2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
9 #include <linux/dm-bufio.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
22 #define DM_MSG_PREFIX "bufio"
25 * Memory management policy:
26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
32 #define DM_BUFIO_MIN_BUFFERS 8
34 #define DM_BUFIO_MEMORY_PERCENT 2
35 #define DM_BUFIO_VMALLOC_PERCENT 25
36 #define DM_BUFIO_WRITEBACK_PERCENT 75
39 * Check buffer ages in this interval (seconds)
41 #define DM_BUFIO_WORK_TIMER_SECS 30
44 * Free buffers when they are older than this (seconds)
46 #define DM_BUFIO_DEFAULT_AGE_SECS 300
49 * The nr of bytes of cached data to keep around.
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
54 * Align buffer writes to this boundary.
55 * Tests show that SSDs have the highest IOPS when using 4k writes.
57 #define DM_BUFIO_WRITE_ALIGN 4096
60 * dm_buffer->list_mode
68 * All buffers are linked to cache_hash with their hash_list field.
70 * Clean buffers that are not being written (B_WRITING not set)
71 * are linked to lru[LIST_CLEAN] with their lru_list field.
73 * Dirty and clean buffers that are being written are linked to
74 * lru[LIST_DIRTY] with their lru_list field. When the write
75 * finishes, the buffer cannot be relinked immediately (because we
76 * are in an interrupt context and relinking requires process
77 * context), so some clean-not-writing buffers can be held on
78 * dirty_lru too. They are later added to lru in the process
81 struct dm_bufio_client {
84 struct list_head lru[LIST_SIZE];
85 unsigned long n_buffers[LIST_SIZE];
87 struct block_device *bdev;
89 s8 sectors_per_block_bits;
90 void (*alloc_callback)(struct dm_buffer *);
91 void (*write_callback)(struct dm_buffer *);
93 struct kmem_cache *slab_buffer;
94 struct kmem_cache *slab_cache;
95 struct dm_io_client *dm_io;
97 struct list_head reserved_buffers;
98 unsigned need_reserved_buffers;
100 unsigned minimum_buffers;
102 struct rb_root buffer_tree;
103 wait_queue_head_t free_buffer_wait;
107 int async_write_error;
109 struct list_head client_list;
110 struct shrinker shrinker;
121 * Describes how the block was allocated:
122 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
123 * See the comment at alloc_buffer_data.
127 DATA_MODE_GET_FREE_PAGES = 1,
128 DATA_MODE_VMALLOC = 2,
134 struct list_head lru_list;
137 unsigned char data_mode; /* DATA_MODE_* */
138 unsigned char list_mode; /* LIST_* */
139 blk_status_t read_error;
140 blk_status_t write_error;
143 unsigned long last_accessed;
144 unsigned dirty_start;
146 unsigned write_start;
148 struct dm_bufio_client *c;
149 struct list_head write_list;
150 void (*end_io)(struct dm_buffer *, blk_status_t);
151 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
153 struct stack_trace stack_trace;
154 unsigned long stack_entries[MAX_STACK];
158 /*----------------------------------------------------------------*/
160 #define dm_bufio_in_request() (!!current->bio_list)
162 static void dm_bufio_lock(struct dm_bufio_client *c)
164 mutex_lock_nested(&c->lock, dm_bufio_in_request());
167 static int dm_bufio_trylock(struct dm_bufio_client *c)
169 return mutex_trylock(&c->lock);
172 static void dm_bufio_unlock(struct dm_bufio_client *c)
174 mutex_unlock(&c->lock);
177 /*----------------------------------------------------------------*/
180 * Default cache size: available memory divided by the ratio.
182 static unsigned long dm_bufio_default_cache_size;
185 * Total cache size set by the user.
187 static unsigned long dm_bufio_cache_size;
190 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
191 * at any time. If it disagrees, the user has changed cache size.
193 static unsigned long dm_bufio_cache_size_latch;
195 static DEFINE_SPINLOCK(param_spinlock);
198 * Buffers are freed after this timeout
200 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
201 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
203 static unsigned long dm_bufio_peak_allocated;
204 static unsigned long dm_bufio_allocated_kmem_cache;
205 static unsigned long dm_bufio_allocated_get_free_pages;
206 static unsigned long dm_bufio_allocated_vmalloc;
207 static unsigned long dm_bufio_current_allocated;
209 /*----------------------------------------------------------------*/
212 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
214 static unsigned long dm_bufio_cache_size_per_client;
217 * The current number of clients.
219 static int dm_bufio_client_count;
222 * The list of all clients.
224 static LIST_HEAD(dm_bufio_all_clients);
227 * This mutex protects dm_bufio_cache_size_latch,
228 * dm_bufio_cache_size_per_client and dm_bufio_client_count
230 static DEFINE_MUTEX(dm_bufio_clients_lock);
232 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
233 static void buffer_record_stack(struct dm_buffer *b)
235 b->stack_trace.nr_entries = 0;
236 b->stack_trace.max_entries = MAX_STACK;
237 b->stack_trace.entries = b->stack_entries;
238 b->stack_trace.skip = 2;
239 save_stack_trace(&b->stack_trace);
243 /*----------------------------------------------------------------
244 * A red/black tree acts as an index for all the buffers.
