1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
43 * register_bcache: Return errors out to userspace correctly
45 * Writeback: don't undirty key until after a cache flush
47 * Create an iterator for key pointers
49 * On btree write error, mark bucket such that it won't be freed from the cache
52 * Check for bad keys in replay
54 * Refcount journal entries in journal_replay
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
68 * Add a tracepoint or somesuch to watch for writeback starvation
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
79 * Superblock needs to be fleshed out for multiple cache devices
81 * Add a sysfs tunable for the number of writeback IOs in flight
83 * Add a sysfs tunable for the number of open data buckets
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 * Test module load/unload
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
122 #define btree(fn, key, b, op, ...) \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
128 if (!IS_ERR(_child)) { \
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
132 _r = PTR_ERR(_child); \
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
140 * @op: pointer to struct btree_op
142 #define btree_root(fn, c, op, ...) \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
154 bch_cannibalize_unlock(c); \
157 } while (_r == -EINTR); \
159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
163 static inline struct bset *write_block(struct btree *b)
165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
168 static void bch_btree_init_next(struct btree *b)
170 /* If not a leaf node, always sort */
171 if (b->level && b->keys.nsets)
172 bch_btree_sort(&b->keys, &b->c->sort);
174 bch_btree_sort_lazy(&b->keys, &b->c->sort);
176 if (b->written < btree_blocks(b))
177 bch_bset_init_next(&b->keys, write_block(b),
178 bset_magic(&b->c->sb));
182 /* Btree key manipulation */
184 void bkey_put(struct cache_set *c, struct bkey *k)
188 for (i = 0; i < KEY_PTRS(k); i++)
189 if (ptr_available(c, k, i))
190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
197 uint64_t crc = b->key.ptr[0];
198 void *data = (void *) i + 8, *end = bset_bkey_last(i);
200 crc = bch_crc64_update(crc, data, end - data);
201 return crc ^ 0xffffffffffffffffULL;
204 void bch_btree_node_read_done(struct btree *b)
206 const char *err = "bad btree header";
207 struct bset *i = btree_bset_first(b);
208 struct btree_iter *iter;
210 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
211 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
214 #ifdef CONFIG_BCACHE_DEBUG
222 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
223 i = write_block(b)) {
224 err = "unsupported bset version";
225 if (i->version > BCACHE_BSET_VERSION)
228 err = "bad btree header";
229 if (b->written + set_blocks(i, block_bytes(b->c)) >
234 if (i->magic != bset_magic(&b->c->sb))
237 err = "bad checksum";
238 switch (i->version) {
240 if (i->csum != csum_set(i))
243 case BCACHE_BSET_VERSION:
244 if (i->csum != btree_csum_set(b, i))
250 if (i != b->keys.set[0].data && !i->keys)
253 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
255 b->written += set_blocks(i, block_bytes(b->c));
258 err = "corrupted btree";
259 for (i = write_block(b);
260 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
261 i = ((void *) i) + block_bytes(b->c))
262 if (i->seq == b->keys.set[0].data->seq)
265 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
267 i = b->keys.set[0].data;
268 err = "short btree key";
269 if (b->keys.set[0].size &&
270 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
273 if (b->written < btree_blocks(b))
274 bch_bset_init_next(&b->keys, write_block(b),
275 bset_magic(&b->c->sb));
277 mempool_free(iter, &b->c->fill_iter);
280 set_btree_node_io_error(b);
281 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
282 err, PTR_BUCKET_NR(b->c, &b->key, 0),
283 bset_block_offset(b, i), i->keys);
287 static void btree_node_read_endio(struct bio *bio)
289 struct closure *cl = bio->bi_private;
294 static void bch_btree_node_read(struct btree *b)
296 uint64_t start_time = local_clock();
300 trace_bcache_btree_read(b);
302 closure_init_stack(&cl);
304 bio = bch_bbio_alloc(b->c);
305 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
306 bio->bi_end_io = btree_node_read_endio;
307 bio->bi_private = &cl;
308 bio->bi_opf = REQ_OP_READ | REQ_META;
310 bch_bio_map(bio, b->keys.set[0].data);
312 bch_submit_bbio(bio, b->c, &b->key, 0);
316 set_btree_node_io_error(b);
318 bch_bbio_free(bio, b->c);
320 if (btree_node_io_error(b))
323 bch_btree_node_read_done(b);
324 bch_time_stats_update(&b->c->btree_read_time, start_time);
328 bch_cache_set_error(b->c, "io error reading bucket %zu",
329 PTR_BUCKET_NR(b->c, &b->key, 0));
332 static void btree_complete_write(struct btree *b, struct btree_write *w)
334 if (w->prio_blocked &&
335 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
336 wake_up_allocators(b->c);
339 atomic_dec_bug(w->journal);
340 __closure_wake_up(&b->c->journal.wait);
347 static void btree_node_write_unlock(struct closure *cl)
349 struct btree *b = container_of(cl, struct btree, io);
354 static void __btree_node_write_done(struct closure *cl)
356 struct btree *b = container_of(cl, struct btree, io);
357 struct btree_write *w = btree_prev_write(b);
359 bch_bbio_free(b->bio, b->c);
361 btree_complete_write(b, w);
363 if (btree_node_dirty(b))
364 schedule_delayed_work(&b->work, 30 * HZ);
366 closure_return_with_destructor(cl, btree_node_write_unlock);
369 static void btree_node_write_done(struct closure *cl)
371 struct btree *b = container_of(cl, struct btree, io);
373 bio_free_pages(b->bio);
374 __btree_node_write_done(cl);
377 static void btree_node_write_endio(struct bio *bio)
379 struct closure *cl = bio->bi_private;
380 struct btree *b = container_of(cl, struct btree, io);
383 set_btree_node_io_error(b);
385 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
389 static void do_btree_node_write(struct btree *b)
391 struct closure *cl = &b->io;
392 struct bset *i = btree_bset_last(b);
395 i->version = BCACHE_BSET_VERSION;
396 i->csum = btree_csum_set(b, i);
399 b->bio = bch_bbio_alloc(b->c);
401 b->bio->bi_end_io = btree_node_write_endio;
402 b->bio->bi_private = cl;
403 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
404 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
405 bch_bio_map(b->bio, i);
408 * If we're appending to a leaf node, we don't technically need FUA -
409 * this write just needs to be persisted before the next journal write,
410 * which will be marked FLUSH|FUA.
412 * Similarly if we're writing a new btree root - the pointer is going to
413 * be in the next journal entry.
