GNU Linux-libre 4.19.314-gnu1
[releases.git] / drivers / md / bcache / btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90
91 #define MAX_NEED_GC             64
92 #define MAX_SAVE_PRIO           72
93 #define MAX_GC_TIMES            100
94 #define MIN_GC_NODES            100
95 #define GC_SLEEP_MS             100
96
97 #define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k)                                                  \
100         (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 #define insert_lock(s, b)       ((b)->level <= (s)->lock)
103
104 /*
105  * These macros are for recursing down the btree - they handle the details of
106  * locking and looking up nodes in the cache for you. They're best treated as
107  * mere syntax when reading code that uses them.
108  *
109  * op->lock determines whether we take a read or a write lock at a given depth.
110  * If you've got a read lock and find that you need a write lock (i.e. you're
111  * going to have to split), set op->lock and return -EINTR; btree_root() will
112  * call you again and you'll have the correct lock.
113  */
114
115 /**
116  * btree - recurse down the btree on a specified key
117  * @fn:         function to call, which will be passed the child node
118  * @key:        key to recurse on
119  * @b:          parent btree node
120  * @op:         pointer to struct btree_op
121  */
122 #define btree(fn, key, b, op, ...)                                      \
123 ({                                                                      \
124         int _r, l = (b)->level - 1;                                     \
125         bool _w = l <= (op)->lock;                                      \
126         struct btree *_child = bch_btree_node_get((b)->c, op, key, l,   \
127                                                   _w, b);               \
128         if (!IS_ERR(_child)) {                                          \
129                 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);       \
130                 rw_unlock(_w, _child);                                  \
131         } else                                                          \
132                 _r = PTR_ERR(_child);                                   \
133         _r;                                                             \
134 })
135
136 /**
137  * btree_root - call a function on the root of the btree
138  * @fn:         function to call, which will be passed the child node
139  * @c:          cache set
140  * @op:         pointer to struct btree_op
141  */
142 #define btree_root(fn, c, op, ...)                                      \
143 ({                                                                      \
144         int _r = -EINTR;                                                \
145         do {                                                            \
146                 struct btree *_b = (c)->root;                           \
147                 bool _w = insert_lock(op, _b);                          \
148                 rw_lock(_w, _b, _b->level);                             \
149                 if (_b == (c)->root &&                                  \
150                     _w == insert_lock(op, _b)) {                        \
151                         _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);   \
152                 }                                                       \
153                 rw_unlock(_w, _b);                                      \
154                 bch_cannibalize_unlock(c);                              \
155                 if (_r == -EINTR)                                       \
156                         schedule();                                     \
157         } while (_r == -EINTR);                                         \
158                                                                         \
159         finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
160         _r;                                                             \
161 })
162
163 static inline struct bset *write_block(struct btree *b)
164 {
165         return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167
168 static void bch_btree_init_next(struct btree *b)
169 {
170         /* If not a leaf node, always sort */
171         if (b->level && b->keys.nsets)
172                 bch_btree_sort(&b->keys, &b->c->sort);
173         else
174                 bch_btree_sort_lazy(&b->keys, &b->c->sort);
175
176         if (b->written < btree_blocks(b))
177                 bch_bset_init_next(&b->keys, write_block(b),
178                                    bset_magic(&b->c->sb));
179
180 }
181
182 /* Btree key manipulation */
183
184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186         unsigned int i;
187
188         for (i = 0; i < KEY_PTRS(k); i++)
189                 if (ptr_available(c, k, i))
190                         atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192
193 /* Btree IO */
194
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197         uint64_t crc = b->key.ptr[0];
198         void *data = (void *) i + 8, *end = bset_bkey_last(i);
199
200         crc = bch_crc64_update(crc, data, end - data);
201         return crc ^ 0xffffffffffffffffULL;
202 }
203
204 void bch_btree_node_read_done(struct btree *b)
205 {
206         const char *err = "bad btree header";
207         struct bset *i = btree_bset_first(b);
208         struct btree_iter *iter;
209
210         iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
211         iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
212         iter->used = 0;
213
214 #ifdef CONFIG_BCACHE_DEBUG
215         iter->b = &b->keys;
216 #endif
217
218         if (!i->seq)
219                 goto err;
220
221         for (;
222              b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
223              i = write_block(b)) {
224                 err = "unsupported bset version";
225                 if (i->version > BCACHE_BSET_VERSION)
226                         goto err;
227
228                 err = "bad btree header";
229                 if (b->written + set_blocks(i, block_bytes(b->c)) >
230                     btree_blocks(b))
231                         goto err;
232
233                 err = "bad magic";
234                 if (i->magic != bset_magic(&b->c->sb))
235                         goto err;
236
237                 err = "bad checksum";
238                 switch (i->version) {
239                 case 0:
240                         if (i->csum != csum_set(i))
241                                 goto err;
242                         break;
243                 case BCACHE_BSET_VERSION:
244                         if (i->csum != btree_csum_set(b, i))
245                                 goto err;
246                         break;
247                 }
248
249                 err = "empty set";
250                 if (i != b->keys.set[0].data && !i->keys)
251                         goto err;
252
253                 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
254
255                 b->written += set_blocks(i, block_bytes(b->c));
256         }
257
258         err = "corrupted btree";
259         for (i = write_block(b);
260              bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
261              i = ((void *) i) + block_bytes(b->c))
262                 if (i->seq == b->keys.set[0].data->seq)
263                         goto err;
264
265         bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
266
267         i = b->keys.set[0].data;
268         err = "short btree key";
269         if (b->keys.set[0].size &&
270             bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
271                 goto err;
272
273         if (b->written < btree_blocks(b))
274                 bch_bset_init_next(&b->keys, write_block(b),
275                                    bset_magic(&b->c->sb));
276 out:
277         mempool_free(iter, &b->c->fill_iter);
278         return;
279 err:
280         set_btree_node_io_error(b);
281         bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
282                             err, PTR_BUCKET_NR(b->c, &b->key, 0),
283                             bset_block_offset(b, i), i->keys);
284         goto out;
285 }
286
287 static void btree_node_read_endio(struct bio *bio)
288 {
289         struct closure *cl = bio->bi_private;
290
291         closure_put(cl);
292 }
293
294 static void bch_btree_node_read(struct btree *b)
295 {
296         uint64_t start_time = local_clock();
297         struct closure cl;
298         struct bio *bio;
299
300         trace_bcache_btree_read(b);
301
302         closure_init_stack(&cl);
303
304         bio = bch_bbio_alloc(b->c);
305         bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
306         bio->bi_end_io  = btree_node_read_endio;
307         bio->bi_private = &cl;
308         bio->bi_opf = REQ_OP_READ | REQ_META;
309
310         bch_bio_map(bio, b->keys.set[0].data);
311
312         bch_submit_bbio(bio, b->c, &b->key, 0);
313         closure_sync(&cl);
314
315         if (bio->bi_status)
316                 set_btree_node_io_error(b);
317
318         bch_bbio_free(bio, b->c);
319
320         if (btree_node_io_error(b))
321                 goto err;
322
323         bch_btree_node_read_done(b);
324         bch_time_stats_update(&b->c->btree_read_time, start_time);
325
326         return;
327 err:
328         bch_cache_set_error(b->c, "io error reading bucket %zu",
329                             PTR_BUCKET_NR(b->c, &b->key, 0));
330 }
331
332 static void btree_complete_write(struct btree *b, struct btree_write *w)
333 {
334         if (w->prio_blocked &&
335             !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
336                 wake_up_allocators(b->c);
337
338         if (w->journal) {
339                 atomic_dec_bug(w->journal);
340                 __closure_wake_up(&b->c->journal.wait);
341         }
342
343         w->prio_blocked = 0;
344         w->journal      = NULL;
345 }
346
347 static void btree_node_write_unlock(struct closure *cl)
348 {
349         struct btree *b = container_of(cl, struct btree, io);
350
351         up(&b->io_mutex);
352 }
353
354 static void __btree_node_write_done(struct closure *cl)
355 {
356         struct btree *b = container_of(cl, struct btree, io);
357         struct btree_write *w = btree_prev_write(b);
358
359         bch_bbio_free(b->bio, b->c);
360         b->bio = NULL;
361         btree_complete_write(b, w);
362
363         if (btree_node_dirty(b))
364                 schedule_delayed_work(&b->work, 30 * HZ);
365
366         closure_return_with_destructor(cl, btree_node_write_unlock);
367 }
368
369 static void btree_node_write_done(struct closure *cl)
370 {
371         struct btree *b = container_of(cl, struct btree, io);
372
373         bio_free_pages(b->bio);
374         __btree_node_write_done(cl);
375 }
376
377 static void btree_node_write_endio(struct bio *bio)
378 {
379         struct closure *cl = bio->bi_private;
380         struct btree *b = container_of(cl, struct btree, io);
381
382         if (bio->bi_status)
383                 set_btree_node_io_error(b);
384
385         bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
386         closure_put(cl);
387 }
388
389 static void do_btree_node_write(struct btree *b)
390 {
391         struct closure *cl = &b->io;
392         struct bset *i = btree_bset_last(b);
393         BKEY_PADDED(key) k;
394
395         i->version      = BCACHE_BSET_VERSION;
396         i->csum         = btree_csum_set(b, i);
397
398         BUG_ON(b->bio);
399         b->bio = bch_bbio_alloc(b->c);
400
401         b->bio->bi_end_io       = btree_node_write_endio;
402         b->bio->bi_private      = cl;
403         b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
404         b->bio->bi_opf          = REQ_OP_WRITE | REQ_META | REQ_FUA;
405         bch_bio_map(b->bio, i);
406
407         /*
408          * If we're appending to a leaf node, we don't technically need FUA -
409          * this write just needs to be persisted before the next journal write,
410          * which will be marked FLUSH|FUA.
