GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / md / bcache / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54
55
56 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS           128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
61
62 /* Superblock */
63
64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66         unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69                 if (bch_has_feature_large_bucket(sb)) {
70                         unsigned int max, order;
71
72                         max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73                         order = le16_to_cpu(s->bucket_size);
74                         /*
75                          * bcache tool will make sure the overflow won't
76                          * happen, an error message here is enough.
77                          */
78                         if (order > max)
79                                 pr_err("Bucket size (1 << %u) overflows\n",
80                                         order);
81                         bucket_size = 1 << order;
82                 } else if (bch_has_feature_obso_large_bucket(sb)) {
83                         bucket_size +=
84                                 le16_to_cpu(s->obso_bucket_size_hi) << 16;
85                 }
86         }
87
88         return bucket_size;
89 }
90
91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92                                      struct cache_sb_disk *s)
93 {
94         const char *err;
95         unsigned int i;
96
97         sb->first_bucket= le16_to_cpu(s->first_bucket);
98         sb->nbuckets    = le64_to_cpu(s->nbuckets);
99         sb->bucket_size = get_bucket_size(sb, s);
100
101         sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
102         sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103
104         err = "Too many journal buckets";
105         if (sb->keys > SB_JOURNAL_BUCKETS)
106                 goto err;
107
108         err = "Too many buckets";
109         if (sb->nbuckets > LONG_MAX)
110                 goto err;
111
112         err = "Not enough buckets";
113         if (sb->nbuckets < 1 << 7)
114                 goto err;
115
116         err = "Bad block size (not power of 2)";
117         if (!is_power_of_2(sb->block_size))
118                 goto err;
119
120         err = "Bad block size (larger than page size)";
121         if (sb->block_size > PAGE_SECTORS)
122                 goto err;
123
124         err = "Bad bucket size (not power of 2)";
125         if (!is_power_of_2(sb->bucket_size))
126                 goto err;
127
128         err = "Bad bucket size (smaller than page size)";
129         if (sb->bucket_size < PAGE_SECTORS)
130                 goto err;
131
132         err = "Invalid superblock: device too small";
133         if (get_capacity(bdev->bd_disk) <
134             sb->bucket_size * sb->nbuckets)
135                 goto err;
136
137         err = "Bad UUID";
138         if (bch_is_zero(sb->set_uuid, 16))
139                 goto err;
140
141         err = "Bad cache device number in set";
142         if (!sb->nr_in_set ||
143             sb->nr_in_set <= sb->nr_this_dev ||
144             sb->nr_in_set > MAX_CACHES_PER_SET)
145                 goto err;
146
147         err = "Journal buckets not sequential";
148         for (i = 0; i < sb->keys; i++)
149                 if (sb->d[i] != sb->first_bucket + i)
150                         goto err;
151
152         err = "Too many journal buckets";
153         if (sb->first_bucket + sb->keys > sb->nbuckets)
154                 goto err;
155
156         err = "Invalid superblock: first bucket comes before end of super";
157         if (sb->first_bucket * sb->bucket_size < 16)
158                 goto err;
159
160         err = NULL;
161 err:
162         return err;
163 }
164
165
166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167                               struct cache_sb_disk **res)
168 {
169         const char *err;
170         struct cache_sb_disk *s;
171         struct page *page;
172         unsigned int i;
173
174         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
175                                    SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176         if (IS_ERR(page))
177                 return "IO error";
178         s = page_address(page) + offset_in_page(SB_OFFSET);
179
180         sb->offset              = le64_to_cpu(s->offset);
181         sb->version             = le64_to_cpu(s->version);
182
183         memcpy(sb->magic,       s->magic, 16);
184         memcpy(sb->uuid,        s->uuid, 16);
185         memcpy(sb->set_uuid,    s->set_uuid, 16);
186         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
187
188         sb->flags               = le64_to_cpu(s->flags);
189         sb->seq                 = le64_to_cpu(s->seq);
190         sb->last_mount          = le32_to_cpu(s->last_mount);
191         sb->keys                = le16_to_cpu(s->keys);
192
193         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194                 sb->d[i] = le64_to_cpu(s->d[i]);
195
196         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197                  sb->version, sb->flags, sb->seq, sb->keys);
198
199         err = "Not a bcache superblock (bad offset)";
200         if (sb->offset != SB_SECTOR)
201                 goto err;
202
203         err = "Not a bcache superblock (bad magic)";
204         if (memcmp(sb->magic, bcache_magic, 16))
205                 goto err;
206
207         err = "Bad checksum";
208         if (s->csum != csum_set(s))
209                 goto err;
210
211         err = "Bad UUID";
212         if (bch_is_zero(sb->uuid, 16))
213                 goto err;
214
215         sb->block_size  = le16_to_cpu(s->block_size);
216
217         err = "Superblock block size smaller than device block size";
218         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219                 goto err;
220
221         switch (sb->version) {
222         case BCACHE_SB_VERSION_BDEV:
223                 sb->data_offset = BDEV_DATA_START_DEFAULT;
224                 break;
225         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226         case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227                 sb->data_offset = le64_to_cpu(s->data_offset);
228
229                 err = "Bad data offset";
230                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231                         goto err;
232
233                 break;
234         case BCACHE_SB_VERSION_CDEV:
235         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236                 err = read_super_common(sb, bdev, s);
237                 if (err)
238                         goto err;
239                 break;
240         case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241                 /*
242                  * Feature bits are needed in read_super_common(),
243                  * convert them firstly.
244                  */
245                 sb->feature_compat = le64_to_cpu(s->feature_compat);
246                 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247                 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249                 /* Check incompatible features */
250                 err = "Unsupported compatible feature found";
251                 if (bch_has_unknown_compat_features(sb))
252                         goto err;
253
254                 err = "Unsupported read-only compatible feature found";
255                 if (bch_has_unknown_ro_compat_features(sb))
256                         goto err;
257
258                 err = "Unsupported incompatible feature found";
259                 if (bch_has_unknown_incompat_features(sb))
260                         goto err;
261
262                 err = read_super_common(sb, bdev, s);
263                 if (err)
264                         goto err;
265                 break;
266         default:
267                 err = "Unsupported superblock version";
268                 goto err;
269         }
270
271         sb->last_mount = (u32)ktime_get_real_seconds();
272         *res = s;
273         return NULL;
274 err:
275         put_page(page);
276         return err;
277 }
278
279 static void write_bdev_super_endio(struct bio *bio)
280 {
281         struct cached_dev *dc = bio->bi_private;
282
283         if (bio->bi_status)
284                 bch_count_backing_io_errors(dc, bio);
285
286         closure_put(&dc->sb_write);
287 }
288
289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290                 struct bio *bio)
291 {
292         unsigned int i;
293
294         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295         bio->bi_iter.bi_sector  = SB_SECTOR;
296         __bio_add_page(bio, virt_to_page(out), SB_SIZE,
297                         offset_in_page(out));
298
299         out->offset             = cpu_to_le64(sb->offset);
300
301         memcpy(out->uuid,       sb->uuid, 16);
302         memcpy(out->set_uuid,   sb->set_uuid, 16);
303         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
304
305         out->flags              = cpu_to_le64(sb->flags);
306         out->seq                = cpu_to_le64(sb->seq);
307
308         out->last_mount         = cpu_to_le32(sb->last_mount);
309         out->first_bucket       = cpu_to_le16(sb->first_bucket);
310         out->keys               = cpu_to_le16(sb->keys);
311
312         for (i = 0; i < sb->keys; i++)
313                 out->d[i] = cpu_to_le64(sb->d[i]);
314
315         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316                 out->feature_compat    = cpu_to_le64(sb->feature_compat);
317                 out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
318                 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319         }
320
321         out->version            = cpu_to_le64(sb->version);
322         out->csum = csum_set(out);
323
324         pr_debug("ver %llu, flags %llu, seq %llu\n",
325                  sb->version, sb->flags, sb->seq);
326
327         submit_bio(bio);
328 }
329
330 static void bch_write_bdev_super_unlock(struct closure *cl)
331 {
332         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333
334         up(&dc->sb_write_mutex);
335 }
336
337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339         struct closure *cl = &dc->sb_write;
340         struct bio *bio = &dc->sb_bio;
341
342         down(&dc->sb_write_mutex);
343         closure_init(cl, parent);
344
345         bio_init(bio, dc->sb_bv, 1);
346         bio_set_dev(bio, dc->bdev);
347         bio->bi_end_io  = write_bdev_super_endio;
348         bio->bi_private = dc;
349
350         closure_get(cl);
351         /* I/O request sent to backing device */
352         __write_super(&dc->sb, dc->sb_disk, bio);
353
354         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
355 }
356
357 static void write_super_endio(struct bio *bio)
358 {
359         struct cache *ca = bio->bi_private;
360
361         /* is_read = 0 */
362         bch_count_io_errors(ca, bio->bi_status, 0,
363                             "writing superblock");
364         closure_put(&ca->set->sb_write);
365 }
366
367 static void bcache_write_super_unlock(struct closure *cl)
368 {
369         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
370
371         up(&c->sb_write_mutex);
372 }
373
374 void bcache_write_super(struct cache_set *c)
375 {
376         struct closure *cl = &c->sb_write;
377         struct cache *ca = c->cache;
378         struct bio *bio = &ca->sb_bio;
379         unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
380
381         down(&c->sb_write_mutex);
382         closure_init(cl, &c->cl);
383
384         ca->sb.seq++;
385
386         if (ca->sb.version < version)
387                 ca->sb.version = version;
388
389         bio_init(bio, ca->sb_bv, 1);
390         bio_set_dev(bio, ca->bdev);
391         bio->bi_end_io  = write_super_endio;
392         bio->bi_private = ca;
393
394         closure_get(cl);
395         __write_super(&ca->sb, ca->sb_disk, bio);
396
397         closure_return_with_destructor(cl, bcache_write_super_unlock);
398 }
399
400 /* UUID io */
401
402 static void uuid_endio(struct bio *bio)
403 {
404         struct closure *cl = bio->bi_private;
405         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
406
407         cache_set_err_on(bio->bi_status, c, "accessing uuids");
408         bch_bbio_free(bio, c);
409         closure_put(cl);
410 }
411
412 static void uuid_io_unlock(struct closure *cl)
413 {
414         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
415
416         up(&c->uuid_write_mutex);
417 }
418
419 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
