GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3  * mISDN driver for Colognechip HFC-S USB chip
4  *
5  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7  *
8  * module params
9  *   debug=<n>, default=0, with n=0xHHHHGGGG
10  *      H - l1 driver flags described in hfcsusb.h
11  *      G - common mISDN debug flags described at mISDNhw.h
12  *
13  *   poll=<n>, default 128
14  *     n : burst size of PH_DATA_IND at transparent rx data
15  *
16  * Revision: 0.3.3 (socket), 2008-11-05
17  */
18
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31
32
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37
38 static int hfcsusb_cnt;
39
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static int  hfcsusb_ph_info(struct hfcsusb *hw);
50
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55         if (debug & DBG_HFC_CALL_TRACE)
56                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57
58         if (hw->ctrl_cnt) {
59                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61                 hw->ctrl_urb->transfer_buffer = NULL;
62                 hw->ctrl_urb->transfer_buffer_length = 0;
63                 hw->ctrl_write.wIndex =
64                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65                 hw->ctrl_write.wValue =
66                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67
68                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69         }
70 }
71
72 /*
73  * queue a control transfer request to write HFC-S USB
74  * chip register using CTRL resuest queue
75  */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78         struct ctrl_buf *buf;
79
80         if (debug & DBG_HFC_CALL_TRACE)
81                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82                        hw->name, __func__, reg, val);
83
84         spin_lock(&hw->ctrl_lock);
85         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86                 spin_unlock(&hw->ctrl_lock);
87                 return 1;
88         }
89         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90         buf->hfcs_reg = reg;
91         buf->reg_val = val;
92         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93                 hw->ctrl_in_idx = 0;
94         if (++hw->ctrl_cnt == 1)
95                 ctrl_start_transfer(hw);
96         spin_unlock(&hw->ctrl_lock);
97
98         return 0;
99 }
100
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106
107         if (debug & DBG_HFC_CALL_TRACE)
108                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109
110         urb->dev = hw->dev;
111         if (hw->ctrl_cnt) {
112                 hw->ctrl_cnt--; /* decrement actual count */
113                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114                         hw->ctrl_out_idx = 0;   /* pointer wrap */
115
116                 ctrl_start_transfer(hw); /* start next transfer */
117         }
118 }
119
120 /* handle LED bits   */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124         if (set_on) {
125                 if (led_bits < 0)
126                         hw->led_state &= ~abs(led_bits);
127                 else
128                         hw->led_state |= led_bits;
129         } else {
130                 if (led_bits < 0)
131                         hw->led_state |= abs(led_bits);
132                 else
133                         hw->led_state &= ~led_bits;
134         }
135 }
136
137 /* handle LED requests  */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142                 hfcsusb_idtab[hw->vend_idx].driver_info;
143         __u8 tmpled;
144
145         if (driver_info->led_scheme == LED_OFF)
146                 return;
147         tmpled = hw->led_state;
148
149         switch (event) {
150         case LED_POWER_ON:
151                 set_led_bit(hw, driver_info->led_bits[0], 1);
152                 set_led_bit(hw, driver_info->led_bits[1], 0);
153                 set_led_bit(hw, driver_info->led_bits[2], 0);
154                 set_led_bit(hw, driver_info->led_bits[3], 0);
155                 break;
156         case LED_POWER_OFF:
157                 set_led_bit(hw, driver_info->led_bits[0], 0);
158                 set_led_bit(hw, driver_info->led_bits[1], 0);
159                 set_led_bit(hw, driver_info->led_bits[2], 0);
160                 set_led_bit(hw, driver_info->led_bits[3], 0);
161                 break;
162         case LED_S0_ON:
163                 set_led_bit(hw, driver_info->led_bits[1], 1);
164                 break;
165         case LED_S0_OFF:
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 break;
168         case LED_B1_ON:
169                 set_led_bit(hw, driver_info->led_bits[2], 1);
170                 break;
171         case LED_B1_OFF:
172                 set_led_bit(hw, driver_info->led_bits[2], 0);
173                 break;
174         case LED_B2_ON:
175                 set_led_bit(hw, driver_info->led_bits[3], 1);
176                 break;
177         case LED_B2_OFF:
178                 set_led_bit(hw, driver_info->led_bits[3], 0);
179                 break;
180         }
181
182         if (hw->led_state != tmpled) {
183                 if (debug & DBG_HFC_CALL_TRACE)
184                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185                                hw->name, __func__,
186                                HFCUSB_P_DATA, hw->led_state);
187
188                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189         }
190 }
191
192 /*
193  * Layer2 -> Layer 1 Bchannel data
194  */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
199         struct hfcsusb          *hw = bch->hw;
200         int                     ret = -EINVAL;
201         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
202         u_long                  flags;
203
204         if (debug & DBG_HFC_CALL_TRACE)
205                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206
207         switch (hh->prim) {
208         case PH_DATA_REQ:
209                 spin_lock_irqsave(&hw->lock, flags);
210                 ret = bchannel_senddata(bch, skb);
211                 spin_unlock_irqrestore(&hw->lock, flags);
212                 if (debug & DBG_HFC_CALL_TRACE)
213                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214                                hw->name, __func__, ret);
215                 if (ret > 0)
216                         ret = 0;
217                 return ret;
218         case PH_ACTIVATE_REQ:
219                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220                         hfcsusb_start_endpoint(hw, bch->nr - 1);
221                         ret = hfcsusb_setup_bch(bch, ch->protocol);
222                 } else
223                         ret = 0;
224                 if (!ret)
225                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226                                     0, NULL, GFP_KERNEL);
227                 break;
228         case PH_DEACTIVATE_REQ:
229                 deactivate_bchannel(bch);
230                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231                             0, NULL, GFP_KERNEL);
232                 ret = 0;
233                 break;
234         }
235         if (!ret)
236                 dev_kfree_skb(skb);
237         return ret;
238 }
239
240 /*
241  * send full D/B channel status information
242  * as MPH_INFORMATION_IND
243  */
244 static int
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247         struct ph_info *phi;
248         struct dchannel *dch = &hw->dch;
249         int i;
250
251         phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252         if (!phi)
253                 return -ENOMEM;
254
255         phi->dch.ch.protocol = hw->protocol;
256         phi->dch.ch.Flags = dch->Flags;
257         phi->dch.state = dch->state;
258         phi->dch.num_bch = dch->dev.nrbchan;
259         for (i = 0; i < dch->dev.nrbchan; i++) {
260                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
261                 phi->bch[i].Flags = hw->bch[i].Flags;
262         }
263         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264                     struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265         kfree(phi);
266
267         return 0;
268 }
269
270 /*
271  * Layer2 -> Layer 1 Dchannel data
272  */
273 static int
274 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
275 {
276         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
277         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
278         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
279         struct hfcsusb          *hw = dch->hw;
280         int                     ret = -EINVAL;
281         u_long                  flags;
282
283         switch (hh->prim) {
284         case PH_DATA_REQ:
285                 if (debug & DBG_HFC_CALL_TRACE)
286                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
287                                hw->name, __func__);
288
289                 spin_lock_irqsave(&hw->lock, flags);
290                 ret = dchannel_senddata(dch, skb);
291                 spin_unlock_irqrestore(&hw->lock, flags);
292                 if (ret > 0) {
293                         ret = 0;
294                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
295                 }
296                 break;
297
298         case PH_ACTIVATE_REQ:
299                 if (debug & DBG_HFC_CALL_TRACE)
300                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
301                                hw->name, __func__,
302                                (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
303
304                 if (hw->protocol == ISDN_P_NT_S0) {
305                         ret = 0;
306                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
307                                 _queue_data(&dch->dev.D,
308                                             PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
309                                             NULL, GFP_ATOMIC);
310                         } else {
311                                 hfcsusb_ph_command(hw,
312                                                    HFC_L1_ACTIVATE_NT);
313                                 test_and_set_bit(FLG_L2_ACTIVATED,
314                                                  &dch->Flags);
315                         }
316                 } else {
317                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
318                         ret = l1_event(dch->l1, hh->prim);
319                 }
320                 break;
321
322         case PH_DEACTIVATE_REQ:
323                 if (debug & DBG_HFC_CALL_TRACE)
324                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
325                                hw->name, __func__);
326                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
327
328                 if (hw->protocol == ISDN_P_NT_S0) {
329                         struct sk_buff_head free_queue;
330
331                         __skb_queue_head_init(&free_queue);
332                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
