GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/dm-bufio.h>
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21
22 #define DM_MSG_PREFIX "bufio"
23
24 /*
25  * Memory management policy:
26  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *      dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS            8
33
34 #define DM_BUFIO_MEMORY_PERCENT         2
35 #define DM_BUFIO_VMALLOC_PERCENT        25
36 #define DM_BUFIO_WRITEBACK_RATIO        3
37 #define DM_BUFIO_LOW_WATERMARK_RATIO    16
38
39 /*
40  * Check buffer ages in this interval (seconds)
41  */
42 #define DM_BUFIO_WORK_TIMER_SECS        30
43
44 /*
45  * Free buffers when they are older than this (seconds)
46  */
47 #define DM_BUFIO_DEFAULT_AGE_SECS       300
48
49 /*
50  * The nr of bytes of cached data to keep around.
51  */
52 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
53
54 /*
55  * Align buffer writes to this boundary.
56  * Tests show that SSDs have the highest IOPS when using 4k writes.
57  */
58 #define DM_BUFIO_WRITE_ALIGN            4096
59
60 /*
61  * dm_buffer->list_mode
62  */
63 #define LIST_CLEAN      0
64 #define LIST_DIRTY      1
65 #define LIST_SIZE       2
66
67 /*
68  * Linking of buffers:
69  *      All buffers are linked to buffer_tree with their node field.
70  *
71  *      Clean buffers that are not being written (B_WRITING not set)
72  *      are linked to lru[LIST_CLEAN] with their lru_list field.
73  *
74  *      Dirty and clean buffers that are being written are linked to
75  *      lru[LIST_DIRTY] with their lru_list field. When the write
76  *      finishes, the buffer cannot be relinked immediately (because we
77  *      are in an interrupt context and relinking requires process
78  *      context), so some clean-not-writing buffers can be held on
79  *      dirty_lru too.  They are later added to lru in the process
80  *      context.
81  */
82 struct dm_bufio_client {
83         struct mutex lock;
84
85         struct list_head lru[LIST_SIZE];
86         unsigned long n_buffers[LIST_SIZE];
87
88         struct block_device *bdev;
89         unsigned block_size;
90         s8 sectors_per_block_bits;
91         void (*alloc_callback)(struct dm_buffer *);
92         void (*write_callback)(struct dm_buffer *);
93
94         struct kmem_cache *slab_buffer;
95         struct kmem_cache *slab_cache;
96         struct dm_io_client *dm_io;
97
98         struct list_head reserved_buffers;
99         unsigned need_reserved_buffers;
100
101         unsigned minimum_buffers;
102
103         struct rb_root buffer_tree;
104         wait_queue_head_t free_buffer_wait;
105
106         sector_t start;
107
108         int async_write_error;
109
110         struct list_head client_list;
111
112         struct shrinker shrinker;
113         struct work_struct shrink_work;
114         atomic_long_t need_shrink;
115 };
116
117 /*
118  * Buffer state bits.
119  */
120 #define B_READING       0
121 #define B_WRITING       1
122 #define B_DIRTY         2
123
124 /*
125  * Describes how the block was allocated:
126  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127  * See the comment at alloc_buffer_data.
128  */
129 enum data_mode {
130         DATA_MODE_SLAB = 0,
131         DATA_MODE_GET_FREE_PAGES = 1,
132         DATA_MODE_VMALLOC = 2,
133         DATA_MODE_LIMIT = 3
134 };
135
136 struct dm_buffer {
137         struct rb_node node;
138         struct list_head lru_list;
139         struct list_head global_list;
140         sector_t block;
141         void *data;
142         unsigned char data_mode;                /* DATA_MODE_* */
143         unsigned char list_mode;                /* LIST_* */
144         blk_status_t read_error;
145         blk_status_t write_error;
146         unsigned accessed;
147         unsigned hold_count;
148         unsigned long state;
149         unsigned long last_accessed;
150         unsigned dirty_start;
151         unsigned dirty_end;
152         unsigned write_start;
153         unsigned write_end;
154         struct dm_bufio_client *c;
155         struct list_head write_list;
156         void (*end_io)(struct dm_buffer *, blk_status_t);
157 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
158 #define MAX_STACK 10
159         unsigned int stack_len;
160         unsigned long stack_entries[MAX_STACK];
161 #endif
162 };
163
164 /*----------------------------------------------------------------*/
165
166 #define dm_bufio_in_request()   (!!current->bio_list)
167
168 static void dm_bufio_lock(struct dm_bufio_client *c)
169 {
170         mutex_lock_nested(&c->lock, dm_bufio_in_request());
171 }
172
173 static int dm_bufio_trylock(struct dm_bufio_client *c)
174 {
175         return mutex_trylock(&c->lock);
176 }
177
178 static void dm_bufio_unlock(struct dm_bufio_client *c)
179 {
180         mutex_unlock(&c->lock);
181 }
182
183 /*----------------------------------------------------------------*/
184
185 /*
186  * Default cache size: available memory divided by the ratio.
187  */
188 static unsigned long dm_bufio_default_cache_size;
189
190 /*
191  * Total cache size set by the user.
192  */
193 static unsigned long dm_bufio_cache_size;
194
195 /*
196  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
197  * at any time.  If it disagrees, the user has changed cache size.
198  */
199 static unsigned long dm_bufio_cache_size_latch;
200
201 static DEFINE_SPINLOCK(global_spinlock);
202
203 static LIST_HEAD(global_queue);
204
205 static unsigned long global_num = 0;
206
207 /*
208  * Buffers are freed after this timeout
209  */
210 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
211 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
212
213 static unsigned long dm_bufio_peak_allocated;
214 static unsigned long dm_bufio_allocated_kmem_cache;
215 static unsigned long dm_bufio_allocated_get_free_pages;
216 static unsigned long dm_bufio_allocated_vmalloc;
217 static unsigned long dm_bufio_current_allocated;
218
219 /*----------------------------------------------------------------*/
220
221 /*
222  * The current number of clients.
223  */
224 static int dm_bufio_client_count;
225
226 /*
227  * The list of all clients.
228  */
229 static LIST_HEAD(dm_bufio_all_clients);
230
231 /*
232  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
233  */
234 static DEFINE_MUTEX(dm_bufio_clients_lock);
235
236 static struct workqueue_struct *dm_bufio_wq;
237 static struct delayed_work dm_bufio_cleanup_old_work;
238 static struct work_struct dm_bufio_replacement_work;
239
240
241 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
242 static void buffer_record_stack(struct dm_buffer *b)
243 {
244         b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
245 }
246 #endif
247
248 /*----------------------------------------------------------------
249  * A red/black tree acts as an index for all the buffers.
250  *--------------------------------------------------------------*/
251 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
252 {
253         struct rb_node *n = c->buffer_tree.rb_node;
254         struct dm_buffer *b;
255
256         while (n) {
257                 b = container_of(n, struct dm_buffer, node);
258
259                 if (b->block == block)
260                         return b;
261
262                 n = block < b->block ? n->rb_left : n->rb_right;
263         }
264
265         return NULL;
266 }
267
268 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
269 {
270         struct rb_node *n = c->buffer_tree.rb_node;
271         struct dm_buffer *b;
272         struct dm_buffer *best = NULL;
273
274         while (n) {
275                 b = container_of(n, struct dm_buffer, node);
276
277                 if (b->block == block)
278                         return b;
279
280                 if (block <= b->block) {
281                         n = n->rb_left;
282                         best = b;
283                 } else {
284                         n = n->rb_right;
285                 }
286         }
287
288         return best;
289 }
290
291 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
292 {
293         struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
294         struct dm_buffer *found;
295
296         while (*new) {
297                 found = container_of(*new, struct dm_buffer, node);
298
299                 if (found->block == b->block) {
300                         BUG_ON(found != b);
301                         return;
302                 }
303
304                 parent = *new;
305                 new = b->block < found->block ?
