GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / md / bcache / writeback.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22         if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23             c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24                 return;
25
26         c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32         struct cache_set *c = dc->disk.c;
33
34         /*
35          * This is the size of the cache, minus the amount used for
36          * flash-only devices
37          */
38         uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39                                 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41         /*
42          * Unfortunately there is no control of global dirty data.  If the
43          * user states that they want 10% dirty data in the cache, and has,
44          * e.g., 5 backing volumes of equal size, we try and ensure each
45          * backing volume uses about 2% of the cache for dirty data.
46          */
47         uint32_t bdev_share =
48                 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49                                 c->cached_dev_sectors);
50
51         uint64_t cache_dirty_target =
52                 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54         /* Ensure each backing dev gets at least one dirty share */
55         if (bdev_share < 1)
56                 bdev_share = 1;
57
58         return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63         /*
64          * PI controller:
65          * Figures out the amount that should be written per second.
66          *
67          * First, the error (number of sectors that are dirty beyond our
68          * target) is calculated.  The error is accumulated (numerically
69          * integrated).
70          *
71          * Then, the proportional value and integral value are scaled
72          * based on configured values.  These are stored as inverses to
73          * avoid fixed point math and to make configuration easy-- e.g.
74          * the default value of 40 for writeback_rate_p_term_inverse
75          * attempts to write at a rate that would retire all the dirty
76          * blocks in 40 seconds.
77          *
78          * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79          * of the error is accumulated in the integral term per second.
80          * This acts as a slow, long-term average that is not subject to
81          * variations in usage like the p term.
82          */
83         int64_t target = __calc_target_rate(dc);
84         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85         int64_t error = dirty - target;
86         int64_t proportional_scaled =
87                 div_s64(error, dc->writeback_rate_p_term_inverse);
88         int64_t integral_scaled;
89         uint32_t new_rate;
90
91         if ((error < 0 && dc->writeback_rate_integral > 0) ||
92             (error > 0 && time_before64(local_clock(),
93                          dc->writeback_rate.next + NSEC_PER_MSEC))) {
94                 /*
95                  * Only decrease the integral term if it's more than
96                  * zero.  Only increase the integral term if the device
97                  * is keeping up.  (Don't wind up the integral
98                  * ineffectively in either case).
99                  *
100                  * It's necessary to scale this by
101                  * writeback_rate_update_seconds to keep the integral
102                  * term dimensioned properly.
103                  */
104                 dc->writeback_rate_integral += error *
105                         dc->writeback_rate_update_seconds;
106         }
107
108         integral_scaled = div_s64(dc->writeback_rate_integral,
109                         dc->writeback_rate_i_term_inverse);
110
111         new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112                         dc->writeback_rate_minimum, NSEC_PER_SEC);
113
114         dc->writeback_rate_proportional = proportional_scaled;
115         dc->writeback_rate_integral_scaled = integral_scaled;
116         dc->writeback_rate_change = new_rate -
117                         atomic_long_read(&dc->writeback_rate.rate);
118         atomic_long_set(&dc->writeback_rate.rate, new_rate);
119         dc->writeback_rate_target = target;
120 }
121
122 static bool idle_counter_exceeded(struct cache_set *c)
123 {
124         int counter, dev_nr;
125
126         /*
127          * If c->idle_counter is overflow (idel for really long time),
128          * reset as 0 and not set maximum rate this time for code
129          * simplicity.
130          */
131         counter = atomic_inc_return(&c->idle_counter);
132         if (counter <= 0) {
133                 atomic_set(&c->idle_counter, 0);
134                 return false;
135         }
136
137         dev_nr = atomic_read(&c->attached_dev_nr);
138         if (dev_nr == 0)
139                 return false;
140
141         /*
142          * c->idle_counter is increased by writeback thread of all
143          * attached backing devices, in order to represent a rough
144          * time period, counter should be divided by dev_nr.
145          * Otherwise the idle time cannot be larger with more backing
146          * device attached.
