GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / md / bcache / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54
55
56 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS           128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
61
62 /* Superblock */
63
64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66         unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69                 if (bch_has_feature_large_bucket(sb)) {
70                         unsigned int max, order;
71
72                         max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73                         order = le16_to_cpu(s->bucket_size);
74                         /*
75                          * bcache tool will make sure the overflow won't
76                          * happen, an error message here is enough.
77                          */
78                         if (order > max)
79                                 pr_err("Bucket size (1 << %u) overflows\n",
80                                         order);
81                         bucket_size = 1 << order;
82                 } else if (bch_has_feature_obso_large_bucket(sb)) {
83                         bucket_size +=
84                                 le16_to_cpu(s->obso_bucket_size_hi) << 16;
85                 }
86         }
87
88         return bucket_size;
89 }
90
91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92                                      struct cache_sb_disk *s)
93 {
94         const char *err;
95         unsigned int i;
96
97         sb->first_bucket= le16_to_cpu(s->first_bucket);
98         sb->nbuckets    = le64_to_cpu(s->nbuckets);
99         sb->bucket_size = get_bucket_size(sb, s);
100
101         sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
102         sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103
104         err = "Too many journal buckets";
105         if (sb->keys > SB_JOURNAL_BUCKETS)
106                 goto err;
107
108         err = "Too many buckets";
109         if (sb->nbuckets > LONG_MAX)
110                 goto err;
111
112         err = "Not enough buckets";
113         if (sb->nbuckets < 1 << 7)
114                 goto err;
115
116         err = "Bad block size (not power of 2)";
117         if (!is_power_of_2(sb->block_size))
118                 goto err;
119
120         err = "Bad block size (larger than page size)";
121         if (sb->block_size > PAGE_SECTORS)
122                 goto err;
123
124         err = "Bad bucket size (not power of 2)";
125         if (!is_power_of_2(sb->bucket_size))
126                 goto err;
127
128         err = "Bad bucket size (smaller than page size)";
129         if (sb->bucket_size < PAGE_SECTORS)
130                 goto err;
131
132         err = "Invalid superblock: device too small";
133         if (get_capacity(bdev->bd_disk) <
134             sb->bucket_size * sb->nbuckets)
135                 goto err;
136
137         err = "Bad UUID";
138         if (bch_is_zero(sb->set_uuid, 16))
139                 goto err;
140
141         err = "Bad cache device number in set";
142         if (!sb->nr_in_set ||
143             sb->nr_in_set <= sb->nr_this_dev ||
144             sb->nr_in_set > MAX_CACHES_PER_SET)
145                 goto err;
146
147         err = "Journal buckets not sequential";
148         for (i = 0; i < sb->keys; i++)
149                 if (sb->d[i] != sb->first_bucket + i)
150                         goto err;
151
152         err = "Too many journal buckets";
153         if (sb->first_bucket + sb->keys > sb->nbuckets)
154                 goto err;
155
156         err = "Invalid superblock: first bucket comes before end of super";
157         if (sb->first_bucket * sb->bucket_size < 16)
158                 goto err;
159
160         err = NULL;
161 err:
162         return err;
163 }
164
165
166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167                               struct cache_sb_disk **res)
168 {
169         const char *err;
170         struct cache_sb_disk *s;
171         struct page *page;
172         unsigned int i;
173
174         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
175                                    SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176         if (IS_ERR(page))
177                 return "IO error";
178         s = page_address(page) + offset_in_page(SB_OFFSET);
179
180         sb->offset              = le64_to_cpu(s->offset);
181         sb->version             = le64_to_cpu(s->version);
182
183         memcpy(sb->magic,       s->magic, 16);
184         memcpy(sb->uuid,        s->uuid, 16);
185         memcpy(sb->set_uuid,    s->set_uuid, 16);
186         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
187
188         sb->flags               = le64_to_cpu(s->flags);
189         sb->seq                 = le64_to_cpu(s->seq);
190         sb->last_mount          = le32_to_cpu(s->last_mount);
191         sb->keys                = le16_to_cpu(s->keys);
192
193         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194                 sb->d[i] = le64_to_cpu(s->d[i]);
195
196         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197                  sb->version, sb->flags, sb->seq, sb->keys);
198
199         err = "Not a bcache superblock (bad offset)";
200         if (sb->offset != SB_SECTOR)
201                 goto err;
202
203         err = "Not a bcache superblock (bad magic)";
204         if (memcmp(sb->magic, bcache_magic, 16))
205                 goto err;
206
207         err = "Bad checksum";
208         if (s->csum != csum_set(s))
209                 goto err;
210
211         err = "Bad UUID";
212         if (bch_is_zero(sb->uuid, 16))
213                 goto err;
214
215         sb->block_size  = le16_to_cpu(s->block_size);
216
217         err = "Superblock block size smaller than device block size";
218         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219                 goto err;
220
221         switch (sb->version) {
222         case BCACHE_SB_VERSION_BDEV:
223                 sb->data_offset = BDEV_DATA_START_DEFAULT;
224                 break;
225         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226         case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227                 sb->data_offset = le64_to_cpu(s->data_offset);
228
229                 err = "Bad data offset";
230                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231                         goto err;
232
233                 break;
234         case BCACHE_SB_VERSION_CDEV:
235         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236                 err = read_super_common(sb, bdev, s);
237                 if (err)
238                         goto err;
239                 break;
240         case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241                 /*
242                  * Feature bits are needed in read_super_common(),
243                  * convert them firstly.
244                  */
245                 sb->feature_compat = le64_to_cpu(s->feature_compat);
246                 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247                 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249                 /* Check incompatible features */
250                 err = "Unsupported compatible feature found";
251                 if (bch_has_unknown_compat_features(sb))
252                         goto err;
253
254                 err = "Unsupported read-only compatible feature found";
255                 if (bch_has_unknown_ro_compat_features(sb))
256                         goto err;
257
258                 err = "Unsupported incompatible feature found";
259                 if (bch_has_unknown_incompat_features(sb))
260                         goto err;
261
262                 err = read_super_common(sb, bdev, s);
263                 if (err)
264                         goto err;
265                 break;
266         default:
267                 err = "Unsupported superblock version";
268                 goto err;
269         }
270
271         sb->last_mount = (u32)ktime_get_real_seconds();
272         *res = s;
273         return NULL;
274 err:
275         put_page(page);
276         return err;
277 }
278
279 static void write_bdev_super_endio(struct bio *bio)
280 {
281         struct cached_dev *dc = bio->bi_private;
282
283         if (bio->bi_status)
284                 bch_count_backing_io_errors(dc, bio);
285
286         closure_put(&dc->sb_write);
287 }
288
289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290                 struct bio *bio)
291 {
292         unsigned int i;
293
294         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295         bio->bi_iter.bi_sector  = SB_SECTOR;
296         __bio_add_page(bio, virt_to_page(out), SB_SIZE,
297                         offset_in_page(out));
298
299         out->offset             = cpu_to_le64(sb->offset);
300
301         memcpy(out->uuid,       sb->uuid, 16);
302         memcpy(out->set_uuid,   sb->set_uuid, 16);
303         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
304
305         out->flags              = cpu_to_le64(sb->flags);
306         out->seq                = cpu_to_le64(sb->seq);
307
308         out->last_mount         = cpu_to_le32(sb->last_mount);
309         out->first_bucket       = cpu_to_le16(sb->first_bucket);
310         out->keys               = cpu_to_le16(sb->keys);
311
312         for (i = 0; i < sb->keys; i++)
313                 out->d[i] = cpu_to_le64(sb->d[i]);
314
315         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316                 out->feature_compat    = cpu_to_le64(sb->feature_compat);
317                 out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
318                 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319         }
320
321         out->version            = cpu_to_le64(sb->version);
322         out->csum = csum_set(out);
323
324         pr_debug("ver %llu, flags %llu, seq %llu\n",
325                  sb->version, sb->flags, sb->seq);
326
327         submit_bio(bio);
328 }
329
330 static void bch_write_bdev_super_unlock(struct closure *cl)
331 {
332         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333
334         up(&dc->sb_write_mutex);
335 }
336
337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339         struct closure *cl = &dc->sb_write;
340         struct bio *bio = &dc->sb_bio;
341
342         down(&dc->sb_write_mutex);
343         closure_init(cl, parent);
344
345         bio_init(bio, dc->sb_bv, 1);
346         bio_set_dev(bio, dc->bdev);
347         bio->bi_end_io  = write_bdev_super_endio;
348         bio->bi_private = dc;
349
350         closure_get(cl);
351         /* I/O request sent to backing device */
352         __write_super(&dc->sb, dc->sb_disk, bio);
353
354         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
355 }
356
357 static void write_super_endio(struct bio *bio)
358 {
359         struct cache *ca = bio->bi_private;
360
361         /* is_read = 0 */
362         bch_count_io_errors(ca, bio->bi_status, 0,
363                             "writing superblock");
364         closure_put(&ca->set->sb_write);
365 }
366
367 static void bcache_write_super_unlock(struct closure *cl)
368 {
369         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
370
371         up(&c->sb_write_mutex);
372 }
373
374 void bcache_write_super(struct cache_set *c)
375 {
376         struct closure *cl = &c->sb_write;
377         struct cache *ca = c->cache;
378         struct bio *bio = &ca->sb_bio;
379         unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
380
381         down(&c->sb_write_mutex);
382         closure_init(cl, &c->cl);
383
384         ca->sb.seq++;
385
386         if (ca->sb.version < version)
387                 ca->sb.version = version;
388
389         bio_init(bio, ca->sb_bv, 1);
390         bio_set_dev(bio, ca->bdev);
391         bio->bi_end_io  = write_super_endio;
392         bio->bi_private = ca;
393
394         closure_get(cl);
395         __write_super(&ca->sb, ca->sb_disk, bio);
396
397         closure_return_with_destructor(cl, bcache_write_super_unlock);
398 }
399
400 /* UUID io */
401
402 static void uuid_endio(struct bio *bio)
403 {
404         struct closure *cl = bio->bi_private;
405         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
406
407         cache_set_err_on(bio->bi_status, c, "accessing uuids");
408         bch_bbio_free(bio, c);
409         closure_put(cl);
410 }
411
412 static void uuid_io_unlock(struct closure *cl)
413 {
414         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
415
416         up(&c->uuid_write_mutex);
417 }
418
419 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