245 *--------------------------------------------------------------*/
246 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
248 struct rb_node *n = c->buffer_tree.rb_node;
252 b = container_of(n, struct dm_buffer, node);
254 if (b->block == block)
257 n = (b->block < block) ? n->rb_left : n->rb_right;
263 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
265 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
266 struct dm_buffer *found;
269 found = container_of(*new, struct dm_buffer, node);
271 if (found->block == b->block) {
277 new = (found->block < b->block) ?
278 &((*new)->rb_left) : &((*new)->rb_right);
281 rb_link_node(&b->node, parent, new);
282 rb_insert_color(&b->node, &c->buffer_tree);
285 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
287 rb_erase(&b->node, &c->buffer_tree);
290 /*----------------------------------------------------------------*/
292 static void adjust_total_allocated(unsigned char data_mode, long diff)
294 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
295 &dm_bufio_allocated_kmem_cache,
296 &dm_bufio_allocated_get_free_pages,
297 &dm_bufio_allocated_vmalloc,
300 spin_lock(¶m_spinlock);
302 *class_ptr[data_mode] += diff;
304 dm_bufio_current_allocated += diff;
306 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
307 dm_bufio_peak_allocated = dm_bufio_current_allocated;
309 spin_unlock(¶m_spinlock);
313 * Change the number of clients and recalculate per-client limit.
315 static void __cache_size_refresh(void)
317 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
318 BUG_ON(dm_bufio_client_count < 0);
320 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
323 * Use default if set to 0 and report the actual cache size used.
325 if (!dm_bufio_cache_size_latch) {
326 (void)cmpxchg(&dm_bufio_cache_size, 0,
327 dm_bufio_default_cache_size);
328 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
331 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
332 (dm_bufio_client_count ? : 1);
336 * Allocating buffer data.
338 * Small buffers are allocated with kmem_cache, to use space optimally.
340 * For large buffers, we choose between get_free_pages and vmalloc.
341 * Each has advantages and disadvantages.
343 * __get_free_pages can randomly fail if the memory is fragmented.
344 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
345 * as low as 128M) so using it for caching is not appropriate.
347 * If the allocation may fail we use __get_free_pages. Memory fragmentation
348 * won't have a fatal effect here, but it just causes flushes of some other
349 * buffers and more I/O will be performed. Don't use __get_free_pages if it
350 * always fails (i.e. order >= MAX_ORDER).
352 * If the allocation shouldn't fail we use __vmalloc. This is only for the
353 * initial reserve allocation, so there's no risk of wasting all vmalloc
356 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
357 unsigned char *data_mode)
359 if (unlikely(c->slab_cache != NULL)) {
360 *data_mode = DATA_MODE_SLAB;
361 return kmem_cache_alloc(c->slab_cache, gfp_mask);
364 if (c->block_size <= KMALLOC_MAX_SIZE &&
365 gfp_mask & __GFP_NORETRY) {
366 *data_mode = DATA_MODE_GET_FREE_PAGES;
367 return (void *)__get_free_pages(gfp_mask,
368 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
371 *data_mode = DATA_MODE_VMALLOC;
374 * __vmalloc allocates the data pages and auxiliary structures with
375 * gfp_flags that were specified, but pagetables are always allocated
376 * with GFP_KERNEL, no matter what was specified as gfp_mask.
378 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
379 * all allocations done by this process (including pagetables) are done
380 * as if GFP_NOIO was specified.
382 if (gfp_mask & __GFP_NORETRY) {
383 unsigned noio_flag = memalloc_noio_save();
384 void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
386 memalloc_noio_restore(noio_flag);
390 return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
394 * Free buffer's data.
396 static void free_buffer_data(struct dm_bufio_client *c,
397 void *data, unsigned char data_mode)
401 kmem_cache_free(c->slab_cache, data);
404 case DATA_MODE_GET_FREE_PAGES:
405 free_pages((unsigned long)data,
406 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
409 case DATA_MODE_VMALLOC:
414 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
421 * Allocate buffer and its data.
423 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
425 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
432 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
434 kmem_cache_free(c->slab_buffer, b);
438 adjust_total_allocated(b->data_mode, (long)c->block_size);
440 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
441 memset(&b->stack_trace, 0, sizeof(b->stack_trace));
447 * Free buffer and its data.
449 static void free_buffer(struct dm_buffer *b)
451 struct dm_bufio_client *c = b->c;
453 adjust_total_allocated(b->data_mode, -(long)c->block_size);
455 free_buffer_data(c, b->data, b->data_mode);
456 kmem_cache_free(c->slab_buffer, b);
460 * Link buffer to the hash list and clean or dirty queue.
462 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
464 struct dm_bufio_client *c = b->c;
466 c->n_buffers[dirty]++;
468 b->list_mode = dirty;
469 list_add(&b->lru_list, &c->lru[dirty]);
471 b->last_accessed = jiffies;
475 * Unlink buffer from the hash list and dirty or clean queue.
477 static void __unlink_buffer(struct dm_buffer *b)
479 struct dm_bufio_client *c = b->c;
481 BUG_ON(!c->n_buffers[b->list_mode]);
483 c->n_buffers[b->list_mode]--;
485 list_del(&b->lru_list);
489 * Place the buffer to the head of dirty or clean LRU queue.