411          *
412          * Similarly if we're writing a new btree root - the pointer is going to
413          * be in the next journal entry.
414          *
415          * But if we're writing a new btree node (that isn't a root) or
416          * appending to a non leaf btree node, we need either FUA or a flush
417          * when we write the parent with the new pointer. FUA is cheaper than a
418          * flush, and writes appending to leaf nodes aren't blocking anything so
419          * just make all btree node writes FUA to keep things sane.
420          */
421
422         bkey_copy(&k.key, &b->key);
423         SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
424                        bset_sector_offset(&b->keys, i));
425
426         if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
427                 int j;
428                 struct bio_vec *bv;
429                 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
430
431                 bio_for_each_segment_all(bv, b->bio, j)
432                         memcpy(page_address(bv->bv_page),
433                                base + j * PAGE_SIZE, PAGE_SIZE);
434
435                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
436
437                 continue_at(cl, btree_node_write_done, NULL);
438         } else {
439                 /*
440                  * No problem for multipage bvec since the bio is
441                  * just allocated
442                  */
443                 b->bio->bi_vcnt = 0;
444                 bch_bio_map(b->bio, i);
445
446                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
447
448                 closure_sync(cl);
449                 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
450         }
451 }
452
453 void __bch_btree_node_write(struct btree *b, struct closure *parent)
454 {
455         struct bset *i = btree_bset_last(b);
456
457         lockdep_assert_held(&b->write_lock);
458
459         trace_bcache_btree_write(b);
460
461         BUG_ON(current->bio_list);
462         BUG_ON(b->written >= btree_blocks(b));
463         BUG_ON(b->written && !i->keys);
464         BUG_ON(btree_bset_first(b)->seq != i->seq);
465         bch_check_keys(&b->keys, "writing");
466
467         cancel_delayed_work(&b->work);
468
469         /* If caller isn't waiting for write, parent refcount is cache set */
470         down(&b->io_mutex);
471         closure_init(&b->io, parent ?: &b->c->cl);
472
473         clear_bit(BTREE_NODE_dirty,      &b->flags);
474         change_bit(BTREE_NODE_write_idx, &b->flags);
475
476         do_btree_node_write(b);
477
478         atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
479                         &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
480
481         b->written += set_blocks(i, block_bytes(b->c));
482 }
483
484 void bch_btree_node_write(struct btree *b, struct closure *parent)
485 {
486         unsigned int nsets = b->keys.nsets;
487
488         lockdep_assert_held(&b->lock);
489
490         __bch_btree_node_write(b, parent);
491
492         /*
493          * do verify if there was more than one set initially (i.e. we did a
494          * sort) and we sorted down to a single set:
495          */
496         if (nsets && !b->keys.nsets)
497                 bch_btree_verify(b);
498
499         bch_btree_init_next(b);
500 }
501
502 static void bch_btree_node_write_sync(struct btree *b)
503 {
504         struct closure cl;
505
506         closure_init_stack(&cl);
507
508         mutex_lock(&b->write_lock);
509         bch_btree_node_write(b, &cl);
510         mutex_unlock(&b->write_lock);
511
512         closure_sync(&cl);
513 }
514
515 static void btree_node_write_work(struct work_struct *w)
516 {
517         struct btree *b = container_of(to_delayed_work(w), struct btree, work);
518
519         mutex_lock(&b->write_lock);
520         if (btree_node_dirty(b))
521                 __bch_btree_node_write(b, NULL);
522         mutex_unlock(&b->write_lock);
523 }
524
525 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
526 {
527         struct bset *i = btree_bset_last(b);
528         struct btree_write *w = btree_current_write(b);
529
530         lockdep_assert_held(&b->write_lock);
531
532         BUG_ON(!b->written);
533         BUG_ON(!i->keys);
534
535         if (!btree_node_dirty(b))
536                 schedule_delayed_work(&b->work, 30 * HZ);
537
538         set_btree_node_dirty(b);
539
540         if (journal_ref) {
541                 if (w->journal &&
542                     journal_pin_cmp(b->c, w->journal, journal_ref)) {
543                         atomic_dec_bug(w->journal);
544                         w->journal = NULL;
545                 }
546
547                 if (!w->journal) {
548                         w->journal = journal_ref;
549                         atomic_inc(w->journal);
550                 }
551         }
552
553         /* Force write if set is too big */
554         if (set_bytes(i) > PAGE_SIZE - 48 &&
555             !current->bio_list)
556                 bch_btree_node_write(b, NULL);
557 }
558
559 /*
560  * Btree in memory cache - allocation/freeing
561  * mca -> memory cache
562  */
563
564 #define mca_reserve(c)  (((c->root && c->root->level)           \
565                           ? c->root->level : 1) * 8 + 16)
566 #define mca_can_free(c)                                         \
567         max_t(int, 0, c->btree_cache_used - mca_reserve(c))
568
569 static void mca_data_free(struct btree *b)
570 {
571         BUG_ON(b->io_mutex.count != 1);
572
573         bch_btree_keys_free(&b->keys);
574
575         b->c->btree_cache_used--;
576         list_move(&b->list, &b->c->btree_cache_freed);
577 }
578
579 static void mca_bucket_free(struct btree *b)
580 {
581         BUG_ON(btree_node_dirty(b));
582
583         b->key.ptr[0] = 0;
584         hlist_del_init_rcu(&b->hash);
585         list_move(&b->list, &b->c->btree_cache_freeable);
586 }
587
588 static unsigned int btree_order(struct bkey *k)
589 {
590         return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
591 }
592
593 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
594 {
595         if (!bch_btree_keys_alloc(&b->keys,
596                                   max_t(unsigned int,
597                                         ilog2(b->c->btree_pages),
598                                         btree_order(k)),
599                                   gfp)) {
600                 b->c->btree_cache_used++;
601                 list_move(&b->list, &b->c->btree_cache);
602         } else {
603                 list_move(&b->list, &b->c->btree_cache_freed);
604         }
605 }
606
607 static struct btree *mca_bucket_alloc(struct cache_set *c,
608                                       struct bkey *k, gfp_t gfp)
609 {
610         struct btree *b = kzalloc(sizeof(struct btree), gfp);
611
612         if (!b)
613                 return NULL;
614
615         init_rwsem(&b->lock);
616         lockdep_set_novalidate_class(&b->lock);
617         mutex_init(&b->write_lock);
618         lockdep_set_novalidate_class(&b->write_lock);
619         INIT_LIST_HEAD(&b->list);
620         INIT_DELAYED_WORK(&b->work, btree_node_write_work);
621         b->c = c;
622         sema_init(&b->io_mutex, 1);
623
624         mca_data_alloc(b, k, gfp);
625         return b;
626 }
627
628 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
629 {
630         struct closure cl;
631
632         closure_init_stack(&cl);
633         lockdep_assert_held(&b->c->bucket_lock);
634
635         if (!down_write_trylock(&b->lock))
636                 return -ENOMEM;
637
638         BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
639
640         if (b->keys.page_order < min_order)
641                 goto out_unlock;
642
643         if (!flush) {
644                 if (btree_node_dirty(b))
645                         goto out_unlock;
646
647                 if (down_trylock(&b->io_mutex))
648                         goto out_unlock;
649                 up(&b->io_mutex);
650         }
651
652 retry:
653         /*
654          * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
655          * __bch_btree_node_write(). To avoid an extra flush, acquire
656          * b->write_lock before checking BTREE_NODE_dirty bit.