420                     struct bkey *k, struct closure *parent)
421 {
422         struct closure *cl = &c->uuid_write;
423         struct uuid_entry *u;
424         unsigned int i;
425         char buf[80];
426
427         BUG_ON(!parent);
428         down(&c->uuid_write_mutex);
429         closure_init(cl, parent);
430
431         for (i = 0; i < KEY_PTRS(k); i++) {
432                 struct bio *bio = bch_bbio_alloc(c);
433
434                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
435                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
436
437                 bio->bi_end_io  = uuid_endio;
438                 bio->bi_private = cl;
439                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
440                 bch_bio_map(bio, c->uuids);
441
442                 bch_submit_bbio(bio, c, k, i);
443
444                 if (op != REQ_OP_WRITE)
445                         break;
446         }
447
448         bch_extent_to_text(buf, sizeof(buf), k);
449         pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
450
451         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
452                 if (!bch_is_zero(u->uuid, 16))
453                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
454                                  u - c->uuids, u->uuid, u->label,
455                                  u->first_reg, u->last_reg, u->invalidated);
456
457         closure_return_with_destructor(cl, uuid_io_unlock);
458 }
459
460 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
461 {
462         struct bkey *k = &j->uuid_bucket;
463
464         if (__bch_btree_ptr_invalid(c, k))
465                 return "bad uuid pointer";
466
467         bkey_copy(&c->uuid_bucket, k);
468         uuid_io(c, REQ_OP_READ, 0, k, cl);
469
470         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
471                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
472                 struct uuid_entry       *u1 = (void *) c->uuids;
473                 int i;
474
475                 closure_sync(cl);
476
477                 /*
478                  * Since the new uuid entry is bigger than the old, we have to
479                  * convert starting at the highest memory address and work down
480                  * in order to do it in place
481                  */
482
483                 for (i = c->nr_uuids - 1;
484                      i >= 0;
485                      --i) {
486                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
487                         memcpy(u1[i].label,     u0[i].label, 32);
488
489                         u1[i].first_reg         = u0[i].first_reg;
490                         u1[i].last_reg          = u0[i].last_reg;
491                         u1[i].invalidated       = u0[i].invalidated;
492
493                         u1[i].flags     = 0;
494                         u1[i].sectors   = 0;
495                 }
496         }
497
498         return NULL;
499 }
500
501 static int __uuid_write(struct cache_set *c)
502 {
503         BKEY_PADDED(key) k;
504         struct closure cl;
505         struct cache *ca = c->cache;
506         unsigned int size;
507
508         closure_init_stack(&cl);
509         lockdep_assert_held(&bch_register_lock);
510
511         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
512                 return 1;
513
514         size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
515         SET_KEY_SIZE(&k.key, size);
516         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
517         closure_sync(&cl);
518
519         /* Only one bucket used for uuid write */
520         atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
521
522         bkey_copy(&c->uuid_bucket, &k.key);
523         bkey_put(c, &k.key);
524         return 0;
525 }
526
527 int bch_uuid_write(struct cache_set *c)
528 {
529         int ret = __uuid_write(c);
530
531         if (!ret)
532                 bch_journal_meta(c, NULL);
533
534         return ret;
535 }
536
537 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
538 {
539         struct uuid_entry *u;
540
541         for (u = c->uuids;
542              u < c->uuids + c->nr_uuids; u++)
543                 if (!memcmp(u->uuid, uuid, 16))
544                         return u;
545
546         return NULL;
547 }
548
549 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
550 {
551         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
552
553         return uuid_find(c, zero_uuid);
554 }
555
556 /*
557  * Bucket priorities/gens:
558  *
559  * For each bucket, we store on disk its
560  *   8 bit gen
561  *  16 bit priority
562  *
563  * See alloc.c for an explanation of the gen. The priority is used to implement
564  * lru (and in the future other) cache replacement policies; for most purposes
565  * it's just an opaque integer.
566  *
567  * The gens and the priorities don't have a whole lot to do with each other, and
568  * it's actually the gens that must be written out at specific times - it's no
569  * big deal if the priorities don't get written, if we lose them we just reuse
570  * buckets in suboptimal order.
571  *
572  * On disk they're stored in a packed array, and in as many buckets are required
573  * to fit them all. The buckets we use to store them form a list; the journal
574  * header points to the first bucket, the first bucket points to the second
575  * bucket, et cetera.
576  *
577  * This code is used by the allocation code; periodically (whenever it runs out
578  * of buckets to allocate from) the allocation code will invalidate some
579  * buckets, but it can't use those buckets until their new gens are safely on
580  * disk.
581  */
582
583 static void prio_endio(struct bio *bio)
584 {
585         struct cache *ca = bio->bi_private;
586
587         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
588         bch_bbio_free(bio, ca->set);
589         closure_put(&ca->prio);
590 }
591
592 static void prio_io(struct cache *ca, uint64_t bucket, int op,
593                     unsigned long op_flags)
594 {
595         struct closure *cl = &ca->prio;
596         struct bio *bio = bch_bbio_alloc(ca->set);
597
598         closure_init_stack(cl);
599
600         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
601         bio_set_dev(bio, ca->bdev);
602         bio->bi_iter.bi_size    = meta_bucket_bytes(&ca->sb);
603
604         bio->bi_end_io  = prio_endio;
605         bio->bi_private = ca;
606         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
607         bch_bio_map(bio, ca->disk_buckets);
608
609         closure_bio_submit(ca->set, bio, &ca->prio);
610         closure_sync(cl);
611 }
612
613 int bch_prio_write(struct cache *ca, bool wait)
614 {
615         int i;
616         struct bucket *b;
617         struct closure cl;
618
619         pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
620                  fifo_used(&ca->free[RESERVE_PRIO]),
621                  fifo_used(&ca->free[RESERVE_NONE]),
622                  fifo_used(&ca->free_inc));
623
624         /*
625          * Pre-check if there are enough free buckets. In the non-blocking
626          * scenario it's better to fail early rather than starting to allocate
627          * buckets and do a cleanup later in case of failure.
628          */
629         if (!wait) {
630                 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
631                                fifo_used(&ca->free[RESERVE_NONE]);
632                 if (prio_buckets(ca) > avail)
633                         return -ENOMEM;
634         }
635
636         closure_init_stack(&cl);
637
638         lockdep_assert_held(&ca->set->bucket_lock);
639
640         ca->disk_buckets->seq++;
641
642         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
643                         &ca->meta_sectors_written);
644
645         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
646                 long bucket;
647                 struct prio_set *p = ca->disk_buckets;
648                 struct bucket_disk *d = p->data;
649                 struct bucket_disk *end = d + prios_per_bucket(ca);
650
651                 for (b = ca->buckets + i * prios_per_bucket(ca);
652                      b < ca->buckets + ca->sb.nbuckets && d < end;
653                      b++, d++) {
654                         d->prio = cpu_to_le16(b->prio);
655                         d->gen = b->gen;
656                 }
657
658                 p->next_bucket  = ca->prio_buckets[i + 1];
659                 p->magic        = pset_magic(&ca->sb);
660                 p->csum         = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
661
662                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
663                 BUG_ON(bucket == -1);
664
665                 mutex_unlock(&ca->set->bucket_lock);
666                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
667                 mutex_lock(&ca->set->bucket_lock);
668
669                 ca->prio_buckets[i] = bucket;
670                 atomic_dec_bug(&ca->buckets[bucket].pin);
671         }
672
673         mutex_unlock(&ca->set->bucket_lock);
674
675         bch_journal_meta(ca->set, &cl);
676         closure_sync(&cl);
677
678         mutex_lock(&ca->set->bucket_lock);
679
680         /*
681          * Don't want the old priorities to get garbage collected until after we
682          * finish writing the new ones, and they're journalled
683          */
684         for (i = 0; i < prio_buckets(ca); i++) {
685                 if (ca->prio_last_buckets[i])
686                         __bch_bucket_free(ca,
687                                 &ca->buckets[ca->prio_last_buckets[i]]);
688
689                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
690         }
691         return 0;
692 }
693
694 static int prio_read(struct cache *ca, uint64_t bucket)
695 {
696         struct prio_set *p = ca->disk_buckets;
697         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
698         struct bucket *b;
699         unsigned int bucket_nr = 0;
700         int ret = -EIO;
701
702         for (b = ca->buckets;
703              b < ca->buckets + ca->sb.nbuckets;
704              b++, d++) {
705                 if (d == end) {
706                         ca->prio_buckets[bucket_nr] = bucket;
707                         ca->prio_last_buckets[bucket_nr] = bucket;
708                         bucket_nr++;
709
710                         prio_io(ca, bucket, REQ_OP_READ, 0);
711
712                         if (p->csum !=
713                             bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
714                                 pr_warn("bad csum reading priorities\n");
715                                 goto out;
716                         }
717
718                         if (p->magic != pset_magic(&ca->sb)) {
719                                 pr_warn("bad magic reading priorities\n");
720                                 goto out;
721                         }
722
723                         bucket = p->next_bucket;
724                         d = p->data;
725                 }
726
727                 b->prio = le16_to_cpu(d->prio);
728                 b->gen = b->last_gc = d->gen;
729         }
730
731         ret = 0;
732 out:
733         return ret;
734 }
735
736 /* Bcache device */
737
738 static int open_dev(struct block_device *b, fmode_t mode)
739 {
740         struct bcache_device *d = b->bd_disk->private_data;
741
742         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
743                 return -ENXIO;
744
745         closure_get(&d->cl);
746         return 0;
747 }
748
749 static void release_dev(struct gendisk *b, fmode_t mode)
750 {
751         struct bcache_device *d = b->private_data;
752
753         closure_put(&d->cl);
754 }
755
756 static int ioctl_dev(struct block_device *b, fmode_t mode,
757                      unsigned int cmd, unsigned long arg)
758 {
759         struct bcache_device *d = b->bd_disk->private_data;
760
761         return d->ioctl(d, mode, cmd, arg);
762 }
763
764 static const struct block_device_operations bcache_cached_ops = {
765         .submit_bio     = cached_dev_submit_bio,
766         .open           = open_dev,
767         .release        = release_dev,
768         .ioctl          = ioctl_dev,
769         .owner          = THIS_MODULE,
770 };
771
772 static const struct block_device_operations bcache_flash_ops = {
773         .submit_bio     = flash_dev_submit_bio,
774         .open           = open_dev,
775         .release        = release_dev,
776         .ioctl          = ioctl_dev,
777         .owner          = THIS_MODULE,
778 };
779
780 void bcache_device_stop(struct bcache_device *d)
