GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / md / bcache / btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90
91 #define MAX_NEED_GC             64
92 #define MAX_SAVE_PRIO           72
93 #define MAX_GC_TIMES            100
94 #define MIN_GC_NODES            100
95 #define GC_SLEEP_MS             100
96
97 #define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k)                                                  \
100         (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 static struct workqueue_struct *btree_io_wq;
103
104 #define insert_lock(s, b)       ((b)->level <= (s)->lock)
105
106
107 static inline struct bset *write_block(struct btree *b)
108 {
109         return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111
112 static void bch_btree_init_next(struct btree *b)
113 {
114         /* If not a leaf node, always sort */
115         if (b->level && b->keys.nsets)
116                 bch_btree_sort(&b->keys, &b->c->sort);
117         else
118                 bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120         if (b->written < btree_blocks(b))
121                 bch_bset_init_next(&b->keys, write_block(b),
122                                    bset_magic(&b->c->cache->sb));
123
124 }
125
126 /* Btree key manipulation */
127
128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130         unsigned int i;
131
132         for (i = 0; i < KEY_PTRS(k); i++)
133                 if (ptr_available(c, k, i))
134                         atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136
137 /* Btree IO */
138
139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141         uint64_t crc = b->key.ptr[0];
142         void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144         crc = bch_crc64_update(crc, data, end - data);
145         return crc ^ 0xffffffffffffffffULL;
146 }
147
148 void bch_btree_node_read_done(struct btree *b)
149 {
150         const char *err = "bad btree header";
151         struct bset *i = btree_bset_first(b);
152         struct btree_iter *iter;
153
154         /*
155          * c->fill_iter can allocate an iterator with more memory space
156          * than static MAX_BSETS.
157          * See the comment arount cache_set->fill_iter.
158          */
159         iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160         iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161         iter->used = 0;
162
163 #ifdef CONFIG_BCACHE_DEBUG
164         iter->b = &b->keys;
165 #endif
166
167         if (!i->seq)
168                 goto err;
169
170         for (;
171              b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172              i = write_block(b)) {
173                 err = "unsupported bset version";
174                 if (i->version > BCACHE_BSET_VERSION)
175                         goto err;
176
177                 err = "bad btree header";
178                 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179                     btree_blocks(b))
180                         goto err;
181
182                 err = "bad magic";
183                 if (i->magic != bset_magic(&b->c->cache->sb))
184                         goto err;
185
186                 err = "bad checksum";
187                 switch (i->version) {
188                 case 0:
189                         if (i->csum != csum_set(i))
190                                 goto err;
191                         break;
192                 case BCACHE_BSET_VERSION:
193                         if (i->csum != btree_csum_set(b, i))
194                                 goto err;
195                         break;
196                 }
197
198                 err = "empty set";
199                 if (i != b->keys.set[0].data && !i->keys)
200                         goto err;
201
202                 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204                 b->written += set_blocks(i, block_bytes(b->c->cache));
205         }
206
207         err = "corrupted btree";
208         for (i = write_block(b);
209              bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210              i = ((void *) i) + block_bytes(b->c->cache))
211                 if (i->seq == b->keys.set[0].data->seq)
212                         goto err;
213
214         bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216         i = b->keys.set[0].data;
217         err = "short btree key";
218         if (b->keys.set[0].size &&
219             bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220                 goto err;
221
222         if (b->written < btree_blocks(b))
223                 bch_bset_init_next(&b->keys, write_block(b),
224                                    bset_magic(&b->c->cache->sb));
225 out:
226         mempool_free(iter, &b->c->fill_iter);
227         return;
228 err:
229         set_btree_node_io_error(b);
230         bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231                             err, PTR_BUCKET_NR(b->c, &b->key, 0),
232                             bset_block_offset(b, i), i->keys);
233         goto out;
234 }
235
236 static void btree_node_read_endio(struct bio *bio)
237 {
238         struct closure *cl = bio->bi_private;
239
240         closure_put(cl);
241 }
242
243 static void bch_btree_node_read(struct btree *b)
244 {
245         uint64_t start_time = local_clock();
246         struct closure cl;
247         struct bio *bio;
248
249         trace_bcache_btree_read(b);
250
251         closure_init_stack(&cl);
252
253         bio = bch_bbio_alloc(b->c);
254         bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255         bio->bi_end_io  = btree_node_read_endio;
256         bio->bi_private = &cl;
257         bio->bi_opf = REQ_OP_READ | REQ_META;
258
259         bch_bio_map(bio, b->keys.set[0].data);
260
261         bch_submit_bbio(bio, b->c, &b->key, 0);
262         closure_sync(&cl);
263
264         if (bio->bi_status)
265                 set_btree_node_io_error(b);
266
267         bch_bbio_free(bio, b->c);
268
269         if (btree_node_io_error(b))
270                 goto err;
271
272         bch_btree_node_read_done(b);
273         bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275         return;
276 err:
277         bch_cache_set_error(b->c, "io error reading bucket %zu",
278                             PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280
281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283         if (w->prio_blocked &&
284             !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285                 wake_up_allocators(b->c);
286
287         if (w->journal) {
288                 atomic_dec_bug(w->journal);
289                 __closure_wake_up(&b->c->journal.wait);
290         }
291
292         w->prio_blocked = 0;
293         w->journal      = NULL;
294 }
295
296 static void btree_node_write_unlock(struct closure *cl)
297 {
298         struct btree *b = container_of(cl, struct btree, io);
299
300         up(&b->io_mutex);
301 }
302
303 static void __btree_node_write_done(struct closure *cl)
304 {
305         struct btree *b = container_of(cl, struct btree, io);
306         struct btree_write *w = btree_prev_write(b);
307
308         bch_bbio_free(b->bio, b->c);
309         b->bio = NULL;
310         btree_complete_write(b, w);
311
312         if (btree_node_dirty(b))
313                 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315         closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317
318 static void btree_node_write_done(struct closure *cl)
319 {
320         struct btree *b = container_of(cl, struct btree, io);
321
322         bio_free_pages(b->bio);
323         __btree_node_write_done(cl);
324 }
325
326 static void btree_node_write_endio(struct bio *bio)
327 {
328         struct closure *cl = bio->bi_private;
329         struct btree *b = container_of(cl, struct btree, io);
330
331         if (bio->bi_status)
332                 set_btree_node_io_error(b);
333
334         bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335         closure_put(cl);
336 }
337
338 static void do_btree_node_write(struct btree *b)
339 {
340         struct closure *cl = &b->io;
341         struct bset *i = btree_bset_last(b);
342         BKEY_PADDED(key) k;
343
344         i->version      = BCACHE_BSET_VERSION;
345         i->csum         = btree_csum_set(b, i);
346
347         BUG_ON(b->bio);
348         b->bio = bch_bbio_alloc(b->c);
349
350         b->bio->bi_end_io       = btree_node_write_endio;
351         b->bio->bi_private      = cl;
352         b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353         b->bio->bi_opf          = REQ_OP_WRITE | REQ_META | REQ_FUA;
354         bch_bio_map(b->bio, i);
355
356         /*
357          * If we're appending to a leaf node, we don't technically need FUA -
358          * this write just needs to be persisted before the next journal write,
359          * which will be marked FLUSH|FUA.
360          *
361          * Similarly if we're writing a new btree root - the pointer is going to
362          * be in the next journal entry.
363          *
364          * But if we're writing a new btree node (that isn't a root) or
365          * appending to a non leaf btree node, we need either FUA or a flush
366          * when we write the parent with the new pointer. FUA is cheaper than a
367          * flush, and writes appending to leaf nodes aren't blocking anything so
368          * just make all btree node writes FUA to keep things sane.
369          */
370
371         bkey_copy(&k.key, &b->key);
372         SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373                        bset_sector_offset(&b->keys, i));
374
375         if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376                 struct bio_vec *bv;
377                 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378                 struct bvec_iter_all iter_all;
379
380                 bio_for_each_segment_all(bv, b->bio, iter_all) {
381                         memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382                         addr += PAGE_SIZE;
383                 }
384
385                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387                 continue_at(cl, btree_node_write_done, NULL);
388         } else {
389                 /*
390                  * No problem for multipage bvec since the bio is
391                  * just allocated
392                  */
393                 b->bio->bi_vcnt = 0;
394                 bch_bio_map(b->bio, i);
395
396                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398                 closure_sync(cl);
399                 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400         }
401 }
402
403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405         struct bset *i = btree_bset_last(b);
406
407         lockdep_assert_held(&b->write_lock);
408
409         trace_bcache_btree_write(b);
410
411         BUG_ON(current->bio_list);
412         BUG_ON(b->written >= btree_blocks(b));
413         BUG_ON(b->written && !i->keys);
414         BUG_ON(btree_bset_first(b)->seq != i->seq);
415         bch_check_keys(&b->keys, "writing");
416
417         cancel_delayed_work(&b->work);
418
419         /* If caller isn't waiting for write, parent refcount is cache set */
420         down(&b->io_mutex);
421         closure_init(&b->io, parent ?: &b->c->cl);
422
423         clear_bit(BTREE_NODE_dirty,      &b->flags);
424         change_bit(BTREE_NODE_write_idx, &b->flags);
425
426         do_btree_node_write(b);
427
428         atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429                         &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
430
431         b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433
434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436         unsigned int nsets = b->keys.nsets;
437
438         lockdep_assert_held(&b->lock);
439
440         __bch_btree_node_write(b, parent);
441
442         /*
443          * do verify if there was more than one set initially (i.e. we did a
444          * sort) and we sorted down to a single set:
445          */
446         if (nsets && !b->keys.nsets)
447                 bch_btree_verify(b);
448
449         bch_btree_init_next(b);
450 }
451
452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454         struct closure cl;
455
456         closure_init_stack(&cl);
457
458         mutex_lock(&b->write_lock);
459         bch_btree_node_write(b, &cl);
460         mutex_unlock(&b->write_lock);
461
462         closure_sync(&cl);
463 }
464
465 static void btree_node_write_work(struct work_struct *w)
466 {
467         struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469         mutex_lock(&b->write_lock);
470         if (btree_node_dirty(b))
471                 __bch_btree_node_write(b, NULL);
472         mutex_unlock(&b->write_lock);
473 }
474
475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477         struct bset *i = btree_bset_last(b);
478         struct btree_write *w = btree_current_write(b);
479
480         lockdep_assert_held(&b->write_lock);
481
482         BUG_ON(!b->written);
483         BUG_ON(!i->keys);
484
485         if (!btree_node_dirty(b))
486                 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488         set_btree_node_dirty(b);
489
490         /*
491          * w->journal is always the oldest journal pin of all bkeys
492          * in the leaf node, to make sure the oldest jset seq won't
493          * be increased before this btree node is flushed.