333                         spin_lock_irqsave(&hw->lock, flags);
334                         skb_queue_splice_init(&dch->squeue, &free_queue);
335                         if (dch->tx_skb) {
336                                 __skb_queue_tail(&free_queue, dch->tx_skb);
337                                 dch->tx_skb = NULL;
338                         }
339                         dch->tx_idx = 0;
340                         if (dch->rx_skb) {
341                                 __skb_queue_tail(&free_queue, dch->rx_skb);
342                                 dch->rx_skb = NULL;
343                         }
344                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
345                         spin_unlock_irqrestore(&hw->lock, flags);
346                         __skb_queue_purge(&free_queue);
347 #ifdef FIXME
348                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
349                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
350 #endif
351                         ret = 0;
352                 } else
353                         ret = l1_event(dch->l1, hh->prim);
354                 break;
355         case MPH_INFORMATION_REQ:
356                 ret = hfcsusb_ph_info(hw);
357                 break;
358         }
359
360         return ret;
361 }
362
363 /*
364  * Layer 1 callback function
365  */
366 static int
367 hfc_l1callback(struct dchannel *dch, u_int cmd)
368 {
369         struct hfcsusb *hw = dch->hw;
370
371         if (debug & DBG_HFC_CALL_TRACE)
372                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
373                        hw->name, __func__, cmd);
374
375         switch (cmd) {
376         case INFO3_P8:
377         case INFO3_P10:
378         case HW_RESET_REQ:
379         case HW_POWERUP_REQ:
380                 break;
381
382         case HW_DEACT_REQ:
383                 skb_queue_purge(&dch->squeue);
384                 if (dch->tx_skb) {
385                         dev_kfree_skb(dch->tx_skb);
386                         dch->tx_skb = NULL;
387                 }
388                 dch->tx_idx = 0;
389                 if (dch->rx_skb) {
390                         dev_kfree_skb(dch->rx_skb);
391                         dch->rx_skb = NULL;
392                 }
393                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
394                 break;
395         case PH_ACTIVATE_IND:
396                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
397                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
398                             GFP_ATOMIC);
399                 break;
400         case PH_DEACTIVATE_IND:
401                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
402                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
403                             GFP_ATOMIC);
404                 break;
405         default:
406                 if (dch->debug & DEBUG_HW)
407                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
408                                hw->name, __func__, cmd);
409                 return -1;
410         }
411         return hfcsusb_ph_info(hw);
412 }
413
414 static int
415 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
416               struct channel_req *rq)
417 {
418         int err = 0;
419
420         if (debug & DEBUG_HW_OPEN)
421                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
422                        hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
423                        __builtin_return_address(0));
424         if (rq->protocol == ISDN_P_NONE)
425                 return -EINVAL;
426
427         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
428         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
429         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
430
431         /* E-Channel logging */
432         if (rq->adr.channel == 1) {
433                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
434                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
435                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
436                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
437                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
438                 } else
439                         return -EINVAL;
440         }
441
442         if (!hw->initdone) {
443                 hw->protocol = rq->protocol;
444                 if (rq->protocol == ISDN_P_TE_S0) {
445                         err = create_l1(&hw->dch, hfc_l1callback);
446                         if (err)
447                                 return err;
448                 }
449                 setPortMode(hw);
450                 ch->protocol = rq->protocol;
451                 hw->initdone = 1;
452         } else {
453                 if (rq->protocol != ch->protocol)
454                         return -EPROTONOSUPPORT;
455         }
456
457         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
458             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
459                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
460                             0, NULL, GFP_KERNEL);
461         rq->ch = ch;
462         if (!try_module_get(THIS_MODULE))
463                 printk(KERN_WARNING "%s: %s: cannot get module\n",
464                        hw->name, __func__);
465         return 0;
466 }
467
468 static int
469 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
470 {
471         struct bchannel         *bch;
472
473         if (rq->adr.channel == 0 || rq->adr.channel > 2)
474                 return -EINVAL;
475         if (rq->protocol == ISDN_P_NONE)
476                 return -EINVAL;
477
478         if (debug & DBG_HFC_CALL_TRACE)
479                 printk(KERN_DEBUG "%s: %s B%i\n",
480                        hw->name, __func__, rq->adr.channel);
481
482         bch = &hw->bch[rq->adr.channel - 1];
483         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
484                 return -EBUSY; /* b-channel can be only open once */
485         bch->ch.protocol = rq->protocol;
486         rq->ch = &bch->ch;
487
488         if (!try_module_get(THIS_MODULE))
489                 printk(KERN_WARNING "%s: %s:cannot get module\n",
490                        hw->name, __func__);
491         return 0;
492 }
493
494 static int
495 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
496 {
497         int ret = 0;
498
499         if (debug & DBG_HFC_CALL_TRACE)
500                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
501                        hw->name, __func__, (cq->op), (cq->channel));
502
503         switch (cq->op) {
504         case MISDN_CTRL_GETOP:
505                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
506                         MISDN_CTRL_DISCONNECT;
507                 break;
508         default:
509                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
510                        hw->name, __func__, cq->op);
511                 ret = -EINVAL;
512                 break;
513         }
514         return ret;
515 }
516
517 /*
518  * device control function
519  */
520 static int
521 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
522 {
523         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
524         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
525         struct hfcsusb          *hw = dch->hw;
526         struct channel_req      *rq;
527         int                     err = 0;
528
529         if (dch->debug & DEBUG_HW)
530                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
531                        hw->name, __func__, cmd, arg);
532         switch (cmd) {
533         case OPEN_CHANNEL:
534                 rq = arg;
535                 if ((rq->protocol == ISDN_P_TE_S0) ||
536                     (rq->protocol == ISDN_P_NT_S0))
537                         err = open_dchannel(hw, ch, rq);
538                 else
539                         err = open_bchannel(hw, rq);
540                 if (!err)
541                         hw->open++;
542                 break;
543         case CLOSE_CHANNEL:
544                 hw->open--;
545                 if (debug & DEBUG_HW_OPEN)
546                         printk(KERN_DEBUG
547                                "%s: %s: dev(%d) close from %p (open %d)\n",
548                                hw->name, __func__, hw->dch.dev.id,
549                                __builtin_return_address(0), hw->open);
550                 if (!hw->open) {
551                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
552                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
553                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
554                         handle_led(hw, LED_POWER_ON);
555                 }
556                 module_put(THIS_MODULE);
557                 break;
558         case CONTROL_CHANNEL:
559                 err = channel_ctrl(hw, arg);
560                 break;
561         default:
562                 if (dch->debug & DEBUG_HW)
563                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
564                                hw->name, __func__, cmd);
565                 return -EINVAL;
566         }
567         return err;
568 }
569
570 /*
571  * S0 TE state change event handler
572  */
573 static void
574 ph_state_te(struct dchannel *dch)
575 {
576         struct hfcsusb *hw = dch->hw;
577
578         if (debug & DEBUG_HW) {
579                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
580                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
581                                HFC_TE_LAYER1_STATES[dch->state]);
582                 else
583                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
584                                hw->name, __func__, dch->state);
585         }
586
587         switch (dch->state) {
588         case 0:
589                 l1_event(dch->l1, HW_RESET_IND);
590                 break;
591         case 3:
592                 l1_event(dch->l1, HW_DEACT_IND);
593                 break;
594         case 5:
595         case 8:
596                 l1_event(dch->l1, ANYSIGNAL);
597                 break;
598         case 6:
599                 l1_event(dch->l1, INFO2);
600                 break;
601         case 7:
602                 l1_event(dch->l1, INFO4_P8);
603                 break;
604         }
605         if (dch->state == 7)
606                 handle_led(hw, LED_S0_ON);
607         else
608                 handle_led(hw, LED_S0_OFF);
609 }
610
611 /*
612  * S0 NT state change event handler
613  */
614 static void
615 ph_state_nt(struct dchannel *dch)
616 {
617         struct hfcsusb *hw = dch->hw;
618
619         if (debug & DEBUG_HW) {
620                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
621                         printk(KERN_DEBUG "%s: %s: %s\n",
622                                hw->name, __func__,
623                                HFC_NT_LAYER1_STATES[dch->state]);
624
625                 else
626                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