491 static void __relink_lru(struct dm_buffer *b, int dirty)
493 struct dm_bufio_client *c = b->c;
495 BUG_ON(!c->n_buffers[b->list_mode]);
497 c->n_buffers[b->list_mode]--;
498 c->n_buffers[dirty]++;
499 b->list_mode = dirty;
500 list_move(&b->lru_list, &c->lru[dirty]);
501 b->last_accessed = jiffies;
504 /*----------------------------------------------------------------
505 * Submit I/O on the buffer.
507 * Bio interface is faster but it has some problems:
508 * the vector list is limited (increasing this limit increases
509 * memory-consumption per buffer, so it is not viable);
511 * the memory must be direct-mapped, not vmalloced;
513 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
514 * it is not vmalloced, try using the bio interface.
516 * If the buffer is big, if it is vmalloced or if the underlying device
517 * rejects the bio because it is too large, use dm-io layer to do the I/O.
518 * The dm-io layer splits the I/O into multiple requests, avoiding the above
520 *--------------------------------------------------------------*/
523 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
524 * that the request was handled directly with bio interface.
526 static void dmio_complete(unsigned long error, void *context)
528 struct dm_buffer *b = context;
530 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
533 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
534 unsigned n_sectors, unsigned offset)
537 struct dm_io_request io_req = {
540 .notify.fn = dmio_complete,
542 .client = b->c->dm_io,
544 struct dm_io_region region = {
550 if (b->data_mode != DATA_MODE_VMALLOC) {
551 io_req.mem.type = DM_IO_KMEM;
552 io_req.mem.ptr.addr = (char *)b->data + offset;
554 io_req.mem.type = DM_IO_VMA;
555 io_req.mem.ptr.vma = (char *)b->data + offset;
558 r = dm_io(&io_req, 1, ®ion, NULL);
560 b->end_io(b, errno_to_blk_status(r));
563 static void bio_complete(struct bio *bio)
565 struct dm_buffer *b = bio->bi_private;
566 blk_status_t status = bio->bi_status;
568 b->end_io(b, status);
571 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
572 unsigned n_sectors, unsigned offset)
576 unsigned vec_size, len;
578 vec_size = b->c->block_size >> PAGE_SHIFT;
579 if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
582 bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
585 use_dmio(b, rw, sector, n_sectors, offset);
589 bio->bi_iter.bi_sector = sector;
590 bio_set_dev(bio, b->c->bdev);
591 bio_set_op_attrs(bio, rw, 0);
592 bio->bi_end_io = bio_complete;
595 ptr = (char *)b->data + offset;
596 len = n_sectors << SECTOR_SHIFT;
599 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
600 if (!bio_add_page(bio, virt_to_page(ptr), this_step,
601 offset_in_page(ptr))) {
613 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
617 unsigned offset, end;
621 if (likely(b->c->sectors_per_block_bits >= 0))
622 sector = b->block << b->c->sectors_per_block_bits;
624 sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
625 sector += b->c->start;
627 if (rw != REQ_OP_WRITE) {
628 n_sectors = b->c->block_size >> SECTOR_SHIFT;
631 if (b->c->write_callback)
632 b->c->write_callback(b);
633 offset = b->write_start;
635 offset &= -DM_BUFIO_WRITE_ALIGN;
636 end += DM_BUFIO_WRITE_ALIGN - 1;
637 end &= -DM_BUFIO_WRITE_ALIGN;
638 if (unlikely(end > b->c->block_size))
639 end = b->c->block_size;
641 sector += offset >> SECTOR_SHIFT;
642 n_sectors = (end - offset) >> SECTOR_SHIFT;
645 if (b->data_mode != DATA_MODE_VMALLOC)
646 use_bio(b, rw, sector, n_sectors, offset);
648 use_dmio(b, rw, sector, n_sectors, offset);
651 /*----------------------------------------------------------------
652 * Writing dirty buffers
653 *--------------------------------------------------------------*/
656 * The endio routine for write.
658 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
661 static void write_endio(struct dm_buffer *b, blk_status_t status)
663 b->write_error = status;
664 if (unlikely(status)) {
665 struct dm_bufio_client *c = b->c;
667 (void)cmpxchg(&c->async_write_error, 0,
668 blk_status_to_errno(status));
671 BUG_ON(!test_bit(B_WRITING, &b->state));
673 smp_mb__before_atomic();
674 clear_bit(B_WRITING, &b->state);
675 smp_mb__after_atomic();
677 wake_up_bit(&b->state, B_WRITING);
681 * Initiate a write on a dirty buffer, but don't wait for it.
683 * - If the buffer is not dirty, exit.
684 * - If there some previous write going on, wait for it to finish (we can't
685 * have two writes on the same buffer simultaneously).
686 * - Submit our write and don't wait on it. We set B_WRITING indicating
687 * that there is a write in progress.