306                         &found->node.rb_left : &found->node.rb_right;
307         }
308
309         rb_link_node(&b->node, parent, new);
310         rb_insert_color(&b->node, &c->buffer_tree);
311 }
312
313 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
314 {
315         rb_erase(&b->node, &c->buffer_tree);
316 }
317
318 /*----------------------------------------------------------------*/
319
320 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
321 {
322         unsigned char data_mode;
323         long diff;
324
325         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
326                 &dm_bufio_allocated_kmem_cache,
327                 &dm_bufio_allocated_get_free_pages,
328                 &dm_bufio_allocated_vmalloc,
329         };
330
331         data_mode = b->data_mode;
332         diff = (long)b->c->block_size;
333         if (unlink)
334                 diff = -diff;
335
336         spin_lock(&global_spinlock);
337
338         *class_ptr[data_mode] += diff;
339
340         dm_bufio_current_allocated += diff;
341
342         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
343                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
344
345         b->accessed = 1;
346
347         if (!unlink) {
348                 list_add(&b->global_list, &global_queue);
349                 global_num++;
350                 if (dm_bufio_current_allocated > dm_bufio_cache_size)
351                         queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
352         } else {
353                 list_del(&b->global_list);
354                 global_num--;
355         }
356
357         spin_unlock(&global_spinlock);
358 }
359
360 /*
361  * Change the number of clients and recalculate per-client limit.
362  */
363 static void __cache_size_refresh(void)
364 {
365         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
366         BUG_ON(dm_bufio_client_count < 0);
367
368         dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
369
370         /*
371          * Use default if set to 0 and report the actual cache size used.
372          */
373         if (!dm_bufio_cache_size_latch) {
374                 (void)cmpxchg(&dm_bufio_cache_size, 0,
375                               dm_bufio_default_cache_size);
376                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
377         }
378 }
379
380 /*
381  * Allocating buffer data.
382  *
383  * Small buffers are allocated with kmem_cache, to use space optimally.
384  *
385  * For large buffers, we choose between get_free_pages and vmalloc.
386  * Each has advantages and disadvantages.
387  *
388  * __get_free_pages can randomly fail if the memory is fragmented.
389  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
390  * as low as 128M) so using it for caching is not appropriate.
391  *
392  * If the allocation may fail we use __get_free_pages. Memory fragmentation
393  * won't have a fatal effect here, but it just causes flushes of some other
394  * buffers and more I/O will be performed. Don't use __get_free_pages if it
395  * always fails (i.e. order >= MAX_ORDER).
396  *
397  * If the allocation shouldn't fail we use __vmalloc. This is only for the
398  * initial reserve allocation, so there's no risk of wasting all vmalloc
399  * space.
400  */
401 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
402                                unsigned char *data_mode)
403 {
404         if (unlikely(c->slab_cache != NULL)) {
405                 *data_mode = DATA_MODE_SLAB;
406                 return kmem_cache_alloc(c->slab_cache, gfp_mask);
407         }
408
409         if (c->block_size <= KMALLOC_MAX_SIZE &&
410             gfp_mask & __GFP_NORETRY) {
411                 *data_mode = DATA_MODE_GET_FREE_PAGES;
412                 return (void *)__get_free_pages(gfp_mask,
413                                                 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
414         }
415
416         *data_mode = DATA_MODE_VMALLOC;
417
418         /*
419          * __vmalloc allocates the data pages and auxiliary structures with
420          * gfp_flags that were specified, but pagetables are always allocated
421          * with GFP_KERNEL, no matter what was specified as gfp_mask.
422          *
423          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
424          * all allocations done by this process (including pagetables) are done
425          * as if GFP_NOIO was specified.
426          */
427         if (gfp_mask & __GFP_NORETRY) {
428                 unsigned noio_flag = memalloc_noio_save();
429                 void *ptr = __vmalloc(c->block_size, gfp_mask);
430
431                 memalloc_noio_restore(noio_flag);
432                 return ptr;
433         }
434
435         return __vmalloc(c->block_size, gfp_mask);
436 }
437
438 /*
439  * Free buffer's data.
440  */
441 static void free_buffer_data(struct dm_bufio_client *c,
442                              void *data, unsigned char data_mode)
443 {
444         switch (data_mode) {
445         case DATA_MODE_SLAB:
446                 kmem_cache_free(c->slab_cache, data);
447                 break;
448
449         case DATA_MODE_GET_FREE_PAGES:
450                 free_pages((unsigned long)data,
451                            c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
452                 break;
453
454         case DATA_MODE_VMALLOC:
455                 vfree(data);
456                 break;
457
458         default:
459                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
460                        data_mode);
461                 BUG();
462         }
463 }
464
465 /*
466  * Allocate buffer and its data.
467  */
468 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
469 {
470         struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
471
472         if (!b)
473                 return NULL;
474
475         b->c = c;
476
477         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
478         if (!b->data) {
479                 kmem_cache_free(c->slab_buffer, b);
480                 return NULL;
481         }
482
483 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
484         b->stack_len = 0;
485 #endif
486         return b;
487 }
488
489 /*
490  * Free buffer and its data.
491  */
492 static void free_buffer(struct dm_buffer *b)
493 {
494         struct dm_bufio_client *c = b->c;
495
496         free_buffer_data(c, b->data, b->data_mode);
497         kmem_cache_free(c->slab_buffer, b);
498 }
499
500 /*
501  * Link buffer to the buffer tree and clean or dirty queue.
502  */
503 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
504 {
505         struct dm_bufio_client *c = b->c;
506
507         c->n_buffers[dirty]++;
508         b->block = block;
509         b->list_mode = dirty;
510         list_add(&b->lru_list, &c->lru[dirty]);
511         __insert(b->c, b);
512         b->last_accessed = jiffies;
513
514         adjust_total_allocated(b, false);
515 }
516
517 /*
518  * Unlink buffer from the buffer tree and dirty or clean queue.
519  */
520 static void __unlink_buffer(struct dm_buffer *b)
521 {
522         struct dm_bufio_client *c = b->c;
523
524         BUG_ON(!c->n_buffers[b->list_mode]);
525
526         c->n_buffers[b->list_mode]--;
527         __remove(b->c, b);
528         list_del(&b->lru_list);
529
530         adjust_total_allocated(b, true);
531 }
532
533 /*
534  * Place the buffer to the head of dirty or clean LRU queue.
535  */
536 static void __relink_lru(struct dm_buffer *b, int dirty)
537 {
538         struct dm_bufio_client *c = b->c;
539
540         b->accessed = 1;
541
542         BUG_ON(!c->n_buffers[b->list_mode]);
543
544         c->n_buffers[b->list_mode]--;
545         c->n_buffers[dirty]++;
546         b->list_mode = dirty;
547         list_move(&b->lru_list, &c->lru[dirty]);
548         b->last_accessed = jiffies;
549 }
550
551 /*----------------------------------------------------------------
552  * Submit I/O on the buffer.
553  *
554  * Bio interface is faster but it has some problems:
555  *      the vector list is limited (increasing this limit increases
556  *      memory-consumption per buffer, so it is not viable);
557  *
558  *      the memory must be direct-mapped, not vmalloced;
559  *
560  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
561  * it is not vmalloced, try using the bio interface.