415 * But if we're writing a new btree node (that isn't a root) or
416 * appending to a non leaf btree node, we need either FUA or a flush
417 * when we write the parent with the new pointer. FUA is cheaper than a
418 * flush, and writes appending to leaf nodes aren't blocking anything so
419 * just make all btree node writes FUA to keep things sane.
422 bkey_copy(&k.key, &b->key);
423 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
424 bset_sector_offset(&b->keys, i));
426 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
429 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
431 bio_for_each_segment_all(bv, b->bio, j)
432 memcpy(page_address(bv->bv_page),
433 base + j * PAGE_SIZE, PAGE_SIZE);
435 bch_submit_bbio(b->bio, b->c, &k.key, 0);
437 continue_at(cl, btree_node_write_done, NULL);
440 * No problem for multipage bvec since the bio is
444 bch_bio_map(b->bio, i);
446 bch_submit_bbio(b->bio, b->c, &k.key, 0);
449 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
453 void __bch_btree_node_write(struct btree *b, struct closure *parent)
455 struct bset *i = btree_bset_last(b);
457 lockdep_assert_held(&b->write_lock);
459 trace_bcache_btree_write(b);
461 BUG_ON(current->bio_list);
462 BUG_ON(b->written >= btree_blocks(b));
463 BUG_ON(b->written && !i->keys);
464 BUG_ON(btree_bset_first(b)->seq != i->seq);
465 bch_check_keys(&b->keys, "writing");
467 cancel_delayed_work(&b->work);
469 /* If caller isn't waiting for write, parent refcount is cache set */
471 closure_init(&b->io, parent ?: &b->c->cl);
473 clear_bit(BTREE_NODE_dirty, &b->flags);
474 change_bit(BTREE_NODE_write_idx, &b->flags);
476 do_btree_node_write(b);
478 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
479 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
481 b->written += set_blocks(i, block_bytes(b->c));
484 void bch_btree_node_write(struct btree *b, struct closure *parent)
486 unsigned int nsets = b->keys.nsets;
488 lockdep_assert_held(&b->lock);
490 __bch_btree_node_write(b, parent);
493 * do verify if there was more than one set initially (i.e. we did a
494 * sort) and we sorted down to a single set:
496 if (nsets && !b->keys.nsets)
499 bch_btree_init_next(b);
502 static void bch_btree_node_write_sync(struct btree *b)
506 closure_init_stack(&cl);
508 mutex_lock(&b->write_lock);
509 bch_btree_node_write(b, &cl);
510 mutex_unlock(&b->write_lock);
515 static void btree_node_write_work(struct work_struct *w)
517 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
519 mutex_lock(&b->write_lock);
520 if (btree_node_dirty(b))
521 __bch_btree_node_write(b, NULL);
522 mutex_unlock(&b->write_lock);
525 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
527 struct bset *i = btree_bset_last(b);
528 struct btree_write *w = btree_current_write(b);
530 lockdep_assert_held(&b->write_lock);
535 if (!btree_node_dirty(b))
536 schedule_delayed_work(&b->work, 30 * HZ);
538 set_btree_node_dirty(b);
542 journal_pin_cmp(b->c, w->journal, journal_ref)) {
543 atomic_dec_bug(w->journal);
548 w->journal = journal_ref;
549 atomic_inc(w->journal);
553 /* Force write if set is too big */
554 if (set_bytes(i) > PAGE_SIZE - 48 &&
556 bch_btree_node_write(b, NULL);
560 * Btree in memory cache - allocation/freeing
561 * mca -> memory cache
564 #define mca_reserve(c) (((c->root && c->root->level) \
565 ? c->root->level : 1) * 8 + 16)
566 #define mca_can_free(c) \
567 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
569 static void mca_data_free(struct btree *b)
571 BUG_ON(b->io_mutex.count != 1);
573 bch_btree_keys_free(&b->keys);
575 b->c->btree_cache_used--;
576 list_move(&b->list, &b->c->btree_cache_freed);
579 static void mca_bucket_free(struct btree *b)
581 BUG_ON(btree_node_dirty(b));
584 hlist_del_init_rcu(&b->hash);
585 list_move(&b->list, &b->c->btree_cache_freeable);
588 static unsigned int btree_order(struct bkey *k)
590 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
593 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
595 if (!bch_btree_keys_alloc(&b->keys,
597 ilog2(b->c->btree_pages),
600 b->c->btree_cache_used++;
601 list_move(&b->list, &b->c->btree_cache);
603 list_move(&b->list, &b->c->btree_cache_freed);
607 static struct btree *mca_bucket_alloc(struct cache_set *c,
608 struct bkey *k, gfp_t gfp)
610 struct btree *b = kzalloc(sizeof(struct btree), gfp);
615 init_rwsem(&b->lock);
616 lockdep_set_novalidate_class(&b->lock);
617 mutex_init(&b->write_lock);
618 lockdep_set_novalidate_class(&b->write_lock);
619 INIT_LIST_HEAD(&b->list);
620 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
622 sema_init(&b->io_mutex, 1);
624 mca_data_alloc(b, k, gfp);
628 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
632 closure_init_stack(&cl);
633 lockdep_assert_held(&b->c->bucket_lock);
635 if (!down_write_trylock(&b->lock))
638 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
640 if (b->keys.page_order < min_order)
644 if (btree_node_dirty(b))
647 if (down_trylock(&b->io_mutex))
654 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
655 * __bch_btree_node_write(). To avoid an extra flush, acquire
656 * b->write_lock before checking BTREE_NODE_dirty bit.