494          */
495         if (journal_ref) {
496                 if (w->journal &&
497                     journal_pin_cmp(b->c, w->journal, journal_ref)) {
498                         atomic_dec_bug(w->journal);
499                         w->journal = NULL;
500                 }
501
502                 if (!w->journal) {
503                         w->journal = journal_ref;
504                         atomic_inc(w->journal);
505                 }
506         }
507
508         /* Force write if set is too big */
509         if (set_bytes(i) > PAGE_SIZE - 48 &&
510             !current->bio_list)
511                 bch_btree_node_write(b, NULL);
512 }
513
514 /*
515  * Btree in memory cache - allocation/freeing
516  * mca -> memory cache
517  */
518
519 #define mca_reserve(c)  (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520                           ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c)                                         \
522         max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
524 static void mca_data_free(struct btree *b)
525 {
526         BUG_ON(b->io_mutex.count != 1);
527
528         bch_btree_keys_free(&b->keys);
529
530         b->c->btree_cache_used--;
531         list_move(&b->list, &b->c->btree_cache_freed);
532 }
533
534 static void mca_bucket_free(struct btree *b)
535 {
536         BUG_ON(btree_node_dirty(b));
537
538         b->key.ptr[0] = 0;
539         hlist_del_init_rcu(&b->hash);
540         list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542
543 static unsigned int btree_order(struct bkey *k)
544 {
545         return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547
548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550         if (!bch_btree_keys_alloc(&b->keys,
551                                   max_t(unsigned int,
552                                         ilog2(b->c->btree_pages),
553                                         btree_order(k)),
554                                   gfp)) {
555                 b->c->btree_cache_used++;
556                 list_move(&b->list, &b->c->btree_cache);
557         } else {
558                 list_move(&b->list, &b->c->btree_cache_freed);
559         }
560 }
561
562 static struct btree *mca_bucket_alloc(struct cache_set *c,
563                                       struct bkey *k, gfp_t gfp)
564 {
565         /*
566          * kzalloc() is necessary here for initialization,
567          * see code comments in bch_btree_keys_init().
568          */
569         struct btree *b = kzalloc(sizeof(struct btree), gfp);
570
571         if (!b)
572                 return NULL;
573
574         init_rwsem(&b->lock);
575         lockdep_set_novalidate_class(&b->lock);
576         mutex_init(&b->write_lock);
577         lockdep_set_novalidate_class(&b->write_lock);
578         INIT_LIST_HEAD(&b->list);
579         INIT_DELAYED_WORK(&b->work, btree_node_write_work);
580         b->c = c;
581         sema_init(&b->io_mutex, 1);
582
583         mca_data_alloc(b, k, gfp);
584         return b;
585 }
586
587 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
588 {
589         struct closure cl;
590
591         closure_init_stack(&cl);
592         lockdep_assert_held(&b->c->bucket_lock);
593
594         if (!down_write_trylock(&b->lock))
595                 return -ENOMEM;
596
597         BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
598
599         if (b->keys.page_order < min_order)
600                 goto out_unlock;
601
602         if (!flush) {
603                 if (btree_node_dirty(b))
604                         goto out_unlock;
605
606                 if (down_trylock(&b->io_mutex))
607                         goto out_unlock;
608                 up(&b->io_mutex);
609         }
610
611 retry:
612         /*
613          * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
614          * __bch_btree_node_write(). To avoid an extra flush, acquire
615          * b->write_lock before checking BTREE_NODE_dirty bit.
616          */
617         mutex_lock(&b->write_lock);
618         /*
619          * If this btree node is selected in btree_flush_write() by journal
620          * code, delay and retry until the node is flushed by journal code
621          * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
622          */
623         if (btree_node_journal_flush(b)) {
624                 pr_debug("bnode %p is flushing by journal, retry\n", b);
625                 mutex_unlock(&b->write_lock);
626                 udelay(1);
627                 goto retry;
628         }
629
630         if (btree_node_dirty(b))
631                 __bch_btree_node_write(b, &cl);
632         mutex_unlock(&b->write_lock);
633
634         closure_sync(&cl);
635
636         /* wait for any in flight btree write */
637         down(&b->io_mutex);
638         up(&b->io_mutex);
639
640         return 0;
641 out_unlock:
642         rw_unlock(true, b);
643         return -ENOMEM;
644 }
645
646 static unsigned long bch_mca_scan(struct shrinker *shrink,
647                                   struct shrink_control *sc)
648 {
649         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
650         struct btree *b, *t;
651         unsigned long i, nr = sc->nr_to_scan;
652         unsigned long freed = 0;
653         unsigned int btree_cache_used;
654
655         if (c->shrinker_disabled)
656                 return SHRINK_STOP;
657
658         if (c->btree_cache_alloc_lock)
659                 return SHRINK_STOP;
660
661         /* Return -1 if we can't do anything right now */
662         if (sc->gfp_mask & __GFP_IO)
663                 mutex_lock(&c->bucket_lock);
664         else if (!mutex_trylock(&c->bucket_lock))
665                 return -1;
666
667         /*
668          * It's _really_ critical that we don't free too many btree nodes - we
669          * have to always leave ourselves a reserve. The reserve is how we
670          * guarantee that allocating memory for a new btree node can always
671          * succeed, so that inserting keys into the btree can always succeed and
672          * IO can always make forward progress:
673          */
674         nr /= c->btree_pages;
675         if (nr == 0)
676                 nr = 1;
677         nr = min_t(unsigned long, nr, mca_can_free(c));
678
679         i = 0;
680         btree_cache_used = c->btree_cache_used;
681         list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
682                 if (nr <= 0)
683                         goto out;
684
685                 if (!mca_reap(b, 0, false)) {
686                         mca_data_free(b);
687                         rw_unlock(true, b);
688                         freed++;
689                 }
690                 nr--;
691                 i++;
692         }
693
694         list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
695                 if (nr <= 0 || i >= btree_cache_used)
696                         goto out;
697
698                 if (!mca_reap(b, 0, false)) {
699                         mca_bucket_free(b);
700                         mca_data_free(b);
701                         rw_unlock(true, b);
702                         freed++;
703                 }
704
705                 nr--;
706                 i++;
707         }
708 out:
709         mutex_unlock(&c->bucket_lock);
710         return freed * c->btree_pages;
711 }
712
713 static unsigned long bch_mca_count(struct shrinker *shrink,
714                                    struct shrink_control *sc)
715 {
716         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
717
718         if (c->shrinker_disabled)
719                 return 0;
720
721         if (c->btree_cache_alloc_lock)
722                 return 0;
723
724         return mca_can_free(c) * c->btree_pages;
725 }
726
727 void bch_btree_cache_free(struct cache_set *c)
728 {
729         struct btree *b;
730         struct closure cl;
731
732         closure_init_stack(&cl);
733
734         if (c->shrink.list.next)
735                 unregister_shrinker(&c->shrink);
736
737         mutex_lock(&c->bucket_lock);
738
739 #ifdef CONFIG_BCACHE_DEBUG
740         if (c->verify_data)
741                 list_move(&c->verify_data->list, &c->btree_cache);
742
743         free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
744 #endif
745
746         list_splice(&c->btree_cache_freeable,
747                     &c->btree_cache);
748
749         while (!list_empty(&c->btree_cache)) {
750                 b = list_first_entry(&c->btree_cache, struct btree, list);
751
752                 /*
753                  * This function is called by cache_set_free(), no I/O
754                  * request on cache now, it is unnecessary to acquire
755                  * b->write_lock before clearing BTREE_NODE_dirty anymore.
756                  */
757                 if (btree_node_dirty(b)) {
758                         btree_complete_write(b, btree_current_write(b));
759                         clear_bit(BTREE_NODE_dirty, &b->flags);
760                 }
761                 mca_data_free(b);
762         }
763
764         while (!list_empty(&c->btree_cache_freed)) {
765                 b = list_first_entry(&c->btree_cache_freed,
766                                      struct btree, list);
767                 list_del(&b->list);
768                 cancel_delayed_work_sync(&b->work);
769                 kfree(b);
770         }
771
772         mutex_unlock(&c->bucket_lock);
773 }
774
775 int bch_btree_cache_alloc(struct cache_set *c)
776 {
777         unsigned int i;
778
779         for (i = 0; i < mca_reserve(c); i++)
780                 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
781                         return -ENOMEM;
782
783         list_splice_init(&c->btree_cache,
784                          &c->btree_cache_freeable);
785
786 #ifdef CONFIG_BCACHE_DEBUG
787         mutex_init(&c->verify_lock);
788
789         c->verify_ondisk = (void *)
790                 __get_free_pages(GFP_KERNEL|__GFP_COMP,
791                                  ilog2(meta_bucket_pages(&c->cache->sb)));
792         if (!c->verify_ondisk) {
793                 /*
794                  * Don't worry about the mca_rereserve buckets
795                  * allocated in previous for-loop, they will be
796                  * handled properly in bch_cache_set_unregister().
