GNU Linux-libre 4.4.282-gnu1
[releases.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19
20 #define DM_MSG_PREFIX "bufio"
21
22 /*
23  * Memory management policy:
24  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
25  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
26  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
27  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
28  *      dirty buffers.
29  */
30 #define DM_BUFIO_MIN_BUFFERS            8
31
32 #define DM_BUFIO_MEMORY_PERCENT         2
33 #define DM_BUFIO_VMALLOC_PERCENT        25
34 #define DM_BUFIO_WRITEBACK_PERCENT      75
35
36 /*
37  * Check buffer ages in this interval (seconds)
38  */
39 #define DM_BUFIO_WORK_TIMER_SECS        30
40
41 /*
42  * Free buffers when they are older than this (seconds)
43  */
44 #define DM_BUFIO_DEFAULT_AGE_SECS       300
45
46 /*
47  * The nr of bytes of cached data to keep around.
48  */
49 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
50
51 /*
52  * The number of bvec entries that are embedded directly in the buffer.
53  * If the chunk size is larger, dm-io is used to do the io.
54  */
55 #define DM_BUFIO_INLINE_VECS            16
56
57 /*
58  * Don't try to use kmem_cache_alloc for blocks larger than this.
59  * For explanation, see alloc_buffer_data below.
60  */
61 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
62 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
63
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN      0
68 #define LIST_DIRTY      1
69 #define LIST_SIZE       2
70
71 /*
72  * Linking of buffers:
73  *      All buffers are linked to cache_hash with their hash_list field.
74  *
75  *      Clean buffers that are not being written (B_WRITING not set)
76  *      are linked to lru[LIST_CLEAN] with their lru_list field.
77  *
78  *      Dirty and clean buffers that are being written are linked to
79  *      lru[LIST_DIRTY] with their lru_list field. When the write
80  *      finishes, the buffer cannot be relinked immediately (because we
81  *      are in an interrupt context and relinking requires process
82  *      context), so some clean-not-writing buffers can be held on
83  *      dirty_lru too.  They are later added to lru in the process
84  *      context.
85  */
86 struct dm_bufio_client {
87         struct mutex lock;
88
89         struct list_head lru[LIST_SIZE];
90         unsigned long n_buffers[LIST_SIZE];
91
92         struct block_device *bdev;
93         unsigned block_size;
94         unsigned char sectors_per_block_bits;
95         unsigned char pages_per_block_bits;
96         unsigned char blocks_per_page_bits;
97         unsigned aux_size;
98         void (*alloc_callback)(struct dm_buffer *);
99         void (*write_callback)(struct dm_buffer *);
100
101         struct dm_io_client *dm_io;
102
103         struct list_head reserved_buffers;
104         unsigned need_reserved_buffers;
105
106         unsigned minimum_buffers;
107
108         struct rb_root buffer_tree;
109         wait_queue_head_t free_buffer_wait;
110
111         int async_write_error;
112
113         struct list_head client_list;
114         struct shrinker shrinker;
115 };
116
117 /*
118  * Buffer state bits.
119  */
120 #define B_READING       0
121 #define B_WRITING       1
122 #define B_DIRTY         2
123
124 /*
125  * Describes how the block was allocated:
126  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127  * See the comment at alloc_buffer_data.
128  */
129 enum data_mode {
130         DATA_MODE_SLAB = 0,
131         DATA_MODE_GET_FREE_PAGES = 1,
132         DATA_MODE_VMALLOC = 2,
133         DATA_MODE_LIMIT = 3
134 };
135
136 struct dm_buffer {
137         struct rb_node node;
138         struct list_head lru_list;
139         sector_t block;
140         void *data;
141         enum data_mode data_mode;
142         unsigned char list_mode;                /* LIST_* */
143         unsigned hold_count;
144         int read_error;
145         int write_error;
146         unsigned long state;
147         unsigned long last_accessed;
148         struct dm_bufio_client *c;
149         struct list_head write_list;
150         struct bio bio;
151         struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
152 };
153
154 /*----------------------------------------------------------------*/
155
156 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
157 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158
159 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160 {
161         unsigned ret = c->blocks_per_page_bits - 1;
162
163         BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164
165         return ret;
166 }
167
168 #define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
169 #define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
170
171 #define dm_bufio_in_request()   (!!current->bio_list)
172
173 static void dm_bufio_lock(struct dm_bufio_client *c)
174 {
175         mutex_lock_nested(&c->lock, dm_bufio_in_request());
176 }
177
178 static int dm_bufio_trylock(struct dm_bufio_client *c)
179 {
180         return mutex_trylock(&c->lock);
181 }
182
183 static void dm_bufio_unlock(struct dm_bufio_client *c)
184 {
185         mutex_unlock(&c->lock);
186 }
187
188 /*
189  * FIXME Move to sched.h?
190  */
191 #ifdef CONFIG_PREEMPT_VOLUNTARY
192 #  define dm_bufio_cond_resched()               \
193 do {                                            \
194         if (unlikely(need_resched()))           \
195                 _cond_resched();                \
196 } while (0)
197 #else
198 #  define dm_bufio_cond_resched()                do { } while (0)
199 #endif
200
201 /*----------------------------------------------------------------*/
202
203 /*
204  * Default cache size: available memory divided by the ratio.
205  */
206 static unsigned long dm_bufio_default_cache_size;
207
208 /*
209  * Total cache size set by the user.
210  */
211 static unsigned long dm_bufio_cache_size;
212
213 /*
214  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
215  * at any time.  If it disagrees, the user has changed cache size.
216  */
217 static unsigned long dm_bufio_cache_size_latch;
218
219 static DEFINE_SPINLOCK(param_spinlock);
220
221 /*
222  * Buffers are freed after this timeout
223  */
224 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
226
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232
233 /*----------------------------------------------------------------*/
234
235 /*
236  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237  */
238 static unsigned long dm_bufio_cache_size_per_client;
239
240 /*
241  * The current number of clients.
242  */
243 static int dm_bufio_client_count;
244
245 /*
246  * The list of all clients.
247  */
248 static LIST_HEAD(dm_bufio_all_clients);
249
250 /*
251  * This mutex protects dm_bufio_cache_size_latch,
252  * dm_bufio_cache_size_per_client and dm_bufio_client_count
253  */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255
256 /*----------------------------------------------------------------
257  * A red/black tree acts as an index for all the buffers.
258  *--------------------------------------------------------------*/
259 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
260 {
261         struct rb_node *n = c->buffer_tree.rb_node;
262         struct dm_buffer *b;
263
264         while (n) {
265                 b = container_of(n, struct dm_buffer, node);
266
267                 if (b->block == block)
268                         return b;
269
270                 n = (b->block < block) ? n->rb_left : n->rb_right;
271         }
272
273         return NULL;
274 }
275
276 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
277 {
278         struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
279         struct dm_buffer *found;
280
281         while (*new) {
282                 found = container_of(*new, struct dm_buffer, node);
283
284                 if (found->block == b->block) {
285                         BUG_ON(found != b);
286                         return;
287                 }
288
289                 parent = *new;
290                 new = (found->block < b->block) ?