781 {
782         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
783                 /*
784                  * closure_fn set to
785                  * - cached device: cached_dev_flush()
786                  * - flash dev: flash_dev_flush()
787                  */
788                 closure_queue(&d->cl);
789 }
790
791 static void bcache_device_unlink(struct bcache_device *d)
792 {
793         lockdep_assert_held(&bch_register_lock);
794
795         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
796                 struct cache *ca = d->c->cache;
797
798                 sysfs_remove_link(&d->c->kobj, d->name);
799                 sysfs_remove_link(&d->kobj, "cache");
800
801                 bd_unlink_disk_holder(ca->bdev, d->disk);
802         }
803 }
804
805 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
806                                const char *name)
807 {
808         struct cache *ca = c->cache;
809         int ret;
810
811         bd_link_disk_holder(ca->bdev, d->disk);
812
813         snprintf(d->name, BCACHEDEVNAME_SIZE,
814                  "%s%u", name, d->id);
815
816         ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
817         if (ret < 0)
818                 pr_err("Couldn't create device -> cache set symlink\n");
819
820         ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
821         if (ret < 0)
822                 pr_err("Couldn't create cache set -> device symlink\n");
823
824         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
825 }
826
827 static void bcache_device_detach(struct bcache_device *d)
828 {
829         lockdep_assert_held(&bch_register_lock);
830
831         atomic_dec(&d->c->attached_dev_nr);
832
833         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
834                 struct uuid_entry *u = d->c->uuids + d->id;
835
836                 SET_UUID_FLASH_ONLY(u, 0);
837                 memcpy(u->uuid, invalid_uuid, 16);
838                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
839                 bch_uuid_write(d->c);
840         }
841
842         bcache_device_unlink(d);
843
844         d->c->devices[d->id] = NULL;
845         closure_put(&d->c->caching);
846         d->c = NULL;
847 }
848
849 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
850                                  unsigned int id)
851 {
852         d->id = id;
853         d->c = c;
854         c->devices[id] = d;
855
856         if (id >= c->devices_max_used)
857                 c->devices_max_used = id + 1;
858
859         closure_get(&c->caching);
860 }
861
862 static inline int first_minor_to_idx(int first_minor)
863 {
864         return (first_minor/BCACHE_MINORS);
865 }
866
867 static inline int idx_to_first_minor(int idx)
868 {
869         return (idx * BCACHE_MINORS);
870 }
871
872 static void bcache_device_free(struct bcache_device *d)
873 {
874         struct gendisk *disk = d->disk;
875
876         lockdep_assert_held(&bch_register_lock);
877
878         if (disk)
879                 pr_info("%s stopped\n", disk->disk_name);
880         else
881                 pr_err("bcache device (NULL gendisk) stopped\n");
882
883         if (d->c)
884                 bcache_device_detach(d);
885
886         if (disk) {
887                 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
888
889                 if (disk_added)
890                         del_gendisk(disk);
891
892                 if (disk->queue)
893                         blk_cleanup_queue(disk->queue);
894
895                 ida_simple_remove(&bcache_device_idx,
896                                   first_minor_to_idx(disk->first_minor));
897                 if (disk_added)
898                         put_disk(disk);
899         }
900
901         bioset_exit(&d->bio_split);
902         kvfree(d->full_dirty_stripes);
903         kvfree(d->stripe_sectors_dirty);
904
905         closure_debug_destroy(&d->cl);
906 }
907
908 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
909                 sector_t sectors, struct block_device *cached_bdev,
910                 const struct block_device_operations *ops)
911 {
912         struct request_queue *q;
913         const size_t max_stripes = min_t(size_t, INT_MAX,
914                                          SIZE_MAX / sizeof(atomic_t));
915         uint64_t n;
916         int idx;
917
918         if (!d->stripe_size)
919                 d->stripe_size = 1 << 31;
920
921         n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
922         if (!n || n > max_stripes) {
923                 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
924                         n);
925                 return -ENOMEM;
926         }
927         d->nr_stripes = n;
928
929         n = d->nr_stripes * sizeof(atomic_t);
930         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
931         if (!d->stripe_sectors_dirty)
932                 return -ENOMEM;
933
934         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
935         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
936         if (!d->full_dirty_stripes)
937                 goto out_free_stripe_sectors_dirty;
938
939         idx = ida_simple_get(&bcache_device_idx, 0,
940                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
941         if (idx < 0)
942                 goto out_free_full_dirty_stripes;
943
944         if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
945                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
946                 goto out_ida_remove;
947
948         d->disk = alloc_disk(BCACHE_MINORS);
949         if (!d->disk)
950                 goto out_bioset_exit;
951
952         set_capacity(d->disk, sectors);
953         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
954
955         d->disk->major          = bcache_major;
956         d->disk->first_minor    = idx_to_first_minor(idx);
957         d->disk->fops           = ops;
958         d->disk->private_data   = d;
959
960         q = blk_alloc_queue(NUMA_NO_NODE);
961         if (!q)
962                 return -ENOMEM;
963
964         d->disk->queue                  = q;
965         q->limits.max_hw_sectors        = UINT_MAX;
966         q->limits.max_sectors           = UINT_MAX;
967         q->limits.max_segment_size      = UINT_MAX;
968         q->limits.max_segments          = BIO_MAX_PAGES;
969         blk_queue_max_discard_sectors(q, UINT_MAX);
970         q->limits.discard_granularity   = 512;
971         q->limits.io_min                = block_size;
972         q->limits.logical_block_size    = block_size;
973         q->limits.physical_block_size   = block_size;
974
975         if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
976                 /*
977                  * This should only happen with BCACHE_SB_VERSION_BDEV.
978                  * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
979                  */
980                 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
981                         d->disk->disk_name, q->limits.logical_block_size,
982                         PAGE_SIZE, bdev_logical_block_size(cached_bdev));
983
984                 /* This also adjusts physical block size/min io size if needed */
985                 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
986         }
987
988         blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
989         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
990         blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
991
992         blk_queue_write_cache(q, true, true);
993
994         return 0;
995
996 out_bioset_exit:
997         bioset_exit(&d->bio_split);
998 out_ida_remove:
999         ida_simple_remove(&bcache_device_idx, idx);
1000 out_free_full_dirty_stripes:
1001         kvfree(d->full_dirty_stripes);
1002 out_free_stripe_sectors_dirty:
1003         kvfree(d->stripe_sectors_dirty);
1004         return -ENOMEM;
1005
1006 }
1007
1008 /* Cached device */
1009
1010 static void calc_cached_dev_sectors(struct cache_set *c)
1011 {
1012         uint64_t sectors = 0;
1013         struct cached_dev *dc;
1014
1015         list_for_each_entry(dc, &c->cached_devs, list)
1016                 sectors += bdev_sectors(dc->bdev);
1017
1018         c->cached_dev_sectors = sectors;
1019 }
1020
1021 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1022 static int cached_dev_status_update(void *arg)
1023 {
1024         struct cached_dev *dc = arg;
1025         struct request_queue *q;
1026
1027         /*
1028          * If this delayed worker is stopping outside, directly quit here.
1029          * dc->io_disable might be set via sysfs interface, so check it
1030          * here too.
1031          */
1032         while (!kthread_should_stop() && !dc->io_disable) {
1033                 q = bdev_get_queue(dc->bdev);
1034                 if (blk_queue_dying(q))
1035                         dc->offline_seconds++;
1036                 else
1037                         dc->offline_seconds = 0;
1038
1039                 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1040                         pr_err("%s: device offline for %d seconds\n",
1041                                dc->backing_dev_name,
1042                                BACKING_DEV_OFFLINE_TIMEOUT);
1043                         pr_err("%s: disable I/O request due to backing device offline\n",
1044                                dc->disk.name);
1045                         dc->io_disable = true;
1046                         /* let others know earlier that io_disable is true */
1047                         smp_mb();
1048                         bcache_device_stop(&dc->disk);
1049                         break;
1050                 }
1051                 schedule_timeout_interruptible(HZ);
1052         }
1053
1054         wait_for_kthread_stop();
1055         return 0;
1056 }
1057
1058
1059 int bch_cached_dev_run(struct cached_dev *dc)
1060 {
1061         struct bcache_device *d = &dc->disk;
1062         char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1063         char *env[] = {
1064                 "DRIVER=bcache",
1065                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1066                 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1067                 NULL,
1068         };
1069
1070         if (dc->io_disable) {
1071                 pr_err("I/O disabled on cached dev %s\n",
1072                        dc->backing_dev_name);
1073                 kfree(env[1]);
1074                 kfree(env[2]);
1075                 kfree(buf);
1076                 return -EIO;
1077         }
1078
1079         if (atomic_xchg(&dc->running, 1)) {
1080                 kfree(env[1]);
1081                 kfree(env[2]);
1082                 kfree(buf);
1083                 pr_info("cached dev %s is running already\n",
1084                        dc->backing_dev_name);
1085                 return -EBUSY;
1086         }
1087
1088         if (!d->c &&
1089             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1090                 struct closure cl;
1091
1092                 closure_init_stack(&cl);
1093
1094                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1095                 bch_write_bdev_super(dc, &cl);
1096                 closure_sync(&cl);
1097         }
1098
1099         add_disk(d->disk);
1100         bd_link_disk_holder(dc->bdev, dc->disk.disk);
1101         /*
1102          * won't show up in the uevent file, use udevadm monitor -e instead
1103          * only class / kset properties are persistent
1104          */
1105         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1106         kfree(env[1]);
1107         kfree(env[2]);
1108         kfree(buf);
1109
1110         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1111             sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1112                               &d->kobj, "bcache")) {
1113                 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1114                 return -ENOMEM;
1115         }
1116
1117         dc->status_update_thread = kthread_run(cached_dev_status_update,
1118                                                dc, "bcache_status_update");
1119         if (IS_ERR(dc->status_update_thread)) {
1120                 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1121         }
1122
1123         return 0;
1124 }
1125
1126 /*
1127  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1128  * work dc->writeback_rate_update is running. Wait until the routine
1129  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1130  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1131  * seconds, give up waiting here and continue to cancel it too.