657          */
658         mutex_lock(&b->write_lock);
659         /*
660          * If this btree node is selected in btree_flush_write() by journal
661          * code, delay and retry until the node is flushed by journal code
662          * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
663          */
664         if (btree_node_journal_flush(b)) {
665                 pr_debug("bnode %p is flushing by journal, retry", b);
666                 mutex_unlock(&b->write_lock);
667                 udelay(1);
668                 goto retry;
669         }
670
671         if (btree_node_dirty(b))
672                 __bch_btree_node_write(b, &cl);
673         mutex_unlock(&b->write_lock);
674
675         closure_sync(&cl);
676
677         /* wait for any in flight btree write */
678         down(&b->io_mutex);
679         up(&b->io_mutex);
680
681         return 0;
682 out_unlock:
683         rw_unlock(true, b);
684         return -ENOMEM;
685 }
686
687 static unsigned long bch_mca_scan(struct shrinker *shrink,
688                                   struct shrink_control *sc)
689 {
690         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
691         struct btree *b, *t;
692         unsigned long i, nr = sc->nr_to_scan;
693         unsigned long freed = 0;
694         unsigned int btree_cache_used;
695
696         if (c->shrinker_disabled)
697                 return SHRINK_STOP;
698
699         if (c->btree_cache_alloc_lock)
700                 return SHRINK_STOP;
701
702         /* Return -1 if we can't do anything right now */
703         if (sc->gfp_mask & __GFP_IO)
704                 mutex_lock(&c->bucket_lock);
705         else if (!mutex_trylock(&c->bucket_lock))
706                 return -1;
707
708         /*
709          * It's _really_ critical that we don't free too many btree nodes - we
710          * have to always leave ourselves a reserve. The reserve is how we
711          * guarantee that allocating memory for a new btree node can always
712          * succeed, so that inserting keys into the btree can always succeed and
713          * IO can always make forward progress:
714          */
715         nr /= c->btree_pages;
716         if (nr == 0)
717                 nr = 1;
718         nr = min_t(unsigned long, nr, mca_can_free(c));
719
720         i = 0;
721         btree_cache_used = c->btree_cache_used;
722         list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
723                 if (nr <= 0)
724                         goto out;
725
726                 if (++i > 3 &&
727                     !mca_reap(b, 0, false)) {
728                         mca_data_free(b);
729                         rw_unlock(true, b);
730                         freed++;
731                 }
732                 nr--;
733         }
734
735         for (;  (nr--) && i < btree_cache_used; i++) {
736                 if (list_empty(&c->btree_cache))
737                         goto out;
738
739                 b = list_first_entry(&c->btree_cache, struct btree, list);
740                 list_rotate_left(&c->btree_cache);
741
742                 if (!b->accessed &&
743                     !mca_reap(b, 0, false)) {
744                         mca_bucket_free(b);
745                         mca_data_free(b);
746                         rw_unlock(true, b);
747                         freed++;
748                 } else
749                         b->accessed = 0;
750         }
751 out:
752         mutex_unlock(&c->bucket_lock);
753         return freed * c->btree_pages;
754 }
755
756 static unsigned long bch_mca_count(struct shrinker *shrink,
757                                    struct shrink_control *sc)
758 {
759         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
760
761         if (c->shrinker_disabled)
762                 return 0;
763
764         if (c->btree_cache_alloc_lock)
765                 return 0;
766
767         return mca_can_free(c) * c->btree_pages;
768 }
769
770 void bch_btree_cache_free(struct cache_set *c)
771 {
772         struct btree *b;
773         struct closure cl;
774
775         closure_init_stack(&cl);
776
777         if (c->shrink.list.next)
778                 unregister_shrinker(&c->shrink);
779
780         mutex_lock(&c->bucket_lock);
781
782 #ifdef CONFIG_BCACHE_DEBUG
783         if (c->verify_data)
784                 list_move(&c->verify_data->list, &c->btree_cache);
785
786         free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
787 #endif
788
789         list_splice(&c->btree_cache_freeable,
790                     &c->btree_cache);
791
792         while (!list_empty(&c->btree_cache)) {
793                 b = list_first_entry(&c->btree_cache, struct btree, list);
794
795                 /*
796                  * This function is called by cache_set_free(), no I/O
797                  * request on cache now, it is unnecessary to acquire
798                  * b->write_lock before clearing BTREE_NODE_dirty anymore.
799                  */
800                 if (btree_node_dirty(b)) {
801                         btree_complete_write(b, btree_current_write(b));
802                         clear_bit(BTREE_NODE_dirty, &b->flags);
803                 }
804                 mca_data_free(b);
805         }
806
807         while (!list_empty(&c->btree_cache_freed)) {
808                 b = list_first_entry(&c->btree_cache_freed,
809                                      struct btree, list);
810                 list_del(&b->list);
811                 cancel_delayed_work_sync(&b->work);
812                 kfree(b);
813         }
814
815         mutex_unlock(&c->bucket_lock);
816 }
817
818 int bch_btree_cache_alloc(struct cache_set *c)
819 {
820         unsigned int i;
821
822         for (i = 0; i < mca_reserve(c); i++)
823                 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
824                         return -ENOMEM;
825
826         list_splice_init(&c->btree_cache,
827                          &c->btree_cache_freeable);
828
829 #ifdef CONFIG_BCACHE_DEBUG
830         mutex_init(&c->verify_lock);
831
832         c->verify_ondisk = (void *)
833                 __get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(bucket_pages(c)));
834
835         c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
836
837         if (c->verify_data &&
838             c->verify_data->keys.set->data)
839                 list_del_init(&c->verify_data->list);
840         else
841                 c->verify_data = NULL;
842 #endif
843
844         c->shrink.count_objects = bch_mca_count;
845         c->shrink.scan_objects = bch_mca_scan;
846         c->shrink.seeks = 4;
847         c->shrink.batch = c->btree_pages * 2;
848
849         if (register_shrinker(&c->shrink))
850                 pr_warn("bcache: %s: could not register shrinker",
851                                 __func__);
852
853         return 0;
854 }
855
856 /* Btree in memory cache - hash table */
857
858 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
859 {
860         return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
861 }
862
863 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
864 {
865         struct btree *b;
866
867         rcu_read_lock();
868         hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
869                 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
870                         goto out;
871         b = NULL;
872 out:
873         rcu_read_unlock();
874         return b;
875 }
876
877 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
878 {
879         spin_lock(&c->btree_cannibalize_lock);
880         if (likely(c->btree_cache_alloc_lock == NULL)) {
881                 c->btree_cache_alloc_lock = current;
882         } else if (c->btree_cache_alloc_lock != current) {
883                 if (op)
884                         prepare_to_wait(&c->btree_cache_wait, &op->wait,
885                                         TASK_UNINTERRUPTIBLE);
886                 spin_unlock(&c->btree_cannibalize_lock);
887                 return -EINTR;
888         }
889         spin_unlock(&c->btree_cannibalize_lock);
890
891         return 0;
892 }
893
894 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
895                                      struct bkey *k)
896 {
897         struct btree *b;
898
899         trace_bcache_btree_cache_cannibalize(c);
900
901         if (mca_cannibalize_lock(c, op))
902                 return ERR_PTR(-EINTR);
903
904         list_for_each_entry_reverse(b, &c->btree_cache, list)
905                 if (!mca_reap(b, btree_order(k), false))
906                         return b;
907
908         list_for_each_entry_reverse(b, &c->btree_cache, list)
909                 if (!mca_reap(b, btree_order(k), true))
910                         return b;
911
912         WARN(1, "btree cache cannibalize failed\n");
913         return ERR_PTR(-ENOMEM);
914 }
915
916 /*
917  * We can only have one thread cannibalizing other cached btree nodes at a time,
918  * or we'll deadlock. We use an open coded mutex to ensure that, which a
919  * cannibalize_bucket() will take. This means every time we unlock the root of
920  * the btree, we need to release this lock if we have it held.
921  */
922 static void bch_cannibalize_unlock(struct cache_set *c)
923 {
924         spin_lock(&c->btree_cannibalize_lock);
925         if (c->btree_cache_alloc_lock == current) {
926                 c->btree_cache_alloc_lock = NULL;
927                 wake_up(&c->btree_cache_wait);
928         }
929         spin_unlock(&c->btree_cannibalize_lock);
930 }
931
932 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
933                                struct bkey *k, int level)
934 {
935         struct btree *b;
936
937         BUG_ON(current->bio_list);
938
939         lockdep_assert_held(&c->bucket_lock);
940
941         if (mca_find(c, k))
942                 return NULL;
943
944         /* btree_free() doesn't free memory; it sticks the node on the end of
945          * the list. Check if there's any freed nodes there:
946          */
947         list_for_each_entry(b, &c->btree_cache_freeable, list)
948                 if (!mca_reap(b, btree_order(k), false))
949                         goto out;
950
951         /* We never free struct btree itself, just the memory that holds the on
952          * disk node. Check the freed list before allocating a new one:
953          */
954         list_for_each_entry(b, &c->btree_cache_freed, list)
955                 if (!mca_reap(b, 0, false)) {
956                         mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
957                         if (!b->keys.set[0].data)
958                                 goto err;
959                         else
960                                 goto out;
961                 }
962
963         b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
964         if (!b)
965                 goto err;
966
967         BUG_ON(!down_write_trylock(&b->lock));
968         if (!b->keys.set->data)
969                 goto err;
970 out:
971         BUG_ON(b->io_mutex.count != 1);
972
973         bkey_copy(&b->key, k);
974         list_move(&b->list, &c->btree_cache);
975         hlist_del_init_rcu(&b->hash);
976         hlist_add_head_rcu(&b->hash, mca_hash(c, k));
977
978         lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
979         b->parent       = (void *) ~0UL;
980         b->flags        = 0;
981         b->written      = 0;
982         b->level        = level;
983
984         if (!b->level)
985                 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
986                                     &b->c->expensive_debug_checks);
987         else
988                 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
989                                     &b->c->expensive_debug_checks);
990
991         return b;
992 err:
993         if (b)
994                 rw_unlock(true, b);
995
996         b = mca_cannibalize(c, op, k);
997         if (!IS_ERR(b))
998                 goto out;
999
1000         return b;
1001 }
1002
1003 /*
1004  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1005  * in from disk if necessary.
1006  *
1007  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1008  *
1009  * The btree node will have either a read or a write lock held, depending on
1010  * level and op->lock.
1011  *
1012  * Note: Only error code or btree pointer will be returned, it is unncessary
1013  *       for callers to check NULL pointer.