420                     struct bkey *k, struct closure *parent)
421 {
422         struct closure *cl = &c->uuid_write;
423         struct uuid_entry *u;
424         unsigned int i;
425         char buf[80];
426
427         BUG_ON(!parent);
428         down(&c->uuid_write_mutex);
429         closure_init(cl, parent);
430
431         for (i = 0; i < KEY_PTRS(k); i++) {
432                 struct bio *bio = bch_bbio_alloc(c);
433
434                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
435                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
436
437                 bio->bi_end_io  = uuid_endio;
438                 bio->bi_private = cl;
439                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
440                 bch_bio_map(bio, c->uuids);
441
442                 bch_submit_bbio(bio, c, k, i);
443
444                 if (op != REQ_OP_WRITE)
445                         break;
446         }
447
448         bch_extent_to_text(buf, sizeof(buf), k);
449         pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
450
451         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
452                 if (!bch_is_zero(u->uuid, 16))
453                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
454                                  u - c->uuids, u->uuid, u->label,
455                                  u->first_reg, u->last_reg, u->invalidated);
456
457         closure_return_with_destructor(cl, uuid_io_unlock);
458 }
459
460 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
461 {
462         struct bkey *k = &j->uuid_bucket;
463
464         if (__bch_btree_ptr_invalid(c, k))
465                 return "bad uuid pointer";
466
467         bkey_copy(&c->uuid_bucket, k);
468         uuid_io(c, REQ_OP_READ, 0, k, cl);
469
470         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
471                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
472                 struct uuid_entry       *u1 = (void *) c->uuids;
473                 int i;
474
475                 closure_sync(cl);
476
477                 /*
478                  * Since the new uuid entry is bigger than the old, we have to
479                  * convert starting at the highest memory address and work down
480                  * in order to do it in place
481                  */
482
483                 for (i = c->nr_uuids - 1;
484                      i >= 0;
485                      --i) {
486                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
487                         memcpy(u1[i].label,     u0[i].label, 32);
488
489                         u1[i].first_reg         = u0[i].first_reg;
490                         u1[i].last_reg          = u0[i].last_reg;
491                         u1[i].invalidated       = u0[i].invalidated;
492
493                         u1[i].flags     = 0;
494                         u1[i].sectors   = 0;
495                 }
496         }
497
498         return NULL;
499 }
500
501 static int __uuid_write(struct cache_set *c)
502 {
503         BKEY_PADDED(key) k;
504         struct closure cl;
505         struct cache *ca = c->cache;
506         unsigned int size;
507
508         closure_init_stack(&cl);
509         lockdep_assert_held(&bch_register_lock);
510
511         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
512                 return 1;
513
514         size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
515         SET_KEY_SIZE(&k.key, size);
516         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
517         closure_sync(&cl);
518
519         /* Only one bucket used for uuid write */
520         atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
521
522         bkey_copy(&c->uuid_bucket, &k.key);
523         bkey_put(c, &k.key);
524         return 0;
525 }
526
527 int bch_uuid_write(struct cache_set *c)
528 {
529         int ret = __uuid_write(c);
530
531         if (!ret)
532                 bch_journal_meta(c, NULL);
533
534         return ret;
535 }
536
537 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
538 {
539         struct uuid_entry *u;
540
541         for (u = c->uuids;
542              u < c->uuids + c->nr_uuids; u++)
543                 if (!memcmp(u->uuid, uuid, 16))
544                         return u;
545
546         return NULL;
547 }
548
549 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
550 {
551         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
552
553         return uuid_find(c, zero_uuid);
554 }
555
556 /*
557  * Bucket priorities/gens:
558  *
559  * For each bucket, we store on disk its
560  *   8 bit gen
561  *  16 bit priority
562  *
563  * See alloc.c for an explanation of the gen. The priority is used to implement
564  * lru (and in the future other) cache replacement policies; for most purposes
565  * it's just an opaque integer.
566  *
567  * The gens and the priorities don't have a whole lot to do with each other, and
568  * it's actually the gens that must be written out at specific times - it's no
569  * big deal if the priorities don't get written, if we lose them we just reuse
570  * buckets in suboptimal order.
571  *
572  * On disk they're stored in a packed array, and in as many buckets are required
573  * to fit them all. The buckets we use to store them form a list; the journal
574  * header points to the first bucket, the first bucket points to the second
575  * bucket, et cetera.
576  *
577  * This code is used by the allocation code; periodically (whenever it runs out
578  * of buckets to allocate from) the allocation code will invalidate some
579  * buckets, but it can't use those buckets until their new gens are safely on
580  * disk.
581  */
582
583 static void prio_endio(struct bio *bio)
584 {
585         struct cache *ca = bio->bi_private;
586
587         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
588         bch_bbio_free(bio, ca->set);
589         closure_put(&ca->prio);
590 }
591
592 static void prio_io(struct cache *ca, uint64_t bucket, int op,
593                     unsigned long op_flags)
594 {
595         struct closure *cl = &ca->prio;
596         struct bio *bio = bch_bbio_alloc(ca->set);
597
598         closure_init_stack(cl);
599
600         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
601         bio_set_dev(bio, ca->bdev);
602         bio->bi_iter.bi_size    = meta_bucket_bytes(&ca->sb);
603
604         bio->bi_end_io  = prio_endio;
605         bio->bi_private = ca;
606         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
607         bch_bio_map(bio, ca->disk_buckets);
608
609         closure_bio_submit(ca->set, bio, &ca->prio);
610         closure_sync(cl);
611 }
612
613 int bch_prio_write(struct cache *ca, bool wait)
614 {
615         int i;
616         struct bucket *b;
617         struct closure cl;
618
619         pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
620                  fifo_used(&ca->free[RESERVE_PRIO]),
621                  fifo_used(&ca->free[RESERVE_NONE]),
622                  fifo_used(&ca->free_inc));
623
624         /*
625          * Pre-check if there are enough free buckets. In the non-blocking
626          * scenario it's better to fail early rather than starting to allocate
627          * buckets and do a cleanup later in case of failure.
628          */
629         if (!wait) {
630                 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
631                                fifo_used(&ca->free[RESERVE_NONE]);
632                 if (prio_buckets(ca) > avail)
633                         return -ENOMEM;
634         }
635
636         closure_init_stack(&cl);
637
638         lockdep_assert_held(&ca->set->bucket_lock);
639
640         ca->disk_buckets->seq++;
641
642         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
643                         &ca->meta_sectors_written);
644
645         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
646                 long bucket;
647                 struct prio_set *p = ca->disk_buckets;
648                 struct bucket_disk *d = p->data;
649                 struct bucket_disk *end = d + prios_per_bucket(ca);
650
651                 for (b = ca->buckets + i * prios_per_bucket(ca);
652                      b < ca->buckets + ca->sb.nbuckets && d < end;
653                      b++, d++) {
654                         d->prio = cpu_to_le16(b->prio);
655                         d->gen = b->gen;
656                 }
657
658                 p->next_bucket  = ca->prio_buckets[i + 1];
659                 p->magic        = pset_magic(&ca->sb);
660                 p->csum         = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
661
662                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
663                 BUG_ON(bucket == -1);
664
665                 mutex_unlock(&ca->set->bucket_lock);
666                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
667                 mutex_lock(&ca->set->bucket_lock);
668
669                 ca->prio_buckets[i] = bucket;
670                 atomic_dec_bug(&ca->buckets[bucket].pin);
671         }
672
673         mutex_unlock(&ca->set->bucket_lock);
674
675         bch_journal_meta(ca->set, &cl);
676         closure_sync(&cl);
677
678         mutex_lock(&ca->set->bucket_lock);
679
680         /*
681          * Don't want the old priorities to get garbage collected until after we
682          * finish writing the new ones, and they're journalled
683          */
684         for (i = 0; i < prio_buckets(ca); i++) {
685                 if (ca->prio_last_buckets[i])
686                         __bch_bucket_free(ca,
687                                 &ca->buckets[ca->prio_last_buckets[i]]);
688
689                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
690         }
691         return 0;
692 }
693
694 static int prio_read(struct cache *ca, uint64_t bucket)
695 {
696         struct prio_set *p = ca->disk_buckets;
697         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
698         struct bucket *b;
699         unsigned int bucket_nr = 0;
700         int ret = -EIO;
701
702         for (b = ca->buckets;
703              b < ca->buckets + ca->sb.nbuckets;
704              b++, d++) {
705                 if (d == end) {
706                         ca->prio_buckets[bucket_nr] = bucket;
707                         ca->prio_last_buckets[bucket_nr] = bucket;
708                         bucket_nr++;
709
710                         prio_io(ca, bucket, REQ_OP_READ, 0);
711
712                         if (p->csum !=
713                             bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
714                                 pr_warn("bad csum reading priorities\n");
715                                 goto out;
716                         }
717
718                         if (p->magic != pset_magic(&ca->sb)) {
719                                 pr_warn("bad magic reading priorities\n");
720                                 goto out;
721                         }
722
723                         bucket = p->next_bucket;
724                         d = p->data;
725                 }
726
727                 b->prio = le16_to_cpu(d->prio);
728                 b->gen = b->last_gc = d->gen;
729         }
730
731         ret = 0;
732 out:
733         return ret;
734 }
735
736 /* Bcache device */
737
738 static int open_dev(struct block_device *b, fmode_t mode)
739 {
740         struct bcache_device *d = b->bd_disk->private_data;
741
742         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
743                 return -ENXIO;
744
745         closure_get(&d->cl);
746         return 0;
747 }
748
749 static void release_dev(struct gendisk *b, fmode_t mode)
750 {
751         struct bcache_device *d = b->private_data;
752
753         closure_put(&d->cl);
754 }
755
756 static int ioctl_dev(struct block_device *b, fmode_t mode,
757                      unsigned int cmd, unsigned long arg)
758 {
759         struct bcache_device *d = b->bd_disk->private_data;
760
761         return d->ioctl(d, mode, cmd, arg);
762 }
763
764 static const struct block_device_operations bcache_cached_ops = {
765         .submit_bio     = cached_dev_submit_bio,
766         .open           = open_dev,
767         .release        = release_dev,
768         .ioctl          = ioctl_dev,
769         .owner          = THIS_MODULE,
770 };
771
772 static const struct block_device_operations bcache_flash_ops = {
773         .submit_bio     = flash_dev_submit_bio,
774         .open           = open_dev,
775         .release        = release_dev,
776         .ioctl          = ioctl_dev,
777         .owner          = THIS_MODULE,
778 };
779
780 void bcache_device_stop(struct bcache_device *d)
781 {
782         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
783                 /*