1132  */
1133 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1134 {
1135         int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1136
1137         do {
1138                 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1139                               &dc->disk.flags))
1140                         break;
1141                 time_out--;
1142                 schedule_timeout_interruptible(1);
1143         } while (time_out > 0);
1144
1145         if (time_out == 0)
1146                 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1147
1148         cancel_delayed_work_sync(&dc->writeback_rate_update);
1149 }
1150
1151 static void cached_dev_detach_finish(struct work_struct *w)
1152 {
1153         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1154         struct closure cl;
1155
1156         closure_init_stack(&cl);
1157
1158         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1159         BUG_ON(refcount_read(&dc->count));
1160
1161
1162         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1163                 cancel_writeback_rate_update_dwork(dc);
1164
1165         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1166                 kthread_stop(dc->writeback_thread);
1167                 dc->writeback_thread = NULL;
1168         }
1169
1170         memset(&dc->sb.set_uuid, 0, 16);
1171         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1172
1173         bch_write_bdev_super(dc, &cl);
1174         closure_sync(&cl);
1175
1176         mutex_lock(&bch_register_lock);
1177
1178         calc_cached_dev_sectors(dc->disk.c);
1179         bcache_device_detach(&dc->disk);
1180         list_move(&dc->list, &uncached_devices);
1181
1182         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1183         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1184
1185         mutex_unlock(&bch_register_lock);
1186
1187         pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1188
1189         /* Drop ref we took in cached_dev_detach() */
1190         closure_put(&dc->disk.cl);
1191 }
1192
1193 void bch_cached_dev_detach(struct cached_dev *dc)
1194 {
1195         lockdep_assert_held(&bch_register_lock);
1196
1197         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1198                 return;
1199
1200         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1201                 return;
1202
1203         /*
1204          * Block the device from being closed and freed until we're finished
1205          * detaching
1206          */
1207         closure_get(&dc->disk.cl);
1208
1209         bch_writeback_queue(dc);
1210
1211         cached_dev_put(dc);
1212 }
1213
1214 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1215                           uint8_t *set_uuid)
1216 {
1217         uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1218         struct uuid_entry *u;
1219         struct cached_dev *exist_dc, *t;
1220         int ret = 0;
1221
1222         if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1223             (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1224                 return -ENOENT;
1225
1226         if (dc->disk.c) {
1227                 pr_err("Can't attach %s: already attached\n",
1228                        dc->backing_dev_name);
1229                 return -EINVAL;
1230         }
1231
1232         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1233                 pr_err("Can't attach %s: shutting down\n",
1234                        dc->backing_dev_name);
1235                 return -EINVAL;
1236         }
1237
1238         if (dc->sb.block_size < c->cache->sb.block_size) {
1239                 /* Will die */
1240                 pr_err("Couldn't attach %s: block size less than set's block size\n",
1241                        dc->backing_dev_name);
1242                 return -EINVAL;
1243         }
1244
1245         /* Check whether already attached */
1246         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1247                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1248                         pr_err("Tried to attach %s but duplicate UUID already attached\n",
1249                                 dc->backing_dev_name);
1250
1251                         return -EINVAL;
1252                 }
1253         }
1254
1255         u = uuid_find(c, dc->sb.uuid);
1256
1257         if (u &&
1258             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1259              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1260                 memcpy(u->uuid, invalid_uuid, 16);
1261                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1262                 u = NULL;
1263         }
1264
1265         if (!u) {
1266                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1267                         pr_err("Couldn't find uuid for %s in set\n",
1268                                dc->backing_dev_name);
1269                         return -ENOENT;
1270                 }
1271
1272                 u = uuid_find_empty(c);
1273                 if (!u) {
1274                         pr_err("Not caching %s, no room for UUID\n",
1275                                dc->backing_dev_name);
1276                         return -EINVAL;
1277                 }
1278         }
1279
1280         /*
1281          * Deadlocks since we're called via sysfs...
1282          * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1283          */
1284
1285         if (bch_is_zero(u->uuid, 16)) {
1286                 struct closure cl;
1287
1288                 closure_init_stack(&cl);
1289
1290                 memcpy(u->uuid, dc->sb.uuid, 16);
1291                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1292                 u->first_reg = u->last_reg = rtime;
1293                 bch_uuid_write(c);
1294
1295                 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1296                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1297
1298                 bch_write_bdev_super(dc, &cl);
1299                 closure_sync(&cl);
1300         } else {
1301                 u->last_reg = rtime;
1302                 bch_uuid_write(c);
1303         }
1304
1305         bcache_device_attach(&dc->disk, c, u - c->uuids);
1306         list_move(&dc->list, &c->cached_devs);
1307         calc_cached_dev_sectors(c);
1308
1309         /*
1310          * dc->c must be set before dc->count != 0 - paired with the mb in
1311          * cached_dev_get()
1312          */
1313         smp_wmb();
1314         refcount_set(&dc->count, 1);
1315
1316         /* Block writeback thread, but spawn it */
1317         down_write(&dc->writeback_lock);
1318         if (bch_cached_dev_writeback_start(dc)) {
1319                 up_write(&dc->writeback_lock);
1320                 pr_err("Couldn't start writeback facilities for %s\n",
1321                        dc->disk.disk->disk_name);
1322                 return -ENOMEM;
1323         }
1324
1325         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1326                 atomic_set(&dc->has_dirty, 1);
1327                 bch_writeback_queue(dc);
1328         }
1329
1330         bch_sectors_dirty_init(&dc->disk);
1331
1332         ret = bch_cached_dev_run(dc);
1333         if (ret && (ret != -EBUSY)) {
1334                 up_write(&dc->writeback_lock);
1335                 /*
1336                  * bch_register_lock is held, bcache_device_stop() is not
1337                  * able to be directly called. The kthread and kworker
1338                  * created previously in bch_cached_dev_writeback_start()
1339                  * have to be stopped manually here.
1340                  */
1341                 kthread_stop(dc->writeback_thread);
1342                 cancel_writeback_rate_update_dwork(dc);
1343                 pr_err("Couldn't run cached device %s\n",
1344                        dc->backing_dev_name);
1345                 return ret;
1346         }
1347
1348         bcache_device_link(&dc->disk, c, "bdev");
1349         atomic_inc(&c->attached_dev_nr);
1350
1351         if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1352                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1353                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1354                 set_disk_ro(dc->disk.disk, 1);
1355         }
1356
1357         /* Allow the writeback thread to proceed */
1358         up_write(&dc->writeback_lock);
1359
1360         pr_info("Caching %s as %s on set %pU\n",
1361                 dc->backing_dev_name,
1362                 dc->disk.disk->disk_name,
1363                 dc->disk.c->set_uuid);
1364         return 0;
1365 }
1366
1367 /* when dc->disk.kobj released */
1368 void bch_cached_dev_release(struct kobject *kobj)
1369 {
1370         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1371                                              disk.kobj);
1372         kfree(dc);
1373         module_put(THIS_MODULE);
1374 }
1375
1376 static void cached_dev_free(struct closure *cl)
1377 {
1378         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1379
1380         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1381                 cancel_writeback_rate_update_dwork(dc);
1382
1383         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1384                 kthread_stop(dc->writeback_thread);
1385         if (!IS_ERR_OR_NULL(dc->status_update_thread))
1386                 kthread_stop(dc->status_update_thread);
1387
1388         mutex_lock(&bch_register_lock);
1389
1390         if (atomic_read(&dc->running))
1391                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1392         bcache_device_free(&dc->disk);
1393         list_del(&dc->list);
1394
1395         mutex_unlock(&bch_register_lock);
1396
1397         if (dc->sb_disk)
1398                 put_page(virt_to_page(dc->sb_disk));
1399
1400         if (!IS_ERR_OR_NULL(dc->bdev))
1401                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1402
1403         wake_up(&unregister_wait);
1404
1405         kobject_put(&dc->disk.kobj);
1406 }
1407
1408 static void cached_dev_flush(struct closure *cl)
1409 {
1410         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1411         struct bcache_device *d = &dc->disk;
1412
1413         mutex_lock(&bch_register_lock);
1414         bcache_device_unlink(d);
1415         mutex_unlock(&bch_register_lock);
1416
1417         bch_cache_accounting_destroy(&dc->accounting);
1418         kobject_del(&d->kobj);
1419
1420         continue_at(cl, cached_dev_free, system_wq);
1421 }
1422
1423 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1424 {
1425         int ret;
1426         struct io *io;
1427         struct request_queue *q = bdev_get_queue(dc->bdev);
1428
1429         __module_get(THIS_MODULE);
1430         INIT_LIST_HEAD(&dc->list);
1431         closure_init(&dc->disk.cl, NULL);
1432         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1433         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1434         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1435         sema_init(&dc->sb_write_mutex, 1);
1436         INIT_LIST_HEAD(&dc->io_lru);
1437         spin_lock_init(&dc->io_lock);
1438         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1439
1440         dc->sequential_cutoff           = 4 << 20;
1441
1442         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1443                 list_add(&io->lru, &dc->io_lru);
1444                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1445         }
1446
1447         dc->disk.stripe_size = q->limits.io_opt >> 9;
1448
1449         if (dc->disk.stripe_size)
1450                 dc->partial_stripes_expensive =
1451                         q->limits.raid_partial_stripes_expensive;
1452
1453         ret = bcache_device_init(&dc->disk, block_size,
1454                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1455                          dc->bdev, &bcache_cached_ops);
1456         if (ret)
1457                 return ret;
1458
1459         blk_queue_io_opt(dc->disk.disk->queue,
1460                 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1461
1462         atomic_set(&dc->io_errors, 0);
1463         dc->io_disable = false;
1464         dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1465         /* default to auto */
1466         dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1467
