* */
334
335         /*
336          * These two fields are used in isolation, so do not need
337          * a surrounding lock.
338          */
339         atomic_t hold_count;
340         unsigned long last_accessed;
341
342         /*
343          * Everything else is protected by the mutex in
344          * dm_bufio_client
345          */
346         unsigned long state;
347         struct lru_entry lru;
348         unsigned char list_mode;                /* LIST_* */
349         blk_status_t read_error;
350         blk_status_t write_error;
351         unsigned int dirty_start;
352         unsigned int dirty_end;
353         unsigned int write_start;
354         unsigned int write_end;
355         struct list_head write_list;
356         struct dm_bufio_client *c;
357         void (*end_io)(struct dm_buffer *b, blk_status_t bs);
358 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
359 #define MAX_STACK 10
360         unsigned int stack_len;
361         unsigned long stack_entries[MAX_STACK];
362 #endif
363 };
364
365 /*--------------------------------------------------------------*/
366
367 /*
368  * The buffer cache manages buffers, particularly:
369  *  - inc/dec of holder count
370  *  - setting the last_accessed field
371  *  - maintains clean/dirty state along with lru
372  *  - selecting buffers that match predicates
373  *
374  * It does *not* handle:
375  *  - allocation/freeing of buffers.
376  *  - IO
377  *  - Eviction or cache sizing.
378  *
379  * cache_get() and cache_put() are threadsafe, you do not need to
380  * protect these calls with a surrounding mutex.  All the other
381  * methods are not threadsafe; they do use locking primitives, but
382  * only enough to ensure get/put are threadsafe.
383  */
384
385 struct buffer_tree {
386         union {
387                 struct rw_semaphore lock;
388                 rwlock_t spinlock;
389         } u;
390         struct rb_root root;
391 } ____cacheline_aligned_in_smp;
392
393 struct dm_buffer_cache {
394         struct lru lru[LIST_SIZE];
395         /*
396          * We spread entries across multiple trees to reduce contention
397          * on the locks.
398          */
399         unsigned int num_locks;
400         bool no_sleep;
401         struct buffer_tree trees[];
402 };
403
404 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
405
406 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
407 {
408         return dm_hash_locks_index(block, num_locks);
409 }
410
411 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
412 {
413         if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
414                 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
415         else
416                 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
417 }
418
419 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
420 {
421         if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
422                 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
423         else
424                 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
425 }
426
427 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
428 {
429         if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
430                 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
431         else
432                 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
433 }
434
435 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
436 {
437         if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
438                 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
439         else
440                 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
441 }
442
443 /*
444  * Sometimes we want to repeatedly get and drop locks as part of an iteration.
445  * This struct helps avoid redundant drop and gets of the same lock.
446  */
447 struct lock_history {
448         struct dm_buffer_cache *cache;
449         bool write;
450         unsigned int previous;
451         unsigned int no_previous;
452 };
453
454 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
455 {
456         lh->cache = cache;
457         lh->write = write;
458         lh->no_previous = cache->num_locks;
459         lh->previous = lh->no_previous;
460 }
461
462 static void __lh_lock(struct lock_history *lh, unsigned int index)
463 {
464         if (lh->write) {
465                 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
466                         write_lock_bh(&lh->cache->trees[index].u.spinlock);
467                 else
468                         down_write(&lh->cache->trees[index].u.lock);
469         } else {
470                 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
471                         read_lock_bh(&lh->cache->trees[index].u.spinlock);
472                 else
473                         down_read(&lh->cache->trees[index].u.lock);
474         }
475 }
476
477 static void __lh_unlock(struct lock_history *lh, unsigned int index)
478 {
479         if (lh->write) {
480                 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
481                         write_unlock_bh(&lh->cache->trees[index].u.spinlock);
482                 else
483                         up_write(&lh->cache->trees[index].u.lock);
484         } else {
485                 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
486                         read_unlock_bh(&lh->cache->trees[index].u.spinlock);
487                 else
488                         up_read(&lh->cache->trees[index].u.lock);
489         }
490 }
491
492 /*
493  * Make sure you call this since it will unlock the final lock.
494  */
495 static void lh_exit(struct lock_history *lh)
496 {
497         if (lh->previous != lh->no_previous) {
498                 __lh_unlock(lh, lh->previous);
499                 lh->previous = lh->no_previous;
500         }
501 }
502
503 /*
504  * Named 'next' because there is no corresponding
505  * 'up/unlock' call since it's done automatically.
506  */
507 static void lh_next(struct lock_history *lh, sector_t b)
508 {
509         unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
510
511         if (lh->previous != lh->no_previous) {
512                 if (lh->previous != index) {
513                         __lh_unlock(lh, lh->previous);
514                         __lh_lock(lh, index);
515                         lh->previous = index;
516                 }
517         } else {
518                 __lh_lock(lh, index);
519                 lh->previous = index;
520         }
521 }
522
523 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
524 {
525         return container_of(le, struct dm_buffer, lru);
526 }
527
528 static struct dm_buffer *list_to_buffer(struct list_head *l)
529 {
530         struct lru_entry *le = list_entry(l, struct lru_entry, list);
531
532         if (!le)
533                 return NULL;
534
535         return le_to_buffer(le);
536 }
537
538 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
539 {
540         unsigned int i;
541
542         bc->num_locks = num_locks;
543         bc->no_sleep = no_sleep;
544
545         for (i = 0; i < bc->num_locks; i++) {
546                 if (no_sleep)
547                         rwlock_init(&bc->trees[i].u.spinlock);
548                 else
549                         init_rwsem(&bc->trees[i].u.lock);
550                 bc->trees[i].root = RB_ROOT;
551         }
552
553         lru_init(&bc->lru[LIST_CLEAN]);
554         lru_init(&bc->lru[LIST_DIRTY]);
555 }
556
557 static void cache_destroy(struct dm_buffer_cache *bc)
558 {
559         unsigned int i;
560
561         for (i = 0; i < bc->num_locks; i++)
562                 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
563
564         lru_destroy(&bc->lru[LIST_CLEAN]);
565         lru_destroy(&bc->lru[LIST_DIRTY]);
566 }
567
568 /*--------------*/
569
570 /*
571  * not threadsafe, or racey depending how you look at it
572  */
573 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
574 {
575         return bc->lru[list_mode].count;
576 }
577
578 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
579 {
580         return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
581 }
582
583 /*--------------*/
584
585 /*
586  * Gets a specific buffer, indexed by block.
587  * If the buffer is found then its holder count will be incremented and
588  * lru_reference will be called.
589  *
590  * threadsafe
591  */
592 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
593 {
594         struct rb_node *n = root->rb_node;
595         struct dm_buffer *b;
596
597         while (n) {
598                 b = container_of(n, struct dm_buffer, node);
599
600                 if (b->block == block)
601                         return b;
602
603                 n = block < b->block ? n->rb_left : n->rb_right;
604         }
605
606         return NULL;
607 }
608
609 static void __cache_inc_buffer(struct dm_buffer *b)
610 {
611         atomic_inc(&b->hold_count);
612         WRITE_ONCE(b->last_accessed, jiffies);
613 }
614
615 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
616 {
617         struct dm_buffer *b;
618
619         cache_read_lock(bc, block);
620         b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
621         if (b) {
622                 lru_reference(&b->lru);
623                 __cache_inc_buffer(b);
624         }
625         cache_read_unlock(bc, block);
626
627         return b;
628 }
629
630 /*--------------*/
631
632 /*
633  * Returns true if the hold count hits zero.
634  * threadsafe
635  */
636 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
637 {
638         bool r;
639
640         cache_read_lock(bc, b->block);
641         BUG_ON(!atomic_read(&b->hold_count));
642         r = atomic_dec_and_test(&b->hold_count);
643         cache_read_unlock(bc, b->block);
644
645         return r;
646 }
647
648 /*--------------*/
649
650 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
651
652 /*
653  * Evicts a buffer based on a predicate.  The oldest buffer that
654  * matches the predicate will be selected.  In addition to the
655  * predicate the hold_count of the selected buffer will be zero.
656  */
657 struct evict_wrapper {
658         struct lock_history *lh;
659         b_predicate pred;
660         void *context;
661 };
662
663 /*
664  * Wraps the buffer predicate turning it into an lru predicate.  Adds
665  * extra test for hold_count.
666  */
667 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
668 {
669         struct evict_wrapper *w = context;
670         struct dm_buffer *b = le_to_buffer(le);
671
672         lh_next(w->lh, b->block);
673
674         if (atomic_read(&b->hold_count))
675                 return ER_DONT_EVICT;
676
677         return w->pred(b, w->context);
678 }
679
680 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
681                                        b_predicate pred, void *context,
682                                        struct lock_history *lh)
683 {
684         struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
685         struct lru_entry *le;
686         struct dm_buffer *b;
687
688         le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
689         if (!le)
690                 return NULL;
691
692         b = le_to_buffer(le);
693         /* __evict_pred will have locked the appropriate tree. */
694         rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
695
696         return b;
697 }
698
699 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
700                                      b_predicate pred, void *context)
701 {
702         struct dm_buffer *b;
703         struct lock_history lh;
704
705         lh_init(&lh, bc, true);
706         b = __cache_evict(bc, list_mode, pred, context, &lh);
707         lh_exit(&lh);
708
709         return b;
710 }
711
712 /*--------------*/
713
714 /*
715  * Mark a buffer as clean or dirty. Not threadsafe.