797                  */
798                 return -ENOMEM;
799         }
800
801         c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
802
803         if (c->verify_data &&
804             c->verify_data->keys.set->data)
805                 list_del_init(&c->verify_data->list);
806         else
807                 c->verify_data = NULL;
808 #endif
809
810         c->shrink.count_objects = bch_mca_count;
811         c->shrink.scan_objects = bch_mca_scan;
812         c->shrink.seeks = 4;
813         c->shrink.batch = c->btree_pages * 2;
814
815         if (register_shrinker(&c->shrink))
816                 pr_warn("bcache: %s: could not register shrinker\n",
817                                 __func__);
818
819         return 0;
820 }
821
822 /* Btree in memory cache - hash table */
823
824 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
825 {
826         return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
827 }
828
829 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
830 {
831         struct btree *b;
832
833         rcu_read_lock();
834         hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
835                 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
836                         goto out;
837         b = NULL;
838 out:
839         rcu_read_unlock();
840         return b;
841 }
842
843 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
844 {
845         spin_lock(&c->btree_cannibalize_lock);
846         if (likely(c->btree_cache_alloc_lock == NULL)) {
847                 c->btree_cache_alloc_lock = current;
848         } else if (c->btree_cache_alloc_lock != current) {
849                 if (op)
850                         prepare_to_wait(&c->btree_cache_wait, &op->wait,
851                                         TASK_UNINTERRUPTIBLE);
852                 spin_unlock(&c->btree_cannibalize_lock);
853                 return -EINTR;
854         }
855         spin_unlock(&c->btree_cannibalize_lock);
856
857         return 0;
858 }
859
860 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
861                                      struct bkey *k)
862 {
863         struct btree *b;
864
865         trace_bcache_btree_cache_cannibalize(c);
866
867         if (mca_cannibalize_lock(c, op))
868                 return ERR_PTR(-EINTR);
869
870         list_for_each_entry_reverse(b, &c->btree_cache, list)
871                 if (!mca_reap(b, btree_order(k), false))
872                         return b;
873
874         list_for_each_entry_reverse(b, &c->btree_cache, list)
875                 if (!mca_reap(b, btree_order(k), true))
876                         return b;
877
878         WARN(1, "btree cache cannibalize failed\n");
879         return ERR_PTR(-ENOMEM);
880 }
881
882 /*
883  * We can only have one thread cannibalizing other cached btree nodes at a time,
884  * or we'll deadlock. We use an open coded mutex to ensure that, which a
885  * cannibalize_bucket() will take. This means every time we unlock the root of
886  * the btree, we need to release this lock if we have it held.
887  */
888 void bch_cannibalize_unlock(struct cache_set *c)
889 {
890         spin_lock(&c->btree_cannibalize_lock);
891         if (c->btree_cache_alloc_lock == current) {
892                 c->btree_cache_alloc_lock = NULL;
893                 wake_up(&c->btree_cache_wait);
894         }
895         spin_unlock(&c->btree_cannibalize_lock);
896 }
897
898 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
899                                struct bkey *k, int level)
900 {
901         struct btree *b;
902
903         BUG_ON(current->bio_list);
904
905         lockdep_assert_held(&c->bucket_lock);
906
907         if (mca_find(c, k))
908                 return NULL;
909
910         /* btree_free() doesn't free memory; it sticks the node on the end of
911          * the list. Check if there's any freed nodes there:
912          */
913         list_for_each_entry(b, &c->btree_cache_freeable, list)
914                 if (!mca_reap(b, btree_order(k), false))
915                         goto out;
916
917         /* We never free struct btree itself, just the memory that holds the on
918          * disk node. Check the freed list before allocating a new one:
919          */
920         list_for_each_entry(b, &c->btree_cache_freed, list)
921                 if (!mca_reap(b, 0, false)) {
922                         mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
923                         if (!b->keys.set[0].data)
924                                 goto err;
925                         else
926                                 goto out;
927                 }
928
929         b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
930         if (!b)
931                 goto err;
932
933         BUG_ON(!down_write_trylock(&b->lock));
934         if (!b->keys.set->data)
935                 goto err;
936 out:
937         BUG_ON(b->io_mutex.count != 1);
938
939         bkey_copy(&b->key, k);
940         list_move(&b->list, &c->btree_cache);
941         hlist_del_init_rcu(&b->hash);
942         hlist_add_head_rcu(&b->hash, mca_hash(c, k));
943
944         lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
945         b->parent       = (void *) ~0UL;
946         b->flags        = 0;
947         b->written      = 0;
948         b->level        = level;
949
950         if (!b->level)
951                 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
952                                     &b->c->expensive_debug_checks);
953         else
954                 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
955                                     &b->c->expensive_debug_checks);
956
957         return b;
958 err:
959         if (b)
960                 rw_unlock(true, b);
961
962         b = mca_cannibalize(c, op, k);
963         if (!IS_ERR(b))
964                 goto out;
965
966         return b;
967 }
968
969 /*
970  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
971  * in from disk if necessary.
972  *
973  * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
974  *
975  * The btree node will have either a read or a write lock held, depending on
976  * level and op->lock.
977  *
978  * Note: Only error code or btree pointer will be returned, it is unncessary
979  *       for callers to check NULL pointer.
980  */
981 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
982                                  struct bkey *k, int level, bool write,
983                                  struct btree *parent)
984 {
985         int i = 0;
986         struct btree *b;
987
988         BUG_ON(level < 0);
989 retry:
990         b = mca_find(c, k);
991
992         if (!b) {
993                 if (current->bio_list)
994                         return ERR_PTR(-EAGAIN);
995
996                 mutex_lock(&c->bucket_lock);
997                 b = mca_alloc(c, op, k, level);
998                 mutex_unlock(&c->bucket_lock);
999
1000                 if (!b)
1001                         goto retry;
1002                 if (IS_ERR(b))
1003                         return b;
1004
1005                 bch_btree_node_read(b);
1006
1007                 if (!write)
1008                         downgrade_write(&b->lock);
1009         } else {
1010                 rw_lock(write, b, level);
1011                 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1012                         rw_unlock(write, b);
1013                         goto retry;
1014                 }
1015                 BUG_ON(b->level != level);
1016         }
1017
1018         if (btree_node_io_error(b)) {
1019                 rw_unlock(write, b);
1020                 return ERR_PTR(-EIO);
1021         }
1022
1023         BUG_ON(!b->written);
1024
1025         b->parent = parent;
1026
1027         for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1028                 prefetch(b->keys.set[i].tree);
1029                 prefetch(b->keys.set[i].data);
1030         }
1031
1032         for (; i <= b->keys.nsets; i++)
1033                 prefetch(b->keys.set[i].data);
1034
1035         return b;
1036 }
1037
1038 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1039 {
1040         struct btree *b;
1041
1042         mutex_lock(&parent->c->bucket_lock);
1043         b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1044         mutex_unlock(&parent->c->bucket_lock);
1045
1046         if (!IS_ERR_OR_NULL(b)) {
1047                 b->parent = parent;
1048                 bch_btree_node_read(b);
1049                 rw_unlock(true, b);
1050         }
1051 }
1052
1053 /* Btree alloc */
1054
1055 static void btree_node_free(struct btree *b)
1056 {
1057         trace_bcache_btree_node_free(b);
1058
1059         BUG_ON(b == b->c->root);
1060
1061 retry:
1062         mutex_lock(&b->write_lock);
1063         /*
1064          * If the btree node is selected and flushing in btree_flush_write(),
1065          * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1066          * then it is safe to free the btree node here. Otherwise this btree
1067          * node will be in race condition.
1068          */
1069         if (btree_node_journal_flush(b)) {
1070                 mutex_unlock(&b->write_lock);
1071                 pr_debug("bnode %p journal_flush set, retry\n", b);
1072                 udelay(1);
1073                 goto retry;
1074         }
1075
1076         if (btree_node_dirty(b)) {
1077                 btree_complete_write(b, btree_current_write(b));
1078                 clear_bit(BTREE_NODE_dirty, &b->flags);
1079         }
1080
1081         mutex_unlock(&b->write_lock);
1082
1083         cancel_delayed_work(&b->work);
1084
1085         mutex_lock(&b->c->bucket_lock);
1086         bch_bucket_free(b->c, &b->key);
1087         mca_bucket_free(b);
1088         mutex_unlock(&b->c->bucket_lock);
1089 }
1090
1091 /*
1092  * Only error code or btree pointer will be returned, it is unncessary for
1093  * callers to check NULL pointer.