1468         bch_cached_dev_request_init(dc);
1469         bch_cached_dev_writeback_init(dc);
1470         return 0;
1471 }
1472
1473 /* Cached device - bcache superblock */
1474
1475 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1476                                  struct block_device *bdev,
1477                                  struct cached_dev *dc)
1478 {
1479         const char *err = "cannot allocate memory";
1480         struct cache_set *c;
1481         int ret = -ENOMEM;
1482
1483         bdevname(bdev, dc->backing_dev_name);
1484         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1485         dc->bdev = bdev;
1486         dc->bdev->bd_holder = dc;
1487         dc->sb_disk = sb_disk;
1488
1489         if (cached_dev_init(dc, sb->block_size << 9))
1490                 goto err;
1491
1492         err = "error creating kobject";
1493         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1494                         "bcache"))
1495                 goto err;
1496         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1497                 goto err;
1498
1499         pr_info("registered backing device %s\n", dc->backing_dev_name);
1500
1501         list_add(&dc->list, &uncached_devices);
1502         /* attach to a matched cache set if it exists */
1503         list_for_each_entry(c, &bch_cache_sets, list)
1504                 bch_cached_dev_attach(dc, c, NULL);
1505
1506         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1507             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1508                 err = "failed to run cached device";
1509                 ret = bch_cached_dev_run(dc);
1510                 if (ret)
1511                         goto err;
1512         }
1513
1514         return 0;
1515 err:
1516         pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1517         bcache_device_stop(&dc->disk);
1518         return ret;
1519 }
1520
1521 /* Flash only volumes */
1522
1523 /* When d->kobj released */
1524 void bch_flash_dev_release(struct kobject *kobj)
1525 {
1526         struct bcache_device *d = container_of(kobj, struct bcache_device,
1527                                                kobj);
1528         kfree(d);
1529 }
1530
1531 static void flash_dev_free(struct closure *cl)
1532 {
1533         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1534
1535         mutex_lock(&bch_register_lock);
1536         atomic_long_sub(bcache_dev_sectors_dirty(d),
1537                         &d->c->flash_dev_dirty_sectors);
1538         bcache_device_free(d);
1539         mutex_unlock(&bch_register_lock);
1540         kobject_put(&d->kobj);
1541 }
1542
1543 static void flash_dev_flush(struct closure *cl)
1544 {
1545         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1546
1547         mutex_lock(&bch_register_lock);
1548         bcache_device_unlink(d);
1549         mutex_unlock(&bch_register_lock);
1550         kobject_del(&d->kobj);
1551         continue_at(cl, flash_dev_free, system_wq);
1552 }
1553
1554 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1555 {
1556         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1557                                           GFP_KERNEL);
1558         if (!d)
1559                 return -ENOMEM;
1560
1561         closure_init(&d->cl, NULL);
1562         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1563
1564         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1565
1566         if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1567                         NULL, &bcache_flash_ops))
1568                 goto err;
1569
1570         bcache_device_attach(d, c, u - c->uuids);
1571         bch_sectors_dirty_init(d);
1572         bch_flash_dev_request_init(d);
1573         add_disk(d->disk);
1574
1575         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1576                 goto err;
1577
1578         bcache_device_link(d, c, "volume");
1579
1580         if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1581                 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1582                 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1583                 set_disk_ro(d->disk, 1);
1584         }
1585
1586         return 0;
1587 err:
1588         kobject_put(&d->kobj);
1589         return -ENOMEM;
1590 }
1591
1592 static int flash_devs_run(struct cache_set *c)
1593 {
1594         int ret = 0;
1595         struct uuid_entry *u;
1596
1597         for (u = c->uuids;
1598              u < c->uuids + c->nr_uuids && !ret;
1599              u++)
1600                 if (UUID_FLASH_ONLY(u))
1601                         ret = flash_dev_run(c, u);
1602
1603         return ret;
1604 }
1605
1606 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1607 {
1608         struct uuid_entry *u;
1609
1610         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1611                 return -EINTR;
1612
1613         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1614                 return -EPERM;
1615
1616         u = uuid_find_empty(c);
1617         if (!u) {
1618                 pr_err("Can't create volume, no room for UUID\n");
1619                 return -EINVAL;
1620         }
1621
1622         get_random_bytes(u->uuid, 16);
1623         memset(u->label, 0, 32);
1624         u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1625
1626         SET_UUID_FLASH_ONLY(u, 1);
1627         u->sectors = size >> 9;
1628
1629         bch_uuid_write(c);
1630
1631         return flash_dev_run(c, u);
1632 }
1633
1634 bool bch_cached_dev_error(struct cached_dev *dc)
1635 {
1636         if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1637                 return false;
1638
1639         dc->io_disable = true;
1640         /* make others know io_disable is true earlier */
1641         smp_mb();
1642
1643         pr_err("stop %s: too many IO errors on backing device %s\n",
1644                dc->disk.disk->disk_name, dc->backing_dev_name);
1645
1646         bcache_device_stop(&dc->disk);
1647         return true;
1648 }
1649
1650 /* Cache set */
1651
1652 __printf(2, 3)
1653 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1654 {
1655         struct va_format vaf;
1656         va_list args;
1657
1658         if (c->on_error != ON_ERROR_PANIC &&
1659             test_bit(CACHE_SET_STOPPING, &c->flags))
1660                 return false;
1661
1662         if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1663                 pr_info("CACHE_SET_IO_DISABLE already set\n");
1664
1665         /*
1666          * XXX: we can be called from atomic context
1667          * acquire_console_sem();
1668          */
1669
1670         va_start(args, fmt);
1671
1672         vaf.fmt = fmt;
1673         vaf.va = &args;
1674
1675         pr_err("error on %pU: %pV, disabling caching\n",
1676                c->set_uuid, &vaf);
1677
1678         va_end(args);
1679
1680         if (c->on_error == ON_ERROR_PANIC)
1681                 panic("panic forced after error\n");
1682
1683         bch_cache_set_unregister(c);
1684         return true;
1685 }
1686
1687 /* When c->kobj released */
1688 void bch_cache_set_release(struct kobject *kobj)
1689 {
1690         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1691
1692         kfree(c);
1693         module_put(THIS_MODULE);
1694 }
1695
1696 static void cache_set_free(struct closure *cl)
1697 {
1698         struct cache_set *c = container_of(cl, struct cache_set, cl);
1699         struct cache *ca;
1700
1701         debugfs_remove(c->debug);
1702
1703         bch_open_buckets_free(c);
1704         bch_btree_cache_free(c);
1705         bch_journal_free(c);
1706
1707         mutex_lock(&bch_register_lock);
1708         bch_bset_sort_state_free(&c->sort);
1709         free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1710
1711         ca = c->cache;
1712         if (ca) {
1713                 ca->set = NULL;
1714                 c->cache = NULL;
1715                 kobject_put(&ca->kobj);
1716         }
1717
1718
1719         if (c->moving_gc_wq)
1720                 destroy_workqueue(c->moving_gc_wq);
1721         bioset_exit(&c->bio_split);
1722         mempool_exit(&c->fill_iter);
1723         mempool_exit(&c->bio_meta);
1724         mempool_exit(&c->search);
1725         kfree(c->devices);
1726
1727         list_del(&c->list);
1728         mutex_unlock(&bch_register_lock);
1729
1730         pr_info("Cache set %pU unregistered\n", c->set_uuid);
1731         wake_up(&unregister_wait);
1732
1733         closure_debug_destroy(&c->cl);
1734         kobject_put(&c->kobj);
1735 }
1736
1737 static void cache_set_flush(struct closure *cl)
1738 {
1739         struct cache_set *c = container_of(cl, struct cache_set, caching);
1740         struct cache *ca = c->cache;
1741         struct btree *b;
1742
1743         bch_cache_accounting_destroy(&c->accounting);
1744
1745         kobject_put(&c->internal);
1746         kobject_del(&c->kobj);
1747
1748         if (!IS_ERR_OR_NULL(c->gc_thread))
1749                 kthread_stop(c->gc_thread);
1750
1751         if (!IS_ERR_OR_NULL(c->root))
1752                 list_add(&c->root->list, &c->btree_cache);
1753
1754         /*
1755          * Avoid flushing cached nodes if cache set is retiring
1756          * due to too many I/O errors detected.
1757          */
1758         if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1759                 list_for_each_entry(b, &c->btree_cache, list) {
1760                         mutex_lock(&b->write_lock);
1761                         if (btree_node_dirty(b))
1762                                 __bch_btree_node_write(b, NULL);
1763                         mutex_unlock(&b->write_lock);
1764                 }
1765
1766         if (ca->alloc_thread)
1767                 kthread_stop(ca->alloc_thread);
1768
1769         if (c->journal.cur) {
1770                 cancel_delayed_work_sync(&c->journal.work);
1771                 /* flush last journal entry if needed */
1772                 c->journal.work.work.func(&c->journal.work.work);
1773         }
1774
1775         closure_return(cl);
1776 }
1777
1778 /*
1779  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1780  * cache set is unregistering due to too many I/O errors. In this condition,
1781  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1782  * value and whether the broken cache has dirty data:
1783  *
1784  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1785  *  BCH_CACHED_STOP_AUTO               0               NO
1786  *  BCH_CACHED_STOP_AUTO               1               YES
1787  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1788  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1789  *
1790  * The expected behavior is, if stop_when_cache_set_failed is configured to
1791  * "auto" via sysfs interface, the bcache device will not be stopped if the
1792  * backing device is clean on the broken cache device.
1793  */
1794 static void conditional_stop_bcache_device(struct cache_set *c,
1795                                            struct bcache_device *d,
1796                                            struct cached_dev *dc)
1797 {
1798         if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1799                 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1800                         d->disk->disk_name, c->set_uuid);
1801                 bcache_device_stop(d);
1802         } else if (atomic_read(&dc->has_dirty)) {
1803                 /*
1804                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1805                  * and dc->has_dirty == 1
1806                  */
1807                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1808                         d->disk->disk_name);
1809                 /*
1810                  * There might be a small time gap that cache set is
1811                  * released but bcache device is not. Inside this time
1812                  * gap, regular I/O requests will directly go into
1813                  * backing device as no cache set attached to. This
1814                  * behavior may also introduce potential inconsistence
1815                  * data in writeback mode while cache is dirty.
1816                  * Therefore before calling bcache_device_stop() due
1817                  * to a broken cache device, dc->io_disable should be
1818                  * explicitly set to true.