658 mutex_lock(&b->write_lock);
660 * If this btree node is selected in btree_flush_write() by journal
661 * code, delay and retry until the node is flushed by journal code
662 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
664 if (btree_node_journal_flush(b)) {
665 pr_debug("bnode %p is flushing by journal, retry", b);
666 mutex_unlock(&b->write_lock);
671 if (btree_node_dirty(b))
672 __bch_btree_node_write(b, &cl);
673 mutex_unlock(&b->write_lock);
677 /* wait for any in flight btree write */
687 static unsigned long bch_mca_scan(struct shrinker *shrink,
688 struct shrink_control *sc)
690 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
692 unsigned long i, nr = sc->nr_to_scan;
693 unsigned long freed = 0;
694 unsigned int btree_cache_used;
696 if (c->shrinker_disabled)
699 if (c->btree_cache_alloc_lock)
702 /* Return -1 if we can't do anything right now */
703 if (sc->gfp_mask & __GFP_IO)
704 mutex_lock(&c->bucket_lock);
705 else if (!mutex_trylock(&c->bucket_lock))
709 * It's _really_ critical that we don't free too many btree nodes - we
710 * have to always leave ourselves a reserve. The reserve is how we
711 * guarantee that allocating memory for a new btree node can always
712 * succeed, so that inserting keys into the btree can always succeed and
713 * IO can always make forward progress:
715 nr /= c->btree_pages;
718 nr = min_t(unsigned long, nr, mca_can_free(c));
721 btree_cache_used = c->btree_cache_used;
722 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
727 !mca_reap(b, 0, false)) {
735 for (; (nr--) && i < btree_cache_used; i++) {
736 if (list_empty(&c->btree_cache))
739 b = list_first_entry(&c->btree_cache, struct btree, list);
740 list_rotate_left(&c->btree_cache);
743 !mca_reap(b, 0, false)) {
752 mutex_unlock(&c->bucket_lock);
753 return freed * c->btree_pages;
756 static unsigned long bch_mca_count(struct shrinker *shrink,
757 struct shrink_control *sc)
759 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
761 if (c->shrinker_disabled)
764 if (c->btree_cache_alloc_lock)
767 return mca_can_free(c) * c->btree_pages;
770 void bch_btree_cache_free(struct cache_set *c)
775 closure_init_stack(&cl);
777 if (c->shrink.list.next)
778 unregister_shrinker(&c->shrink);
780 mutex_lock(&c->bucket_lock);
782 #ifdef CONFIG_BCACHE_DEBUG
784 list_move(&c->verify_data->list, &c->btree_cache);
786 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
789 list_splice(&c->btree_cache_freeable,
792 while (!list_empty(&c->btree_cache)) {
793 b = list_first_entry(&c->btree_cache, struct btree, list);
796 * This function is called by cache_set_free(), no I/O
797 * request on cache now, it is unnecessary to acquire
798 * b->write_lock before clearing BTREE_NODE_dirty anymore.
800 if (btree_node_dirty(b)) {
801 btree_complete_write(b, btree_current_write(b));
802 clear_bit(BTREE_NODE_dirty, &b->flags);
807 while (!list_empty(&c->btree_cache_freed)) {
808 b = list_first_entry(&c->btree_cache_freed,
811 cancel_delayed_work_sync(&b->work);
815 mutex_unlock(&c->bucket_lock);
818 int bch_btree_cache_alloc(struct cache_set *c)
822 for (i = 0; i < mca_reserve(c); i++)
823 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
826 list_splice_init(&c->btree_cache,
827 &c->btree_cache_freeable);
829 #ifdef CONFIG_BCACHE_DEBUG
830 mutex_init(&c->verify_lock);
832 c->verify_ondisk = (void *)
833 __get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(bucket_pages(c)));
835 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
837 if (c->verify_data &&
838 c->verify_data->keys.set->data)
839 list_del_init(&c->verify_data->list);
841 c->verify_data = NULL;
844 c->shrink.count_objects = bch_mca_count;
845 c->shrink.scan_objects = bch_mca_scan;
847 c->shrink.batch = c->btree_pages * 2;
849 if (register_shrinker(&c->shrink))
850 pr_warn("bcache: %s: could not register shrinker",
856 /* Btree in memory cache - hash table */
858 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
860 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
863 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
868 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
869 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
877 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
879 spin_lock(&c->btree_cannibalize_lock);
880 if (likely(c->btree_cache_alloc_lock == NULL)) {
881 c->btree_cache_alloc_lock = current;
882 } else if (c->btree_cache_alloc_lock != current) {
884 prepare_to_wait(&c->btree_cache_wait, &op->wait,
885 TASK_UNINTERRUPTIBLE);
886 spin_unlock(&c->btree_cannibalize_lock);
889 spin_unlock(&c->btree_cannibalize_lock);
894 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
899 trace_bcache_btree_cache_cannibalize(c);
901 if (mca_cannibalize_lock(c, op))
902 return ERR_PTR(-EINTR);
904 list_for_each_entry_reverse(b, &c->btree_cache, list)
905 if (!mca_reap(b, btree_order(k), false))
908 list_for_each_entry_reverse(b, &c->btree_cache, list)
909 if (!mca_reap(b, btree_order(k), true))
912 WARN(1, "btree cache cannibalize failed\n");
913 return ERR_PTR(-ENOMEM);
917 * We can only have one thread cannibalizing other cached btree nodes at a time,
918 * or we'll deadlock. We use an open coded mutex to ensure that, which a
919 * cannibalize_bucket() will take. This means every time we unlock the root of
920 * the btree, we need to release this lock if we have it held.
922 static void bch_cannibalize_unlock(struct cache_set *c)
924 spin_lock(&c->btree_cannibalize_lock);
925 if (c->btree_cache_alloc_lock == current) {
926 c->btree_cache_alloc_lock = NULL;
927 wake_up(&c->btree_cache_wait);
929 spin_unlock(&c->btree_cannibalize_lock);
932 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
933 struct bkey *k, int level)
937 BUG_ON(current->bio_list);
939 lockdep_assert_held(&c->bucket_lock);
944 /* btree_free() doesn't free memory; it sticks the node on the end of
945 * the list. Check if there's any freed nodes there:
947 list_for_each_entry(b, &c->btree_cache_freeable, list)
948 if (!mca_reap(b, btree_order(k), false))
951 /* We never free struct btree itself, just the memory that holds the on
952 * disk node. Check the freed list before allocating a new one:
954 list_for_each_entry(b, &c->btree_cache_freed, list)
955 if (!mca_reap(b, 0, false)) {
956 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
957 if (!b->keys.set[0].data)
963 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
967 BUG_ON(!down_write_trylock(&b->lock));
968 if (!b->keys.set->data)
971 BUG_ON(b->io_mutex.count != 1);
973 bkey_copy(&b->key, k);
974 list_move(&b->list, &c->btree_cache);
975 hlist_del_init_rcu(&b->hash);
976 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
978 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
979 b->parent = (void *) ~0UL;
985 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
986 &b->c->expensive_debug_checks);
988 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
989 &b->c->expensive_debug_checks);
996 b = mca_cannibalize(c, op, k);
1004 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1005 * in from disk if necessary.
1007 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1009 * The btree node will have either a read or a write lock held, depending on
1010 * level and op->lock.
1012 * Note: Only error code or btree pointer will be returned, it is unncessary
1013 * for callers to check NULL pointer.