1014  */
1015 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1016                                  struct bkey *k, int level, bool write,
1017                                  struct btree *parent)
1018 {
1019         int i = 0;
1020         struct btree *b;
1021
1022         BUG_ON(level < 0);
1023 retry:
1024         b = mca_find(c, k);
1025
1026         if (!b) {
1027                 if (current->bio_list)
1028                         return ERR_PTR(-EAGAIN);
1029
1030                 mutex_lock(&c->bucket_lock);
1031                 b = mca_alloc(c, op, k, level);
1032                 mutex_unlock(&c->bucket_lock);
1033
1034                 if (!b)
1035                         goto retry;
1036                 if (IS_ERR(b))
1037                         return b;
1038
1039                 bch_btree_node_read(b);
1040
1041                 if (!write)
1042                         downgrade_write(&b->lock);
1043         } else {
1044                 rw_lock(write, b, level);
1045                 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1046                         rw_unlock(write, b);
1047                         goto retry;
1048                 }
1049                 BUG_ON(b->level != level);
1050         }
1051
1052         if (btree_node_io_error(b)) {
1053                 rw_unlock(write, b);
1054                 return ERR_PTR(-EIO);
1055         }
1056
1057         BUG_ON(!b->written);
1058
1059         b->parent = parent;
1060         b->accessed = 1;
1061
1062         for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1063                 prefetch(b->keys.set[i].tree);
1064                 prefetch(b->keys.set[i].data);
1065         }
1066
1067         for (; i <= b->keys.nsets; i++)
1068                 prefetch(b->keys.set[i].data);
1069
1070         return b;
1071 }
1072
1073 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1074 {
1075         struct btree *b;
1076
1077         mutex_lock(&parent->c->bucket_lock);
1078         b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1079         mutex_unlock(&parent->c->bucket_lock);
1080
1081         if (!IS_ERR_OR_NULL(b)) {
1082                 b->parent = parent;
1083                 bch_btree_node_read(b);
1084                 rw_unlock(true, b);
1085         }
1086 }
1087
1088 /* Btree alloc */
1089
1090 static void btree_node_free(struct btree *b)
1091 {
1092         trace_bcache_btree_node_free(b);
1093
1094         BUG_ON(b == b->c->root);
1095
1096 retry:
1097         mutex_lock(&b->write_lock);
1098         /*
1099          * If the btree node is selected and flushing in btree_flush_write(),
1100          * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1101          * then it is safe to free the btree node here. Otherwise this btree
1102          * node will be in race condition.
1103          */
1104         if (btree_node_journal_flush(b)) {
1105                 mutex_unlock(&b->write_lock);
1106                 pr_debug("bnode %p journal_flush set, retry", b);
1107                 udelay(1);
1108                 goto retry;
1109         }
1110
1111         if (btree_node_dirty(b)) {
1112                 btree_complete_write(b, btree_current_write(b));
1113                 clear_bit(BTREE_NODE_dirty, &b->flags);
1114         }
1115
1116         mutex_unlock(&b->write_lock);
1117
1118         cancel_delayed_work(&b->work);
1119
1120         mutex_lock(&b->c->bucket_lock);
1121         bch_bucket_free(b->c, &b->key);
1122         mca_bucket_free(b);
1123         mutex_unlock(&b->c->bucket_lock);
1124 }
1125
1126 /*
1127  * Only error code or btree pointer will be returned, it is unncessary for
1128  * callers to check NULL pointer.
1129  */
1130 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1131                                      int level, bool wait,
1132                                      struct btree *parent)
1133 {
1134         BKEY_PADDED(key) k;
1135         struct btree *b;
1136
1137         mutex_lock(&c->bucket_lock);
1138 retry:
1139         /* return ERR_PTR(-EAGAIN) when it fails */
1140         b = ERR_PTR(-EAGAIN);
1141         if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1142                 goto err;
1143
1144         bkey_put(c, &k.key);
1145         SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1146
1147         b = mca_alloc(c, op, &k.key, level);
1148         if (IS_ERR(b))
1149                 goto err_free;
1150
1151         if (!b) {
1152                 cache_bug(c,
1153                         "Tried to allocate bucket that was in btree cache");
1154                 goto retry;
1155         }
1156
1157         b->accessed = 1;
1158         b->parent = parent;
1159         bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1160
1161         mutex_unlock(&c->bucket_lock);
1162
1163         trace_bcache_btree_node_alloc(b);
1164         return b;
1165 err_free:
1166         bch_bucket_free(c, &k.key);
1167 err:
1168         mutex_unlock(&c->bucket_lock);
1169
1170         trace_bcache_btree_node_alloc_fail(c);
1171         return b;
1172 }
1173
1174 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1175                                           struct btree_op *op, int level,
1176                                           struct btree *parent)
1177 {
1178         return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1179 }
1180
1181 static struct btree *btree_node_alloc_replacement(struct btree *b,
1182                                                   struct btree_op *op)
1183 {
1184         struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1185
1186         if (!IS_ERR(n)) {
1187                 mutex_lock(&n->write_lock);
1188                 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1189                 bkey_copy_key(&n->key, &b->key);
1190                 mutex_unlock(&n->write_lock);
1191         }
1192
1193         return n;
1194 }
1195
1196 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1197 {
1198         unsigned int i;
1199
1200         mutex_lock(&b->c->bucket_lock);
1201
1202         atomic_inc(&b->c->prio_blocked);
1203
1204         bkey_copy(k, &b->key);
1205         bkey_copy_key(k, &ZERO_KEY);
1206
1207         for (i = 0; i < KEY_PTRS(k); i++)
1208                 SET_PTR_GEN(k, i,
1209                             bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1210                                         PTR_BUCKET(b->c, &b->key, i)));
1211
1212         mutex_unlock(&b->c->bucket_lock);
1213 }
1214
1215 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1216 {
1217         struct cache_set *c = b->c;
1218         struct cache *ca;
1219         unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1220
1221         mutex_lock(&c->bucket_lock);
1222
1223         for_each_cache(ca, c, i)
1224                 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1225                         if (op)
1226                                 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1227                                                 TASK_UNINTERRUPTIBLE);
1228                         mutex_unlock(&c->bucket_lock);
1229                         return -EINTR;
1230                 }
1231
1232         mutex_unlock(&c->bucket_lock);
1233
1234         return mca_cannibalize_lock(b->c, op);
1235 }
1236
1237 /* Garbage collection */
1238
1239 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1240                                     struct bkey *k)
1241 {
1242         uint8_t stale = 0;
1243         unsigned int i;
1244         struct bucket *g;
1245
1246         /*
1247          * ptr_invalid() can't return true for the keys that mark btree nodes as
1248          * freed, but since ptr_bad() returns true we'll never actually use them
1249          * for anything and thus we don't want mark their pointers here
1250          */
1251         if (!bkey_cmp(k, &ZERO_KEY))
1252                 return stale;
1253
1254         for (i = 0; i < KEY_PTRS(k); i++) {
1255                 if (!ptr_available(c, k, i))
1256                         continue;
1257
1258                 g = PTR_BUCKET(c, k, i);
1259
1260                 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1261                         g->last_gc = PTR_GEN(k, i);
1262
1263                 if (ptr_stale(c, k, i)) {
1264                         stale = max(stale, ptr_stale(c, k, i));
1265                         continue;
1266                 }
1267
1268                 cache_bug_on(GC_MARK(g) &&
1269                              (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1270                              c, "inconsistent ptrs: mark = %llu, level = %i",
1271                              GC_MARK(g), level);
1272
1273                 if (level)
1274                         SET_GC_MARK(g, GC_MARK_METADATA);
1275                 else if (KEY_DIRTY(k))
1276                         SET_GC_MARK(g, GC_MARK_DIRTY);
1277                 else if (!GC_MARK(g))
1278                         SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1279
1280                 /* guard against overflow */
1281                 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1282                                              GC_SECTORS_USED(g) + KEY_SIZE(k),
1283                                              MAX_GC_SECTORS_USED));
1284
1285                 BUG_ON(!GC_SECTORS_USED(g));
1286         }
1287
1288         return stale;
1289 }
1290
1291 #define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1292
1293 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1294 {
1295         unsigned int i;
1296
1297         for (i = 0; i < KEY_PTRS(k); i++)
1298                 if (ptr_available(c, k, i) &&
1299                     !ptr_stale(c, k, i)) {
1300                         struct bucket *b = PTR_BUCKET(c, k, i);
1301
1302                         b->gen = PTR_GEN(k, i);
1303
1304                         if (level && bkey_cmp(k, &ZERO_KEY))
1305                                 b->prio = BTREE_PRIO;
1306                         else if (!level && b->prio == BTREE_PRIO)
1307                                 b->prio = INITIAL_PRIO;
1308                 }
1309
1310         __bch_btree_mark_key(c, level, k);
1311 }
1312
1313 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1314 {
1315         stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1316 }
1317
1318 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1319 {