1819                  */
1820                 dc->io_disable = true;
1821                 /* make others know io_disable is true earlier */
1822                 smp_mb();
1823                 bcache_device_stop(d);
1824         } else {
1825                 /*
1826                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1827                  * and dc->has_dirty == 0
1828                  */
1829                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1830                         d->disk->disk_name);
1831         }
1832 }
1833
1834 static void __cache_set_unregister(struct closure *cl)
1835 {
1836         struct cache_set *c = container_of(cl, struct cache_set, caching);
1837         struct cached_dev *dc;
1838         struct bcache_device *d;
1839         size_t i;
1840
1841         mutex_lock(&bch_register_lock);
1842
1843         for (i = 0; i < c->devices_max_used; i++) {
1844                 d = c->devices[i];
1845                 if (!d)
1846                         continue;
1847
1848                 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1849                     test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1850                         dc = container_of(d, struct cached_dev, disk);
1851                         bch_cached_dev_detach(dc);
1852                         if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1853                                 conditional_stop_bcache_device(c, d, dc);
1854                 } else {
1855                         bcache_device_stop(d);
1856                 }
1857         }
1858
1859         mutex_unlock(&bch_register_lock);
1860
1861         continue_at(cl, cache_set_flush, system_wq);
1862 }
1863
1864 void bch_cache_set_stop(struct cache_set *c)
1865 {
1866         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1867                 /* closure_fn set to __cache_set_unregister() */
1868                 closure_queue(&c->caching);
1869 }
1870
1871 void bch_cache_set_unregister(struct cache_set *c)
1872 {
1873         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1874         bch_cache_set_stop(c);
1875 }
1876
1877 #define alloc_meta_bucket_pages(gfp, sb)                \
1878         ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1879
1880 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1881 {
1882         int iter_size;
1883         struct cache *ca = container_of(sb, struct cache, sb);
1884         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1885
1886         if (!c)
1887                 return NULL;
1888
1889         __module_get(THIS_MODULE);
1890         closure_init(&c->cl, NULL);
1891         set_closure_fn(&c->cl, cache_set_free, system_wq);
1892
1893         closure_init(&c->caching, &c->cl);
1894         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1895
1896         /* Maybe create continue_at_noreturn() and use it here? */
1897         closure_set_stopped(&c->cl);
1898         closure_put(&c->cl);
1899
1900         kobject_init(&c->kobj, &bch_cache_set_ktype);
1901         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1902
1903         bch_cache_accounting_init(&c->accounting, &c->cl);
1904
1905         memcpy(c->set_uuid, sb->set_uuid, 16);
1906
1907         c->cache                = ca;
1908         c->cache->set           = c;
1909         c->bucket_bits          = ilog2(sb->bucket_size);
1910         c->block_bits           = ilog2(sb->block_size);
1911         c->nr_uuids             = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1912         c->devices_max_used     = 0;
1913         atomic_set(&c->attached_dev_nr, 0);
1914         c->btree_pages          = meta_bucket_pages(sb);
1915         if (c->btree_pages > BTREE_MAX_PAGES)
1916                 c->btree_pages = max_t(int, c->btree_pages / 4,
1917                                        BTREE_MAX_PAGES);
1918
1919         sema_init(&c->sb_write_mutex, 1);
1920         mutex_init(&c->bucket_lock);
1921         init_waitqueue_head(&c->btree_cache_wait);
1922         spin_lock_init(&c->btree_cannibalize_lock);
1923         init_waitqueue_head(&c->bucket_wait);
1924         init_waitqueue_head(&c->gc_wait);
1925         sema_init(&c->uuid_write_mutex, 1);
1926
1927         spin_lock_init(&c->btree_gc_time.lock);
1928         spin_lock_init(&c->btree_split_time.lock);
1929         spin_lock_init(&c->btree_read_time.lock);
1930
1931         bch_moving_init_cache_set(c);
1932
1933         INIT_LIST_HEAD(&c->list);
1934         INIT_LIST_HEAD(&c->cached_devs);
1935         INIT_LIST_HEAD(&c->btree_cache);
1936         INIT_LIST_HEAD(&c->btree_cache_freeable);
1937         INIT_LIST_HEAD(&c->btree_cache_freed);
1938         INIT_LIST_HEAD(&c->data_buckets);
1939
1940         iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1941                 sizeof(struct btree_iter_set);
1942
1943         c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1944         if (!c->devices)
1945                 goto err;
1946
1947         if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1948                 goto err;
1949
1950         if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1951                         sizeof(struct bbio) +
1952                         sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1953                 goto err;
1954
1955         if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1956                 goto err;
1957
1958         if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1959                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1960                 goto err;
1961
1962         c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1963         if (!c->uuids)
1964                 goto err;
1965
1966         c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1967         if (!c->moving_gc_wq)
1968                 goto err;
1969
1970         if (bch_journal_alloc(c))
1971                 goto err;
1972
1973         if (bch_btree_cache_alloc(c))
1974                 goto err;
1975
1976         if (bch_open_buckets_alloc(c))
1977                 goto err;
1978
1979         if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1980                 goto err;
1981
1982         c->congested_read_threshold_us  = 2000;
1983         c->congested_write_threshold_us = 20000;
1984         c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1985         c->idle_max_writeback_rate_enabled = 1;
1986         WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1987
1988         return c;
1989 err:
1990         bch_cache_set_unregister(c);
1991         return NULL;
1992 }
1993
1994 static int run_cache_set(struct cache_set *c)
1995 {
1996         const char *err = "cannot allocate memory";
1997         struct cached_dev *dc, *t;
1998         struct cache *ca = c->cache;
1999         struct closure cl;
2000         LIST_HEAD(journal);
2001         struct journal_replay *l;
2002
2003         closure_init_stack(&cl);
2004
2005         c->nbuckets = ca->sb.nbuckets;
2006         set_gc_sectors(c);
2007
2008         if (CACHE_SYNC(&c->cache->sb)) {
2009                 struct bkey *k;
2010                 struct jset *j;
2011
2012                 err = "cannot allocate memory for journal";
2013                 if (bch_journal_read(c, &journal))
2014                         goto err;
2015
2016                 pr_debug("btree_journal_read() done\n");
2017
2018                 err = "no journal entries found";
2019                 if (list_empty(&journal))
2020                         goto err;
2021
2022                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
2023
2024                 err = "IO error reading priorities";
2025                 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2026                         goto err;
2027
2028                 /*
2029                  * If prio_read() fails it'll call cache_set_error and we'll
2030                  * tear everything down right away, but if we perhaps checked
2031                  * sooner we could avoid journal replay.
2032                  */
2033
2034                 k = &j->btree_root;
2035
2036                 err = "bad btree root";
2037                 if (__bch_btree_ptr_invalid(c, k))
2038                         goto err;
2039
2040                 err = "error reading btree root";
2041                 c->root = bch_btree_node_get(c, NULL, k,
2042                                              j->btree_level,
2043                                              true, NULL);
2044                 if (IS_ERR_OR_NULL(c->root))
2045                         goto err;
2046
2047                 list_del_init(&c->root->list);
2048                 rw_unlock(true, c->root);
2049
2050                 err = uuid_read(c, j, &cl);
2051                 if (err)
2052                         goto err;
2053
2054                 err = "error in recovery";
2055                 if (bch_btree_check(c))
2056                         goto err;
2057
2058                 bch_journal_mark(c, &journal);
2059                 bch_initial_gc_finish(c);
2060                 pr_debug("btree_check() done\n");
2061
2062                 /*
2063                  * bcache_journal_next() can't happen sooner, or
2064                  * btree_gc_finish() will give spurious errors about last_gc >
2065                  * gc_gen - this is a hack but oh well.
2066                  */
2067                 bch_journal_next(&c->journal);
2068
2069                 err = "error starting allocator thread";
2070                 if (bch_cache_allocator_start(ca))
2071                         goto err;
2072
2073                 /*
2074                  * First place it's safe to allocate: btree_check() and
2075                  * btree_gc_finish() have to run before we have buckets to
2076                  * allocate, and bch_bucket_alloc_set() might cause a journal
2077                  * entry to be written so bcache_journal_next() has to be called
2078                  * first.
2079                  *
2080                  * If the uuids were in the old format we have to rewrite them
2081                  * before the next journal entry is written:
2082                  */
2083                 if (j->version < BCACHE_JSET_VERSION_UUID)
2084                         __uuid_write(c);
2085
2086                 err = "bcache: replay journal failed";
2087                 if (bch_journal_replay(c, &journal))
2088                         goto err;
2089         } else {
2090                 unsigned int j;
2091
2092                 pr_notice("invalidating existing data\n");
2093                 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2094                                         2, SB_JOURNAL_BUCKETS);
2095
2096                 for (j = 0; j < ca->sb.keys; j++)
2097                         ca->sb.d[j] = ca->sb.first_bucket + j;
2098
2099                 bch_initial_gc_finish(c);
2100
2101                 err = "error starting allocator thread";
2102                 if (bch_cache_allocator_start(ca))
2103                         goto err;
2104
2105                 mutex_lock(&c->bucket_lock);
2106                 bch_prio_write(ca, true);
2107                 mutex_unlock(&c->bucket_lock);
2108
2109                 err = "cannot allocate new UUID bucket";
2110                 if (__uuid_write(c))
2111                         goto err;
2112
2113                 err = "cannot allocate new btree root";
2114                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2115                 if (IS_ERR_OR_NULL(c->root))
2116                         goto err;
2117
2118                 mutex_lock(&c->root->write_lock);
2119                 bkey_copy_key(&c->root->key, &MAX_KEY);
2120                 bch_btree_node_write(c->root, &cl);
2121                 mutex_unlock(&c->root->write_lock);
2122
2123                 bch_btree_set_root(c->root);
2124                 rw_unlock(true, c->root);
2125
2126                 /*
2127                  * We don't want to write the first journal entry until
2128                  * everything is set up - fortunately journal entries won't be
2129                  * written until the SET_CACHE_SYNC() here:
2130                  */
2131                 SET_CACHE_SYNC(&c->cache->sb, true);
2132
2133                 bch_journal_next(&c->journal);
2134                 bch_journal_meta(c, &cl);
2135         }
2136
2137         err = "error starting gc thread";
2138         if (bch_gc_thread_start(c))
2139                 goto err;
2140
2141         closure_sync(&cl);
2142         c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2143         bcache_write_super(c);
2144
2145         if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2146                 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2147
2148         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2149                 bch_cached_dev_attach(dc, c, NULL);
2150
2151         flash_devs_run(c);
2152
2153         bch_journal_space_reserve(&c->journal);
2154         set_bit(CACHE_SET_RUNNING, &c->flags);
2155         return 0;
2156 err:
2157         while (!list_empty(&journal)) {
2158                 l = list_first_entry(&journal, struct journal_replay, list);
2159                 list_del(&l->list);
2160                 kfree(l);
2161         }
2162
2163         closure_sync(&cl);
2164
2165         bch_cache_set_error(c, "%s", err);
2166
2167         return -EIO;
2168 }
2169
2170 static const char *register_cache_set(struct cache *ca)
2171 {
2172         char buf[12];
2173         const char *err = "cannot allocate memory";
2174         struct cache_set *c;
2175
2176         list_for_each_entry(c, &bch_cache_sets, list)
2177                 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2178                         if (c->cache)
2179                                 return "duplicate cache set member";
2180
2181                         goto found;
2182                 }
2183
2184         c = bch_cache_set_alloc(&ca->sb);
2185         if (!c)
2186                 return err;