716  */
717 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
718 {
719         cache_write_lock(bc, b->block);
720         if (list_mode != b->list_mode) {
721                 lru_remove(&bc->lru[b->list_mode], &b->lru);
722                 b->list_mode = list_mode;
723                 lru_insert(&bc->lru[b->list_mode], &b->lru);
724         }
725         cache_write_unlock(bc, b->block);
726 }
727
728 /*--------------*/
729
730 /*
731  * Runs through the lru associated with 'old_mode', if the predicate matches then
732  * it moves them to 'new_mode'.  Not threadsafe.
733  */
734 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
735                               b_predicate pred, void *context, struct lock_history *lh)
736 {
737         struct lru_entry *le;
738         struct dm_buffer *b;
739         struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
740
741         while (true) {
742                 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
743                 if (!le)
744                         break;
745
746                 b = le_to_buffer(le);
747                 b->list_mode = new_mode;
748                 lru_insert(&bc->lru[b->list_mode], &b->lru);
749         }
750 }
751
752 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
753                             b_predicate pred, void *context)
754 {
755         struct lock_history lh;
756
757         lh_init(&lh, bc, true);
758         __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
759         lh_exit(&lh);
760 }
761
762 /*--------------*/
763
764 /*
765  * Iterates through all clean or dirty entries calling a function for each
766  * entry.  The callback may terminate the iteration early.  Not threadsafe.
767  */
768
769 /*
770  * Iterator functions should return one of these actions to indicate
771  * how the iteration should proceed.
772  */
773 enum it_action {
774         IT_NEXT,
775         IT_COMPLETE,
776 };
777
778 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
779
780 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
781                             iter_fn fn, void *context, struct lock_history *lh)
782 {
783         struct lru *lru = &bc->lru[list_mode];
784         struct lru_entry *le, *first;
785
786         if (!lru->cursor)
787                 return;
788
789         first = le = to_le(lru->cursor);
790         do {
791                 struct dm_buffer *b = le_to_buffer(le);
792
793                 lh_next(lh, b->block);
794
795                 switch (fn(b, context)) {
796                 case IT_NEXT:
797                         break;
798
799                 case IT_COMPLETE:
800                         return;
801                 }
802                 cond_resched();
803
804                 le = to_le(le->list.next);
805         } while (le != first);
806 }
807
808 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
809                           iter_fn fn, void *context)
810 {
811         struct lock_history lh;
812
813         lh_init(&lh, bc, false);
814         __cache_iterate(bc, list_mode, fn, context, &lh);
815         lh_exit(&lh);
816 }
817
818 /*--------------*/
819
820 /*
821  * Passes ownership of the buffer to the cache. Returns false if the
822  * buffer was already present (in which case ownership does not pass).
823  * eg, a race with another thread.
824  *
825  * Holder count should be 1 on insertion.
826  *
827  * Not threadsafe.
828  */
829 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
830 {
831         struct rb_node **new = &root->rb_node, *parent = NULL;
832         struct dm_buffer *found;
833
834         while (*new) {
835                 found = container_of(*new, struct dm_buffer, node);
836
837                 if (found->block == b->block)
838                         return false;
839
840                 parent = *new;
841                 new = b->block < found->block ?
842                         &found->node.rb_left : &found->node.rb_right;
843         }
844
845         rb_link_node(&b->node, parent, new);
846         rb_insert_color(&b->node, root);
847
848         return true;
849 }
850
851 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
852 {
853         bool r;
854
855         if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
856                 return false;
857
858         cache_write_lock(bc, b->block);
859         BUG_ON(atomic_read(&b->hold_count) != 1);
860         r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
861         if (r)
862                 lru_insert(&bc->lru[b->list_mode], &b->lru);
863         cache_write_unlock(bc, b->block);
864
865         return r;
866 }
867
868 /*--------------*/
869
870 /*
871  * Removes buffer from cache, ownership of the buffer passes back to the caller.
872  * Fails if the hold_count is not one (ie. the caller holds the only reference).
873  *
874  * Not threadsafe.
875  */
876 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
877 {
878         bool r;
879
880         cache_write_lock(bc, b->block);
881
882         if (atomic_read(&b->hold_count) != 1) {
883                 r = false;
884         } else {
885                 r = true;
886                 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
887                 lru_remove(&bc->lru[b->list_mode], &b->lru);
888         }
889
890         cache_write_unlock(bc, b->block);
891
892         return r;
893 }
894
895 /*--------------*/
896
897 typedef void (*b_release)(struct dm_buffer *);
898
899 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
900 {
901         struct rb_node *n = root->rb_node;
902         struct dm_buffer *b;
903         struct dm_buffer *best = NULL;
904
905         while (n) {
906                 b = container_of(n, struct dm_buffer, node);
907
908                 if (b->block == block)
909                         return b;
910
911                 if (block <= b->block) {
912                         n = n->rb_left;
913                         best = b;
914                 } else {
915                         n = n->rb_right;
916                 }
917         }
918
919         return best;
920 }
921
922 static void __remove_range(struct dm_buffer_cache *bc,
923                            struct rb_root *root,
924                            sector_t begin, sector_t end,
925                            b_predicate pred, b_release release)
926 {
927         struct dm_buffer *b;
928
929         while (true) {
930                 cond_resched();
931
932                 b = __find_next(root, begin);
933                 if (!b || (b->block >= end))
934                         break;
935
936                 begin = b->block + 1;
937
938                 if (atomic_read(&b->hold_count))
939                         continue;
940
941                 if (pred(b, NULL) == ER_EVICT) {
942                         rb_erase(&b->node, root);
943                         lru_remove(&bc->lru[b->list_mode], &b->lru);
944                         release(b);
945                 }
946         }
947 }
948
949 static void cache_remove_range(struct dm_buffer_cache *bc,
950                                sector_t begin, sector_t end,
951                                b_predicate pred, b_release release)
952 {
953         unsigned int i;
954
955         BUG_ON(bc->no_sleep);
956         for (i = 0; i < bc->num_locks; i++) {
957                 down_write(&bc->trees[i].u.lock);
958                 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
959                 up_write(&bc->trees[i].u.lock);
960         }
961 }
962
963 /*----------------------------------------------------------------*/
964
965 /*
966  * Linking of buffers:
967  *      All buffers are linked to buffer_cache with their node field.
968  *
969  *      Clean buffers that are not being written (B_WRITING not set)
970  *      are linked to lru[LIST_CLEAN] with their lru_list field.
971  *
972  *      Dirty and clean buffers that are being written are linked to
973  *      lru[LIST_DIRTY] with their lru_list field. When the write
974  *      finishes, the buffer cannot be relinked immediately (because we
975  *      are in an interrupt context and relinking requires process
976  *      context), so some clean-not-writing buffers can be held on
977  *      dirty_lru too.  They are later added to lru in the process
978  *      context.
979  */
980 struct dm_bufio_client {
981         struct block_device *bdev;
982         unsigned int block_size;
983         s8 sectors_per_block_bits;
984
985         bool no_sleep;
986         struct mutex lock;
987         spinlock_t spinlock;
988
989         int async_write_error;
990
991         void (*alloc_callback)(struct dm_buffer *buf);
992         void (*write_callback)(struct dm_buffer *buf);
993         struct kmem_cache *slab_buffer;
994         struct kmem_cache *slab_cache;
995         struct dm_io_client *dm_io;
996
997         struct list_head reserved_buffers;
998         unsigned int need_reserved_buffers;
999
1000         unsigned int minimum_buffers;
1001
1002         sector_t start;
1003
1004         struct shrinker *shrinker;
1005         struct work_struct shrink_work;
1006         atomic_long_t need_shrink;
1007
1008         wait_queue_head_t free_buffer_wait;
1009
1010         struct list_head client_list;
1011
1012         /*
1013          * Used by global_cleanup to sort the clients list.
1014          */
1015         unsigned long oldest_buffer;
1016
1017         struct dm_buffer_cache cache; /* must be last member */
1018 };
1019
1020 /*----------------------------------------------------------------*/
1021
1022 #define dm_bufio_in_request()   (!!current->bio_list)
1023
1024 static void dm_bufio_lock(struct dm_bufio_client *c)
1025 {
1026         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1027                 spin_lock_bh(&c->spinlock);
1028         else
1029                 mutex_lock_nested(&c->lock, dm_bufio_in_request());
1030 }
1031
1032 static void dm_bufio_unlock(struct dm_bufio_client *c)
1033 {
1034         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1035                 spin_unlock_bh(&c->spinlock);
1036         else
1037                 mutex_unlock(&c->lock);
1038 }
1039
1040 /*----------------------------------------------------------------*/
1041
1042 /*
1043  * Default cache size: available memory divided by the ratio.
1044  */
1045 static unsigned long dm_bufio_default_cache_size;
1046
1047 /*
1048  * Total cache size set by the user.
1049  */
1050 static unsigned long dm_bufio_cache_size;
1051
1052 /*
1053  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1054  * at any time.  If it disagrees, the user has changed cache size.