147          * The following calculation equals to checking
148          *      (counter / dev_nr) < (dev_nr * 6)
149          */
150         if (counter < (dev_nr * dev_nr * 6))
151                 return false;
152
153         return true;
154 }
155
156 /*
157  * Idle_counter is increased every time when update_writeback_rate() is
158  * called. If all backing devices attached to the same cache set have
159  * identical dc->writeback_rate_update_seconds values, it is about 6
160  * rounds of update_writeback_rate() on each backing device before
161  * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
162  * to each dc->writeback_rate.rate.
163  * In order to avoid extra locking cost for counting exact dirty cached
164  * devices number, c->attached_dev_nr is used to calculate the idle
165  * throushold. It might be bigger if not all cached device are in write-
166  * back mode, but it still works well with limited extra rounds of
167  * update_writeback_rate().
168  */
169 static bool set_at_max_writeback_rate(struct cache_set *c,
170                                        struct cached_dev *dc)
171 {
172         /* Don't sst max writeback rate if it is disabled */
173         if (!c->idle_max_writeback_rate_enabled)
174                 return false;
175
176         /* Don't set max writeback rate if gc is running */
177         if (!c->gc_mark_valid)
178                 return false;
179
180         if (!idle_counter_exceeded(c))
181                 return false;
182
183         if (atomic_read(&c->at_max_writeback_rate) != 1)
184                 atomic_set(&c->at_max_writeback_rate, 1);
185
186         atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
187
188         /* keep writeback_rate_target as existing value */
189         dc->writeback_rate_proportional = 0;
190         dc->writeback_rate_integral_scaled = 0;
191         dc->writeback_rate_change = 0;
192
193         /*
194          * In case new I/O arrives during before
195          * set_at_max_writeback_rate() returns.
196          */
197         if (!idle_counter_exceeded(c) ||
198             !atomic_read(&c->at_max_writeback_rate))
199                 return false;
200
201         return true;
202 }
203
204 static void update_writeback_rate(struct work_struct *work)
205 {
206         struct cached_dev *dc = container_of(to_delayed_work(work),
207                                              struct cached_dev,
208                                              writeback_rate_update);
209         struct cache_set *c = dc->disk.c;
210
211         /*
212          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
213          * cancel_delayed_work_sync().
214          */
215         set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
216         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
217         smp_mb__after_atomic();
218
219         /*
220          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
221          * check it here too.
222          */
223         if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
224             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
225                 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
226                 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
227                 smp_mb__after_atomic();
228                 return;
229         }
230
231         if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
232                 /*
233                  * If the whole cache set is idle, set_at_max_writeback_rate()
234                  * will set writeback rate to a max number. Then it is
235                  * unncessary to update writeback rate for an idle cache set
236                  * in maximum writeback rate number(s).
237                  */
238                 if (!set_at_max_writeback_rate(c, dc)) {
239                         down_read(&dc->writeback_lock);
240                         __update_writeback_rate(dc);
241                         update_gc_after_writeback(c);
242                         up_read(&dc->writeback_lock);
243                 }
244         }
245
246
247         /*
248          * CACHE_SET_IO_DISABLE might be set via sysfs interface,
249          * check it here too.
250          */
251         if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
252             !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
253                 schedule_delayed_work(&dc->writeback_rate_update,
254                               dc->writeback_rate_update_seconds * HZ);
255         }
256
257         /*
258          * should check BCACHE_DEV_RATE_DW_RUNNING before calling
259          * cancel_delayed_work_sync().