1094  */
1095 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1096                                      int level, bool wait,
1097                                      struct btree *parent)
1098 {
1099         BKEY_PADDED(key) k;
1100         struct btree *b;
1101
1102         mutex_lock(&c->bucket_lock);
1103 retry:
1104         /* return ERR_PTR(-EAGAIN) when it fails */
1105         b = ERR_PTR(-EAGAIN);
1106         if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1107                 goto err;
1108
1109         bkey_put(c, &k.key);
1110         SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1111
1112         b = mca_alloc(c, op, &k.key, level);
1113         if (IS_ERR(b))
1114                 goto err_free;
1115
1116         if (!b) {
1117                 cache_bug(c,
1118                         "Tried to allocate bucket that was in btree cache");
1119                 goto retry;
1120         }
1121
1122         b->parent = parent;
1123         bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1124
1125         mutex_unlock(&c->bucket_lock);
1126
1127         trace_bcache_btree_node_alloc(b);
1128         return b;
1129 err_free:
1130         bch_bucket_free(c, &k.key);
1131 err:
1132         mutex_unlock(&c->bucket_lock);
1133
1134         trace_bcache_btree_node_alloc_fail(c);
1135         return b;
1136 }
1137
1138 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1139                                           struct btree_op *op, int level,
1140                                           struct btree *parent)
1141 {
1142         return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1143 }
1144
1145 static struct btree *btree_node_alloc_replacement(struct btree *b,
1146                                                   struct btree_op *op)
1147 {
1148         struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1149
1150         if (!IS_ERR(n)) {
1151                 mutex_lock(&n->write_lock);
1152                 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1153                 bkey_copy_key(&n->key, &b->key);
1154                 mutex_unlock(&n->write_lock);
1155         }
1156
1157         return n;
1158 }
1159
1160 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1161 {
1162         unsigned int i;
1163
1164         mutex_lock(&b->c->bucket_lock);
1165
1166         atomic_inc(&b->c->prio_blocked);
1167
1168         bkey_copy(k, &b->key);
1169         bkey_copy_key(k, &ZERO_KEY);
1170
1171         for (i = 0; i < KEY_PTRS(k); i++)
1172                 SET_PTR_GEN(k, i,
1173                             bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1174                                         PTR_BUCKET(b->c, &b->key, i)));
1175
1176         mutex_unlock(&b->c->bucket_lock);
1177 }
1178
1179 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1180 {
1181         struct cache_set *c = b->c;
1182         struct cache *ca = c->cache;
1183         unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1184
1185         mutex_lock(&c->bucket_lock);
1186
1187         if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1188                 if (op)
1189                         prepare_to_wait(&c->btree_cache_wait, &op->wait,
1190                                         TASK_UNINTERRUPTIBLE);
1191                 mutex_unlock(&c->bucket_lock);
1192                 return -EINTR;
1193         }
1194
1195         mutex_unlock(&c->bucket_lock);
1196
1197         return mca_cannibalize_lock(b->c, op);
1198 }
1199
1200 /* Garbage collection */
1201
1202 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1203                                     struct bkey *k)
1204 {
1205         uint8_t stale = 0;
1206         unsigned int i;
1207         struct bucket *g;
1208
1209         /*
1210          * ptr_invalid() can't return true for the keys that mark btree nodes as
1211          * freed, but since ptr_bad() returns true we'll never actually use them
1212          * for anything and thus we don't want mark their pointers here
1213          */
1214         if (!bkey_cmp(k, &ZERO_KEY))
1215                 return stale;
1216
1217         for (i = 0; i < KEY_PTRS(k); i++) {
1218                 if (!ptr_available(c, k, i))
1219                         continue;
1220
1221                 g = PTR_BUCKET(c, k, i);
1222
1223                 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1224                         g->last_gc = PTR_GEN(k, i);
1225
1226                 if (ptr_stale(c, k, i)) {
1227                         stale = max(stale, ptr_stale(c, k, i));
1228                         continue;
1229                 }
1230
1231                 cache_bug_on(GC_MARK(g) &&
1232                              (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1233                              c, "inconsistent ptrs: mark = %llu, level = %i",
1234                              GC_MARK(g), level);
1235
1236                 if (level)
1237                         SET_GC_MARK(g, GC_MARK_METADATA);
1238                 else if (KEY_DIRTY(k))
1239                         SET_GC_MARK(g, GC_MARK_DIRTY);
1240                 else if (!GC_MARK(g))
1241                         SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1242
1243                 /* guard against overflow */
1244                 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1245                                              GC_SECTORS_USED(g) + KEY_SIZE(k),
1246                                              MAX_GC_SECTORS_USED));
1247
1248                 BUG_ON(!GC_SECTORS_USED(g));
1249         }
1250
1251         return stale;
1252 }
1253
1254 #define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1255
1256 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1257 {
1258         unsigned int i;
1259
1260         for (i = 0; i < KEY_PTRS(k); i++)
1261                 if (ptr_available(c, k, i) &&
1262                     !ptr_stale(c, k, i)) {
1263                         struct bucket *b = PTR_BUCKET(c, k, i);
1264
1265                         b->gen = PTR_GEN(k, i);
1266
1267                         if (level && bkey_cmp(k, &ZERO_KEY))
1268                                 b->prio = BTREE_PRIO;
1269                         else if (!level && b->prio == BTREE_PRIO)
1270                                 b->prio = INITIAL_PRIO;
1271                 }
1272
1273         __bch_btree_mark_key(c, level, k);
1274 }
1275
1276 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1277 {
1278         stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1279 }
1280
1281 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1282 {
1283         uint8_t stale = 0;
1284         unsigned int keys = 0, good_keys = 0;
1285         struct bkey *k;
1286         struct btree_iter iter;
1287         struct bset_tree *t;
1288
1289         gc->nodes++;
1290
1291         for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1292                 stale = max(stale, btree_mark_key(b, k));
1293                 keys++;
1294
1295                 if (bch_ptr_bad(&b->keys, k))
1296                         continue;
1297
1298                 gc->key_bytes += bkey_u64s(k);
1299                 gc->nkeys++;
1300                 good_keys++;
1301
1302                 gc->data += KEY_SIZE(k);
1303         }
1304
1305         for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1306                 btree_bug_on(t->size &&
1307                              bset_written(&b->keys, t) &&
1308                              bkey_cmp(&b->key, &t->end) < 0,
1309                              b, "found short btree key in gc");
1310
1311         if (b->c->gc_always_rewrite)
1312                 return true;
1313
1314         if (stale > 10)
1315                 return true;
1316
1317         if ((keys - good_keys) * 2 > keys)
1318                 return true;
1319
1320         return false;
1321 }
1322
1323 #define GC_MERGE_NODES  4U
1324
1325 struct gc_merge_info {
1326         struct btree    *b;
1327         unsigned int    keys;
1328 };
1329
1330 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1331                                  struct keylist *insert_keys,
1332                                  atomic_t *journal_ref,
1333                                  struct bkey *replace_key);
1334
1335 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1336                              struct gc_stat *gc, struct gc_merge_info *r)
1337 {
1338         unsigned int i, nodes = 0, keys = 0, blocks;
1339         struct btree *new_nodes[GC_MERGE_NODES];
1340         struct keylist keylist;
1341         struct closure cl;
1342         struct bkey *k;
1343
1344         bch_keylist_init(&keylist);
1345
1346         if (btree_check_reserve(b, NULL))
1347                 return 0;
1348
1349         memset(new_nodes, 0, sizeof(new_nodes));
1350         closure_init_stack(&cl);
1351
1352         while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1353                 keys += r[nodes++].keys;
1354
1355         blocks = btree_default_blocks(b->c) * 2 / 3;
1356
1357         if (nodes < 2 ||
1358             __set_blocks(b->keys.set[0].data, keys,
1359                          block_bytes(b->c->cache)) > blocks * (nodes - 1))
1360                 return 0;
1361
1362         for (i = 0; i < nodes; i++) {
1363                 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1364                 if (IS_ERR(new_nodes[i]))
1365                         goto out_nocoalesce;
1366         }
1367
1368         /*
1369          * We have to check the reserve here, after we've allocated our new
1370          * nodes, to make sure the insert below will succeed - we also check
1371          * before as an optimization to potentially avoid a bunch of expensive
1372          * allocs/sorts
1373          */
1374         if (btree_check_reserve(b, NULL))
1375                 goto out_nocoalesce;
1376
1377         for (i = 0; i < nodes; i++)
1378                 mutex_lock(&new_nodes[i]->write_lock);
1379
1380         for (i = nodes - 1; i > 0; --i) {
1381                 struct bset *n1 = btree_bset_first(new_nodes[i]);
1382                 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1383                 struct bkey *k, *last = NULL;
1384
1385                 keys = 0;
1386
1387                 if (i > 1) {
1388                         for (k = n2->start;
1389                              k < bset_bkey_last(n2);
1390                              k = bkey_next(k)) {
1391                                 if (__set_blocks(n1, n1->keys + keys +
1392                                                  bkey_u64s(k),
1393                                                  block_bytes(b->c->cache)) > blocks)
1394                                         break;
1395
1396                                 last = k;
1397                                 keys += bkey_u64s(k);
1398                         }
1399                 } else {
1400                         /*
1401                          * Last node we're not getting rid of - we're getting
1402                          * rid of the node at r[0]. Have to try and fit all of
1403                          * the remaining keys into this node; we can't ensure
1404                          * they will always fit due to rounding and variable
1405                          * length keys (shouldn't be possible in practice,
1406                          * though)
1407                          */
1408                         if (__set_blocks(n1, n1->keys + n2->keys,
1409                                          block_bytes(b->c->cache)) >
1410                             btree_blocks(new_nodes[i]))
1411                                 goto out_unlock_nocoalesce;
1412
1413                         keys = n2->keys;
1414                         /* Take the key of the node we're getting rid of */
1415                         last = &r->b->key;
1416                 }
1417
1418                 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1419                        btree_blocks(new_nodes[i]));
1420
1421                 if (last)
1422                         bkey_copy_key(&new_nodes[i]->key, last);
1423
1424                 memcpy(bset_bkey_last(n1),
1425                        n2->start,
1426                        (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1427
1428                 n1->keys += keys;
1429                 r[i].keys = n1->keys;
1430
1431                 memmove(n2->start,