1055  */
1056 static unsigned long dm_bufio_cache_size_latch;
1057
1058 static DEFINE_SPINLOCK(global_spinlock);
1059
1060 /*
1061  * Buffers are freed after this timeout
1062  */
1063 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1064 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1065
1066 static unsigned long dm_bufio_peak_allocated;
1067 static unsigned long dm_bufio_allocated_kmem_cache;
1068 static unsigned long dm_bufio_allocated_get_free_pages;
1069 static unsigned long dm_bufio_allocated_vmalloc;
1070 static unsigned long dm_bufio_current_allocated;
1071
1072 /*----------------------------------------------------------------*/
1073
1074 /*
1075  * The current number of clients.
1076  */
1077 static int dm_bufio_client_count;
1078
1079 /*
1080  * The list of all clients.
1081  */
1082 static LIST_HEAD(dm_bufio_all_clients);
1083
1084 /*
1085  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1086  */
1087 static DEFINE_MUTEX(dm_bufio_clients_lock);
1088
1089 static struct workqueue_struct *dm_bufio_wq;
1090 static struct delayed_work dm_bufio_cleanup_old_work;
1091 static struct work_struct dm_bufio_replacement_work;
1092
1093
1094 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1095 static void buffer_record_stack(struct dm_buffer *b)
1096 {
1097         b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1098 }
1099 #endif
1100
1101 /*----------------------------------------------------------------*/
1102
1103 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1104 {
1105         unsigned char data_mode;
1106         long diff;
1107
1108         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1109                 &dm_bufio_allocated_kmem_cache,
1110                 &dm_bufio_allocated_get_free_pages,
1111                 &dm_bufio_allocated_vmalloc,
1112         };
1113
1114         data_mode = b->data_mode;
1115         diff = (long)b->c->block_size;
1116         if (unlink)
1117                 diff = -diff;
1118
1119         spin_lock(&global_spinlock);
1120
1121         *class_ptr[data_mode] += diff;
1122
1123         dm_bufio_current_allocated += diff;
1124
1125         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1126                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
1127
1128         if (!unlink) {
1129                 if (dm_bufio_current_allocated > dm_bufio_cache_size)
1130                         queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1131         }
1132
1133         spin_unlock(&global_spinlock);
1134 }
1135
1136 /*
1137  * Change the number of clients and recalculate per-client limit.
1138  */
1139 static void __cache_size_refresh(void)
1140 {
1141         if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1142                 return;
1143         if (WARN_ON(dm_bufio_client_count < 0))
1144                 return;
1145
1146         dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1147
1148         /*
1149          * Use default if set to 0 and report the actual cache size used.
1150          */
1151         if (!dm_bufio_cache_size_latch) {
1152                 (void)cmpxchg(&dm_bufio_cache_size, 0,
1153                               dm_bufio_default_cache_size);
1154                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1155         }
1156 }
1157
1158 /*
1159  * Allocating buffer data.
1160  *
1161  * Small buffers are allocated with kmem_cache, to use space optimally.
1162  *
1163  * For large buffers, we choose between get_free_pages and vmalloc.
1164  * Each has advantages and disadvantages.
1165  *
1166  * __get_free_pages can randomly fail if the memory is fragmented.
1167  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1168  * as low as 128M) so using it for caching is not appropriate.
1169  *
1170  * If the allocation may fail we use __get_free_pages. Memory fragmentation
1171  * won't have a fatal effect here, but it just causes flushes of some other
1172  * buffers and more I/O will be performed. Don't use __get_free_pages if it
1173  * always fails (i.e. order > MAX_ORDER).
1174  *
1175  * If the allocation shouldn't fail we use __vmalloc. This is only for the
1176  * initial reserve allocation, so there's no risk of wasting all vmalloc
1177  * space.
1178  */
1179 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1180                                unsigned char *data_mode)
1181 {
1182         if (unlikely(c->slab_cache != NULL)) {
1183                 *data_mode = DATA_MODE_SLAB;
1184                 return kmem_cache_alloc(c->slab_cache, gfp_mask);
1185         }
1186
1187         if (c->block_size <= KMALLOC_MAX_SIZE &&
1188             gfp_mask & __GFP_NORETRY) {
1189                 *data_mode = DATA_MODE_GET_FREE_PAGES;
1190                 return (void *)__get_free_pages(gfp_mask,
1191                                                 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1192         }
1193
1194         *data_mode = DATA_MODE_VMALLOC;
1195
1196         return __vmalloc(c->block_size, gfp_mask);
1197 }
1198
1199 /*
1200  * Free buffer's data.
1201  */
1202 static void free_buffer_data(struct dm_bufio_client *c,
1203                              void *data, unsigned char data_mode)
1204 {
1205         switch (data_mode) {
1206         case DATA_MODE_SLAB:
1207                 kmem_cache_free(c->slab_cache, data);
1208                 break;
1209
1210         case DATA_MODE_GET_FREE_PAGES:
1211                 free_pages((unsigned long)data,
1212                            c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1213                 break;
1214
1215         case DATA_MODE_VMALLOC:
1216                 vfree(data);
1217                 break;
1218
1219         default:
1220                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1221                        data_mode);
1222                 BUG();
1223         }
1224 }
1225
1226 /*
1227  * Allocate buffer and its data.
1228  */
1229 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1230 {
1231         struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1232
1233         if (!b)
1234                 return NULL;
1235
1236         b->c = c;
1237
1238         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1239         if (!b->data) {
1240                 kmem_cache_free(c->slab_buffer, b);
1241                 return NULL;
1242         }
1243         adjust_total_allocated(b, false);
1244
1245 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1246         b->stack_len = 0;
1247 #endif
1248         return b;
1249 }
1250
1251 /*
1252  * Free buffer and its data.
1253  */
1254 static void free_buffer(struct dm_buffer *b)
1255 {
1256         struct dm_bufio_client *c = b->c;
1257
1258         adjust_total_allocated(b, true);
1259         free_buffer_data(c, b->data, b->data_mode);
1260         kmem_cache_free(c->slab_buffer, b);
1261 }
1262
1263 /*
1264  *--------------------------------------------------------------------------
1265  * Submit I/O on the buffer.
1266  *
1267  * Bio interface is faster but it has some problems:
1268  *      the vector list is limited (increasing this limit increases
1269  *      memory-consumption per buffer, so it is not viable);
1270  *
1271  *      the memory must be direct-mapped, not vmalloced;
1272  *
1273  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1274  * it is not vmalloced, try using the bio interface.
1275  *
1276  * If the buffer is big, if it is vmalloced or if the underlying device
1277  * rejects the bio because it is too large, use dm-io layer to do the I/O.
1278  * The dm-io layer splits the I/O into multiple requests, avoiding the above
1279  * shortcomings.
1280  *--------------------------------------------------------------------------
1281  */
1282
1283 /*
1284  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1285  * that the request was handled directly with bio interface.
1286  */
1287 static void dmio_complete(unsigned long error, void *context)
1288 {
1289         struct dm_buffer *b = context;
1290
1291         b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1292 }
1293
1294 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1295                      unsigned int n_sectors, unsigned int offset)
1296 {
1297         int r;
1298         struct dm_io_request io_req = {
1299                 .bi_opf = op,
1300                 .notify.fn = dmio_complete,
1301                 .notify.context = b,
1302                 .client = b->c->dm_io,
1303         };
1304         struct dm_io_region region = {
1305                 .bdev = b->c->bdev,
1306                 .sector = sector,
1307                 .count = n_sectors,
1308         };
1309
1310         if (b->data_mode != DATA_MODE_VMALLOC) {
1311                 io_req.mem.type = DM_IO_KMEM;
1312                 io_req.mem.ptr.addr = (char *)b->data + offset;
1313         } else {
1314                 io_req.mem.type = DM_IO_VMA;
1315                 io_req.mem.ptr.vma = (char *)b->data + offset;
1316         }
1317
1318         r = dm_io(&io_req, 1, &region, NULL);
1319         if (unlikely(r))
1320                 b->end_io(b, errno_to_blk_status(r));
1321 }
1322
1323 static void bio_complete(struct bio *bio)
1324 {
1325         struct dm_buffer *b = bio->bi_private;
1326         blk_status_t status = bio->bi_status;
1327
1328         bio_uninit(bio);
1329         kfree(bio);
1330         b->end_io(b, status);
1331 }
1332
1333 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1334                     unsigned int n_sectors, unsigned int offset)
1335 {
1336         struct bio *bio;
1337         char *ptr;
1338         unsigned int len;
1339
1340         bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1341         if (!bio) {
1342                 use_dmio(b, op, sector, n_sectors, offset);
1343                 return;
1344         }
1345         bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1346         bio->bi_iter.bi_sector = sector;
1347         bio->bi_end_io = bio_complete;
1348         bio->bi_private = b;
1349
1350         ptr = (char *)b->data + offset;
1351         len = n_sectors << SECTOR_SHIFT;
1352
1353         __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1354
1355         submit_bio(bio);
1356 }
1357
1358 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1359 {
1360         sector_t sector;
1361
1362         if (likely(c->sectors_per_block_bits >= 0))
1363                 sector = block << c->sectors_per_block_bits;
1364         else
1365                 sector = block * (c->block_size >> SECTOR_SHIFT);
1366         sector += c->start;
1367
1368         return sector;
1369 }
1370
1371 static void submit_io(struct dm_buffer *b, enum req_op op,
1372                       void (*end_io)(struct dm_buffer *, blk_status_t))
1373 {
1374         unsigned int n_sectors;
1375         sector_t sector;
1376         unsigned int offset, end;
1377
1378         b->end_io = end_io;
1379
1380         sector = block_to_sector(b->c, b->block);
1381
1382         if (op != REQ_OP_WRITE) {
1383                 n_sectors = b->c->block_size >> SECTOR_SHIFT;
1384                 offset = 0;
1385         } else {
1386                 if (b->c->write_callback)
1387                         b->c->write_callback(b);
1388                 offset = b->write_start;
1389                 end = b->write_end;
1390                 offset &= -DM_BUFIO_WRITE_ALIGN;
1391                 end += DM_BUFIO_WRITE_ALIGN - 1;
1392                 end &= -DM_BUFIO_WRITE_ALIGN;
1393                 if (unlikely(end > b->c->block_size))
1394                         end = b->c->block_size;
1395
1396                 sector += offset >> SECTOR_SHIFT;
1397                 n_sectors = (end - offset) >> SECTOR_SHIFT;
1398         }
1399
1400         if (b->data_mode != DATA_MODE_VMALLOC)
1401                 use_bio(b, op, sector, n_sectors, offset);
1402         else
1403                 use_dmio(b, op, sector, n_sectors, offset);
1404 }
1405
1406 /*
1407  *--------------------------------------------------------------
1408  * Writing dirty buffers
1409  *--------------------------------------------------------------
1410  */
1411
1412 /*
1413  * The endio routine for write.