784                  * closure_fn set to
785                  * - cached device: cached_dev_flush()
786                  * - flash dev: flash_dev_flush()
787                  */
788                 closure_queue(&d->cl);
789 }
790
791 static void bcache_device_unlink(struct bcache_device *d)
792 {
793         lockdep_assert_held(&bch_register_lock);
794
795         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
796                 struct cache *ca = d->c->cache;
797
798                 sysfs_remove_link(&d->c->kobj, d->name);
799                 sysfs_remove_link(&d->kobj, "cache");
800
801                 bd_unlink_disk_holder(ca->bdev, d->disk);
802         }
803 }
804
805 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
806                                const char *name)
807 {
808         struct cache *ca = c->cache;
809         int ret;
810
811         bd_link_disk_holder(ca->bdev, d->disk);
812
813         snprintf(d->name, BCACHEDEVNAME_SIZE,
814                  "%s%u", name, d->id);
815
816         ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
817         if (ret < 0)
818                 pr_err("Couldn't create device -> cache set symlink\n");
819
820         ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
821         if (ret < 0)
822                 pr_err("Couldn't create cache set -> device symlink\n");
823
824         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
825 }
826
827 static void bcache_device_detach(struct bcache_device *d)
828 {
829         lockdep_assert_held(&bch_register_lock);
830
831         atomic_dec(&d->c->attached_dev_nr);
832
833         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
834                 struct uuid_entry *u = d->c->uuids + d->id;
835
836                 SET_UUID_FLASH_ONLY(u, 0);
837                 memcpy(u->uuid, invalid_uuid, 16);
838                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
839                 bch_uuid_write(d->c);
840         }
841
842         bcache_device_unlink(d);
843
844         d->c->devices[d->id] = NULL;
845         closure_put(&d->c->caching);
846         d->c = NULL;
847 }
848
849 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
850                                  unsigned int id)
851 {
852         d->id = id;
853         d->c = c;
854         c->devices[id] = d;
855
856         if (id >= c->devices_max_used)
857                 c->devices_max_used = id + 1;
858
859         closure_get(&c->caching);
860 }
861
862 static inline int first_minor_to_idx(int first_minor)
863 {
864         return (first_minor/BCACHE_MINORS);
865 }
866
867 static inline int idx_to_first_minor(int idx)
868 {
869         return (idx * BCACHE_MINORS);
870 }
871
872 static void bcache_device_free(struct bcache_device *d)
873 {
874         struct gendisk *disk = d->disk;
875
876         lockdep_assert_held(&bch_register_lock);
877
878         if (disk)
879                 pr_info("%s stopped\n", disk->disk_name);
880         else
881                 pr_err("bcache device (NULL gendisk) stopped\n");
882
883         if (d->c)
884                 bcache_device_detach(d);
885
886         if (disk) {
887                 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
888
889                 if (disk_added)
890                         del_gendisk(disk);
891
892                 if (disk->queue)
893                         blk_cleanup_queue(disk->queue);
894
895                 ida_simple_remove(&bcache_device_idx,
896                                   first_minor_to_idx(disk->first_minor));
897                 if (disk_added)
898                         put_disk(disk);
899         }
900
901         bioset_exit(&d->bio_split);
902         kvfree(d->full_dirty_stripes);
903         kvfree(d->stripe_sectors_dirty);
904
905         closure_debug_destroy(&d->cl);
906 }
907
908 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
909                 sector_t sectors, struct block_device *cached_bdev,
910                 const struct block_device_operations *ops)
911 {
912         struct request_queue *q;
913         const size_t max_stripes = min_t(size_t, INT_MAX,
914                                          SIZE_MAX / sizeof(atomic_t));
915         uint64_t n;
916         int idx;
917
918         if (!d->stripe_size)
919                 d->stripe_size = 1 << 31;
920         else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
921                 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
922
923         n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
924         if (!n || n > max_stripes) {
925                 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
926                         n);
927                 return -ENOMEM;
928         }
929         d->nr_stripes = n;
930
931         n = d->nr_stripes * sizeof(atomic_t);
932         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
933         if (!d->stripe_sectors_dirty)
934                 return -ENOMEM;
935
936         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
937         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
938         if (!d->full_dirty_stripes)
939                 goto out_free_stripe_sectors_dirty;
940
941         idx = ida_simple_get(&bcache_device_idx, 0,
942                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
943         if (idx < 0)
944                 goto out_free_full_dirty_stripes;
945
946         if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
947                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
948                 goto out_ida_remove;
949
950         d->disk = alloc_disk(BCACHE_MINORS);
951         if (!d->disk)
952                 goto out_bioset_exit;
953
954         set_capacity(d->disk, sectors);
955         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
956
957         d->disk->major          = bcache_major;
958         d->disk->first_minor    = idx_to_first_minor(idx);
959         d->disk->fops           = ops;
960         d->disk->private_data   = d;
961
962         q = blk_alloc_queue(NUMA_NO_NODE);
963         if (!q)
964                 return -ENOMEM;
965
966         d->disk->queue                  = q;
967         q->limits.max_hw_sectors        = UINT_MAX;
968         q->limits.max_sectors           = UINT_MAX;
969         q->limits.max_segment_size      = UINT_MAX;
970         q->limits.max_segments          = BIO_MAX_PAGES;
971         blk_queue_max_discard_sectors(q, UINT_MAX);
972         q->limits.discard_granularity   = 512;
973         q->limits.io_min                = block_size;
974         q->limits.logical_block_size    = block_size;
975         q->limits.physical_block_size   = block_size;
976
977         if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
978                 /*
979                  * This should only happen with BCACHE_SB_VERSION_BDEV.
980                  * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
981                  */
982                 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
983                         d->disk->disk_name, q->limits.logical_block_size,
984                         PAGE_SIZE, bdev_logical_block_size(cached_bdev));
985
986                 /* This also adjusts physical block size/min io size if needed */
987                 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
988         }
989
990         blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
991         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
992         blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
993
994         blk_queue_write_cache(q, true, true);
995
996         return 0;
997
998 out_bioset_exit:
999         bioset_exit(&d->bio_split);
1000 out_ida_remove:
1001         ida_simple_remove(&bcache_device_idx, idx);
1002 out_free_full_dirty_stripes:
1003         kvfree(d->full_dirty_stripes);
1004 out_free_stripe_sectors_dirty:
1005         kvfree(d->stripe_sectors_dirty);
1006         return -ENOMEM;
1007
1008 }
1009
1010 /* Cached device */
1011
1012 static void calc_cached_dev_sectors(struct cache_set *c)
1013 {
1014         uint64_t sectors = 0;
1015         struct cached_dev *dc;
1016
1017         list_for_each_entry(dc, &c->cached_devs, list)
1018                 sectors += bdev_sectors(dc->bdev);
1019
1020         c->cached_dev_sectors = sectors;
1021 }
1022
1023 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1024 static int cached_dev_status_update(void *arg)
1025 {
1026         struct cached_dev *dc = arg;
1027         struct request_queue *q;
1028
1029         /*
1030          * If this delayed worker is stopping outside, directly quit here.
1031          * dc->io_disable might be set via sysfs interface, so check it
1032          * here too.
1033          */
1034         while (!kthread_should_stop() && !dc->io_disable) {
1035                 q = bdev_get_queue(dc->bdev);
1036                 if (blk_queue_dying(q))
1037                         dc->offline_seconds++;
1038                 else
1039                         dc->offline_seconds = 0;
1040
1041                 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1042                         pr_err("%s: device offline for %d seconds\n",
1043                                dc->backing_dev_name,
1044                                BACKING_DEV_OFFLINE_TIMEOUT);
1045                         pr_err("%s: disable I/O request due to backing device offline\n",
1046                                dc->disk.name);
1047                         dc->io_disable = true;
1048                         /* let others know earlier that io_disable is true */
1049                         smp_mb();
1050                         bcache_device_stop(&dc->disk);
1051                         break;
1052                 }
1053                 schedule_timeout_interruptible(HZ);
1054         }
1055
1056         wait_for_kthread_stop();
1057         return 0;
1058 }
1059
1060
1061 int bch_cached_dev_run(struct cached_dev *dc)
1062 {
1063         struct bcache_device *d = &dc->disk;
1064         char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1065         char *env[] = {
1066                 "DRIVER=bcache",
1067                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1068                 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1069                 NULL,
1070         };
1071
1072         if (dc->io_disable) {
1073                 pr_err("I/O disabled on cached dev %s\n",
1074                        dc->backing_dev_name);
1075                 kfree(env[1]);
1076                 kfree(env[2]);
1077                 kfree(buf);
1078                 return -EIO;
1079         }
1080
1081         if (atomic_xchg(&dc->running, 1)) {
1082                 kfree(env[1]);
1083                 kfree(env[2]);
1084                 kfree(buf);
1085                 pr_info("cached dev %s is running already\n",
1086                        dc->backing_dev_name);
1087                 return -EBUSY;
1088         }
1089
1090         if (!d->c &&
1091             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1092                 struct closure cl;
1093
1094                 closure_init_stack(&cl);
1095
1096                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1097                 bch_write_bdev_super(dc, &cl);
1098                 closure_sync(&cl);
1099         }
1100
1101         add_disk(d->disk);
1102         bd_link_disk_holder(dc->bdev, dc->disk.disk);
1103         /*
1104          * won't show up in the uevent file, use udevadm monitor -e instead
1105          * only class / kset properties are persistent
1106          */
1107         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1108         kfree(env[1]);
1109         kfree(env[2]);
1110         kfree(buf);
1111
1112         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1113             sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1114                               &d->kobj, "bcache")) {
1115                 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1116                 return -ENOMEM;
1117         }
1118
1119         dc->status_update_thread = kthread_run(cached_dev_status_update,
1120                                                dc, "bcache_status_update");
1121         if (IS_ERR(dc->status_update_thread)) {
1122                 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1123         }
1124
1125         return 0;
1126 }
1127
1128 /*
1129  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1130  * work dc->writeback_rate_update is running. Wait until the routine
1131  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1132  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1133  * seconds, give up waiting here and continue to cancel it too.