291                         &((*new)->rb_left) : &((*new)->rb_right);
292         }
293
294         rb_link_node(&b->node, parent, new);
295         rb_insert_color(&b->node, &c->buffer_tree);
296 }
297
298 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
299 {
300         rb_erase(&b->node, &c->buffer_tree);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 static void adjust_total_allocated(enum data_mode data_mode, long diff)
306 {
307         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
308                 &dm_bufio_allocated_kmem_cache,
309                 &dm_bufio_allocated_get_free_pages,
310                 &dm_bufio_allocated_vmalloc,
311         };
312
313         spin_lock(&param_spinlock);
314
315         *class_ptr[data_mode] += diff;
316
317         dm_bufio_current_allocated += diff;
318
319         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
320                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
321
322         spin_unlock(&param_spinlock);
323 }
324
325 /*
326  * Change the number of clients and recalculate per-client limit.
327  */
328 static void __cache_size_refresh(void)
329 {
330         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
331         BUG_ON(dm_bufio_client_count < 0);
332
333         dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
334
335         /*
336          * Use default if set to 0 and report the actual cache size used.
337          */
338         if (!dm_bufio_cache_size_latch) {
339                 (void)cmpxchg(&dm_bufio_cache_size, 0,
340                               dm_bufio_default_cache_size);
341                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
342         }
343
344         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
345                                          (dm_bufio_client_count ? : 1);
346 }
347
348 /*
349  * Allocating buffer data.
350  *
351  * Small buffers are allocated with kmem_cache, to use space optimally.
352  *
353  * For large buffers, we choose between get_free_pages and vmalloc.
354  * Each has advantages and disadvantages.
355  *
356  * __get_free_pages can randomly fail if the memory is fragmented.
357  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
358  * as low as 128M) so using it for caching is not appropriate.
359  *
360  * If the allocation may fail we use __get_free_pages. Memory fragmentation
361  * won't have a fatal effect here, but it just causes flushes of some other
362  * buffers and more I/O will be performed. Don't use __get_free_pages if it
363  * always fails (i.e. order >= MAX_ORDER).
364  *
365  * If the allocation shouldn't fail we use __vmalloc. This is only for the
366  * initial reserve allocation, so there's no risk of wasting all vmalloc
367  * space.
368  */
369 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
370                                enum data_mode *data_mode)
371 {
372         unsigned noio_flag;
373         void *ptr;
374
375         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
376                 *data_mode = DATA_MODE_SLAB;
377                 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
378         }
379
380         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
381             gfp_mask & __GFP_NORETRY) {
382                 *data_mode = DATA_MODE_GET_FREE_PAGES;
383                 return (void *)__get_free_pages(gfp_mask,
384                                                 c->pages_per_block_bits);
385         }
386
387         *data_mode = DATA_MODE_VMALLOC;
388
389         /*
390          * __vmalloc allocates the data pages and auxiliary structures with
391          * gfp_flags that were specified, but pagetables are always allocated
392          * with GFP_KERNEL, no matter what was specified as gfp_mask.
393          *
394          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
395          * all allocations done by this process (including pagetables) are done
396          * as if GFP_NOIO was specified.
397          */
398
399         if (gfp_mask & __GFP_NORETRY)
400                 noio_flag = memalloc_noio_save();
401
402         ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
403
404         if (gfp_mask & __GFP_NORETRY)
405                 memalloc_noio_restore(noio_flag);
406
407         return ptr;
408 }
409
410 /*
411  * Free buffer's data.
412  */
413 static void free_buffer_data(struct dm_bufio_client *c,
414                              void *data, enum data_mode data_mode)
415 {
416         switch (data_mode) {
417         case DATA_MODE_SLAB:
418                 kmem_cache_free(DM_BUFIO_CACHE(c), data);
419                 break;
420
421         case DATA_MODE_GET_FREE_PAGES:
422                 free_pages((unsigned long)data, c->pages_per_block_bits);
423                 break;
424
425         case DATA_MODE_VMALLOC:
426                 vfree(data);
427                 break;
428
429         default:
430                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
431                        data_mode);
432                 BUG();
433         }
434 }
435
436 /*
437  * Allocate buffer and its data.
438  */
439 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
440 {
441         struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
442                                       gfp_mask);
443
444         if (!b)
445                 return NULL;
446
447         b->c = c;
448
449         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
450         if (!b->data) {
451                 kfree(b);
452                 return NULL;
453         }
454
455         adjust_total_allocated(b->data_mode, (long)c->block_size);
456
457         return b;
458 }
459
460 /*
461  * Free buffer and its data.
462  */
463 static void free_buffer(struct dm_buffer *b)
464 {
465         struct dm_bufio_client *c = b->c;
466
467         adjust_total_allocated(b->data_mode, -(long)c->block_size);
468
469         free_buffer_data(c, b->data, b->data_mode);
470         kfree(b);
471 }
472
473 /*
474  * Link buffer to the hash list and clean or dirty queue.
475  */
476 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
477 {
478         struct dm_bufio_client *c = b->c;
479
480         c->n_buffers[dirty]++;
481         b->block = block;
482         b->list_mode = dirty;
483         list_add(&b->lru_list, &c->lru[dirty]);
484         __insert(b->c, b);
485         b->last_accessed = jiffies;
486 }
487
488 /*
489  * Unlink buffer from the hash list and dirty or clean queue.
490  */
491 static void __unlink_buffer(struct dm_buffer *b)
492 {
493         struct dm_bufio_client *c = b->c;
494
495         BUG_ON(!c->n_buffers[b->list_mode]);
496
497         c->n_buffers[b->list_mode]--;
498         __remove(b->c, b);
499         list_del(&b->lru_list);
500 }
501
502 /*
503  * Place the buffer to the head of dirty or clean LRU queue.
504  */
505 static void __relink_lru(struct dm_buffer *b, int dirty)
506 {
507         struct dm_bufio_client *c = b->c;
508
509         BUG_ON(!c->n_buffers[b->list_mode]);
510
511         c->n_buffers[b->list_mode]--;
512         c->n_buffers[dirty]++;
513         b->list_mode = dirty;
514         list_move(&b->lru_list, &c->lru[dirty]);
515         b->last_accessed = jiffies;
516 }
517
518 /*----------------------------------------------------------------
519  * Submit I/O on the buffer.
520  *
521  * Bio interface is faster but it has some problems:
522  *      the vector list is limited (increasing this limit increases
523  *      memory-consumption per buffer, so it is not viable);
524  *
525  *      the memory must be direct-mapped, not vmalloced;
526  *
527  *      the I/O driver can reject requests spuriously if it thinks that
528  *      the requests are too big for the device or if they cross a
529  *      controller-defined memory boundary.
