GNU Linux-libre 4.9.284-gnu1
[releases.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20
21 #define DM_MSG_PREFIX "bufio"
22
23 /*
24  * Memory management policy:
25  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29  *      dirty buffers.
30  */
31 #define DM_BUFIO_MIN_BUFFERS            8
32
33 #define DM_BUFIO_MEMORY_PERCENT         2
34 #define DM_BUFIO_VMALLOC_PERCENT        25
35 #define DM_BUFIO_WRITEBACK_PERCENT      75
36
37 /*
38  * Check buffer ages in this interval (seconds)
39  */
40 #define DM_BUFIO_WORK_TIMER_SECS        30
41
42 /*
43  * Free buffers when they are older than this (seconds)
44  */
45 #define DM_BUFIO_DEFAULT_AGE_SECS       300
46
47 /*
48  * The nr of bytes of cached data to keep around.
49  */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
51
52 /*
53  * The number of bvec entries that are embedded directly in the buffer.
54  * If the chunk size is larger, dm-io is used to do the io.
55  */
56 #define DM_BUFIO_INLINE_VECS            16
57
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN      0
69 #define LIST_DIRTY      1
70 #define LIST_SIZE       2
71
72 /*
73  * Linking of buffers:
74  *      All buffers are linked to cache_hash with their hash_list field.
75  *
76  *      Clean buffers that are not being written (B_WRITING not set)
77  *      are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *      Dirty and clean buffers that are being written are linked to
80  *      lru[LIST_DIRTY] with their lru_list field. When the write
81  *      finishes, the buffer cannot be relinked immediately (because we
82  *      are in an interrupt context and relinking requires process
83  *      context), so some clean-not-writing buffers can be held on
84  *      dirty_lru too.  They are later added to lru in the process
85  *      context.
86  */
87 struct dm_bufio_client {
88         struct mutex lock;
89
90         struct list_head lru[LIST_SIZE];
91         unsigned long n_buffers[LIST_SIZE];
92
93         struct block_device *bdev;
94         unsigned block_size;
95         unsigned char sectors_per_block_bits;
96         unsigned char pages_per_block_bits;
97         unsigned char blocks_per_page_bits;
98         unsigned aux_size;
99         void (*alloc_callback)(struct dm_buffer *);
100         void (*write_callback)(struct dm_buffer *);
101
102         struct dm_io_client *dm_io;
103
104         struct list_head reserved_buffers;
105         unsigned need_reserved_buffers;
106
107         unsigned minimum_buffers;
108
109         struct rb_root buffer_tree;
110         wait_queue_head_t free_buffer_wait;
111
112         int async_write_error;
113
114         struct list_head client_list;
115         struct shrinker shrinker;
116 };
117
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING       0
122 #define B_WRITING       1
123 #define B_DIRTY         2
124
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131         DATA_MODE_SLAB = 0,
132         DATA_MODE_GET_FREE_PAGES = 1,
133         DATA_MODE_VMALLOC = 2,
134         DATA_MODE_LIMIT = 3
135 };
136
137 struct dm_buffer {
138         struct rb_node node;
139         struct list_head lru_list;
140         sector_t block;
141         void *data;
142         enum data_mode data_mode;
143         unsigned char list_mode;                /* LIST_* */
144         unsigned hold_count;
145         int read_error;
146         int write_error;
147         unsigned long state;
148         unsigned long last_accessed;
149         struct dm_bufio_client *c;
150         struct list_head write_list;
151         struct bio bio;
152         struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155         struct stack_trace stack_trace;
156         unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159
160 /*----------------------------------------------------------------*/
161
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164
165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167         unsigned ret = c->blocks_per_page_bits - 1;
168
169         BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170
171         return ret;
172 }
173
174 #define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
176
177 #define dm_bufio_in_request()   (!!current->bio_list)
178
179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181         mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183
184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186         return mutex_trylock(&c->lock);
187 }
188
189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191         mutex_unlock(&c->lock);
192 }
193
194 /*----------------------------------------------------------------*/
195
196 /*
197  * Default cache size: available memory divided by the ratio.
198  */
199 static unsigned long dm_bufio_default_cache_size;
200
201 /*
202  * Total cache size set by the user.
203  */
204 static unsigned long dm_bufio_cache_size;
205
206 /*
207  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
208  * at any time.  If it disagrees, the user has changed cache size.
209  */
210 static unsigned long dm_bufio_cache_size_latch;
211
212 static DEFINE_SPINLOCK(param_spinlock);
213
214 /*
215  * Buffers are freed after this timeout
216  */
217 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
218 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
219
220 static unsigned long dm_bufio_peak_allocated;
221 static unsigned long dm_bufio_allocated_kmem_cache;
222 static unsigned long dm_bufio_allocated_get_free_pages;
223 static unsigned long dm_bufio_allocated_vmalloc;
224 static unsigned long dm_bufio_current_allocated;
225
226 /*----------------------------------------------------------------*/
227
228 /*
229  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
230  */
231 static unsigned long dm_bufio_cache_size_per_client;
232
233 /*
234  * The current number of clients.
235  */
236 static int dm_bufio_client_count;
237
238 /*
239  * The list of all clients.
240  */
241 static LIST_HEAD(dm_bufio_all_clients);
242
243 /*
244  * This mutex protects dm_bufio_cache_size_latch,
245  * dm_bufio_cache_size_per_client and dm_bufio_client_count
246  */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248
249 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
250 static void buffer_record_stack(struct dm_buffer *b)
251 {
252         b->stack_trace.nr_entries = 0;
253         b->stack_trace.max_entries = MAX_STACK;
254         b->stack_trace.entries = b->stack_entries;
255         b->stack_trace.skip = 2;
256         save_stack_trace(&b->stack_trace);
257 }
258 #endif
259
260 /*----------------------------------------------------------------
261  * A red/black tree acts as an index for all the buffers.
262  *--------------------------------------------------------------*/
263 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
264 {
265         struct rb_node *n = c->buffer_tree.rb_node;
266         struct dm_buffer *b;
267
268         while (n) {
269                 b = container_of(n, struct dm_buffer, node);
270
271                 if (b->block == block)
272                         return b;
273
274                 n = (b->block < block) ? n->rb_left : n->rb_right;
275         }
276
277         return NULL;
278 }
279
280 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
281 {
282         struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
283         struct dm_buffer *found;
284
285         while (*new) {
286                 found = container_of(*new, struct dm_buffer, node);
287
288                 if (found->block == b->block) {
289                         BUG_ON(found != b);
290                         return;
291                 }
292
293                 parent = *new;
294                 new = (found->block < b->block) ?