260          */
261         clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
262         /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
263         smp_mb__after_atomic();
264 }
265
266 static unsigned int writeback_delay(struct cached_dev *dc,
267                                     unsigned int sectors)
268 {
269         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
270             !dc->writeback_percent)
271                 return 0;
272
273         return bch_next_delay(&dc->writeback_rate, sectors);
274 }
275
276 struct dirty_io {
277         struct closure          cl;
278         struct cached_dev       *dc;
279         uint16_t                sequence;
280         struct bio              bio;
281 };
282
283 static void dirty_init(struct keybuf_key *w)
284 {
285         struct dirty_io *io = w->private;
286         struct bio *bio = &io->bio;
287
288         bio_init(bio, bio->bi_inline_vecs,
289                  DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
290         if (!io->dc->writeback_percent)
291                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
292
293         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
294         bio->bi_private         = w;
295         bch_bio_map(bio, NULL);
296 }
297
298 static void dirty_io_destructor(struct closure *cl)
299 {
300         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
301
302         kfree(io);
303 }
304
305 static void write_dirty_finish(struct closure *cl)
306 {
307         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
308         struct keybuf_key *w = io->bio.bi_private;
309         struct cached_dev *dc = io->dc;
310
311         bio_free_pages(&io->bio);
312
313         /* This is kind of a dumb way of signalling errors. */
314         if (KEY_DIRTY(&w->key)) {
315                 int ret;
316                 unsigned int i;
317                 struct keylist keys;
318
319                 bch_keylist_init(&keys);
320
321                 bkey_copy(keys.top, &w->key);
322                 SET_KEY_DIRTY(keys.top, false);
323                 bch_keylist_push(&keys);
324
325                 for (i = 0; i < KEY_PTRS(&w->key); i++)
326                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
327
328                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
329
330                 if (ret)
331                         trace_bcache_writeback_collision(&w->key);
332
333                 atomic_long_inc(ret
334                                 ? &dc->disk.c->writeback_keys_failed
335                                 : &dc->disk.c->writeback_keys_done);
336         }
337
338         bch_keybuf_del(&dc->writeback_keys, w);
339         up(&dc->in_flight);
340
341         closure_return_with_destructor(cl, dirty_io_destructor);
342 }
343
344 static void dirty_endio(struct bio *bio)
345 {
346         struct keybuf_key *w = bio->bi_private;
347         struct dirty_io *io = w->private;
348
349         if (bio->bi_status) {
350                 SET_KEY_DIRTY(&w->key, false);
351                 bch_count_backing_io_errors(io->dc, bio);
352         }
353
354         closure_put(&io->cl);
355 }
356
357 static void write_dirty(struct closure *cl)
358 {
359         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
360         struct keybuf_key *w = io->bio.bi_private;
361         struct cached_dev *dc = io->dc;
362
363         uint16_t next_sequence;
364
365         if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
366                 /* Not our turn to write; wait for a write to complete */
367                 closure_wait(&dc->writeback_ordering_wait, cl);
368
369                 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
370                         /*
371                          * Edge case-- it happened in indeterminate order
372                          * relative to when we were added to wait list..
373                          */
374                         closure_wake_up(&dc->writeback_ordering_wait);
375                 }
376
377                 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
378                 return;
379         }
380
381         next_sequence = io->sequence + 1;
382
383         /*
384          * IO errors are signalled using the dirty bit on the key.
385          * If we failed to read, we should not attempt to write to the
386          * backing device.  Instead, immediately go to write_dirty_finish
387          * to clean up.
388          */
389         if (KEY_DIRTY(&w->key)) {
390                 dirty_init(w);
391                 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
392                 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
393                 bio_set_dev(&io->bio, io->dc->bdev);
394                 io->bio.bi_end_io       = dirty_endio;
395
396                 /* I/O request sent to backing device */
397                 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
398         }
399
400         atomic_set(&dc->writeback_sequence_next, next_sequence);
401         closure_wake_up(&dc->writeback_ordering_wait);
402
403         continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
404 }
405
406 static void read_dirty_endio(struct bio *bio)
407 {
408         struct keybuf_key *w = bio->bi_private;
409         struct dirty_io *io = w->private;
410
411         /* is_read = 1 */
412         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
413                             bio->bi_status, 1,
414                             "reading dirty data from cache");
415
416         dirty_endio(bio);
417 }
418
419 static void read_dirty_submit(struct closure *cl)
420 {
421         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
422
423         closure_bio_submit(io->dc->disk.c, &io->bio, cl);
424
425         continue_at(cl, write_dirty, io->dc->writeback_write_wq);
426 }
427
428 static void read_dirty(struct cached_dev *dc)
429 {
430         unsigned int delay = 0;
431         struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
432         size_t size;
433         int nk, i;
434         struct dirty_io *io;
435         struct closure cl;
436         uint16_t sequence = 0;
437
438         BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
439         atomic_set(&dc->writeback_sequence_next, sequence);
440         closure_init_stack(&cl);
441
442         /*
443          * XXX: if we error, background writeback just spins. Should use some
444          * mempools.