530  *
531  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
532  * it is not vmalloced, try using the bio interface.
533  *
534  * If the buffer is big, if it is vmalloced or if the underlying device
535  * rejects the bio because it is too large, use dm-io layer to do the I/O.
536  * The dm-io layer splits the I/O into multiple requests, avoiding the above
537  * shortcomings.
538  *--------------------------------------------------------------*/
539
540 /*
541  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
542  * that the request was handled directly with bio interface.
543  */
544 static void dmio_complete(unsigned long error, void *context)
545 {
546         struct dm_buffer *b = context;
547
548         b->bio.bi_error = error ? -EIO : 0;
549         b->bio.bi_end_io(&b->bio);
550 }
551
552 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
553                      bio_end_io_t *end_io)
554 {
555         int r;
556         struct dm_io_request io_req = {
557                 .bi_rw = rw,
558                 .notify.fn = dmio_complete,
559                 .notify.context = b,
560                 .client = b->c->dm_io,
561         };
562         struct dm_io_region region = {
563                 .bdev = b->c->bdev,
564                 .sector = block << b->c->sectors_per_block_bits,
565                 .count = b->c->block_size >> SECTOR_SHIFT,
566         };
567
568         if (b->data_mode != DATA_MODE_VMALLOC) {
569                 io_req.mem.type = DM_IO_KMEM;
570                 io_req.mem.ptr.addr = b->data;
571         } else {
572                 io_req.mem.type = DM_IO_VMA;
573                 io_req.mem.ptr.vma = b->data;
574         }
575
576         b->bio.bi_end_io = end_io;
577
578         r = dm_io(&io_req, 1, &region, NULL);
579         if (r) {
580                 b->bio.bi_error = r;
581                 end_io(&b->bio);
582         }
583 }
584
585 static void inline_endio(struct bio *bio)
586 {
587         bio_end_io_t *end_fn = bio->bi_private;
588         int error = bio->bi_error;
589
590         /*
591          * Reset the bio to free any attached resources
592          * (e.g. bio integrity profiles).
593          */
594         bio_reset(bio);
595
596         bio->bi_error = error;
597         end_fn(bio);
598 }
599
600 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
601                            bio_end_io_t *end_io)
602 {
603         char *ptr;
604         int len;
605
606         bio_init(&b->bio);
607         b->bio.bi_io_vec = b->bio_vec;
608         b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
609         b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
610         b->bio.bi_bdev = b->c->bdev;
611         b->bio.bi_end_io = inline_endio;
612         /*
613          * Use of .bi_private isn't a problem here because
614          * the dm_buffer's inline bio is local to bufio.
615          */
616         b->bio.bi_private = end_io;
617
618         /*
619          * We assume that if len >= PAGE_SIZE ptr is page-aligned.
620          * If len < PAGE_SIZE the buffer doesn't cross page boundary.
621          */
622         ptr = b->data;
623         len = b->c->block_size;
624
625         if (len >= PAGE_SIZE)
626                 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
627         else
628                 BUG_ON((unsigned long)ptr & (len - 1));
629
630         do {
631                 if (!bio_add_page(&b->bio, virt_to_page(ptr),
632                                   len < PAGE_SIZE ? len : PAGE_SIZE,
633                                   virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
634                         BUG_ON(b->c->block_size <= PAGE_SIZE);
635                         use_dmio(b, rw, block, end_io);
636                         return;
637                 }
638
639                 len -= PAGE_SIZE;
640                 ptr += PAGE_SIZE;
641         } while (len > 0);
642
643         submit_bio(rw, &b->bio);
644 }
645
646 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
647                       bio_end_io_t *end_io)
648 {
649         if (rw == WRITE && b->c->write_callback)
650                 b->c->write_callback(b);
651
652         if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
653             b->data_mode != DATA_MODE_VMALLOC)
654                 use_inline_bio(b, rw, block, end_io);
655         else
656                 use_dmio(b, rw, block, end_io);
657 }
658
659 /*----------------------------------------------------------------
660  * Writing dirty buffers
661  *--------------------------------------------------------------*/
662
663 /*
664  * The endio routine for write.
665  *
666  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
667  * it.
668  */
669 static void write_endio(struct bio *bio)
670 {
671         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
672
673         b->write_error = bio->bi_error;
674         if (unlikely(bio->bi_error)) {
675                 struct dm_bufio_client *c = b->c;
676                 int error = bio->bi_error;
677                 (void)cmpxchg(&c->async_write_error, 0, error);
678         }
679
680         BUG_ON(!test_bit(B_WRITING, &b->state));
681
682         smp_mb__before_atomic();
683         clear_bit(B_WRITING, &b->state);
684         smp_mb__after_atomic();
685
686         wake_up_bit(&b->state, B_WRITING);
687 }
688
689 /*
690  * Initiate a write on a dirty buffer, but don't wait for it.
691  *
692  * - If the buffer is not dirty, exit.
693  * - If there some previous write going on, wait for it to finish (we can't
694  *   have two writes on the same buffer simultaneously).
695  * - Submit our write and don't wait on it. We set B_WRITING indicating
696  *   that there is a write in progress.
697  */
698 static void __write_dirty_buffer(struct dm_buffer *b,
699                                  struct list_head *write_list)
700 {
701         if (!test_bit(B_DIRTY, &b->state))
702                 return;
703
704         clear_bit(B_DIRTY, &b->state);
705         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
706
707         if (!write_list)
708                 submit_io(b, WRITE, b->block, write_endio);
709         else
710                 list_add_tail(&b->write_list, write_list);
711 }
712
713 static void __flush_write_list(struct list_head *write_list)
714 {
715         struct blk_plug plug;
716         blk_start_plug(&plug);
717         while (!list_empty(write_list)) {
718                 struct dm_buffer *b =
719                         list_entry(write_list->next, struct dm_buffer, write_list);
720                 list_del(&b->write_list);
721                 submit_io(b, WRITE, b->block, write_endio);
722                 dm_bufio_cond_resched();
723         }
724         blk_finish_plug(&plug);
725 }
726
727 /*
728  * Wait until any activity on the buffer finishes.  Possibly write the
729  * buffer if it is dirty.  When this function finishes, there is no I/O
730  * running on the buffer and the buffer is not dirty.
731  */
732 static void __make_buffer_clean(struct dm_buffer *b)
733 {
734         BUG_ON(b->hold_count);
735
736         if (!b->state)  /* fast case */
737                 return;
738
739         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
740         __write_dirty_buffer(b, NULL);
741         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
742 }
743
744 /*
745  * Find some buffer that is not held by anybody, clean it, unlink it and
746  * return it.