295                         &((*new)->rb_left) : &((*new)->rb_right);
296         }
297
298         rb_link_node(&b->node, parent, new);
299         rb_insert_color(&b->node, &c->buffer_tree);
300 }
301
302 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
303 {
304         rb_erase(&b->node, &c->buffer_tree);
305 }
306
307 /*----------------------------------------------------------------*/
308
309 static void adjust_total_allocated(enum data_mode data_mode, long diff)
310 {
311         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
312                 &dm_bufio_allocated_kmem_cache,
313                 &dm_bufio_allocated_get_free_pages,
314                 &dm_bufio_allocated_vmalloc,
315         };
316
317         spin_lock(&param_spinlock);
318
319         *class_ptr[data_mode] += diff;
320
321         dm_bufio_current_allocated += diff;
322
323         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
324                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
325
326         spin_unlock(&param_spinlock);
327 }
328
329 /*
330  * Change the number of clients and recalculate per-client limit.
331  */
332 static void __cache_size_refresh(void)
333 {
334         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
335         BUG_ON(dm_bufio_client_count < 0);
336
337         dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
338
339         /*
340          * Use default if set to 0 and report the actual cache size used.
341          */
342         if (!dm_bufio_cache_size_latch) {
343                 (void)cmpxchg(&dm_bufio_cache_size, 0,
344                               dm_bufio_default_cache_size);
345                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
346         }
347
348         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
349                                          (dm_bufio_client_count ? : 1);
350 }
351
352 /*
353  * Allocating buffer data.
354  *
355  * Small buffers are allocated with kmem_cache, to use space optimally.
356  *
357  * For large buffers, we choose between get_free_pages and vmalloc.
358  * Each has advantages and disadvantages.
359  *
360  * __get_free_pages can randomly fail if the memory is fragmented.
361  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
362  * as low as 128M) so using it for caching is not appropriate.
363  *
364  * If the allocation may fail we use __get_free_pages. Memory fragmentation
365  * won't have a fatal effect here, but it just causes flushes of some other
366  * buffers and more I/O will be performed. Don't use __get_free_pages if it
367  * always fails (i.e. order >= MAX_ORDER).
368  *
369  * If the allocation shouldn't fail we use __vmalloc. This is only for the
370  * initial reserve allocation, so there's no risk of wasting all vmalloc
371  * space.
372  */
373 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
374                                enum data_mode *data_mode)
375 {
376         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
377                 *data_mode = DATA_MODE_SLAB;
378                 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
379         }
380
381         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
382             gfp_mask & __GFP_NORETRY) {
383                 *data_mode = DATA_MODE_GET_FREE_PAGES;
384                 return (void *)__get_free_pages(gfp_mask,
385                                                 c->pages_per_block_bits);
386         }
387
388         *data_mode = DATA_MODE_VMALLOC;
389
390         /*
391          * __vmalloc allocates the data pages and auxiliary structures with
392          * gfp_flags that were specified, but pagetables are always allocated
393          * with GFP_KERNEL, no matter what was specified as gfp_mask.
394          *
395          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
396          * all allocations done by this process (including pagetables) are done
397          * as if GFP_NOIO was specified.
398          */
399         if (gfp_mask & __GFP_NORETRY) {
400                 unsigned noio_flag = memalloc_noio_save();
401                 void *ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM,
402                                       PAGE_KERNEL);
403
404                 memalloc_noio_restore(noio_flag);
405                 return ptr;
406         }
407
408         return __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
409 }
410
411 /*
412  * Free buffer's data.
413  */
414 static void free_buffer_data(struct dm_bufio_client *c,
415                              void *data, enum data_mode data_mode)
416 {
417         switch (data_mode) {
418         case DATA_MODE_SLAB:
419                 kmem_cache_free(DM_BUFIO_CACHE(c), data);
420                 break;
421
422         case DATA_MODE_GET_FREE_PAGES:
423                 free_pages((unsigned long)data, c->pages_per_block_bits);
424                 break;
425
426         case DATA_MODE_VMALLOC:
427                 vfree(data);
428                 break;
429
430         default:
431                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
432                        data_mode);
433                 BUG();
434         }
435 }
436
437 /*
438  * Allocate buffer and its data.
439  */
440 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
441 {
442         struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
443                                       gfp_mask);
444
445         if (!b)
446                 return NULL;
447
448         b->c = c;
449
450         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
451         if (!b->data) {
452                 kfree(b);
453                 return NULL;
454         }
455
456         adjust_total_allocated(b->data_mode, (long)c->block_size);
457
458 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
459         memset(&b->stack_trace, 0, sizeof(b->stack_trace));
460 #endif
461         return b;
462 }
463
464 /*
465  * Free buffer and its data.
466  */
467 static void free_buffer(struct dm_buffer *b)
468 {
469         struct dm_bufio_client *c = b->c;
470
471         adjust_total_allocated(b->data_mode, -(long)c->block_size);
472
473         free_buffer_data(c, b->data, b->data_mode);
474         kfree(b);
475 }
476
477 /*
478  * Link buffer to the hash list and clean or dirty queue.
479  */
480 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
481 {
482         struct dm_bufio_client *c = b->c;
483
484         c->n_buffers[dirty]++;
485         b->block = block;
486         b->list_mode = dirty;
487         list_add(&b->lru_list, &c->lru[dirty]);
488         __insert(b->c, b);
489         b->last_accessed = jiffies;
490 }
491
492 /*
493  * Unlink buffer from the hash list and dirty or clean queue.
494  */
495 static void __unlink_buffer(struct dm_buffer *b)
496 {
497         struct dm_bufio_client *c = b->c;
498
499         BUG_ON(!c->n_buffers[b->list_mode]);
500
501         c->n_buffers[b->list_mode]--;
502         __remove(b->c, b);
503         list_del(&b->lru_list);
504 }
505
506 /*
507  * Place the buffer to the head of dirty or clean LRU queue.
508  */
509 static void __relink_lru(struct dm_buffer *b, int dirty)
510 {
511         struct dm_bufio_client *c = b->c;
512
513         BUG_ON(!c->n_buffers[b->list_mode]);
514
515         c->n_buffers[b->list_mode]--;
516         c->n_buffers[dirty]++;
517         b->list_mode = dirty;
518         list_move(&b->lru_list, &c->lru[dirty]);
519         b->last_accessed = jiffies;
520 }
521
522 /*----------------------------------------------------------------
523  * Submit I/O on the buffer.
524  *
525  * Bio interface is faster but it has some problems:
526  *      the vector list is limited (increasing this limit increases
527  *      memory-consumption per buffer, so it is not viable);
528  *
529  *      the memory must be direct-mapped, not vmalloced;
530  *
531  *      the I/O driver can reject requests spuriously if it thinks that
532  *      the requests are too big for the device or if they cross a
533  *      controller-defined memory boundary.
534  *
535  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
536  * it is not vmalloced, try using the bio interface.
537  *
538  * If the buffer is big, if it is vmalloced or if the underlying device
539  * rejects the bio because it is too large, use dm-io layer to do the I/O.
540  * The dm-io layer splits the I/O into multiple requests, avoiding the above
541  * shortcomings.