689 static void __write_dirty_buffer(struct dm_buffer *b,
690 struct list_head *write_list)
692 if (!test_bit(B_DIRTY, &b->state))
695 clear_bit(B_DIRTY, &b->state);
696 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
698 b->write_start = b->dirty_start;
699 b->write_end = b->dirty_end;
702 submit_io(b, REQ_OP_WRITE, write_endio);
704 list_add_tail(&b->write_list, write_list);
707 static void __flush_write_list(struct list_head *write_list)
709 struct blk_plug plug;
710 blk_start_plug(&plug);
711 while (!list_empty(write_list)) {
712 struct dm_buffer *b =
713 list_entry(write_list->next, struct dm_buffer, write_list);
714 list_del(&b->write_list);
715 submit_io(b, REQ_OP_WRITE, write_endio);
718 blk_finish_plug(&plug);
722 * Wait until any activity on the buffer finishes. Possibly write the
723 * buffer if it is dirty. When this function finishes, there is no I/O
724 * running on the buffer and the buffer is not dirty.
726 static void __make_buffer_clean(struct dm_buffer *b)
728 BUG_ON(b->hold_count);
730 if (!b->state) /* fast case */
733 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
734 __write_dirty_buffer(b, NULL);
735 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
739 * Find some buffer that is not held by anybody, clean it, unlink it and
742 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
746 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
747 BUG_ON(test_bit(B_WRITING, &b->state));
748 BUG_ON(test_bit(B_DIRTY, &b->state));
750 if (!b->hold_count) {
751 __make_buffer_clean(b);
758 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
759 BUG_ON(test_bit(B_READING, &b->state));
761 if (!b->hold_count) {
762 __make_buffer_clean(b);
773 * Wait until some other threads free some buffer or release hold count on
776 * This function is entered with c->lock held, drops it and regains it
779 static void __wait_for_free_buffer(struct dm_bufio_client *c)
781 DECLARE_WAITQUEUE(wait, current);
783 add_wait_queue(&c->free_buffer_wait, &wait);
784 set_current_state(TASK_UNINTERRUPTIBLE);
789 remove_wait_queue(&c->free_buffer_wait, &wait);
802 * Allocate a new buffer. If the allocation is not possible, wait until
803 * some other thread frees a buffer.
805 * May drop the lock and regain it.
807 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
810 bool tried_noio_alloc = false;
813 * dm-bufio is resistant to allocation failures (it just keeps
814 * one buffer reserved in cases all the allocations fail).
815 * So set flags to not try too hard:
816 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
817 * mutex and wait ourselves.
818 * __GFP_NORETRY: don't retry and rather return failure
819 * __GFP_NOMEMALLOC: don't use emergency reserves
820 * __GFP_NOWARN: don't print a warning in case of failure
822 * For debugging, if we set the cache size to 1, no new buffers will
826 if (dm_bufio_cache_size_latch != 1) {
827 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
832 if (nf == NF_PREFETCH)
835 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
837 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
841 tried_noio_alloc = true;
844 if (!list_empty(&c->reserved_buffers)) {
845 b = list_entry(c->reserved_buffers.next,
846 struct dm_buffer, lru_list);
847 list_del(&b->lru_list);
848 c->need_reserved_buffers++;
853 b = __get_unclaimed_buffer(c);
857 __wait_for_free_buffer(c);
861 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
863 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
868 if (c->alloc_callback)
869 c->alloc_callback(b);
875 * Free a buffer and wake other threads waiting for free buffers.
877 static void __free_buffer_wake(struct dm_buffer *b)
879 struct dm_bufio_client *c = b->c;
881 if (!c->need_reserved_buffers)
884 list_add(&b->lru_list, &c->reserved_buffers);
885 c->need_reserved_buffers--;
888 wake_up(&c->free_buffer_wait);
891 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
892 struct list_head *write_list)
894 struct dm_buffer *b, *tmp;
896 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
897 BUG_ON(test_bit(B_READING, &b->state));
899 if (!test_bit(B_DIRTY, &b->state) &&
900 !test_bit(B_WRITING, &b->state)) {
901 __relink_lru(b, LIST_CLEAN);
905 if (no_wait && test_bit(B_WRITING, &b->state))
908 __write_dirty_buffer(b, write_list);
914 * Get writeback threshold and buffer limit for a given client.
916 static void __get_memory_limit(struct dm_bufio_client *c,
917 unsigned long *threshold_buffers,
918 unsigned long *limit_buffers)
920 unsigned long buffers;
922 if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
923 if (mutex_trylock(&dm_bufio_clients_lock)) {
924 __cache_size_refresh();
925 mutex_unlock(&dm_bufio_clients_lock);
929 buffers = dm_bufio_cache_size_per_client;
930 if (likely(c->sectors_per_block_bits >= 0))
931 buffers >>= c->sectors_per_block_bits + SECTOR_SHIFT;
933 buffers /= c->block_size;
935 if (buffers < c->minimum_buffers)
936 buffers = c->minimum_buffers;
938 *limit_buffers = buffers;
939 *threshold_buffers = mult_frac(buffers,
940 DM_BUFIO_WRITEBACK_PERCENT, 100);
944 * Check if we're over watermark.
945 * If we are over threshold_buffers, start freeing buffers.
946 * If we're over "limit_buffers", block until we get under the limit.