1015 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1016 struct bkey *k, int level, bool write,
1017 struct btree *parent)
1027 if (current->bio_list)
1028 return ERR_PTR(-EAGAIN);
1030 mutex_lock(&c->bucket_lock);
1031 b = mca_alloc(c, op, k, level);
1032 mutex_unlock(&c->bucket_lock);
1039 bch_btree_node_read(b);
1042 downgrade_write(&b->lock);
1044 rw_lock(write, b, level);
1045 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1046 rw_unlock(write, b);
1049 BUG_ON(b->level != level);
1052 if (btree_node_io_error(b)) {
1053 rw_unlock(write, b);
1054 return ERR_PTR(-EIO);
1057 BUG_ON(!b->written);
1062 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1063 prefetch(b->keys.set[i].tree);
1064 prefetch(b->keys.set[i].data);
1067 for (; i <= b->keys.nsets; i++)
1068 prefetch(b->keys.set[i].data);
1073 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1077 mutex_lock(&parent->c->bucket_lock);
1078 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1079 mutex_unlock(&parent->c->bucket_lock);
1081 if (!IS_ERR_OR_NULL(b)) {
1083 bch_btree_node_read(b);
1090 static void btree_node_free(struct btree *b)
1092 trace_bcache_btree_node_free(b);
1094 BUG_ON(b == b->c->root);
1097 mutex_lock(&b->write_lock);
1099 * If the btree node is selected and flushing in btree_flush_write(),
1100 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1101 * then it is safe to free the btree node here. Otherwise this btree
1102 * node will be in race condition.
1104 if (btree_node_journal_flush(b)) {
1105 mutex_unlock(&b->write_lock);
1106 pr_debug("bnode %p journal_flush set, retry", b);
1111 if (btree_node_dirty(b)) {
1112 btree_complete_write(b, btree_current_write(b));
1113 clear_bit(BTREE_NODE_dirty, &b->flags);
1116 mutex_unlock(&b->write_lock);
1118 cancel_delayed_work(&b->work);
1120 mutex_lock(&b->c->bucket_lock);
1121 bch_bucket_free(b->c, &b->key);
1123 mutex_unlock(&b->c->bucket_lock);
1127 * Only error code or btree pointer will be returned, it is unncessary for
1128 * callers to check NULL pointer.
1130 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1131 int level, bool wait,
1132 struct btree *parent)
1137 mutex_lock(&c->bucket_lock);
1139 /* return ERR_PTR(-EAGAIN) when it fails */
1140 b = ERR_PTR(-EAGAIN);
1141 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1144 bkey_put(c, &k.key);
1145 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1147 b = mca_alloc(c, op, &k.key, level);
1153 "Tried to allocate bucket that was in btree cache");
1159 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1161 mutex_unlock(&c->bucket_lock);
1163 trace_bcache_btree_node_alloc(b);
1166 bch_bucket_free(c, &k.key);
1168 mutex_unlock(&c->bucket_lock);
1170 trace_bcache_btree_node_alloc_fail(c);
1174 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1175 struct btree_op *op, int level,
1176 struct btree *parent)
1178 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1181 static struct btree *btree_node_alloc_replacement(struct btree *b,
1182 struct btree_op *op)
1184 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1187 mutex_lock(&n->write_lock);
1188 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1189 bkey_copy_key(&n->key, &b->key);
1190 mutex_unlock(&n->write_lock);
1196 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1200 mutex_lock(&b->c->bucket_lock);
1202 atomic_inc(&b->c->prio_blocked);
1204 bkey_copy(k, &b->key);
1205 bkey_copy_key(k, &ZERO_KEY);
1207 for (i = 0; i < KEY_PTRS(k); i++)
1209 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1210 PTR_BUCKET(b->c, &b->key, i)));
1212 mutex_unlock(&b->c->bucket_lock);
1215 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1217 struct cache_set *c = b->c;
1219 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1221 mutex_lock(&c->bucket_lock);
1223 for_each_cache(ca, c, i)
1224 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1226 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1227 TASK_UNINTERRUPTIBLE);
1228 mutex_unlock(&c->bucket_lock);
1232 mutex_unlock(&c->bucket_lock);
1234 return mca_cannibalize_lock(b->c, op);
1237 /* Garbage collection */
1239 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1247 * ptr_invalid() can't return true for the keys that mark btree nodes as
1248 * freed, but since ptr_bad() returns true we'll never actually use them
1249 * for anything and thus we don't want mark their pointers here
1251 if (!bkey_cmp(k, &ZERO_KEY))
1254 for (i = 0; i < KEY_PTRS(k); i++) {
1255 if (!ptr_available(c, k, i))
1258 g = PTR_BUCKET(c, k, i);
1260 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1261 g->last_gc = PTR_GEN(k, i);
1263 if (ptr_stale(c, k, i)) {
1264 stale = max(stale, ptr_stale(c, k, i));
1268 cache_bug_on(GC_MARK(g) &&
1269 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1270 c, "inconsistent ptrs: mark = %llu, level = %i",
1274 SET_GC_MARK(g, GC_MARK_METADATA);
1275 else if (KEY_DIRTY(k))
1276 SET_GC_MARK(g, GC_MARK_DIRTY);
1277 else if (!GC_MARK(g))
1278 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1280 /* guard against overflow */
1281 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1282 GC_SECTORS_USED(g) + KEY_SIZE(k),
1283 MAX_GC_SECTORS_USED));
1285 BUG_ON(!GC_SECTORS_USED(g));
1291 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1293 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1297 for (i = 0; i < KEY_PTRS(k); i++)
1298 if (ptr_available(c, k, i) &&
1299 !ptr_stale(c, k, i)) {
1300 struct bucket *b = PTR_BUCKET(c, k, i);
1302 b->gen = PTR_GEN(k, i);
1304 if (level && bkey_cmp(k, &ZERO_KEY))
1305 b->prio = BTREE_PRIO;
1306 else if (!level && b->prio == BTREE_PRIO)
1307 b->prio = INITIAL_PRIO;
1310 __bch_btree_mark_key(c, level, k);
1313 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1315 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1318 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1321 unsigned int keys = 0, good_keys = 0;
