GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / isdn / hardware / mISDN / hfcpci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * hfcpci.c     low level driver for CCD's hfc-pci based cards
5  *
6  * Author     Werner Cornelius (werner@isdn4linux.de)
7  *            based on existing driver for CCD hfc ISA cards
8  *            type approval valid for HFC-S PCI A based card
9  *
10  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
12  *
13  * Module options:
14  *
15  * debug:
16  *      NOTE: only one poll value must be given for all cards
17  *      See hfc_pci.h for debug flags.
18  *
19  * poll:
20  *      NOTE: only one poll value must be given for all cards
21  *      Give the number of samples for each fifo process.
22  *      By default 128 is used. Decrease to reduce delay, increase to
23  *      reduce cpu load. If unsure, don't mess with it!
24  *      A value of 128 will use controller's interrupt. Other values will
25  *      use kernel timer, because the controller will not allow lower values
26  *      than 128.
27  *      Also note that the value depends on the kernel timer frequency.
28  *      If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
29  *      If the kernel uses 100 Hz, steps of 80 samples are possible.
30  *      If the kernel uses 300 Hz, steps of about 26 samples are possible.
31  */
32
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/pci.h>
36 #include <linux/delay.h>
37 #include <linux/mISDNhw.h>
38 #include <linux/slab.h>
39
40 #include "hfc_pci.h"
41
42 static const char *hfcpci_revision = "2.0";
43
44 static int HFC_cnt;
45 static uint debug;
46 static uint poll, tics;
47 static struct timer_list hfc_tl;
48 static unsigned long hfc_jiffies;
49
50 MODULE_AUTHOR("Karsten Keil");
51 MODULE_LICENSE("GPL");
52 module_param(debug, uint, S_IRUGO | S_IWUSR);
53 module_param(poll, uint, S_IRUGO | S_IWUSR);
54
55 enum {
56         HFC_CCD_2BD0,
57         HFC_CCD_B000,
58         HFC_CCD_B006,
59         HFC_CCD_B007,
60         HFC_CCD_B008,
61         HFC_CCD_B009,
62         HFC_CCD_B00A,
63         HFC_CCD_B00B,
64         HFC_CCD_B00C,
65         HFC_CCD_B100,
66         HFC_CCD_B700,
67         HFC_CCD_B701,
68         HFC_ASUS_0675,
69         HFC_BERKOM_A1T,
70         HFC_BERKOM_TCONCEPT,
71         HFC_ANIGMA_MC145575,
72         HFC_ZOLTRIX_2BD0,
73         HFC_DIGI_DF_M_IOM2_E,
74         HFC_DIGI_DF_M_E,
75         HFC_DIGI_DF_M_IOM2_A,
76         HFC_DIGI_DF_M_A,
77         HFC_ABOCOM_2BD1,
78         HFC_SITECOM_DC105V2,
79 };
80
81 struct hfcPCI_hw {
82         unsigned char           cirm;
83         unsigned char           ctmt;
84         unsigned char           clkdel;
85         unsigned char           states;
86         unsigned char           conn;
87         unsigned char           mst_m;
88         unsigned char           int_m1;
89         unsigned char           int_m2;
90         unsigned char           sctrl;
91         unsigned char           sctrl_r;
92         unsigned char           sctrl_e;
93         unsigned char           trm;
94         unsigned char           fifo_en;
95         unsigned char           bswapped;
96         unsigned char           protocol;
97         int                     nt_timer;
98         unsigned char __iomem   *pci_io; /* start of PCI IO memory */
99         dma_addr_t              dmahandle;
100         void                    *fifos; /* FIFO memory */
101         int                     last_bfifo_cnt[2];
102         /* marker saving last b-fifo frame count */
103         struct timer_list       timer;
104 };
105
106 #define HFC_CFG_MASTER          1
107 #define HFC_CFG_SLAVE           2
108 #define HFC_CFG_PCM             3
109 #define HFC_CFG_2HFC            4
110 #define HFC_CFG_SLAVEHFC        5
111 #define HFC_CFG_NEG_F0          6
112 #define HFC_CFG_SW_DD_DU        7
113
114 #define FLG_HFC_TIMER_T1        16
115 #define FLG_HFC_TIMER_T3        17
116
117 #define NT_T1_COUNT     1120    /* number of 3.125ms interrupts (3.5s) */
118 #define NT_T3_COUNT     31      /* number of 3.125ms interrupts (97 ms) */
119 #define CLKDEL_TE       0x0e    /* CLKDEL in TE mode */
120 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode */
121
122
123 struct hfc_pci {
124         u_char                  subtype;
125         u_char                  chanlimit;
126         u_char                  initdone;
127         u_long                  cfg;
128         u_int                   irq;
129         u_int                   irqcnt;
130         struct pci_dev          *pdev;
131         struct hfcPCI_hw        hw;
132         spinlock_t              lock;   /* card lock */
133         struct dchannel         dch;
134         struct bchannel         bch[2];
135 };
136
137 /* Interface functions */
138 static void
139 enable_hwirq(struct hfc_pci *hc)
140 {
141         hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
142         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
143 }
144
145 static void
146 disable_hwirq(struct hfc_pci *hc)
147 {
148         hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
149         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
150 }
151
152 /*
153  * free hardware resources used by driver
154  */
155 static void
156 release_io_hfcpci(struct hfc_pci *hc)
157 {
158         /* disable memory mapped ports + busmaster */
159         pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
160         del_timer(&hc->hw.timer);
161         dma_free_coherent(&hc->pdev->dev, 0x8000, hc->hw.fifos,
162                           hc->hw.dmahandle);
163         iounmap(hc->hw.pci_io);
164 }
165
166 /*
167  * set mode (NT or TE)
168  */
169 static void
170 hfcpci_setmode(struct hfc_pci *hc)
171 {
172         if (hc->hw.protocol == ISDN_P_NT_S0) {
173                 hc->hw.clkdel = CLKDEL_NT;      /* ST-Bit delay for NT-Mode */
174                 hc->hw.sctrl |= SCTRL_MODE_NT;  /* NT-MODE */
175                 hc->hw.states = 1;              /* G1 */
176         } else {
177                 hc->hw.clkdel = CLKDEL_TE;      /* ST-Bit delay for TE-Mode */
178                 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
179                 hc->hw.states = 2;              /* F2 */
180         }
181         Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
182         Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
183         udelay(10);
184         Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
185         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
186 }
187
188 /*
189  * function called to reset the HFC PCI chip. A complete software reset of chip
190  * and fifos is done.