948 static void __check_watermark(struct dm_bufio_client *c,
949 struct list_head *write_list)
951 unsigned long threshold_buffers, limit_buffers;
953 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
955 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
958 struct dm_buffer *b = __get_unclaimed_buffer(c);
963 __free_buffer_wake(b);
967 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
968 __write_dirty_buffers_async(c, 1, write_list);
971 /*----------------------------------------------------------------
973 *--------------------------------------------------------------*/
975 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
976 enum new_flag nf, int *need_submit,
977 struct list_head *write_list)
979 struct dm_buffer *b, *new_b = NULL;
983 b = __find(c, block);
990 new_b = __alloc_buffer_wait(c, nf);
995 * We've had a period where the mutex was unlocked, so need to
996 * recheck the hash table.
998 b = __find(c, block);
1000 __free_buffer_wake(new_b);
1004 __check_watermark(c, write_list);
1010 __link_buffer(b, block, LIST_CLEAN);
1012 if (nf == NF_FRESH) {
1017 b->state = 1 << B_READING;
1023 if (nf == NF_PREFETCH)
1026 * Note: it is essential that we don't wait for the buffer to be
1027 * read if dm_bufio_get function is used. Both dm_bufio_get and
1028 * dm_bufio_prefetch can be used in the driver request routine.
1029 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1030 * the same buffer, it would deadlock if we waited.
1032 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1036 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1037 test_bit(B_WRITING, &b->state));
1042 * The endio routine for reading: set the error, clear the bit and wake up
1043 * anyone waiting on the buffer.
1045 static void read_endio(struct dm_buffer *b, blk_status_t status)
1047 b->read_error = status;
1049 BUG_ON(!test_bit(B_READING, &b->state));
1051 smp_mb__before_atomic();
1052 clear_bit(B_READING, &b->state);
1053 smp_mb__after_atomic();
1055 wake_up_bit(&b->state, B_READING);
1059 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1060 * functions is similar except that dm_bufio_new doesn't read the
1061 * buffer from the disk (assuming that the caller overwrites all the data
1062 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1064 static void *new_read(struct dm_bufio_client *c, sector_t block,
1065 enum new_flag nf, struct dm_buffer **bp)
1068 struct dm_buffer *b;
1070 LIST_HEAD(write_list);
1073 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1074 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1075 if (b && b->hold_count == 1)
1076 buffer_record_stack(b);
1080 __flush_write_list(&write_list);
1086 submit_io(b, REQ_OP_READ, read_endio);
1088 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1090 if (b->read_error) {
1091 int error = blk_status_to_errno(b->read_error);
1093 dm_bufio_release(b);
1095 return ERR_PTR(error);
1103 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1104 struct dm_buffer **bp)
1106 return new_read(c, block, NF_GET, bp);
1108 EXPORT_SYMBOL_GPL(dm_bufio_get);
1110 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1111 struct dm_buffer **bp)
1113 BUG_ON(dm_bufio_in_request());
1115 return new_read(c, block, NF_READ, bp);
1117 EXPORT_SYMBOL_GPL(dm_bufio_read);
1119 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1120 struct dm_buffer **bp)
1122 BUG_ON(dm_bufio_in_request());
1124 return new_read(c, block, NF_FRESH, bp);
1126 EXPORT_SYMBOL_GPL(dm_bufio_new);
1128 void dm_bufio_prefetch(struct dm_bufio_client *c,
1129 sector_t block, unsigned n_blocks)
1131 struct blk_plug plug;
1133 LIST_HEAD(write_list);
1135 BUG_ON(dm_bufio_in_request());
1137 blk_start_plug(&plug);
1140 for (; n_blocks--; block++) {
1142 struct dm_buffer *b;
1143 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1145 if (unlikely(!list_empty(&write_list))) {
1147 blk_finish_plug(&plug);
1148 __flush_write_list(&write_list);
1149 blk_start_plug(&plug);
1152 if (unlikely(b != NULL)) {
1156 submit_io(b, REQ_OP_READ, read_endio);
1157 dm_bufio_release(b);
1170 blk_finish_plug(&plug);
1172 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1174 void dm_bufio_release(struct dm_buffer *b)
1176 struct dm_bufio_client *c = b->c;
1180 BUG_ON(!b->hold_count);
1183 if (!b->hold_count) {
1184 wake_up(&c->free_buffer_wait);
1187 * If there were errors on the buffer, and the buffer is not
1188 * to be written, free the buffer. There is no point in caching
1191 if ((b->read_error || b->write_error) &&
1192 !test_bit(B_READING, &b->state) &&
1193 !test_bit(B_WRITING, &b->state) &&
1194 !test_bit(B_DIRTY, &b->state)) {
1196 __free_buffer_wake(b);
1202 EXPORT_SYMBOL_GPL(dm_bufio_release);
1204 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1205 unsigned start, unsigned end)
1207 struct dm_bufio_client *c = b->c;
1209 BUG_ON(start >= end);
1210 BUG_ON(end > b->c->block_size);
1214 BUG_ON(test_bit(B_READING, &b->state));
1216 if (!test_and_set_bit(B_DIRTY, &b->state)) {
1217 b->dirty_start = start;
1219 __relink_lru(b, LIST_DIRTY);
1221 if (start < b->dirty_start)
1222 b->dirty_start = start;
1223 if (end > b->dirty_end)
1229 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1231 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1233 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1235 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1237 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1239 LIST_HEAD(write_list);
1241 BUG_ON(dm_bufio_in_request());
1244 __write_dirty_buffers_async(c, 0, &write_list);
1246 __flush_write_list(&write_list);
1248 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1251 * For performance, it is essential that the buffers are written asynchronously
1252 * and simultaneously (so that the block layer can merge the writes) and then
1255 * Finally, we flush hardware disk cache.