747  */
748 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
749 {
750         struct dm_buffer *b;
751
752         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
753                 BUG_ON(test_bit(B_WRITING, &b->state));
754                 BUG_ON(test_bit(B_DIRTY, &b->state));
755
756                 if (!b->hold_count) {
757                         __make_buffer_clean(b);
758                         __unlink_buffer(b);
759                         return b;
760                 }
761                 dm_bufio_cond_resched();
762         }
763
764         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
765                 BUG_ON(test_bit(B_READING, &b->state));
766
767                 if (!b->hold_count) {
768                         __make_buffer_clean(b);
769                         __unlink_buffer(b);
770                         return b;
771                 }
772                 dm_bufio_cond_resched();
773         }
774
775         return NULL;
776 }
777
778 /*
779  * Wait until some other threads free some buffer or release hold count on
780  * some buffer.
781  *
782  * This function is entered with c->lock held, drops it and regains it
783  * before exiting.
784  */
785 static void __wait_for_free_buffer(struct dm_bufio_client *c)
786 {
787         DECLARE_WAITQUEUE(wait, current);
788
789         add_wait_queue(&c->free_buffer_wait, &wait);
790         set_task_state(current, TASK_UNINTERRUPTIBLE);
791         dm_bufio_unlock(c);
792
793         io_schedule();
794
795         remove_wait_queue(&c->free_buffer_wait, &wait);
796
797         dm_bufio_lock(c);
798 }
799
800 enum new_flag {
801         NF_FRESH = 0,
802         NF_READ = 1,
803         NF_GET = 2,
804         NF_PREFETCH = 3
805 };
806
807 /*
808  * Allocate a new buffer. If the allocation is not possible, wait until
809  * some other thread frees a buffer.
810  *
811  * May drop the lock and regain it.
812  */
813 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
814 {
815         struct dm_buffer *b;
816         bool tried_noio_alloc = false;
817
818         /*
819          * dm-bufio is resistant to allocation failures (it just keeps
820          * one buffer reserved in cases all the allocations fail).
821          * So set flags to not try too hard:
822          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
823          *                  mutex and wait ourselves.
824          *      __GFP_NORETRY: don't retry and rather return failure
825          *      __GFP_NOMEMALLOC: don't use emergency reserves
826          *      __GFP_NOWARN: don't print a warning in case of failure
827          *
828          * For debugging, if we set the cache size to 1, no new buffers will
829          * be allocated.
830          */
831         while (1) {
832                 if (dm_bufio_cache_size_latch != 1) {
833                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
834                         if (b)
835                                 return b;
836                 }
837
838                 if (nf == NF_PREFETCH)
839                         return NULL;
840
841                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
842                         dm_bufio_unlock(c);
843                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
844                         dm_bufio_lock(c);
845                         if (b)
846                                 return b;
847                         tried_noio_alloc = true;
848                 }
849
850                 if (!list_empty(&c->reserved_buffers)) {
851                         b = list_entry(c->reserved_buffers.next,
852                                        struct dm_buffer, lru_list);
853                         list_del(&b->lru_list);
854                         c->need_reserved_buffers++;
855
856                         return b;
857                 }
858
859                 b = __get_unclaimed_buffer(c);
860                 if (b)
861                         return b;
862
863                 __wait_for_free_buffer(c);
864         }
865 }
866
867 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
868 {
869         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
870
871         if (!b)
872                 return NULL;
873
874         if (c->alloc_callback)
875                 c->alloc_callback(b);
876
877         return b;
878 }
879
880 /*
881  * Free a buffer and wake other threads waiting for free buffers.
882  */
883 static void __free_buffer_wake(struct dm_buffer *b)
884 {
885         struct dm_bufio_client *c = b->c;
886
887         if (!c->need_reserved_buffers)
888                 free_buffer(b);
889         else {
890                 list_add(&b->lru_list, &c->reserved_buffers);
891                 c->need_reserved_buffers--;
892         }
893
894         wake_up(&c->free_buffer_wait);
895 }
896
897 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
898                                         struct list_head *write_list)
899 {
900         struct dm_buffer *b, *tmp;
901
902         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
903                 BUG_ON(test_bit(B_READING, &b->state));
904
905                 if (!test_bit(B_DIRTY, &b->state) &&
906                     !test_bit(B_WRITING, &b->state)) {
907                         __relink_lru(b, LIST_CLEAN);
908                         continue;
909                 }
910
911                 if (no_wait && test_bit(B_WRITING, &b->state))
912                         return;
913
914                 __write_dirty_buffer(b, write_list);
915                 dm_bufio_cond_resched();
916         }
917 }
918
919 /*
920  * Get writeback threshold and buffer limit for a given client.
921  */
922 static void __get_memory_limit(struct dm_bufio_client *c,
923                                unsigned long *threshold_buffers,
924                                unsigned long *limit_buffers)
925 {
926         unsigned long buffers;
927
928         if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
929                 if (mutex_trylock(&dm_bufio_clients_lock)) {
930                         __cache_size_refresh();
931                         mutex_unlock(&dm_bufio_clients_lock);
932                 }
933         }
934
935         buffers = dm_bufio_cache_size_per_client >>
936                   (c->sectors_per_block_bits + SECTOR_SHIFT);
937
938         if (buffers < c->minimum_buffers)
939                 buffers = c->minimum_buffers;
940
941         *limit_buffers = buffers;
942         *threshold_buffers = mult_frac(buffers,
943                                        DM_BUFIO_WRITEBACK_PERCENT, 100);
944 }
945
946 /*
947  * Check if we're over watermark.
948  * If we are over threshold_buffers, start freeing buffers.
949  * If we're over "limit_buffers", block until we get under the limit.
950  */
951 static void __check_watermark(struct dm_bufio_client *c,
952                               struct list_head *write_list)
953 {
954         unsigned long threshold_buffers, limit_buffers;
955
956         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
957
958         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
959                limit_buffers) {
960
961                 struct dm_buffer *b = __get_unclaimed_buffer(c);
962
963                 if (!b)
964                         return;
965
966                 __free_buffer_wake(b);
967                 dm_bufio_cond_resched();
968         }
969
970         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
971                 __write_dirty_buffers_async(c, 1, write_list);
972 }
973
974 /*----------------------------------------------------------------
975  * Getting a buffer
976  *--------------------------------------------------------------*/
977
978 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
979                                      enum new_flag nf, int *need_submit,
980                                      struct list_head *write_list)
981 {
982         struct dm_buffer *b, *new_b = NULL;
983
984         *need_submit = 0;
985
986         b = __find(c, block);
987         if (b)
988                 goto found_buffer;
989
990         if (nf == NF_GET)
991                 return NULL;
992
993         new_b = __alloc_buffer_wait(c, nf);
994         if (!new_b)
995                 return NULL;
996
997         /*
998          * We've had a period where the mutex was unlocked, so need to
999          * recheck the hash table.