1134  */
1135 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1136 {
1137         int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1138
1139         do {
1140                 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1141                               &dc->disk.flags))
1142                         break;
1143                 time_out--;
1144                 schedule_timeout_interruptible(1);
1145         } while (time_out > 0);
1146
1147         if (time_out == 0)
1148                 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1149
1150         cancel_delayed_work_sync(&dc->writeback_rate_update);
1151 }
1152
1153 static void cached_dev_detach_finish(struct work_struct *w)
1154 {
1155         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1156         struct closure cl;
1157
1158         closure_init_stack(&cl);
1159
1160         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1161         BUG_ON(refcount_read(&dc->count));
1162
1163
1164         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1165                 cancel_writeback_rate_update_dwork(dc);
1166
1167         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1168                 kthread_stop(dc->writeback_thread);
1169                 dc->writeback_thread = NULL;
1170         }
1171
1172         memset(&dc->sb.set_uuid, 0, 16);
1173         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1174
1175         bch_write_bdev_super(dc, &cl);
1176         closure_sync(&cl);
1177
1178         mutex_lock(&bch_register_lock);
1179
1180         calc_cached_dev_sectors(dc->disk.c);
1181         bcache_device_detach(&dc->disk);
1182         list_move(&dc->list, &uncached_devices);
1183
1184         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1185         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1186
1187         mutex_unlock(&bch_register_lock);
1188
1189         pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1190
1191         /* Drop ref we took in cached_dev_detach() */
1192         closure_put(&dc->disk.cl);
1193 }
1194
1195 void bch_cached_dev_detach(struct cached_dev *dc)
1196 {
1197         lockdep_assert_held(&bch_register_lock);
1198
1199         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1200                 return;
1201
1202         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1203                 return;
1204
1205         /*
1206          * Block the device from being closed and freed until we're finished
1207          * detaching
1208          */
1209         closure_get(&dc->disk.cl);
1210
1211         bch_writeback_queue(dc);
1212
1213         cached_dev_put(dc);
1214 }
1215
1216 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1217                           uint8_t *set_uuid)
1218 {
1219         uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1220         struct uuid_entry *u;
1221         struct cached_dev *exist_dc, *t;
1222         int ret = 0;
1223
1224         if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1225             (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1226                 return -ENOENT;
1227
1228         if (dc->disk.c) {
1229                 pr_err("Can't attach %s: already attached\n",
1230                        dc->backing_dev_name);
1231                 return -EINVAL;
1232         }
1233
1234         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1235                 pr_err("Can't attach %s: shutting down\n",
1236                        dc->backing_dev_name);
1237                 return -EINVAL;
1238         }
1239
1240         if (dc->sb.block_size < c->cache->sb.block_size) {
1241                 /* Will die */
1242                 pr_err("Couldn't attach %s: block size less than set's block size\n",
1243                        dc->backing_dev_name);
1244                 return -EINVAL;
1245         }
1246
1247         /* Check whether already attached */
1248         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1249                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1250                         pr_err("Tried to attach %s but duplicate UUID already attached\n",
1251                                 dc->backing_dev_name);
1252
1253                         return -EINVAL;
1254                 }
1255         }
1256
1257         u = uuid_find(c, dc->sb.uuid);
1258
1259         if (u &&
1260             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1261              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1262                 memcpy(u->uuid, invalid_uuid, 16);
1263                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1264                 u = NULL;
1265         }
1266
1267         if (!u) {
1268                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1269                         pr_err("Couldn't find uuid for %s in set\n",
1270                                dc->backing_dev_name);
1271                         return -ENOENT;
1272                 }
1273
1274                 u = uuid_find_empty(c);
1275                 if (!u) {
1276                         pr_err("Not caching %s, no room for UUID\n",
1277                                dc->backing_dev_name);
1278                         return -EINVAL;
1279                 }
1280         }
1281
1282         /*
1283          * Deadlocks since we're called via sysfs...
1284          * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1285          */
1286
1287         if (bch_is_zero(u->uuid, 16)) {
1288                 struct closure cl;
1289
1290                 closure_init_stack(&cl);
1291
1292                 memcpy(u->uuid, dc->sb.uuid, 16);
1293                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1294                 u->first_reg = u->last_reg = rtime;
1295                 bch_uuid_write(c);
1296
1297                 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1298                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1299
1300                 bch_write_bdev_super(dc, &cl);
1301                 closure_sync(&cl);
1302         } else {
1303                 u->last_reg = rtime;
1304                 bch_uuid_write(c);
1305         }
1306
1307         bcache_device_attach(&dc->disk, c, u - c->uuids);
1308         list_move(&dc->list, &c->cached_devs);
1309         calc_cached_dev_sectors(c);
1310
1311         /*
1312          * dc->c must be set before dc->count != 0 - paired with the mb in
1313          * cached_dev_get()
1314          */
1315         smp_wmb();
1316         refcount_set(&dc->count, 1);
1317
1318         /* Block writeback thread, but spawn it */
1319         down_write(&dc->writeback_lock);
1320         if (bch_cached_dev_writeback_start(dc)) {
1321                 up_write(&dc->writeback_lock);
1322                 pr_err("Couldn't start writeback facilities for %s\n",
1323                        dc->disk.disk->disk_name);
1324                 return -ENOMEM;
1325         }
1326
1327         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1328                 atomic_set(&dc->has_dirty, 1);
1329                 bch_writeback_queue(dc);
1330         }
1331
1332         bch_sectors_dirty_init(&dc->disk);
1333
1334         ret = bch_cached_dev_run(dc);
1335         if (ret && (ret != -EBUSY)) {
1336                 up_write(&dc->writeback_lock);
1337                 /*
1338                  * bch_register_lock is held, bcache_device_stop() is not
1339                  * able to be directly called. The kthread and kworker
1340                  * created previously in bch_cached_dev_writeback_start()
1341                  * have to be stopped manually here.
1342                  */
1343                 kthread_stop(dc->writeback_thread);
1344                 cancel_writeback_rate_update_dwork(dc);
1345                 pr_err("Couldn't run cached device %s\n",
1346                        dc->backing_dev_name);
1347                 return ret;
1348         }
1349
1350         bcache_device_link(&dc->disk, c, "bdev");
1351         atomic_inc(&c->attached_dev_nr);
1352
1353         if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1354                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1355                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1356                 set_disk_ro(dc->disk.disk, 1);
1357         }
1358
1359         /* Allow the writeback thread to proceed */
1360         up_write(&dc->writeback_lock);
1361
1362         pr_info("Caching %s as %s on set %pU\n",
1363                 dc->backing_dev_name,
1364                 dc->disk.disk->disk_name,
1365                 dc->disk.c->set_uuid);
1366         return 0;
1367 }
1368
1369 /* when dc->disk.kobj released */
1370 void bch_cached_dev_release(struct kobject *kobj)
1371 {
1372         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1373                                              disk.kobj);
1374         kfree(dc);
1375         module_put(THIS_MODULE);
1376 }
1377
1378 static void cached_dev_free(struct closure *cl)
1379 {
1380         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1381
1382         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1383                 cancel_writeback_rate_update_dwork(dc);
1384
1385         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1386                 kthread_stop(dc->writeback_thread);
1387         if (!IS_ERR_OR_NULL(dc->status_update_thread))
1388                 kthread_stop(dc->status_update_thread);
1389
1390         mutex_lock(&bch_register_lock);
1391
1392         if (atomic_read(&dc->running))
1393                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1394         bcache_device_free(&dc->disk);
1395         list_del(&dc->list);
1396
1397         mutex_unlock(&bch_register_lock);
1398
1399         if (dc->sb_disk)
1400                 put_page(virt_to_page(dc->sb_disk));
1401
1402         if (!IS_ERR_OR_NULL(dc->bdev))
1403                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1404
1405         wake_up(&unregister_wait);
1406
1407         kobject_put(&dc->disk.kobj);
1408 }
1409
1410 static void cached_dev_flush(struct closure *cl)
1411 {
1412         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1413         struct bcache_device *d = &dc->disk;
1414
1415         mutex_lock(&bch_register_lock);
1416         bcache_device_unlink(d);
1417         mutex_unlock(&bch_register_lock);
1418
1419         bch_cache_accounting_destroy(&dc->accounting);
1420         kobject_del(&d->kobj);
1421
1422         continue_at(cl, cached_dev_free, system_wq);
1423 }
1424
1425 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1426 {
1427         int ret;
1428         struct io *io;
1429         struct request_queue *q = bdev_get_queue(dc->bdev);
1430
1431         __module_get(THIS_MODULE);
1432         INIT_LIST_HEAD(&dc->list);
1433         closure_init(&dc->disk.cl, NULL);
1434         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1435         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1436         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1437         sema_init(&dc->sb_write_mutex, 1);
1438         INIT_LIST_HEAD(&dc->io_lru);
1439         spin_lock_init(&dc->io_lock);
1440         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1441
1442         dc->sequential_cutoff           = 4 << 20;
1443
1444         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1445                 list_add(&io->lru, &dc->io_lru);
1446                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1447         }
1448
1449         dc->disk.stripe_size = q->limits.io_opt >> 9;
1450
1451         if (dc->disk.stripe_size)
1452                 dc->partial_stripes_expensive =
1453                         q->limits.raid_partial_stripes_expensive;
1454
1455         ret = bcache_device_init(&dc->disk, block_size,
1456                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1457                          dc->bdev, &bcache_cached_ops);
1458         if (ret)
1459                 return ret;
1460
1461         blk_queue_io_opt(dc->disk.disk->queue,
1462                 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1463
1464         atomic_set(&dc->io_errors, 0);
1465         dc->io_disable = false;
1466         dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1467         /* default to auto */
1468         dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1469