1320         uint8_t stale = 0;
1321         unsigned int keys = 0, good_keys = 0;
1322         struct bkey *k;
1323         struct btree_iter iter;
1324         struct bset_tree *t;
1325
1326         gc->nodes++;
1327
1328         for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1329                 stale = max(stale, btree_mark_key(b, k));
1330                 keys++;
1331
1332                 if (bch_ptr_bad(&b->keys, k))
1333                         continue;
1334
1335                 gc->key_bytes += bkey_u64s(k);
1336                 gc->nkeys++;
1337                 good_keys++;
1338
1339                 gc->data += KEY_SIZE(k);
1340         }
1341
1342         for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1343                 btree_bug_on(t->size &&
1344                              bset_written(&b->keys, t) &&
1345                              bkey_cmp(&b->key, &t->end) < 0,
1346                              b, "found short btree key in gc");
1347
1348         if (b->c->gc_always_rewrite)
1349                 return true;
1350
1351         if (stale > 10)
1352                 return true;
1353
1354         if ((keys - good_keys) * 2 > keys)
1355                 return true;
1356
1357         return false;
1358 }
1359
1360 #define GC_MERGE_NODES  4U
1361
1362 struct gc_merge_info {
1363         struct btree    *b;
1364         unsigned int    keys;
1365 };
1366
1367 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1368                                  struct keylist *insert_keys,
1369                                  atomic_t *journal_ref,
1370                                  struct bkey *replace_key);
1371
1372 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1373                              struct gc_stat *gc, struct gc_merge_info *r)
1374 {
1375         unsigned int i, nodes = 0, keys = 0, blocks;
1376         struct btree *new_nodes[GC_MERGE_NODES];
1377         struct keylist keylist;
1378         struct closure cl;
1379         struct bkey *k;
1380
1381         bch_keylist_init(&keylist);
1382
1383         if (btree_check_reserve(b, NULL))
1384                 return 0;
1385
1386         memset(new_nodes, 0, sizeof(new_nodes));
1387         closure_init_stack(&cl);
1388
1389         while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1390                 keys += r[nodes++].keys;
1391
1392         blocks = btree_default_blocks(b->c) * 2 / 3;
1393
1394         if (nodes < 2 ||
1395             __set_blocks(b->keys.set[0].data, keys,
1396                          block_bytes(b->c)) > blocks * (nodes - 1))
1397                 return 0;
1398
1399         for (i = 0; i < nodes; i++) {
1400                 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1401                 if (IS_ERR(new_nodes[i]))
1402                         goto out_nocoalesce;
1403         }
1404
1405         /*
1406          * We have to check the reserve here, after we've allocated our new
1407          * nodes, to make sure the insert below will succeed - we also check
1408          * before as an optimization to potentially avoid a bunch of expensive
1409          * allocs/sorts
1410          */
1411         if (btree_check_reserve(b, NULL))
1412                 goto out_nocoalesce;
1413
1414         for (i = 0; i < nodes; i++)
1415                 mutex_lock(&new_nodes[i]->write_lock);
1416
1417         for (i = nodes - 1; i > 0; --i) {
1418                 struct bset *n1 = btree_bset_first(new_nodes[i]);
1419                 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1420                 struct bkey *k, *last = NULL;
1421
1422                 keys = 0;
1423
1424                 if (i > 1) {
1425                         for (k = n2->start;
1426                              k < bset_bkey_last(n2);
1427                              k = bkey_next(k)) {
1428                                 if (__set_blocks(n1, n1->keys + keys +
1429                                                  bkey_u64s(k),
1430                                                  block_bytes(b->c)) > blocks)
1431                                         break;
1432
1433                                 last = k;
1434                                 keys += bkey_u64s(k);
1435                         }
1436                 } else {
1437                         /*
1438                          * Last node we're not getting rid of - we're getting
1439                          * rid of the node at r[0]. Have to try and fit all of
1440                          * the remaining keys into this node; we can't ensure
1441                          * they will always fit due to rounding and variable
1442                          * length keys (shouldn't be possible in practice,
1443                          * though)
1444                          */
1445                         if (__set_blocks(n1, n1->keys + n2->keys,
1446                                          block_bytes(b->c)) >
1447                             btree_blocks(new_nodes[i]))
1448                                 goto out_unlock_nocoalesce;
1449
1450                         keys = n2->keys;
1451                         /* Take the key of the node we're getting rid of */
1452                         last = &r->b->key;
1453                 }
1454
1455                 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1456                        btree_blocks(new_nodes[i]));
1457
1458                 if (last)
1459                         bkey_copy_key(&new_nodes[i]->key, last);
1460
1461                 memcpy(bset_bkey_last(n1),
1462                        n2->start,
1463                        (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1464
1465                 n1->keys += keys;
1466                 r[i].keys = n1->keys;
1467
1468                 memmove(n2->start,
1469                         bset_bkey_idx(n2, keys),
1470                         (void *) bset_bkey_last(n2) -
1471                         (void *) bset_bkey_idx(n2, keys));
1472
1473                 n2->keys -= keys;
1474
1475                 if (__bch_keylist_realloc(&keylist,
1476                                           bkey_u64s(&new_nodes[i]->key)))
1477                         goto out_unlock_nocoalesce;
1478
1479                 bch_btree_node_write(new_nodes[i], &cl);
1480                 bch_keylist_add(&keylist, &new_nodes[i]->key);
1481         }
1482
1483         for (i = 0; i < nodes; i++)
1484                 mutex_unlock(&new_nodes[i]->write_lock);
1485
1486         closure_sync(&cl);
1487
1488         /* We emptied out this node */
1489         BUG_ON(btree_bset_first(new_nodes[0])->keys);
1490         btree_node_free(new_nodes[0]);
1491         rw_unlock(true, new_nodes[0]);
1492         new_nodes[0] = NULL;
1493
1494         for (i = 0; i < nodes; i++) {
1495                 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1496                         goto out_nocoalesce;
1497
1498                 make_btree_freeing_key(r[i].b, keylist.top);
1499                 bch_keylist_push(&keylist);
1500         }
1501
1502         bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1503         BUG_ON(!bch_keylist_empty(&keylist));
1504
1505         for (i = 0; i < nodes; i++) {
1506                 btree_node_free(r[i].b);
1507                 rw_unlock(true, r[i].b);
1508
1509                 r[i].b = new_nodes[i];
1510         }
1511
1512         memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1513         r[nodes - 1].b = ERR_PTR(-EINTR);
1514
1515         trace_bcache_btree_gc_coalesce(nodes);
1516         gc->nodes--;
1517
1518         bch_keylist_free(&keylist);
1519
1520         /* Invalidated our iterator */
1521         return -EINTR;
1522
1523 out_unlock_nocoalesce:
1524         for (i = 0; i < nodes; i++)
1525                 mutex_unlock(&new_nodes[i]->write_lock);
1526
1527 out_nocoalesce:
1528         closure_sync(&cl);
1529         bch_keylist_free(&keylist);
1530
1531         while ((k = bch_keylist_pop(&keylist)))
1532                 if (!bkey_cmp(k, &ZERO_KEY))
1533                         atomic_dec(&b->c->prio_blocked);
1534
1535         for (i = 0; i < nodes; i++)
1536                 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1537                         btree_node_free(new_nodes[i]);
1538                         rw_unlock(true, new_nodes[i]);
1539                 }
1540         return 0;
1541 }
1542
1543 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1544                                  struct btree *replace)
1545 {
1546         struct keylist keys;
1547         struct btree *n;
1548
1549         if (btree_check_reserve(b, NULL))
1550                 return 0;
1551
1552         n = btree_node_alloc_replacement(replace, NULL);
1553         if (IS_ERR(n))
1554                 return 0;
1555
1556         /* recheck reserve after allocating replacement node */
1557         if (btree_check_reserve(b, NULL)) {
1558                 btree_node_free(n);
1559                 rw_unlock(true, n);
1560                 return 0;
1561         }
1562
1563         bch_btree_node_write_sync(n);
1564
1565         bch_keylist_init(&keys);
1566         bch_keylist_add(&keys, &n->key);
1567
1568         make_btree_freeing_key(replace, keys.top);
1569         bch_keylist_push(&keys);
1570
1571         bch_btree_insert_node(b, op, &keys, NULL, NULL);
1572         BUG_ON(!bch_keylist_empty(&keys));
1573
1574         btree_node_free(replace);
1575         rw_unlock(true, n);
1576
1577         /* Invalidated our iterator */
1578         return -EINTR;
1579 }
1580
1581 static unsigned int btree_gc_count_keys(struct btree *b)
1582 {
1583         struct bkey *k;
1584         struct btree_iter iter;
1585         unsigned int ret = 0;
1586
1587         for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1588                 ret += bkey_u64s(k);
1589
1590         return ret;
1591 }
1592
1593 static size_t btree_gc_min_nodes(struct cache_set *c)
1594 {
1595         size_t min_nodes;
1596
1597         /*
1598          * Since incremental GC would stop 100ms when front
1599          * side I/O comes, so when there are many btree nodes,
1600          * if GC only processes constant (100) nodes each time,
1601          * GC would last a long time, and the front side I/Os
1602          * would run out of the buckets (since no new bucket
1603          * can be allocated during GC), and be blocked again.