2187
2188         err = "error creating kobject";
2189         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2190             kobject_add(&c->internal, &c->kobj, "internal"))
2191                 goto err;
2192
2193         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2194                 goto err;
2195
2196         bch_debug_init_cache_set(c);
2197
2198         list_add(&c->list, &bch_cache_sets);
2199 found:
2200         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2201         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2202             sysfs_create_link(&c->kobj, &ca->kobj, buf))
2203                 goto err;
2204
2205         kobject_get(&ca->kobj);
2206         ca->set = c;
2207         ca->set->cache = ca;
2208
2209         err = "failed to run cache set";
2210         if (run_cache_set(c) < 0)
2211                 goto err;
2212
2213         return NULL;
2214 err:
2215         bch_cache_set_unregister(c);
2216         return err;
2217 }
2218
2219 /* Cache device */
2220
2221 /* When ca->kobj released */
2222 void bch_cache_release(struct kobject *kobj)
2223 {
2224         struct cache *ca = container_of(kobj, struct cache, kobj);
2225         unsigned int i;
2226
2227         if (ca->set) {
2228                 BUG_ON(ca->set->cache != ca);
2229                 ca->set->cache = NULL;
2230         }
2231
2232         free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2233         kfree(ca->prio_buckets);
2234         vfree(ca->buckets);
2235
2236         free_heap(&ca->heap);
2237         free_fifo(&ca->free_inc);
2238
2239         for (i = 0; i < RESERVE_NR; i++)
2240                 free_fifo(&ca->free[i]);
2241
2242         if (ca->sb_disk)
2243                 put_page(virt_to_page(ca->sb_disk));
2244
2245         if (!IS_ERR_OR_NULL(ca->bdev))
2246                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2247
2248         kfree(ca);
2249         module_put(THIS_MODULE);
2250 }
2251
2252 static int cache_alloc(struct cache *ca)
2253 {
2254         size_t free;
2255         size_t btree_buckets;
2256         struct bucket *b;
2257         int ret = -ENOMEM;
2258         const char *err = NULL;
2259
2260         __module_get(THIS_MODULE);
2261         kobject_init(&ca->kobj, &bch_cache_ktype);
2262
2263         bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2264
2265         /*
2266          * when ca->sb.njournal_buckets is not zero, journal exists,
2267          * and in bch_journal_replay(), tree node may split,
2268          * so bucket of RESERVE_BTREE type is needed,
2269          * the worst situation is all journal buckets are valid journal,
2270          * and all the keys need to replay,
2271          * so the number of  RESERVE_BTREE type buckets should be as much
2272          * as journal buckets
2273          */
2274         btree_buckets = ca->sb.njournal_buckets ?: 8;
2275         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2276         if (!free) {
2277                 ret = -EPERM;
2278                 err = "ca->sb.nbuckets is too small";
2279                 goto err_free;
2280         }
2281
2282         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2283                                                 GFP_KERNEL)) {
2284                 err = "ca->free[RESERVE_BTREE] alloc failed";
2285                 goto err_btree_alloc;
2286         }
2287
2288         if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2289                                                         GFP_KERNEL)) {
2290                 err = "ca->free[RESERVE_PRIO] alloc failed";
2291                 goto err_prio_alloc;
2292         }
2293
2294         if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2295                 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2296                 goto err_movinggc_alloc;
2297         }
2298
2299         if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2300                 err = "ca->free[RESERVE_NONE] alloc failed";
2301                 goto err_none_alloc;
2302         }
2303
2304         if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2305                 err = "ca->free_inc alloc failed";
2306                 goto err_free_inc_alloc;
2307         }
2308
2309         if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2310                 err = "ca->heap alloc failed";
2311                 goto err_heap_alloc;
2312         }
2313
2314         ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2315                               ca->sb.nbuckets));
2316         if (!ca->buckets) {
2317                 err = "ca->buckets alloc failed";
2318                 goto err_buckets_alloc;
2319         }
2320
2321         ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2322                                    prio_buckets(ca), 2),
2323                                    GFP_KERNEL);
2324         if (!ca->prio_buckets) {
2325                 err = "ca->prio_buckets alloc failed";
2326                 goto err_prio_buckets_alloc;
2327         }
2328
2329         ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2330         if (!ca->disk_buckets) {
2331                 err = "ca->disk_buckets alloc failed";
2332                 goto err_disk_buckets_alloc;
2333         }
2334
2335         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2336
2337         for_each_bucket(b, ca)
2338                 atomic_set(&b->pin, 0);
2339         return 0;
2340
2341 err_disk_buckets_alloc:
2342         kfree(ca->prio_buckets);
2343 err_prio_buckets_alloc:
2344         vfree(ca->buckets);
2345 err_buckets_alloc:
2346         free_heap(&ca->heap);
2347 err_heap_alloc:
2348         free_fifo(&ca->free_inc);
2349 err_free_inc_alloc:
2350         free_fifo(&ca->free[RESERVE_NONE]);
2351 err_none_alloc:
2352         free_fifo(&ca->free[RESERVE_MOVINGGC]);
2353 err_movinggc_alloc:
2354         free_fifo(&ca->free[RESERVE_PRIO]);
2355 err_prio_alloc:
2356         free_fifo(&ca->free[RESERVE_BTREE]);
2357 err_btree_alloc:
2358 err_free:
2359         module_put(THIS_MODULE);
2360         if (err)
2361                 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2362         return ret;
2363 }
2364
2365 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2366                                 struct block_device *bdev, struct cache *ca)
2367 {
2368         const char *err = NULL; /* must be set for any error case */
2369         int ret = 0;
2370
2371         bdevname(bdev, ca->cache_dev_name);
2372         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2373         ca->bdev = bdev;
2374         ca->bdev->bd_holder = ca;
2375         ca->sb_disk = sb_disk;
2376
2377         if (blk_queue_discard(bdev_get_queue(bdev)))
2378                 ca->discard = CACHE_DISCARD(&ca->sb);
2379
2380         ret = cache_alloc(ca);
2381         if (ret != 0) {
2382                 /*
2383                  * If we failed here, it means ca->kobj is not initialized yet,
2384                  * kobject_put() won't be called and there is no chance to
2385                  * call blkdev_put() to bdev in bch_cache_release(). So we
2386                  * explicitly call blkdev_put() here.
2387                  */
2388                 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2389                 if (ret == -ENOMEM)
2390                         err = "cache_alloc(): -ENOMEM";
2391                 else if (ret == -EPERM)
2392                         err = "cache_alloc(): cache device is too small";
2393                 else
2394                         err = "cache_alloc(): unknown error";
2395                 goto err;
2396         }
2397
2398         if (kobject_add(&ca->kobj,
2399                         &part_to_dev(bdev->bd_part)->kobj,
2400                         "bcache")) {
2401                 err = "error calling kobject_add";
2402                 ret = -ENOMEM;
2403                 goto out;
2404         }
2405
2406         mutex_lock(&bch_register_lock);
2407         err = register_cache_set(ca);
2408         mutex_unlock(&bch_register_lock);
2409
2410         if (err) {
2411                 ret = -ENODEV;
2412                 goto out;
2413         }
2414
2415         pr_info("registered cache device %s\n", ca->cache_dev_name);
2416
2417 out:
2418         kobject_put(&ca->kobj);
2419
2420 err:
2421         if (err)
2422                 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2423
2424         return ret;
2425 }
2426
2427 /* Global interfaces/init */
2428
2429 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2430                                const char *buffer, size_t size);
2431 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2432                                          struct kobj_attribute *attr,
2433                                          const char *buffer, size_t size);
2434
2435 kobj_attribute_write(register,          register_bcache);
2436 kobj_attribute_write(register_quiet,    register_bcache);
2437 kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2438
2439 static bool bch_is_open_backing(struct block_device *bdev)
2440 {
2441         struct cache_set *c, *tc;
2442         struct cached_dev *dc, *t;
2443
2444         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2445                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2446                         if (dc->bdev == bdev)
2447                                 return true;
2448         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2449                 if (dc->bdev == bdev)
2450                         return true;
2451         return false;
2452 }
2453
2454 static bool bch_is_open_cache(struct block_device *bdev)
2455 {
2456         struct cache_set *c, *tc;
2457
2458         list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2459                 struct cache *ca = c->cache;
2460
2461                 if (ca->bdev == bdev)
2462                         return true;
2463         }
2464
2465         return false;
2466 }
2467
2468 static bool bch_is_open(struct block_device *bdev)
2469 {
2470         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2471 }
2472
2473 struct async_reg_args {
2474         struct delayed_work reg_work;
2475         char *path;
2476         struct cache_sb *sb;
2477         struct cache_sb_disk *sb_disk;
2478         struct block_device *bdev;
2479 };
2480
2481 static void register_bdev_worker(struct work_struct *work)
2482 {
2483         int fail = false;
2484         struct async_reg_args *args =
2485                 container_of(work, struct async_reg_args, reg_work.work);
2486         struct cached_dev *dc;
2487
2488         dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2489         if (!dc) {
2490                 fail = true;
2491                 put_page(virt_to_page(args->sb_disk));
2492                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2493                 goto out;
2494         }
2495
2496         mutex_lock(&bch_register_lock);
2497         if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2498                 fail = true;
2499         mutex_unlock(&bch_register_lock);
2500
2501 out:
2502         if (fail)
2503                 pr_info("error %s: fail to register backing device\n",
2504                         args->path);
2505         kfree(args->sb);
2506         kfree(args->path);
2507         kfree(args);
2508         module_put(THIS_MODULE);
2509 }
2510
2511 static void register_cache_worker(struct work_struct *work)
2512 {
2513         int fail = false;
2514         struct async_reg_args *args =
2515                 container_of(work, struct async_reg_args, reg_work.work);
2516         struct cache *ca;
2517
2518         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2519         if (!ca) {
2520                 fail = true;
2521                 put_page(virt_to_page(args->sb_disk));
2522                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2523                 goto out;
2524         }
2525
2526         /* blkdev_put() will be called in bch_cache_release() */
2527         if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2528                 fail = true;
2529
2530 out:
2531         if (fail)
2532                 pr_info("error %s: fail to register cache device\n",
2533                         args->path);
2534         kfree(args->sb);
2535         kfree(args->path);
2536         kfree(args);
2537         module_put(THIS_MODULE);
2538 }
2539
2540 static void register_device_aync(struct async_reg_args *args)
2541 {
2542         if (SB_IS_BDEV(args->sb))
2543                 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2544         else
2545                 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2546
2547         /* 10 jiffies is enough for a delay */
2548         queue_delayed_work(system_wq, &args->reg_work, 10);
2549 }
2550
2551 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2552                                const char *buffer, size_t size)
2553 {
2554         const char *err;
2555         char *path = NULL;
2556         struct cache_sb *sb;
2557         struct cache_sb_disk *sb_disk;
2558         struct block_device *bdev;
2559         ssize_t ret;
2560         bool async_registration = false;
2561
2562 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2563         async_registration = true;
2564 #endif
2565
2566         ret = -EBUSY;
2567         err = "failed to reference bcache module";
2568         if (!try_module_get(THIS_MODULE))
2569                 goto out;
2570
2571         /* For latest state of bcache_is_reboot */
2572         smp_mb();
2573         err = "bcache is in reboot";
2574         if (bcache_is_reboot)
2575                 goto out_module_put;
2576
2577         ret = -ENOMEM;
2578         err = "cannot allocate memory";
2579         path = kstrndup(buffer, size, GFP_KERNEL);
2580         if (!path)
2581                 goto out_module_put;
2582
2583         sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2584         if (!sb)
2585                 goto out_free_path;