627                                hw->name, __func__, dch->state);
628         }
629
630         switch (dch->state) {
631         case (1):
632                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
633                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
634                 hw->nt_timer = 0;
635                 hw->timers &= ~NT_ACTIVATION_TIMER;
636                 handle_led(hw, LED_S0_OFF);
637                 break;
638
639         case (2):
640                 if (hw->nt_timer < 0) {
641                         hw->nt_timer = 0;
642                         hw->timers &= ~NT_ACTIVATION_TIMER;
643                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
644                 } else {
645                         hw->timers |= NT_ACTIVATION_TIMER;
646                         hw->nt_timer = NT_T1_COUNT;
647                         /* allow G2 -> G3 transition */
648                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
649                 }
650                 break;
651         case (3):
652                 hw->nt_timer = 0;
653                 hw->timers &= ~NT_ACTIVATION_TIMER;
654                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
655                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
656                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
657                 handle_led(hw, LED_S0_ON);
658                 break;
659         case (4):
660                 hw->nt_timer = 0;
661                 hw->timers &= ~NT_ACTIVATION_TIMER;
662                 break;
663         default:
664                 break;
665         }
666         hfcsusb_ph_info(hw);
667 }
668
669 static void
670 ph_state(struct dchannel *dch)
671 {
672         struct hfcsusb *hw = dch->hw;
673
674         if (hw->protocol == ISDN_P_NT_S0)
675                 ph_state_nt(dch);
676         else if (hw->protocol == ISDN_P_TE_S0)
677                 ph_state_te(dch);
678 }
679
680 /*
681  * disable/enable BChannel for desired protocol
682  */
683 static int
684 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
685 {
686         struct hfcsusb *hw = bch->hw;
687         __u8 conhdlc, sctrl, sctrl_r;
688
689         if (debug & DEBUG_HW)
690                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
691                        hw->name, __func__, bch->state, protocol,
692                        bch->nr);
693
694         /* setup val for CON_HDLC */
695         conhdlc = 0;
696         if (protocol > ISDN_P_NONE)
697                 conhdlc = 8;    /* enable FIFO */
698
699         switch (protocol) {
700         case (-1):      /* used for init */
701                 bch->state = -1;
702                 fallthrough;
703         case (ISDN_P_NONE):
704                 if (bch->state == ISDN_P_NONE)
705                         return 0; /* already in idle state */
706                 bch->state = ISDN_P_NONE;
707                 clear_bit(FLG_HDLC, &bch->Flags);
708                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
709                 break;
710         case (ISDN_P_B_RAW):
711                 conhdlc |= 2;
712                 bch->state = protocol;
713                 set_bit(FLG_TRANSPARENT, &bch->Flags);
714                 break;
715         case (ISDN_P_B_HDLC):
716                 bch->state = protocol;
717                 set_bit(FLG_HDLC, &bch->Flags);
718                 break;
719         default:
720                 if (debug & DEBUG_HW)
721                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
722                                hw->name, __func__, protocol);
723                 return -ENOPROTOOPT;
724         }
725
726         if (protocol >= ISDN_P_NONE) {
727                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
728                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729                 write_reg(hw, HFCUSB_INC_RES_F, 2);
730                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
731                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
732                 write_reg(hw, HFCUSB_INC_RES_F, 2);
733
734                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
735                 sctrl_r = 0x0;
736                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
737                         sctrl |= 1;
738                         sctrl_r |= 1;
739                 }
740                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
741                         sctrl |= 2;
742                         sctrl_r |= 2;
743                 }
744                 write_reg(hw, HFCUSB_SCTRL, sctrl);
745                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
746
747                 if (protocol > ISDN_P_NONE)
748                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
749                 else
750                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
751                                    LED_B2_OFF);
752         }
753         return hfcsusb_ph_info(hw);
754 }
755
756 static void
757 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
758 {
759         if (debug & DEBUG_HW)
760                 printk(KERN_DEBUG "%s: %s: %x\n",
761                        hw->name, __func__, command);
762
763         switch (command) {
764         case HFC_L1_ACTIVATE_TE:
765                 /* force sending sending INFO1 */
766                 write_reg(hw, HFCUSB_STATES, 0x14);
767                 /* start l1 activation */
768                 write_reg(hw, HFCUSB_STATES, 0x04);
769                 break;
770
771         case HFC_L1_FORCE_DEACTIVATE_TE:
772                 write_reg(hw, HFCUSB_STATES, 0x10);
773                 write_reg(hw, HFCUSB_STATES, 0x03);
774                 break;
775
776         case HFC_L1_ACTIVATE_NT:
777                 if (hw->dch.state == 3)
778                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
779                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
780                 else
781                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
782                                   HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
783                 break;
784
785         case HFC_L1_DEACTIVATE_NT:
786                 write_reg(hw, HFCUSB_STATES,
787                           HFCUSB_DO_ACTION);
788                 break;
789         }
790 }
791
792 /*
793  * Layer 1 B-channel hardware access
794  */
795 static int
796 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
797 {
798         return mISDN_ctrl_bchannel(bch, cq);
799 }
800
801 /* collect data from incoming interrupt or isochron USB data */
802 static void
803 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
804                  int finish)
805 {
806         struct hfcsusb  *hw = fifo->hw;
807         struct sk_buff  *rx_skb = NULL;
808         int             maxlen = 0;
809         int             fifon = fifo->fifonum;
810         int             i;
811         int             hdlc = 0;
812         unsigned long   flags;
813
814         if (debug & DBG_HFC_CALL_TRACE)
815                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
816                        "dch(%p) bch(%p) ech(%p)\n",
817                        hw->name, __func__, fifon, len,
818                        fifo->dch, fifo->bch, fifo->ech);
819
820         if (!len)
821                 return;
822
823         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
824                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
825                        hw->name, __func__);
826                 return;
827         }
828
829         spin_lock_irqsave(&hw->lock, flags);
830         if (fifo->dch) {
831                 rx_skb = fifo->dch->rx_skb;
832                 maxlen = fifo->dch->maxlen;
833                 hdlc = 1;
834         }
835         if (fifo->bch) {
836                 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
837                         fifo->bch->dropcnt += len;
838                         spin_unlock_irqrestore(&hw->lock, flags);
839                         return;
840                 }
841                 maxlen = bchannel_get_rxbuf(fifo->bch, len);
842                 rx_skb = fifo->bch->rx_skb;
843                 if (maxlen < 0) {
844                         if (rx_skb)
845                                 skb_trim(rx_skb, 0);
846                         pr_warn("%s.B%d: No bufferspace for %d bytes\n",
847                                 hw->name, fifo->bch->nr, len);
848                         spin_unlock_irqrestore(&hw->lock, flags);
849                         return;
850                 }
851                 maxlen = fifo->bch->maxlen;
852                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
853         }
854         if (fifo->ech) {
855                 rx_skb = fifo->ech->rx_skb;
856                 maxlen = fifo->ech->maxlen;
857                 hdlc = 1;
858         }
859
860         if (fifo->dch || fifo->ech) {
861                 if (!rx_skb) {
862                         rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
863                         if (rx_skb) {
864                                 if (fifo->dch)
865                                         fifo->dch->rx_skb = rx_skb;
866                                 if (fifo->ech)
867                                         fifo->ech->rx_skb = rx_skb;
868                                 skb_trim(rx_skb, 0);
869                         } else {
870                                 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
871                                        hw->name, __func__);
872                                 spin_unlock_irqrestore(&hw->lock, flags);
873                                 return;
874                         }
875                 }
876                 /* D/E-Channel SKB range check */
877                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
878                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
879                                "for fifo(%d) HFCUSB_D_RX\n",
880                                hw->name, __func__, fifon);
881                         skb_trim(rx_skb, 0);
882                         spin_unlock_irqrestore(&hw->lock, flags);
883                         return;
884                 }
885         }
886
887         skb_put_data(rx_skb, data, len);
888
889         if (hdlc) {
890                 /* we have a complete hdlc packet */
891                 if (finish) {
892                         if ((rx_skb->len > 3) &&
893                             (!(rx_skb->data[rx_skb->len - 1]))) {
894                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
895                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
896                                                " new RX len(%i): ",
897                                                hw->name, __func__, fifon,
898                                                rx_skb->len);
899                                         i = 0;
900                                         while (i < rx_skb->len)
901                                                 printk("%02x ",