1470         bch_cached_dev_request_init(dc);
1471         bch_cached_dev_writeback_init(dc);
1472         return 0;
1473 }
1474
1475 /* Cached device - bcache superblock */
1476
1477 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1478                                  struct block_device *bdev,
1479                                  struct cached_dev *dc)
1480 {
1481         const char *err = "cannot allocate memory";
1482         struct cache_set *c;
1483         int ret = -ENOMEM;
1484
1485         bdevname(bdev, dc->backing_dev_name);
1486         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1487         dc->bdev = bdev;
1488         dc->bdev->bd_holder = dc;
1489         dc->sb_disk = sb_disk;
1490
1491         if (cached_dev_init(dc, sb->block_size << 9))
1492                 goto err;
1493
1494         err = "error creating kobject";
1495         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1496                         "bcache"))
1497                 goto err;
1498         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1499                 goto err;
1500
1501         pr_info("registered backing device %s\n", dc->backing_dev_name);
1502
1503         list_add(&dc->list, &uncached_devices);
1504         /* attach to a matched cache set if it exists */
1505         list_for_each_entry(c, &bch_cache_sets, list)
1506                 bch_cached_dev_attach(dc, c, NULL);
1507
1508         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1509             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1510                 err = "failed to run cached device";
1511                 ret = bch_cached_dev_run(dc);
1512                 if (ret)
1513                         goto err;
1514         }
1515
1516         return 0;
1517 err:
1518         pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1519         bcache_device_stop(&dc->disk);
1520         return ret;
1521 }
1522
1523 /* Flash only volumes */
1524
1525 /* When d->kobj released */
1526 void bch_flash_dev_release(struct kobject *kobj)
1527 {
1528         struct bcache_device *d = container_of(kobj, struct bcache_device,
1529                                                kobj);
1530         kfree(d);
1531 }
1532
1533 static void flash_dev_free(struct closure *cl)
1534 {
1535         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1536
1537         mutex_lock(&bch_register_lock);
1538         atomic_long_sub(bcache_dev_sectors_dirty(d),
1539                         &d->c->flash_dev_dirty_sectors);
1540         bcache_device_free(d);
1541         mutex_unlock(&bch_register_lock);
1542         kobject_put(&d->kobj);
1543 }
1544
1545 static void flash_dev_flush(struct closure *cl)
1546 {
1547         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1548
1549         mutex_lock(&bch_register_lock);
1550         bcache_device_unlink(d);
1551         mutex_unlock(&bch_register_lock);
1552         kobject_del(&d->kobj);
1553         continue_at(cl, flash_dev_free, system_wq);
1554 }
1555
1556 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1557 {
1558         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1559                                           GFP_KERNEL);
1560         if (!d)
1561                 return -ENOMEM;
1562
1563         closure_init(&d->cl, NULL);
1564         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1565
1566         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1567
1568         if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1569                         NULL, &bcache_flash_ops))
1570                 goto err;
1571
1572         bcache_device_attach(d, c, u - c->uuids);
1573         bch_sectors_dirty_init(d);
1574         bch_flash_dev_request_init(d);
1575         add_disk(d->disk);
1576
1577         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1578                 goto err;
1579
1580         bcache_device_link(d, c, "volume");
1581
1582         if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1583                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1584                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1585                 set_disk_ro(d->disk, 1);
1586         }
1587
1588         return 0;
1589 err:
1590         kobject_put(&d->kobj);
1591         return -ENOMEM;
1592 }
1593
1594 static int flash_devs_run(struct cache_set *c)
1595 {
1596         int ret = 0;
1597         struct uuid_entry *u;
1598
1599         for (u = c->uuids;
1600              u < c->uuids + c->nr_uuids && !ret;
1601              u++)
1602                 if (UUID_FLASH_ONLY(u))
1603                         ret = flash_dev_run(c, u);
1604
1605         return ret;
1606 }
1607
1608 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1609 {
1610         struct uuid_entry *u;
1611
1612         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1613                 return -EINTR;
1614
1615         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1616                 return -EPERM;
1617
1618         u = uuid_find_empty(c);
1619         if (!u) {
1620                 pr_err("Can't create volume, no room for UUID\n");
1621                 return -EINVAL;
1622         }
1623
1624         get_random_bytes(u->uuid, 16);
1625         memset(u->label, 0, 32);
1626         u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1627
1628         SET_UUID_FLASH_ONLY(u, 1);
1629         u->sectors = size >> 9;
1630
1631         bch_uuid_write(c);
1632
1633         return flash_dev_run(c, u);
1634 }
1635
1636 bool bch_cached_dev_error(struct cached_dev *dc)
1637 {
1638         if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1639                 return false;
1640
1641         dc->io_disable = true;
1642         /* make others know io_disable is true earlier */
1643         smp_mb();
1644
1645         pr_err("stop %s: too many IO errors on backing device %s\n",
1646                dc->disk.disk->disk_name, dc->backing_dev_name);
1647
1648         bcache_device_stop(&dc->disk);
1649         return true;
1650 }
1651
1652 /* Cache set */
1653
1654 __printf(2, 3)
1655 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1656 {
1657         struct va_format vaf;
1658         va_list args;
1659
1660         if (c->on_error != ON_ERROR_PANIC &&
1661             test_bit(CACHE_SET_STOPPING, &c->flags))
1662                 return false;
1663
1664         if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1665                 pr_info("CACHE_SET_IO_DISABLE already set\n");
1666
1667         /*
1668          * XXX: we can be called from atomic context
1669          * acquire_console_sem();
1670          */
1671
1672         va_start(args, fmt);
1673
1674         vaf.fmt = fmt;
1675         vaf.va = &args;
1676
1677         pr_err("error on %pU: %pV, disabling caching\n",
1678                c->set_uuid, &vaf);
1679
1680         va_end(args);
1681
1682         if (c->on_error == ON_ERROR_PANIC)
1683                 panic("panic forced after error\n");
1684
1685         bch_cache_set_unregister(c);
1686         return true;
1687 }
1688
1689 /* When c->kobj released */
1690 void bch_cache_set_release(struct kobject *kobj)
1691 {
1692         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1693
1694         kfree(c);
1695         module_put(THIS_MODULE);
1696 }
1697
1698 static void cache_set_free(struct closure *cl)
1699 {
1700         struct cache_set *c = container_of(cl, struct cache_set, cl);
1701         struct cache *ca;
1702
1703         debugfs_remove(c->debug);
1704
1705         bch_open_buckets_free(c);
1706         bch_btree_cache_free(c);
1707         bch_journal_free(c);
1708
1709         mutex_lock(&bch_register_lock);
1710         bch_bset_sort_state_free(&c->sort);
1711         free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1712
1713         ca = c->cache;
1714         if (ca) {
1715                 ca->set = NULL;
1716                 c->cache = NULL;
1717                 kobject_put(&ca->kobj);
1718         }
1719
1720
1721         if (c->moving_gc_wq)
1722                 destroy_workqueue(c->moving_gc_wq);
1723         bioset_exit(&c->bio_split);
1724         mempool_exit(&c->fill_iter);
1725         mempool_exit(&c->bio_meta);
1726         mempool_exit(&c->search);
1727         kfree(c->devices);
1728
1729         list_del(&c->list);
1730         mutex_unlock(&bch_register_lock);
1731
1732         pr_info("Cache set %pU unregistered\n", c->set_uuid);
1733         wake_up(&unregister_wait);
1734
1735         closure_debug_destroy(&c->cl);
1736         kobject_put(&c->kobj);
1737 }
1738
1739 static void cache_set_flush(struct closure *cl)
1740 {
1741         struct cache_set *c = container_of(cl, struct cache_set, caching);
1742         struct cache *ca = c->cache;
1743         struct btree *b;
1744
1745         bch_cache_accounting_destroy(&c->accounting);
1746
1747         kobject_put(&c->internal);
1748         kobject_del(&c->kobj);
1749
1750         if (!IS_ERR_OR_NULL(c->gc_thread))
1751                 kthread_stop(c->gc_thread);
1752
1753         if (!IS_ERR(c->root))
1754                 list_add(&c->root->list, &c->btree_cache);
1755
1756         /*
1757          * Avoid flushing cached nodes if cache set is retiring
1758          * due to too many I/O errors detected.
1759          */
1760         if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1761                 list_for_each_entry(b, &c->btree_cache, list) {
1762                         mutex_lock(&b->write_lock);
1763                         if (btree_node_dirty(b))
1764                                 __bch_btree_node_write(b, NULL);
1765                         mutex_unlock(&b->write_lock);
1766                 }
1767
1768         if (ca->alloc_thread)
1769                 kthread_stop(ca->alloc_thread);
1770
1771         if (c->journal.cur) {
1772                 cancel_delayed_work_sync(&c->journal.work);
1773                 /* flush last journal entry if needed */
1774                 c->journal.work.work.func(&c->journal.work.work);
1775         }
1776
1777         closure_return(cl);
1778 }
1779
1780 /*
1781  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1782  * cache set is unregistering due to too many I/O errors. In this condition,
1783  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1784  * value and whether the broken cache has dirty data:
1785  *
1786  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1787  *  BCH_CACHED_STOP_AUTO               0               NO
1788  *  BCH_CACHED_STOP_AUTO               1               YES
1789  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1790  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1791  *
1792  * The expected behavior is, if stop_when_cache_set_failed is configured to
1793  * "auto" via sysfs interface, the bcache device will not be stopped if the
1794  * backing device is clean on the broken cache device.
1795  */
1796 static void conditional_stop_bcache_device(struct cache_set *c,
1797                                            struct bcache_device *d,
1798                                            struct cached_dev *dc)
1799 {
1800         if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1801                 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1802                         d->disk->disk_name, c->set_uuid);
1803                 bcache_device_stop(d);
1804         } else if (atomic_read(&dc->has_dirty)) {
1805                 /*
1806                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1807                  * and dc->has_dirty == 1
1808                  */
1809                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1810                         d->disk->disk_name);
1811                 /*
1812                  * There might be a small time gap that cache set is
1813                  * released but bcache device is not. Inside this time
1814                  * gap, regular I/O requests will directly go into
1815                  * backing device as no cache set attached to. This
1816                  * behavior may also introduce potential inconsistence
1817                  * data in writeback mode while cache is dirty.
1818                  * Therefore before calling bcache_device_stop() due
1819                  * to a broken cache device, dc->io_disable should be
1820                  * explicitly set to true.