191  */
192 static void
193 reset_hfcpci(struct hfc_pci *hc)
194 {
195         u_char  val;
196         int     cnt = 0;
197
198         printk(KERN_DEBUG "reset_hfcpci: entered\n");
199         val = Read_hfc(hc, HFCPCI_CHIP_ID);
200         printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
201         /* enable memory mapped ports, disable busmaster */
202         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
203         disable_hwirq(hc);
204         /* enable memory ports + busmaster */
205         pci_write_config_word(hc->pdev, PCI_COMMAND,
206                               PCI_ENA_MEMIO + PCI_ENA_MASTER);
207         val = Read_hfc(hc, HFCPCI_STATUS);
208         printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
209         hc->hw.cirm = HFCPCI_RESET;     /* Reset On */
210         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
211         set_current_state(TASK_UNINTERRUPTIBLE);
212         mdelay(10);                     /* Timeout 10ms */
213         hc->hw.cirm = 0;                /* Reset Off */
214         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
215         val = Read_hfc(hc, HFCPCI_STATUS);
216         printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
217         while (cnt < 50000) { /* max 50000 us */
218                 udelay(5);
219                 cnt += 5;
220                 val = Read_hfc(hc, HFCPCI_STATUS);
221                 if (!(val & 2))
222                         break;
223         }
224         printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
225
226         hc->hw.fifo_en = 0x30;  /* only D fifos enabled */
227
228         hc->hw.bswapped = 0;    /* no exchange */
229         hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
230         hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
231         hc->hw.sctrl = 0x40;    /* set tx_lo mode, error in datasheet ! */
232         hc->hw.sctrl_r = 0;
233         hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;     /* S/T Auto awake */
234         hc->hw.mst_m = 0;
235         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
236                 hc->hw.mst_m |= HFCPCI_MASTER;  /* HFC Master Mode */
237         if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
238                 hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
239         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
240         Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
241         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
242         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
243
244         hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
245                 HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
246         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
247
248         /* Clear already pending ints */
249         val = Read_hfc(hc, HFCPCI_INT_S1);
250
251         /* set NT/TE mode */
252         hfcpci_setmode(hc);
253
254         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
255         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
256
257         /*
258          * Init GCI/IOM2 in master mode
259          * Slots 0 and 1 are set for B-chan 1 and 2
260          * D- and monitor/CI channel are not enabled
261          * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
262          * STIO2 is used as data input, B1+B2 from IOM->ST
263          * ST B-channel send disabled -> continuous 1s
264          * The IOM slots are always enabled
265          */
266         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
267                 /* set data flow directions: connect B1,B2: HFC to/from PCM */
268                 hc->hw.conn = 0x09;
269         } else {
270                 hc->hw.conn = 0x36;     /* set data flow directions */
271                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
272                         Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
273                         Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
274                         Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
275                         Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
276                 } else {
277                         Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
278                         Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
279                         Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
280                         Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
281                 }
282         }
283         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
284         val = Read_hfc(hc, HFCPCI_INT_S2);
285 }
286
287 /*
288  * Timer function called when kernel timer expires
289  */
290 static void
291 hfcpci_Timer(struct timer_list *t)
292 {
293         struct hfc_pci *hc = from_timer(hc, t, hw.timer);
294         hc->hw.timer.expires = jiffies + 75;
295         /* WD RESET */
296 /*
297  *      WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
298  *      add_timer(&hc->hw.timer);
299  */
300 }
301
302
303 /*
304  * select a b-channel entry matching and active
305  */
306 static struct bchannel *
307 Sel_BCS(struct hfc_pci *hc, int channel)
308 {
309         if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
310             (hc->bch[0].nr & channel))
311                 return &hc->bch[0];
312         else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
313                  (hc->bch[1].nr & channel))
314                 return &hc->bch[1];
315         else
316                 return NULL;
317 }
318
319 /*
320  * clear the desired B-channel rx fifo
321  */
322 static void
323 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
324 {
325         u_char          fifo_state;
326         struct bzfifo   *bzr;
327
328         if (fifo) {
329                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
330                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
331         } else {
332                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
333                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
334         }
335         if (fifo_state)
336                 hc->hw.fifo_en ^= fifo_state;
337         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
338         hc->hw.last_bfifo_cnt[fifo] = 0;
339         bzr->f1 = MAX_B_FRAMES;
340         bzr->f2 = bzr->f1;      /* init F pointers to remain constant */
341         bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
342         bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
343                 le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
344         if (fifo_state)
345                 hc->hw.fifo_en |= fifo_state;
346         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
347 }
348
349 /*
350  * clear the desired B-channel tx fifo
351  */
352 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
353 {
354         u_char          fifo_state;
355         struct bzfifo   *bzt;
356
357         if (fifo) {
358                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
359                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
360         } else {
361                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
362                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
363         }
364         if (fifo_state)
365                 hc->hw.fifo_en ^= fifo_state;
366         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
367         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
368                 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
369                        "z1(%x) z2(%x) state(%x)\n",
370                        fifo, bzt->f1, bzt->f2,
371                        le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
372                        le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
373                        fifo_state);
374         bzt->f2 = MAX_B_FRAMES;
375         bzt->f1 = bzt->f2;      /* init F pointers to remain constant */