902                                                        rx_skb->data[i++]);
903                                         printk("\n");
904                                 }
905
906                                 /* remove CRC & status */
907                                 skb_trim(rx_skb, rx_skb->len - 3);
908
909                                 if (fifo->dch)
910                                         recv_Dchannel(fifo->dch);
911                                 if (fifo->bch)
912                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY,
913                                                       0);
914                                 if (fifo->ech)
915                                         recv_Echannel(fifo->ech,
916                                                       &hw->dch);
917                         } else {
918                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
919                                         printk(KERN_DEBUG
920                                                "%s: CRC or minlen ERROR fifon(%i) "
921                                                "RX len(%i): ",
922                                                hw->name, fifon, rx_skb->len);
923                                         i = 0;
924                                         while (i < rx_skb->len)
925                                                 printk("%02x ",
926                                                        rx_skb->data[i++]);
927                                         printk("\n");
928                                 }
929                                 skb_trim(rx_skb, 0);
930                         }
931                 }
932         } else {
933                 /* deliver transparent data to layer2 */
934                 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
935         }
936         spin_unlock_irqrestore(&hw->lock, flags);
937 }
938
939 static void
940 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
941               void *buf, int num_packets, int packet_size, int interval,
942               usb_complete_t complete, void *context)
943 {
944         int k;
945
946         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
947                           complete, context);
948
949         urb->number_of_packets = num_packets;
950         urb->transfer_flags = URB_ISO_ASAP;
951         urb->actual_length = 0;
952         urb->interval = interval;
953
954         for (k = 0; k < num_packets; k++) {
955                 urb->iso_frame_desc[k].offset = packet_size * k;
956                 urb->iso_frame_desc[k].length = packet_size;
957                 urb->iso_frame_desc[k].actual_length = 0;
958         }
959 }
960
961 /* receive completion routine for all ISO tx fifos   */
962 static void
963 rx_iso_complete(struct urb *urb)
964 {
965         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
966         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
967         struct hfcsusb *hw = fifo->hw;
968         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
969                 status, iso_status, i;
970         __u8 *buf;
971         static __u8 eof[8];
972         __u8 s0_state;
973         unsigned long flags;
974
975         fifon = fifo->fifonum;
976         status = urb->status;
977
978         spin_lock_irqsave(&hw->lock, flags);
979         if (fifo->stop_gracefull) {
980                 fifo->stop_gracefull = 0;
981                 fifo->active = 0;
982                 spin_unlock_irqrestore(&hw->lock, flags);
983                 return;
984         }
985         spin_unlock_irqrestore(&hw->lock, flags);
986
987         /*
988          * ISO transfer only partially completed,
989          * look at individual frame status for details
990          */
991         if (status == -EXDEV) {
992                 if (debug & DEBUG_HW)
993                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
994                                "urb->status %d, fifonum %d\n",
995                                hw->name, __func__,  status, fifon);
996
997                 /* clear status, so go on with ISO transfers */
998                 status = 0;
999         }
1000
1001         s0_state = 0;
1002         if (fifo->active && !status) {
1003                 num_isoc_packets = iso_packets[fifon];
1004                 maxlen = fifo->usb_packet_maxlen;
1005
1006                 for (k = 0; k < num_isoc_packets; ++k) {
1007                         len = urb->iso_frame_desc[k].actual_length;
1008                         offset = urb->iso_frame_desc[k].offset;
1009                         buf = context_iso_urb->buffer + offset;
1010                         iso_status = urb->iso_frame_desc[k].status;
1011
1012                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1013                                 printk(KERN_DEBUG "%s: %s: "
1014                                        "ISO packet %i, status: %i\n",
1015                                        hw->name, __func__, k, iso_status);
1016                         }
1017
1018                         /* USB data log for every D ISO in */
1019                         if ((fifon == HFCUSB_D_RX) &&
1020                             (debug & DBG_HFC_USB_VERBOSE)) {
1021                                 printk(KERN_DEBUG
1022                                        "%s: %s: %d (%d/%d) len(%d) ",
1023                                        hw->name, __func__, urb->start_frame,
1024                                        k, num_isoc_packets - 1,
1025                                        len);
1026                                 for (i = 0; i < len; i++)
1027                                         printk("%x ", buf[i]);
1028                                 printk("\n");
1029                         }
1030
1031                         if (!iso_status) {
1032                                 if (fifo->last_urblen != maxlen) {
1033                                         /*
1034                                          * save fifo fill-level threshold bits
1035                                          * to use them later in TX ISO URB
1036                                          * completions
1037                                          */
1038                                         hw->threshold_mask = buf[1];
1039
1040                                         if (fifon == HFCUSB_D_RX)
1041                                                 s0_state = (buf[0] >> 4);
1042
1043                                         eof[fifon] = buf[0] & 1;
1044                                         if (len > 2)
1045                                                 hfcsusb_rx_frame(fifo, buf + 2,
1046                                                                  len - 2, (len < maxlen)
1047                                                                  ? eof[fifon] : 0);
1048                                 } else
1049                                         hfcsusb_rx_frame(fifo, buf, len,
1050                                                          (len < maxlen) ?
1051                                                          eof[fifon] : 0);
1052                                 fifo->last_urblen = len;
1053                         }
1054                 }
1055
1056                 /* signal S0 layer1 state change */
1057                 if ((s0_state) && (hw->initdone) &&
1058                     (s0_state != hw->dch.state)) {
1059                         hw->dch.state = s0_state;
1060                         schedule_event(&hw->dch, FLG_PHCHANGE);
1061                 }
1062
1063                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1064                               context_iso_urb->buffer, num_isoc_packets,
1065                               fifo->usb_packet_maxlen, fifo->intervall,
1066                               (usb_complete_t)rx_iso_complete, urb->context);
1067                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1068                 if (errcode < 0) {
1069                         if (debug & DEBUG_HW)
1070                                 printk(KERN_DEBUG "%s: %s: error submitting "
1071                                        "ISO URB: %d\n",
1072                                        hw->name, __func__, errcode);
1073                 }
1074         } else {
1075                 if (status && (debug & DBG_HFC_URB_INFO))
1076                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1077                                "urb->status %d, fifonum %d\n",
1078                                hw->name, __func__, status, fifon);
1079         }
1080 }
1081
1082 /* receive completion routine for all interrupt rx fifos */
1083 static void
1084 rx_int_complete(struct urb *urb)
1085 {
1086         int len, status, i;
1087         __u8 *buf, maxlen, fifon;
1088         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1089         struct hfcsusb *hw = fifo->hw;
1090         static __u8 eof[8];
1091         unsigned long flags;
1092
1093         spin_lock_irqsave(&hw->lock, flags);
1094         if (fifo->stop_gracefull) {
1095                 fifo->stop_gracefull = 0;
1096                 fifo->active = 0;
1097                 spin_unlock_irqrestore(&hw->lock, flags);
1098                 return;
1099         }
1100         spin_unlock_irqrestore(&hw->lock, flags);
1101
1102         fifon = fifo->fifonum;
1103         if ((!fifo->active) || (urb->status)) {
1104                 if (debug & DBG_HFC_URB_ERROR)
1105                         printk(KERN_DEBUG
1106                                "%s: %s: RX-Fifo %i is going down (%i)\n",
1107                                hw->name, __func__, fifon, urb->status);
1108
1109                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1110                 return;
1111         }
1112         len = urb->actual_length;
1113         buf = fifo->buffer;
1114         maxlen = fifo->usb_packet_maxlen;
1115
1116         /* USB data log for every D INT in */
1117         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1118                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1119                        hw->name, __func__, len);
1120                 for (i = 0; i < len; i++)
1121                         printk("%02x ", buf[i]);
1122                 printk("\n");
1123         }
1124
1125         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1126                 /* the threshold mask is in the 2nd status byte */
1127                 hw->threshold_mask = buf[1];
1128
1129                 /* signal S0 layer1 state change */
1130                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1131                         hw->dch.state = (buf[0] >> 4);
1132                         schedule_event(&hw->dch, FLG_PHCHANGE);
1133                 }
1134
1135                 eof[fifon] = buf[0] & 1;
1136                 /* if we have more than the 2 status bytes -> collect data */
1137                 if (len > 2)
1138                         hfcsusb_rx_frame(fifo, buf + 2,
1139                                          urb->actual_length - 2,
1140                                          (len < maxlen) ? eof[fifon] : 0);