1604          * So GC should not process constant nodes, but varied
1605          * nodes according to the number of btree nodes, which
1606          * realized by dividing GC into constant(100) times,
1607          * so when there are many btree nodes, GC can process
1608          * more nodes each time, otherwise, GC will process less
1609          * nodes each time (but no less than MIN_GC_NODES)
1610          */
1611         min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1612         if (min_nodes < MIN_GC_NODES)
1613                 min_nodes = MIN_GC_NODES;
1614
1615         return min_nodes;
1616 }
1617
1618
1619 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1620                             struct closure *writes, struct gc_stat *gc)
1621 {
1622         int ret = 0;
1623         bool should_rewrite;
1624         struct bkey *k;
1625         struct btree_iter iter;
1626         struct gc_merge_info r[GC_MERGE_NODES];
1627         struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1628
1629         bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1630
1631         for (i = r; i < r + ARRAY_SIZE(r); i++)
1632                 i->b = ERR_PTR(-EINTR);
1633
1634         while (1) {
1635                 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1636                 if (k) {
1637                         r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1638                                                   true, b);
1639                         if (IS_ERR(r->b)) {
1640                                 ret = PTR_ERR(r->b);
1641                                 break;
1642                         }
1643
1644                         r->keys = btree_gc_count_keys(r->b);
1645
1646                         ret = btree_gc_coalesce(b, op, gc, r);
1647                         if (ret)
1648                                 break;
1649                 }
1650
1651                 if (!last->b)
1652                         break;
1653
1654                 if (!IS_ERR(last->b)) {
1655                         should_rewrite = btree_gc_mark_node(last->b, gc);
1656                         if (should_rewrite) {
1657                                 ret = btree_gc_rewrite_node(b, op, last->b);
1658                                 if (ret)
1659                                         break;
1660                         }
1661
1662                         if (last->b->level) {
1663                                 ret = btree_gc_recurse(last->b, op, writes, gc);
1664                                 if (ret)
1665                                         break;
1666                         }
1667
1668                         bkey_copy_key(&b->c->gc_done, &last->b->key);
1669
1670                         /*
1671                          * Must flush leaf nodes before gc ends, since replace
1672                          * operations aren't journalled
1673                          */
1674                         mutex_lock(&last->b->write_lock);
1675                         if (btree_node_dirty(last->b))
1676                                 bch_btree_node_write(last->b, writes);
1677                         mutex_unlock(&last->b->write_lock);
1678                         rw_unlock(true, last->b);
1679                 }
1680
1681                 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1682                 r->b = NULL;
1683
1684                 if (atomic_read(&b->c->search_inflight) &&
1685                     gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1686                         gc->nodes_pre =  gc->nodes;
1687                         ret = -EAGAIN;
1688                         break;
1689                 }
1690
1691                 if (need_resched()) {
1692                         ret = -EAGAIN;
1693                         break;
1694                 }
1695         }
1696
1697         for (i = r; i < r + ARRAY_SIZE(r); i++)
1698                 if (!IS_ERR_OR_NULL(i->b)) {
1699                         mutex_lock(&i->b->write_lock);
1700                         if (btree_node_dirty(i->b))
1701                                 bch_btree_node_write(i->b, writes);
1702                         mutex_unlock(&i->b->write_lock);
1703                         rw_unlock(true, i->b);
1704                 }
1705
1706         return ret;
1707 }
1708
1709 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1710                              struct closure *writes, struct gc_stat *gc)
1711 {
1712         struct btree *n = NULL;
1713         int ret = 0;
1714         bool should_rewrite;
1715
1716         should_rewrite = btree_gc_mark_node(b, gc);
1717         if (should_rewrite) {
1718                 n = btree_node_alloc_replacement(b, NULL);
1719
1720                 if (!IS_ERR(n)) {
1721                         bch_btree_node_write_sync(n);
1722
1723                         bch_btree_set_root(n);
1724                         btree_node_free(b);
1725                         rw_unlock(true, n);
1726
1727                         return -EINTR;
1728                 }
1729         }
1730
1731         __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1732
1733         if (b->level) {
1734                 ret = btree_gc_recurse(b, op, writes, gc);
1735                 if (ret)
1736                         return ret;
1737         }
1738
1739         bkey_copy_key(&b->c->gc_done, &b->key);
1740
1741         return ret;
1742 }
1743
1744 static void btree_gc_start(struct cache_set *c)
1745 {
1746         struct cache *ca;
1747         struct bucket *b;
1748         unsigned int i;
1749
1750         if (!c->gc_mark_valid)
1751                 return;
1752
1753         mutex_lock(&c->bucket_lock);
1754
1755         c->gc_mark_valid = 0;
1756         c->gc_done = ZERO_KEY;
1757
1758         for_each_cache(ca, c, i)
1759                 for_each_bucket(b, ca) {
1760                         b->last_gc = b->gen;
1761                         if (!atomic_read(&b->pin)) {
1762                                 SET_GC_MARK(b, 0);
1763                                 SET_GC_SECTORS_USED(b, 0);
1764                         }
1765                 }
1766
1767         mutex_unlock(&c->bucket_lock);
1768 }
1769
1770 static void bch_btree_gc_finish(struct cache_set *c)
1771 {
1772         struct bucket *b;
1773         struct cache *ca;
1774         unsigned int i;
1775
1776         mutex_lock(&c->bucket_lock);
1777
1778         set_gc_sectors(c);
1779         c->gc_mark_valid = 1;
1780         c->need_gc      = 0;
1781
1782         for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1783                 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1784                             GC_MARK_METADATA);
1785
1786         /* don't reclaim buckets to which writeback keys point */
1787         rcu_read_lock();
1788         for (i = 0; i < c->devices_max_used; i++) {
1789                 struct bcache_device *d = c->devices[i];
1790                 struct cached_dev *dc;
1791                 struct keybuf_key *w, *n;
1792                 unsigned int j;
1793
1794                 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1795                         continue;
1796                 dc = container_of(d, struct cached_dev, disk);
1797
1798                 spin_lock(&dc->writeback_keys.lock);
1799                 rbtree_postorder_for_each_entry_safe(w, n,
1800                                         &dc->writeback_keys.keys, node)
1801                         for (j = 0; j < KEY_PTRS(&w->key); j++)
1802                                 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1803                                             GC_MARK_DIRTY);
1804                 spin_unlock(&dc->writeback_keys.lock);
1805         }
1806         rcu_read_unlock();
1807
1808         c->avail_nbuckets = 0;
1809         for_each_cache(ca, c, i) {
1810                 uint64_t *i;
1811
1812                 ca->invalidate_needs_gc = 0;
1813
1814                 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1815                         SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1816
1817                 for (i = ca->prio_buckets;
1818                      i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1819                         SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1820
1821                 for_each_bucket(b, ca) {
1822                         c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1823
1824                         if (atomic_read(&b->pin))
1825                                 continue;
1826
1827                         BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1828
1829                         if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1830                                 c->avail_nbuckets++;
1831                 }
1832         }
1833
1834         mutex_unlock(&c->bucket_lock);
1835 }
1836
1837 static void bch_btree_gc(struct cache_set *c)
1838 {
1839         int ret;
1840         struct gc_stat stats;
1841         struct closure writes;
1842         struct btree_op op;
1843         uint64_t start_time = local_clock();
1844
1845         trace_bcache_gc_start(c);
1846
1847         memset(&stats, 0, sizeof(struct gc_stat));
1848         closure_init_stack(&writes);
1849         bch_btree_op_init(&op, SHRT_MAX);
1850
1851         btree_gc_start(c);
1852
1853         /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1854         do {
1855                 ret = btree_root(gc_root, c, &op, &writes, &stats);
1856                 closure_sync(&writes);
1857                 cond_resched();
1858
1859                 if (ret == -EAGAIN)
1860                         schedule_timeout_interruptible(msecs_to_jiffies
1861                                                        (GC_SLEEP_MS));
1862                 else if (ret)
1863                         pr_warn("gc failed!");
1864         } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1865
1866         bch_btree_gc_finish(c);
1867         wake_up_allocators(c);
1868
1869         bch_time_stats_update(&c->btree_gc_time, start_time);
1870
1871         stats.key_bytes *= sizeof(uint64_t);
1872         stats.data      <<= 9;
1873         bch_update_bucket_in_use(c, &stats);
1874         memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1875
1876         trace_bcache_gc_end(c);
1877
1878         bch_moving_gc(c);
1879 }
1880
1881 static bool gc_should_run(struct cache_set *c)
1882 {
1883         struct cache *ca;
1884         unsigned int i;
1885
1886         for_each_cache(ca, c, i)
1887                 if (ca->invalidate_needs_gc)
1888                         return true;
1889
1890         if (atomic_read(&c->sectors_to_gc) < 0)
1891                 return true;
1892
1893         return false;
1894 }
1895
1896 static int bch_gc_thread(void *arg)
1897 {
1898         struct cache_set *c = arg;
1899
1900         while (1) {
1901                 wait_event_interruptible(c->gc_wait,
1902                            kthread_should_stop() ||
1903                            test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1904                            gc_should_run(c));
1905
1906                 if (kthread_should_stop() ||
1907                     test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1908                         break;
1909
1910                 set_gc_sectors(c);
1911                 bch_btree_gc(c);
1912         }
1913
1914         wait_for_kthread_stop();
1915         return 0;
1916 }
1917
1918 int bch_gc_thread_start(struct cache_set *c)
1919 {
1920         c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1921         return PTR_ERR_OR_ZERO(c->gc_thread);
1922 }
1923
1924 /* Initial partial gc */
1925
1926 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1927 {
1928         int ret = 0;
1929         struct bkey *k, *p = NULL;
1930         struct btree_iter iter;
1931
1932         for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1933                 bch_initial_mark_key(b->c, b->level, k);
1934
1935         bch_initial_mark_key(b->c, b->level + 1, &b->key);
1936
1937         if (b->level) {
1938                 bch_btree_iter_init(&b->keys, &iter, NULL);
1939
1940                 do {
1941                         k = bch_btree_iter_next_filter(&iter, &b->keys,
1942                                                        bch_ptr_bad);
1943                         if (k) {
1944                                 btree_node_prefetch(b, k);
1945                                 /*
1946                                  * initiallize c->gc_stats.nodes
1947                                  * for incremental GC
1948                                  */
1949                                 b->c->gc_stats.nodes++;
1950                         }
1951
1952                         if (p)
1953                                 ret = btree(check_recurse, p, b, op);
1954
1955                         p = k;
1956                 } while (p && !ret);
1957         }
1958
1959         return ret;
1960 }
1961
1962 int bch_btree_check(struct cache_set *c)
1963 {
1964         struct btree_op op;
1965
1966         bch_btree_op_init(&op, SHRT_MAX);
1967
1968         return btree_root(check_recurse, c, &op);
1969 }
1970
1971 void bch_initial_gc_finish(struct cache_set *c)
1972 {
1973         struct cache *ca;
1974         struct bucket *b;
1975         unsigned int i;
1976
1977         bch_btree_gc_finish(c);
1978
1979         mutex_lock(&c->bucket_lock);
1980
1981         /*
1982          * We need to put some unused buckets directly on the prio freelist in
1983          * order to get the allocator thread started - it needs freed buckets in
1984          * order to rewrite the prios and gens, and it needs to rewrite prios
1985          * and gens in order to free buckets.
1986          *
1987          * This is only safe for buckets that have no live data in them, which
1988          * there should always be some of.