1432                         bset_bkey_idx(n2, keys),
1433                         (void *) bset_bkey_last(n2) -
1434                         (void *) bset_bkey_idx(n2, keys));
1435
1436                 n2->keys -= keys;
1437
1438                 if (__bch_keylist_realloc(&keylist,
1439                                           bkey_u64s(&new_nodes[i]->key)))
1440                         goto out_unlock_nocoalesce;
1441
1442                 bch_btree_node_write(new_nodes[i], &cl);
1443                 bch_keylist_add(&keylist, &new_nodes[i]->key);
1444         }
1445
1446         for (i = 0; i < nodes; i++)
1447                 mutex_unlock(&new_nodes[i]->write_lock);
1448
1449         closure_sync(&cl);
1450
1451         /* We emptied out this node */
1452         BUG_ON(btree_bset_first(new_nodes[0])->keys);
1453         btree_node_free(new_nodes[0]);
1454         rw_unlock(true, new_nodes[0]);
1455         new_nodes[0] = NULL;
1456
1457         for (i = 0; i < nodes; i++) {
1458                 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1459                         goto out_nocoalesce;
1460
1461                 make_btree_freeing_key(r[i].b, keylist.top);
1462                 bch_keylist_push(&keylist);
1463         }
1464
1465         bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1466         BUG_ON(!bch_keylist_empty(&keylist));
1467
1468         for (i = 0; i < nodes; i++) {
1469                 btree_node_free(r[i].b);
1470                 rw_unlock(true, r[i].b);
1471
1472                 r[i].b = new_nodes[i];
1473         }
1474
1475         memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1476         r[nodes - 1].b = ERR_PTR(-EINTR);
1477
1478         trace_bcache_btree_gc_coalesce(nodes);
1479         gc->nodes--;
1480
1481         bch_keylist_free(&keylist);
1482
1483         /* Invalidated our iterator */
1484         return -EINTR;
1485
1486 out_unlock_nocoalesce:
1487         for (i = 0; i < nodes; i++)
1488                 mutex_unlock(&new_nodes[i]->write_lock);
1489
1490 out_nocoalesce:
1491         closure_sync(&cl);
1492
1493         while ((k = bch_keylist_pop(&keylist)))
1494                 if (!bkey_cmp(k, &ZERO_KEY))
1495                         atomic_dec(&b->c->prio_blocked);
1496         bch_keylist_free(&keylist);
1497
1498         for (i = 0; i < nodes; i++)
1499                 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1500                         btree_node_free(new_nodes[i]);
1501                         rw_unlock(true, new_nodes[i]);
1502                 }
1503         return 0;
1504 }
1505
1506 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1507                                  struct btree *replace)
1508 {
1509         struct keylist keys;
1510         struct btree *n;
1511
1512         if (btree_check_reserve(b, NULL))
1513                 return 0;
1514
1515         n = btree_node_alloc_replacement(replace, NULL);
1516         if (IS_ERR(n))
1517                 return 0;
1518
1519         /* recheck reserve after allocating replacement node */
1520         if (btree_check_reserve(b, NULL)) {
1521                 btree_node_free(n);
1522                 rw_unlock(true, n);
1523                 return 0;
1524         }
1525
1526         bch_btree_node_write_sync(n);
1527
1528         bch_keylist_init(&keys);
1529         bch_keylist_add(&keys, &n->key);
1530
1531         make_btree_freeing_key(replace, keys.top);
1532         bch_keylist_push(&keys);
1533
1534         bch_btree_insert_node(b, op, &keys, NULL, NULL);
1535         BUG_ON(!bch_keylist_empty(&keys));
1536
1537         btree_node_free(replace);
1538         rw_unlock(true, n);
1539
1540         /* Invalidated our iterator */
1541         return -EINTR;
1542 }
1543
1544 static unsigned int btree_gc_count_keys(struct btree *b)
1545 {
1546         struct bkey *k;
1547         struct btree_iter iter;
1548         unsigned int ret = 0;
1549
1550         for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1551                 ret += bkey_u64s(k);
1552
1553         return ret;
1554 }
1555
1556 static size_t btree_gc_min_nodes(struct cache_set *c)
1557 {
1558         size_t min_nodes;
1559
1560         /*
1561          * Since incremental GC would stop 100ms when front
1562          * side I/O comes, so when there are many btree nodes,
1563          * if GC only processes constant (100) nodes each time,
1564          * GC would last a long time, and the front side I/Os
1565          * would run out of the buckets (since no new bucket
1566          * can be allocated during GC), and be blocked again.
1567          * So GC should not process constant nodes, but varied
1568          * nodes according to the number of btree nodes, which
1569          * realized by dividing GC into constant(100) times,
1570          * so when there are many btree nodes, GC can process
1571          * more nodes each time, otherwise, GC will process less
1572          * nodes each time (but no less than MIN_GC_NODES)
1573          */
1574         min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1575         if (min_nodes < MIN_GC_NODES)
1576                 min_nodes = MIN_GC_NODES;
1577
1578         return min_nodes;
1579 }
1580
1581
1582 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1583                             struct closure *writes, struct gc_stat *gc)
1584 {
1585         int ret = 0;
1586         bool should_rewrite;
1587         struct bkey *k;
1588         struct btree_iter iter;
1589         struct gc_merge_info r[GC_MERGE_NODES];
1590         struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1591
1592         bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1593
1594         for (i = r; i < r + ARRAY_SIZE(r); i++)
1595                 i->b = ERR_PTR(-EINTR);
1596
1597         while (1) {
1598                 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1599                 if (k) {
1600                         r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1601                                                   true, b);
1602                         if (IS_ERR(r->b)) {
1603                                 ret = PTR_ERR(r->b);
1604                                 break;
1605                         }
1606
1607                         r->keys = btree_gc_count_keys(r->b);
1608
1609                         ret = btree_gc_coalesce(b, op, gc, r);
1610                         if (ret)
1611                                 break;
1612                 }
1613
1614                 if (!last->b)
1615                         break;
1616
1617                 if (!IS_ERR(last->b)) {
1618                         should_rewrite = btree_gc_mark_node(last->b, gc);
1619                         if (should_rewrite) {
1620                                 ret = btree_gc_rewrite_node(b, op, last->b);
1621                                 if (ret)
1622                                         break;
1623                         }
1624
1625                         if (last->b->level) {
1626                                 ret = btree_gc_recurse(last->b, op, writes, gc);
1627                                 if (ret)
1628                                         break;
1629                         }
1630
1631                         bkey_copy_key(&b->c->gc_done, &last->b->key);
1632
1633                         /*
1634                          * Must flush leaf nodes before gc ends, since replace
1635                          * operations aren't journalled
1636                          */
1637                         mutex_lock(&last->b->write_lock);
1638                         if (btree_node_dirty(last->b))
1639                                 bch_btree_node_write(last->b, writes);
1640                         mutex_unlock(&last->b->write_lock);
1641                         rw_unlock(true, last->b);
1642                 }
1643
1644                 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1645                 r->b = NULL;
1646
1647                 if (atomic_read(&b->c->search_inflight) &&
1648                     gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1649                         gc->nodes_pre =  gc->nodes;
1650                         ret = -EAGAIN;
1651                         break;
1652                 }
1653
1654                 if (need_resched()) {
1655                         ret = -EAGAIN;
1656                         break;
1657                 }
1658         }
1659
1660         for (i = r; i < r + ARRAY_SIZE(r); i++)
1661                 if (!IS_ERR_OR_NULL(i->b)) {
1662                         mutex_lock(&i->b->write_lock);
1663                         if (btree_node_dirty(i->b))
1664                                 bch_btree_node_write(i->b, writes);
1665                         mutex_unlock(&i->b->write_lock);
1666                         rw_unlock(true, i->b);
1667                 }
1668
1669         return ret;
1670 }
1671
1672 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1673                              struct closure *writes, struct gc_stat *gc)
1674 {
1675         struct btree *n = NULL;
1676         int ret = 0;
1677         bool should_rewrite;
1678
1679         should_rewrite = btree_gc_mark_node(b, gc);
1680         if (should_rewrite) {
1681                 n = btree_node_alloc_replacement(b, NULL);
1682
1683                 if (!IS_ERR(n)) {
1684                         bch_btree_node_write_sync(n);
1685
1686                         bch_btree_set_root(n);
1687                         btree_node_free(b);
1688                         rw_unlock(true, n);
1689
1690                         return -EINTR;
1691                 }
1692         }
1693
1694         __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1695
1696         if (b->level) {
1697                 ret = btree_gc_recurse(b, op, writes, gc);
1698                 if (ret)
1699                         return ret;
1700         }
1701
1702         bkey_copy_key(&b->c->gc_done, &b->key);
1703
1704         return ret;
1705 }
1706
1707 static void btree_gc_start(struct cache_set *c)
1708 {
1709         struct cache *ca;
1710         struct bucket *b;
1711
1712         if (!c->gc_mark_valid)
1713                 return;
1714
1715         mutex_lock(&c->bucket_lock);
1716
1717         c->gc_mark_valid = 0;
1718         c->gc_done = ZERO_KEY;
1719
1720         ca = c->cache;
1721         for_each_bucket(b, ca) {
1722                 b->last_gc = b->gen;
1723                 if (!atomic_read(&b->pin)) {
1724                         SET_GC_MARK(b, 0);
1725                         SET_GC_SECTORS_USED(b, 0);
1726                 }
1727         }
1728
1729         mutex_unlock(&c->bucket_lock);
1730 }
1731
1732 static void bch_btree_gc_finish(struct cache_set *c)
1733 {
1734         struct bucket *b;
1735         struct cache *ca;
1736         unsigned int i, j;
1737         uint64_t *k;
1738
1739         mutex_lock(&c->bucket_lock);
1740
1741         set_gc_sectors(c);
1742         c->gc_mark_valid = 1;
1743         c->need_gc      = 0;
1744
1745         for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1746                 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1747                             GC_MARK_METADATA);
1748
1749         /* don't reclaim buckets to which writeback keys point */
1750         rcu_read_lock();
1751         for (i = 0; i < c->devices_max_used; i++) {
1752                 struct bcache_device *d = c->devices[i];
1753                 struct cached_dev *dc;
1754                 struct keybuf_key *w, *n;
1755
1756                 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1757                         continue;
1758                 dc = container_of(d, struct cached_dev, disk);
1759
1760                 spin_lock(&dc->writeback_keys.lock);
1761                 rbtree_postorder_for_each_entry_safe(w, n,
1762                                         &dc->writeback_keys.keys, node)
1763                         for (j = 0; j < KEY_PTRS(&w->key); j++)
1764                                 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1765                                             GC_MARK_DIRTY);
1766                 spin_unlock(&dc->writeback_keys.lock);
1767         }
1768         rcu_read_unlock();
1769
1770         c->avail_nbuckets = 0;
1771
1772         ca = c->cache;
1773         ca->invalidate_needs_gc = 0;
1774