1257 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1260 unsigned long buffers_processed = 0;
1261 struct dm_buffer *b, *tmp;
1263 LIST_HEAD(write_list);
1266 __write_dirty_buffers_async(c, 0, &write_list);
1268 __flush_write_list(&write_list);
1272 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1273 int dropped_lock = 0;
1275 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1276 buffers_processed++;
1278 BUG_ON(test_bit(B_READING, &b->state));
1280 if (test_bit(B_WRITING, &b->state)) {
1281 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1285 wait_on_bit_io(&b->state, B_WRITING,
1286 TASK_UNINTERRUPTIBLE);
1290 wait_on_bit_io(&b->state, B_WRITING,
1291 TASK_UNINTERRUPTIBLE);
1294 if (!test_bit(B_DIRTY, &b->state) &&
1295 !test_bit(B_WRITING, &b->state))
1296 __relink_lru(b, LIST_CLEAN);
1301 * If we dropped the lock, the list is no longer consistent,
1302 * so we must restart the search.
1304 * In the most common case, the buffer just processed is
1305 * relinked to the clean list, so we won't loop scanning the
1306 * same buffer again and again.
1308 * This may livelock if there is another thread simultaneously
1309 * dirtying buffers, so we count the number of buffers walked
1310 * and if it exceeds the total number of buffers, it means that
1311 * someone is doing some writes simultaneously with us. In
1312 * this case, stop, dropping the lock.
1317 wake_up(&c->free_buffer_wait);
1320 a = xchg(&c->async_write_error, 0);
1321 f = dm_bufio_issue_flush(c);
1327 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1330 * Use dm-io to send and empty barrier flush the device.
1332 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1334 struct dm_io_request io_req = {
1335 .bi_op = REQ_OP_WRITE,
1336 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1337 .mem.type = DM_IO_KMEM,
1338 .mem.ptr.addr = NULL,
1341 struct dm_io_region io_reg = {
1347 BUG_ON(dm_bufio_in_request());
1349 return dm_io(&io_req, 1, &io_reg, NULL);
1351 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1354 * We first delete any other buffer that may be at that new location.
1356 * Then, we write the buffer to the original location if it was dirty.
1358 * Then, if we are the only one who is holding the buffer, relink the buffer
1359 * in the hash queue for the new location.
1361 * If there was someone else holding the buffer, we write it to the new
1362 * location but not relink it, because that other user needs to have the buffer
1363 * at the same place.
1365 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1367 struct dm_bufio_client *c = b->c;
1368 struct dm_buffer *new;
1370 BUG_ON(dm_bufio_in_request());
1375 new = __find(c, new_block);
1377 if (new->hold_count) {
1378 __wait_for_free_buffer(c);
1383 * FIXME: Is there any point waiting for a write that's going
1384 * to be overwritten in a bit?
1386 __make_buffer_clean(new);
1387 __unlink_buffer(new);
1388 __free_buffer_wake(new);
1391 BUG_ON(!b->hold_count);
1392 BUG_ON(test_bit(B_READING, &b->state));
1394 __write_dirty_buffer(b, NULL);
1395 if (b->hold_count == 1) {
1396 wait_on_bit_io(&b->state, B_WRITING,
1397 TASK_UNINTERRUPTIBLE);
1398 set_bit(B_DIRTY, &b->state);
1400 b->dirty_end = c->block_size;
1402 __link_buffer(b, new_block, LIST_DIRTY);
1405 wait_on_bit_lock_io(&b->state, B_WRITING,
1406 TASK_UNINTERRUPTIBLE);
1408 * Relink buffer to "new_block" so that write_callback
1409 * sees "new_block" as a block number.
1410 * After the write, link the buffer back to old_block.
1411 * All this must be done in bufio lock, so that block number
1412 * change isn't visible to other threads.
1414 old_block = b->block;
1416 __link_buffer(b, new_block, b->list_mode);
1417 submit_io(b, REQ_OP_WRITE, write_endio);
1418 wait_on_bit_io(&b->state, B_WRITING,
1419 TASK_UNINTERRUPTIBLE);
1421 __link_buffer(b, old_block, b->list_mode);
1425 dm_bufio_release(b);
1427 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1430 * Free the given buffer.