445          */
446
447         next = bch_keybuf_next(&dc->writeback_keys);
448
449         while (!kthread_should_stop() &&
450                !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
451                next) {
452                 size = 0;
453                 nk = 0;
454
455                 do {
456                         BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
457
458                         /*
459                          * Don't combine too many operations, even if they
460                          * are all small.
461                          */
462                         if (nk >= MAX_WRITEBACKS_IN_PASS)
463                                 break;
464
465                         /*
466                          * If the current operation is very large, don't
467                          * further combine operations.
468                          */
469                         if (size >= MAX_WRITESIZE_IN_PASS)
470                                 break;
471
472                         /*
473                          * Operations are only eligible to be combined
474                          * if they are contiguous.
475                          *
476                          * TODO: add a heuristic willing to fire a
477                          * certain amount of non-contiguous IO per pass,
478                          * so that we can benefit from backing device
479                          * command queueing.
480                          */
481                         if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
482                                                 &START_KEY(&next->key)))
483                                 break;
484
485                         size += KEY_SIZE(&next->key);
486                         keys[nk++] = next;
487                 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
488
489                 /* Now we have gathered a set of 1..5 keys to write back. */
490                 for (i = 0; i < nk; i++) {
491                         w = keys[i];
492
493                         io = kzalloc(struct_size(io, bio.bi_inline_vecs,
494                                                 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
495                                      GFP_KERNEL);
496                         if (!io)
497                                 goto err;
498
499                         w->private      = io;
500                         io->dc          = dc;
501                         io->sequence    = sequence++;
502
503                         dirty_init(w);
504                         bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
505                         io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
506                         bio_set_dev(&io->bio,
507                                     PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
508                         io->bio.bi_end_io       = read_dirty_endio;
509
510                         if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
511                                 goto err_free;
512
513                         trace_bcache_writeback(&w->key);
514
515                         down(&dc->in_flight);
516
517                         /*
518                          * We've acquired a semaphore for the maximum
519                          * simultaneous number of writebacks; from here
520                          * everything happens asynchronously.
521                          */
522                         closure_call(&io->cl, read_dirty_submit, NULL, &cl);
523                 }
524
525                 delay = writeback_delay(dc, size);
526
527                 while (!kthread_should_stop() &&
528                        !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
529                        delay) {
530                         schedule_timeout_interruptible(delay);
531                         delay = writeback_delay(dc, 0);
532                 }
533         }
534
535         if (0) {
536 err_free:
537                 kfree(w->private);
538 err:
539                 bch_keybuf_del(&dc->writeback_keys, w);
540         }
541
542         /*
543          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
544          * freed) before refilling again
545          */
546         closure_sync(&cl);
547 }
548
549 /* Scan for dirty data */
550
551 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
552                                   uint64_t offset, int nr_sectors)
553 {
554         struct bcache_device *d = c->devices[inode];
555         unsigned int stripe_offset, sectors_dirty;
556         int stripe;
557
558         if (!d)
559                 return;
560
561         stripe = offset_to_stripe(d, offset);
562         if (stripe < 0)
563                 return;
564
565         if (UUID_FLASH_ONLY(&c->uuids[inode]))
566                 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
567
568         stripe_offset = offset & (d->stripe_size - 1);
569
570         while (nr_sectors) {
571                 int s = min_t(unsigned int, abs(nr_sectors),
572                               d->stripe_size - stripe_offset);
573
574                 if (nr_sectors < 0)
575                         s = -s;
576
577                 if (stripe >= d->nr_stripes)
578                         return;
579
580                 sectors_dirty = atomic_add_return(s,
581                                         d->stripe_sectors_dirty + stripe);
582                 if (sectors_dirty == d->stripe_size)
583                         set_bit(stripe, d->full_dirty_stripes);
584                 else
585                         clear_bit(stripe, d->full_dirty_stripes);
586
587                 nr_sectors -= s;
588                 stripe_offset = 0;
589                 stripe++;
590         }
591 }
592
593 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
594 {
595         struct cached_dev *dc = container_of(buf,
596                                              struct cached_dev,
597                                              writeback_keys);