1775         for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1776                 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1777
1778         for (k = ca->prio_buckets;
1779              k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1780                 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1781
1782         for_each_bucket(b, ca) {
1783                 c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1784
1785                 if (atomic_read(&b->pin))
1786                         continue;
1787
1788                 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1789
1790                 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1791                         c->avail_nbuckets++;
1792         }
1793
1794         mutex_unlock(&c->bucket_lock);
1795 }
1796
1797 static void bch_btree_gc(struct cache_set *c)
1798 {
1799         int ret;
1800         struct gc_stat stats;
1801         struct closure writes;
1802         struct btree_op op;
1803         uint64_t start_time = local_clock();
1804
1805         trace_bcache_gc_start(c);
1806
1807         memset(&stats, 0, sizeof(struct gc_stat));
1808         closure_init_stack(&writes);
1809         bch_btree_op_init(&op, SHRT_MAX);
1810
1811         btree_gc_start(c);
1812
1813         /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1814         do {
1815                 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1816                 closure_sync(&writes);
1817                 cond_resched();
1818
1819                 if (ret == -EAGAIN)
1820                         schedule_timeout_interruptible(msecs_to_jiffies
1821                                                        (GC_SLEEP_MS));
1822                 else if (ret)
1823                         pr_warn("gc failed!\n");
1824         } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1825
1826         bch_btree_gc_finish(c);
1827         wake_up_allocators(c);
1828
1829         bch_time_stats_update(&c->btree_gc_time, start_time);
1830
1831         stats.key_bytes *= sizeof(uint64_t);
1832         stats.data      <<= 9;
1833         bch_update_bucket_in_use(c, &stats);
1834         memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1835
1836         trace_bcache_gc_end(c);
1837
1838         bch_moving_gc(c);
1839 }
1840
1841 static bool gc_should_run(struct cache_set *c)
1842 {
1843         struct cache *ca = c->cache;
1844
1845         if (ca->invalidate_needs_gc)
1846                 return true;
1847
1848         if (atomic_read(&c->sectors_to_gc) < 0)
1849                 return true;
1850
1851         return false;
1852 }
1853
1854 static int bch_gc_thread(void *arg)
1855 {
1856         struct cache_set *c = arg;
1857
1858         while (1) {
1859                 wait_event_interruptible(c->gc_wait,
1860                            kthread_should_stop() ||
1861                            test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1862                            gc_should_run(c));
1863
1864                 if (kthread_should_stop() ||
1865                     test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1866                         break;
1867
1868                 set_gc_sectors(c);
1869                 bch_btree_gc(c);
1870         }
1871
1872         wait_for_kthread_stop();
1873         return 0;
1874 }
1875
1876 int bch_gc_thread_start(struct cache_set *c)
1877 {
1878         c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1879         return PTR_ERR_OR_ZERO(c->gc_thread);
1880 }
1881
1882 /* Initial partial gc */
1883
1884 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1885 {
1886         int ret = 0;
1887         struct bkey *k, *p = NULL;
1888         struct btree_iter iter;
1889
1890         for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1891                 bch_initial_mark_key(b->c, b->level, k);
1892
1893         bch_initial_mark_key(b->c, b->level + 1, &b->key);
1894
1895         if (b->level) {
1896                 bch_btree_iter_init(&b->keys, &iter, NULL);
1897
1898                 do {
1899                         k = bch_btree_iter_next_filter(&iter, &b->keys,
1900                                                        bch_ptr_bad);
1901                         if (k) {
1902                                 btree_node_prefetch(b, k);
1903                                 /*
1904                                  * initiallize c->gc_stats.nodes
1905                                  * for incremental GC
1906                                  */
1907                                 b->c->gc_stats.nodes++;
1908                         }
1909
1910                         if (p)
1911                                 ret = bcache_btree(check_recurse, p, b, op);
1912
1913                         p = k;
1914                 } while (p && !ret);
1915         }
1916
1917         return ret;
1918 }
1919
1920
1921 static int bch_btree_check_thread(void *arg)
1922 {
1923         int ret;
1924         struct btree_check_info *info = arg;
1925         struct btree_check_state *check_state = info->state;
1926         struct cache_set *c = check_state->c;
1927         struct btree_iter iter;
1928         struct bkey *k, *p;
1929         int cur_idx, prev_idx, skip_nr;
1930
1931         k = p = NULL;
1932         cur_idx = prev_idx = 0;
1933         ret = 0;
1934
1935         /* root node keys are checked before thread created */
1936         bch_btree_iter_init(&c->root->keys, &iter, NULL);
1937         k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1938         BUG_ON(!k);
1939
1940         p = k;
1941         while (k) {
1942                 /*
1943                  * Fetch a root node key index, skip the keys which
1944                  * should be fetched by other threads, then check the
1945                  * sub-tree indexed by the fetched key.
1946                  */
1947                 spin_lock(&check_state->idx_lock);
1948                 cur_idx = check_state->key_idx;
1949                 check_state->key_idx++;
1950                 spin_unlock(&check_state->idx_lock);
1951
1952                 skip_nr = cur_idx - prev_idx;
1953
1954                 while (skip_nr) {
1955                         k = bch_btree_iter_next_filter(&iter,
1956                                                        &c->root->keys,
1957                                                        bch_ptr_bad);
1958                         if (k)
1959                                 p = k;
1960                         else {
1961                                 /*
1962                                  * No more keys to check in root node,
1963                                  * current checking threads are enough,
1964                                  * stop creating more.
1965                                  */
1966                                 atomic_set(&check_state->enough, 1);
1967                                 /* Update check_state->enough earlier */
1968                                 smp_mb__after_atomic();
1969                                 goto out;
1970                         }
1971                         skip_nr--;
1972                         cond_resched();
1973                 }
1974
1975                 if (p) {
1976                         struct btree_op op;
1977
1978                         btree_node_prefetch(c->root, p);
1979                         c->gc_stats.nodes++;
1980                         bch_btree_op_init(&op, 0);
1981                         ret = bcache_btree(check_recurse, p, c->root, &op);
1982                         /*
1983                          * The op may be added to cache_set's btree_cache_wait
1984                          * in mca_cannibalize(), must ensure it is removed from
1985                          * the list and release btree_cache_alloc_lock before
1986                          * free op memory.
1987                          * Otherwise, the btree_cache_wait will be damaged.
1988                          */
1989                         bch_cannibalize_unlock(c);
1990                         finish_wait(&c->btree_cache_wait, &(&op)->wait);
1991                         if (ret)
1992                                 goto out;
1993                 }
1994                 p = NULL;
1995                 prev_idx = cur_idx;
1996                 cond_resched();
1997         }
1998
1999 out:
2000         info->result = ret;
2001         /* update check_state->started among all CPUs */
2002         smp_mb__before_atomic();
2003         if (atomic_dec_and_test(&check_state->started))
2004                 wake_up(&check_state->wait);
2005
2006         return ret;
2007 }
2008
2009
2010
2011 static int bch_btree_chkthread_nr(void)
2012 {
2013         int n = num_online_cpus()/2;
2014
2015         if (n == 0)
2016                 n = 1;
2017         else if (n > BCH_BTR_CHKTHREAD_MAX)
2018                 n = BCH_BTR_CHKTHREAD_MAX;
2019
2020         return n;
2021 }
2022
2023 int bch_btree_check(struct cache_set *c)
2024 {
2025         int ret = 0;
2026         int i;
2027         struct bkey *k = NULL;
2028         struct btree_iter iter;
2029         struct btree_check_state check_state;
2030
2031         /* check and mark root node keys */
2032         for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2033                 bch_initial_mark_key(c, c->root->level, k);
2034
2035         bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2036
2037         if (c->root->level == 0)
2038                 return 0;
2039
2040         memset(&check_state, 0, sizeof(struct btree_check_state));
2041         check_state.c = c;
2042         check_state.total_threads = bch_btree_chkthread_nr();
2043         check_state.key_idx = 0;
2044         spin_lock_init(&check_state.idx_lock);
2045         atomic_set(&check_state.started, 0);
2046         atomic_set(&check_state.enough, 0);
2047         init_waitqueue_head(&check_state.wait);
2048
2049         rw_lock(0, c->root, c->root->level);
2050         /*
2051          * Run multiple threads to check btree nodes in parallel,
2052          * if check_state.enough is non-zero, it means current
2053          * running check threads are enough, unncessary to create
2054          * more.
2055          */
2056         for (i = 0; i < check_state.total_threads; i++) {
2057                 /* fetch latest check_state.enough earlier */
2058                 smp_mb__before_atomic();
2059                 if (atomic_read(&check_state.enough))
2060                         break;
2061
2062                 check_state.infos[i].result = 0;
2063                 check_state.infos[i].state = &check_state;
2064
2065                 check_state.infos[i].thread =
2066                         kthread_run(bch_btree_check_thread,
2067                                     &check_state.infos[i],
2068                                     "bch_btrchk[%d]", i);
2069                 if (IS_ERR(check_state.infos[i].thread)) {
2070                         pr_err("fails to run thread bch_btrchk[%d]\n", i);
2071                         for (--i; i >= 0; i--)
2072                                 kthread_stop(check_state.infos[i].thread);
2073                         ret = -ENOMEM;
2074                         goto out;
2075                 }
2076                 atomic_inc(&check_state.started);
2077         }
2078
2079         /*
2080          * Must wait for all threads to stop.
2081          */
2082         wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2083
2084         for (i = 0; i < check_state.total_threads; i++) {
2085                 if (check_state.infos[i].result) {
2086                         ret = check_state.infos[i].result;
2087                         goto out;
2088                 }
2089         }
2090
2091 out:
2092         rw_unlock(0, c->root);
2093         return ret;
2094 }
2095
2096 void bch_initial_gc_finish(struct cache_set *c)
2097 {
2098         struct cache *ca = c->cache;
2099         struct bucket *b;
2100
2101         bch_btree_gc_finish(c);
2102
2103         mutex_lock(&c->bucket_lock);
2104
2105         /*
2106          * We need to put some unused buckets directly on the prio freelist in
2107          * order to get the allocator thread started - it needs freed buckets in
2108          * order to rewrite the prios and gens, and it needs to rewrite prios
2109          * and gens in order to free buckets.
2110          *
2111          * This is only safe for buckets that have no live data in them, which
2112          * there should always be some of.