1323 struct btree_iter iter;
1324 struct bset_tree *t;
1328 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1329 stale = max(stale, btree_mark_key(b, k));
1332 if (bch_ptr_bad(&b->keys, k))
1335 gc->key_bytes += bkey_u64s(k);
1339 gc->data += KEY_SIZE(k);
1342 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1343 btree_bug_on(t->size &&
1344 bset_written(&b->keys, t) &&
1345 bkey_cmp(&b->key, &t->end) < 0,
1346 b, "found short btree key in gc");
1348 if (b->c->gc_always_rewrite)
1354 if ((keys - good_keys) * 2 > keys)
1360 #define GC_MERGE_NODES 4U
1362 struct gc_merge_info {
1367 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1368 struct keylist *insert_keys,
1369 atomic_t *journal_ref,
1370 struct bkey *replace_key);
1372 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1373 struct gc_stat *gc, struct gc_merge_info *r)
1375 unsigned int i, nodes = 0, keys = 0, blocks;
1376 struct btree *new_nodes[GC_MERGE_NODES];
1377 struct keylist keylist;
1381 bch_keylist_init(&keylist);
1383 if (btree_check_reserve(b, NULL))
1386 memset(new_nodes, 0, sizeof(new_nodes));
1387 closure_init_stack(&cl);
1389 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1390 keys += r[nodes++].keys;
1392 blocks = btree_default_blocks(b->c) * 2 / 3;
1395 __set_blocks(b->keys.set[0].data, keys,
1396 block_bytes(b->c)) > blocks * (nodes - 1))
1399 for (i = 0; i < nodes; i++) {
1400 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1401 if (IS_ERR(new_nodes[i]))
1402 goto out_nocoalesce;
1406 * We have to check the reserve here, after we've allocated our new
1407 * nodes, to make sure the insert below will succeed - we also check
1408 * before as an optimization to potentially avoid a bunch of expensive
1411 if (btree_check_reserve(b, NULL))
1412 goto out_nocoalesce;
1414 for (i = 0; i < nodes; i++)
1415 mutex_lock(&new_nodes[i]->write_lock);
1417 for (i = nodes - 1; i > 0; --i) {
1418 struct bset *n1 = btree_bset_first(new_nodes[i]);
1419 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1420 struct bkey *k, *last = NULL;
1426 k < bset_bkey_last(n2);
1428 if (__set_blocks(n1, n1->keys + keys +
1430 block_bytes(b->c)) > blocks)
1434 keys += bkey_u64s(k);
1438 * Last node we're not getting rid of - we're getting
1439 * rid of the node at r[0]. Have to try and fit all of
1440 * the remaining keys into this node; we can't ensure
1441 * they will always fit due to rounding and variable
1442 * length keys (shouldn't be possible in practice,
1445 if (__set_blocks(n1, n1->keys + n2->keys,
1446 block_bytes(b->c)) >
1447 btree_blocks(new_nodes[i]))
1448 goto out_unlock_nocoalesce;
1451 /* Take the key of the node we're getting rid of */
1455 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1456 btree_blocks(new_nodes[i]));
1459 bkey_copy_key(&new_nodes[i]->key, last);
1461 memcpy(bset_bkey_last(n1),
1463 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1466 r[i].keys = n1->keys;
1469 bset_bkey_idx(n2, keys),
1470 (void *) bset_bkey_last(n2) -
1471 (void *) bset_bkey_idx(n2, keys));
1475 if (__bch_keylist_realloc(&keylist,
1476 bkey_u64s(&new_nodes[i]->key)))
1477 goto out_unlock_nocoalesce;
1479 bch_btree_node_write(new_nodes[i], &cl);
1480 bch_keylist_add(&keylist, &new_nodes[i]->key);
1483 for (i = 0; i < nodes; i++)
1484 mutex_unlock(&new_nodes[i]->write_lock);
1488 /* We emptied out this node */
1489 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1490 btree_node_free(new_nodes[0]);
1491 rw_unlock(true, new_nodes[0]);
1492 new_nodes[0] = NULL;
1494 for (i = 0; i < nodes; i++) {
1495 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1496 goto out_nocoalesce;
1498 make_btree_freeing_key(r[i].b, keylist.top);
1499 bch_keylist_push(&keylist);
1502 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1503 BUG_ON(!bch_keylist_empty(&keylist));
1505 for (i = 0; i < nodes; i++) {
1506 btree_node_free(r[i].b);
1507 rw_unlock(true, r[i].b);
1509 r[i].b = new_nodes[i];
1512 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1513 r[nodes - 1].b = ERR_PTR(-EINTR);
1515 trace_bcache_btree_gc_coalesce(nodes);
1518 bch_keylist_free(&keylist);
1520 /* Invalidated our iterator */
1523 out_unlock_nocoalesce:
1524 for (i = 0; i < nodes; i++)
1525 mutex_unlock(&new_nodes[i]->write_lock);
1529 bch_keylist_free(&keylist);
1531 while ((k = bch_keylist_pop(&keylist)))
1532 if (!bkey_cmp(k, &ZERO_KEY))
1533 atomic_dec(&b->c->prio_blocked);
1535 for (i = 0; i < nodes; i++)
1536 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1537 btree_node_free(new_nodes[i]);
1538 rw_unlock(true, new_nodes[i]);
1543 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1544 struct btree *replace)
1546 struct keylist keys;
1549 if (btree_check_reserve(b, NULL))
1552 n = btree_node_alloc_replacement(replace, NULL);
1556 /* recheck reserve after allocating replacement node */
1557 if (btree_check_reserve(b, NULL)) {
1563 bch_btree_node_write_sync(n);
1565 bch_keylist_init(&keys);
1566 bch_keylist_add(&keys, &n->key);
1568 make_btree_freeing_key(replace, keys.top);
1569 bch_keylist_push(&keys);
1571 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1572 BUG_ON(!bch_keylist_empty(&keys));
1574 btree_node_free(replace);
1577 /* Invalidated our iterator */
1581 static unsigned int btree_gc_count_keys(struct btree *b)
1584 struct btree_iter iter;
1585 unsigned int ret = 0;
1587 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1588 ret += bkey_u64s(k);
1593 static size_t btree_gc_min_nodes(struct cache_set *c)
1598 * Since incremental GC would stop 100ms when front
1599 * side I/O comes, so when there are many btree nodes,
1600 * if GC only processes constant (100) nodes each time,
1601 * GC would last a long time, and the front side I/Os
1602 * would run out of the buckets (since no new bucket
1603 * can be allocated during GC), and be blocked again.