542  *--------------------------------------------------------------*/
543
544 /*
545  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
546  * that the request was handled directly with bio interface.
547  */
548 static void dmio_complete(unsigned long error, void *context)
549 {
550         struct dm_buffer *b = context;
551
552         b->bio.bi_error = error ? -EIO : 0;
553         b->bio.bi_end_io(&b->bio);
554 }
555
556 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
557                      bio_end_io_t *end_io)
558 {
559         int r;
560         struct dm_io_request io_req = {
561                 .bi_op = rw,
562                 .bi_op_flags = 0,
563                 .notify.fn = dmio_complete,
564                 .notify.context = b,
565                 .client = b->c->dm_io,
566         };
567         struct dm_io_region region = {
568                 .bdev = b->c->bdev,
569                 .sector = block << b->c->sectors_per_block_bits,
570                 .count = b->c->block_size >> SECTOR_SHIFT,
571         };
572
573         if (b->data_mode != DATA_MODE_VMALLOC) {
574                 io_req.mem.type = DM_IO_KMEM;
575                 io_req.mem.ptr.addr = b->data;
576         } else {
577                 io_req.mem.type = DM_IO_VMA;
578                 io_req.mem.ptr.vma = b->data;
579         }
580
581         b->bio.bi_end_io = end_io;
582
583         r = dm_io(&io_req, 1, &region, NULL);
584         if (r) {
585                 b->bio.bi_error = r;
586                 end_io(&b->bio);
587         }
588 }
589
590 static void inline_endio(struct bio *bio)
591 {
592         bio_end_io_t *end_fn = bio->bi_private;
593         int error = bio->bi_error;
594
595         /*
596          * Reset the bio to free any attached resources
597          * (e.g. bio integrity profiles).
598          */
599         bio_reset(bio);
600
601         bio->bi_error = error;
602         end_fn(bio);
603 }
604
605 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
606                            bio_end_io_t *end_io)
607 {
608         char *ptr;
609         int len;
610
611         bio_init(&b->bio);
612         b->bio.bi_io_vec = b->bio_vec;
613         b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
614         b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
615         b->bio.bi_bdev = b->c->bdev;
616         b->bio.bi_end_io = inline_endio;
617         /*
618          * Use of .bi_private isn't a problem here because
619          * the dm_buffer's inline bio is local to bufio.
620          */
621         b->bio.bi_private = end_io;
622         bio_set_op_attrs(&b->bio, rw, 0);
623
624         /*
625          * We assume that if len >= PAGE_SIZE ptr is page-aligned.
626          * If len < PAGE_SIZE the buffer doesn't cross page boundary.
627          */
628         ptr = b->data;
629         len = b->c->block_size;
630
631         if (len >= PAGE_SIZE)
632                 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
633         else
634                 BUG_ON((unsigned long)ptr & (len - 1));
635
636         do {
637                 if (!bio_add_page(&b->bio, virt_to_page(ptr),
638                                   len < PAGE_SIZE ? len : PAGE_SIZE,
639                                   offset_in_page(ptr))) {
640                         BUG_ON(b->c->block_size <= PAGE_SIZE);
641                         use_dmio(b, rw, block, end_io);
642                         return;
643                 }
644
645                 len -= PAGE_SIZE;
646                 ptr += PAGE_SIZE;
647         } while (len > 0);
648
649         submit_bio(&b->bio);
650 }
651
652 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
653                       bio_end_io_t *end_io)
654 {
655         if (rw == WRITE && b->c->write_callback)
656                 b->c->write_callback(b);
657
658         if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
659             b->data_mode != DATA_MODE_VMALLOC)
660                 use_inline_bio(b, rw, block, end_io);
661         else
662                 use_dmio(b, rw, block, end_io);
663 }
664
665 /*----------------------------------------------------------------
666  * Writing dirty buffers
667  *--------------------------------------------------------------*/
668
669 /*
670  * The endio routine for write.
671  *
672  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
673  * it.
674  */
675 static void write_endio(struct bio *bio)
676 {
677         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
678
679         b->write_error = bio->bi_error;
680         if (unlikely(bio->bi_error)) {
681                 struct dm_bufio_client *c = b->c;
682                 int error = bio->bi_error;
683                 (void)cmpxchg(&c->async_write_error, 0, error);
684         }
685
686         BUG_ON(!test_bit(B_WRITING, &b->state));
687
688         smp_mb__before_atomic();
689         clear_bit(B_WRITING, &b->state);
690         smp_mb__after_atomic();
691
692         wake_up_bit(&b->state, B_WRITING);
693 }
694
695 /*
696  * Initiate a write on a dirty buffer, but don't wait for it.
697  *
698  * - If the buffer is not dirty, exit.
699  * - If there some previous write going on, wait for it to finish (we can't
700  *   have two writes on the same buffer simultaneously).
701  * - Submit our write and don't wait on it. We set B_WRITING indicating
702  *   that there is a write in progress.
703  */
704 static void __write_dirty_buffer(struct dm_buffer *b,
705                                  struct list_head *write_list)
706 {
707         if (!test_bit(B_DIRTY, &b->state))
708                 return;
709
710         clear_bit(B_DIRTY, &b->state);
711         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
712
713         if (!write_list)
714                 submit_io(b, WRITE, b->block, write_endio);
715         else
716                 list_add_tail(&b->write_list, write_list);
717 }
718
719 static void __flush_write_list(struct list_head *write_list)
720 {
721         struct blk_plug plug;
722         blk_start_plug(&plug);
723         while (!list_empty(write_list)) {
724                 struct dm_buffer *b =
725                         list_entry(write_list->next, struct dm_buffer, write_list);
726                 list_del(&b->write_list);
727                 submit_io(b, WRITE, b->block, write_endio);
728                 cond_resched();
729         }
730         blk_finish_plug(&plug);
731 }
732
733 /*
734  * Wait until any activity on the buffer finishes.  Possibly write the
735  * buffer if it is dirty.  When this function finishes, there is no I/O
736  * running on the buffer and the buffer is not dirty.
737  */
738 static void __make_buffer_clean(struct dm_buffer *b)
739 {
740         BUG_ON(b->hold_count);
741
742         if (!b->state)  /* fast case */
743                 return;
744
745         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
746         __write_dirty_buffer(b, NULL);
747         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
748 }
749
750 /*
751  * Find some buffer that is not held by anybody, clean it, unlink it and
752  * return it.
753  */
754 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
755 {
756         struct dm_buffer *b;
757
758         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
759                 BUG_ON(test_bit(B_WRITING, &b->state));
760                 BUG_ON(test_bit(B_DIRTY, &b->state));
761
762                 if (!b->hold_count) {
763                         __make_buffer_clean(b);
764                         __unlink_buffer(b);
765                         return b;
766                 }
767                 cond_resched();
768         }
769
770         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
771                 BUG_ON(test_bit(B_READING, &b->state));
772
773                 if (!b->hold_count) {
774                         __make_buffer_clean(b);
775                         __unlink_buffer(b);
776                         return b;
777                 }
778                 cond_resched();
779         }
780
781         return NULL;
782 }
783
784 /*
785  * Wait until some other threads free some buffer or release hold count on
786  * some buffer.