1414  *
1415  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1416  * it.
1417  */
1418 static void write_endio(struct dm_buffer *b, blk_status_t status)
1419 {
1420         b->write_error = status;
1421         if (unlikely(status)) {
1422                 struct dm_bufio_client *c = b->c;
1423
1424                 (void)cmpxchg(&c->async_write_error, 0,
1425                                 blk_status_to_errno(status));
1426         }
1427
1428         BUG_ON(!test_bit(B_WRITING, &b->state));
1429
1430         smp_mb__before_atomic();
1431         clear_bit(B_WRITING, &b->state);
1432         smp_mb__after_atomic();
1433
1434         wake_up_bit(&b->state, B_WRITING);
1435 }
1436
1437 /*
1438  * Initiate a write on a dirty buffer, but don't wait for it.
1439  *
1440  * - If the buffer is not dirty, exit.
1441  * - If there some previous write going on, wait for it to finish (we can't
1442  *   have two writes on the same buffer simultaneously).
1443  * - Submit our write and don't wait on it. We set B_WRITING indicating
1444  *   that there is a write in progress.
1445  */
1446 static void __write_dirty_buffer(struct dm_buffer *b,
1447                                  struct list_head *write_list)
1448 {
1449         if (!test_bit(B_DIRTY, &b->state))
1450                 return;
1451
1452         clear_bit(B_DIRTY, &b->state);
1453         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1454
1455         b->write_start = b->dirty_start;
1456         b->write_end = b->dirty_end;
1457
1458         if (!write_list)
1459                 submit_io(b, REQ_OP_WRITE, write_endio);
1460         else
1461                 list_add_tail(&b->write_list, write_list);
1462 }
1463
1464 static void __flush_write_list(struct list_head *write_list)
1465 {
1466         struct blk_plug plug;
1467
1468         blk_start_plug(&plug);
1469         while (!list_empty(write_list)) {
1470                 struct dm_buffer *b =
1471                         list_entry(write_list->next, struct dm_buffer, write_list);
1472                 list_del(&b->write_list);
1473                 submit_io(b, REQ_OP_WRITE, write_endio);
1474                 cond_resched();
1475         }
1476         blk_finish_plug(&plug);
1477 }
1478
1479 /*
1480  * Wait until any activity on the buffer finishes.  Possibly write the
1481  * buffer if it is dirty.  When this function finishes, there is no I/O
1482  * running on the buffer and the buffer is not dirty.
1483  */
1484 static void __make_buffer_clean(struct dm_buffer *b)
1485 {
1486         BUG_ON(atomic_read(&b->hold_count));
1487
1488         /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1489         if (!smp_load_acquire(&b->state))       /* fast case */
1490                 return;
1491
1492         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1493         __write_dirty_buffer(b, NULL);
1494         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1495 }
1496
1497 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1498 {
1499         struct dm_bufio_client *c = context;
1500
1501         /* These should never happen */
1502         if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1503                 return ER_DONT_EVICT;
1504         if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1505                 return ER_DONT_EVICT;
1506         if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1507                 return ER_DONT_EVICT;
1508
1509         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1510             unlikely(test_bit(B_READING, &b->state)))
1511                 return ER_DONT_EVICT;
1512
1513         return ER_EVICT;
1514 }
1515
1516 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1517 {
1518         /* These should never happen */
1519         if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1520                 return ER_DONT_EVICT;
1521         if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1522                 return ER_DONT_EVICT;
1523
1524         return ER_EVICT;
1525 }
1526
1527 /*
1528  * Find some buffer that is not held by anybody, clean it, unlink it and
1529  * return it.
1530  */
1531 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1532 {
1533         struct dm_buffer *b;
1534
1535         b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1536         if (b) {
1537                 /* this also waits for pending reads */
1538                 __make_buffer_clean(b);
1539                 return b;
1540         }
1541
1542         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1543                 return NULL;
1544
1545         b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1546         if (b) {
1547                 __make_buffer_clean(b);
1548                 return b;
1549         }
1550
1551         return NULL;
1552 }
1553
1554 /*
1555  * Wait until some other threads free some buffer or release hold count on
1556  * some buffer.
1557  *
1558  * This function is entered with c->lock held, drops it and regains it
1559  * before exiting.
1560  */
1561 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1562 {
1563         DECLARE_WAITQUEUE(wait, current);
1564
1565         add_wait_queue(&c->free_buffer_wait, &wait);
1566         set_current_state(TASK_UNINTERRUPTIBLE);
1567         dm_bufio_unlock(c);
1568
1569         /*
1570          * It's possible to miss a wake up event since we don't always
1571          * hold c->lock when wake_up is called.  So we have a timeout here,
1572          * just in case.
1573          */
1574         io_schedule_timeout(5 * HZ);
1575
1576         remove_wait_queue(&c->free_buffer_wait, &wait);
1577
1578         dm_bufio_lock(c);
1579 }
1580
1581 enum new_flag {
1582         NF_FRESH = 0,
1583         NF_READ = 1,
1584         NF_GET = 2,
1585         NF_PREFETCH = 3
1586 };
1587
1588 /*
1589  * Allocate a new buffer. If the allocation is not possible, wait until
1590  * some other thread frees a buffer.
1591  *
1592  * May drop the lock and regain it.
1593  */
1594 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1595 {
1596         struct dm_buffer *b;
1597         bool tried_noio_alloc = false;
1598
1599         /*
1600          * dm-bufio is resistant to allocation failures (it just keeps
1601          * one buffer reserved in cases all the allocations fail).
1602          * So set flags to not try too hard:
1603          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1604          *                  mutex and wait ourselves.
1605          *      __GFP_NORETRY: don't retry and rather return failure
1606          *      __GFP_NOMEMALLOC: don't use emergency reserves
1607          *      __GFP_NOWARN: don't print a warning in case of failure
1608          *
1609          * For debugging, if we set the cache size to 1, no new buffers will
1610          * be allocated.
1611          */
1612         while (1) {
1613                 if (dm_bufio_cache_size_latch != 1) {
1614                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1615                         if (b)
1616                                 return b;
1617                 }
1618
1619                 if (nf == NF_PREFETCH)
1620                         return NULL;
1621
1622                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1623                         dm_bufio_unlock(c);
1624                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1625                         dm_bufio_lock(c);
1626                         if (b)
1627                                 return b;
1628                         tried_noio_alloc = true;
1629                 }
1630
1631                 if (!list_empty(&c->reserved_buffers)) {
1632                         b = list_to_buffer(c->reserved_buffers.next);
1633                         list_del(&b->lru.list);
1634                         c->need_reserved_buffers++;
1635
1636                         return b;
1637                 }
1638
1639                 b = __get_unclaimed_buffer(c);
1640                 if (b)
1641                         return b;
1642
1643                 __wait_for_free_buffer(c);
1644         }
1645 }
1646
1647 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1648 {
1649         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1650
1651         if (!b)
1652                 return NULL;
1653
1654         if (c->alloc_callback)
1655                 c->alloc_callback(b);
1656
1657         return b;
1658 }
1659
1660 /*
1661  * Free a buffer and wake other threads waiting for free buffers.
1662  */
1663 static void __free_buffer_wake(struct dm_buffer *b)
1664 {
1665         struct dm_bufio_client *c = b->c;
1666
1667         b->block = -1;
1668         if (!c->need_reserved_buffers)
1669                 free_buffer(b);
1670         else {
1671                 list_add(&b->lru.list, &c->reserved_buffers);
1672                 c->need_reserved_buffers--;
1673         }
1674
1675         /*
1676          * We hold the bufio lock here, so no one can add entries to the
1677          * wait queue anyway.