1604 * So GC should not process constant nodes, but varied
1605 * nodes according to the number of btree nodes, which
1606 * realized by dividing GC into constant(100) times,
1607 * so when there are many btree nodes, GC can process
1608 * more nodes each time, otherwise, GC will process less
1609 * nodes each time (but no less than MIN_GC_NODES)
1611 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1612 if (min_nodes < MIN_GC_NODES)
1613 min_nodes = MIN_GC_NODES;
1619 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1620 struct closure *writes, struct gc_stat *gc)
1623 bool should_rewrite;
1625 struct btree_iter iter;
1626 struct gc_merge_info r[GC_MERGE_NODES];
1627 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1629 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1631 for (i = r; i < r + ARRAY_SIZE(r); i++)
1632 i->b = ERR_PTR(-EINTR);
1635 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1637 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1640 ret = PTR_ERR(r->b);
1644 r->keys = btree_gc_count_keys(r->b);
1646 ret = btree_gc_coalesce(b, op, gc, r);
1654 if (!IS_ERR(last->b)) {
1655 should_rewrite = btree_gc_mark_node(last->b, gc);
1656 if (should_rewrite) {
1657 ret = btree_gc_rewrite_node(b, op, last->b);
1662 if (last->b->level) {
1663 ret = btree_gc_recurse(last->b, op, writes, gc);
1668 bkey_copy_key(&b->c->gc_done, &last->b->key);
1671 * Must flush leaf nodes before gc ends, since replace
1672 * operations aren't journalled
1674 mutex_lock(&last->b->write_lock);
1675 if (btree_node_dirty(last->b))
1676 bch_btree_node_write(last->b, writes);
1677 mutex_unlock(&last->b->write_lock);
1678 rw_unlock(true, last->b);
1681 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1684 if (atomic_read(&b->c->search_inflight) &&
1685 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1686 gc->nodes_pre = gc->nodes;
1691 if (need_resched()) {
1697 for (i = r; i < r + ARRAY_SIZE(r); i++)
1698 if (!IS_ERR_OR_NULL(i->b)) {
1699 mutex_lock(&i->b->write_lock);
1700 if (btree_node_dirty(i->b))
1701 bch_btree_node_write(i->b, writes);
1702 mutex_unlock(&i->b->write_lock);
1703 rw_unlock(true, i->b);
1709 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1710 struct closure *writes, struct gc_stat *gc)
1712 struct btree *n = NULL;
1714 bool should_rewrite;
1716 should_rewrite = btree_gc_mark_node(b, gc);
1717 if (should_rewrite) {
1718 n = btree_node_alloc_replacement(b, NULL);
1721 bch_btree_node_write_sync(n);
1723 bch_btree_set_root(n);
1731 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1734 ret = btree_gc_recurse(b, op, writes, gc);
1739 bkey_copy_key(&b->c->gc_done, &b->key);
1744 static void btree_gc_start(struct cache_set *c)
1750 if (!c->gc_mark_valid)
1753 mutex_lock(&c->bucket_lock);
1755 c->gc_mark_valid = 0;
1756 c->gc_done = ZERO_KEY;
1758 for_each_cache(ca, c, i)
1759 for_each_bucket(b, ca) {
1760 b->last_gc = b->gen;
1761 if (!atomic_read(&b->pin)) {
1763 SET_GC_SECTORS_USED(b, 0);
1767 mutex_unlock(&c->bucket_lock);
1770 static void bch_btree_gc_finish(struct cache_set *c)
1776 mutex_lock(&c->bucket_lock);
1779 c->gc_mark_valid = 1;
1782 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1783 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1786 /* don't reclaim buckets to which writeback keys point */
1788 for (i = 0; i < c->devices_max_used; i++) {
1789 struct bcache_device *d = c->devices[i];
1790 struct cached_dev *dc;
1791 struct keybuf_key *w, *n;
1794 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1796 dc = container_of(d, struct cached_dev, disk);
1798 spin_lock(&dc->writeback_keys.lock);
1799 rbtree_postorder_for_each_entry_safe(w, n,
1800 &dc->writeback_keys.keys, node)
1801 for (j = 0; j < KEY_PTRS(&w->key); j++)
1802 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1804 spin_unlock(&dc->writeback_keys.lock);
1808 c->avail_nbuckets = 0;
1809 for_each_cache(ca, c, i) {
1812 ca->invalidate_needs_gc = 0;
1814 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1815 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1817 for (i = ca->prio_buckets;
1818 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1819 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1821 for_each_bucket(b, ca) {
1822 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1824 if (atomic_read(&b->pin))
1827 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1829 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1830 c->avail_nbuckets++;
1834 mutex_unlock(&c->bucket_lock);
1837 static void bch_btree_gc(struct cache_set *c)
1840 struct gc_stat stats;
1841 struct closure writes;
1843 uint64_t start_time = local_clock();
1845 trace_bcache_gc_start(c);
1847 memset(&stats, 0, sizeof(struct gc_stat));
1848 closure_init_stack(&writes);
1849 bch_btree_op_init(&op, SHRT_MAX);
1853 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1855 ret = btree_root(gc_root, c, &op, &writes, &stats);
1856 closure_sync(&writes);
1860 schedule_timeout_interruptible(msecs_to_jiffies
1863 pr_warn("gc failed!");
1864 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1866 bch_btree_gc_finish(c);
1867 wake_up_allocators(c);
1869 bch_time_stats_update(&c->btree_gc_time, start_time);
1871 stats.key_bytes *= sizeof(uint64_t);
1873 bch_update_bucket_in_use(c, &stats);
1874 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1876 trace_bcache_gc_end(c);
1881 static bool gc_should_run(struct cache_set *c)
1886 for_each_cache(ca, c, i)
1887 if (ca->invalidate_needs_gc)
1890 if (atomic_read(&c->sectors_to_gc) < 0)
1896 static int bch_gc_thread(void *arg)
1898 struct cache_set *c = arg;
1901 wait_event_interruptible(c->gc_wait,
1902 kthread_should_stop() ||
1903 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1906 if (kthread_should_stop() ||
1907 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1914 wait_for_kthread_stop();
1918 int bch_gc_thread_start(struct cache_set *c)
1920 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1921 return PTR_ERR_OR_ZERO(c->gc_thread);
1924 /* Initial partial gc */
1926 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1929 struct bkey *k, *p = NULL;
1930 struct btree_iter iter;
1932 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1933 bch_initial_mark_key(b->c, b->level, k);
1935 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1938 bch_btree_iter_init(&b->keys, &iter, NULL);
1941 k = bch_btree_iter_next_filter(&iter, &b->keys,
1944 btree_node_prefetch(b, k);
1946 * initiallize c->gc_stats.nodes
1947 * for incremental GC
1949 b->c->gc_stats.nodes++;
1953 ret = btree(check_recurse, p, b, op);
1956 } while (p && !ret);
1962 int bch_btree_check(struct cache_set *c)
1966 bch_btree_op_init(&op, SHRT_MAX);
1968 return btree_root(check_recurse, c, &op);
1971 void bch_initial_gc_finish(struct cache_set *c)
1977 bch_btree_gc_finish(c);
1979 mutex_lock(&c->bucket_lock);
1982 * We need to put some unused buckets directly on the prio freelist in
1983 * order to get the allocator thread started - it needs freed buckets in
1984 * order to rewrite the prios and gens, and it needs to rewrite prios
1985 * and gens in order to free buckets.