1000          */
1001         b = __find(c, block);
1002         if (b) {
1003                 __free_buffer_wake(new_b);
1004                 goto found_buffer;
1005         }
1006
1007         __check_watermark(c, write_list);
1008
1009         b = new_b;
1010         b->hold_count = 1;
1011         b->read_error = 0;
1012         b->write_error = 0;
1013         __link_buffer(b, block, LIST_CLEAN);
1014
1015         if (nf == NF_FRESH) {
1016                 b->state = 0;
1017                 return b;
1018         }
1019
1020         b->state = 1 << B_READING;
1021         *need_submit = 1;
1022
1023         return b;
1024
1025 found_buffer:
1026         if (nf == NF_PREFETCH)
1027                 return NULL;
1028         /*
1029          * Note: it is essential that we don't wait for the buffer to be
1030          * read if dm_bufio_get function is used. Both dm_bufio_get and
1031          * dm_bufio_prefetch can be used in the driver request routine.
1032          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1033          * the same buffer, it would deadlock if we waited.
1034          */
1035         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1036                 return NULL;
1037
1038         b->hold_count++;
1039         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1040                      test_bit(B_WRITING, &b->state));
1041         return b;
1042 }
1043
1044 /*
1045  * The endio routine for reading: set the error, clear the bit and wake up
1046  * anyone waiting on the buffer.
1047  */
1048 static void read_endio(struct bio *bio)
1049 {
1050         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1051
1052         b->read_error = bio->bi_error;
1053
1054         BUG_ON(!test_bit(B_READING, &b->state));
1055
1056         smp_mb__before_atomic();
1057         clear_bit(B_READING, &b->state);
1058         smp_mb__after_atomic();
1059
1060         wake_up_bit(&b->state, B_READING);
1061 }
1062
1063 /*
1064  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1065  * functions is similar except that dm_bufio_new doesn't read the
1066  * buffer from the disk (assuming that the caller overwrites all the data
1067  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1068  */
1069 static void *new_read(struct dm_bufio_client *c, sector_t block,
1070                       enum new_flag nf, struct dm_buffer **bp)
1071 {
1072         int need_submit;
1073         struct dm_buffer *b;
1074
1075         LIST_HEAD(write_list);
1076
1077         dm_bufio_lock(c);
1078         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1079         dm_bufio_unlock(c);
1080
1081         __flush_write_list(&write_list);
1082
1083         if (!b)
1084                 return b;
1085
1086         if (need_submit)
1087                 submit_io(b, READ, b->block, read_endio);
1088
1089         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1090
1091         if (b->read_error) {
1092                 int error = b->read_error;
1093
1094                 dm_bufio_release(b);
1095
1096                 return ERR_PTR(error);
1097         }
1098
1099         *bp = b;
1100
1101         return b->data;
1102 }
1103
1104 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1105                    struct dm_buffer **bp)
1106 {
1107         return new_read(c, block, NF_GET, bp);
1108 }
1109 EXPORT_SYMBOL_GPL(dm_bufio_get);
1110
1111 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1112                     struct dm_buffer **bp)
1113 {
1114         BUG_ON(dm_bufio_in_request());
1115
1116         return new_read(c, block, NF_READ, bp);
1117 }
1118 EXPORT_SYMBOL_GPL(dm_bufio_read);
1119
1120 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1121                    struct dm_buffer **bp)
1122 {
1123         BUG_ON(dm_bufio_in_request());
1124
1125         return new_read(c, block, NF_FRESH, bp);
1126 }
1127 EXPORT_SYMBOL_GPL(dm_bufio_new);
1128
1129 void dm_bufio_prefetch(struct dm_bufio_client *c,
1130                        sector_t block, unsigned n_blocks)
1131 {
1132         struct blk_plug plug;
1133
1134         LIST_HEAD(write_list);
1135
1136         BUG_ON(dm_bufio_in_request());
1137
1138         blk_start_plug(&plug);
1139         dm_bufio_lock(c);
1140
1141         for (; n_blocks--; block++) {
1142                 int need_submit;
1143                 struct dm_buffer *b;
1144                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1145                                 &write_list);
1146                 if (unlikely(!list_empty(&write_list))) {
1147                         dm_bufio_unlock(c);
1148                         blk_finish_plug(&plug);
1149                         __flush_write_list(&write_list);
1150                         blk_start_plug(&plug);
1151                         dm_bufio_lock(c);
1152                 }
1153                 if (unlikely(b != NULL)) {
1154                         dm_bufio_unlock(c);
1155
1156                         if (need_submit)
1157                                 submit_io(b, READ, b->block, read_endio);
1158                         dm_bufio_release(b);
1159
1160                         dm_bufio_cond_resched();
1161
1162                         if (!n_blocks)
1163                                 goto flush_plug;
1164                         dm_bufio_lock(c);
1165                 }
1166         }
1167
1168         dm_bufio_unlock(c);
1169
1170 flush_plug:
1171         blk_finish_plug(&plug);
1172 }
1173 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1174
1175 void dm_bufio_release(struct dm_buffer *b)
1176 {
1177         struct dm_bufio_client *c = b->c;
1178
1179         dm_bufio_lock(c);
1180
1181         BUG_ON(!b->hold_count);
1182
1183         b->hold_count--;
1184         if (!b->hold_count) {
1185                 wake_up(&c->free_buffer_wait);
1186
1187                 /*
1188                  * If there were errors on the buffer, and the buffer is not
1189                  * to be written, free the buffer. There is no point in caching
1190                  * invalid buffer.
1191                  */
1192                 if ((b->read_error || b->write_error) &&
1193                     !test_bit(B_READING, &b->state) &&
1194                     !test_bit(B_WRITING, &b->state) &&
1195                     !test_bit(B_DIRTY, &b->state)) {
1196                         __unlink_buffer(b);
1197                         __free_buffer_wake(b);
1198                 }
1199         }
1200
1201         dm_bufio_unlock(c);
1202 }
1203 EXPORT_SYMBOL_GPL(dm_bufio_release);
1204
1205 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1206 {
1207         struct dm_bufio_client *c = b->c;
1208
1209         dm_bufio_lock(c);
1210
1211         BUG_ON(test_bit(B_READING, &b->state));
1212
1213         if (!test_and_set_bit(B_DIRTY, &b->state))
1214                 __relink_lru(b, LIST_DIRTY);
1215
1216         dm_bufio_unlock(c);
1217 }
1218 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1219
1220 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1221 {
1222         LIST_HEAD(write_list);
1223
1224         BUG_ON(dm_bufio_in_request());
1225
1226         dm_bufio_lock(c);
1227         __write_dirty_buffers_async(c, 0, &write_list);
1228         dm_bufio_unlock(c);
1229         __flush_write_list(&write_list);
1230 }
1231 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1232
1233 /*
1234  * For performance, it is essential that the buffers are written asynchronously
1235  * and simultaneously (so that the block layer can merge the writes) and then
1236  * waited upon.
1237  *
1238  * Finally, we flush hardware disk cache.