787  *
788  * This function is entered with c->lock held, drops it and regains it
789  * before exiting.
790  */
791 static void __wait_for_free_buffer(struct dm_bufio_client *c)
792 {
793         DECLARE_WAITQUEUE(wait, current);
794
795         add_wait_queue(&c->free_buffer_wait, &wait);
796         set_task_state(current, TASK_UNINTERRUPTIBLE);
797         dm_bufio_unlock(c);
798
799         io_schedule();
800
801         remove_wait_queue(&c->free_buffer_wait, &wait);
802
803         dm_bufio_lock(c);
804 }
805
806 enum new_flag {
807         NF_FRESH = 0,
808         NF_READ = 1,
809         NF_GET = 2,
810         NF_PREFETCH = 3
811 };
812
813 /*
814  * Allocate a new buffer. If the allocation is not possible, wait until
815  * some other thread frees a buffer.
816  *
817  * May drop the lock and regain it.
818  */
819 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
820 {
821         struct dm_buffer *b;
822         bool tried_noio_alloc = false;
823
824         /*
825          * dm-bufio is resistant to allocation failures (it just keeps
826          * one buffer reserved in cases all the allocations fail).
827          * So set flags to not try too hard:
828          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
829          *                  mutex and wait ourselves.
830          *      __GFP_NORETRY: don't retry and rather return failure
831          *      __GFP_NOMEMALLOC: don't use emergency reserves
832          *      __GFP_NOWARN: don't print a warning in case of failure
833          *
834          * For debugging, if we set the cache size to 1, no new buffers will
835          * be allocated.
836          */
837         while (1) {
838                 if (dm_bufio_cache_size_latch != 1) {
839                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
840                         if (b)
841                                 return b;
842                 }
843
844                 if (nf == NF_PREFETCH)
845                         return NULL;
846
847                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
848                         dm_bufio_unlock(c);
849                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
850                         dm_bufio_lock(c);
851                         if (b)
852                                 return b;
853                         tried_noio_alloc = true;
854                 }
855
856                 if (!list_empty(&c->reserved_buffers)) {
857                         b = list_entry(c->reserved_buffers.next,
858                                        struct dm_buffer, lru_list);
859                         list_del(&b->lru_list);
860                         c->need_reserved_buffers++;
861
862                         return b;
863                 }
864
865                 b = __get_unclaimed_buffer(c);
866                 if (b)
867                         return b;
868
869                 __wait_for_free_buffer(c);
870         }
871 }
872
873 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
874 {
875         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
876
877         if (!b)
878                 return NULL;
879
880         if (c->alloc_callback)
881                 c->alloc_callback(b);
882
883         return b;
884 }
885
886 /*
887  * Free a buffer and wake other threads waiting for free buffers.
888  */
889 static void __free_buffer_wake(struct dm_buffer *b)
890 {
891         struct dm_bufio_client *c = b->c;
892
893         if (!c->need_reserved_buffers)
894                 free_buffer(b);
895         else {
896                 list_add(&b->lru_list, &c->reserved_buffers);
897                 c->need_reserved_buffers--;
898         }
899
900         wake_up(&c->free_buffer_wait);
901 }
902
903 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
904                                         struct list_head *write_list)
905 {
906         struct dm_buffer *b, *tmp;
907
908         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
909                 BUG_ON(test_bit(B_READING, &b->state));
910
911                 if (!test_bit(B_DIRTY, &b->state) &&
912                     !test_bit(B_WRITING, &b->state)) {
913                         __relink_lru(b, LIST_CLEAN);
914                         continue;
915                 }
916
917                 if (no_wait && test_bit(B_WRITING, &b->state))
918                         return;
919
920                 __write_dirty_buffer(b, write_list);
921                 cond_resched();
922         }
923 }
924
925 /*
926  * Get writeback threshold and buffer limit for a given client.
927  */
928 static void __get_memory_limit(struct dm_bufio_client *c,
929                                unsigned long *threshold_buffers,
930                                unsigned long *limit_buffers)
931 {
932         unsigned long buffers;
933
934         if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
935                 if (mutex_trylock(&dm_bufio_clients_lock)) {
936                         __cache_size_refresh();
937                         mutex_unlock(&dm_bufio_clients_lock);
938                 }
939         }
940
941         buffers = dm_bufio_cache_size_per_client >>
942                   (c->sectors_per_block_bits + SECTOR_SHIFT);
943
944         if (buffers < c->minimum_buffers)
945                 buffers = c->minimum_buffers;
946
947         *limit_buffers = buffers;
948         *threshold_buffers = mult_frac(buffers,
949                                        DM_BUFIO_WRITEBACK_PERCENT, 100);
950 }
951
952 /*
953  * Check if we're over watermark.
954  * If we are over threshold_buffers, start freeing buffers.
955  * If we're over "limit_buffers", block until we get under the limit.
956  */
957 static void __check_watermark(struct dm_bufio_client *c,
958                               struct list_head *write_list)
959 {
960         unsigned long threshold_buffers, limit_buffers;
961
962         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
963
964         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
965                limit_buffers) {
966
967                 struct dm_buffer *b = __get_unclaimed_buffer(c);
968
969                 if (!b)
970                         return;
971
972                 __free_buffer_wake(b);
973                 cond_resched();
974         }
975
976         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
977                 __write_dirty_buffers_async(c, 1, write_list);
978 }
979
980 /*----------------------------------------------------------------
981  * Getting a buffer
982  *--------------------------------------------------------------*/
983
984 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
985                                      enum new_flag nf, int *need_submit,
986                                      struct list_head *write_list)
987 {
988         struct dm_buffer *b, *new_b = NULL;
989
990         *need_submit = 0;
991
992         b = __find(c, block);
993         if (b)
994                 goto found_buffer;
995
996         if (nf == NF_GET)
997                 return NULL;
998
999         new_b = __alloc_buffer_wait(c, nf);
1000         if (!new_b)
1001                 return NULL;
1002
1003         /*
1004          * We've had a period where the mutex was unlocked, so need to
1005          * recheck the hash table.
1006          */
1007         b = __find(c, block);
1008         if (b) {
1009                 __free_buffer_wake(new_b);
1010                 goto found_buffer;
1011         }
1012
1013         __check_watermark(c, write_list);
1014
1015         b = new_b;
1016         b->hold_count = 1;
1017         b->read_error = 0;
1018         b->write_error = 0;
1019         __link_buffer(b, block, LIST_CLEAN);
1020
1021         if (nf == NF_FRESH) {
1022                 b->state = 0;
1023                 return b;
1024         }
1025
1026         b->state = 1 << B_READING;
1027         *need_submit = 1;
1028
1029         return b;
1030
1031 found_buffer:
1032         if (nf == NF_PREFETCH)
1033                 return NULL;
1034         /*
1035          * Note: it is essential that we don't wait for the buffer to be
1036          * read if dm_bufio_get function is used. Both dm_bufio_get and
1037          * dm_bufio_prefetch can be used in the driver request routine.