562  *
563  * If the buffer is big, if it is vmalloced or if the underlying device
564  * rejects the bio because it is too large, use dm-io layer to do the I/O.
565  * The dm-io layer splits the I/O into multiple requests, avoiding the above
566  * shortcomings.
567  *--------------------------------------------------------------*/
568
569 /*
570  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
571  * that the request was handled directly with bio interface.
572  */
573 static void dmio_complete(unsigned long error, void *context)
574 {
575         struct dm_buffer *b = context;
576
577         b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
578 }
579
580 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
581                      unsigned n_sectors, unsigned offset)
582 {
583         int r;
584         struct dm_io_request io_req = {
585                 .bi_op = rw,
586                 .bi_op_flags = 0,
587                 .notify.fn = dmio_complete,
588                 .notify.context = b,
589                 .client = b->c->dm_io,
590         };
591         struct dm_io_region region = {
592                 .bdev = b->c->bdev,
593                 .sector = sector,
594                 .count = n_sectors,
595         };
596
597         if (b->data_mode != DATA_MODE_VMALLOC) {
598                 io_req.mem.type = DM_IO_KMEM;
599                 io_req.mem.ptr.addr = (char *)b->data + offset;
600         } else {
601                 io_req.mem.type = DM_IO_VMA;
602                 io_req.mem.ptr.vma = (char *)b->data + offset;
603         }
604
605         r = dm_io(&io_req, 1, &region, NULL);
606         if (unlikely(r))
607                 b->end_io(b, errno_to_blk_status(r));
608 }
609
610 static void bio_complete(struct bio *bio)
611 {
612         struct dm_buffer *b = bio->bi_private;
613         blk_status_t status = bio->bi_status;
614         bio_uninit(bio);
615         kfree(bio);
616         b->end_io(b, status);
617 }
618
619 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
620                     unsigned n_sectors, unsigned offset)
621 {
622         struct bio *bio;
623         char *ptr;
624         unsigned vec_size, len;
625
626         vec_size = b->c->block_size >> PAGE_SHIFT;
627         if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
628                 vec_size += 2;
629
630         bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
631         if (!bio) {
632 dmio:
633                 use_dmio(b, rw, sector, n_sectors, offset);
634                 return;
635         }
636         bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, rw);
637         bio->bi_iter.bi_sector = sector;
638         bio->bi_end_io = bio_complete;
639         bio->bi_private = b;
640
641         ptr = (char *)b->data + offset;
642         len = n_sectors << SECTOR_SHIFT;
643
644         do {
645                 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
646                 if (!bio_add_page(bio, virt_to_page(ptr), this_step,
647                                   offset_in_page(ptr))) {
648                         bio_put(bio);
649                         goto dmio;
650                 }
651
652                 len -= this_step;
653                 ptr += this_step;
654         } while (len > 0);
655
656         submit_bio(bio);
657 }
658
659 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
660 {
661         sector_t sector;
662
663         if (likely(c->sectors_per_block_bits >= 0))
664                 sector = block << c->sectors_per_block_bits;
665         else
666                 sector = block * (c->block_size >> SECTOR_SHIFT);
667         sector += c->start;
668
669         return sector;
670 }
671
672 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
673 {
674         unsigned n_sectors;
675         sector_t sector;
676         unsigned offset, end;
677
678         b->end_io = end_io;
679
680         sector = block_to_sector(b->c, b->block);
681
682         if (rw != REQ_OP_WRITE) {
683                 n_sectors = b->c->block_size >> SECTOR_SHIFT;
684                 offset = 0;
685         } else {
686                 if (b->c->write_callback)
687                         b->c->write_callback(b);
688                 offset = b->write_start;
689                 end = b->write_end;
690                 offset &= -DM_BUFIO_WRITE_ALIGN;
691                 end += DM_BUFIO_WRITE_ALIGN - 1;
692                 end &= -DM_BUFIO_WRITE_ALIGN;
693                 if (unlikely(end > b->c->block_size))
694                         end = b->c->block_size;
695
696                 sector += offset >> SECTOR_SHIFT;
697                 n_sectors = (end - offset) >> SECTOR_SHIFT;
698         }
699
700         if (b->data_mode != DATA_MODE_VMALLOC)
701                 use_bio(b, rw, sector, n_sectors, offset);
702         else
703                 use_dmio(b, rw, sector, n_sectors, offset);
704 }
705
706 /*----------------------------------------------------------------
707  * Writing dirty buffers
708  *--------------------------------------------------------------*/
709
710 /*
711  * The endio routine for write.
712  *
713  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
714  * it.
715  */
716 static void write_endio(struct dm_buffer *b, blk_status_t status)
717 {
718         b->write_error = status;
719         if (unlikely(status)) {
720                 struct dm_bufio_client *c = b->c;
721
722                 (void)cmpxchg(&c->async_write_error, 0,
723                                 blk_status_to_errno(status));
724         }
725
726         BUG_ON(!test_bit(B_WRITING, &b->state));
727
728         smp_mb__before_atomic();
729         clear_bit(B_WRITING, &b->state);
730         smp_mb__after_atomic();
731
732         wake_up_bit(&b->state, B_WRITING);
733 }
734
735 /*
736  * Initiate a write on a dirty buffer, but don't wait for it.
737  *
738  * - If the buffer is not dirty, exit.
739  * - If there some previous write going on, wait for it to finish (we can't
740  *   have two writes on the same buffer simultaneously).
741  * - Submit our write and don't wait on it. We set B_WRITING indicating
742  *   that there is a write in progress.
743  */
744 static void __write_dirty_buffer(struct dm_buffer *b,
745                                  struct list_head *write_list)
746 {
747         if (!test_bit(B_DIRTY, &b->state))
748                 return;
749
750         clear_bit(B_DIRTY, &b->state);
751         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
752
753         b->write_start = b->dirty_start;
754         b->write_end = b->dirty_end;
755
756         if (!write_list)
757                 submit_io(b, REQ_OP_WRITE, write_endio);
758         else
759                 list_add_tail(&b->write_list, write_list);
760 }
761
762 static void __flush_write_list(struct list_head *write_list)
763 {
764         struct blk_plug plug;
765         blk_start_plug(&plug);
766         while (!list_empty(write_list)) {
767                 struct dm_buffer *b =
768                         list_entry(write_list->next, struct dm_buffer, write_list);
769                 list_del(&b->write_list);
770                 submit_io(b, REQ_OP_WRITE, write_endio);
771                 cond_resched();
772         }
773         blk_finish_plug(&plug);
774 }
775
776 /*
777  * Wait until any activity on the buffer finishes.  Possibly write the
778  * buffer if it is dirty.  When this function finishes, there is no I/O
779  * running on the buffer and the buffer is not dirty.
780  */
781 static void __make_buffer_clean(struct dm_buffer *b)
782 {
783         BUG_ON(b->hold_count);
784
785         if (!b->state)  /* fast case */
786                 return;
787
788         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
789         __write_dirty_buffer(b, NULL);
790         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
791 }
792
793 /*
794  * Find some buffer that is not held by anybody, clean it, unlink it and
795  * return it.
796  */
797 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
798 {
799         struct dm_buffer *b;
800
801         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
802                 BUG_ON(test_bit(B_WRITING, &b->state));
803                 BUG_ON(test_bit(B_DIRTY, &b->state));
804
805                 if (!b->hold_count) {
806                         __make_buffer_clean(b);
807                         __unlink_buffer(b);
808                         return b;
809                 }
810                 cond_resched();
811         }
812
813         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
814                 BUG_ON(test_bit(B_READING, &b->state));
815
816                 if (!b->hold_count) {
817                         __make_buffer_clean(b);
818                         __unlink_buffer(b);
819                         return b;
820                 }
821                 cond_resched();
822         }
823
824         return NULL;
825 }
826
827 /*
828  * Wait until some other threads free some buffer or release hold count on
829  * some buffer.