1678          */
1679         if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1680                 wake_up(&c->free_buffer_wait);
1681 }
1682
1683 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1684 {
1685         if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1686                 return ER_DONT_EVICT; /* should never happen */
1687
1688         if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1689                 return ER_DONT_EVICT;
1690         else
1691                 return ER_EVICT;
1692 }
1693
1694 static void __move_clean_buffers(struct dm_bufio_client *c)
1695 {
1696         cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1697 }
1698
1699 struct write_context {
1700         int no_wait;
1701         struct list_head *write_list;
1702 };
1703
1704 static enum it_action write_one(struct dm_buffer *b, void *context)
1705 {
1706         struct write_context *wc = context;
1707
1708         if (wc->no_wait && test_bit(B_WRITING, &b->state))
1709                 return IT_COMPLETE;
1710
1711         __write_dirty_buffer(b, wc->write_list);
1712         return IT_NEXT;
1713 }
1714
1715 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1716                                         struct list_head *write_list)
1717 {
1718         struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1719
1720         __move_clean_buffers(c);
1721         cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1722 }
1723
1724 /*
1725  * Check if we're over watermark.
1726  * If we are over threshold_buffers, start freeing buffers.
1727  * If we're over "limit_buffers", block until we get under the limit.
1728  */
1729 static void __check_watermark(struct dm_bufio_client *c,
1730                               struct list_head *write_list)
1731 {
1732         if (cache_count(&c->cache, LIST_DIRTY) >
1733             cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1734                 __write_dirty_buffers_async(c, 1, write_list);
1735 }
1736
1737 /*
1738  *--------------------------------------------------------------
1739  * Getting a buffer
1740  *--------------------------------------------------------------
1741  */
1742
1743 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1744 {
1745         /*
1746          * Relying on waitqueue_active() is racey, but we sleep
1747          * with schedule_timeout anyway.
1748          */
1749         if (cache_put(&c->cache, b) &&
1750             unlikely(waitqueue_active(&c->free_buffer_wait)))
1751                 wake_up(&c->free_buffer_wait);
1752 }
1753
1754 /*
1755  * This assumes you have already checked the cache to see if the buffer
1756  * is already present (it will recheck after dropping the lock for allocation).
1757  */
1758 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1759                                      enum new_flag nf, int *need_submit,
1760                                      struct list_head *write_list)
1761 {
1762         struct dm_buffer *b, *new_b = NULL;
1763
1764         *need_submit = 0;
1765
1766         /* This can't be called with NF_GET */
1767         if (WARN_ON_ONCE(nf == NF_GET))
1768                 return NULL;
1769
1770         new_b = __alloc_buffer_wait(c, nf);
1771         if (!new_b)
1772                 return NULL;
1773
1774         /*
1775          * We've had a period where the mutex was unlocked, so need to
1776          * recheck the buffer tree.
1777          */
1778         b = cache_get(&c->cache, block);
1779         if (b) {
1780                 __free_buffer_wake(new_b);
1781                 goto found_buffer;
1782         }
1783
1784         __check_watermark(c, write_list);
1785
1786         b = new_b;
1787         atomic_set(&b->hold_count, 1);
1788         WRITE_ONCE(b->last_accessed, jiffies);
1789         b->block = block;
1790         b->read_error = 0;
1791         b->write_error = 0;
1792         b->list_mode = LIST_CLEAN;
1793
1794         if (nf == NF_FRESH)
1795                 b->state = 0;
1796         else {
1797                 b->state = 1 << B_READING;
1798                 *need_submit = 1;
1799         }
1800
1801         /*
1802          * We mustn't insert into the cache until the B_READING state
1803          * is set.  Otherwise another thread could get it and use
1804          * it before it had been read.
1805          */
1806         cache_insert(&c->cache, b);
1807
1808         return b;
1809
1810 found_buffer:
1811         if (nf == NF_PREFETCH) {
1812                 cache_put_and_wake(c, b);
1813                 return NULL;
1814         }
1815
1816         /*
1817          * Note: it is essential that we don't wait for the buffer to be
1818          * read if dm_bufio_get function is used. Both dm_bufio_get and
1819          * dm_bufio_prefetch can be used in the driver request routine.
1820          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1821          * the same buffer, it would deadlock if we waited.
1822          */
1823         if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1824                 cache_put_and_wake(c, b);
1825                 return NULL;
1826         }
1827
1828         return b;
1829 }
1830
1831 /*
1832  * The endio routine for reading: set the error, clear the bit and wake up
1833  * anyone waiting on the buffer.
1834  */
1835 static void read_endio(struct dm_buffer *b, blk_status_t status)
1836 {
1837         b->read_error = status;
1838
1839         BUG_ON(!test_bit(B_READING, &b->state));
1840
1841         smp_mb__before_atomic();
1842         clear_bit(B_READING, &b->state);
1843         smp_mb__after_atomic();
1844
1845         wake_up_bit(&b->state, B_READING);
1846 }
1847
1848 /*
1849  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1850  * functions is similar except that dm_bufio_new doesn't read the
1851  * buffer from the disk (assuming that the caller overwrites all the data
1852  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1853  */
1854 static void *new_read(struct dm_bufio_client *c, sector_t block,
1855                       enum new_flag nf, struct dm_buffer **bp)
1856 {
1857         int need_submit = 0;
1858         struct dm_buffer *b;
1859
1860         LIST_HEAD(write_list);
1861
1862         *bp = NULL;
1863
1864         /*
1865          * Fast path, hopefully the block is already in the cache.  No need
1866          * to get the client lock for this.
1867          */
1868         b = cache_get(&c->cache, block);
1869         if (b) {
1870                 if (nf == NF_PREFETCH) {
1871                         cache_put_and_wake(c, b);
1872                         return NULL;
1873                 }
1874
1875                 /*
1876                  * Note: it is essential that we don't wait for the buffer to be
1877                  * read if dm_bufio_get function is used. Both dm_bufio_get and
1878                  * dm_bufio_prefetch can be used in the driver request routine.
1879                  * If the user called both dm_bufio_prefetch and dm_bufio_get on
1880                  * the same buffer, it would deadlock if we waited.
1881                  */
1882                 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1883                         cache_put_and_wake(c, b);
1884                         return NULL;
1885                 }
1886         }
1887
1888         if (!b) {
1889                 if (nf == NF_GET)
1890                         return NULL;
1891
1892                 dm_bufio_lock(c);
1893                 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1894                 dm_bufio_unlock(c);
1895         }
1896
1897 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1898         if (b && (atomic_read(&b->hold_count) == 1))
1899                 buffer_record_stack(b);
1900 #endif
1901
1902         __flush_write_list(&write_list);
1903
1904         if (!b)
1905                 return NULL;
1906
1907         if (need_submit)
1908                 submit_io(b, REQ_OP_READ, read_endio);
1909
1910         if (nf != NF_GET)       /* we already tested this condition above */
1911                 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1912
1913         if (b->read_error) {
1914                 int error = blk_status_to_errno(b->read_error);
1915
1916                 dm_bufio_release(b);
1917
1918                 return ERR_PTR(error);
1919         }
1920
1921         *bp = b;
1922
1923         return b->data;
1924 }
1925
1926 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1927                    struct dm_buffer **bp)
1928 {
1929         return new_read(c, block, NF_GET, bp);
1930 }
1931 EXPORT_SYMBOL_GPL(dm_bufio_get);
1932
1933 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1934                     struct dm_buffer **bp)
1935 {
1936         if (WARN_ON_ONCE(dm_bufio_in_request()))
1937                 return ERR_PTR(-EINVAL);
1938
1939         return new_read(c, block, NF_READ, bp);
1940 }
1941 EXPORT_SYMBOL_GPL(dm_bufio_read);
1942
1943 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1944                    struct dm_buffer **bp)
1945 {
1946         if (WARN_ON_ONCE(dm_bufio_in_request()))
1947                 return ERR_PTR(-EINVAL);
1948
1949         return new_read(c, block, NF_FRESH, bp);
1950 }
1951 EXPORT_SYMBOL_GPL(dm_bufio_new);
1952
1953 void dm_bufio_prefetch(struct dm_bufio_client *c,
1954                        sector_t block, unsigned int n_blocks)
1955 {
1956         struct blk_plug plug;
1957
1958         LIST_HEAD(write_list);
1959
1960         if (WARN_ON_ONCE(dm_bufio_in_request()))
1961                 return; /* should never happen */
1962
1963         blk_start_plug(&plug);
1964
1965         for (; n_blocks--; block++) {
1966                 int need_submit;
1967                 struct dm_buffer *b;
1968
1969                 b = cache_get(&c->cache, block);
1970                 if (b) {
1971                         /* already in cache */
1972                         cache_put_and_wake(c, b);
1973                         continue;
1974                 }
1975
1976                 dm_bufio_lock(c);
1977                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1978                                 &write_list);
1979                 if (unlikely(!list_empty(&write_list))) {
1980                         dm_bufio_unlock(c);
1981                         blk_finish_plug(&plug);
1982                         __flush_write_list(&write_list);
1983                         blk_start_plug(&plug);
1984                         dm_bufio_lock(c);
1985                 }
1986                 if (unlikely(b != NULL)) {
1987                         dm_bufio_unlock(c);
1988
1989                         if (need_submit)
1990                                 submit_io(b, REQ_OP_READ, read_endio);
1991                         dm_bufio_release(b);
1992
1993                         cond_resched();
1994
1995                         if (!n_blocks)
1996                                 goto flush_plug;
1997                         dm_bufio_lock(c);
1998                 }
1999                 dm_bufio_unlock(c);
2000         }
2001
2002 flush_plug:
2003         blk_finish_plug(&plug);
2004 }
2005 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2006
2007 void dm_bufio_release(struct dm_buffer *b)
2008 {
2009         struct dm_bufio_client *c = b->c;
2010
2011         /*
2012          * If there were errors on the buffer, and the buffer is not
2013          * to be written, free the buffer. There is no point in caching
2014          * invalid buffer.