1038          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1039          * the same buffer, it would deadlock if we waited.
1040          */
1041         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1042                 return NULL;
1043
1044         b->hold_count++;
1045         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1046                      test_bit(B_WRITING, &b->state));
1047         return b;
1048 }
1049
1050 /*
1051  * The endio routine for reading: set the error, clear the bit and wake up
1052  * anyone waiting on the buffer.
1053  */
1054 static void read_endio(struct bio *bio)
1055 {
1056         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1057
1058         b->read_error = bio->bi_error;
1059
1060         BUG_ON(!test_bit(B_READING, &b->state));
1061
1062         smp_mb__before_atomic();
1063         clear_bit(B_READING, &b->state);
1064         smp_mb__after_atomic();
1065
1066         wake_up_bit(&b->state, B_READING);
1067 }
1068
1069 /*
1070  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1071  * functions is similar except that dm_bufio_new doesn't read the
1072  * buffer from the disk (assuming that the caller overwrites all the data
1073  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1074  */
1075 static void *new_read(struct dm_bufio_client *c, sector_t block,
1076                       enum new_flag nf, struct dm_buffer **bp)
1077 {
1078         int need_submit;
1079         struct dm_buffer *b;
1080
1081         LIST_HEAD(write_list);
1082
1083         dm_bufio_lock(c);
1084         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1085 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1086         if (b && b->hold_count == 1)
1087                 buffer_record_stack(b);
1088 #endif
1089         dm_bufio_unlock(c);
1090
1091         __flush_write_list(&write_list);
1092
1093         if (!b)
1094                 return NULL;
1095
1096         if (need_submit)
1097                 submit_io(b, READ, b->block, read_endio);
1098
1099         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1100
1101         if (b->read_error) {
1102                 int error = b->read_error;
1103
1104                 dm_bufio_release(b);
1105
1106                 return ERR_PTR(error);
1107         }
1108
1109         *bp = b;
1110
1111         return b->data;
1112 }
1113
1114 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1115                    struct dm_buffer **bp)
1116 {
1117         return new_read(c, block, NF_GET, bp);
1118 }
1119 EXPORT_SYMBOL_GPL(dm_bufio_get);
1120
1121 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1122                     struct dm_buffer **bp)
1123 {
1124         BUG_ON(dm_bufio_in_request());
1125
1126         return new_read(c, block, NF_READ, bp);
1127 }
1128 EXPORT_SYMBOL_GPL(dm_bufio_read);
1129
1130 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1131                    struct dm_buffer **bp)
1132 {
1133         BUG_ON(dm_bufio_in_request());
1134
1135         return new_read(c, block, NF_FRESH, bp);
1136 }
1137 EXPORT_SYMBOL_GPL(dm_bufio_new);
1138
1139 void dm_bufio_prefetch(struct dm_bufio_client *c,
1140                        sector_t block, unsigned n_blocks)
1141 {
1142         struct blk_plug plug;
1143
1144         LIST_HEAD(write_list);
1145
1146         BUG_ON(dm_bufio_in_request());
1147
1148         blk_start_plug(&plug);
1149         dm_bufio_lock(c);
1150
1151         for (; n_blocks--; block++) {
1152                 int need_submit;
1153                 struct dm_buffer *b;
1154                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1155                                 &write_list);
1156                 if (unlikely(!list_empty(&write_list))) {
1157                         dm_bufio_unlock(c);
1158                         blk_finish_plug(&plug);
1159                         __flush_write_list(&write_list);
1160                         blk_start_plug(&plug);
1161                         dm_bufio_lock(c);
1162                 }
1163                 if (unlikely(b != NULL)) {
1164                         dm_bufio_unlock(c);
1165
1166                         if (need_submit)
1167                                 submit_io(b, READ, b->block, read_endio);
1168                         dm_bufio_release(b);
1169
1170                         cond_resched();
1171
1172                         if (!n_blocks)
1173                                 goto flush_plug;
1174                         dm_bufio_lock(c);
1175                 }
1176         }
1177
1178         dm_bufio_unlock(c);
1179
1180 flush_plug:
1181         blk_finish_plug(&plug);
1182 }
1183 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1184
1185 void dm_bufio_release(struct dm_buffer *b)
1186 {
1187         struct dm_bufio_client *c = b->c;
1188
1189         dm_bufio_lock(c);
1190
1191         BUG_ON(!b->hold_count);
1192
1193         b->hold_count--;
1194         if (!b->hold_count) {
1195                 wake_up(&c->free_buffer_wait);
1196
1197                 /*
1198                  * If there were errors on the buffer, and the buffer is not
1199                  * to be written, free the buffer. There is no point in caching
1200                  * invalid buffer.
1201                  */
1202                 if ((b->read_error || b->write_error) &&
1203                     !test_bit(B_READING, &b->state) &&
1204                     !test_bit(B_WRITING, &b->state) &&
1205                     !test_bit(B_DIRTY, &b->state)) {
1206                         __unlink_buffer(b);
1207                         __free_buffer_wake(b);
1208                 }
1209         }
1210
1211         dm_bufio_unlock(c);
1212 }
1213 EXPORT_SYMBOL_GPL(dm_bufio_release);
1214
1215 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1216 {
1217         struct dm_bufio_client *c = b->c;
1218
1219         dm_bufio_lock(c);
1220
1221         BUG_ON(test_bit(B_READING, &b->state));
1222
1223         if (!test_and_set_bit(B_DIRTY, &b->state))
1224                 __relink_lru(b, LIST_DIRTY);
1225
1226         dm_bufio_unlock(c);
1227 }
1228 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1229
1230 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1231 {
1232         LIST_HEAD(write_list);
1233
1234         BUG_ON(dm_bufio_in_request());
1235
1236         dm_bufio_lock(c);
1237         __write_dirty_buffers_async(c, 0, &write_list);
1238         dm_bufio_unlock(c);
1239         __flush_write_list(&write_list);
1240 }
1241 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1242
1243 /*
1244  * For performance, it is essential that the buffers are written asynchronously
1245  * and simultaneously (so that the block layer can merge the writes) and then
1246  * waited upon.
1247  *
1248  * Finally, we flush hardware disk cache.