1141         } else {
1142                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1143                                  (len < maxlen) ? eof[fifon] : 0);
1144         }
1145         fifo->last_urblen = urb->actual_length;
1146
1147         status = usb_submit_urb(urb, GFP_ATOMIC);
1148         if (status) {
1149                 if (debug & DEBUG_HW)
1150                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1151                                hw->name, __func__);
1152         }
1153 }
1154
1155 /* transmit completion routine for all ISO tx fifos */
1156 static void
1157 tx_iso_complete(struct urb *urb)
1158 {
1159         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1160         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1161         struct hfcsusb *hw = fifo->hw;
1162         struct sk_buff *tx_skb;
1163         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1164                 errcode, hdlc, i;
1165         int *tx_idx;
1166         int frame_complete, fifon, status, fillempty = 0;
1167         __u8 threshbit, *p;
1168         unsigned long flags;
1169
1170         spin_lock_irqsave(&hw->lock, flags);
1171         if (fifo->stop_gracefull) {
1172                 fifo->stop_gracefull = 0;
1173                 fifo->active = 0;
1174                 spin_unlock_irqrestore(&hw->lock, flags);
1175                 return;
1176         }
1177
1178         if (fifo->dch) {
1179                 tx_skb = fifo->dch->tx_skb;
1180                 tx_idx = &fifo->dch->tx_idx;
1181                 hdlc = 1;
1182         } else if (fifo->bch) {
1183                 tx_skb = fifo->bch->tx_skb;
1184                 tx_idx = &fifo->bch->tx_idx;
1185                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1186                 if (!tx_skb && !hdlc &&
1187                     test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1188                         fillempty = 1;
1189         } else {
1190                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1191                        hw->name, __func__);
1192                 spin_unlock_irqrestore(&hw->lock, flags);
1193                 return;
1194         }
1195
1196         fifon = fifo->fifonum;
1197         status = urb->status;
1198
1199         tx_offset = 0;
1200
1201         /*
1202          * ISO transfer only partially completed,
1203          * look at individual frame status for details
1204          */
1205         if (status == -EXDEV) {
1206                 if (debug & DBG_HFC_URB_ERROR)
1207                         printk(KERN_DEBUG "%s: %s: "
1208                                "-EXDEV (%i) fifon (%d)\n",
1209                                hw->name, __func__, status, fifon);
1210
1211                 /* clear status, so go on with ISO transfers */
1212                 status = 0;
1213         }
1214
1215         if (fifo->active && !status) {
1216                 /* is FifoFull-threshold set for our channel? */
1217                 threshbit = (hw->threshold_mask & (1 << fifon));
1218                 num_isoc_packets = iso_packets[fifon];
1219
1220                 /* predict dataflow to avoid fifo overflow */
1221                 if (fifon >= HFCUSB_D_TX)
1222                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1223                 else
1224                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1225                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1226                               context_iso_urb->buffer, num_isoc_packets,
1227                               fifo->usb_packet_maxlen, fifo->intervall,
1228                               (usb_complete_t)tx_iso_complete, urb->context);
1229                 memset(context_iso_urb->buffer, 0,
1230                        sizeof(context_iso_urb->buffer));
1231                 frame_complete = 0;
1232
1233                 for (k = 0; k < num_isoc_packets; ++k) {
1234                         /* analyze tx success of previous ISO packets */
1235                         if (debug & DBG_HFC_URB_ERROR) {
1236                                 errcode = urb->iso_frame_desc[k].status;
1237                                 if (errcode) {
1238                                         printk(KERN_DEBUG "%s: %s: "
1239                                                "ISO packet %i, status: %i\n",
1240                                                hw->name, __func__, k, errcode);
1241                                 }
1242                         }
1243
1244                         /* Generate next ISO Packets */
1245                         if (tx_skb)
1246                                 remain = tx_skb->len - *tx_idx;
1247                         else if (fillempty)
1248                                 remain = 15; /* > not complete */
1249                         else
1250                                 remain = 0;
1251
1252                         if (remain > 0) {
1253                                 fifo->bit_line -= sink;
1254                                 current_len = (0 - fifo->bit_line) / 8;
1255                                 if (current_len > 14)
1256                                         current_len = 14;
1257                                 if (current_len < 0)
1258                                         current_len = 0;
1259                                 if (remain < current_len)
1260                                         current_len = remain;
1261
1262                                 /* how much bit do we put on the line? */
1263                                 fifo->bit_line += current_len * 8;
1264
1265                                 context_iso_urb->buffer[tx_offset] = 0;
1266                                 if (current_len == remain) {
1267                                         if (hdlc) {
1268                                                 /* signal frame completion */
1269                                                 context_iso_urb->
1270                                                         buffer[tx_offset] = 1;
1271                                                 /* add 2 byte flags and 16bit
1272                                                  * CRC at end of ISDN frame */
1273                                                 fifo->bit_line += 32;
1274                                         }
1275                                         frame_complete = 1;
1276                                 }
1277
1278                                 /* copy tx data to iso-urb buffer */
1279                                 p = context_iso_urb->buffer + tx_offset + 1;
1280                                 if (fillempty) {
1281                                         memset(p, fifo->bch->fill[0],
1282                                                current_len);
1283                                 } else {
1284                                         memcpy(p, (tx_skb->data + *tx_idx),
1285                                                current_len);
1286                                         *tx_idx += current_len;
1287                                 }
1288                                 urb->iso_frame_desc[k].offset = tx_offset;
1289                                 urb->iso_frame_desc[k].length = current_len + 1;
1290
1291                                 /* USB data log for every D ISO out */
1292                                 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1293                                     (debug & DBG_HFC_USB_VERBOSE)) {
1294                                         printk(KERN_DEBUG
1295                                                "%s: %s (%d/%d) offs(%d) len(%d) ",
1296                                                hw->name, __func__,
1297                                                k, num_isoc_packets - 1,
1298                                                urb->iso_frame_desc[k].offset,
1299                                                urb->iso_frame_desc[k].length);
1300
1301                                         for (i = urb->iso_frame_desc[k].offset;
1302                                              i < (urb->iso_frame_desc[k].offset
1303                                                   + urb->iso_frame_desc[k].length);
1304                                              i++)
1305                                                 printk("%x ",
1306                                                        context_iso_urb->buffer[i]);
1307
1308                                         printk(" skb->len(%i) tx-idx(%d)\n",
1309                                                tx_skb->len, *tx_idx);
1310                                 }
1311
1312                                 tx_offset += (current_len + 1);
1313                         } else {
1314                                 urb->iso_frame_desc[k].offset = tx_offset++;
1315                                 urb->iso_frame_desc[k].length = 1;
1316                                 /* we lower data margin every msec */
1317                                 fifo->bit_line -= sink;
1318                                 if (fifo->bit_line < BITLINE_INF)
1319                                         fifo->bit_line = BITLINE_INF;
1320                         }
1321
1322                         if (frame_complete) {
1323                                 frame_complete = 0;
1324
1325                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1326                                         printk(KERN_DEBUG  "%s: %s: "
1327                                                "fifon(%i) new TX len(%i): ",
1328                                                hw->name, __func__,
1329                                                fifon, tx_skb->len);
1330                                         i = 0;
1331                                         while (i < tx_skb->len)
1332                                                 printk("%02x ",
1333                                                        tx_skb->data[i++]);
1334                                         printk("\n");
1335                                 }
1336
1337                                 dev_consume_skb_irq(tx_skb);
1338                                 tx_skb = NULL;
1339                                 if (fifo->dch && get_next_dframe(fifo->dch))
1340                                         tx_skb = fifo->dch->tx_skb;
1341                                 else if (fifo->bch &&
1342                                          get_next_bframe(fifo->bch))
1343                                         tx_skb = fifo->bch->tx_skb;
1344                         }
1345                 }
1346                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1347                 if (errcode < 0) {
1348                         if (debug & DEBUG_HW)
1349                                 printk(KERN_DEBUG
1350                                        "%s: %s: error submitting ISO URB: %d \n",
1351                                        hw->name, __func__, errcode);
1352                 }
1353
1354                 /*
1355                  * abuse DChannel tx iso completion to trigger NT mode state
1356                  * changes tx_iso_complete is assumed to be called every