2015          */
2016         if ((b->read_error || b->write_error) &&
2017             !test_bit_acquire(B_READING, &b->state) &&
2018             !test_bit(B_WRITING, &b->state) &&
2019             !test_bit(B_DIRTY, &b->state)) {
2020                 dm_bufio_lock(c);
2021
2022                 /* cache remove can fail if there are other holders */
2023                 if (cache_remove(&c->cache, b)) {
2024                         __free_buffer_wake(b);
2025                         dm_bufio_unlock(c);
2026                         return;
2027                 }
2028
2029                 dm_bufio_unlock(c);
2030         }
2031
2032         cache_put_and_wake(c, b);
2033 }
2034 EXPORT_SYMBOL_GPL(dm_bufio_release);
2035
2036 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2037                                         unsigned int start, unsigned int end)
2038 {
2039         struct dm_bufio_client *c = b->c;
2040
2041         BUG_ON(start >= end);
2042         BUG_ON(end > b->c->block_size);
2043
2044         dm_bufio_lock(c);
2045
2046         BUG_ON(test_bit(B_READING, &b->state));
2047
2048         if (!test_and_set_bit(B_DIRTY, &b->state)) {
2049                 b->dirty_start = start;
2050                 b->dirty_end = end;
2051                 cache_mark(&c->cache, b, LIST_DIRTY);
2052         } else {
2053                 if (start < b->dirty_start)
2054                         b->dirty_start = start;
2055                 if (end > b->dirty_end)
2056                         b->dirty_end = end;
2057         }
2058
2059         dm_bufio_unlock(c);
2060 }
2061 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2062
2063 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2064 {
2065         dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2066 }
2067 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2068
2069 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2070 {
2071         LIST_HEAD(write_list);
2072
2073         if (WARN_ON_ONCE(dm_bufio_in_request()))
2074                 return; /* should never happen */
2075
2076         dm_bufio_lock(c);
2077         __write_dirty_buffers_async(c, 0, &write_list);
2078         dm_bufio_unlock(c);
2079         __flush_write_list(&write_list);
2080 }
2081 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2082
2083 /*
2084  * For performance, it is essential that the buffers are written asynchronously
2085  * and simultaneously (so that the block layer can merge the writes) and then
2086  * waited upon.
2087  *
2088  * Finally, we flush hardware disk cache.
2089  */
2090 static bool is_writing(struct lru_entry *e, void *context)
2091 {
2092         struct dm_buffer *b = le_to_buffer(e);
2093
2094         return test_bit(B_WRITING, &b->state);
2095 }
2096
2097 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2098 {
2099         int a, f;
2100         unsigned long nr_buffers;
2101         struct lru_entry *e;
2102         struct lru_iter it;
2103
2104         LIST_HEAD(write_list);
2105
2106         dm_bufio_lock(c);
2107         __write_dirty_buffers_async(c, 0, &write_list);
2108         dm_bufio_unlock(c);
2109         __flush_write_list(&write_list);
2110         dm_bufio_lock(c);
2111
2112         nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2113         lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2114         while ((e = lru_iter_next(&it, is_writing, c))) {
2115                 struct dm_buffer *b = le_to_buffer(e);
2116                 __cache_inc_buffer(b);
2117
2118                 BUG_ON(test_bit(B_READING, &b->state));
2119
2120                 if (nr_buffers) {
2121                         nr_buffers--;
2122                         dm_bufio_unlock(c);
2123                         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2124                         dm_bufio_lock(c);
2125                 } else {
2126                         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2127                 }
2128
2129                 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2130                         cache_mark(&c->cache, b, LIST_CLEAN);
2131
2132                 cache_put_and_wake(c, b);
2133
2134                 cond_resched();
2135         }
2136         lru_iter_end(&it);
2137
2138         wake_up(&c->free_buffer_wait);
2139         dm_bufio_unlock(c);
2140
2141         a = xchg(&c->async_write_error, 0);
2142         f = dm_bufio_issue_flush(c);
2143         if (a)
2144                 return a;
2145
2146         return f;
2147 }
2148 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2149
2150 /*
2151  * Use dm-io to send an empty barrier to flush the device.
2152  */
2153 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2154 {
2155         struct dm_io_request io_req = {
2156                 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2157                 .mem.type = DM_IO_KMEM,
2158                 .mem.ptr.addr = NULL,
2159                 .client = c->dm_io,
2160         };
2161         struct dm_io_region io_reg = {
2162                 .bdev = c->bdev,
2163                 .sector = 0,
2164                 .count = 0,
2165         };
2166
2167         if (WARN_ON_ONCE(dm_bufio_in_request()))
2168                 return -EINVAL;
2169
2170         return dm_io(&io_req, 1, &io_reg, NULL);
2171 }
2172 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2173
2174 /*
2175  * Use dm-io to send a discard request to flush the device.
2176  */
2177 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2178 {
2179         struct dm_io_request io_req = {
2180                 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2181                 .mem.type = DM_IO_KMEM,
2182                 .mem.ptr.addr = NULL,
2183                 .client = c->dm_io,
2184         };
2185         struct dm_io_region io_reg = {
2186                 .bdev = c->bdev,
2187                 .sector = block_to_sector(c, block),
2188                 .count = block_to_sector(c, count),
2189         };
2190
2191         if (WARN_ON_ONCE(dm_bufio_in_request()))
2192                 return -EINVAL; /* discards are optional */
2193
2194         return dm_io(&io_req, 1, &io_reg, NULL);
2195 }
2196 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2197
2198 static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
2199 {
2200         struct dm_buffer *b;
2201
2202         b = cache_get(&c->cache, block);
2203         if (b) {
2204                 if (likely(!smp_load_acquire(&b->state))) {
2205                         if (cache_remove(&c->cache, b))
2206                                 __free_buffer_wake(b);
2207                         else
2208                                 cache_put_and_wake(c, b);
2209                 } else {
2210                         cache_put_and_wake(c, b);
2211                 }
2212         }
2213
2214         return b ? true : false;
2215 }
2216
2217 /*
2218  * Free the given buffer.
2219  *
2220  * This is just a hint, if the buffer is in use or dirty, this function
2221  * does nothing.
2222  */
2223 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2224 {
2225         dm_bufio_lock(c);
2226         forget_buffer(c, block);
2227         dm_bufio_unlock(c);
2228 }
2229 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2230
2231 static enum evict_result idle(struct dm_buffer *b, void *context)
2232 {
2233         return b->state ? ER_DONT_EVICT : ER_EVICT;
2234 }
2235
2236 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2237 {
2238         dm_bufio_lock(c);
2239         cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2240         dm_bufio_unlock(c);
2241 }
2242 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2243
2244 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2245 {
2246         c->minimum_buffers = n;
2247 }
2248 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2249
2250 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2251 {
2252         return c->block_size;
2253 }
2254 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2255
2256 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2257 {
2258         sector_t s = bdev_nr_sectors(c->bdev);
2259
2260         if (s >= c->start)
2261                 s -= c->start;
2262         else
2263                 s = 0;
2264         if (likely(c->sectors_per_block_bits >= 0))
2265                 s >>= c->sectors_per_block_bits;
2266         else
2267                 sector_div(s, c->block_size >> SECTOR_SHIFT);
2268         return s;
2269 }
2270 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2271
2272 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2273 {
2274         return c->dm_io;
2275 }
2276 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2277
2278 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2279 {
2280         return b->block;
2281 }
2282 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2283
2284 void *dm_bufio_get_block_data(struct dm_buffer *b)
2285 {
2286         return b->data;
2287 }
2288 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2289
2290 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2291 {
2292         return b + 1;
2293 }
2294 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2295
2296 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2297 {
2298         return b->c;
2299 }
2300 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2301
2302 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2303 {
2304         bool *warned = context;
2305
2306         WARN_ON(!(*warned));
2307         *warned = true;
2308         DMERR("leaked buffer %llx, hold count %u, list %d",
2309               (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2310 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2311         stack_trace_print(b->stack_entries, b->stack_len, 1);
2312         /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2313         atomic_set(&b->hold_count, 0);
2314 #endif
2315         return IT_NEXT;
2316 }
2317
2318 static void drop_buffers(struct dm_bufio_client *c)
2319 {
2320         int i;
2321         struct dm_buffer *b;
2322
2323         if (WARN_ON(dm_bufio_in_request()))
2324                 return; /* should never happen */
2325
2326         /*
2327          * An optimization so that the buffers are not written one-by-one.