1821                  */
1822                 dc->io_disable = true;
1823                 /* make others know io_disable is true earlier */
1824                 smp_mb();
1825                 bcache_device_stop(d);
1826         } else {
1827                 /*
1828                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1829                  * and dc->has_dirty == 0
1830                  */
1831                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1832                         d->disk->disk_name);
1833         }
1834 }
1835
1836 static void __cache_set_unregister(struct closure *cl)
1837 {
1838         struct cache_set *c = container_of(cl, struct cache_set, caching);
1839         struct cached_dev *dc;
1840         struct bcache_device *d;
1841         size_t i;
1842
1843         mutex_lock(&bch_register_lock);
1844
1845         for (i = 0; i < c->devices_max_used; i++) {
1846                 d = c->devices[i];
1847                 if (!d)
1848                         continue;
1849
1850                 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1851                     test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1852                         dc = container_of(d, struct cached_dev, disk);
1853                         bch_cached_dev_detach(dc);
1854                         if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1855                                 conditional_stop_bcache_device(c, d, dc);
1856                 } else {
1857                         bcache_device_stop(d);
1858                 }
1859         }
1860
1861         mutex_unlock(&bch_register_lock);
1862
1863         continue_at(cl, cache_set_flush, system_wq);
1864 }
1865
1866 void bch_cache_set_stop(struct cache_set *c)
1867 {
1868         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1869                 /* closure_fn set to __cache_set_unregister() */
1870                 closure_queue(&c->caching);
1871 }
1872
1873 void bch_cache_set_unregister(struct cache_set *c)
1874 {
1875         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1876         bch_cache_set_stop(c);
1877 }
1878
1879 #define alloc_meta_bucket_pages(gfp, sb)                \
1880         ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1881
1882 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1883 {
1884         int iter_size;
1885         struct cache *ca = container_of(sb, struct cache, sb);
1886         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1887
1888         if (!c)
1889                 return NULL;
1890
1891         __module_get(THIS_MODULE);
1892         closure_init(&c->cl, NULL);
1893         set_closure_fn(&c->cl, cache_set_free, system_wq);
1894
1895         closure_init(&c->caching, &c->cl);
1896         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1897
1898         /* Maybe create continue_at_noreturn() and use it here? */
1899         closure_set_stopped(&c->cl);
1900         closure_put(&c->cl);
1901
1902         kobject_init(&c->kobj, &bch_cache_set_ktype);
1903         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1904
1905         bch_cache_accounting_init(&c->accounting, &c->cl);
1906
1907         memcpy(c->set_uuid, sb->set_uuid, 16);
1908
1909         c->cache                = ca;
1910         c->cache->set           = c;
1911         c->bucket_bits          = ilog2(sb->bucket_size);
1912         c->block_bits           = ilog2(sb->block_size);
1913         c->nr_uuids             = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1914         c->devices_max_used     = 0;
1915         atomic_set(&c->attached_dev_nr, 0);
1916         c->btree_pages          = meta_bucket_pages(sb);
1917         if (c->btree_pages > BTREE_MAX_PAGES)
1918                 c->btree_pages = max_t(int, c->btree_pages / 4,
1919                                        BTREE_MAX_PAGES);
1920
1921         sema_init(&c->sb_write_mutex, 1);
1922         mutex_init(&c->bucket_lock);
1923         init_waitqueue_head(&c->btree_cache_wait);
1924         spin_lock_init(&c->btree_cannibalize_lock);
1925         init_waitqueue_head(&c->bucket_wait);
1926         init_waitqueue_head(&c->gc_wait);
1927         sema_init(&c->uuid_write_mutex, 1);
1928
1929         spin_lock_init(&c->btree_gc_time.lock);
1930         spin_lock_init(&c->btree_split_time.lock);
1931         spin_lock_init(&c->btree_read_time.lock);
1932
1933         bch_moving_init_cache_set(c);
1934
1935         INIT_LIST_HEAD(&c->list);
1936         INIT_LIST_HEAD(&c->cached_devs);
1937         INIT_LIST_HEAD(&c->btree_cache);
1938         INIT_LIST_HEAD(&c->btree_cache_freeable);
1939         INIT_LIST_HEAD(&c->btree_cache_freed);
1940         INIT_LIST_HEAD(&c->data_buckets);
1941
1942         iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1943                 sizeof(struct btree_iter_set);
1944
1945         c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1946         if (!c->devices)
1947                 goto err;
1948
1949         if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1950                 goto err;
1951
1952         if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1953                         sizeof(struct bbio) +
1954                         sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1955                 goto err;
1956
1957         if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1958                 goto err;
1959
1960         if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1961                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1962                 goto err;
1963
1964         c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1965         if (!c->uuids)
1966                 goto err;
1967
1968         c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1969         if (!c->moving_gc_wq)
1970                 goto err;
1971
1972         if (bch_journal_alloc(c))
1973                 goto err;
1974
1975         if (bch_btree_cache_alloc(c))
1976                 goto err;
1977
1978         if (bch_open_buckets_alloc(c))
1979                 goto err;
1980
1981         if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1982                 goto err;
1983
1984         c->congested_read_threshold_us  = 2000;
1985         c->congested_write_threshold_us = 20000;
1986         c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1987         c->idle_max_writeback_rate_enabled = 1;
1988         WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1989
1990         return c;
1991 err:
1992         bch_cache_set_unregister(c);
1993         return NULL;
1994 }
1995
1996 static int run_cache_set(struct cache_set *c)
1997 {
1998         const char *err = "cannot allocate memory";
1999         struct cached_dev *dc, *t;
2000         struct cache *ca = c->cache;
2001         struct closure cl;
2002         LIST_HEAD(journal);
2003         struct journal_replay *l;
2004
2005         closure_init_stack(&cl);
2006
2007         c->nbuckets = ca->sb.nbuckets;
2008         set_gc_sectors(c);
2009
2010         if (CACHE_SYNC(&c->cache->sb)) {
2011                 struct bkey *k;
2012                 struct jset *j;
2013
2014                 err = "cannot allocate memory for journal";
2015                 if (bch_journal_read(c, &journal))
2016                         goto err;
2017
2018                 pr_debug("btree_journal_read() done\n");
2019
2020                 err = "no journal entries found";
2021                 if (list_empty(&journal))
2022                         goto err;
2023
2024                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
2025
2026                 err = "IO error reading priorities";
2027                 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2028                         goto err;
2029
2030                 /*
2031                  * If prio_read() fails it'll call cache_set_error and we'll
2032                  * tear everything down right away, but if we perhaps checked
2033                  * sooner we could avoid journal replay.
2034                  */
2035
2036                 k = &j->btree_root;
2037
2038                 err = "bad btree root";
2039                 if (__bch_btree_ptr_invalid(c, k))
2040                         goto err;
2041
2042                 err = "error reading btree root";
2043                 c->root = bch_btree_node_get(c, NULL, k,
2044                                              j->btree_level,
2045                                              true, NULL);
2046                 if (IS_ERR(c->root))
2047                         goto err;
2048
2049                 list_del_init(&c->root->list);
2050                 rw_unlock(true, c->root);
2051
2052                 err = uuid_read(c, j, &cl);
2053                 if (err)
2054                         goto err;
2055
2056                 err = "error in recovery";
2057                 if (bch_btree_check(c))
2058                         goto err;
2059
2060                 bch_journal_mark(c, &journal);
2061                 bch_initial_gc_finish(c);
2062                 pr_debug("btree_check() done\n");
2063
2064                 /*
2065                  * bcache_journal_next() can't happen sooner, or
2066                  * btree_gc_finish() will give spurious errors about last_gc >
2067                  * gc_gen - this is a hack but oh well.
2068                  */
2069                 bch_journal_next(&c->journal);
2070
2071                 err = "error starting allocator thread";
2072                 if (bch_cache_allocator_start(ca))
2073                         goto err;
2074
2075                 /*
2076                  * First place it's safe to allocate: btree_check() and
2077                  * btree_gc_finish() have to run before we have buckets to
2078                  * allocate, and bch_bucket_alloc_set() might cause a journal
2079                  * entry to be written so bcache_journal_next() has to be called
2080                  * first.
2081                  *
2082                  * If the uuids were in the old format we have to rewrite them
2083                  * before the next journal entry is written:
2084                  */
2085                 if (j->version < BCACHE_JSET_VERSION_UUID)
2086                         __uuid_write(c);
2087
2088                 err = "bcache: replay journal failed";
2089                 if (bch_journal_replay(c, &journal))
2090                         goto err;
2091         } else {
2092                 unsigned int j;
2093
2094                 pr_notice("invalidating existing data\n");
2095                 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2096                                         2, SB_JOURNAL_BUCKETS);
2097
2098                 for (j = 0; j < ca->sb.keys; j++)
2099                         ca->sb.d[j] = ca->sb.first_bucket + j;
2100
2101                 bch_initial_gc_finish(c);
2102
2103                 err = "error starting allocator thread";
2104                 if (bch_cache_allocator_start(ca))
2105                         goto err;
2106
2107                 mutex_lock(&c->bucket_lock);
2108                 bch_prio_write(ca, true);
2109                 mutex_unlock(&c->bucket_lock);
2110
2111                 err = "cannot allocate new UUID bucket";
2112                 if (__uuid_write(c))
2113                         goto err;
2114
2115                 err = "cannot allocate new btree root";
2116                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2117                 if (IS_ERR(c->root))
2118                         goto err;
2119
2120                 mutex_lock(&c->root->write_lock);
2121                 bkey_copy_key(&c->root->key, &MAX_KEY);
2122                 bch_btree_node_write(c->root, &cl);
2123                 mutex_unlock(&c->root->write_lock);
2124
2125                 bch_btree_set_root(c->root);
2126                 rw_unlock(true, c->root);
2127
2128                 /*
2129                  * We don't want to write the first journal entry until
2130                  * everything is set up - fortunately journal entries won't be
2131                  * written until the SET_CACHE_SYNC() here:
2132                  */
2133                 SET_CACHE_SYNC(&c->cache->sb, true);
2134
2135                 bch_journal_next(&c->journal);
2136                 bch_journal_meta(c, &cl);
2137         }
2138
2139         err = "error starting gc thread";
2140         if (bch_gc_thread_start(c))
2141                 goto err;
2142
2143         closure_sync(&cl);
2144         c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2145         bcache_write_super(c);
2146
2147         if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2148                 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2149
2150         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2151                 bch_cached_dev_attach(dc, c, NULL);
2152
2153         flash_devs_run(c);
2154
2155         bch_journal_space_reserve(&c->journal);
2156         set_bit(CACHE_SET_RUNNING, &c->flags);
2157         return 0;
2158 err:
2159         while (!list_empty(&journal)) {
2160                 l = list_first_entry(&journal, struct journal_replay, list);
2161                 list_del(&l->list);
2162                 kfree(l);
2163         }
2164
2165         closure_sync(&cl);
2166
2167         bch_cache_set_error(c, "%s", err);
2168
2169         return -EIO;
2170 }
2171
2172 static const char *register_cache_set(struct cache *ca)
2173 {
2174         char buf[12];
2175         const char *err = "cannot allocate memory";
2176         struct cache_set *c;
2177
2178         list_for_each_entry(c, &bch_cache_sets, list)
2179                 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2180                         if (c->cache)
2181                                 return "duplicate cache set member";
2182
2183                         goto found;
2184                 }
2185
2186         c = bch_cache_set_alloc(&ca->sb);
2187         if (!c)
2188                 return err;
2189