598
599         BUG_ON(KEY_INODE(k) != dc->disk.id);
600
601         return KEY_DIRTY(k);
602 }
603
604 static void refill_full_stripes(struct cached_dev *dc)
605 {
606         struct keybuf *buf = &dc->writeback_keys;
607         unsigned int start_stripe, next_stripe;
608         int stripe;
609         bool wrapped = false;
610
611         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
612         if (stripe < 0)
613                 stripe = 0;
614
615         start_stripe = stripe;
616
617         while (1) {
618                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
619                                        dc->disk.nr_stripes, stripe);
620
621                 if (stripe == dc->disk.nr_stripes)
622                         goto next;
623
624                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
625                                                  dc->disk.nr_stripes, stripe);
626
627                 buf->last_scanned = KEY(dc->disk.id,
628                                         stripe * dc->disk.stripe_size, 0);
629
630                 bch_refill_keybuf(dc->disk.c, buf,
631                                   &KEY(dc->disk.id,
632                                        next_stripe * dc->disk.stripe_size, 0),
633                                   dirty_pred);
634
635                 if (array_freelist_empty(&buf->freelist))
636                         return;
637
638                 stripe = next_stripe;
639 next:
640                 if (wrapped && stripe > start_stripe)
641                         return;
642
643                 if (stripe == dc->disk.nr_stripes) {
644                         stripe = 0;
645                         wrapped = true;
646                 }
647         }
648 }
649
650 /*
651  * Returns true if we scanned the entire disk
652  */
653 static bool refill_dirty(struct cached_dev *dc)
654 {
655         struct keybuf *buf = &dc->writeback_keys;
656         struct bkey start = KEY(dc->disk.id, 0, 0);
657         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
658         struct bkey start_pos;
659
660         /*
661          * make sure keybuf pos is inside the range for this disk - at bringup
662          * we might not be attached yet so this disk's inode nr isn't
663          * initialized then
664          */
665         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
666             bkey_cmp(&buf->last_scanned, &end) > 0)
667                 buf->last_scanned = start;
668
669         if (dc->partial_stripes_expensive) {
670                 refill_full_stripes(dc);
671                 if (array_freelist_empty(&buf->freelist))
672                         return false;
673         }
674
675         start_pos = buf->last_scanned;
676         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
677
678         if (bkey_cmp(&buf->last_scanned, &end) < 0)
679                 return false;
680
681         /*
682          * If we get to the end start scanning again from the beginning, and
683          * only scan up to where we initially started scanning from:
684          */
685         buf->last_scanned = start;
686         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
687
688         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
689 }
690
691 static int bch_writeback_thread(void *arg)
692 {
693         struct cached_dev *dc = arg;
694         struct cache_set *c = dc->disk.c;
695         bool searched_full_index;
696
697         bch_ratelimit_reset(&dc->writeback_rate);
698
699         while (!kthread_should_stop() &&
700                !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
701                 down_write(&dc->writeback_lock);
702                 set_current_state(TASK_INTERRUPTIBLE);
703                 /*
704                  * If the bache device is detaching, skip here and continue
705                  * to perform writeback. Otherwise, if no dirty data on cache,
706                  * or there is dirty data on cache but writeback is disabled,
707                  * the writeback thread should sleep here and wait for others
708                  * to wake up it.
709                  */
710                 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
711                     (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
712                         up_write(&dc->writeback_lock);
713
714                         if (kthread_should_stop() ||
715                             test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
716                                 set_current_state(TASK_RUNNING);
717                                 break;
718                         }
719
720                         schedule();
721                         continue;
722                 }
723                 set_current_state(TASK_RUNNING);
724
725                 searched_full_index = refill_dirty(dc);
726
727                 if (searched_full_index &&
728                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
729                         atomic_set(&dc->has_dirty, 0);
730                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
731                         bch_write_bdev_super(dc, NULL);
732                         /*
733                          * If bcache device is detaching via sysfs interface,
734                          * writeback thread should stop after there is no dirty
735                          * data on cache. BCACHE_DEV_DETACHING flag is set in
736                          * bch_cached_dev_detach().
737                          */
738                         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
739                                 up_write(&dc->writeback_lock);
740                                 break;
741                         }
742
743                         /*
744                          * When dirty data rate is high (e.g. 50%+), there might
745                          * be heavy buckets fragmentation after writeback
746                          * finished, which hurts following write performance.