376         bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
377         bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
378         if (fifo_state)
379                 hc->hw.fifo_en |= fifo_state;
380         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
381         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
382                 printk(KERN_DEBUG
383                        "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
384                        fifo, bzt->f1, bzt->f2,
385                        le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
386                        le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
387 }
388
389 /*
390  * read a complete B-frame out of the buffer
391  */
392 static void
393 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
394                    u_char *bdata, int count)
395 {
396         u_char          *ptr, *ptr1, new_f2;
397         int             maxlen, new_z2;
398         struct zt       *zp;
399
400         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
401                 printk(KERN_DEBUG "hfcpci_empty_fifo\n");
402         zp = &bz->za[bz->f2];   /* point to Z-Regs */
403         new_z2 = le16_to_cpu(zp->z2) + count;   /* new position in fifo */
404         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
405                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
406         new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
407         if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
408             (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
409                 if (bch->debug & DEBUG_HW)
410                         printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
411                                "invalid length %d or crc\n", count);
412 #ifdef ERROR_STATISTIC
413                 bch->err_inv++;
414 #endif
415                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
416                 bz->f2 = new_f2;        /* next buffer */
417         } else {
418                 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
419                 if (!bch->rx_skb) {
420                         printk(KERN_WARNING "HFCPCI: receive out of memory\n");
421                         return;
422                 }
423                 count -= 3;
424                 ptr = skb_put(bch->rx_skb, count);
425
426                 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
427                         maxlen = count;         /* complete transfer */
428                 else
429                         maxlen = B_FIFO_SIZE + B_SUB_VAL -
430                                 le16_to_cpu(zp->z2);    /* maximum */
431
432                 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
433                 /* start of data */
434                 memcpy(ptr, ptr1, maxlen);      /* copy data */
435                 count -= maxlen;
436
437                 if (count) {    /* rest remaining */
438                         ptr += maxlen;
439                         ptr1 = bdata;   /* start of buffer */
440                         memcpy(ptr, ptr1, count);       /* rest */
441                 }
442                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
443                 bz->f2 = new_f2;        /* next buffer */
444                 recv_Bchannel(bch, MISDN_ID_ANY, false);
445         }
446 }
447
448 /*
449  * D-channel receive procedure
450  */
451 static int
452 receive_dmsg(struct hfc_pci *hc)
453 {
454         struct dchannel *dch = &hc->dch;
455         int             maxlen;
456         int             rcnt, total;
457         int             count = 5;
458         u_char          *ptr, *ptr1;
459         struct dfifo    *df;
460         struct zt       *zp;
461
462         df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
463         while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
464                 zp = &df->za[df->f2 & D_FREG_MASK];
465                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
466                 if (rcnt < 0)
467                         rcnt += D_FIFO_SIZE;
468                 rcnt++;
469                 if (dch->debug & DEBUG_HW_DCHANNEL)
470                         printk(KERN_DEBUG
471                                "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
472                                df->f1, df->f2,
473                                le16_to_cpu(zp->z1),
474                                le16_to_cpu(zp->z2),
475                                rcnt);
476
477                 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
478                     (df->data[le16_to_cpu(zp->z1)])) {
479                         if (dch->debug & DEBUG_HW)
480                                 printk(KERN_DEBUG
481                                        "empty_fifo hfcpci packet inv. len "
482                                        "%d or crc %d\n",
483                                        rcnt,
484                                        df->data[le16_to_cpu(zp->z1)]);
485 #ifdef ERROR_STATISTIC
486                         cs->err_rx++;
487 #endif
488                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
489                                 (MAX_D_FRAMES + 1);     /* next buffer */
490                         df->za[df->f2 & D_FREG_MASK].z2 =
491                                 cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
492                                             (D_FIFO_SIZE - 1));
493                 } else {
494                         dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
495                         if (!dch->rx_skb) {
496                                 printk(KERN_WARNING
497                                        "HFC-PCI: D receive out of memory\n");
498                                 break;
499                         }
500                         total = rcnt;
501                         rcnt -= 3;
502                         ptr = skb_put(dch->rx_skb, rcnt);
503
504                         if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
505                                 maxlen = rcnt;  /* complete transfer */
506                         else
507                                 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
508                         /* maximum */
509
510                         ptr1 = df->data + le16_to_cpu(zp->z2);
511                         /* start of data */
512                         memcpy(ptr, ptr1, maxlen);      /* copy data */
513                         rcnt -= maxlen;
514
515                         if (rcnt) {     /* rest remaining */
516                                 ptr += maxlen;
517                                 ptr1 = df->data;        /* start of buffer */
518                                 memcpy(ptr, ptr1, rcnt);        /* rest */
519                         }
520                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
521                                 (MAX_D_FRAMES + 1);     /* next buffer */
522                         df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
523                                                                               le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
524                         recv_Dchannel(dch);
525                 }
526         }
527         return 1;
528 }
529
530 /*
531  * check for transparent receive data and read max one 'poll' size if avail
532  */
533 static void
534 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
535                         struct bzfifo *txbz, u_char *bdata)
536 {
537         __le16  *z1r, *z2r, *z1t, *z2t;
538         int     new_z2, fcnt_rx, fcnt_tx, maxlen;
539         u_char  *ptr, *ptr1;
540
541         z1r = &rxbz->za[MAX_B_FRAMES].z1;       /* pointer to z reg */
542         z2r = z1r + 1;
543         z1t = &txbz->za[MAX_B_FRAMES].z1;
544         z2t = z1t + 1;
545
546         fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
547         if (!fcnt_rx)
548                 return; /* no data avail */
549
550         if (fcnt_rx <= 0)
551                 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