1357                  * fifo->intervall (ms)
1358                  */
1359                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1360                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1361                         if ((--hw->nt_timer) < 0)
1362                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1363                 }
1364
1365         } else {
1366                 if (status && (debug & DBG_HFC_URB_ERROR))
1367                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1368                                "fifonum=%d\n",
1369                                hw->name, __func__,
1370                                symbolic(urb_errlist, status), status, fifon);
1371         }
1372         spin_unlock_irqrestore(&hw->lock, flags);
1373 }
1374
1375 /*
1376  * allocs urbs and start isoc transfer with two pending urbs to avoid
1377  * gaps in the transfer chain
1378  */
1379 static int
1380 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1381                  usb_complete_t complete, int packet_size)
1382 {
1383         struct hfcsusb *hw = fifo->hw;
1384         int i, k, errcode;
1385
1386         if (debug)
1387                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1388                        hw->name, __func__, fifo->fifonum);
1389
1390         /* allocate Memory for Iso out Urbs */
1391         for (i = 0; i < 2; i++) {
1392                 if (!(fifo->iso[i].urb)) {
1393                         fifo->iso[i].urb =
1394                                 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1395                         if (!(fifo->iso[i].urb)) {
1396                                 printk(KERN_DEBUG
1397                                        "%s: %s: alloc urb for fifo %i failed",
1398                                        hw->name, __func__, fifo->fifonum);
1399                                 continue;
1400                         }
1401                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1402                         fifo->iso[i].indx = i;
1403
1404                         /* Init the first iso */
1405                         if (ISO_BUFFER_SIZE >=
1406                             (fifo->usb_packet_maxlen *
1407                              num_packets_per_urb)) {
1408                                 fill_isoc_urb(fifo->iso[i].urb,
1409                                               fifo->hw->dev, fifo->pipe,
1410                                               fifo->iso[i].buffer,
1411                                               num_packets_per_urb,
1412                                               fifo->usb_packet_maxlen,
1413                                               fifo->intervall, complete,
1414                                               &fifo->iso[i]);
1415                                 memset(fifo->iso[i].buffer, 0,
1416                                        sizeof(fifo->iso[i].buffer));
1417
1418                                 for (k = 0; k < num_packets_per_urb; k++) {
1419                                         fifo->iso[i].urb->
1420                                                 iso_frame_desc[k].offset =
1421                                                 k * packet_size;
1422                                         fifo->iso[i].urb->
1423                                                 iso_frame_desc[k].length =
1424                                                 packet_size;
1425                                 }
1426                         } else {
1427                                 printk(KERN_DEBUG
1428                                        "%s: %s: ISO Buffer size to small!\n",
1429                                        hw->name, __func__);
1430                         }
1431                 }
1432                 fifo->bit_line = BITLINE_INF;
1433
1434                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1435                 fifo->active = (errcode >= 0) ? 1 : 0;
1436                 fifo->stop_gracefull = 0;
1437                 if (errcode < 0) {
1438                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1439                                hw->name, __func__,
1440                                symbolic(urb_errlist, errcode), i);
1441                 }
1442         }
1443         return fifo->active;
1444 }
1445
1446 static void
1447 stop_iso_gracefull(struct usb_fifo *fifo)
1448 {
1449         struct hfcsusb *hw = fifo->hw;
1450         int i, timeout;
1451         u_long flags;
1452
1453         for (i = 0; i < 2; i++) {
1454                 spin_lock_irqsave(&hw->lock, flags);
1455                 if (debug)
1456                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1457                                hw->name, __func__, fifo->fifonum, i);
1458                 fifo->stop_gracefull = 1;
1459                 spin_unlock_irqrestore(&hw->lock, flags);
1460         }
1461
1462         for (i = 0; i < 2; i++) {
1463                 timeout = 3;
1464                 while (fifo->stop_gracefull && timeout--)
1465                         schedule_timeout_interruptible((HZ / 1000) * 16);
1466                 if (debug && fifo->stop_gracefull)
1467                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1468                                hw->name, __func__, fifo->fifonum, i);
1469         }
1470 }
1471
1472 static void
1473 stop_int_gracefull(struct usb_fifo *fifo)
1474 {
1475         struct hfcsusb *hw = fifo->hw;
1476         int timeout;
1477         u_long flags;
1478
1479         spin_lock_irqsave(&hw->lock, flags);
1480         if (debug)
1481                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1482                        hw->name, __func__, fifo->fifonum);
1483         fifo->stop_gracefull = 1;
1484         spin_unlock_irqrestore(&hw->lock, flags);
1485
1486         timeout = 3;
1487         while (fifo->stop_gracefull && timeout--)
1488                 schedule_timeout_interruptible((HZ / 1000) * 3);
1489         if (debug && fifo->stop_gracefull)
1490                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1491                        hw->name, __func__, fifo->fifonum);
1492 }
1493
1494 /* start the interrupt transfer for the given fifo */
1495 static void
1496 start_int_fifo(struct usb_fifo *fifo)
1497 {
1498         struct hfcsusb *hw = fifo->hw;
1499         int errcode;
1500
1501         if (debug)
1502                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1503                        hw->name, __func__, fifo->fifonum);
1504
1505         if (!fifo->urb) {
1506                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1507                 if (!fifo->urb)
1508                         return;
1509         }
1510         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1511                          fifo->buffer, fifo->usb_packet_maxlen,
1512                          (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1513         fifo->active = 1;
1514         fifo->stop_gracefull = 0;
1515         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1516         if (errcode) {
1517                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1518                        hw->name, __func__, errcode);
1519                 fifo->active = 0;
1520         }
1521 }
1522
1523 static void
1524 setPortMode(struct hfcsusb *hw)
1525 {
1526         if (debug & DEBUG_HW)
1527                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1528                        (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1529
1530         if (hw->protocol == ISDN_P_TE_S0) {
1531                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1532                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1533                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1534                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1535                 write_reg(hw, HFCUSB_STATES, 3);
1536         } else {
1537                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1538                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1539                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1540                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1541                 write_reg(hw, HFCUSB_STATES, 1);
1542         }
1543 }
1544
1545 static void
1546 reset_hfcsusb(struct hfcsusb *hw)
1547 {
1548         struct usb_fifo *fifo;
1549         int i;
1550
1551         if (debug & DEBUG_HW)
1552                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1553
1554         /* do Chip reset */
1555         write_reg(hw, HFCUSB_CIRM, 8);
1556
1557         /* aux = output, reset off */
1558         write_reg(hw, HFCUSB_CIRM, 0x10);
1559
1560         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1561         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1562                   ((hw->packet_size / 8) << 4));
1563
1564         /* set USB_SIZE_I to match the wMaxPacketSize for ISO transfers */
1565         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1566
1567         /* enable PCM/GCI master mode */
1568         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1569         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1570
1571         /* init the fifos */
1572         write_reg(hw, HFCUSB_F_THRES,
1573                   (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1574
1575         fifo = hw->fifos;
1576         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1577                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1578                 fifo[i].max_size =
1579                         (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1580                 fifo[i].last_urblen = 0;
1581
1582                 /* set 2 bit for D- & E-channel */
1583                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1584
1585                 /* enable all fifos */
1586                 if (i == HFCUSB_D_TX)
1587                         write_reg(hw, HFCUSB_CON_HDLC,
1588                                   (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1589                 else
1590                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1591                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1592         }
1593
1594         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1595         handle_led(hw, LED_POWER_ON);
1596 }
1597
1598 /* start USB data pipes dependand on device's endpoint configuration */
1599 static void
1600 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1601 {
1602         /* quick check if endpoint already running */
1603         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1604                 return;
1605         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1606                 return;
1607         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1608                 return;
1609         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1610                 return;
1611
1612         /* start rx endpoints using USB INT IN method */