1249  */
1250 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1251 {
1252         int a, f;
1253         unsigned long buffers_processed = 0;
1254         struct dm_buffer *b, *tmp;
1255
1256         LIST_HEAD(write_list);
1257
1258         dm_bufio_lock(c);
1259         __write_dirty_buffers_async(c, 0, &write_list);
1260         dm_bufio_unlock(c);
1261         __flush_write_list(&write_list);
1262         dm_bufio_lock(c);
1263
1264 again:
1265         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1266                 int dropped_lock = 0;
1267
1268                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1269                         buffers_processed++;
1270
1271                 BUG_ON(test_bit(B_READING, &b->state));
1272
1273                 if (test_bit(B_WRITING, &b->state)) {
1274                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1275                                 dropped_lock = 1;
1276                                 b->hold_count++;
1277                                 dm_bufio_unlock(c);
1278                                 wait_on_bit_io(&b->state, B_WRITING,
1279                                                TASK_UNINTERRUPTIBLE);
1280                                 dm_bufio_lock(c);
1281                                 b->hold_count--;
1282                         } else
1283                                 wait_on_bit_io(&b->state, B_WRITING,
1284                                                TASK_UNINTERRUPTIBLE);
1285                 }
1286
1287                 if (!test_bit(B_DIRTY, &b->state) &&
1288                     !test_bit(B_WRITING, &b->state))
1289                         __relink_lru(b, LIST_CLEAN);
1290
1291                 cond_resched();
1292
1293                 /*
1294                  * If we dropped the lock, the list is no longer consistent,
1295                  * so we must restart the search.
1296                  *
1297                  * In the most common case, the buffer just processed is
1298                  * relinked to the clean list, so we won't loop scanning the
1299                  * same buffer again and again.
1300                  *
1301                  * This may livelock if there is another thread simultaneously
1302                  * dirtying buffers, so we count the number of buffers walked
1303                  * and if it exceeds the total number of buffers, it means that
1304                  * someone is doing some writes simultaneously with us.  In
1305                  * this case, stop, dropping the lock.
1306                  */
1307                 if (dropped_lock)
1308                         goto again;
1309         }
1310         wake_up(&c->free_buffer_wait);
1311         dm_bufio_unlock(c);
1312
1313         a = xchg(&c->async_write_error, 0);
1314         f = dm_bufio_issue_flush(c);
1315         if (a)
1316                 return a;
1317
1318         return f;
1319 }
1320 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1321
1322 /*
1323  * Use dm-io to send and empty barrier flush the device.
1324  */
1325 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1326 {
1327         struct dm_io_request io_req = {
1328                 .bi_op = REQ_OP_WRITE,
1329                 .bi_op_flags = WRITE_FLUSH,
1330                 .mem.type = DM_IO_KMEM,
1331                 .mem.ptr.addr = NULL,
1332                 .client = c->dm_io,
1333         };
1334         struct dm_io_region io_reg = {
1335                 .bdev = c->bdev,
1336                 .sector = 0,
1337                 .count = 0,
1338         };
1339
1340         BUG_ON(dm_bufio_in_request());
1341
1342         return dm_io(&io_req, 1, &io_reg, NULL);
1343 }
1344 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1345
1346 /*
1347  * We first delete any other buffer that may be at that new location.
1348  *
1349  * Then, we write the buffer to the original location if it was dirty.
1350  *
1351  * Then, if we are the only one who is holding the buffer, relink the buffer
1352  * in the hash queue for the new location.
1353  *
1354  * If there was someone else holding the buffer, we write it to the new
1355  * location but not relink it, because that other user needs to have the buffer
1356  * at the same place.
1357  */
1358 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1359 {
1360         struct dm_bufio_client *c = b->c;
1361         struct dm_buffer *new;
1362
1363         BUG_ON(dm_bufio_in_request());
1364
1365         dm_bufio_lock(c);
1366
1367 retry:
1368         new = __find(c, new_block);
1369         if (new) {
1370                 if (new->hold_count) {
1371                         __wait_for_free_buffer(c);
1372                         goto retry;
1373                 }
1374
1375                 /*
1376                  * FIXME: Is there any point waiting for a write that's going
1377                  * to be overwritten in a bit?
1378                  */
1379                 __make_buffer_clean(new);
1380                 __unlink_buffer(new);
1381                 __free_buffer_wake(new);
1382         }
1383
1384         BUG_ON(!b->hold_count);
1385         BUG_ON(test_bit(B_READING, &b->state));
1386
1387         __write_dirty_buffer(b, NULL);
1388         if (b->hold_count == 1) {
1389                 wait_on_bit_io(&b->state, B_WRITING,
1390                                TASK_UNINTERRUPTIBLE);
1391                 set_bit(B_DIRTY, &b->state);
1392                 __unlink_buffer(b);
1393                 __link_buffer(b, new_block, LIST_DIRTY);
1394         } else {
1395                 sector_t old_block;
1396                 wait_on_bit_lock_io(&b->state, B_WRITING,
1397                                     TASK_UNINTERRUPTIBLE);
1398                 /*
1399                  * Relink buffer to "new_block" so that write_callback
1400                  * sees "new_block" as a block number.
1401                  * After the write, link the buffer back to old_block.
1402                  * All this must be done in bufio lock, so that block number
1403                  * change isn't visible to other threads.
1404                  */
1405                 old_block = b->block;
1406                 __unlink_buffer(b);
1407                 __link_buffer(b, new_block, b->list_mode);
1408                 submit_io(b, WRITE, new_block, write_endio);
1409                 wait_on_bit_io(&b->state, B_WRITING,
1410                                TASK_UNINTERRUPTIBLE);
1411                 __unlink_buffer(b);
1412                 __link_buffer(b, old_block, b->list_mode);
1413         }
1414
1415         dm_bufio_unlock(c);
1416         dm_bufio_release(b);
1417 }
1418 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1419
1420 /*
1421  * Free the given buffer.
1422  *
1423  * This is just a hint, if the buffer is in use or dirty, this function
1424  * does nothing.
1425  */
1426 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1427 {
1428         struct dm_buffer *b;
1429
1430         dm_bufio_lock(c);
1431
1432         b = __find(c, block);
1433         if (b && likely(!b->hold_count) && likely(!b->state)) {
1434                 __unlink_buffer(b);
1435                 __free_buffer_wake(b);
1436         }
1437
1438         dm_bufio_unlock(c);
1439 }
1440 EXPORT_SYMBOL(dm_bufio_forget);
1441
1442 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1443 {
1444         c->minimum_buffers = n;
1445 }
1446 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1447
1448 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1449 {
1450         return c->block_size;
1451 }
1452 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1453
1454 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1455 {
1456         return i_size_read(c->bdev->bd_inode) >>
1457                            (SECTOR_SHIFT + c->sectors_per_block_bits);
1458 }
1459 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1460
1461 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1462 {
1463         return b->block;
1464 }
1465 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1466
1467 void *dm_bufio_get_block_data(struct dm_buffer *b)
1468 {
1469         return b->data;
1470 }
1471 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1472
1473 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1474 {
1475         return b + 1;
1476 }
1477 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1478
1479 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1480 {
1481         return b->c;
1482 }
1483 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1484
1485 static void drop_buffers(struct dm_bufio_client *c)
1486 {
1487         struct dm_buffer *b;
1488         int i;
1489         bool warned = false;
1490
1491         BUG_ON(dm_bufio_in_request());
1492
1493         /*
1494          * An optimization so that the buffers are not written one-by-one.