552         new_z2 = le16_to_cpu(*z2r) + fcnt_rx;   /* new position in fifo */
553         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
554                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
555
556         fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
557         if (fcnt_tx <= 0)
558                 fcnt_tx += B_FIFO_SIZE;
559         /* fcnt_tx contains available bytes in tx-fifo */
560         fcnt_tx = B_FIFO_SIZE - fcnt_tx;
561         /* remaining bytes to send (bytes in tx-fifo) */
562
563         if (test_bit(FLG_RX_OFF, &bch->Flags)) {
564                 bch->dropcnt += fcnt_rx;
565                 *z2r = cpu_to_le16(new_z2);
566                 return;
567         }
568         maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
569         if (maxlen < 0) {
570                 pr_warn("B%d: No bufferspace for %d bytes\n", bch->nr, fcnt_rx);
571         } else {
572                 ptr = skb_put(bch->rx_skb, fcnt_rx);
573                 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
574                         maxlen = fcnt_rx;       /* complete transfer */
575                 else
576                         maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
577                 /* maximum */
578
579                 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
580                 /* start of data */
581                 memcpy(ptr, ptr1, maxlen);      /* copy data */
582                 fcnt_rx -= maxlen;
583
584                 if (fcnt_rx) {  /* rest remaining */
585                         ptr += maxlen;
586                         ptr1 = bdata;   /* start of buffer */
587                         memcpy(ptr, ptr1, fcnt_rx);     /* rest */
588                 }
589                 recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
590         }
591         *z2r = cpu_to_le16(new_z2);             /* new position */
592 }
593
594 /*
595  * B-channel main receive routine
596  */
597 static void
598 main_rec_hfcpci(struct bchannel *bch)
599 {
600         struct hfc_pci  *hc = bch->hw;
601         int             rcnt, real_fifo;
602         int             receive = 0, count = 5;
603         struct bzfifo   *txbz, *rxbz;
604         u_char          *bdata;
605         struct zt       *zp;
606
607         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
608                 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
609                 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
610                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
611                 real_fifo = 1;
612         } else {
613                 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
614                 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
615                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
616                 real_fifo = 0;
617         }
618 Begin:
619         count--;
620         if (rxbz->f1 != rxbz->f2) {
621                 if (bch->debug & DEBUG_HW_BCHANNEL)
622                         printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
623                                bch->nr, rxbz->f1, rxbz->f2);
624                 zp = &rxbz->za[rxbz->f2];
625
626                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
627                 if (rcnt < 0)
628                         rcnt += B_FIFO_SIZE;
629                 rcnt++;
630                 if (bch->debug & DEBUG_HW_BCHANNEL)
631                         printk(KERN_DEBUG
632                                "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
633                                bch->nr, le16_to_cpu(zp->z1),
634                                le16_to_cpu(zp->z2), rcnt);
635                 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
636                 rcnt = rxbz->f1 - rxbz->f2;
637                 if (rcnt < 0)
638                         rcnt += MAX_B_FRAMES + 1;
639                 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
640                         rcnt = 0;
641                         hfcpci_clear_fifo_rx(hc, real_fifo);
642                 }
643                 hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
644                 if (rcnt > 1)
645                         receive = 1;
646                 else
647                         receive = 0;
648         } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
649                 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
650                 return;
651         } else
652                 receive = 0;
653         if (count && receive)
654                 goto Begin;
655
656 }
657
658 /*
659  * D-channel send routine
660  */
661 static void
662 hfcpci_fill_dfifo(struct hfc_pci *hc)
663 {
664         struct dchannel *dch = &hc->dch;
665         int             fcnt;
666         int             count, new_z1, maxlen;
667         struct dfifo    *df;
668         u_char          *src, *dst, new_f1;
669
670         if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
671                 printk(KERN_DEBUG "%s\n", __func__);
672
673         if (!dch->tx_skb)
674                 return;
675         count = dch->tx_skb->len - dch->tx_idx;
676         if (count <= 0)
677                 return;
678         df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
679
680         if (dch->debug & DEBUG_HW_DFIFO)
681                 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
682                        df->f1, df->f2,
683                        le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
684         fcnt = df->f1 - df->f2; /* frame count actually buffered */
685         if (fcnt < 0)
686                 fcnt += (MAX_D_FRAMES + 1);     /* if wrap around */
687         if (fcnt > (MAX_D_FRAMES - 1)) {
688                 if (dch->debug & DEBUG_HW_DCHANNEL)
689                         printk(KERN_DEBUG
690                                "hfcpci_fill_Dfifo more as 14 frames\n");
691 #ifdef ERROR_STATISTIC
692                 cs->err_tx++;
693 #endif
694                 return;
695         }
696         /* now determine free bytes in FIFO buffer */
697         maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
698                 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
699         if (maxlen <= 0)
700                 maxlen += D_FIFO_SIZE;  /* count now contains available bytes */
701
702         if (dch->debug & DEBUG_HW_DCHANNEL)
703                 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
704                        count, maxlen);
705         if (count > maxlen) {
706                 if (dch->debug & DEBUG_HW_DCHANNEL)
707                         printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
708                 return;
709         }
710         new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
711                 (D_FIFO_SIZE - 1);
712         new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
713         src = dch->tx_skb->data + dch->tx_idx;  /* source pointer */
714         dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
715         maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
716         /* end fifo */
717         if (maxlen > count)
718                 maxlen = count; /* limit size */
719         memcpy(dst, src, maxlen);       /* first copy */
720
721         count -= maxlen;        /* remaining bytes */
722         if (count) {
723                 dst = df->data; /* start of buffer */
724                 src += maxlen;  /* new position */
725                 memcpy(dst, src, count);
726         }
727         df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
728         /* for next buffer */
729         df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
730         /* new pos actual buffer */
731         df->f1 = new_f1;        /* next frame */
732         dch->tx_idx = dch->tx_skb->len;
733 }
734
735 /*
736  * B-channel send routine
737  */
738 static void
739 hfcpci_fill_fifo(struct bchannel *bch)
740 {
741         struct hfc_pci  *hc = bch->hw;
742         int             maxlen, fcnt;