2328          */
2329         dm_bufio_write_dirty_buffers_async(c);
2330
2331         dm_bufio_lock(c);
2332
2333         while ((b = __get_unclaimed_buffer(c)))
2334                 __free_buffer_wake(b);
2335
2336         for (i = 0; i < LIST_SIZE; i++) {
2337                 bool warned = false;
2338
2339                 cache_iterate(&c->cache, i, warn_leak, &warned);
2340         }
2341
2342 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2343         while ((b = __get_unclaimed_buffer(c)))
2344                 __free_buffer_wake(b);
2345 #endif
2346
2347         for (i = 0; i < LIST_SIZE; i++)
2348                 WARN_ON(cache_count(&c->cache, i));
2349
2350         dm_bufio_unlock(c);
2351 }
2352
2353 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2354 {
2355         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2356
2357         if (likely(c->sectors_per_block_bits >= 0))
2358                 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2359         else
2360                 retain_bytes /= c->block_size;
2361
2362         return retain_bytes;
2363 }
2364
2365 static void __scan(struct dm_bufio_client *c)
2366 {
2367         int l;
2368         struct dm_buffer *b;
2369         unsigned long freed = 0;
2370         unsigned long retain_target = get_retain_buffers(c);
2371         unsigned long count = cache_total(&c->cache);
2372
2373         for (l = 0; l < LIST_SIZE; l++) {
2374                 while (true) {
2375                         if (count - freed <= retain_target)
2376                                 atomic_long_set(&c->need_shrink, 0);
2377                         if (!atomic_long_read(&c->need_shrink))
2378                                 break;
2379
2380                         b = cache_evict(&c->cache, l,
2381                                         l == LIST_CLEAN ? is_clean : is_dirty, c);
2382                         if (!b)
2383                                 break;
2384
2385                         __make_buffer_clean(b);
2386                         __free_buffer_wake(b);
2387
2388                         atomic_long_dec(&c->need_shrink);
2389                         freed++;
2390                         cond_resched();
2391                 }
2392         }
2393 }
2394
2395 static void shrink_work(struct work_struct *w)
2396 {
2397         struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2398
2399         dm_bufio_lock(c);
2400         __scan(c);
2401         dm_bufio_unlock(c);
2402 }
2403
2404 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2405 {
2406         struct dm_bufio_client *c;
2407
2408         c = shrink->private_data;
2409         atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2410         queue_work(dm_bufio_wq, &c->shrink_work);
2411
2412         return sc->nr_to_scan;
2413 }
2414
2415 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2416 {
2417         struct dm_bufio_client *c = shrink->private_data;
2418         unsigned long count = cache_total(&c->cache);
2419         unsigned long retain_target = get_retain_buffers(c);
2420         unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2421
2422         if (unlikely(count < retain_target))
2423                 count = 0;
2424         else
2425                 count -= retain_target;
2426
2427         if (unlikely(count < queued_for_cleanup))
2428                 count = 0;
2429         else
2430                 count -= queued_for_cleanup;
2431
2432         return count;
2433 }
2434
2435 /*
2436  * Create the buffering interface
2437  */
2438 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2439                                                unsigned int reserved_buffers, unsigned int aux_size,
2440                                                void (*alloc_callback)(struct dm_buffer *),
2441                                                void (*write_callback)(struct dm_buffer *),
2442                                                unsigned int flags)
2443 {
2444         int r;
2445         unsigned int num_locks;
2446         struct dm_bufio_client *c;
2447         char slab_name[27];
2448
2449         if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2450                 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2451                 r = -EINVAL;
2452                 goto bad_client;
2453         }
2454
2455         num_locks = dm_num_hash_locks();
2456         c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2457         if (!c) {
2458                 r = -ENOMEM;
2459                 goto bad_client;
2460         }
2461         cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2462
2463         c->bdev = bdev;
2464         c->block_size = block_size;
2465         if (is_power_of_2(block_size))
2466                 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2467         else
2468                 c->sectors_per_block_bits = -1;
2469
2470         c->alloc_callback = alloc_callback;
2471         c->write_callback = write_callback;
2472
2473         if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2474                 c->no_sleep = true;
2475                 static_branch_inc(&no_sleep_enabled);
2476         }
2477
2478         mutex_init(&c->lock);
2479         spin_lock_init(&c->spinlock);
2480         INIT_LIST_HEAD(&c->reserved_buffers);
2481         c->need_reserved_buffers = reserved_buffers;
2482
2483         dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2484
2485         init_waitqueue_head(&c->free_buffer_wait);
2486         c->async_write_error = 0;
2487
2488         c->dm_io = dm_io_client_create();
2489         if (IS_ERR(c->dm_io)) {
2490                 r = PTR_ERR(c->dm_io);
2491                 goto bad_dm_io;
2492         }
2493
2494         if (block_size <= KMALLOC_MAX_SIZE &&
2495             (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
2496                 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2497
2498                 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u", block_size);
2499                 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2500                                                   SLAB_RECLAIM_ACCOUNT, NULL);
2501                 if (!c->slab_cache) {
2502                         r = -ENOMEM;
2503                         goto bad;
2504                 }
2505         }
2506         if (aux_size)
2507                 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", aux_size);
2508         else
2509                 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer");
2510         c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2511                                            0, SLAB_RECLAIM_ACCOUNT, NULL);
2512         if (!c->slab_buffer) {
2513                 r = -ENOMEM;
2514                 goto bad;
2515         }
2516
2517         while (c->need_reserved_buffers) {
2518                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2519
2520                 if (!b) {
2521                         r = -ENOMEM;
2522                         goto bad;
2523                 }
2524                 __free_buffer_wake(b);
2525         }
2526
2527         INIT_WORK(&c->shrink_work, shrink_work);
2528         atomic_long_set(&c->need_shrink, 0);
2529
2530         c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2531                                      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2532         if (!c->shrinker) {
2533                 r = -ENOMEM;
2534                 goto bad;
2535         }
2536
2537         c->shrinker->count_objects = dm_bufio_shrink_count;
2538         c->shrinker->scan_objects = dm_bufio_shrink_scan;
2539         c->shrinker->seeks = 1;
2540         c->shrinker->batch = 0;
2541         c->shrinker->private_data = c;
2542
2543         shrinker_register(c->shrinker);
2544
2545         mutex_lock(&dm_bufio_clients_lock);
2546         dm_bufio_client_count++;
2547         list_add(&c->client_list, &dm_bufio_all_clients);
2548         __cache_size_refresh();
2549         mutex_unlock(&dm_bufio_clients_lock);
2550
2551         return c;
2552
2553 bad:
2554         while (!list_empty(&c->reserved_buffers)) {
2555                 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2556
2557                 list_del(&b->lru.list);
2558                 free_buffer(b);
2559         }
2560         kmem_cache_destroy(c->slab_cache);
2561         kmem_cache_destroy(c->slab_buffer);
2562         dm_io_client_destroy(c->dm_io);
2563 bad_dm_io:
2564         mutex_destroy(&c->lock);
2565         if (c->no_sleep)
2566                 static_branch_dec(&no_sleep_enabled);
2567         kfree(c);
2568 bad_client:
2569         return ERR_PTR(r);
2570 }
2571 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2572
2573 /*
2574  * Free the buffering interface.
2575  * It is required that there are no references on any buffers.
2576  */
2577 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2578 {
2579         unsigned int i;
2580
2581         drop_buffers(c);
2582
2583         shrinker_free(c->shrinker);
2584         flush_work(&c->shrink_work);
2585
2586         mutex_lock(&dm_bufio_clients_lock);
2587
2588         list_del(&c->client_list);
2589         dm_bufio_client_count--;
2590         __cache_size_refresh();
2591
2592         mutex_unlock(&dm_bufio_clients_lock);
2593
2594         WARN_ON(c->need_reserved_buffers);
2595
2596         while (!list_empty(&c->reserved_buffers)) {
2597                 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2598
2599                 list_del(&b->lru.list);
2600                 free_buffer(b);
2601         }
2602
2603         for (i = 0; i < LIST_SIZE; i++)
2604                 if (cache_count(&c->cache, i))
2605                         DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2606
2607         for (i = 0; i < LIST_SIZE; i++)
2608                 WARN_ON(cache_count(&c->cache, i));
2609
2610         cache_destroy(&c->cache);
2611         kmem_cache_destroy(c->slab_cache);
2612         kmem_cache_destroy(c->slab_buffer);
2613         dm_io_client_destroy(c->dm_io);
2614         mutex_destroy(&c->lock);
2615         if (c->no_sleep)
2616                 static_branch_dec(&no_sleep_enabled);
2617         kfree(c);
2618 }
2619 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2620
2621 void dm_bufio_client_reset(struct dm_bufio_client *c)
2622 {
2623         drop_buffers(c);
2624         flush_work(&c->shrink_work);
2625 }
2626 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2627
2628 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2629 {
2630         c->start = start;
2631 }
2632 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2633
2634 /*--------------------------------------------------------------*/
2635
2636 static unsigned int get_max_age_hz(void)
2637 {
2638         unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2639
2640         if (max_age > UINT_MAX / HZ)
2641                 max_age = UINT_MAX / HZ;
2642
2643         return max_age * HZ;
2644 }
2645
2646 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2647 {
2648         return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2649 }
2650
2651 struct evict_params {
2652         gfp_t gfp;
2653         unsigned long age_hz;
2654
2655         /*
2656          * This gets updated with the largest last_accessed (ie. most
2657          * recently used) of the evicted buffers.  It will not be reinitialised
2658          * by __evict_many(), so you can use it across multiple invocations.