1495          */
1496         dm_bufio_write_dirty_buffers_async(c);
1497
1498         dm_bufio_lock(c);
1499
1500         while ((b = __get_unclaimed_buffer(c)))
1501                 __free_buffer_wake(b);
1502
1503         for (i = 0; i < LIST_SIZE; i++)
1504                 list_for_each_entry(b, &c->lru[i], lru_list) {
1505                         WARN_ON(!warned);
1506                         warned = true;
1507                         DMERR("leaked buffer %llx, hold count %u, list %d",
1508                               (unsigned long long)b->block, b->hold_count, i);
1509 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1510                         print_stack_trace(&b->stack_trace, 1);
1511                         b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1512 #endif
1513                 }
1514
1515 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1516         while ((b = __get_unclaimed_buffer(c)))
1517                 __free_buffer_wake(b);
1518 #endif
1519
1520         for (i = 0; i < LIST_SIZE; i++)
1521                 BUG_ON(!list_empty(&c->lru[i]));
1522
1523         dm_bufio_unlock(c);
1524 }
1525
1526 /*
1527  * We may not be able to evict this buffer if IO pending or the client
1528  * is still using it.  Caller is expected to know buffer is too old.
1529  *
1530  * And if GFP_NOFS is used, we must not do any I/O because we hold
1531  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1532  * rerouted to different bufio client.
1533  */
1534 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1535 {
1536         if (!(gfp & __GFP_FS)) {
1537                 if (test_bit(B_READING, &b->state) ||
1538                     test_bit(B_WRITING, &b->state) ||
1539                     test_bit(B_DIRTY, &b->state))
1540                         return false;
1541         }
1542
1543         if (b->hold_count)
1544                 return false;
1545
1546         __make_buffer_clean(b);
1547         __unlink_buffer(b);
1548         __free_buffer_wake(b);
1549
1550         return true;
1551 }
1552
1553 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1554 {
1555         unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1556         return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1557 }
1558
1559 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1560                             gfp_t gfp_mask)
1561 {
1562         int l;
1563         struct dm_buffer *b, *tmp;
1564         unsigned long freed = 0;
1565         unsigned long count = c->n_buffers[LIST_CLEAN] +
1566                               c->n_buffers[LIST_DIRTY];
1567         unsigned long retain_target = get_retain_buffers(c);
1568
1569         for (l = 0; l < LIST_SIZE; l++) {
1570                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1571                         if (__try_evict_buffer(b, gfp_mask))
1572                                 freed++;
1573                         if (!--nr_to_scan || ((count - freed) <= retain_target))
1574                                 return freed;
1575                         cond_resched();
1576                 }
1577         }
1578         return freed;
1579 }
1580
1581 static unsigned long
1582 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1583 {
1584         struct dm_bufio_client *c;
1585         unsigned long freed;
1586
1587         c = container_of(shrink, struct dm_bufio_client, shrinker);
1588         if (sc->gfp_mask & __GFP_FS)
1589                 dm_bufio_lock(c);
1590         else if (!dm_bufio_trylock(c))
1591                 return SHRINK_STOP;
1592
1593         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1594         dm_bufio_unlock(c);
1595         return freed;
1596 }
1597
1598 static unsigned long
1599 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1600 {
1601         struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1602         unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1603                               READ_ONCE(c->n_buffers[LIST_DIRTY]);
1604         unsigned long retain_target = get_retain_buffers(c);
1605
1606         return (count < retain_target) ? 0 : (count - retain_target);
1607 }
1608
1609 /*
1610  * Create the buffering interface
1611  */
1612 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1613                                                unsigned reserved_buffers, unsigned aux_size,
1614                                                void (*alloc_callback)(struct dm_buffer *),
1615                                                void (*write_callback)(struct dm_buffer *))
1616 {
1617         int r;
1618         struct dm_bufio_client *c;
1619         unsigned i;
1620
1621         BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1622                (block_size & (block_size - 1)));
1623
1624         c = kzalloc(sizeof(*c), GFP_KERNEL);
1625         if (!c) {
1626                 r = -ENOMEM;
1627                 goto bad_client;
1628         }
1629         c->buffer_tree = RB_ROOT;
1630
1631         c->bdev = bdev;
1632         c->block_size = block_size;
1633         c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1634         c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1635                                   __ffs(block_size) - PAGE_SHIFT : 0;
1636         c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1637                                   PAGE_SHIFT - __ffs(block_size) : 0);
1638
1639         c->aux_size = aux_size;
1640         c->alloc_callback = alloc_callback;
1641         c->write_callback = write_callback;
1642
1643         for (i = 0; i < LIST_SIZE; i++) {
1644                 INIT_LIST_HEAD(&c->lru[i]);
1645                 c->n_buffers[i] = 0;
1646         }
1647
1648         mutex_init(&c->lock);
1649         INIT_LIST_HEAD(&c->reserved_buffers);
1650         c->need_reserved_buffers = reserved_buffers;
1651
1652         c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1653
1654         init_waitqueue_head(&c->free_buffer_wait);
1655         c->async_write_error = 0;
1656
1657         c->dm_io = dm_io_client_create();
1658         if (IS_ERR(c->dm_io)) {
1659                 r = PTR_ERR(c->dm_io);
1660                 goto bad_dm_io;
1661         }
1662
1663         mutex_lock(&dm_bufio_clients_lock);
1664         if (c->blocks_per_page_bits) {
1665                 if (!DM_BUFIO_CACHE_NAME(c)) {
1666                         DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1667                         if (!DM_BUFIO_CACHE_NAME(c)) {
1668                                 r = -ENOMEM;
1669                                 mutex_unlock(&dm_bufio_clients_lock);
1670                                 goto bad_cache;
1671                         }
1672                 }
1673
1674                 if (!DM_BUFIO_CACHE(c)) {
1675                         DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1676                                                               c->block_size,
1677                                                               c->block_size, 0, NULL);
1678                         if (!DM_BUFIO_CACHE(c)) {
1679                                 r = -ENOMEM;
1680                                 mutex_unlock(&dm_bufio_clients_lock);
1681                                 goto bad_cache;
1682                         }
1683                 }
1684         }
1685         mutex_unlock(&dm_bufio_clients_lock);
1686
1687         while (c->need_reserved_buffers) {
1688                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1689
1690                 if (!b) {
1691                         r = -ENOMEM;
1692                         goto bad_buffer;
1693                 }
1694                 __free_buffer_wake(b);
1695         }
1696
1697         mutex_lock(&dm_bufio_clients_lock);
1698         dm_bufio_client_count++;
1699         list_add(&c->client_list, &dm_bufio_all_clients);
1700         __cache_size_refresh();
1701         mutex_unlock(&dm_bufio_clients_lock);
1702
1703         c->shrinker.count_objects = dm_bufio_shrink_count;
1704         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1705         c->shrinker.seeks = 1;
1706         c->shrinker.batch = 0;
1707         register_shrinker(&c->shrinker);
1708
1709         return c;
1710
1711 bad_buffer:
1712 bad_cache:
1713         while (!list_empty(&c->reserved_buffers)) {
1714                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1715                                                  struct dm_buffer, lru_list);
1716                 list_del(&b->lru_list);
1717                 free_buffer(b);
1718         }
1719         dm_io_client_destroy(c->dm_io);
1720 bad_dm_io:
1721         kfree(c);
1722 bad_client:
1723         return ERR_PTR(r);
1724 }
1725 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1726
1727 /*
1728  * Free the buffering interface.