2190         err = "error creating kobject";
2191         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2192             kobject_add(&c->internal, &c->kobj, "internal"))
2193                 goto err;
2194
2195         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2196                 goto err;
2197
2198         bch_debug_init_cache_set(c);
2199
2200         list_add(&c->list, &bch_cache_sets);
2201 found:
2202         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2203         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2204             sysfs_create_link(&c->kobj, &ca->kobj, buf))
2205                 goto err;
2206
2207         kobject_get(&ca->kobj);
2208         ca->set = c;
2209         ca->set->cache = ca;
2210
2211         err = "failed to run cache set";
2212         if (run_cache_set(c) < 0)
2213                 goto err;
2214
2215         return NULL;
2216 err:
2217         bch_cache_set_unregister(c);
2218         return err;
2219 }
2220
2221 /* Cache device */
2222
2223 /* When ca->kobj released */
2224 void bch_cache_release(struct kobject *kobj)
2225 {
2226         struct cache *ca = container_of(kobj, struct cache, kobj);
2227         unsigned int i;
2228
2229         if (ca->set) {
2230                 BUG_ON(ca->set->cache != ca);
2231                 ca->set->cache = NULL;
2232         }
2233
2234         free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2235         kfree(ca->prio_buckets);
2236         vfree(ca->buckets);
2237
2238         free_heap(&ca->heap);
2239         free_fifo(&ca->free_inc);
2240
2241         for (i = 0; i < RESERVE_NR; i++)
2242                 free_fifo(&ca->free[i]);
2243
2244         if (ca->sb_disk)
2245                 put_page(virt_to_page(ca->sb_disk));
2246
2247         if (!IS_ERR_OR_NULL(ca->bdev))
2248                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2249
2250         kfree(ca);
2251         module_put(THIS_MODULE);
2252 }
2253
2254 static int cache_alloc(struct cache *ca)
2255 {
2256         size_t free;
2257         size_t btree_buckets;
2258         struct bucket *b;
2259         int ret = -ENOMEM;
2260         const char *err = NULL;
2261
2262         __module_get(THIS_MODULE);
2263         kobject_init(&ca->kobj, &bch_cache_ktype);
2264
2265         bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2266
2267         /*
2268          * when ca->sb.njournal_buckets is not zero, journal exists,
2269          * and in bch_journal_replay(), tree node may split,
2270          * so bucket of RESERVE_BTREE type is needed,
2271          * the worst situation is all journal buckets are valid journal,
2272          * and all the keys need to replay,
2273          * so the number of  RESERVE_BTREE type buckets should be as much
2274          * as journal buckets
2275          */
2276         btree_buckets = ca->sb.njournal_buckets ?: 8;
2277         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2278         if (!free) {
2279                 ret = -EPERM;
2280                 err = "ca->sb.nbuckets is too small";
2281                 goto err_free;
2282         }
2283
2284         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2285                                                 GFP_KERNEL)) {
2286                 err = "ca->free[RESERVE_BTREE] alloc failed";
2287                 goto err_btree_alloc;
2288         }
2289
2290         if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2291                                                         GFP_KERNEL)) {
2292                 err = "ca->free[RESERVE_PRIO] alloc failed";
2293                 goto err_prio_alloc;
2294         }
2295
2296         if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2297                 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2298                 goto err_movinggc_alloc;
2299         }
2300
2301         if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2302                 err = "ca->free[RESERVE_NONE] alloc failed";
2303                 goto err_none_alloc;
2304         }
2305
2306         if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2307                 err = "ca->free_inc alloc failed";
2308                 goto err_free_inc_alloc;
2309         }
2310
2311         if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2312                 err = "ca->heap alloc failed";
2313                 goto err_heap_alloc;
2314         }
2315
2316         ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2317                               ca->sb.nbuckets));
2318         if (!ca->buckets) {
2319                 err = "ca->buckets alloc failed";
2320                 goto err_buckets_alloc;
2321         }
2322
2323         ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2324                                    prio_buckets(ca), 2),
2325                                    GFP_KERNEL);
2326         if (!ca->prio_buckets) {
2327                 err = "ca->prio_buckets alloc failed";
2328                 goto err_prio_buckets_alloc;
2329         }
2330
2331         ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2332         if (!ca->disk_buckets) {
2333                 err = "ca->disk_buckets alloc failed";
2334                 goto err_disk_buckets_alloc;
2335         }
2336
2337         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2338
2339         for_each_bucket(b, ca)
2340                 atomic_set(&b->pin, 0);
2341         return 0;
2342
2343 err_disk_buckets_alloc:
2344         kfree(ca->prio_buckets);
2345 err_prio_buckets_alloc:
2346         vfree(ca->buckets);
2347 err_buckets_alloc:
2348         free_heap(&ca->heap);
2349 err_heap_alloc:
2350         free_fifo(&ca->free_inc);
2351 err_free_inc_alloc:
2352         free_fifo(&ca->free[RESERVE_NONE]);
2353 err_none_alloc:
2354         free_fifo(&ca->free[RESERVE_MOVINGGC]);
2355 err_movinggc_alloc:
2356         free_fifo(&ca->free[RESERVE_PRIO]);
2357 err_prio_alloc:
2358         free_fifo(&ca->free[RESERVE_BTREE]);
2359 err_btree_alloc:
2360 err_free:
2361         module_put(THIS_MODULE);
2362         if (err)
2363                 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2364         return ret;
2365 }
2366
2367 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2368                                 struct block_device *bdev, struct cache *ca)
2369 {
2370         const char *err = NULL; /* must be set for any error case */
2371         int ret = 0;
2372
2373         bdevname(bdev, ca->cache_dev_name);
2374         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2375         ca->bdev = bdev;
2376         ca->bdev->bd_holder = ca;
2377         ca->sb_disk = sb_disk;
2378
2379         if (blk_queue_discard(bdev_get_queue(bdev)))
2380                 ca->discard = CACHE_DISCARD(&ca->sb);
2381
2382         ret = cache_alloc(ca);
2383         if (ret != 0) {
2384                 /*
2385                  * If we failed here, it means ca->kobj is not initialized yet,
2386                  * kobject_put() won't be called and there is no chance to
2387                  * call blkdev_put() to bdev in bch_cache_release(). So we
2388                  * explicitly call blkdev_put() here.
2389                  */
2390                 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2391                 if (ret == -ENOMEM)
2392                         err = "cache_alloc(): -ENOMEM";
2393                 else if (ret == -EPERM)
2394                         err = "cache_alloc(): cache device is too small";
2395                 else
2396                         err = "cache_alloc(): unknown error";
2397                 goto err;
2398         }
2399
2400         if (kobject_add(&ca->kobj,
2401                         &part_to_dev(bdev->bd_part)->kobj,
2402                         "bcache")) {
2403                 err = "error calling kobject_add";
2404                 ret = -ENOMEM;
2405                 goto out;
2406         }
2407
2408         mutex_lock(&bch_register_lock);
2409         err = register_cache_set(ca);
2410         mutex_unlock(&bch_register_lock);
2411
2412         if (err) {
2413                 ret = -ENODEV;
2414                 goto out;
2415         }
2416
2417         pr_info("registered cache device %s\n", ca->cache_dev_name);
2418
2419 out:
2420         kobject_put(&ca->kobj);
2421
2422 err:
2423         if (err)
2424                 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2425
2426         return ret;
2427 }
2428
2429 /* Global interfaces/init */
2430
2431 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2432                                const char *buffer, size_t size);
2433 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2434                                          struct kobj_attribute *attr,
2435                                          const char *buffer, size_t size);
2436
2437 kobj_attribute_write(register,          register_bcache);
2438 kobj_attribute_write(register_quiet,    register_bcache);
2439 kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2440
2441 static bool bch_is_open_backing(struct block_device *bdev)
2442 {
2443         struct cache_set *c, *tc;
2444         struct cached_dev *dc, *t;
2445
2446         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2447                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2448                         if (dc->bdev == bdev)
2449                                 return true;
2450         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2451                 if (dc->bdev == bdev)
2452                         return true;
2453         return false;
2454 }
2455
2456 static bool bch_is_open_cache(struct block_device *bdev)
2457 {
2458         struct cache_set *c, *tc;
2459
2460         list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2461                 struct cache *ca = c->cache;
2462
2463                 if (ca->bdev == bdev)
2464                         return true;
2465         }
2466
2467         return false;
2468 }
2469
2470 static bool bch_is_open(struct block_device *bdev)
2471 {
2472         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2473 }
2474
2475 struct async_reg_args {
2476         struct delayed_work reg_work;
2477         char *path;
2478         struct cache_sb *sb;
2479         struct cache_sb_disk *sb_disk;
2480         struct block_device *bdev;
2481 };
2482
2483 static void register_bdev_worker(struct work_struct *work)
2484 {
2485         int fail = false;
2486         struct async_reg_args *args =
2487                 container_of(work, struct async_reg_args, reg_work.work);
2488         struct cached_dev *dc;
2489
2490         dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2491         if (!dc) {
2492                 fail = true;
2493                 put_page(virt_to_page(args->sb_disk));
2494                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2495                 goto out;
2496         }
2497
2498         mutex_lock(&bch_register_lock);
2499         if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2500                 fail = true;
2501         mutex_unlock(&bch_register_lock);
2502
2503 out:
2504         if (fail)
2505                 pr_info("error %s: fail to register backing device\n",
2506                         args->path);
2507         kfree(args->sb);
2508         kfree(args->path);
2509         kfree(args);
2510         module_put(THIS_MODULE);
2511 }
2512
2513 static void register_cache_worker(struct work_struct *work)
2514 {
2515         int fail = false;
2516         struct async_reg_args *args =
2517                 container_of(work, struct async_reg_args, reg_work.work);
2518         struct cache *ca;
2519
2520         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2521         if (!ca) {
2522                 fail = true;
2523                 put_page(virt_to_page(args->sb_disk));
2524                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2525                 goto out;
2526         }
2527
2528         /* blkdev_put() will be called in bch_cache_release() */
2529         if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2530                 fail = true;
2531
2532 out:
2533         if (fail)
2534                 pr_info("error %s: fail to register cache device\n",
2535                         args->path);
2536         kfree(args->sb);
2537         kfree(args->path);
2538         kfree(args);
2539         module_put(THIS_MODULE);
2540 }
2541
2542 static void register_device_aync(struct async_reg_args *args)
2543 {
2544         if (SB_IS_BDEV(args->sb))
2545                 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2546         else
2547                 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2548
2549         /* 10 jiffies is enough for a delay */
2550         queue_delayed_work(system_wq, &args->reg_work, 10);
2551 }
2552
2553 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2554                                const char *buffer, size_t size)
2555 {
2556         const char *err;
2557         char *path = NULL;
2558         struct cache_sb *sb;
2559         struct cache_sb_disk *sb_disk;
2560         struct block_device *bdev;
2561         ssize_t ret;
2562         bool async_registration = false;
2563
2564 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2565         async_registration = true;
2566 #endif
2567
2568         ret = -EBUSY;
2569         err = "failed to reference bcache module";
2570         if (!try_module_get(THIS_MODULE))
2571                 goto out;
2572
2573         /* For latest state of bcache_is_reboot */
2574         smp_mb();
2575         err = "bcache is in reboot";
2576         if (bcache_is_reboot)
2577                 goto out_module_put;
2578
2579         ret = -ENOMEM;
2580         err = "cannot allocate memory";
2581         path = kstrndup(buffer, size, GFP_KERNEL);
2582         if (!path)
2583                 goto out_module_put;
2584
2585         sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2586         if (!sb)
2587                 goto out_free_path;