1987 * This is only safe for buckets that have no live data in them, which
1988 * there should always be some of.
1990 for_each_cache(ca, c, i) {
1991 for_each_bucket(b, ca) {
1992 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1993 fifo_full(&ca->free[RESERVE_BTREE]))
1996 if (bch_can_invalidate_bucket(ca, b) &&
1998 __bch_invalidate_one_bucket(ca, b);
1999 if (!fifo_push(&ca->free[RESERVE_PRIO],
2001 fifo_push(&ca->free[RESERVE_BTREE],
2007 mutex_unlock(&c->bucket_lock);
2010 /* Btree insertion */
2012 static bool btree_insert_key(struct btree *b, struct bkey *k,
2013 struct bkey *replace_key)
2015 unsigned int status;
2017 BUG_ON(bkey_cmp(k, &b->key) > 0);
2019 status = bch_btree_insert_key(&b->keys, k, replace_key);
2020 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2021 bch_check_keys(&b->keys, "%u for %s", status,
2022 replace_key ? "replace" : "insert");
2024 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2031 static size_t insert_u64s_remaining(struct btree *b)
2033 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2036 * Might land in the middle of an existing extent and have to split it
2038 if (b->keys.ops->is_extents)
2039 ret -= KEY_MAX_U64S;
2041 return max(ret, 0L);
2044 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2045 struct keylist *insert_keys,
2046 struct bkey *replace_key)
2049 int oldsize = bch_count_data(&b->keys);
2051 while (!bch_keylist_empty(insert_keys)) {
2052 struct bkey *k = insert_keys->keys;
2054 if (bkey_u64s(k) > insert_u64s_remaining(b))
2057 if (bkey_cmp(k, &b->key) <= 0) {
2061 ret |= btree_insert_key(b, k, replace_key);
2062 bch_keylist_pop_front(insert_keys);
2063 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2064 BKEY_PADDED(key) temp;
2065 bkey_copy(&temp.key, insert_keys->keys);
2067 bch_cut_back(&b->key, &temp.key);
2068 bch_cut_front(&b->key, insert_keys->keys);
2070 ret |= btree_insert_key(b, &temp.key, replace_key);
2078 op->insert_collision = true;
2080 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2082 BUG_ON(bch_count_data(&b->keys) < oldsize);
2086 static int btree_split(struct btree *b, struct btree_op *op,
2087 struct keylist *insert_keys,
2088 struct bkey *replace_key)
2091 struct btree *n1, *n2 = NULL, *n3 = NULL;
2092 uint64_t start_time = local_clock();
2094 struct keylist parent_keys;
2096 closure_init_stack(&cl);
2097 bch_keylist_init(&parent_keys);
2099 if (btree_check_reserve(b, op)) {
2103 WARN(1, "insufficient reserve for split\n");
2106 n1 = btree_node_alloc_replacement(b, op);
2110 split = set_blocks(btree_bset_first(n1),
2111 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2114 unsigned int keys = 0;
2116 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2118 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2123 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2128 mutex_lock(&n1->write_lock);
2129 mutex_lock(&n2->write_lock);
2131 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2134 * Has to be a linear search because we don't have an auxiliary
2138 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2139 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2142 bkey_copy_key(&n1->key,
2143 bset_bkey_idx(btree_bset_first(n1), keys));
2144 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2146 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2147 btree_bset_first(n1)->keys = keys;
2149 memcpy(btree_bset_first(n2)->start,
2150 bset_bkey_last(btree_bset_first(n1)),
2151 btree_bset_first(n2)->keys * sizeof(uint64_t));
2153 bkey_copy_key(&n2->key, &b->key);
2155 bch_keylist_add(&parent_keys, &n2->key);
2156 bch_btree_node_write(n2, &cl);
2157 mutex_unlock(&n2->write_lock);
2158 rw_unlock(true, n2);
2160 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2162 mutex_lock(&n1->write_lock);
2163 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2166 bch_keylist_add(&parent_keys, &n1->key);
2167 bch_btree_node_write(n1, &cl);
2168 mutex_unlock(&n1->write_lock);
2171 /* Depth increases, make a new root */
2172 mutex_lock(&n3->write_lock);
2173 bkey_copy_key(&n3->key, &MAX_KEY);
2174 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2175 bch_btree_node_write(n3, &cl);
2176 mutex_unlock(&n3->write_lock);
2179 bch_btree_set_root(n3);
2180 rw_unlock(true, n3);
2181 } else if (!b->parent) {
2182 /* Root filled up but didn't need to be split */
2184 bch_btree_set_root(n1);
2186 /* Split a non root node */
2188 make_btree_freeing_key(b, parent_keys.top);
2189 bch_keylist_push(&parent_keys);
2191 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2192 BUG_ON(!bch_keylist_empty(&parent_keys));
2196 rw_unlock(true, n1);
2198 bch_time_stats_update(&b->c->btree_split_time, start_time);
2202 bkey_put(b->c, &n2->key);
2203 btree_node_free(n2);
2204 rw_unlock(true, n2);
2206 bkey_put(b->c, &n1->key);
2207 btree_node_free(n1);
2208 rw_unlock(true, n1);
2210 WARN(1, "bcache: btree split failed (level %u)", b->level);
2212 if (n3 == ERR_PTR(-EAGAIN) ||
2213 n2 == ERR_PTR(-EAGAIN) ||
2214 n1 == ERR_PTR(-EAGAIN))
2220 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2221 struct keylist *insert_keys,
2222 atomic_t *journal_ref,
2223 struct bkey *replace_key)
2227 BUG_ON(b->level && replace_key);
2229 closure_init_stack(&cl);
2231 mutex_lock(&b->write_lock);
2233 if (write_block(b) != btree_bset_last(b) &&
2234 b->keys.last_set_unwritten)
2235 bch_btree_init_next(b); /* just wrote a set */
2237 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2238 mutex_unlock(&b->write_lock);
2242 BUG_ON(write_block(b) != btree_bset_last(b));
2244 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2246 bch_btree_leaf_dirty(b, journal_ref);
2248 bch_btree_node_write(b, &cl);
2251 mutex_unlock(&b->write_lock);
2253 /* wait for btree node write if necessary, after unlock */
2258 if (current->bio_list) {
2259 op->lock = b->c->root->level + 1;
2261 } else if (op->lock <= b->c->root->level) {
2262 op->lock = b->c->root->level + 1;
2265 /* Invalidated all iterators */
2266 int ret = btree_split(b, op, insert_keys, replace_key);
2268 if (bch_keylist_empty(insert_keys))
2276 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2277 struct bkey *check_key)
2280 uint64_t btree_ptr = b->key.ptr[0];
2281 unsigned long seq = b->seq;
2282 struct keylist insert;
2283 bool upgrade = op->lock == -1;
2285 bch_keylist_init(&insert);
2288 rw_unlock(false, b);