1729  * It is required that there are no references on any buffers.
1730  */
1731 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1732 {
1733         unsigned i;
1734
1735         drop_buffers(c);
1736
1737         unregister_shrinker(&c->shrinker);
1738
1739         mutex_lock(&dm_bufio_clients_lock);
1740
1741         list_del(&c->client_list);
1742         dm_bufio_client_count--;
1743         __cache_size_refresh();
1744
1745         mutex_unlock(&dm_bufio_clients_lock);
1746
1747         BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1748         BUG_ON(c->need_reserved_buffers);
1749
1750         while (!list_empty(&c->reserved_buffers)) {
1751                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1752                                                  struct dm_buffer, lru_list);
1753                 list_del(&b->lru_list);
1754                 free_buffer(b);
1755         }
1756
1757         for (i = 0; i < LIST_SIZE; i++)
1758                 if (c->n_buffers[i])
1759                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1760
1761         for (i = 0; i < LIST_SIZE; i++)
1762                 BUG_ON(c->n_buffers[i]);
1763
1764         dm_io_client_destroy(c->dm_io);
1765         kfree(c);
1766 }
1767 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1768
1769 static unsigned get_max_age_hz(void)
1770 {
1771         unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1772
1773         if (max_age > UINT_MAX / HZ)
1774                 max_age = UINT_MAX / HZ;
1775
1776         return max_age * HZ;
1777 }
1778
1779 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1780 {
1781         return time_after_eq(jiffies, b->last_accessed + age_hz);
1782 }
1783
1784 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1785 {
1786         struct dm_buffer *b, *tmp;
1787         unsigned long retain_target = get_retain_buffers(c);
1788         unsigned long count;
1789         LIST_HEAD(write_list);
1790
1791         dm_bufio_lock(c);
1792
1793         __check_watermark(c, &write_list);
1794         if (unlikely(!list_empty(&write_list))) {
1795                 dm_bufio_unlock(c);
1796                 __flush_write_list(&write_list);
1797                 dm_bufio_lock(c);
1798         }
1799
1800         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1801         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1802                 if (count <= retain_target)
1803                         break;
1804
1805                 if (!older_than(b, age_hz))
1806                         break;
1807
1808                 if (__try_evict_buffer(b, 0))
1809                         count--;
1810
1811                 cond_resched();
1812         }
1813
1814         dm_bufio_unlock(c);
1815 }
1816
1817 static void cleanup_old_buffers(void)
1818 {
1819         unsigned long max_age_hz = get_max_age_hz();
1820         struct dm_bufio_client *c;
1821
1822         mutex_lock(&dm_bufio_clients_lock);
1823
1824         __cache_size_refresh();
1825
1826         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1827                 __evict_old_buffers(c, max_age_hz);
1828
1829         mutex_unlock(&dm_bufio_clients_lock);
1830 }
1831
1832 static struct workqueue_struct *dm_bufio_wq;
1833 static struct delayed_work dm_bufio_work;
1834
1835 static void work_fn(struct work_struct *w)
1836 {
1837         cleanup_old_buffers();
1838
1839         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1840                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1841 }
1842
1843 /*----------------------------------------------------------------
1844  * Module setup
1845  *--------------------------------------------------------------*/
1846
1847 /*
1848  * This is called only once for the whole dm_bufio module.
1849  * It initializes memory limit.
1850  */
1851 static int __init dm_bufio_init(void)
1852 {
1853         __u64 mem;
1854
1855         dm_bufio_allocated_kmem_cache = 0;
1856         dm_bufio_allocated_get_free_pages = 0;
1857         dm_bufio_allocated_vmalloc = 0;
1858         dm_bufio_current_allocated = 0;
1859
1860         memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1861         memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1862
1863         mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1864                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1865
1866         if (mem > ULONG_MAX)
1867                 mem = ULONG_MAX;
1868
1869 #ifdef CONFIG_MMU
1870         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1871                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1872 #endif
1873
1874         dm_bufio_default_cache_size = mem;
1875
1876         mutex_lock(&dm_bufio_clients_lock);
1877         __cache_size_refresh();
1878         mutex_unlock(&dm_bufio_clients_lock);
1879
1880         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1881         if (!dm_bufio_wq)
1882                 return -ENOMEM;
1883
1884         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1885         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1886                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1887
1888         return 0;
1889 }
1890
1891 /*
1892  * This is called once when unloading the dm_bufio module.
1893  */
1894 static void __exit dm_bufio_exit(void)
1895 {
1896         int bug = 0;
1897         int i;
1898
1899         cancel_delayed_work_sync(&dm_bufio_work);
1900         destroy_workqueue(dm_bufio_wq);
1901
1902         for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1903                 kmem_cache_destroy(dm_bufio_caches[i]);
1904
1905         for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1906                 kfree(dm_bufio_cache_names[i]);
1907
1908         if (dm_bufio_client_count) {
1909                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1910                         __func__, dm_bufio_client_count);
1911                 bug = 1;
1912         }
1913
1914         if (dm_bufio_current_allocated) {
1915                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1916                         __func__, dm_bufio_current_allocated);
1917                 bug = 1;
1918         }
1919
1920         if (dm_bufio_allocated_get_free_pages) {
1921                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1922                        __func__, dm_bufio_allocated_get_free_pages);
1923                 bug = 1;
1924         }
1925
1926         if (dm_bufio_allocated_vmalloc) {
1927                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1928                        __func__, dm_bufio_allocated_vmalloc);
1929                 bug = 1;
1930         }
1931
1932         BUG_ON(bug);
1933 }
1934
1935 module_init(dm_bufio_init)
1936 module_exit(dm_bufio_exit)
1937
1938 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1939 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1940
1941 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1942 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1943
1944 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1945 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1946
1947 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1948 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1949
1950 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1951 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1952
1953 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1954 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1955
1956 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1957 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1958
1959 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1960 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1961
1962 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1963 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1964 MODULE_LICENSE("GPL");