743         int             count, new_z1;
744         struct bzfifo   *bz;
745         u_char          *bdata;
746         u_char          new_f1, *src, *dst;
747         __le16 *z1t, *z2t;
748
749         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
750                 printk(KERN_DEBUG "%s\n", __func__);
751         if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
752                 if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
753                     !test_bit(FLG_TRANSPARENT, &bch->Flags))
754                         return;
755                 count = HFCPCI_FILLEMPTY;
756         } else {
757                 count = bch->tx_skb->len - bch->tx_idx;
758         }
759         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
760                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
761                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
762         } else {
763                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
764                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
765         }
766
767         if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
768                 z1t = &bz->za[MAX_B_FRAMES].z1;
769                 z2t = z1t + 1;
770                 if (bch->debug & DEBUG_HW_BCHANNEL)
771                         printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
772                                "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
773                                le16_to_cpu(*z1t), le16_to_cpu(*z2t));
774                 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
775                 if (fcnt <= 0)
776                         fcnt += B_FIFO_SIZE;
777                 if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
778                         /* fcnt contains available bytes in fifo */
779                         if (count > fcnt)
780                                 count = fcnt;
781                         new_z1 = le16_to_cpu(*z1t) + count;
782                         /* new buffer Position */
783                         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
784                                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
785                         dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
786                         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
787                         /* end of fifo */
788                         if (bch->debug & DEBUG_HW_BFIFO)
789                                 printk(KERN_DEBUG "hfcpci_FFt fillempty "
790                                        "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
791                                        fcnt, maxlen, new_z1, dst);
792                         if (maxlen > count)
793                                 maxlen = count;         /* limit size */
794                         memset(dst, bch->fill[0], maxlen); /* first copy */
795                         count -= maxlen;                /* remaining bytes */
796                         if (count) {
797                                 dst = bdata;            /* start of buffer */
798                                 memset(dst, bch->fill[0], count);
799                         }
800                         *z1t = cpu_to_le16(new_z1);     /* now send data */
801                         return;
802                 }
803                 /* fcnt contains available bytes in fifo */
804                 fcnt = B_FIFO_SIZE - fcnt;
805                 /* remaining bytes to send (bytes in fifo) */
806
807         next_t_frame:
808                 count = bch->tx_skb->len - bch->tx_idx;
809                 /* maximum fill shall be poll*2 */
810                 if (count > (poll << 1) - fcnt)
811                         count = (poll << 1) - fcnt;
812                 if (count <= 0)
813                         return;
814                 /* data is suitable for fifo */
815                 new_z1 = le16_to_cpu(*z1t) + count;
816                 /* new buffer Position */
817                 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
818                         new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
819                 src = bch->tx_skb->data + bch->tx_idx;
820                 /* source pointer */
821                 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
822                 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
823                 /* end of fifo */
824                 if (bch->debug & DEBUG_HW_BFIFO)
825                         printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
826                                "maxl(%d) nz1(%x) dst(%p)\n",
827                                fcnt, maxlen, new_z1, dst);
828                 fcnt += count;
829                 bch->tx_idx += count;
830                 if (maxlen > count)
831                         maxlen = count;         /* limit size */
832                 memcpy(dst, src, maxlen);       /* first copy */
833                 count -= maxlen;        /* remaining bytes */
834                 if (count) {
835                         dst = bdata;    /* start of buffer */
836                         src += maxlen;  /* new position */
837                         memcpy(dst, src, count);
838                 }
839                 *z1t = cpu_to_le16(new_z1);     /* now send data */
840                 if (bch->tx_idx < bch->tx_skb->len)
841                         return;
842                 dev_kfree_skb_any(bch->tx_skb);
843                 if (get_next_bframe(bch))
844                         goto next_t_frame;
845                 return;
846         }
847         if (bch->debug & DEBUG_HW_BCHANNEL)
848                 printk(KERN_DEBUG
849                        "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
850                        __func__, bch->nr, bz->f1, bz->f2,
851                        bz->za[bz->f1].z1);
852         fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
853         if (fcnt < 0)
854                 fcnt += (MAX_B_FRAMES + 1);     /* if wrap around */
855         if (fcnt > (MAX_B_FRAMES - 1)) {
856                 if (bch->debug & DEBUG_HW_BCHANNEL)
857                         printk(KERN_DEBUG
858                                "hfcpci_fill_Bfifo more as 14 frames\n");
859                 return;
860         }
861         /* now determine free bytes in FIFO buffer */
862         maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
863                 le16_to_cpu(bz->za[bz->f1].z1) - 1;
864         if (maxlen <= 0)
865                 maxlen += B_FIFO_SIZE;  /* count now contains available bytes */
866
867         if (bch->debug & DEBUG_HW_BCHANNEL)
868                 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
869                        bch->nr, count, maxlen);
870
871         if (maxlen < count) {
872                 if (bch->debug & DEBUG_HW_BCHANNEL)
873                         printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
874                 return;
875         }
876         new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
877         /* new buffer Position */
878         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
879                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
880
881         new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
882         src = bch->tx_skb->data + bch->tx_idx;  /* source pointer */
883         dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
884         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
885         /* end fifo */
886         if (maxlen > count)
887                 maxlen = count; /* limit size */
888         memcpy(dst, src, maxlen);       /* first copy */
889
890         count -= maxlen;        /* remaining bytes */
891         if (count) {
892                 dst = bdata;    /* start of buffer */
893                 src += maxlen;  /* new position */
894                 memcpy(dst, src, count);
895         }
896         bz->za[new_f1].z1 = cpu_to_le16(new_z1);        /* for next buffer */
897         bz->f1 = new_f1;        /* next frame */