747                          * If users really care about write performance they
748                          * may set BCH_ENABLE_AUTO_GC via sysfs, then when
749                          * BCH_DO_AUTO_GC is set, garbage collection thread
750                          * will be wake up here. After moving gc, the shrunk
751                          * btree and discarded free buckets SSD space may be
752                          * helpful for following write requests.
753                          */
754                         if (c->gc_after_writeback ==
755                             (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
756                                 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
757                                 force_wake_up_gc(c);
758                         }
759                 }
760
761                 up_write(&dc->writeback_lock);
762
763                 read_dirty(dc);
764
765                 if (searched_full_index) {
766                         unsigned int delay = dc->writeback_delay * HZ;
767
768                         while (delay &&
769                                !kthread_should_stop() &&
770                                !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
771                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
772                                 delay = schedule_timeout_interruptible(delay);
773
774                         bch_ratelimit_reset(&dc->writeback_rate);
775                 }
776         }
777
778         if (dc->writeback_write_wq) {
779                 flush_workqueue(dc->writeback_write_wq);
780                 destroy_workqueue(dc->writeback_write_wq);
781         }
782         cached_dev_put(dc);
783         wait_for_kthread_stop();
784
785         return 0;
786 }
787
788 /* Init */
789 #define INIT_KEYS_EACH_TIME     500000
790
791 struct sectors_dirty_init {
792         struct btree_op op;
793         unsigned int    inode;
794         size_t          count;
795 };
796
797 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
798                                  struct bkey *k)
799 {
800         struct sectors_dirty_init *op = container_of(_op,
801                                                 struct sectors_dirty_init, op);
802         if (KEY_INODE(k) > op->inode)
803                 return MAP_DONE;
804
805         if (KEY_DIRTY(k))
806                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
807                                              KEY_START(k), KEY_SIZE(k));
808
809         op->count++;
810         if (!(op->count % INIT_KEYS_EACH_TIME))
811                 cond_resched();
812
813         return MAP_CONTINUE;
814 }
815
816 static int bch_root_node_dirty_init(struct cache_set *c,
817                                      struct bcache_device *d,
818                                      struct bkey *k)
819 {
820         struct sectors_dirty_init op;
821         int ret;
822
823         bch_btree_op_init(&op.op, -1);
824         op.inode = d->id;
825         op.count = 0;
826
827         ret = bcache_btree(map_keys_recurse,
828                            k,
829                            c->root,
830                            &op.op,
831                            &KEY(op.inode, 0, 0),
832                            sectors_dirty_init_fn,
833                            0);
834         if (ret < 0)
835                 pr_warn("sectors dirty init failed, ret=%d!\n", ret);
836
837         return ret;
838 }
839
840 static int bch_dirty_init_thread(void *arg)
841 {
842         struct dirty_init_thrd_info *info = arg;
843         struct bch_dirty_init_state *state = info->state;
844         struct cache_set *c = state->c;
845         struct btree_iter iter;
846         struct bkey *k, *p;
847         int cur_idx, prev_idx, skip_nr;
848
849         k = p = NULL;
850         cur_idx = prev_idx = 0;
851
852         bch_btree_iter_init(&c->root->keys, &iter, NULL);
853         k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
854         BUG_ON(!k);
855
856         p = k;
857
858         while (k) {
859                 spin_lock(&state->idx_lock);
860                 cur_idx = state->key_idx;
861                 state->key_idx++;
862                 spin_unlock(&state->idx_lock);
863
864                 skip_nr = cur_idx - prev_idx;
865
866                 while (skip_nr) {
867                         k = bch_btree_iter_next_filter(&iter,
868                                                        &c->root->keys,
869                                                        bch_ptr_bad);
870                         if (k)
871                                 p = k;
872                         else {
873                                 atomic_set(&state->enough, 1);
874                                 /* Update state->enough earlier */
875                                 smp_mb__after_atomic();
876                                 goto out;
877                         }