1989          */
1990         for_each_cache(ca, c, i) {
1991                 for_each_bucket(b, ca) {
1992                         if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1993                             fifo_full(&ca->free[RESERVE_BTREE]))
1994                                 break;
1995
1996                         if (bch_can_invalidate_bucket(ca, b) &&
1997                             !GC_MARK(b)) {
1998                                 __bch_invalidate_one_bucket(ca, b);
1999                                 if (!fifo_push(&ca->free[RESERVE_PRIO],
2000                                    b - ca->buckets))
2001                                         fifo_push(&ca->free[RESERVE_BTREE],
2002                                                   b - ca->buckets);
2003                         }
2004                 }
2005         }
2006
2007         mutex_unlock(&c->bucket_lock);
2008 }
2009
2010 /* Btree insertion */
2011
2012 static bool btree_insert_key(struct btree *b, struct bkey *k,
2013                              struct bkey *replace_key)
2014 {
2015         unsigned int status;
2016
2017         BUG_ON(bkey_cmp(k, &b->key) > 0);
2018
2019         status = bch_btree_insert_key(&b->keys, k, replace_key);
2020         if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2021                 bch_check_keys(&b->keys, "%u for %s", status,
2022                                replace_key ? "replace" : "insert");
2023
2024                 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2025                                               status);
2026                 return true;
2027         } else
2028                 return false;
2029 }
2030
2031 static size_t insert_u64s_remaining(struct btree *b)
2032 {
2033         long ret = bch_btree_keys_u64s_remaining(&b->keys);
2034
2035         /*
2036          * Might land in the middle of an existing extent and have to split it
2037          */
2038         if (b->keys.ops->is_extents)
2039                 ret -= KEY_MAX_U64S;
2040
2041         return max(ret, 0L);
2042 }
2043
2044 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2045                                   struct keylist *insert_keys,
2046                                   struct bkey *replace_key)
2047 {
2048         bool ret = false;
2049         int oldsize = bch_count_data(&b->keys);
2050
2051         while (!bch_keylist_empty(insert_keys)) {
2052                 struct bkey *k = insert_keys->keys;
2053
2054                 if (bkey_u64s(k) > insert_u64s_remaining(b))
2055                         break;
2056
2057                 if (bkey_cmp(k, &b->key) <= 0) {
2058                         if (!b->level)
2059                                 bkey_put(b->c, k);
2060
2061                         ret |= btree_insert_key(b, k, replace_key);
2062                         bch_keylist_pop_front(insert_keys);
2063                 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2064                         BKEY_PADDED(key) temp;
2065                         bkey_copy(&temp.key, insert_keys->keys);
2066
2067                         bch_cut_back(&b->key, &temp.key);
2068                         bch_cut_front(&b->key, insert_keys->keys);
2069
2070                         ret |= btree_insert_key(b, &temp.key, replace_key);
2071                         break;
2072                 } else {
2073                         break;
2074                 }
2075         }
2076
2077         if (!ret)
2078                 op->insert_collision = true;
2079
2080         BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2081
2082         BUG_ON(bch_count_data(&b->keys) < oldsize);
2083         return ret;
2084 }
2085
2086 static int btree_split(struct btree *b, struct btree_op *op,
2087                        struct keylist *insert_keys,
2088                        struct bkey *replace_key)
2089 {
2090         bool split;
2091         struct btree *n1, *n2 = NULL, *n3 = NULL;
2092         uint64_t start_time = local_clock();
2093         struct closure cl;
2094         struct keylist parent_keys;
2095
2096         closure_init_stack(&cl);
2097         bch_keylist_init(&parent_keys);
2098
2099         if (btree_check_reserve(b, op)) {
2100                 if (!b->level)
2101                         return -EINTR;
2102                 else
2103                         WARN(1, "insufficient reserve for split\n");
2104         }
2105
2106         n1 = btree_node_alloc_replacement(b, op);
2107         if (IS_ERR(n1))
2108                 goto err;
2109
2110         split = set_blocks(btree_bset_first(n1),
2111                            block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2112
2113         if (split) {
2114                 unsigned int keys = 0;
2115
2116                 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2117
2118                 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2119                 if (IS_ERR(n2))
2120                         goto err_free1;
2121
2122                 if (!b->parent) {
2123                         n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2124                         if (IS_ERR(n3))
2125                                 goto err_free2;
2126                 }
2127
2128                 mutex_lock(&n1->write_lock);
2129                 mutex_lock(&n2->write_lock);
2130
2131                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2132
2133                 /*
2134                  * Has to be a linear search because we don't have an auxiliary
2135                  * search tree yet
2136                  */
2137
2138                 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2139                         keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2140                                                         keys));
2141
2142                 bkey_copy_key(&n1->key,
2143                               bset_bkey_idx(btree_bset_first(n1), keys));
2144                 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2145
2146                 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2147                 btree_bset_first(n1)->keys = keys;
2148
2149                 memcpy(btree_bset_first(n2)->start,
2150                        bset_bkey_last(btree_bset_first(n1)),
2151                        btree_bset_first(n2)->keys * sizeof(uint64_t));
2152
2153                 bkey_copy_key(&n2->key, &b->key);
2154
2155                 bch_keylist_add(&parent_keys, &n2->key);
2156                 bch_btree_node_write(n2, &cl);
2157                 mutex_unlock(&n2->write_lock);
2158                 rw_unlock(true, n2);
2159         } else {
2160                 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2161
2162                 mutex_lock(&n1->write_lock);
2163                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2164         }
2165
2166         bch_keylist_add(&parent_keys, &n1->key);
2167         bch_btree_node_write(n1, &cl);
2168         mutex_unlock(&n1->write_lock);
2169
2170         if (n3) {
2171                 /* Depth increases, make a new root */
2172                 mutex_lock(&n3->write_lock);
2173                 bkey_copy_key(&n3->key, &MAX_KEY);
2174                 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2175                 bch_btree_node_write(n3, &cl);
2176                 mutex_unlock(&n3->write_lock);
2177
2178                 closure_sync(&cl);
2179                 bch_btree_set_root(n3);
2180                 rw_unlock(true, n3);
2181         } else if (!b->parent) {
2182                 /* Root filled up but didn't need to be split */
2183                 closure_sync(&cl);
2184                 bch_btree_set_root(n1);
2185         } else {
2186                 /* Split a non root node */
2187                 closure_sync(&cl);
2188                 make_btree_freeing_key(b, parent_keys.top);
2189                 bch_keylist_push(&parent_keys);
2190
2191                 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2192                 BUG_ON(!bch_keylist_empty(&parent_keys));
2193         }
2194
2195         btree_node_free(b);
2196         rw_unlock(true, n1);
2197
2198         bch_time_stats_update(&b->c->btree_split_time, start_time);
2199
2200         return 0;
2201 err_free2:
2202         bkey_put(b->c, &n2->key);
2203         btree_node_free(n2);
2204         rw_unlock(true, n2);
2205 err_free1:
2206         bkey_put(b->c, &n1->key);
2207         btree_node_free(n1);
2208         rw_unlock(true, n1);
2209 err:
2210         WARN(1, "bcache: btree split failed (level %u)", b->level);
2211
2212         if (n3 == ERR_PTR(-EAGAIN) ||
2213             n2 == ERR_PTR(-EAGAIN) ||
2214             n1 == ERR_PTR(-EAGAIN))
2215                 return -EAGAIN;
2216
2217         return -ENOMEM;
2218 }
2219
2220 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2221                                  struct keylist *insert_keys,
2222                                  atomic_t *journal_ref,
2223                                  struct bkey *replace_key)
2224 {
2225         struct closure cl;
2226
2227         BUG_ON(b->level && replace_key);
2228
2229         closure_init_stack(&cl);
2230
2231         mutex_lock(&b->write_lock);
2232
2233         if (write_block(b) != btree_bset_last(b) &&
2234             b->keys.last_set_unwritten)
2235                 bch_btree_init_next(b); /* just wrote a set */
2236
2237         if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2238                 mutex_unlock(&b->write_lock);
2239                 goto split;
2240         }
2241
2242         BUG_ON(write_block(b) != btree_bset_last(b));
2243
2244         if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2245                 if (!b->level)
2246                         bch_btree_leaf_dirty(b, journal_ref);
2247                 else
2248                         bch_btree_node_write(b, &cl);
2249         }
2250
2251         mutex_unlock(&b->write_lock);
2252
2253         /* wait for btree node write if necessary, after unlock */
2254         closure_sync(&cl);
2255
2256         return 0;
2257 split:
2258         if (current->bio_list) {
2259                 op->lock = b->c->root->level + 1;
2260                 return -EAGAIN;
2261         } else if (op->lock <= b->c->root->level) {
2262                 op->lock = b->c->root->level + 1;
2263                 return -EINTR;
2264         } else {
2265                 /* Invalidated all iterators */
2266                 int ret = btree_split(b, op, insert_keys, replace_key);
2267
2268                 if (bch_keylist_empty(insert_keys))
2269                         return 0;
2270                 else if (!ret)
2271                         return -EINTR;
2272                 return ret;
2273         }
2274 }
2275
2276 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2277                                struct bkey *check_key)
2278 {
2279         int ret = -EINTR;
2280         uint64_t btree_ptr = b->key.ptr[0];
2281         unsigned long seq = b->seq;
2282         struct keylist insert;
2283         bool upgrade = op->lock == -1;
2284
2285         bch_keylist_init(&insert);
2286
2287         if (upgrade) {
2288                 rw_unlock(false, b);
2289                 rw_lock(true, b, b->level);
2290
2291                 if (b->key.ptr[0] != btree_ptr ||
2292                     b->seq != seq + 1) {
2293                         op->lock = b->level;
2294                         goto out;
2295                 }
2296         }
2297
2298         SET_KEY_PTRS(check_key, 1);
2299         get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2300
2301         SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2302