2659          */
2660         unsigned long last_accessed;
2661 };
2662
2663 /*
2664  * We may not be able to evict this buffer if IO pending or the client
2665  * is still using it.
2666  *
2667  * And if GFP_NOFS is used, we must not do any I/O because we hold
2668  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2669  * rerouted to different bufio client.
2670  */
2671 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2672 {
2673         struct evict_params *params = context;
2674
2675         if (!(params->gfp & __GFP_FS) ||
2676             (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2677                 if (test_bit_acquire(B_READING, &b->state) ||
2678                     test_bit(B_WRITING, &b->state) ||
2679                     test_bit(B_DIRTY, &b->state))
2680                         return ER_DONT_EVICT;
2681         }
2682
2683         return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2684 }
2685
2686 static unsigned long __evict_many(struct dm_bufio_client *c,
2687                                   struct evict_params *params,
2688                                   int list_mode, unsigned long max_count)
2689 {
2690         unsigned long count;
2691         unsigned long last_accessed;
2692         struct dm_buffer *b;
2693
2694         for (count = 0; count < max_count; count++) {
2695                 b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2696                 if (!b)
2697                         break;
2698
2699                 last_accessed = READ_ONCE(b->last_accessed);
2700                 if (time_after_eq(params->last_accessed, last_accessed))
2701                         params->last_accessed = last_accessed;
2702
2703                 __make_buffer_clean(b);
2704                 __free_buffer_wake(b);
2705
2706                 cond_resched();
2707         }
2708
2709         return count;
2710 }
2711
2712 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2713 {
2714         struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2715         unsigned long retain = get_retain_buffers(c);
2716         unsigned long count;
2717         LIST_HEAD(write_list);
2718
2719         dm_bufio_lock(c);
2720
2721         __check_watermark(c, &write_list);
2722         if (unlikely(!list_empty(&write_list))) {
2723                 dm_bufio_unlock(c);
2724                 __flush_write_list(&write_list);
2725                 dm_bufio_lock(c);
2726         }
2727
2728         count = cache_total(&c->cache);
2729         if (count > retain)
2730                 __evict_many(c, &params, LIST_CLEAN, count - retain);
2731
2732         dm_bufio_unlock(c);
2733 }
2734
2735 static void cleanup_old_buffers(void)
2736 {
2737         unsigned long max_age_hz = get_max_age_hz();
2738         struct dm_bufio_client *c;
2739
2740         mutex_lock(&dm_bufio_clients_lock);
2741
2742         __cache_size_refresh();
2743
2744         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2745                 evict_old_buffers(c, max_age_hz);
2746
2747         mutex_unlock(&dm_bufio_clients_lock);
2748 }
2749
2750 static void work_fn(struct work_struct *w)
2751 {
2752         cleanup_old_buffers();
2753
2754         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2755                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2756 }
2757
2758 /*--------------------------------------------------------------*/
2759
2760 /*
2761  * Global cleanup tries to evict the oldest buffers from across _all_
2762  * the clients.  It does this by repeatedly evicting a few buffers from
2763  * the client that holds the oldest buffer.  It's approximate, but hopefully
2764  * good enough.
2765  */
2766 static struct dm_bufio_client *__pop_client(void)
2767 {
2768         struct list_head *h;
2769
2770         if (list_empty(&dm_bufio_all_clients))
2771                 return NULL;
2772
2773         h = dm_bufio_all_clients.next;
2774         list_del(h);
2775         return container_of(h, struct dm_bufio_client, client_list);
2776 }
2777
2778 /*
2779  * Inserts the client in the global client list based on its
2780  * 'oldest_buffer' field.
2781  */
2782 static void __insert_client(struct dm_bufio_client *new_client)
2783 {
2784         struct dm_bufio_client *c;
2785         struct list_head *h = dm_bufio_all_clients.next;
2786
2787         while (h != &dm_bufio_all_clients) {
2788                 c = container_of(h, struct dm_bufio_client, client_list);
2789                 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2790                         break;
2791                 h = h->next;
2792         }
2793
2794         list_add_tail(&new_client->client_list, h);
2795 }
2796
2797 static unsigned long __evict_a_few(unsigned long nr_buffers)
2798 {
2799         unsigned long count;
2800         struct dm_bufio_client *c;
2801         struct evict_params params = {
2802                 .gfp = GFP_KERNEL,
2803                 .age_hz = 0,
2804                 /* set to jiffies in case there are no buffers in this client */
2805                 .last_accessed = jiffies
2806         };
2807
2808         c = __pop_client();
2809         if (!c)
2810                 return 0;
2811
2812         dm_bufio_lock(c);
2813         count = __evict_many(c, &params, LIST_CLEAN, nr_buffers);
2814         dm_bufio_unlock(c);
2815
2816         if (count)
2817                 c->oldest_buffer = params.last_accessed;
2818         __insert_client(c);
2819
2820         return count;
2821 }
2822
2823 static void check_watermarks(void)
2824 {
2825         LIST_HEAD(write_list);
2826         struct dm_bufio_client *c;
2827
2828         mutex_lock(&dm_bufio_clients_lock);
2829         list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2830                 dm_bufio_lock(c);
2831                 __check_watermark(c, &write_list);
2832                 dm_bufio_unlock(c);
2833         }
2834         mutex_unlock(&dm_bufio_clients_lock);
2835
2836         __flush_write_list(&write_list);
2837 }
2838
2839 static void evict_old(void)
2840 {
2841         unsigned long threshold = dm_bufio_cache_size -
2842                 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2843
2844         mutex_lock(&dm_bufio_clients_lock);
2845         while (dm_bufio_current_allocated > threshold) {
2846                 if (!__evict_a_few(64))
2847                         break;
2848                 cond_resched();
2849         }
2850         mutex_unlock(&dm_bufio_clients_lock);
2851 }
2852
2853 static void do_global_cleanup(struct work_struct *w)
2854 {
2855         check_watermarks();
2856         evict_old();
2857 }
2858
2859 /*
2860  *--------------------------------------------------------------
2861  * Module setup
2862  *--------------------------------------------------------------
2863  */
2864
2865 /*
2866  * This is called only once for the whole dm_bufio module.
2867  * It initializes memory limit.
2868  */
2869 static int __init dm_bufio_init(void)
2870 {
2871         __u64 mem;
2872
2873         dm_bufio_allocated_kmem_cache = 0;
2874         dm_bufio_allocated_get_free_pages = 0;
2875         dm_bufio_allocated_vmalloc = 0;
2876         dm_bufio_current_allocated = 0;
2877
2878         mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2879                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2880
2881         if (mem > ULONG_MAX)
2882                 mem = ULONG_MAX;
2883
2884 #ifdef CONFIG_MMU
2885         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2886                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2887 #endif
2888
2889         dm_bufio_default_cache_size = mem;
2890
2891         mutex_lock(&dm_bufio_clients_lock);
2892         __cache_size_refresh();
2893         mutex_unlock(&dm_bufio_clients_lock);
2894
2895         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2896         if (!dm_bufio_wq)
2897                 return -ENOMEM;
2898
2899         INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2900         INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2901         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2902                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2903
2904         return 0;
2905 }
2906
2907 /*
2908  * This is called once when unloading the dm_bufio module.
2909  */
2910 static void __exit dm_bufio_exit(void)
2911 {
2912         int bug = 0;
2913
2914         cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2915         destroy_workqueue(dm_bufio_wq);
2916
2917         if (dm_bufio_client_count) {
2918                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2919                         __func__, dm_bufio_client_count);
2920                 bug = 1;
2921         }
2922
2923         if (dm_bufio_current_allocated) {
2924                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2925                         __func__, dm_bufio_current_allocated);
2926                 bug = 1;
2927         }
2928
2929         if (dm_bufio_allocated_get_free_pages) {
2930                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2931                        __func__, dm_bufio_allocated_get_free_pages);
2932                 bug = 1;
2933         }
2934
2935         if (dm_bufio_allocated_vmalloc) {
2936                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2937                        __func__, dm_bufio_allocated_vmalloc);
2938                 bug = 1;
2939         }
2940
2941         WARN_ON(bug); /* leaks are not worth crashing the system */
2942 }
2943
2944 module_init(dm_bufio_init)
2945 module_exit(dm_bufio_exit)
2946
2947 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2948 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2949
2950 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2951 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2952
2953 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2954 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2955
2956 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2957 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2958
2959 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
2960 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2961
2962 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
2963 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2964
2965 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
2966 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2967
2968 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
2969 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2970
2971 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2972 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2973 MODULE_LICENSE("GPL");