898         dev_kfree_skb_any(bch->tx_skb);
899         get_next_bframe(bch);
900 }
901
902
903
904 /*
905  * handle L1 state changes TE
906  */
907
908 static void
909 ph_state_te(struct dchannel *dch)
910 {
911         if (dch->debug)
912                 printk(KERN_DEBUG "%s: TE newstate %x\n",
913                        __func__, dch->state);
914         switch (dch->state) {
915         case 0:
916                 l1_event(dch->l1, HW_RESET_IND);
917                 break;
918         case 3:
919                 l1_event(dch->l1, HW_DEACT_IND);
920                 break;
921         case 5:
922         case 8:
923                 l1_event(dch->l1, ANYSIGNAL);
924                 break;
925         case 6:
926                 l1_event(dch->l1, INFO2);
927                 break;
928         case 7:
929                 l1_event(dch->l1, INFO4_P8);
930                 break;
931         }
932 }
933
934 /*
935  * handle L1 state changes NT
936  */
937
938 static void
939 handle_nt_timer3(struct dchannel *dch) {
940         struct hfc_pci  *hc = dch->hw;
941
942         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
943         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
944         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
945         hc->hw.nt_timer = 0;
946         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
947         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
948                 hc->hw.mst_m |= HFCPCI_MASTER;
949         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
950         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
951                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
952 }
953
954 static void
955 ph_state_nt(struct dchannel *dch)
956 {
957         struct hfc_pci  *hc = dch->hw;
958
959         if (dch->debug)
960                 printk(KERN_DEBUG "%s: NT newstate %x\n",
961                        __func__, dch->state);
962         switch (dch->state) {
963         case 2:
964                 if (hc->hw.nt_timer < 0) {
965                         hc->hw.nt_timer = 0;
966                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
967                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
968                         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
969                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
970                         /* Clear already pending ints */
971                         (void) Read_hfc(hc, HFCPCI_INT_S1);
972                         Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
973                         udelay(10);
974                         Write_hfc(hc, HFCPCI_STATES, 4);
975                         dch->state = 4;
976                 } else if (hc->hw.nt_timer == 0) {
977                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
978                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
979                         hc->hw.nt_timer = NT_T1_COUNT;
980                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
981                         hc->hw.ctmt |= HFCPCI_TIM3_125;
982                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
983                                   HFCPCI_CLTIMER);
984                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
985                         test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
986                         /* allow G2 -> G3 transition */
987                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
988                 } else {
989                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
990                 }
991                 break;
992         case 1:
993                 hc->hw.nt_timer = 0;
994                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
995                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
996                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
997                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
998                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
999                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1000                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1001                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1002                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1003                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1004                 break;
1005         case 4:
1006                 hc->hw.nt_timer = 0;
1007                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011                 break;
1012         case 3:
1013                 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1014                         if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1015                                                 &dch->Flags)) {
1016                                 handle_nt_timer3(dch);
1017                                 break;
1018                         }
1019                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1020                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1021                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1022                         hc->hw.nt_timer = NT_T3_COUNT;
1023                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1024                         hc->hw.ctmt |= HFCPCI_TIM3_125;
1025                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1026                                   HFCPCI_CLTIMER);
1027                 }
1028                 break;
1029         }
1030 }
1031
1032 static void
1033 ph_state(struct dchannel *dch)
1034 {
1035         struct hfc_pci  *hc = dch->hw;
1036
1037         if (hc->hw.protocol == ISDN_P_NT_S0) {
1038                 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1039                     hc->hw.nt_timer < 0)
1040                         handle_nt_timer3(dch);
1041                 else
1042                         ph_state_nt(dch);
1043         } else
1044                 ph_state_te(dch);
1045 }
1046
1047 /*
1048  * Layer 1 callback function
1049  */
1050 static int
1051 hfc_l1callback(struct dchannel *dch, u_int cmd)
1052 {
1053         struct hfc_pci          *hc = dch->hw;
1054
1055         switch (cmd) {
1056         case INFO3_P8:
1057         case INFO3_P10:
1058                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1059                         hc->hw.mst_m |= HFCPCI_MASTER;
1060                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1061                 break;
1062         case HW_RESET_REQ:
1063                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1064                 /* HFC ST 3 */
1065                 udelay(6);
1066                 Write_hfc(hc, HFCPCI_STATES, 3);        /* HFC ST 2 */
1067                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1068                         hc->hw.mst_m |= HFCPCI_MASTER;
1069                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1070                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1071                           HFCPCI_DO_ACTION);
1072                 l1_event(dch->l1, HW_POWERUP_IND);
1073                 break;
1074         case HW_DEACT_REQ:
1075                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1076                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1077                 skb_queue_purge(&dch->squeue);
1078                 if (dch->tx_skb) {
1079                         dev_kfree_skb(dch->tx_skb);
1080                         dch->tx_skb = NULL;
1081                 }
1082                 dch->tx_idx = 0;
1083                 if (dch->rx_skb) {
1084                         dev_kfree_skb(dch->rx_skb);
1085                         dch->rx_skb = NULL;
1086                 }
1087                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1088                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1089                         del_timer(&dch->timer);
1090                 break;
1091         case HW_POWERUP_REQ:
1092                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1093                 break;
1094         case PH_ACTIVATE_IND:
1095                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1096                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1097                             GFP_ATOMIC);
1098                 break;
1099         case PH_DEACTIVATE_IND:
1100                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1101                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1102                             GFP_ATOMIC);
1103                 break;
1104         default:
1105                 if (dch->debug & DEBUG_HW)
1106                         printk(KERN_DEBUG "%s: unknown command %x\n",
1107                                __func__, cmd);
1108                 return -1;
1109         }
1110         return 0;
1111 }
1112
1113 /*
1114  * Interrupt handler
1115  */
1116 static inline void
1117 tx_birq(struct bchannel *bch)
1118 {
1119         if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1120                 hfcpci_fill_fifo(bch);
1121         else {
1122                 dev_kfree_skb_any(bch->tx_skb);
1123                 if (get_next_bframe(bch))
1124                         hfcpci_fill_fifo(bch);
1125         }
1126 }
1127
1128 static inline void
1129 tx_dirq(struct dchannel *dch)
1130 {
1131         if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1132                 hfcpci_fill_dfifo(dch->hw);
1133         else {
1134                 dev_kfree_skb(dch->tx_skb);
1135                 if (get_next_dframe(dch))
1136                         hfcpci_fill_dfifo(dch->hw);
1137         }
1138 }
1139
1140 static irqreturn_t
1141 hfcpci_int(int intno, void *dev_id)
1142 {
1143         struct hfc_pci  *hc = dev_id;
1144         u_char          exval;
1145         struct bchannel *bch;
1146         u_char          val, stat;
1147
1148         spin_lock(&hc->lock);
1149         if (!(hc->hw.int_m2 & 0x08)) {
1150                 spin_unlock(&hc->lock);
1151                 return IRQ_NONE; /* not initialised */
1152         }
1153         stat = Read_hfc(hc, HFCPCI_STATUS);
1154         if (HFCPCI_ANYINT & stat) {
1155                 val = Read_hfc(hc, HFCPCI_INT_S1);
1156                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1157                         printk(KERN_DEBUG
1158                                "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1159         } else {
1160                 /* shared */
1161                 spin_unlock(&hc->lock);
1162                 return IRQ_NONE;
1163         }
1164         hc->irqcnt++;
1165
1166         if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1167                 printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1168         val &= hc->hw.int_m1;
1169         if (val & 0x40) {       /* state machine irq */
1170                 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1171                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172                         printk(KERN_DEBUG "ph_state chg %d->%d\n",
1173                                hc->dch.state, exval);
1174                 hc->dch.state = exval;
1175                 schedule_event(&hc->dch, FLG_PHCHANGE);
1176                 val &= ~0x40;
1177         }
1178         if (val & 0x80) {       /* timer irq */
1179                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1180                         if ((--hc->hw.nt_timer) < 0)
1181                                 schedule_event(&hc->dch, FLG_PHCHANGE);
1182                 }
1183                 val &= ~0x80;
1184                 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1185         }
1186         if (val & 0x08) {       /* B1 rx */
1187                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1188                 if (bch)
1189                         main_rec_hfcpci(bch);
1190                 else if (hc->dch.debug)
1191                         printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1192         }
1193         if (val & 0x10) {       /* B2 rx */
1194                 bch = Sel_BCS(hc, 2);
1195                 if (bch)
1196                         main_rec_hfcpci(bch);
1197                 else if (hc->dch.debug)
1198                         printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1199         }
1200         if (val & 0x01) {       /* B1 tx */
1201                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1202                 if (bch)
1203                         tx_birq(bch);
1204                 else if (hc->dch.debug)
1205                         printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1206         }
1207         if (val & 0x02) {       /* B2 tx */
1208                 bch = Sel_BCS(hc, 2);
1209                 if (bch)
1210                         tx_birq(bch);
1211                 else if (hc->dch.debug)
1212                         printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1213         }
1214         if (val & 0x20)         /* D rx */
1215                 receive_dmsg(hc);
1216         if (val & 0x04) {       /* D tx */
1217                 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1218                         del_timer(&hc->dch.timer);
1219                 tx_dirq(&hc->dch);
1220         }
1221         spin_unlock(&hc->lock);
1222         return IRQ_HANDLED;
1223 }
1224
1225 /*
1226  * timer callback for D-chan busy resolution. Currently no function
1227  */
1228 static void
1229 hfcpci_dbusy_timer(struct timer_list *t)
1230 {
1231 }
1232
1233 /*
1234  * activate/deactivate hardware for selected channels and mode
1235  */
1236 static int
1237 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1238 {
1239         struct hfc_pci  *hc = bch->hw;
1240         int             fifo2;
1241         u_char          rx_slot = 0, tx_slot = 0, pcm_mode;
1242
1243         if (bch->debug & DEBUG_HW_BCHANNEL)
1244                 printk(KERN_DEBUG
1245                        "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1246                        bch->state, protocol, bch->nr, bc);
1247
1248         fifo2 = bc;
1249         pcm_mode = (bc >> 24) & 0xff;
1250         if (pcm_mode) { /* PCM SLOT USE */
1251                 if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1252                         printk(KERN_WARNING
1253                                "%s: pcm channel id without HFC_CFG_PCM\n",
1254                                __func__);
1255                 rx_slot = (bc >> 8) & 0xff;
1256                 tx_slot = (bc >> 16) & 0xff;
1257                 bc = bc & 0xff;
1258         } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1259                 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1260                        __func__);
1261         if (hc->chanlimit > 1) {
1262                 hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1263                 hc->hw.sctrl_e &= ~0x80;
1264         } else {
1265                 if (bc & 2) {
1266                         if (protocol != ISDN_P_NONE) {
1267                                 hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1268                                 hc->hw.sctrl_e |= 0x80;
1269                         } else {
1270                                 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1271                                 hc->hw.sctrl_e &= ~0x80;
1272                         }
1273                         fifo2 = 1;
1274                 } else {
1275                         hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1276                         hc->hw.sctrl_e &= ~0x80;
1277                 }
1278         }
1279         switch (protocol) {
1280         case (-1): /* used for init */
1281                 bch->state = -1;
1282                 bch->nr = bc;
1283                 fallthrough;
1284         case (ISDN_P_NONE):
1285                 if (bch->state == ISDN_P_NONE)
1286                         return 0;
1287                 if (bc & 2) {
1288                         hc->hw.sctrl &= ~SCTRL_B2_ENA;