830  *
831  * This function is entered with c->lock held, drops it and regains it
832  * before exiting.
833  */
834 static void __wait_for_free_buffer(struct dm_bufio_client *c)
835 {
836         DECLARE_WAITQUEUE(wait, current);
837
838         add_wait_queue(&c->free_buffer_wait, &wait);
839         set_current_state(TASK_UNINTERRUPTIBLE);
840         dm_bufio_unlock(c);
841
842         io_schedule();
843
844         remove_wait_queue(&c->free_buffer_wait, &wait);
845
846         dm_bufio_lock(c);
847 }
848
849 enum new_flag {
850         NF_FRESH = 0,
851         NF_READ = 1,
852         NF_GET = 2,
853         NF_PREFETCH = 3
854 };
855
856 /*
857  * Allocate a new buffer. If the allocation is not possible, wait until
858  * some other thread frees a buffer.
859  *
860  * May drop the lock and regain it.
861  */
862 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
863 {
864         struct dm_buffer *b;
865         bool tried_noio_alloc = false;
866
867         /*
868          * dm-bufio is resistant to allocation failures (it just keeps
869          * one buffer reserved in cases all the allocations fail).
870          * So set flags to not try too hard:
871          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
872          *                  mutex and wait ourselves.
873          *      __GFP_NORETRY: don't retry and rather return failure
874          *      __GFP_NOMEMALLOC: don't use emergency reserves
875          *      __GFP_NOWARN: don't print a warning in case of failure
876          *
877          * For debugging, if we set the cache size to 1, no new buffers will
878          * be allocated.
879          */
880         while (1) {
881                 if (dm_bufio_cache_size_latch != 1) {
882                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
883                         if (b)
884                                 return b;
885                 }
886
887                 if (nf == NF_PREFETCH)
888                         return NULL;
889
890                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
891                         dm_bufio_unlock(c);
892                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
893                         dm_bufio_lock(c);
894                         if (b)
895                                 return b;
896                         tried_noio_alloc = true;
897                 }
898
899                 if (!list_empty(&c->reserved_buffers)) {
900                         b = list_entry(c->reserved_buffers.next,
901                                        struct dm_buffer, lru_list);
902                         list_del(&b->lru_list);
903                         c->need_reserved_buffers++;
904
905                         return b;
906                 }
907
908                 b = __get_unclaimed_buffer(c);
909                 if (b)
910                         return b;
911
912                 __wait_for_free_buffer(c);
913         }
914 }
915
916 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
917 {
918         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
919
920         if (!b)
921                 return NULL;
922
923         if (c->alloc_callback)
924                 c->alloc_callback(b);
925
926         return b;
927 }
928
929 /*
930  * Free a buffer and wake other threads waiting for free buffers.
931  */
932 static void __free_buffer_wake(struct dm_buffer *b)
933 {
934         struct dm_bufio_client *c = b->c;
935
936         if (!c->need_reserved_buffers)
937                 free_buffer(b);
938         else {
939                 list_add(&b->lru_list, &c->reserved_buffers);
940                 c->need_reserved_buffers--;
941         }
942
943         wake_up(&c->free_buffer_wait);
944 }
945
946 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
947                                         struct list_head *write_list)
948 {
949         struct dm_buffer *b, *tmp;
950
951         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
952                 BUG_ON(test_bit(B_READING, &b->state));
953
954                 if (!test_bit(B_DIRTY, &b->state) &&
955                     !test_bit(B_WRITING, &b->state)) {
956                         __relink_lru(b, LIST_CLEAN);
957                         continue;
958                 }
959
960                 if (no_wait && test_bit(B_WRITING, &b->state))
961                         return;
962
963                 __write_dirty_buffer(b, write_list);
964                 cond_resched();
965         }
966 }
967
968 /*
969  * Check if we're over watermark.
970  * If we are over threshold_buffers, start freeing buffers.
971  * If we're over "limit_buffers", block until we get under the limit.
972  */
973 static void __check_watermark(struct dm_bufio_client *c,
974                               struct list_head *write_list)
975 {
976         if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
977                 __write_dirty_buffers_async(c, 1, write_list);
978 }
979
980 /*----------------------------------------------------------------
981  * Getting a buffer
982  *--------------------------------------------------------------*/
983
984 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
985                                      enum new_flag nf, int *need_submit,
986                                      struct list_head *write_list)
987 {
988         struct dm_buffer *b, *new_b = NULL;
989
990         *need_submit = 0;
991
992         b = __find(c, block);
993         if (b)
994                 goto found_buffer;
995
996         if (nf == NF_GET)
997                 return NULL;
998
999         new_b = __alloc_buffer_wait(c, nf);
1000         if (!new_b)
1001                 return NULL;
1002
1003         /*
1004          * We've had a period where the mutex was unlocked, so need to
1005          * recheck the buffer tree.
1006          */
1007         b = __find(c, block);
1008         if (b) {
1009                 __free_buffer_wake(new_b);
1010                 goto found_buffer;
1011         }
1012
1013         __check_watermark(c, write_list);
1014
1015         b = new_b;
1016         b->hold_count = 1;
1017         b->read_error = 0;
1018         b->write_error = 0;
1019         __link_buffer(b, block, LIST_CLEAN);
1020
1021         if (nf == NF_FRESH) {
1022                 b->state = 0;
1023                 return b;
1024         }
1025
1026         b->state = 1 << B_READING;
1027         *need_submit = 1;
1028
1029         return b;
1030
1031 found_buffer:
1032         if (nf == NF_PREFETCH)
1033                 return NULL;
1034         /*
1035          * Note: it is essential that we don't wait for the buffer to be
1036          * read if dm_bufio_get function is used. Both dm_bufio_get and
1037          * dm_bufio_prefetch can be used in the driver request routine.
1038          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1039          * the same buffer, it would deadlock if we waited.
1040          */
1041         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1042                 return NULL;
1043
1044         b->hold_count++;
1045         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1046                      test_bit(B_WRITING, &b->state));
1047         return b;
1048 }
1049
1050 /*
1051  * The endio routine for reading: set the error, clear the bit and wake up
1052  * anyone waiting on the buffer.