2113          */
2114         for_each_bucket(b, ca) {
2115                 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2116                     fifo_full(&ca->free[RESERVE_BTREE]))
2117                         break;
2118
2119                 if (bch_can_invalidate_bucket(ca, b) &&
2120                     !GC_MARK(b)) {
2121                         __bch_invalidate_one_bucket(ca, b);
2122                         if (!fifo_push(&ca->free[RESERVE_PRIO],
2123                            b - ca->buckets))
2124                                 fifo_push(&ca->free[RESERVE_BTREE],
2125                                           b - ca->buckets);
2126                 }
2127         }
2128
2129         mutex_unlock(&c->bucket_lock);
2130 }
2131
2132 /* Btree insertion */
2133
2134 static bool btree_insert_key(struct btree *b, struct bkey *k,
2135                              struct bkey *replace_key)
2136 {
2137         unsigned int status;
2138
2139         BUG_ON(bkey_cmp(k, &b->key) > 0);
2140
2141         status = bch_btree_insert_key(&b->keys, k, replace_key);
2142         if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2143                 bch_check_keys(&b->keys, "%u for %s", status,
2144                                replace_key ? "replace" : "insert");
2145
2146                 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2147                                               status);
2148                 return true;
2149         } else
2150                 return false;
2151 }
2152
2153 static size_t insert_u64s_remaining(struct btree *b)
2154 {
2155         long ret = bch_btree_keys_u64s_remaining(&b->keys);
2156
2157         /*
2158          * Might land in the middle of an existing extent and have to split it
2159          */
2160         if (b->keys.ops->is_extents)
2161                 ret -= KEY_MAX_U64S;
2162
2163         return max(ret, 0L);
2164 }
2165
2166 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2167                                   struct keylist *insert_keys,
2168                                   struct bkey *replace_key)
2169 {
2170         bool ret = false;
2171         int oldsize = bch_count_data(&b->keys);
2172
2173         while (!bch_keylist_empty(insert_keys)) {
2174                 struct bkey *k = insert_keys->keys;
2175
2176                 if (bkey_u64s(k) > insert_u64s_remaining(b))
2177                         break;
2178
2179                 if (bkey_cmp(k, &b->key) <= 0) {
2180                         if (!b->level)
2181                                 bkey_put(b->c, k);
2182
2183                         ret |= btree_insert_key(b, k, replace_key);
2184                         bch_keylist_pop_front(insert_keys);
2185                 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2186                         BKEY_PADDED(key) temp;
2187                         bkey_copy(&temp.key, insert_keys->keys);
2188
2189                         bch_cut_back(&b->key, &temp.key);
2190                         bch_cut_front(&b->key, insert_keys->keys);
2191
2192                         ret |= btree_insert_key(b, &temp.key, replace_key);
2193                         break;
2194                 } else {
2195                         break;
2196                 }
2197         }
2198
2199         if (!ret)
2200                 op->insert_collision = true;
2201
2202         BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2203
2204         BUG_ON(bch_count_data(&b->keys) < oldsize);
2205         return ret;
2206 }
2207
2208 static int btree_split(struct btree *b, struct btree_op *op,
2209                        struct keylist *insert_keys,
2210                        struct bkey *replace_key)
2211 {
2212         bool split;
2213         struct btree *n1, *n2 = NULL, *n3 = NULL;
2214         uint64_t start_time = local_clock();
2215         struct closure cl;
2216         struct keylist parent_keys;
2217
2218         closure_init_stack(&cl);
2219         bch_keylist_init(&parent_keys);
2220
2221         if (btree_check_reserve(b, op)) {
2222                 if (!b->level)
2223                         return -EINTR;
2224                 else
2225                         WARN(1, "insufficient reserve for split\n");
2226         }
2227
2228         n1 = btree_node_alloc_replacement(b, op);
2229         if (IS_ERR(n1))
2230                 goto err;
2231
2232         split = set_blocks(btree_bset_first(n1),
2233                            block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2234
2235         if (split) {
2236                 unsigned int keys = 0;
2237
2238                 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2239
2240                 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2241                 if (IS_ERR(n2))
2242                         goto err_free1;
2243
2244                 if (!b->parent) {
2245                         n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2246                         if (IS_ERR(n3))
2247                                 goto err_free2;
2248                 }
2249
2250                 mutex_lock(&n1->write_lock);
2251                 mutex_lock(&n2->write_lock);
2252
2253                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2254
2255                 /*
2256                  * Has to be a linear search because we don't have an auxiliary
2257                  * search tree yet
2258                  */
2259
2260                 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2261                         keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2262                                                         keys));
2263
2264                 bkey_copy_key(&n1->key,
2265                               bset_bkey_idx(btree_bset_first(n1), keys));
2266                 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2267
2268                 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2269                 btree_bset_first(n1)->keys = keys;
2270
2271                 memcpy(btree_bset_first(n2)->start,
2272                        bset_bkey_last(btree_bset_first(n1)),
2273                        btree_bset_first(n2)->keys * sizeof(uint64_t));
2274
2275                 bkey_copy_key(&n2->key, &b->key);
2276
2277                 bch_keylist_add(&parent_keys, &n2->key);
2278                 bch_btree_node_write(n2, &cl);
2279                 mutex_unlock(&n2->write_lock);
2280                 rw_unlock(true, n2);
2281         } else {
2282                 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2283
2284                 mutex_lock(&n1->write_lock);
2285                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2286         }
2287
2288         bch_keylist_add(&parent_keys, &n1->key);
2289         bch_btree_node_write(n1, &cl);
2290         mutex_unlock(&n1->write_lock);
2291
2292         if (n3) {
2293                 /* Depth increases, make a new root */
2294                 mutex_lock(&n3->write_lock);
2295                 bkey_copy_key(&n3->key, &MAX_KEY);
2296                 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2297                 bch_btree_node_write(n3, &cl);
2298                 mutex_unlock(&n3->write_lock);
2299
2300                 closure_sync(&cl);
2301                 bch_btree_set_root(n3);
2302                 rw_unlock(true, n3);
2303         } else if (!b->parent) {
2304                 /* Root filled up but didn't need to be split */
2305                 closure_sync(&cl);
2306                 bch_btree_set_root(n1);
2307         } else {
2308                 /* Split a non root node */
2309                 closure_sync(&cl);
2310                 make_btree_freeing_key(b, parent_keys.top);
2311                 bch_keylist_push(&parent_keys);
2312
2313                 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2314                 BUG_ON(!bch_keylist_empty(&parent_keys));
2315         }
2316
2317         btree_node_free(b);
2318         rw_unlock(true, n1);
2319
2320         bch_time_stats_update(&b->c->btree_split_time, start_time);
2321
2322         return 0;
2323 err_free2:
2324         bkey_put(b->c, &n2->key);
2325         btree_node_free(n2);
2326         rw_unlock(true, n2);
2327 err_free1:
2328         bkey_put(b->c, &n1->key);
2329         btree_node_free(n1);
2330         rw_unlock(true, n1);
2331 err:
2332         WARN(1, "bcache: btree split failed (level %u)", b->level);
2333
2334         if (n3 == ERR_PTR(-EAGAIN) ||
2335             n2 == ERR_PTR(-EAGAIN) ||
2336             n1 == ERR_PTR(-EAGAIN))
2337                 return -EAGAIN;
2338
2339         return -ENOMEM;
2340 }
2341
2342 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2343                                  struct keylist *insert_keys,
2344                                  atomic_t *journal_ref,
2345                                  struct bkey *replace_key)
2346 {
2347         struct closure cl;
2348
2349         BUG_ON(b->level && replace_key);
2350
2351         closure_init_stack(&cl);
2352
2353         mutex_lock(&b->write_lock);
2354
2355         if (write_block(b) != btree_bset_last(b) &&
2356             b->keys.last_set_unwritten)
2357                 bch_btree_init_next(b); /* just wrote a set */
2358
2359         if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2360                 mutex_unlock(&b->write_lock);
2361                 goto split;
2362         }
2363
2364         BUG_ON(write_block(b) != btree_bset_last(b));
2365
2366         if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2367                 if (!b->level)
2368                         bch_btree_leaf_dirty(b, journal_ref);
2369                 else
2370                         bch_btree_node_write(b, &cl);
2371         }
2372
2373         mutex_unlock(&b->write_lock);
2374
2375         /* wait for btree node write if necessary, after unlock */
2376         closure_sync(&cl);
2377
2378         return 0;
2379 split:
2380         if (current->bio_list) {
2381                 op->lock = b->c->root->level + 1;
2382                 return -EAGAIN;
2383         } else if (op->lock <= b->c->root->level) {
2384                 op->lock = b->c->root->level + 1;
2385                 return -EINTR;
2386         } else {
2387                 /* Invalidated all iterators */
2388                 int ret = btree_split(b, op, insert_keys, replace_key);
2389
2390                 if (bch_keylist_empty(insert_keys))
2391                         return 0;
2392                 else if (!ret)
2393                         return -EINTR;
2394                 return ret;
2395         }
2396 }
2397
2398 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2399                                struct bkey *check_key)
2400 {
2401         int ret = -EINTR;
2402         uint64_t btree_ptr = b->key.ptr[0];
2403         unsigned long seq = b->seq;
2404         struct keylist insert;
2405         bool upgrade = op->lock == -1;
2406
2407         bch_keylist_init(&insert);
2408
2409         if (upgrade) {
2410                 rw_unlock(false, b);
2411                 rw_lock(true, b, b->level);
2412
2413                 if (b->key.ptr[0] != btree_ptr ||
2414                     b->seq != seq + 1) {
2415                         op->lock = b->level;
2416                         goto out;
2417                 }
2418         }
2419
2420         SET_KEY_PTRS(check_key, 1);
2421         get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2422
2423         SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2424
2425         bch_keylist_add(&insert, check_key);
2426
2427         ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2428
2429         BUG_ON(!ret && !bch_keylist_empty(&insert));
2430 out:
2431         if (upgrade)
2432                 downgrade_write(&b->lock);