1613         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1614                 start_int_fifo(hw->fifos + channel * 2 + 1);
1615
1616         /* start rx endpoints using USB ISO IN method */
1617         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1618                 switch (channel) {
1619                 case HFC_CHAN_D:
1620                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1621                                          ISOC_PACKETS_D,
1622                                          (usb_complete_t)rx_iso_complete,
1623                                          16);
1624                         break;
1625                 case HFC_CHAN_E:
1626                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1627                                          ISOC_PACKETS_D,
1628                                          (usb_complete_t)rx_iso_complete,
1629                                          16);
1630                         break;
1631                 case HFC_CHAN_B1:
1632                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1633                                          ISOC_PACKETS_B,
1634                                          (usb_complete_t)rx_iso_complete,
1635                                          16);
1636                         break;
1637                 case HFC_CHAN_B2:
1638                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1639                                          ISOC_PACKETS_B,
1640                                          (usb_complete_t)rx_iso_complete,
1641                                          16);
1642                         break;
1643                 }
1644         }
1645
1646         /* start tx endpoints using USB ISO OUT method */
1647         switch (channel) {
1648         case HFC_CHAN_D:
1649                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1650                                  ISOC_PACKETS_B,
1651                                  (usb_complete_t)tx_iso_complete, 1);
1652                 break;
1653         case HFC_CHAN_B1:
1654                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1655                                  ISOC_PACKETS_D,
1656                                  (usb_complete_t)tx_iso_complete, 1);
1657                 break;
1658         case HFC_CHAN_B2:
1659                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1660                                  ISOC_PACKETS_B,
1661                                  (usb_complete_t)tx_iso_complete, 1);
1662                 break;
1663         }
1664 }
1665
1666 /* stop USB data pipes dependand on device's endpoint configuration */
1667 static void
1668 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1669 {
1670         /* quick check if endpoint currently running */
1671         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1672                 return;
1673         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1674                 return;
1675         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1676                 return;
1677         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1678                 return;
1679
1680         /* rx endpoints using USB INT IN method */
1681         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1682                 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1683
1684         /* rx endpoints using USB ISO IN method */
1685         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1686                 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1687
1688         /* tx endpoints using USB ISO OUT method */
1689         if (channel != HFC_CHAN_E)
1690                 stop_iso_gracefull(hw->fifos + channel * 2);
1691 }
1692
1693
1694 /* Hardware Initialization */
1695 static int
1696 setup_hfcsusb(struct hfcsusb *hw)
1697 {
1698         void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1699         u_char b;
1700         int ret;
1701
1702         if (debug & DBG_HFC_CALL_TRACE)
1703                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1704
1705         if (!dmabuf)
1706                 return -ENOMEM;
1707
1708         ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1709
1710         memcpy(&b, dmabuf, sizeof(u_char));
1711         kfree(dmabuf);
1712
1713         /* check the chip id */
1714         if (ret != 1) {
1715                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1716                        hw->name, __func__);
1717                 return 1;
1718         }
1719         if (b != HFCUSB_CHIPID) {
1720                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1721                        hw->name, __func__, b);
1722                 return 1;
1723         }
1724
1725         /* first set the needed config, interface and alternate */
1726         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1727
1728         hw->led_state = 0;
1729
1730         /* init the background machinery for control requests */
1731         hw->ctrl_read.bRequestType = 0xc0;
1732         hw->ctrl_read.bRequest = 1;
1733         hw->ctrl_read.wLength = cpu_to_le16(1);
1734         hw->ctrl_write.bRequestType = 0x40;
1735         hw->ctrl_write.bRequest = 0;
1736         hw->ctrl_write.wLength = 0;
1737         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1738                              (u_char *)&hw->ctrl_write, NULL, 0,
1739                              (usb_complete_t)ctrl_complete, hw);
1740
1741         reset_hfcsusb(hw);
1742         return 0;
1743 }
1744
1745 static void
1746 release_hw(struct hfcsusb *hw)
1747 {
1748         if (debug & DBG_HFC_CALL_TRACE)
1749                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1750
1751         /*
1752          * stop all endpoints gracefully
1753          * TODO: mISDN_core should generate CLOSE_CHANNEL
1754          *       signals after calling mISDN_unregister_device()
1755          */
1756         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1757         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1758         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1759         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1760                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1761         if (hw->protocol == ISDN_P_TE_S0)
1762                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1763
1764         mISDN_unregister_device(&hw->dch.dev);
1765         mISDN_freebchannel(&hw->bch[1]);
1766         mISDN_freebchannel(&hw->bch[0]);
1767         mISDN_freedchannel(&hw->dch);
1768
1769         if (hw->ctrl_urb) {
1770                 usb_kill_urb(hw->ctrl_urb);
1771                 usb_free_urb(hw->ctrl_urb);
1772                 hw->ctrl_urb = NULL;
1773         }
1774
1775         if (hw->intf)
1776                 usb_set_intfdata(hw->intf, NULL);
1777         list_del(&hw->list);
1778         kfree(hw);
1779         hw = NULL;
1780 }
1781
1782 static void
1783 deactivate_bchannel(struct bchannel *bch)
1784 {
1785         struct hfcsusb *hw = bch->hw;
1786         u_long flags;
1787
1788         if (bch->debug & DEBUG_HW)
1789                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1790                        hw->name, __func__, bch->nr);
1791
1792         spin_lock_irqsave(&hw->lock, flags);
1793         mISDN_clear_bchannel(bch);
1794         spin_unlock_irqrestore(&hw->lock, flags);
1795         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1796         hfcsusb_stop_endpoint(hw, bch->nr - 1);
1797 }
1798
1799 /*
1800  * Layer 1 B-channel hardware access
1801  */
1802 static int
1803 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1804 {
1805         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1806         int             ret = -EINVAL;
1807
1808         if (bch->debug & DEBUG_HW)
1809                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1810
1811         switch (cmd) {
1812         case HW_TESTRX_RAW:
1813         case HW_TESTRX_HDLC:
1814         case HW_TESTRX_OFF:
1815                 ret = -EINVAL;
1816                 break;
1817
1818         case CLOSE_CHANNEL:
1819                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1820                 deactivate_bchannel(bch);
1821                 ch->protocol = ISDN_P_NONE;
1822                 ch->peer = NULL;
1823                 module_put(THIS_MODULE);
1824                 ret = 0;
1825                 break;
1826         case CONTROL_CHANNEL:
1827                 ret = channel_bctrl(bch, arg);
1828                 break;
1829         default:
1830                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1831                        __func__, cmd);
1832         }
1833         return ret;
1834 }
1835
1836 static int
1837 setup_instance(struct hfcsusb *hw, struct device *parent)
1838 {
1839         u_long  flags;
1840         int     err, i;
1841
1842         if (debug & DBG_HFC_CALL_TRACE)
1843                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1844
1845         spin_lock_init(&hw->ctrl_lock);
1846         spin_lock_init(&hw->lock);
1847
1848         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1849         hw->dch.debug = debug & 0xFFFF;
1850         hw->dch.hw = hw;
1851         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1852         hw->dch.dev.D.send = hfcusb_l2l1D;
1853         hw->dch.dev.D.ctrl = hfc_dctrl;
1854
1855         /* enable E-Channel logging */
1856         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1857                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1858
1859         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1860                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1861         hw->dch.dev.nrbchan = 2;
1862         for (i = 0; i < 2; i++) {
1863                 hw->bch[i].nr = i + 1;
1864                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1865                 hw->bch[i].debug = debug;
1866                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1867                 hw->bch[i].hw = hw;
1868                 hw->bch[i].ch.send = hfcusb_l2l1B;
1869                 hw->bch[i].ch.ctrl = hfc_bctrl;
1870                 hw->bch[i].ch.nr = i + 1;
1871                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1872         }
1873
1874         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1875         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1876         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1877         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1878         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1879         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1880         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1881         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1882
1883         err = setup_hfcsusb(hw);
1884         if (err)
1885                 goto out;
1886
1887         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1888                  hfcsusb_cnt + 1);
1889         printk(KERN_INFO "%s: registered as '%s'\n",
1890                DRIVER_NAME, hw->name);
1891