1053  */
1054 static void read_endio(struct dm_buffer *b, blk_status_t status)
1055 {
1056         b->read_error = status;
1057
1058         BUG_ON(!test_bit(B_READING, &b->state));
1059
1060         smp_mb__before_atomic();
1061         clear_bit(B_READING, &b->state);
1062         smp_mb__after_atomic();
1063
1064         wake_up_bit(&b->state, B_READING);
1065 }
1066
1067 /*
1068  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1069  * functions is similar except that dm_bufio_new doesn't read the
1070  * buffer from the disk (assuming that the caller overwrites all the data
1071  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1072  */
1073 static void *new_read(struct dm_bufio_client *c, sector_t block,
1074                       enum new_flag nf, struct dm_buffer **bp)
1075 {
1076         int need_submit;
1077         struct dm_buffer *b;
1078
1079         LIST_HEAD(write_list);
1080
1081         dm_bufio_lock(c);
1082         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1083 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1084         if (b && b->hold_count == 1)
1085                 buffer_record_stack(b);
1086 #endif
1087         dm_bufio_unlock(c);
1088
1089         __flush_write_list(&write_list);
1090
1091         if (!b)
1092                 return NULL;
1093
1094         if (need_submit)
1095                 submit_io(b, REQ_OP_READ, read_endio);
1096
1097         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1098
1099         if (b->read_error) {
1100                 int error = blk_status_to_errno(b->read_error);
1101
1102                 dm_bufio_release(b);
1103
1104                 return ERR_PTR(error);
1105         }
1106
1107         *bp = b;
1108
1109         return b->data;
1110 }
1111
1112 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1113                    struct dm_buffer **bp)
1114 {
1115         return new_read(c, block, NF_GET, bp);
1116 }
1117 EXPORT_SYMBOL_GPL(dm_bufio_get);
1118
1119 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1120                     struct dm_buffer **bp)
1121 {
1122         BUG_ON(dm_bufio_in_request());
1123
1124         return new_read(c, block, NF_READ, bp);
1125 }
1126 EXPORT_SYMBOL_GPL(dm_bufio_read);
1127
1128 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1129                    struct dm_buffer **bp)
1130 {
1131         BUG_ON(dm_bufio_in_request());
1132
1133         return new_read(c, block, NF_FRESH, bp);
1134 }
1135 EXPORT_SYMBOL_GPL(dm_bufio_new);
1136
1137 void dm_bufio_prefetch(struct dm_bufio_client *c,
1138                        sector_t block, unsigned n_blocks)
1139 {
1140         struct blk_plug plug;
1141
1142         LIST_HEAD(write_list);
1143
1144         BUG_ON(dm_bufio_in_request());
1145
1146         blk_start_plug(&plug);
1147         dm_bufio_lock(c);
1148
1149         for (; n_blocks--; block++) {
1150                 int need_submit;
1151                 struct dm_buffer *b;
1152                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1153                                 &write_list);
1154                 if (unlikely(!list_empty(&write_list))) {
1155                         dm_bufio_unlock(c);
1156                         blk_finish_plug(&plug);
1157                         __flush_write_list(&write_list);
1158                         blk_start_plug(&plug);
1159                         dm_bufio_lock(c);
1160                 }
1161                 if (unlikely(b != NULL)) {
1162                         dm_bufio_unlock(c);
1163
1164                         if (need_submit)
1165                                 submit_io(b, REQ_OP_READ, read_endio);
1166                         dm_bufio_release(b);
1167
1168                         cond_resched();
1169
1170                         if (!n_blocks)
1171                                 goto flush_plug;
1172                         dm_bufio_lock(c);
1173                 }
1174         }
1175
1176         dm_bufio_unlock(c);
1177
1178 flush_plug:
1179         blk_finish_plug(&plug);
1180 }
1181 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1182
1183 void dm_bufio_release(struct dm_buffer *b)
1184 {
1185         struct dm_bufio_client *c = b->c;
1186
1187         dm_bufio_lock(c);
1188
1189         BUG_ON(!b->hold_count);
1190
1191         b->hold_count--;
1192         if (!b->hold_count) {
1193                 wake_up(&c->free_buffer_wait);
1194
1195                 /*
1196                  * If there were errors on the buffer, and the buffer is not
1197                  * to be written, free the buffer. There is no point in caching
1198                  * invalid buffer.
1199                  */
1200                 if ((b->read_error || b->write_error) &&
1201                     !test_bit(B_READING, &b->state) &&
1202                     !test_bit(B_WRITING, &b->state) &&
1203                     !test_bit(B_DIRTY, &b->state)) {
1204                         __unlink_buffer(b);
1205                         __free_buffer_wake(b);
1206                 }
1207         }
1208
1209         dm_bufio_unlock(c);
1210 }
1211 EXPORT_SYMBOL_GPL(dm_bufio_release);
1212
1213 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1214                                         unsigned start, unsigned end)
1215 {
1216         struct dm_bufio_client *c = b->c;
1217
1218         BUG_ON(start >= end);
1219         BUG_ON(end > b->c->block_size);
1220
1221         dm_bufio_lock(c);
1222
1223         BUG_ON(test_bit(B_READING, &b->state));
1224
1225         if (!test_and_set_bit(B_DIRTY, &b->state)) {
1226                 b->dirty_start = start;
1227                 b->dirty_end = end;
1228                 __relink_lru(b, LIST_DIRTY);
1229         } else {
1230                 if (start < b->dirty_start)
1231                         b->dirty_start = start;
1232                 if (end > b->dirty_end)
1233                         b->dirty_end = end;
1234         }
1235
1236         dm_bufio_unlock(c);
1237 }
1238 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1239
1240 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1241 {
1242         dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1243 }
1244 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1245
1246 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1247 {
1248         LIST_HEAD(write_list);
1249
1250         BUG_ON(dm_bufio_in_request());
1251
1252         dm_bufio_lock(c);
1253         __write_dirty_buffers_async(c, 0, &write_list);
1254         dm_bufio_unlock(c);
1255         __flush_write_list(&write_list);
1256 }
1257 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1258
1259 /*
1260  * For performance, it is essential that the buffers are written asynchronously
1261  * and simultaneously (so that the block layer can merge the writes) and then
1262  * waited upon.
1263  *
1264  * Finally, we flush hardware disk cache.
1265  */
1266 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1267 {
1268         int a, f;
1269         unsigned long buffers_processed = 0;
1270         struct dm_buffer *b, *tmp;
1271
1272         LIST_HEAD(write_list);
1273
1274         dm_bufio_lock(c);
1275         __write_dirty_buffers_async(c, 0, &write_list);
1276         dm_bufio_unlock(c);
1277         __flush_write_list(&write_list);
1278         dm_bufio_lock(c);
1279
1280 again:
1281         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1282                 int dropped_lock = 0;
1283
1284                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1285                         buffers_processed++;
1286
1287                 BUG_ON(test_bit(B_READING, &b->state));
1288
1289                 if (test_bit(B_WRITING, &b->state)) {
1290                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1291                                 dropped_lock = 1;
1292                                 b->hold_count++;
1293                                 dm_bufio_unlock(c);
1294                                 wait_on_bit_io(&b->state, B_WRITING,
1295                                                TASK_UNINTERRUPTIBLE);
1296                                 dm_bufio_lock(c);
1297                                 b->hold_count--;
1298                         } else
1299                                 wait_on_bit_io(&b->state, B_WRITING,
1300                                                TASK_UNINTERRUPTIBLE);
1301                 }
1302
1303                 if (!test_bit(B_DIRTY, &b->state) &&
1304                     !test_bit(B_WRITING, &b->state))
1305                         __relink_lru(b, LIST_CLEAN);
1306
1307                 cond_resched();
1308
1309                 /*
1310                  * If we dropped the lock, the list is no longer consistent,
1311                  * so we must restart the search.
1312                  *
1313                  * In the most common case, the buffer just processed is
1314                  * relinked to the clean list, so we won't loop scanning the
1315                  * same buffer again and again.
1316                  *
1317                  * This may livelock if there is another thread simultaneously
1318                  * dirtying buffers, so we count the number of buffers walked
1319                  * and if it exceeds the total number of buffers, it means that
1320                  * someone is doing some writes simultaneously with us.  In
1321                  * this case, stop, dropping the lock.
1322                  */
1323                 if (dropped_lock)
1324                         goto again;
1325         }
1326         wake_up(&c->free_buffer_wait);
1327         dm_bufio_unlock(c);
1328
1329         a = xchg(&c->async_write_error, 0);
1330         f = dm_bufio_issue_flush(c);
1331         if (a)
1332                 return a;
1333
1334         return f;
1335 }
1336 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1337
1338 /*
1339  * Use dm-io to send an empty barrier to flush the device.