2289 rw_lock(true, b, b->level);
2291 if (b->key.ptr[0] != btree_ptr ||
2292 b->seq != seq + 1) {
2293 op->lock = b->level;
2298 SET_KEY_PTRS(check_key, 1);
2299 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2301 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2303 bch_keylist_add(&insert, check_key);
2305 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2307 BUG_ON(!ret && !bch_keylist_empty(&insert));
2310 downgrade_write(&b->lock);
2314 struct btree_insert_op {
2316 struct keylist *keys;
2317 atomic_t *journal_ref;
2318 struct bkey *replace_key;
2321 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2323 struct btree_insert_op *op = container_of(b_op,
2324 struct btree_insert_op, op);
2326 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2327 op->journal_ref, op->replace_key);
2328 if (ret && !bch_keylist_empty(op->keys))
2334 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2335 atomic_t *journal_ref, struct bkey *replace_key)
2337 struct btree_insert_op op;
2340 BUG_ON(current->bio_list);
2341 BUG_ON(bch_keylist_empty(keys));
2343 bch_btree_op_init(&op.op, 0);
2345 op.journal_ref = journal_ref;
2346 op.replace_key = replace_key;
2348 while (!ret && !bch_keylist_empty(keys)) {
2350 ret = bch_btree_map_leaf_nodes(&op.op, c,
2351 &START_KEY(keys->keys),
2358 pr_err("error %i", ret);
2360 while ((k = bch_keylist_pop(keys)))
2362 } else if (op.op.insert_collision)
2368 void bch_btree_set_root(struct btree *b)
2373 closure_init_stack(&cl);
2375 trace_bcache_btree_set_root(b);
2377 BUG_ON(!b->written);
2379 for (i = 0; i < KEY_PTRS(&b->key); i++)
2380 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2382 mutex_lock(&b->c->bucket_lock);
2383 list_del_init(&b->list);
2384 mutex_unlock(&b->c->bucket_lock);
2388 bch_journal_meta(b->c, &cl);
2392 /* Map across nodes or keys */
2394 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2396 btree_map_nodes_fn *fn, int flags)
2398 int ret = MAP_CONTINUE;
2402 struct btree_iter iter;
2404 bch_btree_iter_init(&b->keys, &iter, from);
2406 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2408 ret = btree(map_nodes_recurse, k, b,
2409 op, from, fn, flags);
2412 if (ret != MAP_CONTINUE)
2417 if (!b->level || flags == MAP_ALL_NODES)
2423 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2424 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2426 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2429 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2430 struct bkey *from, btree_map_keys_fn *fn,
2433 int ret = MAP_CONTINUE;
2435 struct btree_iter iter;
2437 bch_btree_iter_init(&b->keys, &iter, from);
2439 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2442 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2445 if (ret != MAP_CONTINUE)
2449 if (!b->level && (flags & MAP_END_KEY))
2450 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2451 KEY_OFFSET(&b->key), 0));
2456 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2457 struct bkey *from, btree_map_keys_fn *fn, int flags)
2459 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2464 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2466 /* Overlapping keys compare equal */
2467 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2469 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2474 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2475 struct keybuf_key *r)
2477 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2482 unsigned int nr_found;
2485 keybuf_pred_fn *pred;
2488 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2491 struct refill *refill = container_of(op, struct refill, op);
2492 struct keybuf *buf = refill->buf;
2493 int ret = MAP_CONTINUE;
2495 if (bkey_cmp(k, refill->end) > 0) {
2500 if (!KEY_SIZE(k)) /* end key */
2503 if (refill->pred(buf, k)) {
2504 struct keybuf_key *w;
2506 spin_lock(&buf->lock);
2508 w = array_alloc(&buf->freelist);
2510 spin_unlock(&buf->lock);
2515 bkey_copy(&w->key, k);
2517 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2518 array_free(&buf->freelist, w);
2522 if (array_freelist_empty(&buf->freelist))
2525 spin_unlock(&buf->lock);
2528 buf->last_scanned = *k;
2532 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2533 struct bkey *end, keybuf_pred_fn *pred)
2535 struct bkey start = buf->last_scanned;
2536 struct refill refill;
2540 bch_btree_op_init(&refill.op, -1);
2541 refill.nr_found = 0;
2546 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2547 refill_keybuf_fn, MAP_END_KEY);
2549 trace_bcache_keyscan(refill.nr_found,
2550 KEY_INODE(&start), KEY_OFFSET(&start),
2551 KEY_INODE(&buf->last_scanned),
2552 KEY_OFFSET(&buf->last_scanned));
2554 spin_lock(&buf->lock);
2556 if (!RB_EMPTY_ROOT(&buf->keys)) {
2557 struct keybuf_key *w;
2559 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2560 buf->start = START_KEY(&w->key);
2562 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2565 buf->start = MAX_KEY;
2569 spin_unlock(&buf->lock);
2572 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2574 rb_erase(&w->node, &buf->keys);
2575 array_free(&buf->freelist, w);
2578 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2580 spin_lock(&buf->lock);
2581 __bch_keybuf_del(buf, w);
2582 spin_unlock(&buf->lock);
2585 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2589 struct keybuf_key *p, *w, s;
2593 if (bkey_cmp(end, &buf->start) <= 0 ||
2594 bkey_cmp(start, &buf->end) >= 0)
2597 spin_lock(&buf->lock);
2598 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2600 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2602 w = RB_NEXT(w, node);
2607 __bch_keybuf_del(buf, p);
2610 spin_unlock(&buf->lock);
2614 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2616 struct keybuf_key *w;
2618 spin_lock(&buf->lock);
2620 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2622 while (w && w->private)
2623 w = RB_NEXT(w, node);
2626 w->private = ERR_PTR(-EINTR);
2628 spin_unlock(&buf->lock);
2632 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2635 keybuf_pred_fn *pred)
2637 struct keybuf_key *ret;
2640 ret = bch_keybuf_next(buf);
2644 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2645 pr_debug("scan finished");
2649 bch_refill_keybuf(c, buf, end, pred);
2655 void bch_keybuf_init(struct keybuf *buf)
2657 buf->last_scanned = MAX_KEY;
2658 buf->keys = RB_ROOT;
2660 spin_lock_init(&buf->lock);
2661 array_allocator_init(&buf->freelist);