878                         skip_nr--;
879                 }
880
881                 if (p) {
882                         if (bch_root_node_dirty_init(c, state->d, p) < 0)
883                                 goto out;
884                 }
885
886                 p = NULL;
887                 prev_idx = cur_idx;
888         }
889
890 out:
891         /* In order to wake up state->wait in time */
892         smp_mb__before_atomic();
893         if (atomic_dec_and_test(&state->started))
894                 wake_up(&state->wait);
895
896         return 0;
897 }
898
899 static int bch_btre_dirty_init_thread_nr(void)
900 {
901         int n = num_online_cpus()/2;
902
903         if (n == 0)
904                 n = 1;
905         else if (n > BCH_DIRTY_INIT_THRD_MAX)
906                 n = BCH_DIRTY_INIT_THRD_MAX;
907
908         return n;
909 }
910
911 void bch_sectors_dirty_init(struct bcache_device *d)
912 {
913         int i;
914         struct bkey *k = NULL;
915         struct btree_iter iter;
916         struct sectors_dirty_init op;
917         struct cache_set *c = d->c;
918         struct bch_dirty_init_state state;
919
920         /* Just count root keys if no leaf node */
921         rw_lock(0, c->root, c->root->level);
922         if (c->root->level == 0) {
923                 bch_btree_op_init(&op.op, -1);
924                 op.inode = d->id;
925                 op.count = 0;
926
927                 for_each_key_filter(&c->root->keys,
928                                     k, &iter, bch_ptr_invalid)
929                         sectors_dirty_init_fn(&op.op, c->root, k);
930
931                 rw_unlock(0, c->root);
932                 return;
933         }
934
935         memset(&state, 0, sizeof(struct bch_dirty_init_state));
936         state.c = c;
937         state.d = d;
938         state.total_threads = bch_btre_dirty_init_thread_nr();
939         state.key_idx = 0;
940         spin_lock_init(&state.idx_lock);
941         atomic_set(&state.started, 0);
942         atomic_set(&state.enough, 0);
943         init_waitqueue_head(&state.wait);
944
945         for (i = 0; i < state.total_threads; i++) {
946                 /* Fetch latest state.enough earlier */
947                 smp_mb__before_atomic();
948                 if (atomic_read(&state.enough))
949                         break;
950
951                 state.infos[i].state = &state;
952                 state.infos[i].thread =
953                         kthread_run(bch_dirty_init_thread, &state.infos[i],
954                                     "bch_dirtcnt[%d]", i);
955                 if (IS_ERR(state.infos[i].thread)) {
956                         pr_err("fails to run thread bch_dirty_init[%d]\n", i);
957                         for (--i; i >= 0; i--)
958                                 kthread_stop(state.infos[i].thread);
959                         goto out;
960                 }
961                 atomic_inc(&state.started);
962         }
963
964 out:
965         /* Must wait for all threads to stop. */
966         wait_event(state.wait, atomic_read(&state.started) == 0);
967         rw_unlock(0, c->root);
968 }
969
970 void bch_cached_dev_writeback_init(struct cached_dev *dc)
971 {
972         sema_init(&dc->in_flight, 64);
973         init_rwsem(&dc->writeback_lock);
974         bch_keybuf_init(&dc->writeback_keys);
975
976         dc->writeback_metadata          = true;
977         dc->writeback_running           = false;
978         dc->writeback_percent           = 10;
979         dc->writeback_delay             = 30;
980         atomic_long_set(&dc->writeback_rate.rate, 1024);
981         dc->writeback_rate_minimum      = 8;
982
983         dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
984         dc->writeback_rate_p_term_inverse = 40;
985         dc->writeback_rate_i_term_inverse = 10000;
986
987         WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
988         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
989 }
990
991 int bch_cached_dev_writeback_start(struct cached_dev *dc)
992 {
993         dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
994                                                 WQ_MEM_RECLAIM, 0);
995         if (!dc->writeback_write_wq)
996                 return -ENOMEM;
997
998         cached_dev_get(dc);
999         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1000                                               "bcache_writeback");
1001         if (IS_ERR(dc->writeback_thread)) {
1002                 cached_dev_put(dc);
1003                 destroy_workqueue(dc->writeback_write_wq);
1004                 return PTR_ERR(dc->writeback_thread);
1005         }
1006         dc->writeback_running = true;
1007
1008         WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1009         schedule_delayed_work(&dc->writeback_rate_update,
1010                               dc->writeback_rate_update_seconds * HZ);
1011
1012         bch_writeback_queue(dc);
1013
1014         return 0;
1015 }