1340  */
1341 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1342 {
1343         struct dm_io_request io_req = {
1344                 .bi_op = REQ_OP_WRITE,
1345                 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1346                 .mem.type = DM_IO_KMEM,
1347                 .mem.ptr.addr = NULL,
1348                 .client = c->dm_io,
1349         };
1350         struct dm_io_region io_reg = {
1351                 .bdev = c->bdev,
1352                 .sector = 0,
1353                 .count = 0,
1354         };
1355
1356         BUG_ON(dm_bufio_in_request());
1357
1358         return dm_io(&io_req, 1, &io_reg, NULL);
1359 }
1360 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1361
1362 /*
1363  * Use dm-io to send a discard request to flush the device.
1364  */
1365 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1366 {
1367         struct dm_io_request io_req = {
1368                 .bi_op = REQ_OP_DISCARD,
1369                 .bi_op_flags = REQ_SYNC,
1370                 .mem.type = DM_IO_KMEM,
1371                 .mem.ptr.addr = NULL,
1372                 .client = c->dm_io,
1373         };
1374         struct dm_io_region io_reg = {
1375                 .bdev = c->bdev,
1376                 .sector = block_to_sector(c, block),
1377                 .count = block_to_sector(c, count),
1378         };
1379
1380         BUG_ON(dm_bufio_in_request());
1381
1382         return dm_io(&io_req, 1, &io_reg, NULL);
1383 }
1384 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1385
1386 /*
1387  * We first delete any other buffer that may be at that new location.
1388  *
1389  * Then, we write the buffer to the original location if it was dirty.
1390  *
1391  * Then, if we are the only one who is holding the buffer, relink the buffer
1392  * in the buffer tree for the new location.
1393  *
1394  * If there was someone else holding the buffer, we write it to the new
1395  * location but not relink it, because that other user needs to have the buffer
1396  * at the same place.
1397  */
1398 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1399 {
1400         struct dm_bufio_client *c = b->c;
1401         struct dm_buffer *new;
1402
1403         BUG_ON(dm_bufio_in_request());
1404
1405         dm_bufio_lock(c);
1406
1407 retry:
1408         new = __find(c, new_block);
1409         if (new) {
1410                 if (new->hold_count) {
1411                         __wait_for_free_buffer(c);
1412                         goto retry;
1413                 }
1414
1415                 /*
1416                  * FIXME: Is there any point waiting for a write that's going
1417                  * to be overwritten in a bit?
1418                  */
1419                 __make_buffer_clean(new);
1420                 __unlink_buffer(new);
1421                 __free_buffer_wake(new);
1422         }
1423
1424         BUG_ON(!b->hold_count);
1425         BUG_ON(test_bit(B_READING, &b->state));
1426
1427         __write_dirty_buffer(b, NULL);
1428         if (b->hold_count == 1) {
1429                 wait_on_bit_io(&b->state, B_WRITING,
1430                                TASK_UNINTERRUPTIBLE);
1431                 set_bit(B_DIRTY, &b->state);
1432                 b->dirty_start = 0;
1433                 b->dirty_end = c->block_size;
1434                 __unlink_buffer(b);
1435                 __link_buffer(b, new_block, LIST_DIRTY);
1436         } else {
1437                 sector_t old_block;
1438                 wait_on_bit_lock_io(&b->state, B_WRITING,
1439                                     TASK_UNINTERRUPTIBLE);
1440                 /*
1441                  * Relink buffer to "new_block" so that write_callback
1442                  * sees "new_block" as a block number.
1443                  * After the write, link the buffer back to old_block.
1444                  * All this must be done in bufio lock, so that block number
1445                  * change isn't visible to other threads.
1446                  */
1447                 old_block = b->block;
1448                 __unlink_buffer(b);
1449                 __link_buffer(b, new_block, b->list_mode);
1450                 submit_io(b, REQ_OP_WRITE, write_endio);
1451                 wait_on_bit_io(&b->state, B_WRITING,
1452                                TASK_UNINTERRUPTIBLE);
1453                 __unlink_buffer(b);
1454                 __link_buffer(b, old_block, b->list_mode);
1455         }
1456
1457         dm_bufio_unlock(c);
1458         dm_bufio_release(b);
1459 }
1460 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1461
1462 static void forget_buffer_locked(struct dm_buffer *b)
1463 {
1464         if (likely(!b->hold_count) && likely(!b->state)) {
1465                 __unlink_buffer(b);
1466                 __free_buffer_wake(b);
1467         }
1468 }
1469
1470 /*
1471  * Free the given buffer.
1472  *
1473  * This is just a hint, if the buffer is in use or dirty, this function
1474  * does nothing.
1475  */
1476 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1477 {
1478         struct dm_buffer *b;
1479
1480         dm_bufio_lock(c);
1481
1482         b = __find(c, block);
1483         if (b)
1484                 forget_buffer_locked(b);
1485
1486         dm_bufio_unlock(c);
1487 }
1488 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1489
1490 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1491 {
1492         struct dm_buffer *b;
1493         sector_t end_block = block + n_blocks;
1494
1495         while (block < end_block) {
1496                 dm_bufio_lock(c);
1497
1498                 b = __find_next(c, block);
1499                 if (b) {
1500                         block = b->block + 1;
1501                         forget_buffer_locked(b);
1502                 }
1503
1504                 dm_bufio_unlock(c);
1505
1506                 if (!b)
1507                         break;
1508         }
1509
1510 }
1511 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1512
1513 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1514 {
1515         c->minimum_buffers = n;
1516 }
1517 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1518
1519 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1520 {
1521         return c->block_size;
1522 }
1523 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1524
1525 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1526 {
1527         sector_t s = bdev_nr_sectors(c->bdev);
1528         if (s >= c->start)
1529                 s -= c->start;
1530         else
1531                 s = 0;
1532         if (likely(c->sectors_per_block_bits >= 0))
1533                 s >>= c->sectors_per_block_bits;
1534         else
1535                 sector_div(s, c->block_size >> SECTOR_SHIFT);
1536         return s;
1537 }
1538 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1539
1540 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1541 {
1542         return c->dm_io;
1543 }
1544 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1545
1546 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1547 {
1548         return b->block;
1549 }
1550 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1551
1552 void *dm_bufio_get_block_data(struct dm_buffer *b)
1553 {
1554         return b->data;
1555 }
1556 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1557
1558 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1559 {
1560         return b + 1;
1561 }
1562 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1563
1564 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1565 {
1566         return b->c;
1567 }
1568 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1569
1570 static void drop_buffers(struct dm_bufio_client *c)
1571 {
1572         struct dm_buffer *b;
1573         int i;
1574         bool warned = false;
1575
1576         BUG_ON(dm_bufio_in_request());
1577
1578         /*
1579          * An optimization so that the buffers are not written one-by-one.
1580          */
1581         dm_bufio_write_dirty_buffers_async(c);
1582
1583         dm_bufio_lock(c);
1584
1585         while ((b = __get_unclaimed_buffer(c)))
1586                 __free_buffer_wake(b);
1587
1588         for (i = 0; i < LIST_SIZE; i++)
1589                 list_for_each_entry(b, &c->lru[i], lru_list) {
1590                         WARN_ON(!warned);
1591                         warned = true;
1592                         DMERR("leaked buffer %llx, hold count %u, list %d",
1593                               (unsigned long long)b->block, b->hold_count, i);
1594 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1595                         stack_trace_print(b->stack_entries, b->stack_len, 1);
1596                         /* mark unclaimed to avoid BUG_ON below */
1597                         b->hold_count = 0;
1598 #endif
1599                 }
1600
1601 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1602         while ((b = __get_unclaimed_buffer(c)))
1603                 __free_buffer_wake(b);
1604 #endif
1605
1606         for (i = 0; i < LIST_SIZE; i++)
1607                 BUG_ON(!list_empty(&c->lru[i]));
1608
1609         dm_bufio_unlock(c);
1610 }
1611
1612 /*
1613  * We may not be able to evict this buffer if IO pending or the client
1614  * is still using it.  Caller is expected to know buffer is too old.