2303         bch_keylist_add(&insert, check_key);
2304
2305         ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2306
2307         BUG_ON(!ret && !bch_keylist_empty(&insert));
2308 out:
2309         if (upgrade)
2310                 downgrade_write(&b->lock);
2311         return ret;
2312 }
2313
2314 struct btree_insert_op {
2315         struct btree_op op;
2316         struct keylist  *keys;
2317         atomic_t        *journal_ref;
2318         struct bkey     *replace_key;
2319 };
2320
2321 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2322 {
2323         struct btree_insert_op *op = container_of(b_op,
2324                                         struct btree_insert_op, op);
2325
2326         int ret = bch_btree_insert_node(b, &op->op, op->keys,
2327                                         op->journal_ref, op->replace_key);
2328         if (ret && !bch_keylist_empty(op->keys))
2329                 return ret;
2330         else
2331                 return MAP_DONE;
2332 }
2333
2334 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2335                      atomic_t *journal_ref, struct bkey *replace_key)
2336 {
2337         struct btree_insert_op op;
2338         int ret = 0;
2339
2340         BUG_ON(current->bio_list);
2341         BUG_ON(bch_keylist_empty(keys));
2342
2343         bch_btree_op_init(&op.op, 0);
2344         op.keys         = keys;
2345         op.journal_ref  = journal_ref;
2346         op.replace_key  = replace_key;
2347
2348         while (!ret && !bch_keylist_empty(keys)) {
2349                 op.op.lock = 0;
2350                 ret = bch_btree_map_leaf_nodes(&op.op, c,
2351                                                &START_KEY(keys->keys),
2352                                                btree_insert_fn);
2353         }
2354
2355         if (ret) {
2356                 struct bkey *k;
2357
2358                 pr_err("error %i", ret);
2359
2360                 while ((k = bch_keylist_pop(keys)))
2361                         bkey_put(c, k);
2362         } else if (op.op.insert_collision)
2363                 ret = -ESRCH;
2364
2365         return ret;
2366 }
2367
2368 void bch_btree_set_root(struct btree *b)
2369 {
2370         unsigned int i;
2371         struct closure cl;
2372
2373         closure_init_stack(&cl);
2374
2375         trace_bcache_btree_set_root(b);
2376
2377         BUG_ON(!b->written);
2378
2379         for (i = 0; i < KEY_PTRS(&b->key); i++)
2380                 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2381
2382         mutex_lock(&b->c->bucket_lock);
2383         list_del_init(&b->list);
2384         mutex_unlock(&b->c->bucket_lock);
2385
2386         b->c->root = b;
2387
2388         bch_journal_meta(b->c, &cl);
2389         closure_sync(&cl);
2390 }
2391
2392 /* Map across nodes or keys */
2393
2394 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2395                                        struct bkey *from,
2396                                        btree_map_nodes_fn *fn, int flags)
2397 {
2398         int ret = MAP_CONTINUE;
2399
2400         if (b->level) {
2401                 struct bkey *k;
2402                 struct btree_iter iter;
2403
2404                 bch_btree_iter_init(&b->keys, &iter, from);
2405
2406                 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2407                                                        bch_ptr_bad))) {
2408                         ret = btree(map_nodes_recurse, k, b,
2409                                     op, from, fn, flags);
2410                         from = NULL;
2411
2412                         if (ret != MAP_CONTINUE)
2413                                 return ret;
2414                 }
2415         }
2416
2417         if (!b->level || flags == MAP_ALL_NODES)
2418                 ret = fn(op, b);
2419
2420         return ret;
2421 }
2422
2423 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2424                           struct bkey *from, btree_map_nodes_fn *fn, int flags)
2425 {
2426         return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2427 }
2428
2429 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2430                                       struct bkey *from, btree_map_keys_fn *fn,
2431                                       int flags)
2432 {
2433         int ret = MAP_CONTINUE;
2434         struct bkey *k;
2435         struct btree_iter iter;
2436
2437         bch_btree_iter_init(&b->keys, &iter, from);
2438
2439         while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2440                 ret = !b->level
2441                         ? fn(op, b, k)
2442                         : btree(map_keys_recurse, k, b, op, from, fn, flags);
2443                 from = NULL;
2444
2445                 if (ret != MAP_CONTINUE)
2446                         return ret;
2447         }
2448
2449         if (!b->level && (flags & MAP_END_KEY))
2450                 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2451                                      KEY_OFFSET(&b->key), 0));
2452
2453         return ret;
2454 }
2455
2456 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2457                        struct bkey *from, btree_map_keys_fn *fn, int flags)
2458 {
2459         return btree_root(map_keys_recurse, c, op, from, fn, flags);
2460 }
2461
2462 /* Keybuf code */
2463
2464 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2465 {
2466         /* Overlapping keys compare equal */
2467         if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2468                 return -1;
2469         if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2470                 return 1;
2471         return 0;
2472 }
2473
2474 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2475                                             struct keybuf_key *r)
2476 {
2477         return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2478 }
2479
2480 struct refill {
2481         struct btree_op op;
2482         unsigned int    nr_found;
2483         struct keybuf   *buf;
2484         struct bkey     *end;
2485         keybuf_pred_fn  *pred;
2486 };
2487
2488 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2489                             struct bkey *k)
2490 {
2491         struct refill *refill = container_of(op, struct refill, op);
2492         struct keybuf *buf = refill->buf;
2493         int ret = MAP_CONTINUE;
2494
2495         if (bkey_cmp(k, refill->end) > 0) {
2496                 ret = MAP_DONE;
2497                 goto out;
2498         }
2499
2500         if (!KEY_SIZE(k)) /* end key */
2501                 goto out;
2502
2503         if (refill->pred(buf, k)) {
2504                 struct keybuf_key *w;
2505
2506                 spin_lock(&buf->lock);
2507
2508                 w = array_alloc(&buf->freelist);
2509                 if (!w) {
2510                         spin_unlock(&buf->lock);
2511                         return MAP_DONE;
2512                 }
2513
2514                 w->private = NULL;
2515                 bkey_copy(&w->key, k);
2516
2517                 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2518                         array_free(&buf->freelist, w);
2519                 else
2520                         refill->nr_found++;
2521
2522                 if (array_freelist_empty(&buf->freelist))
2523                         ret = MAP_DONE;
2524
2525                 spin_unlock(&buf->lock);
2526         }
2527 out:
2528         buf->last_scanned = *k;
2529         return ret;
2530 }
2531
2532 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2533                        struct bkey *end, keybuf_pred_fn *pred)
2534 {
2535         struct bkey start = buf->last_scanned;
2536         struct refill refill;
2537
2538         cond_resched();
2539
2540         bch_btree_op_init(&refill.op, -1);
2541         refill.nr_found = 0;
2542         refill.buf      = buf;
2543         refill.end      = end;
2544         refill.pred     = pred;
2545
2546         bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2547                            refill_keybuf_fn, MAP_END_KEY);
2548
2549         trace_bcache_keyscan(refill.nr_found,
2550                              KEY_INODE(&start), KEY_OFFSET(&start),
2551                              KEY_INODE(&buf->last_scanned),
2552                              KEY_OFFSET(&buf->last_scanned));
2553
2554         spin_lock(&buf->lock);
2555
2556         if (!RB_EMPTY_ROOT(&buf->keys)) {
2557                 struct keybuf_key *w;
2558
2559                 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2560                 buf->start      = START_KEY(&w->key);
2561
2562                 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2563                 buf->end        = w->key;
2564         } else {
2565                 buf->start      = MAX_KEY;
2566                 buf->end        = MAX_KEY;
2567         }
2568
2569         spin_unlock(&buf->lock);
2570 }
2571
2572 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2573 {
2574         rb_erase(&w->node, &buf->keys);
2575         array_free(&buf->freelist, w);
2576 }
2577
2578 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2579 {
2580         spin_lock(&buf->lock);
2581         __bch_keybuf_del(buf, w);
2582         spin_unlock(&buf->lock);
2583 }
2584
2585 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2586                                   struct bkey *end)
2587 {
2588         bool ret = false;
2589         struct keybuf_key *p, *w, s;
2590
2591         s.key = *start;
2592
2593         if (bkey_cmp(end, &buf->start) <= 0 ||
2594             bkey_cmp(start, &buf->end) >= 0)
2595                 return false;
2596
2597         spin_lock(&buf->lock);
2598         w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2599
2600         while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2601                 p = w;
2602                 w = RB_NEXT(w, node);
2603
2604                 if (p->private)
2605                         ret = true;
2606                 else
2607                         __bch_keybuf_del(buf, p);
2608         }
2609
2610         spin_unlock(&buf->lock);
2611         return ret;
2612 }
2613
2614 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2615 {
2616         struct keybuf_key *w;
2617
2618         spin_lock(&buf->lock);
2619
2620         w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2621
2622         while (w && w->private)
2623                 w = RB_NEXT(w, node);
2624
2625         if (w)
2626                 w->private = ERR_PTR(-EINTR);
2627
2628         spin_unlock(&buf->lock);
2629         return w;
2630 }
2631
2632 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2633                                           struct keybuf *buf,
2634                                           struct bkey *end,
2635                                           keybuf_pred_fn *pred)
2636 {
2637         struct keybuf_key *ret;
2638
2639         while (1) {
2640                 ret = bch_keybuf_next(buf);
2641                 if (ret)
2642                         break;
2643
2644                 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2645                         pr_debug("scan finished");
2646                         break;
2647                 }
2648
2649                 bch_refill_keybuf(c, buf, end, pred);
2650         }
2651
2652         return ret;
2653 }
2654
2655 void bch_keybuf_init(struct keybuf *buf)
2656 {
2657         buf->last_scanned       = MAX_KEY;
2658         buf->keys               = RB_ROOT;
2659
2660         spin_lock_init(&buf->lock);
2661         array_allocator_init(&buf->freelist);
2662 }