2588
2589         ret = -EINVAL;
2590         err = "failed to open device";
2591         bdev = blkdev_get_by_path(strim(path),
2592                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2593                                   sb);
2594         if (IS_ERR(bdev)) {
2595                 if (bdev == ERR_PTR(-EBUSY)) {
2596                         bdev = lookup_bdev(strim(path));
2597                         mutex_lock(&bch_register_lock);
2598                         if (!IS_ERR(bdev) && bch_is_open(bdev))
2599                                 err = "device already registered";
2600                         else
2601                                 err = "device busy";
2602                         mutex_unlock(&bch_register_lock);
2603                         if (!IS_ERR(bdev))
2604                                 bdput(bdev);
2605                         if (attr == &ksysfs_register_quiet)
2606                                 goto done;
2607                 }
2608                 goto out_free_sb;
2609         }
2610
2611         err = "failed to set blocksize";
2612         if (set_blocksize(bdev, 4096))
2613                 goto out_blkdev_put;
2614
2615         err = read_super(sb, bdev, &sb_disk);
2616         if (err)
2617                 goto out_blkdev_put;
2618
2619         err = "failed to register device";
2620
2621         if (async_registration) {
2622                 /* register in asynchronous way */
2623                 struct async_reg_args *args =
2624                         kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2625
2626                 if (!args) {
2627                         ret = -ENOMEM;
2628                         err = "cannot allocate memory";
2629                         goto out_put_sb_page;
2630                 }
2631
2632                 args->path      = path;
2633                 args->sb        = sb;
2634                 args->sb_disk   = sb_disk;
2635                 args->bdev      = bdev;
2636                 register_device_aync(args);
2637                 /* No wait and returns to user space */
2638                 goto async_done;
2639         }
2640
2641         if (SB_IS_BDEV(sb)) {
2642                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2643
2644                 if (!dc)
2645                         goto out_put_sb_page;
2646
2647                 mutex_lock(&bch_register_lock);
2648                 ret = register_bdev(sb, sb_disk, bdev, dc);
2649                 mutex_unlock(&bch_register_lock);
2650                 /* blkdev_put() will be called in cached_dev_free() */
2651                 if (ret < 0)
2652                         goto out_free_sb;
2653         } else {
2654                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2655
2656                 if (!ca)
2657                         goto out_put_sb_page;
2658
2659                 /* blkdev_put() will be called in bch_cache_release() */
2660                 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2661                         goto out_free_sb;
2662         }
2663
2664 done:
2665         kfree(sb);
2666         kfree(path);
2667         module_put(THIS_MODULE);
2668 async_done:
2669         return size;
2670
2671 out_put_sb_page:
2672         put_page(virt_to_page(sb_disk));
2673 out_blkdev_put:
2674         blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2675 out_free_sb:
2676         kfree(sb);
2677 out_free_path:
2678         kfree(path);
2679         path = NULL;
2680 out_module_put:
2681         module_put(THIS_MODULE);
2682 out:
2683         pr_info("error %s: %s\n", path?path:"", err);
2684         return ret;
2685 }
2686
2687
2688 struct pdev {
2689         struct list_head list;
2690         struct cached_dev *dc;
2691 };
2692
2693 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2694                                          struct kobj_attribute *attr,
2695                                          const char *buffer,
2696                                          size_t size)
2697 {
2698         LIST_HEAD(pending_devs);
2699         ssize_t ret = size;
2700         struct cached_dev *dc, *tdc;
2701         struct pdev *pdev, *tpdev;
2702         struct cache_set *c, *tc;
2703
2704         mutex_lock(&bch_register_lock);
2705         list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2706                 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2707                 if (!pdev)
2708                         break;
2709                 pdev->dc = dc;
2710                 list_add(&pdev->list, &pending_devs);
2711         }
2712
2713         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2714                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2715                         char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2716                         char *set_uuid = c->set_uuid;
2717
2718                         if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2719                                 list_del(&pdev->list);
2720                                 kfree(pdev);
2721                                 break;
2722                         }
2723                 }
2724         }
2725         mutex_unlock(&bch_register_lock);
2726
2727         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2728                 pr_info("delete pdev %p\n", pdev);
2729                 list_del(&pdev->list);
2730                 bcache_device_stop(&pdev->dc->disk);
2731                 kfree(pdev);
2732         }
2733
2734         return ret;
2735 }
2736
2737 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2738 {
2739         if (bcache_is_reboot)
2740                 return NOTIFY_DONE;
2741
2742         if (code == SYS_DOWN ||
2743             code == SYS_HALT ||
2744             code == SYS_POWER_OFF) {
2745                 DEFINE_WAIT(wait);
2746                 unsigned long start = jiffies;
2747                 bool stopped = false;
2748
2749                 struct cache_set *c, *tc;
2750                 struct cached_dev *dc, *tdc;
2751
2752                 mutex_lock(&bch_register_lock);
2753
2754                 if (bcache_is_reboot)
2755                         goto out;
2756
2757                 /* New registration is rejected since now */
2758                 bcache_is_reboot = true;
2759                 /*
2760                  * Make registering caller (if there is) on other CPU
2761                  * core know bcache_is_reboot set to true earlier
2762                  */
2763                 smp_mb();
2764
2765                 if (list_empty(&bch_cache_sets) &&
2766                     list_empty(&uncached_devices))
2767                         goto out;
2768
2769                 mutex_unlock(&bch_register_lock);
2770
2771                 pr_info("Stopping all devices:\n");
2772
2773                 /*
2774                  * The reason bch_register_lock is not held to call
2775                  * bch_cache_set_stop() and bcache_device_stop() is to
2776                  * avoid potential deadlock during reboot, because cache
2777                  * set or bcache device stopping process will acqurie
2778                  * bch_register_lock too.
2779                  *
2780                  * We are safe here because bcache_is_reboot sets to
2781                  * true already, register_bcache() will reject new
2782                  * registration now. bcache_is_reboot also makes sure
2783                  * bcache_reboot() won't be re-entered on by other thread,
2784                  * so there is no race in following list iteration by
2785                  * list_for_each_entry_safe().
2786                  */
2787                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2788                         bch_cache_set_stop(c);
2789
2790                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2791                         bcache_device_stop(&dc->disk);
2792
2793
2794                 /*
2795                  * Give an early chance for other kthreads and
2796                  * kworkers to stop themselves
2797                  */
2798                 schedule();
2799
2800                 /* What's a condition variable? */
2801                 while (1) {
2802                         long timeout = start + 10 * HZ - jiffies;
2803
2804                         mutex_lock(&bch_register_lock);
2805                         stopped = list_empty(&bch_cache_sets) &&
2806                                 list_empty(&uncached_devices);
2807
2808                         if (timeout < 0 || stopped)
2809                                 break;
2810
2811                         prepare_to_wait(&unregister_wait, &wait,
2812                                         TASK_UNINTERRUPTIBLE);
2813
2814                         mutex_unlock(&bch_register_lock);
2815                         schedule_timeout(timeout);
2816                 }
2817
2818                 finish_wait(&unregister_wait, &wait);
2819
2820                 if (stopped)
2821                         pr_info("All devices stopped\n");
2822                 else
2823                         pr_notice("Timeout waiting for devices to be closed\n");
2824 out:
2825                 mutex_unlock(&bch_register_lock);
2826         }
2827
2828         return NOTIFY_DONE;
2829 }
2830
2831 static struct notifier_block reboot = {
2832         .notifier_call  = bcache_reboot,
2833         .priority       = INT_MAX, /* before any real devices */
2834 };
2835
2836 static void bcache_exit(void)
2837 {
2838         bch_debug_exit();
2839         bch_request_exit();
2840         if (bcache_kobj)
2841                 kobject_put(bcache_kobj);
2842         if (bcache_wq)
2843                 destroy_workqueue(bcache_wq);
2844         if (bch_journal_wq)
2845                 destroy_workqueue(bch_journal_wq);
2846         if (bch_flush_wq)
2847                 destroy_workqueue(bch_flush_wq);
2848         bch_btree_exit();
2849
2850         if (bcache_major)
2851                 unregister_blkdev(bcache_major, "bcache");
2852         unregister_reboot_notifier(&reboot);
2853         mutex_destroy(&bch_register_lock);
2854 }
2855
2856 /* Check and fixup module parameters */
2857 static void check_module_parameters(void)
2858 {
2859         if (bch_cutoff_writeback_sync == 0)
2860                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2861         else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2862                 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2863                         bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2864                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2865         }
2866
2867         if (bch_cutoff_writeback == 0)
2868                 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2869         else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2870                 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2871                         bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2872                 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2873         }
2874
2875         if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2876                 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2877                         bch_cutoff_writeback, bch_cutoff_writeback_sync);
2878                 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2879         }
2880 }
2881
2882 static int __init bcache_init(void)
2883 {
2884         static const struct attribute *files[] = {
2885                 &ksysfs_register.attr,
2886                 &ksysfs_register_quiet.attr,
2887                 &ksysfs_pendings_cleanup.attr,
2888                 NULL
2889         };
2890
2891         check_module_parameters();
2892
2893         mutex_init(&bch_register_lock);
2894         init_waitqueue_head(&unregister_wait);
2895         register_reboot_notifier(&reboot);
2896
2897         bcache_major = register_blkdev(0, "bcache");
2898         if (bcache_major < 0) {
2899                 unregister_reboot_notifier(&reboot);
2900                 mutex_destroy(&bch_register_lock);
2901                 return bcache_major;
2902         }
2903
2904         if (bch_btree_init())
2905                 goto err;
2906
2907         bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2908         if (!bcache_wq)
2909                 goto err;
2910
2911         /*
2912          * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2913          *
2914          * 1. It used `system_wq` before which also does no memory reclaim.
2915          * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2916          *    reduced throughput can be observed.
2917          *
2918          * We still want to user our own queue to not congest the `system_wq`.
2919          */
2920         bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2921         if (!bch_flush_wq)
2922                 goto err;
2923
2924         bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2925         if (!bch_journal_wq)
2926                 goto err;
2927
2928         bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2929         if (!bcache_kobj)
2930                 goto err;
2931
2932         if (bch_request_init() ||
2933             sysfs_create_files(bcache_kobj, files))
2934                 goto err;
2935
2936         bch_debug_init();
2937         closure_debug_init();
2938
2939         bcache_is_reboot = false;
2940
2941         return 0;
2942 err:
2943         bcache_exit();
2944         return -ENOMEM;
2945 }
2946
2947 /*
2948  * Module hooks
2949  */
2950 module_exit(bcache_exit);
2951 module_init(bcache_init);
2952
2953 module_param(bch_cutoff_writeback, uint, 0);
2954 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2955
2956 module_param(bch_cutoff_writeback_sync, uint, 0);
2957 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2958
2959 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2960 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2961 MODULE_LICENSE("GPL");