1615  *
1616  * And if GFP_NOFS is used, we must not do any I/O because we hold
1617  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1618  * rerouted to different bufio client.
1619  */
1620 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1621 {
1622         if (!(gfp & __GFP_FS)) {
1623                 if (test_bit(B_READING, &b->state) ||
1624                     test_bit(B_WRITING, &b->state) ||
1625                     test_bit(B_DIRTY, &b->state))
1626                         return false;
1627         }
1628
1629         if (b->hold_count)
1630                 return false;
1631
1632         __make_buffer_clean(b);
1633         __unlink_buffer(b);
1634         __free_buffer_wake(b);
1635
1636         return true;
1637 }
1638
1639 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1640 {
1641         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1642         if (likely(c->sectors_per_block_bits >= 0))
1643                 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1644         else
1645                 retain_bytes /= c->block_size;
1646         return retain_bytes;
1647 }
1648
1649 static void __scan(struct dm_bufio_client *c)
1650 {
1651         int l;
1652         struct dm_buffer *b, *tmp;
1653         unsigned long freed = 0;
1654         unsigned long count = c->n_buffers[LIST_CLEAN] +
1655                               c->n_buffers[LIST_DIRTY];
1656         unsigned long retain_target = get_retain_buffers(c);
1657
1658         for (l = 0; l < LIST_SIZE; l++) {
1659                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1660                         if (count - freed <= retain_target)
1661                                 atomic_long_set(&c->need_shrink, 0);
1662                         if (!atomic_long_read(&c->need_shrink))
1663                                 return;
1664                         if (__try_evict_buffer(b, GFP_KERNEL)) {
1665                                 atomic_long_dec(&c->need_shrink);
1666                                 freed++;
1667                         }
1668                         cond_resched();
1669                 }
1670         }
1671 }
1672
1673 static void shrink_work(struct work_struct *w)
1674 {
1675         struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1676
1677         dm_bufio_lock(c);
1678         __scan(c);
1679         dm_bufio_unlock(c);
1680 }
1681
1682 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1683 {
1684         struct dm_bufio_client *c;
1685
1686         c = container_of(shrink, struct dm_bufio_client, shrinker);
1687         atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1688         queue_work(dm_bufio_wq, &c->shrink_work);
1689
1690         return sc->nr_to_scan;
1691 }
1692
1693 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1694 {
1695         struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1696         unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1697                               READ_ONCE(c->n_buffers[LIST_DIRTY]);
1698         unsigned long retain_target = get_retain_buffers(c);
1699         unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1700
1701         if (unlikely(count < retain_target))
1702                 count = 0;
1703         else
1704                 count -= retain_target;
1705
1706         if (unlikely(count < queued_for_cleanup))
1707                 count = 0;
1708         else
1709                 count -= queued_for_cleanup;
1710
1711         return count;
1712 }
1713
1714 /*
1715  * Create the buffering interface
1716  */
1717 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1718                                                unsigned reserved_buffers, unsigned aux_size,
1719                                                void (*alloc_callback)(struct dm_buffer *),
1720                                                void (*write_callback)(struct dm_buffer *))
1721 {
1722         int r;
1723         struct dm_bufio_client *c;
1724         unsigned i;
1725         char slab_name[27];
1726
1727         if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1728                 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1729                 r = -EINVAL;
1730                 goto bad_client;
1731         }
1732
1733         c = kzalloc(sizeof(*c), GFP_KERNEL);
1734         if (!c) {
1735                 r = -ENOMEM;
1736                 goto bad_client;
1737         }
1738         c->buffer_tree = RB_ROOT;
1739
1740         c->bdev = bdev;
1741         c->block_size = block_size;
1742         if (is_power_of_2(block_size))
1743                 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1744         else
1745                 c->sectors_per_block_bits = -1;
1746
1747         c->alloc_callback = alloc_callback;
1748         c->write_callback = write_callback;
1749
1750         for (i = 0; i < LIST_SIZE; i++) {
1751                 INIT_LIST_HEAD(&c->lru[i]);
1752                 c->n_buffers[i] = 0;
1753         }
1754
1755         mutex_init(&c->lock);
1756         INIT_LIST_HEAD(&c->reserved_buffers);
1757         c->need_reserved_buffers = reserved_buffers;
1758
1759         dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1760
1761         init_waitqueue_head(&c->free_buffer_wait);
1762         c->async_write_error = 0;
1763
1764         c->dm_io = dm_io_client_create();
1765         if (IS_ERR(c->dm_io)) {
1766                 r = PTR_ERR(c->dm_io);
1767                 goto bad_dm_io;
1768         }
1769
1770         if (block_size <= KMALLOC_MAX_SIZE &&
1771             (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1772                 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1773                 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1774                 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1775                                                   SLAB_RECLAIM_ACCOUNT, NULL);
1776                 if (!c->slab_cache) {
1777                         r = -ENOMEM;
1778                         goto bad;
1779                 }
1780         }
1781         if (aux_size)
1782                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1783         else
1784                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1785         c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1786                                            0, SLAB_RECLAIM_ACCOUNT, NULL);
1787         if (!c->slab_buffer) {
1788                 r = -ENOMEM;
1789                 goto bad;
1790         }
1791
1792         while (c->need_reserved_buffers) {
1793                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1794
1795                 if (!b) {
1796                         r = -ENOMEM;
1797                         goto bad;
1798                 }
1799                 __free_buffer_wake(b);
1800         }
1801
1802         INIT_WORK(&c->shrink_work, shrink_work);
1803         atomic_long_set(&c->need_shrink, 0);
1804
1805         c->shrinker.count_objects = dm_bufio_shrink_count;
1806         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1807         c->shrinker.seeks = 1;
1808         c->shrinker.batch = 0;
1809         r = register_shrinker(&c->shrinker);
1810         if (r)
1811                 goto bad;
1812
1813         mutex_lock(&dm_bufio_clients_lock);
1814         dm_bufio_client_count++;
1815         list_add(&c->client_list, &dm_bufio_all_clients);
1816         __cache_size_refresh();
1817         mutex_unlock(&dm_bufio_clients_lock);
1818
1819         return c;
1820
1821 bad:
1822         while (!list_empty(&c->reserved_buffers)) {
1823                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1824                                                  struct dm_buffer, lru_list);
1825                 list_del(&b->lru_list);
1826                 free_buffer(b);
1827         }
1828         kmem_cache_destroy(c->slab_cache);
1829         kmem_cache_destroy(c->slab_buffer);
1830         dm_io_client_destroy(c->dm_io);
1831 bad_dm_io:
1832         mutex_destroy(&c->lock);
1833         kfree(c);
1834 bad_client:
1835         return ERR_PTR(r);
1836 }
1837 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1838
1839 /*
1840  * Free the buffering interface.
1841  * It is required that there are no references on any buffers.