1432 * This is just a hint, if the buffer is in use or dirty, this function
1435 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1437 struct dm_buffer *b;
1441 b = __find(c, block);
1442 if (b && likely(!b->hold_count) && likely(!b->state)) {
1444 __free_buffer_wake(b);
1449 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1451 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1453 c->minimum_buffers = n;
1455 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1457 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1459 return c->block_size;
1461 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1463 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1465 sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1470 if (likely(c->sectors_per_block_bits >= 0))
1471 s >>= c->sectors_per_block_bits;
1473 sector_div(s, c->block_size >> SECTOR_SHIFT);
1476 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1478 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1482 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1484 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1488 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1490 void *dm_bufio_get_block_data(struct dm_buffer *b)
1494 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1496 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1500 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1502 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1506 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1508 static void drop_buffers(struct dm_bufio_client *c)
1510 struct dm_buffer *b;
1512 bool warned = false;
1514 BUG_ON(dm_bufio_in_request());
1517 * An optimization so that the buffers are not written one-by-one.
1519 dm_bufio_write_dirty_buffers_async(c);
1523 while ((b = __get_unclaimed_buffer(c)))
1524 __free_buffer_wake(b);
1526 for (i = 0; i < LIST_SIZE; i++)
1527 list_for_each_entry(b, &c->lru[i], lru_list) {
1530 DMERR("leaked buffer %llx, hold count %u, list %d",
1531 (unsigned long long)b->block, b->hold_count, i);
1532 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1533 print_stack_trace(&b->stack_trace, 1);
1534 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1538 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1539 while ((b = __get_unclaimed_buffer(c)))
1540 __free_buffer_wake(b);
1543 for (i = 0; i < LIST_SIZE; i++)
1544 BUG_ON(!list_empty(&c->lru[i]));
1550 * We may not be able to evict this buffer if IO pending or the client
1551 * is still using it. Caller is expected to know buffer is too old.
1553 * And if GFP_NOFS is used, we must not do any I/O because we hold
1554 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1555 * rerouted to different bufio client.
1557 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1559 if (!(gfp & __GFP_FS)) {
1560 if (test_bit(B_READING, &b->state) ||
1561 test_bit(B_WRITING, &b->state) ||
1562 test_bit(B_DIRTY, &b->state))
1569 __make_buffer_clean(b);
1571 __free_buffer_wake(b);
1576 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1578 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1579 if (likely(c->sectors_per_block_bits >= 0))
1580 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1582 retain_bytes /= c->block_size;
1583 return retain_bytes;
1586 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1590 struct dm_buffer *b, *tmp;
1591 unsigned long freed = 0;
1592 unsigned long count = c->n_buffers[LIST_CLEAN] +
1593 c->n_buffers[LIST_DIRTY];
1594 unsigned long retain_target = get_retain_buffers(c);
1596 for (l = 0; l < LIST_SIZE; l++) {
1597 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1598 if (__try_evict_buffer(b, gfp_mask))
1600 if (!--nr_to_scan || ((count - freed) <= retain_target))
1608 static unsigned long
1609 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1611 struct dm_bufio_client *c;
1612 unsigned long freed;
1614 c = container_of(shrink, struct dm_bufio_client, shrinker);
1615 if (sc->gfp_mask & __GFP_FS)
1617 else if (!dm_bufio_trylock(c))
1620 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1625 static unsigned long
1626 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1628 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1629 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1630 READ_ONCE(c->n_buffers[LIST_DIRTY]);
1631 unsigned long retain_target = get_retain_buffers(c);
1633 return (count < retain_target) ? 0 : (count - retain_target);
1637 * Create the buffering interface
1639 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1640 unsigned reserved_buffers, unsigned aux_size,
1641 void (*alloc_callback)(struct dm_buffer *),
1642 void (*write_callback)(struct dm_buffer *))
1645 struct dm_bufio_client *c;
1649 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1650 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1655 c = kzalloc(sizeof(*c), GFP_KERNEL);
1660 c->buffer_tree = RB_ROOT;
1663 c->block_size = block_size;
1664 if (is_power_of_2(block_size))
1665 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1667 c->sectors_per_block_bits = -1;
1669 c->alloc_callback = alloc_callback;
1670 c->write_callback = write_callback;
1672 for (i = 0; i < LIST_SIZE; i++) {
1673 INIT_LIST_HEAD(&c->lru[i]);
1674 c->n_buffers[i] = 0;
1677 mutex_init(&c->lock);
1678 INIT_LIST_HEAD(&c->reserved_buffers);
1679 c->need_reserved_buffers = reserved_buffers;
1681 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1683 init_waitqueue_head(&c->free_buffer_wait);
1684 c->async_write_error = 0;
1686 c->dm_io = dm_io_client_create();
1687 if (IS_ERR(c->dm_io)) {
1688 r = PTR_ERR(c->dm_io);
1692 if (block_size <= KMALLOC_MAX_SIZE &&
1693 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1694 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1695 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1696 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1697 SLAB_RECLAIM_ACCOUNT, NULL);
1698 if (!c->slab_cache) {
1704 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1706 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1707 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1708 0, SLAB_RECLAIM_ACCOUNT, NULL);
1709 if (!c->slab_buffer) {
1714 while (c->need_reserved_buffers) {
1715 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1721 __free_buffer_wake(b);
1724 c->shrinker.count_objects = dm_bufio_shrink_count;
1725 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1726 c->shrinker.seeks = 1;
1727 c->shrinker.batch = 0;
1728 r = register_shrinker(&c->shrinker);
1732 mutex_lock(&dm_bufio_clients_lock);
1733 dm_bufio_client_count++;
1734 list_add(&c->client_list, &dm_bufio_all_clients);
1735 __cache_size_refresh();
1736 mutex_unlock(&dm_bufio_clients_lock);
1741 while (!list_empty(&c->reserved_buffers)) {
1742 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1743 struct dm_buffer, lru_list);
1744 list_del(&b->lru_list);
1747 kmem_cache_destroy(c->slab_cache);
1748 kmem_cache_destroy(c->slab_buffer);
1749 dm_io_client_destroy(c->dm_io);
1751 mutex_destroy(&c->lock);
1756 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1759 * Free the buffering interface.