1239  */
1240 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1241 {
1242         int a, f;
1243         unsigned long buffers_processed = 0;
1244         struct dm_buffer *b, *tmp;
1245
1246         LIST_HEAD(write_list);
1247
1248         dm_bufio_lock(c);
1249         __write_dirty_buffers_async(c, 0, &write_list);
1250         dm_bufio_unlock(c);
1251         __flush_write_list(&write_list);
1252         dm_bufio_lock(c);
1253
1254 again:
1255         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1256                 int dropped_lock = 0;
1257
1258                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1259                         buffers_processed++;
1260
1261                 BUG_ON(test_bit(B_READING, &b->state));
1262
1263                 if (test_bit(B_WRITING, &b->state)) {
1264                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1265                                 dropped_lock = 1;
1266                                 b->hold_count++;
1267                                 dm_bufio_unlock(c);
1268                                 wait_on_bit_io(&b->state, B_WRITING,
1269                                                TASK_UNINTERRUPTIBLE);
1270                                 dm_bufio_lock(c);
1271                                 b->hold_count--;
1272                         } else
1273                                 wait_on_bit_io(&b->state, B_WRITING,
1274                                                TASK_UNINTERRUPTIBLE);
1275                 }
1276
1277                 if (!test_bit(B_DIRTY, &b->state) &&
1278                     !test_bit(B_WRITING, &b->state))
1279                         __relink_lru(b, LIST_CLEAN);
1280
1281                 dm_bufio_cond_resched();
1282
1283                 /*
1284                  * If we dropped the lock, the list is no longer consistent,
1285                  * so we must restart the search.
1286                  *
1287                  * In the most common case, the buffer just processed is
1288                  * relinked to the clean list, so we won't loop scanning the
1289                  * same buffer again and again.
1290                  *
1291                  * This may livelock if there is another thread simultaneously
1292                  * dirtying buffers, so we count the number of buffers walked
1293                  * and if it exceeds the total number of buffers, it means that
1294                  * someone is doing some writes simultaneously with us.  In
1295                  * this case, stop, dropping the lock.
1296                  */
1297                 if (dropped_lock)
1298                         goto again;
1299         }
1300         wake_up(&c->free_buffer_wait);
1301         dm_bufio_unlock(c);
1302
1303         a = xchg(&c->async_write_error, 0);
1304         f = dm_bufio_issue_flush(c);
1305         if (a)
1306                 return a;
1307
1308         return f;
1309 }
1310 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1311
1312 /*
1313  * Use dm-io to send and empty barrier flush the device.
1314  */
1315 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1316 {
1317         struct dm_io_request io_req = {
1318                 .bi_rw = WRITE_FLUSH,
1319                 .mem.type = DM_IO_KMEM,
1320                 .mem.ptr.addr = NULL,
1321                 .client = c->dm_io,
1322         };
1323         struct dm_io_region io_reg = {
1324                 .bdev = c->bdev,
1325                 .sector = 0,
1326                 .count = 0,
1327         };
1328
1329         BUG_ON(dm_bufio_in_request());
1330
1331         return dm_io(&io_req, 1, &io_reg, NULL);
1332 }
1333 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1334
1335 /*
1336  * We first delete any other buffer that may be at that new location.
1337  *
1338  * Then, we write the buffer to the original location if it was dirty.
1339  *
1340  * Then, if we are the only one who is holding the buffer, relink the buffer
1341  * in the hash queue for the new location.
1342  *
1343  * If there was someone else holding the buffer, we write it to the new
1344  * location but not relink it, because that other user needs to have the buffer
1345  * at the same place.
1346  */
1347 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1348 {
1349         struct dm_bufio_client *c = b->c;
1350         struct dm_buffer *new;
1351
1352         BUG_ON(dm_bufio_in_request());
1353
1354         dm_bufio_lock(c);
1355
1356 retry:
1357         new = __find(c, new_block);
1358         if (new) {
1359                 if (new->hold_count) {
1360                         __wait_for_free_buffer(c);
1361                         goto retry;
1362                 }
1363
1364                 /*
1365                  * FIXME: Is there any point waiting for a write that's going
1366                  * to be overwritten in a bit?
1367                  */
1368                 __make_buffer_clean(new);
1369                 __unlink_buffer(new);
1370                 __free_buffer_wake(new);
1371         }
1372
1373         BUG_ON(!b->hold_count);
1374         BUG_ON(test_bit(B_READING, &b->state));
1375
1376         __write_dirty_buffer(b, NULL);
1377         if (b->hold_count == 1) {
1378                 wait_on_bit_io(&b->state, B_WRITING,
1379                                TASK_UNINTERRUPTIBLE);
1380                 set_bit(B_DIRTY, &b->state);
1381                 __unlink_buffer(b);
1382                 __link_buffer(b, new_block, LIST_DIRTY);
1383         } else {
1384                 sector_t old_block;
1385                 wait_on_bit_lock_io(&b->state, B_WRITING,
1386                                     TASK_UNINTERRUPTIBLE);
1387                 /*
1388                  * Relink buffer to "new_block" so that write_callback
1389                  * sees "new_block" as a block number.
1390                  * After the write, link the buffer back to old_block.
1391                  * All this must be done in bufio lock, so that block number
1392                  * change isn't visible to other threads.
1393                  */
1394                 old_block = b->block;
1395                 __unlink_buffer(b);
1396                 __link_buffer(b, new_block, b->list_mode);
1397                 submit_io(b, WRITE, new_block, write_endio);
1398                 wait_on_bit_io(&b->state, B_WRITING,
1399                                TASK_UNINTERRUPTIBLE);
1400                 __unlink_buffer(b);
1401                 __link_buffer(b, old_block, b->list_mode);
1402         }
1403
1404         dm_bufio_unlock(c);
1405         dm_bufio_release(b);
1406 }
1407 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1408
1409 /*
1410  * Free the given buffer.
1411  *
1412  * This is just a hint, if the buffer is in use or dirty, this function
1413  * does nothing.
1414  */
1415 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1416 {
1417         struct dm_buffer *b;
1418
1419         dm_bufio_lock(c);
1420
1421         b = __find(c, block);
1422         if (b && likely(!b->hold_count) && likely(!b->state)) {
1423                 __unlink_buffer(b);
1424                 __free_buffer_wake(b);
1425         }
1426
1427         dm_bufio_unlock(c);
1428 }
1429 EXPORT_SYMBOL(dm_bufio_forget);
1430
1431 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1432 {
1433         c->minimum_buffers = n;
1434 }
1435 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1436
1437 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1438 {
1439         return c->block_size;
1440 }
1441 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1442
1443 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1444 {
1445         return i_size_read(c->bdev->bd_inode) >>
1446                            (SECTOR_SHIFT + c->sectors_per_block_bits);
1447 }
1448 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1449
1450 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1451 {
1452         return b->block;
1453 }
1454 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1455
1456 void *dm_bufio_get_block_data(struct dm_buffer *b)
1457 {
1458         return b->data;
1459 }
1460 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1461
1462 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1463 {
1464         return b + 1;
1465 }
1466 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1467
1468 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1469 {
1470         return b->c;
1471 }
1472 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1473
1474 static void drop_buffers(struct dm_bufio_client *c)
1475 {
1476         struct dm_buffer *b;
1477         int i;
1478
1479         BUG_ON(dm_bufio_in_request());
1480
1481         /*
1482          * An optimization so that the buffers are not written one-by-one.