1842  */
1843 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1844 {
1845         unsigned i;
1846
1847         drop_buffers(c);
1848
1849         unregister_shrinker(&c->shrinker);
1850         flush_work(&c->shrink_work);
1851
1852         mutex_lock(&dm_bufio_clients_lock);
1853
1854         list_del(&c->client_list);
1855         dm_bufio_client_count--;
1856         __cache_size_refresh();
1857
1858         mutex_unlock(&dm_bufio_clients_lock);
1859
1860         BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1861         BUG_ON(c->need_reserved_buffers);
1862
1863         while (!list_empty(&c->reserved_buffers)) {
1864                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1865                                                  struct dm_buffer, lru_list);
1866                 list_del(&b->lru_list);
1867                 free_buffer(b);
1868         }
1869
1870         for (i = 0; i < LIST_SIZE; i++)
1871                 if (c->n_buffers[i])
1872                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1873
1874         for (i = 0; i < LIST_SIZE; i++)
1875                 BUG_ON(c->n_buffers[i]);
1876
1877         kmem_cache_destroy(c->slab_cache);
1878         kmem_cache_destroy(c->slab_buffer);
1879         dm_io_client_destroy(c->dm_io);
1880         mutex_destroy(&c->lock);
1881         kfree(c);
1882 }
1883 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1884
1885 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1886 {
1887         c->start = start;
1888 }
1889 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1890
1891 static unsigned get_max_age_hz(void)
1892 {
1893         unsigned max_age = READ_ONCE(dm_bufio_max_age);
1894
1895         if (max_age > UINT_MAX / HZ)
1896                 max_age = UINT_MAX / HZ;
1897
1898         return max_age * HZ;
1899 }
1900
1901 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1902 {
1903         return time_after_eq(jiffies, b->last_accessed + age_hz);
1904 }
1905
1906 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1907 {
1908         struct dm_buffer *b, *tmp;
1909         unsigned long retain_target = get_retain_buffers(c);
1910         unsigned long count;
1911         LIST_HEAD(write_list);
1912
1913         dm_bufio_lock(c);
1914
1915         __check_watermark(c, &write_list);
1916         if (unlikely(!list_empty(&write_list))) {
1917                 dm_bufio_unlock(c);
1918                 __flush_write_list(&write_list);
1919                 dm_bufio_lock(c);
1920         }
1921
1922         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1923         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1924                 if (count <= retain_target)
1925                         break;
1926
1927                 if (!older_than(b, age_hz))
1928                         break;
1929
1930                 if (__try_evict_buffer(b, 0))
1931                         count--;
1932
1933                 cond_resched();
1934         }
1935
1936         dm_bufio_unlock(c);
1937 }
1938
1939 static void do_global_cleanup(struct work_struct *w)
1940 {
1941         struct dm_bufio_client *locked_client = NULL;
1942         struct dm_bufio_client *current_client;
1943         struct dm_buffer *b;
1944         unsigned spinlock_hold_count;
1945         unsigned long threshold = dm_bufio_cache_size -
1946                 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1947         unsigned long loops = global_num * 2;
1948
1949         mutex_lock(&dm_bufio_clients_lock);
1950
1951         while (1) {
1952                 cond_resched();
1953
1954                 spin_lock(&global_spinlock);
1955                 if (unlikely(dm_bufio_current_allocated <= threshold))
1956                         break;
1957
1958                 spinlock_hold_count = 0;
1959 get_next:
1960                 if (!loops--)
1961                         break;
1962                 if (unlikely(list_empty(&global_queue)))
1963                         break;
1964                 b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1965
1966                 if (b->accessed) {
1967                         b->accessed = 0;
1968                         list_move(&b->global_list, &global_queue);
1969                         if (likely(++spinlock_hold_count < 16))
1970                                 goto get_next;
1971                         spin_unlock(&global_spinlock);
1972                         continue;
1973                 }
1974
1975                 current_client = b->c;
1976                 if (unlikely(current_client != locked_client)) {
1977                         if (locked_client)
1978                                 dm_bufio_unlock(locked_client);
1979
1980                         if (!dm_bufio_trylock(current_client)) {
1981                                 spin_unlock(&global_spinlock);
1982                                 dm_bufio_lock(current_client);
1983                                 locked_client = current_client;
1984                                 continue;
1985                         }
1986
1987                         locked_client = current_client;
1988                 }
1989
1990                 spin_unlock(&global_spinlock);
1991
1992                 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
1993                         spin_lock(&global_spinlock);
1994                         list_move(&b->global_list, &global_queue);
1995                         spin_unlock(&global_spinlock);
1996                 }
1997         }
1998
1999         spin_unlock(&global_spinlock);
2000
2001         if (locked_client)
2002                 dm_bufio_unlock(locked_client);
2003
2004         mutex_unlock(&dm_bufio_clients_lock);
2005 }
2006
2007 static void cleanup_old_buffers(void)
2008 {
2009         unsigned long max_age_hz = get_max_age_hz();
2010         struct dm_bufio_client *c;
2011
2012         mutex_lock(&dm_bufio_clients_lock);
2013
2014         __cache_size_refresh();
2015
2016         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2017                 __evict_old_buffers(c, max_age_hz);
2018
2019         mutex_unlock(&dm_bufio_clients_lock);
2020 }
2021
2022 static void work_fn(struct work_struct *w)
2023 {
2024         cleanup_old_buffers();
2025
2026         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2027                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2028 }
2029
2030 /*----------------------------------------------------------------
2031  * Module setup
2032  *--------------------------------------------------------------*/
2033
2034 /*
2035  * This is called only once for the whole dm_bufio module.
2036  * It initializes memory limit.
2037  */
2038 static int __init dm_bufio_init(void)
2039 {
2040         __u64 mem;
2041
2042         dm_bufio_allocated_kmem_cache = 0;
2043         dm_bufio_allocated_get_free_pages = 0;
2044         dm_bufio_allocated_vmalloc = 0;
2045         dm_bufio_current_allocated = 0;
2046
2047         mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2048                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2049
2050         if (mem > ULONG_MAX)
2051                 mem = ULONG_MAX;
2052
2053 #ifdef CONFIG_MMU
2054         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2055                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2056 #endif
2057
2058         dm_bufio_default_cache_size = mem;
2059
2060         mutex_lock(&dm_bufio_clients_lock);
2061         __cache_size_refresh();
2062         mutex_unlock(&dm_bufio_clients_lock);
2063
2064         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2065         if (!dm_bufio_wq)
2066                 return -ENOMEM;
2067
2068         INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2069         INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2070         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2071                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2072
2073         return 0;
2074 }
2075
2076 /*
2077  * This is called once when unloading the dm_bufio module.
2078  */
2079 static void __exit dm_bufio_exit(void)
2080 {
2081         int bug = 0;
2082
2083         cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2084         destroy_workqueue(dm_bufio_wq);
2085
2086         if (dm_bufio_client_count) {
2087                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2088                         __func__, dm_bufio_client_count);
2089                 bug = 1;
2090         }
2091
2092         if (dm_bufio_current_allocated) {
2093                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2094                         __func__, dm_bufio_current_allocated);
2095                 bug = 1;
2096         }
2097
2098         if (dm_bufio_allocated_get_free_pages) {
2099                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2100                        __func__, dm_bufio_allocated_get_free_pages);
2101                 bug = 1;
2102         }
2103
2104         if (dm_bufio_allocated_vmalloc) {
2105                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2106                        __func__, dm_bufio_allocated_vmalloc);
2107                 bug = 1;
2108         }
2109
2110         BUG_ON(bug);
2111 }
2112
2113 module_init(dm_bufio_init)
2114 module_exit(dm_bufio_exit)
2115
2116 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2117 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2118
2119 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2120 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2121
2122 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2123 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2124
2125 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2126 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2127
2128 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2129 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2130
2131 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2132 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2133
2134 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2135 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2136
2137 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2138 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2139
2140 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2141 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2142 MODULE_LICENSE("GPL");