2586
2587         ret = -EINVAL;
2588         err = "failed to open device";
2589         bdev = blkdev_get_by_path(strim(path),
2590                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2591                                   sb);
2592         if (IS_ERR(bdev)) {
2593                 if (bdev == ERR_PTR(-EBUSY)) {
2594                         bdev = lookup_bdev(strim(path));
2595                         mutex_lock(&bch_register_lock);
2596                         if (!IS_ERR(bdev) && bch_is_open(bdev))
2597                                 err = "device already registered";
2598                         else
2599                                 err = "device busy";
2600                         mutex_unlock(&bch_register_lock);
2601                         if (!IS_ERR(bdev))
2602                                 bdput(bdev);
2603                         if (attr == &ksysfs_register_quiet)
2604                                 goto done;
2605                 }
2606                 goto out_free_sb;
2607         }
2608
2609         err = "failed to set blocksize";
2610         if (set_blocksize(bdev, 4096))
2611                 goto out_blkdev_put;
2612
2613         err = read_super(sb, bdev, &sb_disk);
2614         if (err)
2615                 goto out_blkdev_put;
2616
2617         err = "failed to register device";
2618
2619         if (async_registration) {
2620                 /* register in asynchronous way */
2621                 struct async_reg_args *args =
2622                         kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2623
2624                 if (!args) {
2625                         ret = -ENOMEM;
2626                         err = "cannot allocate memory";
2627                         goto out_put_sb_page;
2628                 }
2629
2630                 args->path      = path;
2631                 args->sb        = sb;
2632                 args->sb_disk   = sb_disk;
2633                 args->bdev      = bdev;
2634                 register_device_aync(args);
2635                 /* No wait and returns to user space */
2636                 goto async_done;
2637         }
2638
2639         if (SB_IS_BDEV(sb)) {
2640                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2641
2642                 if (!dc)
2643                         goto out_put_sb_page;
2644
2645                 mutex_lock(&bch_register_lock);
2646                 ret = register_bdev(sb, sb_disk, bdev, dc);
2647                 mutex_unlock(&bch_register_lock);
2648                 /* blkdev_put() will be called in cached_dev_free() */
2649                 if (ret < 0)
2650                         goto out_free_sb;
2651         } else {
2652                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2653
2654                 if (!ca)
2655                         goto out_put_sb_page;
2656
2657                 /* blkdev_put() will be called in bch_cache_release() */
2658                 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2659                         goto out_free_sb;
2660         }
2661
2662 done:
2663         kfree(sb);
2664         kfree(path);
2665         module_put(THIS_MODULE);
2666 async_done:
2667         return size;
2668
2669 out_put_sb_page:
2670         put_page(virt_to_page(sb_disk));
2671 out_blkdev_put:
2672         blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2673 out_free_sb:
2674         kfree(sb);
2675 out_free_path:
2676         kfree(path);
2677         path = NULL;
2678 out_module_put:
2679         module_put(THIS_MODULE);
2680 out:
2681         pr_info("error %s: %s\n", path?path:"", err);
2682         return ret;
2683 }
2684
2685
2686 struct pdev {
2687         struct list_head list;
2688         struct cached_dev *dc;
2689 };
2690
2691 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2692                                          struct kobj_attribute *attr,
2693                                          const char *buffer,
2694                                          size_t size)
2695 {
2696         LIST_HEAD(pending_devs);
2697         ssize_t ret = size;
2698         struct cached_dev *dc, *tdc;
2699         struct pdev *pdev, *tpdev;
2700         struct cache_set *c, *tc;
2701
2702         mutex_lock(&bch_register_lock);
2703         list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2704                 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2705                 if (!pdev)
2706                         break;
2707                 pdev->dc = dc;
2708                 list_add(&pdev->list, &pending_devs);
2709         }
2710
2711         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2712                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2713                         char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2714                         char *set_uuid = c->set_uuid;
2715
2716                         if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2717                                 list_del(&pdev->list);
2718                                 kfree(pdev);
2719                                 break;
2720                         }
2721                 }
2722         }
2723         mutex_unlock(&bch_register_lock);
2724
2725         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2726                 pr_info("delete pdev %p\n", pdev);
2727                 list_del(&pdev->list);
2728                 bcache_device_stop(&pdev->dc->disk);
2729                 kfree(pdev);
2730         }
2731
2732         return ret;
2733 }
2734
2735 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2736 {
2737         if (bcache_is_reboot)
2738                 return NOTIFY_DONE;
2739
2740         if (code == SYS_DOWN ||
2741             code == SYS_HALT ||
2742             code == SYS_POWER_OFF) {
2743                 DEFINE_WAIT(wait);
2744                 unsigned long start = jiffies;
2745                 bool stopped = false;
2746
2747                 struct cache_set *c, *tc;
2748                 struct cached_dev *dc, *tdc;
2749
2750                 mutex_lock(&bch_register_lock);
2751
2752                 if (bcache_is_reboot)
2753                         goto out;
2754
2755                 /* New registration is rejected since now */
2756                 bcache_is_reboot = true;
2757                 /*
2758                  * Make registering caller (if there is) on other CPU
2759                  * core know bcache_is_reboot set to true earlier
2760                  */
2761                 smp_mb();
2762
2763                 if (list_empty(&bch_cache_sets) &&
2764                     list_empty(&uncached_devices))
2765                         goto out;
2766
2767                 mutex_unlock(&bch_register_lock);
2768
2769                 pr_info("Stopping all devices:\n");
2770
2771                 /*
2772                  * The reason bch_register_lock is not held to call
2773                  * bch_cache_set_stop() and bcache_device_stop() is to
2774                  * avoid potential deadlock during reboot, because cache
2775                  * set or bcache device stopping process will acqurie
2776                  * bch_register_lock too.
2777                  *
2778                  * We are safe here because bcache_is_reboot sets to
2779                  * true already, register_bcache() will reject new
2780                  * registration now. bcache_is_reboot also makes sure
2781                  * bcache_reboot() won't be re-entered on by other thread,
2782                  * so there is no race in following list iteration by
2783                  * list_for_each_entry_safe().
2784                  */
2785                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2786                         bch_cache_set_stop(c);
2787
2788                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2789                         bcache_device_stop(&dc->disk);
2790
2791
2792                 /*
2793                  * Give an early chance for other kthreads and
2794                  * kworkers to stop themselves
2795                  */
2796                 schedule();
2797
2798                 /* What's a condition variable? */
2799                 while (1) {
2800                         long timeout = start + 10 * HZ - jiffies;
2801
2802                         mutex_lock(&bch_register_lock);
2803                         stopped = list_empty(&bch_cache_sets) &&
2804                                 list_empty(&uncached_devices);
2805
2806                         if (timeout < 0 || stopped)
2807                                 break;
2808
2809                         prepare_to_wait(&unregister_wait, &wait,
2810                                         TASK_UNINTERRUPTIBLE);
2811
2812                         mutex_unlock(&bch_register_lock);
2813                         schedule_timeout(timeout);
2814                 }
2815
2816                 finish_wait(&unregister_wait, &wait);
2817
2818                 if (stopped)
2819                         pr_info("All devices stopped\n");
2820                 else
2821                         pr_notice("Timeout waiting for devices to be closed\n");
2822 out:
2823                 mutex_unlock(&bch_register_lock);
2824         }
2825
2826         return NOTIFY_DONE;
2827 }
2828
2829 static struct notifier_block reboot = {
2830         .notifier_call  = bcache_reboot,
2831         .priority       = INT_MAX, /* before any real devices */
2832 };
2833
2834 static void bcache_exit(void)
2835 {
2836         bch_debug_exit();
2837         bch_request_exit();
2838         if (bcache_kobj)
2839                 kobject_put(bcache_kobj);
2840         if (bcache_wq)
2841                 destroy_workqueue(bcache_wq);
2842         if (bch_journal_wq)
2843                 destroy_workqueue(bch_journal_wq);
2844         if (bch_flush_wq)
2845                 destroy_workqueue(bch_flush_wq);
2846         bch_btree_exit();
2847
2848         if (bcache_major)
2849                 unregister_blkdev(bcache_major, "bcache");
2850         unregister_reboot_notifier(&reboot);
2851         mutex_destroy(&bch_register_lock);
2852 }
2853
2854 /* Check and fixup module parameters */
2855 static void check_module_parameters(void)
2856 {
2857         if (bch_cutoff_writeback_sync == 0)
2858                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2859         else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2860                 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2861                         bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2862                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2863         }
2864
2865         if (bch_cutoff_writeback == 0)
2866                 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2867         else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2868                 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2869                         bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2870                 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2871         }
2872
2873         if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2874                 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2875                         bch_cutoff_writeback, bch_cutoff_writeback_sync);
2876                 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2877         }
2878 }
2879
2880 static int __init bcache_init(void)
2881 {
2882         static const struct attribute *files[] = {
2883                 &ksysfs_register.attr,
2884                 &ksysfs_register_quiet.attr,
2885                 &ksysfs_pendings_cleanup.attr,
2886                 NULL
2887         };
2888
2889         check_module_parameters();
2890
2891         mutex_init(&bch_register_lock);
2892         init_waitqueue_head(&unregister_wait);
2893         register_reboot_notifier(&reboot);
2894
2895         bcache_major = register_blkdev(0, "bcache");
2896         if (bcache_major < 0) {
2897                 unregister_reboot_notifier(&reboot);
2898                 mutex_destroy(&bch_register_lock);
2899                 return bcache_major;
2900         }
2901
2902         if (bch_btree_init())
2903                 goto err;
2904
2905         bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2906         if (!bcache_wq)
2907                 goto err;
2908
2909         /*
2910          * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2911          *
2912          * 1. It used `system_wq` before which also does no memory reclaim.
2913          * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2914          *    reduced throughput can be observed.
2915          *
2916          * We still want to user our own queue to not congest the `system_wq`.
2917          */
2918         bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2919         if (!bch_flush_wq)
2920                 goto err;
2921
2922         bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2923         if (!bch_journal_wq)
2924                 goto err;
2925
2926         bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2927         if (!bcache_kobj)
2928                 goto err;
2929
2930         if (bch_request_init() ||
2931             sysfs_create_files(bcache_kobj, files))
2932                 goto err;
2933
2934         bch_debug_init();
2935         closure_debug_init();
2936
2937         bcache_is_reboot = false;
2938
2939         return 0;
2940 err:
2941         bcache_exit();
2942         return -ENOMEM;
2943 }
2944
2945 /*
2946  * Module hooks
2947  */
2948 module_exit(bcache_exit);
2949 module_init(bcache_init);
2950
2951 module_param(bch_cutoff_writeback, uint, 0);
2952 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2953
2954 module_param(bch_cutoff_writeback_sync, uint, 0);
2955 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2956
2957 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2958 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2959 MODULE_LICENSE("GPL");