1760 * It is required that there are no references on any buffers.
1762 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1768 unregister_shrinker(&c->shrinker);
1770 mutex_lock(&dm_bufio_clients_lock);
1772 list_del(&c->client_list);
1773 dm_bufio_client_count--;
1774 __cache_size_refresh();
1776 mutex_unlock(&dm_bufio_clients_lock);
1778 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1779 BUG_ON(c->need_reserved_buffers);
1781 while (!list_empty(&c->reserved_buffers)) {
1782 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1783 struct dm_buffer, lru_list);
1784 list_del(&b->lru_list);
1788 for (i = 0; i < LIST_SIZE; i++)
1789 if (c->n_buffers[i])
1790 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1792 for (i = 0; i < LIST_SIZE; i++)
1793 BUG_ON(c->n_buffers[i]);
1795 kmem_cache_destroy(c->slab_cache);
1796 kmem_cache_destroy(c->slab_buffer);
1797 dm_io_client_destroy(c->dm_io);
1798 mutex_destroy(&c->lock);
1801 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1803 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1807 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1809 static unsigned get_max_age_hz(void)
1811 unsigned max_age = READ_ONCE(dm_bufio_max_age);
1813 if (max_age > UINT_MAX / HZ)
1814 max_age = UINT_MAX / HZ;
1816 return max_age * HZ;
1819 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1821 return time_after_eq(jiffies, b->last_accessed + age_hz);
1824 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1826 struct dm_buffer *b, *tmp;
1827 unsigned long retain_target = get_retain_buffers(c);
1828 unsigned long count;
1829 LIST_HEAD(write_list);
1833 __check_watermark(c, &write_list);
1834 if (unlikely(!list_empty(&write_list))) {
1836 __flush_write_list(&write_list);
1840 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1841 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1842 if (count <= retain_target)
1845 if (!older_than(b, age_hz))
1848 if (__try_evict_buffer(b, 0))
1857 static void cleanup_old_buffers(void)
1859 unsigned long max_age_hz = get_max_age_hz();
1860 struct dm_bufio_client *c;
1862 mutex_lock(&dm_bufio_clients_lock);
1864 __cache_size_refresh();
1866 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1867 __evict_old_buffers(c, max_age_hz);
1869 mutex_unlock(&dm_bufio_clients_lock);
1872 static struct workqueue_struct *dm_bufio_wq;
1873 static struct delayed_work dm_bufio_work;
1875 static void work_fn(struct work_struct *w)
1877 cleanup_old_buffers();
1879 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1880 DM_BUFIO_WORK_TIMER_SECS * HZ);
1883 /*----------------------------------------------------------------
1885 *--------------------------------------------------------------*/
1888 * This is called only once for the whole dm_bufio module.
1889 * It initializes memory limit.
1891 static int __init dm_bufio_init(void)
1895 dm_bufio_allocated_kmem_cache = 0;
1896 dm_bufio_allocated_get_free_pages = 0;
1897 dm_bufio_allocated_vmalloc = 0;
1898 dm_bufio_current_allocated = 0;
1900 mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1901 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1903 if (mem > ULONG_MAX)
1907 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1908 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1911 dm_bufio_default_cache_size = mem;
1913 mutex_lock(&dm_bufio_clients_lock);
1914 __cache_size_refresh();
1915 mutex_unlock(&dm_bufio_clients_lock);
1917 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1921 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1922 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1923 DM_BUFIO_WORK_TIMER_SECS * HZ);
1929 * This is called once when unloading the dm_bufio module.
1931 static void __exit dm_bufio_exit(void)
1935 cancel_delayed_work_sync(&dm_bufio_work);
1936 destroy_workqueue(dm_bufio_wq);
1938 if (dm_bufio_client_count) {
1939 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1940 __func__, dm_bufio_client_count);
1944 if (dm_bufio_current_allocated) {
1945 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1946 __func__, dm_bufio_current_allocated);
1950 if (dm_bufio_allocated_get_free_pages) {
1951 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1952 __func__, dm_bufio_allocated_get_free_pages);
1956 if (dm_bufio_allocated_vmalloc) {
1957 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1958 __func__, dm_bufio_allocated_vmalloc);
1965 module_init(dm_bufio_init)
1966 module_exit(dm_bufio_exit)
1968 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1969 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1971 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1972 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1974 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1975 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1977 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1978 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1980 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1981 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1983 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1984 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1986 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1987 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1989 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1990 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1992 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1993 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1994 MODULE_LICENSE("GPL");