2433         return ret;
2434 }
2435
2436 struct btree_insert_op {
2437         struct btree_op op;
2438         struct keylist  *keys;
2439         atomic_t        *journal_ref;
2440         struct bkey     *replace_key;
2441 };
2442
2443 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2444 {
2445         struct btree_insert_op *op = container_of(b_op,
2446                                         struct btree_insert_op, op);
2447
2448         int ret = bch_btree_insert_node(b, &op->op, op->keys,
2449                                         op->journal_ref, op->replace_key);
2450         if (ret && !bch_keylist_empty(op->keys))
2451                 return ret;
2452         else
2453                 return MAP_DONE;
2454 }
2455
2456 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2457                      atomic_t *journal_ref, struct bkey *replace_key)
2458 {
2459         struct btree_insert_op op;
2460         int ret = 0;
2461
2462         BUG_ON(current->bio_list);
2463         BUG_ON(bch_keylist_empty(keys));
2464
2465         bch_btree_op_init(&op.op, 0);
2466         op.keys         = keys;
2467         op.journal_ref  = journal_ref;
2468         op.replace_key  = replace_key;
2469
2470         while (!ret && !bch_keylist_empty(keys)) {
2471                 op.op.lock = 0;
2472                 ret = bch_btree_map_leaf_nodes(&op.op, c,
2473                                                &START_KEY(keys->keys),
2474                                                btree_insert_fn);
2475         }
2476
2477         if (ret) {
2478                 struct bkey *k;
2479
2480                 pr_err("error %i\n", ret);
2481
2482                 while ((k = bch_keylist_pop(keys)))
2483                         bkey_put(c, k);
2484         } else if (op.op.insert_collision)
2485                 ret = -ESRCH;
2486
2487         return ret;
2488 }
2489
2490 void bch_btree_set_root(struct btree *b)
2491 {
2492         unsigned int i;
2493         struct closure cl;
2494
2495         closure_init_stack(&cl);
2496
2497         trace_bcache_btree_set_root(b);
2498
2499         BUG_ON(!b->written);
2500
2501         for (i = 0; i < KEY_PTRS(&b->key); i++)
2502                 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2503
2504         mutex_lock(&b->c->bucket_lock);
2505         list_del_init(&b->list);
2506         mutex_unlock(&b->c->bucket_lock);
2507
2508         b->c->root = b;
2509
2510         bch_journal_meta(b->c, &cl);
2511         closure_sync(&cl);
2512 }
2513
2514 /* Map across nodes or keys */
2515
2516 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2517                                        struct bkey *from,
2518                                        btree_map_nodes_fn *fn, int flags)
2519 {
2520         int ret = MAP_CONTINUE;
2521
2522         if (b->level) {
2523                 struct bkey *k;
2524                 struct btree_iter iter;
2525
2526                 bch_btree_iter_init(&b->keys, &iter, from);
2527
2528                 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2529                                                        bch_ptr_bad))) {
2530                         ret = bcache_btree(map_nodes_recurse, k, b,
2531                                     op, from, fn, flags);
2532                         from = NULL;
2533
2534                         if (ret != MAP_CONTINUE)
2535                                 return ret;
2536                 }
2537         }
2538
2539         if (!b->level || flags == MAP_ALL_NODES)
2540                 ret = fn(op, b);
2541
2542         return ret;
2543 }
2544
2545 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2546                           struct bkey *from, btree_map_nodes_fn *fn, int flags)
2547 {
2548         return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2549 }
2550
2551 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2552                                       struct bkey *from, btree_map_keys_fn *fn,
2553                                       int flags)
2554 {
2555         int ret = MAP_CONTINUE;
2556         struct bkey *k;
2557         struct btree_iter iter;
2558
2559         bch_btree_iter_init(&b->keys, &iter, from);
2560
2561         while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2562                 ret = !b->level
2563                         ? fn(op, b, k)
2564                         : bcache_btree(map_keys_recurse, k,
2565                                        b, op, from, fn, flags);
2566                 from = NULL;
2567
2568                 if (ret != MAP_CONTINUE)
2569                         return ret;
2570         }
2571
2572         if (!b->level && (flags & MAP_END_KEY))
2573                 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2574                                      KEY_OFFSET(&b->key), 0));
2575
2576         return ret;
2577 }
2578
2579 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2580                        struct bkey *from, btree_map_keys_fn *fn, int flags)
2581 {
2582         return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2583 }
2584
2585 /* Keybuf code */
2586
2587 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2588 {
2589         /* Overlapping keys compare equal */
2590         if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2591                 return -1;
2592         if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2593                 return 1;
2594         return 0;
2595 }
2596
2597 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2598                                             struct keybuf_key *r)
2599 {
2600         return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2601 }
2602
2603 struct refill {
2604         struct btree_op op;
2605         unsigned int    nr_found;
2606         struct keybuf   *buf;
2607         struct bkey     *end;
2608         keybuf_pred_fn  *pred;
2609 };
2610
2611 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2612                             struct bkey *k)
2613 {
2614         struct refill *refill = container_of(op, struct refill, op);
2615         struct keybuf *buf = refill->buf;
2616         int ret = MAP_CONTINUE;
2617
2618         if (bkey_cmp(k, refill->end) > 0) {
2619                 ret = MAP_DONE;
2620                 goto out;
2621         }
2622
2623         if (!KEY_SIZE(k)) /* end key */
2624                 goto out;
2625
2626         if (refill->pred(buf, k)) {
2627                 struct keybuf_key *w;
2628
2629                 spin_lock(&buf->lock);
2630
2631                 w = array_alloc(&buf->freelist);
2632                 if (!w) {
2633                         spin_unlock(&buf->lock);
2634                         return MAP_DONE;
2635                 }
2636
2637                 w->private = NULL;
2638                 bkey_copy(&w->key, k);
2639
2640                 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2641                         array_free(&buf->freelist, w);
2642                 else
2643                         refill->nr_found++;
2644
2645                 if (array_freelist_empty(&buf->freelist))
2646                         ret = MAP_DONE;
2647
2648                 spin_unlock(&buf->lock);
2649         }
2650 out:
2651         buf->last_scanned = *k;
2652         return ret;
2653 }
2654
2655 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2656                        struct bkey *end, keybuf_pred_fn *pred)
2657 {
2658         struct bkey start = buf->last_scanned;
2659         struct refill refill;
2660
2661         cond_resched();
2662
2663         bch_btree_op_init(&refill.op, -1);
2664         refill.nr_found = 0;
2665         refill.buf      = buf;
2666         refill.end      = end;
2667         refill.pred     = pred;
2668
2669         bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2670                            refill_keybuf_fn, MAP_END_KEY);
2671
2672         trace_bcache_keyscan(refill.nr_found,
2673                              KEY_INODE(&start), KEY_OFFSET(&start),
2674                              KEY_INODE(&buf->last_scanned),
2675                              KEY_OFFSET(&buf->last_scanned));
2676
2677         spin_lock(&buf->lock);
2678
2679         if (!RB_EMPTY_ROOT(&buf->keys)) {
2680                 struct keybuf_key *w;
2681
2682                 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2683                 buf->start      = START_KEY(&w->key);
2684
2685                 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2686                 buf->end        = w->key;
2687         } else {
2688                 buf->start      = MAX_KEY;
2689                 buf->end        = MAX_KEY;
2690         }
2691
2692         spin_unlock(&buf->lock);
2693 }
2694
2695 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2696 {
2697         rb_erase(&w->node, &buf->keys);
2698         array_free(&buf->freelist, w);
2699 }
2700
2701 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2702 {
2703         spin_lock(&buf->lock);
2704         __bch_keybuf_del(buf, w);
2705         spin_unlock(&buf->lock);
2706 }
2707
2708 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2709                                   struct bkey *end)
2710 {
2711         bool ret = false;
2712         struct keybuf_key *p, *w, s;
2713
2714         s.key = *start;
2715
2716         if (bkey_cmp(end, &buf->start) <= 0 ||
2717             bkey_cmp(start, &buf->end) >= 0)
2718                 return false;
2719
2720         spin_lock(&buf->lock);
2721         w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2722
2723         while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2724                 p = w;
2725                 w = RB_NEXT(w, node);
2726
2727                 if (p->private)
2728                         ret = true;
2729                 else
2730                         __bch_keybuf_del(buf, p);
2731         }
2732
2733         spin_unlock(&buf->lock);
2734         return ret;
2735 }
2736
2737 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2738 {
2739         struct keybuf_key *w;
2740
2741         spin_lock(&buf->lock);
2742
2743         w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2744
2745         while (w && w->private)
2746                 w = RB_NEXT(w, node);
2747
2748         if (w)
2749                 w->private = ERR_PTR(-EINTR);
2750
2751         spin_unlock(&buf->lock);
2752         return w;
2753 }
2754
2755 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2756                                           struct keybuf *buf,
2757                                           struct bkey *end,
2758                                           keybuf_pred_fn *pred)
2759 {
2760         struct keybuf_key *ret;
2761
2762         while (1) {
2763                 ret = bch_keybuf_next(buf);
2764                 if (ret)
2765                         break;
2766
2767                 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2768                         pr_debug("scan finished\n");
2769                         break;
2770                 }
2771
2772                 bch_refill_keybuf(c, buf, end, pred);
2773         }
2774
2775         return ret;
2776 }
2777
2778 void bch_keybuf_init(struct keybuf *buf)
2779 {
2780         buf->last_scanned       = MAX_KEY;
2781         buf->keys               = RB_ROOT;
2782
2783         spin_lock_init(&buf->lock);
2784         array_allocator_init(&buf->freelist);
2785 }
2786
2787 void bch_btree_exit(void)
2788 {
2789         if (btree_io_wq)
2790                 destroy_workqueue(btree_io_wq);
2791 }
2792
2793 int __init bch_btree_init(void)
2794 {
2795         btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2796         if (!btree_io_wq)
2797                 return -ENOMEM;
2798
2799         return 0;
2800 }