1483          */
1484         dm_bufio_write_dirty_buffers_async(c);
1485
1486         dm_bufio_lock(c);
1487
1488         while ((b = __get_unclaimed_buffer(c)))
1489                 __free_buffer_wake(b);
1490
1491         for (i = 0; i < LIST_SIZE; i++)
1492                 list_for_each_entry(b, &c->lru[i], lru_list)
1493                         DMERR("leaked buffer %llx, hold count %u, list %d",
1494                               (unsigned long long)b->block, b->hold_count, i);
1495
1496         for (i = 0; i < LIST_SIZE; i++)
1497                 BUG_ON(!list_empty(&c->lru[i]));
1498
1499         dm_bufio_unlock(c);
1500 }
1501
1502 /*
1503  * We may not be able to evict this buffer if IO pending or the client
1504  * is still using it.  Caller is expected to know buffer is too old.
1505  *
1506  * And if GFP_NOFS is used, we must not do any I/O because we hold
1507  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1508  * rerouted to different bufio client.
1509  */
1510 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1511 {
1512         if (!(gfp & __GFP_FS)) {
1513                 if (test_bit(B_READING, &b->state) ||
1514                     test_bit(B_WRITING, &b->state) ||
1515                     test_bit(B_DIRTY, &b->state))
1516                         return false;
1517         }
1518
1519         if (b->hold_count)
1520                 return false;
1521
1522         __make_buffer_clean(b);
1523         __unlink_buffer(b);
1524         __free_buffer_wake(b);
1525
1526         return true;
1527 }
1528
1529 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1530 {
1531         unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1532         return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1533 }
1534
1535 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1536                             gfp_t gfp_mask)
1537 {
1538         int l;
1539         struct dm_buffer *b, *tmp;
1540         unsigned long freed = 0;
1541         unsigned long count = c->n_buffers[LIST_CLEAN] +
1542                               c->n_buffers[LIST_DIRTY];
1543         unsigned long retain_target = get_retain_buffers(c);
1544
1545         for (l = 0; l < LIST_SIZE; l++) {
1546                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1547                         if (__try_evict_buffer(b, gfp_mask))
1548                                 freed++;
1549                         if (!--nr_to_scan || ((count - freed) <= retain_target))
1550                                 return freed;
1551                         dm_bufio_cond_resched();
1552                 }
1553         }
1554         return freed;
1555 }
1556
1557 static unsigned long
1558 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1559 {
1560         struct dm_bufio_client *c;
1561         unsigned long freed;
1562
1563         c = container_of(shrink, struct dm_bufio_client, shrinker);
1564         if (sc->gfp_mask & __GFP_FS)
1565                 dm_bufio_lock(c);
1566         else if (!dm_bufio_trylock(c))
1567                 return SHRINK_STOP;
1568
1569         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1570         dm_bufio_unlock(c);
1571         return freed;
1572 }
1573
1574 static unsigned long
1575 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1576 {
1577         struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1578         unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1579                               READ_ONCE(c->n_buffers[LIST_DIRTY]);
1580         unsigned long retain_target = get_retain_buffers(c);
1581
1582         return (count < retain_target) ? 0 : (count - retain_target);
1583 }
1584
1585 /*
1586  * Create the buffering interface
1587  */
1588 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1589                                                unsigned reserved_buffers, unsigned aux_size,
1590                                                void (*alloc_callback)(struct dm_buffer *),
1591                                                void (*write_callback)(struct dm_buffer *))
1592 {
1593         int r;
1594         struct dm_bufio_client *c;
1595         unsigned i;
1596
1597         BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1598                (block_size & (block_size - 1)));
1599
1600         c = kzalloc(sizeof(*c), GFP_KERNEL);
1601         if (!c) {
1602                 r = -ENOMEM;
1603                 goto bad_client;
1604         }
1605         c->buffer_tree = RB_ROOT;
1606
1607         c->bdev = bdev;
1608         c->block_size = block_size;
1609         c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1610         c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1611                                   __ffs(block_size) - PAGE_SHIFT : 0;
1612         c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1613                                   PAGE_SHIFT - __ffs(block_size) : 0);
1614
1615         c->aux_size = aux_size;
1616         c->alloc_callback = alloc_callback;
1617         c->write_callback = write_callback;
1618
1619         for (i = 0; i < LIST_SIZE; i++) {
1620                 INIT_LIST_HEAD(&c->lru[i]);
1621                 c->n_buffers[i] = 0;
1622         }
1623
1624         mutex_init(&c->lock);
1625         INIT_LIST_HEAD(&c->reserved_buffers);
1626         c->need_reserved_buffers = reserved_buffers;
1627
1628         c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1629
1630         init_waitqueue_head(&c->free_buffer_wait);
1631         c->async_write_error = 0;
1632
1633         c->dm_io = dm_io_client_create();
1634         if (IS_ERR(c->dm_io)) {
1635                 r = PTR_ERR(c->dm_io);
1636                 goto bad_dm_io;
1637         }
1638
1639         mutex_lock(&dm_bufio_clients_lock);
1640         if (c->blocks_per_page_bits) {
1641                 if (!DM_BUFIO_CACHE_NAME(c)) {
1642                         DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1643                         if (!DM_BUFIO_CACHE_NAME(c)) {
1644                                 r = -ENOMEM;
1645                                 mutex_unlock(&dm_bufio_clients_lock);
1646                                 goto bad_cache;
1647                         }
1648                 }
1649
1650                 if (!DM_BUFIO_CACHE(c)) {
1651                         DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1652                                                               c->block_size,
1653                                                               c->block_size, 0, NULL);
1654                         if (!DM_BUFIO_CACHE(c)) {
1655                                 r = -ENOMEM;
1656                                 mutex_unlock(&dm_bufio_clients_lock);
1657                                 goto bad_cache;
1658                         }
1659                 }
1660         }
1661         mutex_unlock(&dm_bufio_clients_lock);
1662
1663         while (c->need_reserved_buffers) {
1664                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1665
1666                 if (!b) {
1667                         r = -ENOMEM;
1668                         goto bad_buffer;
1669                 }
1670                 __free_buffer_wake(b);
1671         }
1672
1673         mutex_lock(&dm_bufio_clients_lock);
1674         dm_bufio_client_count++;
1675         list_add(&c->client_list, &dm_bufio_all_clients);
1676         __cache_size_refresh();
1677         mutex_unlock(&dm_bufio_clients_lock);
1678
1679         c->shrinker.count_objects = dm_bufio_shrink_count;
1680         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1681         c->shrinker.seeks = 1;
1682         c->shrinker.batch = 0;
1683         register_shrinker(&c->shrinker);
1684
1685         return c;
1686
1687 bad_buffer:
1688 bad_cache:
1689         while (!list_empty(&c->reserved_buffers)) {
1690                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1691                                                  struct dm_buffer, lru_list);
1692                 list_del(&b->lru_list);
1693                 free_buffer(b);
1694         }
1695         dm_io_client_destroy(c->dm_io);
1696 bad_dm_io:
1697         kfree(c);
1698 bad_client:
1699         return ERR_PTR(r);
1700 }
1701 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1702
1703 /*
1704  * Free the buffering interface.