1892         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1893         if (err)
1894                 goto out;
1895
1896         hfcsusb_cnt++;
1897         write_lock_irqsave(&HFClock, flags);
1898         list_add_tail(&hw->list, &HFClist);
1899         write_unlock_irqrestore(&HFClock, flags);
1900         return 0;
1901
1902 out:
1903         mISDN_freebchannel(&hw->bch[1]);
1904         mISDN_freebchannel(&hw->bch[0]);
1905         mISDN_freedchannel(&hw->dch);
1906         kfree(hw);
1907         return err;
1908 }
1909
1910 static int
1911 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1912 {
1913         struct hfcsusb                  *hw;
1914         struct usb_device               *dev = interface_to_usbdev(intf);
1915         struct usb_host_interface       *iface = intf->cur_altsetting;
1916         struct usb_host_interface       *iface_used = NULL;
1917         struct usb_host_endpoint        *ep;
1918         struct hfcsusb_vdata            *driver_info;
1919         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1920                 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1921                 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1922                 alt_used = 0;
1923
1924         vend_idx = 0xffff;
1925         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1926                 if ((le16_to_cpu(dev->descriptor.idVendor)
1927                      == hfcsusb_idtab[i].idVendor) &&
1928                     (le16_to_cpu(dev->descriptor.idProduct)
1929                      == hfcsusb_idtab[i].idProduct)) {
1930                         vend_idx = i;
1931                         continue;
1932                 }
1933         }
1934
1935         printk(KERN_DEBUG
1936                "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1937                __func__, ifnum, iface->desc.bAlternateSetting,
1938                intf->minor, vend_idx);
1939
1940         if (vend_idx == 0xffff) {
1941                 printk(KERN_WARNING
1942                        "%s: no valid vendor found in USB descriptor\n",
1943                        __func__);
1944                 return -EIO;
1945         }
1946         /* if vendor and product ID is OK, start probing alternate settings */
1947         alt_idx = 0;
1948         small_match = -1;
1949
1950         /* default settings */
1951         iso_packet_size = 16;
1952         packet_size = 64;
1953
1954         while (alt_idx < intf->num_altsetting) {
1955                 iface = intf->altsetting + alt_idx;
1956                 probe_alt_setting = iface->desc.bAlternateSetting;
1957                 cfg_used = 0;
1958
1959                 while (validconf[cfg_used][0]) {
1960                         cfg_found = 1;
1961                         vcf = validconf[cfg_used];
1962                         ep = iface->endpoint;
1963                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1964
1965                         /* check for all endpoints in this alternate setting */
1966                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1967                                 ep_addr = ep->desc.bEndpointAddress;
1968
1969                                 /* get endpoint base */
1970                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1971                                 if (idx > 15)
1972                                         return -EIO;
1973
1974                                 if (ep_addr & 0x80)
1975                                         idx++;
1976                                 attr = ep->desc.bmAttributes;
1977
1978                                 if (cmptbl[idx] != EP_NOP) {
1979                                         if (cmptbl[idx] == EP_NUL)
1980                                                 cfg_found = 0;
1981                                         if (attr == USB_ENDPOINT_XFER_INT
1982                                             && cmptbl[idx] == EP_INT)
1983                                                 cmptbl[idx] = EP_NUL;
1984                                         if (attr == USB_ENDPOINT_XFER_BULK
1985                                             && cmptbl[idx] == EP_BLK)
1986                                                 cmptbl[idx] = EP_NUL;
1987                                         if (attr == USB_ENDPOINT_XFER_ISOC
1988                                             && cmptbl[idx] == EP_ISO)
1989                                                 cmptbl[idx] = EP_NUL;
1990
1991                                         if (attr == USB_ENDPOINT_XFER_INT &&
1992                                             ep->desc.bInterval < vcf[17]) {
1993                                                 cfg_found = 0;
1994                                         }
1995                                 }
1996                                 ep++;
1997                         }
1998
1999                         for (i = 0; i < 16; i++)
2000                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2001                                         cfg_found = 0;
2002
2003                         if (cfg_found) {
2004                                 if (small_match < cfg_used) {
2005                                         small_match = cfg_used;
2006                                         alt_used = probe_alt_setting;
2007                                         iface_used = iface;
2008                                 }
2009                         }
2010                         cfg_used++;
2011                 }
2012                 alt_idx++;
2013         }       /* (alt_idx < intf->num_altsetting) */
2014
2015         /* not found a valid USB Ta Endpoint config */
2016         if (small_match == -1)
2017                 return -EIO;
2018
2019         iface = iface_used;
2020         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2021         if (!hw)
2022                 return -ENOMEM; /* got no mem */
2023         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2024
2025         ep = iface->endpoint;
2026         vcf = validconf[small_match];
2027
2028         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2029                 struct usb_fifo *f;
2030
2031                 ep_addr = ep->desc.bEndpointAddress;
2032                 /* get endpoint base */
2033                 idx = ((ep_addr & 0x7f) - 1) * 2;
2034                 if (ep_addr & 0x80)
2035                         idx++;
2036                 f = &hw->fifos[idx & 7];
2037
2038                 /* init Endpoints */
2039                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2040                         ep++;
2041                         continue;
2042                 }
2043                 switch (ep->desc.bmAttributes) {
2044                 case USB_ENDPOINT_XFER_INT:
2045                         f->pipe = usb_rcvintpipe(dev,
2046                                                  ep->desc.bEndpointAddress);
2047                         f->usb_transfer_mode = USB_INT;
2048                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2049                         break;
2050                 case USB_ENDPOINT_XFER_BULK:
2051                         if (ep_addr & 0x80)
2052                                 f->pipe = usb_rcvbulkpipe(dev,
2053                                                           ep->desc.bEndpointAddress);
2054                         else
2055                                 f->pipe = usb_sndbulkpipe(dev,
2056                                                           ep->desc.bEndpointAddress);
2057                         f->usb_transfer_mode = USB_BULK;
2058                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2059                         break;
2060                 case USB_ENDPOINT_XFER_ISOC:
2061                         if (ep_addr & 0x80)
2062                                 f->pipe = usb_rcvisocpipe(dev,
2063                                                           ep->desc.bEndpointAddress);
2064                         else
2065                                 f->pipe = usb_sndisocpipe(dev,
2066                                                           ep->desc.bEndpointAddress);
2067                         f->usb_transfer_mode = USB_ISOC;
2068                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2069                         break;
2070                 default:
2071                         f->pipe = 0;
2072                 }
2073
2074                 if (f->pipe) {
2075                         f->fifonum = idx & 7;
2076                         f->hw = hw;
2077                         f->usb_packet_maxlen =
2078                                 le16_to_cpu(ep->desc.wMaxPacketSize);
2079                         f->intervall = ep->desc.bInterval;
2080                 }
2081                 ep++;
2082         }
2083         hw->dev = dev; /* save device */
2084         hw->if_used = ifnum; /* save used interface */
2085         hw->alt_used = alt_used; /* and alternate config */
2086         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2087         hw->cfg_used = vcf[16]; /* store used config */
2088         hw->vend_idx = vend_idx; /* store found vendor */
2089         hw->packet_size = packet_size;
2090         hw->iso_packet_size = iso_packet_size;
2091
2092         /* create the control pipes needed for register access */
2093         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2094         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2095
2096         driver_info = (struct hfcsusb_vdata *)
2097                       hfcsusb_idtab[vend_idx].driver_info;
2098
2099         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2100         if (!hw->ctrl_urb) {
2101                 pr_warn("%s: No memory for control urb\n",
2102                         driver_info->vend_name);
2103                 kfree(hw);
2104                 return -ENOMEM;
2105         }
2106
2107         pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2108                 hw->name, __func__, driver_info->vend_name,
2109                 conf_str[small_match], ifnum, alt_used);
2110
2111         if (setup_instance(hw, dev->dev.parent))
2112                 return -EIO;
2113
2114         hw->intf = intf;
2115         usb_set_intfdata(hw->intf, hw);
2116         return 0;
2117 }
2118
2119 /* function called when an active device is removed */
2120 static void
2121 hfcsusb_disconnect(struct usb_interface *intf)
2122 {
2123         struct hfcsusb *hw = usb_get_intfdata(intf);
2124         struct hfcsusb *next;
2125         int cnt = 0;
2126
2127         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2128
2129         handle_led(hw, LED_POWER_OFF);
2130         release_hw(hw);
2131
2132         list_for_each_entry_safe(hw, next, &HFClist, list)
2133                 cnt++;
2134         if (!cnt)
2135                 hfcsusb_cnt = 0;
2136
2137         usb_set_intfdata(intf, NULL);
2138 }
2139
2140 static struct usb_driver hfcsusb_drv = {
2141         .name = DRIVER_NAME,
2142         .id_table = hfcsusb_idtab,
2143         .probe = hfcsusb_probe,
2144         .disconnect = hfcsusb_disconnect,
2145         .disable_hub_initiated_lpm = 1,
2146 };
2147
2148 module_usb_driver(hfcsusb_drv);