1705  * It is required that there are no references on any buffers.
1706  */
1707 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1708 {
1709         unsigned i;
1710
1711         drop_buffers(c);
1712
1713         unregister_shrinker(&c->shrinker);
1714
1715         mutex_lock(&dm_bufio_clients_lock);
1716
1717         list_del(&c->client_list);
1718         dm_bufio_client_count--;
1719         __cache_size_refresh();
1720
1721         mutex_unlock(&dm_bufio_clients_lock);
1722
1723         BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1724         BUG_ON(c->need_reserved_buffers);
1725
1726         while (!list_empty(&c->reserved_buffers)) {
1727                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1728                                                  struct dm_buffer, lru_list);
1729                 list_del(&b->lru_list);
1730                 free_buffer(b);
1731         }
1732
1733         for (i = 0; i < LIST_SIZE; i++)
1734                 if (c->n_buffers[i])
1735                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1736
1737         for (i = 0; i < LIST_SIZE; i++)
1738                 BUG_ON(c->n_buffers[i]);
1739
1740         dm_io_client_destroy(c->dm_io);
1741         kfree(c);
1742 }
1743 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1744
1745 static unsigned get_max_age_hz(void)
1746 {
1747         unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1748
1749         if (max_age > UINT_MAX / HZ)
1750                 max_age = UINT_MAX / HZ;
1751
1752         return max_age * HZ;
1753 }
1754
1755 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1756 {
1757         return time_after_eq(jiffies, b->last_accessed + age_hz);
1758 }
1759
1760 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1761 {
1762         struct dm_buffer *b, *tmp;
1763         unsigned long retain_target = get_retain_buffers(c);
1764         unsigned long count;
1765         LIST_HEAD(write_list);
1766
1767         dm_bufio_lock(c);
1768
1769         __check_watermark(c, &write_list);
1770         if (unlikely(!list_empty(&write_list))) {
1771                 dm_bufio_unlock(c);
1772                 __flush_write_list(&write_list);
1773                 dm_bufio_lock(c);
1774         }
1775
1776         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1777         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1778                 if (count <= retain_target)
1779                         break;
1780
1781                 if (!older_than(b, age_hz))
1782                         break;
1783
1784                 if (__try_evict_buffer(b, 0))
1785                         count--;
1786
1787                 dm_bufio_cond_resched();
1788         }
1789
1790         dm_bufio_unlock(c);
1791 }
1792
1793 static void cleanup_old_buffers(void)
1794 {
1795         unsigned long max_age_hz = get_max_age_hz();
1796         struct dm_bufio_client *c;
1797
1798         mutex_lock(&dm_bufio_clients_lock);
1799
1800         __cache_size_refresh();
1801
1802         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1803                 __evict_old_buffers(c, max_age_hz);
1804
1805         mutex_unlock(&dm_bufio_clients_lock);
1806 }
1807
1808 static struct workqueue_struct *dm_bufio_wq;
1809 static struct delayed_work dm_bufio_work;
1810
1811 static void work_fn(struct work_struct *w)
1812 {
1813         cleanup_old_buffers();
1814
1815         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1816                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1817 }
1818
1819 /*----------------------------------------------------------------
1820  * Module setup
1821  *--------------------------------------------------------------*/
1822
1823 /*
1824  * This is called only once for the whole dm_bufio module.
1825  * It initializes memory limit.
1826  */
1827 static int __init dm_bufio_init(void)
1828 {
1829         __u64 mem;
1830
1831         dm_bufio_allocated_kmem_cache = 0;
1832         dm_bufio_allocated_get_free_pages = 0;
1833         dm_bufio_allocated_vmalloc = 0;
1834         dm_bufio_current_allocated = 0;
1835
1836         memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1837         memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1838
1839         mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1840                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1841
1842         if (mem > ULONG_MAX)
1843                 mem = ULONG_MAX;
1844
1845 #ifdef CONFIG_MMU
1846         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1847                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1848 #endif
1849
1850         dm_bufio_default_cache_size = mem;
1851
1852         mutex_lock(&dm_bufio_clients_lock);
1853         __cache_size_refresh();
1854         mutex_unlock(&dm_bufio_clients_lock);
1855
1856         dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1857         if (!dm_bufio_wq)
1858                 return -ENOMEM;
1859
1860         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1861         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1862                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1863
1864         return 0;
1865 }
1866
1867 /*
1868  * This is called once when unloading the dm_bufio module.
1869  */
1870 static void __exit dm_bufio_exit(void)
1871 {
1872         int bug = 0;
1873         int i;
1874
1875         cancel_delayed_work_sync(&dm_bufio_work);
1876         destroy_workqueue(dm_bufio_wq);
1877
1878         for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1879                 kmem_cache_destroy(dm_bufio_caches[i]);
1880
1881         for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1882                 kfree(dm_bufio_cache_names[i]);
1883
1884         if (dm_bufio_client_count) {
1885                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1886                         __func__, dm_bufio_client_count);
1887                 bug = 1;
1888         }
1889
1890         if (dm_bufio_current_allocated) {
1891                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1892                         __func__, dm_bufio_current_allocated);
1893                 bug = 1;
1894         }
1895
1896         if (dm_bufio_allocated_get_free_pages) {
1897                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1898                        __func__, dm_bufio_allocated_get_free_pages);
1899                 bug = 1;
1900         }
1901
1902         if (dm_bufio_allocated_vmalloc) {
1903                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1904                        __func__, dm_bufio_allocated_vmalloc);
1905                 bug = 1;
1906         }
1907
1908         if (bug)
1909                 BUG();
1910 }
1911
1912 module_init(dm_bufio_init)
1913 module_exit(dm_bufio_exit)
1914
1915 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1916 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1917
1918 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1919 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1920
1921 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1922 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1923
1924 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1925 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1926
1927 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1928 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1929
1930 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1931 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1932
1933 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1934 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1935
1936 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1937 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1938
1939 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1940 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1941 MODULE_LICENSE("GPL");