1289                         hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1290                 } else {
1291                         hc->hw.sctrl &= ~SCTRL_B1_ENA;
1292                         hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1293                 }
1294                 if (fifo2 & 2) {
1295                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1296                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS |
1297                                            HFCPCI_INTS_B2REC);
1298                 } else {
1299                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1300                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS |
1301                                            HFCPCI_INTS_B1REC);
1302                 }
1303 #ifdef REVERSE_BITORDER
1304                 if (bch->nr & 2)
1305                         hc->hw.cirm &= 0x7f;
1306                 else
1307                         hc->hw.cirm &= 0xbf;
1308 #endif
1309                 bch->state = ISDN_P_NONE;
1310                 bch->nr = bc;
1311                 test_and_clear_bit(FLG_HDLC, &bch->Flags);
1312                 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1313                 break;
1314         case (ISDN_P_B_RAW):
1315                 bch->state = protocol;
1316                 bch->nr = bc;
1317                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1318                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1319                 if (bc & 2) {
1320                         hc->hw.sctrl |= SCTRL_B2_ENA;
1321                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1322 #ifdef REVERSE_BITORDER
1323                         hc->hw.cirm |= 0x80;
1324 #endif
1325                 } else {
1326                         hc->hw.sctrl |= SCTRL_B1_ENA;
1327                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1328 #ifdef REVERSE_BITORDER
1329                         hc->hw.cirm |= 0x40;
1330 #endif
1331                 }
1332                 if (fifo2 & 2) {
1333                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1334                         if (!tics)
1335                                 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1336                                                   HFCPCI_INTS_B2REC);
1337                         hc->hw.ctmt |= 2;
1338                         hc->hw.conn &= ~0x18;
1339                 } else {
1340                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1341                         if (!tics)
1342                                 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1343                                                   HFCPCI_INTS_B1REC);
1344                         hc->hw.ctmt |= 1;
1345                         hc->hw.conn &= ~0x03;
1346                 }
1347                 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1348                 break;
1349         case (ISDN_P_B_HDLC):
1350                 bch->state = protocol;
1351                 bch->nr = bc;
1352                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1353                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1354                 if (bc & 2) {
1355                         hc->hw.sctrl |= SCTRL_B2_ENA;
1356                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1357                 } else {
1358                         hc->hw.sctrl |= SCTRL_B1_ENA;
1359                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1360                 }
1361                 if (fifo2 & 2) {
1362                         hc->hw.last_bfifo_cnt[1] = 0;
1363                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1364                         hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1365                                           HFCPCI_INTS_B2REC);
1366                         hc->hw.ctmt &= ~2;
1367                         hc->hw.conn &= ~0x18;
1368                 } else {
1369                         hc->hw.last_bfifo_cnt[0] = 0;
1370                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1371                         hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1372                                           HFCPCI_INTS_B1REC);
1373                         hc->hw.ctmt &= ~1;
1374                         hc->hw.conn &= ~0x03;
1375                 }
1376                 test_and_set_bit(FLG_HDLC, &bch->Flags);
1377                 break;
1378         default:
1379                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1380                 return -ENOPROTOOPT;
1381         }
1382         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1383                 if ((protocol == ISDN_P_NONE) ||
1384                     (protocol == -1)) { /* init case */
1385                         rx_slot = 0;
1386                         tx_slot = 0;
1387                 } else {
1388                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1389                                 rx_slot |= 0xC0;
1390                                 tx_slot |= 0xC0;
1391                         } else {
1392                                 rx_slot |= 0x80;
1393                                 tx_slot |= 0x80;
1394                         }
1395                 }
1396                 if (bc & 2) {
1397                         hc->hw.conn &= 0xc7;
1398                         hc->hw.conn |= 0x08;
1399                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1400                                __func__, tx_slot);
1401                         printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1402                                __func__, rx_slot);
1403                         Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1404                         Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1405                 } else {
1406                         hc->hw.conn &= 0xf8;
1407                         hc->hw.conn |= 0x01;
1408                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1409                                __func__, tx_slot);
1410                         printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1411                                __func__, rx_slot);
1412                         Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1413                         Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1414                 }
1415         }
1416         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1417         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1418         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1419         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1420         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1421         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1422         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1423 #ifdef REVERSE_BITORDER
1424         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1425 #endif
1426         return 0;
1427 }
1428
1429 static int
1430 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1431 {
1432         struct hfc_pci  *hc = bch->hw;
1433
1434         if (bch->debug & DEBUG_HW_BCHANNEL)
1435                 printk(KERN_DEBUG
1436                        "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1437                        bch->state, protocol, bch->nr, chan);
1438         if (bch->nr != chan) {
1439                 printk(KERN_DEBUG
1440                        "HFCPCI rxtest wrong channel parameter %x/%x\n",
1441                        bch->nr, chan);
1442                 return -EINVAL;
1443         }
1444         switch (protocol) {
1445         case (ISDN_P_B_RAW):
1446                 bch->state = protocol;
1447                 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1448                 if (chan & 2) {
1449                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1450                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1451                         if (!tics)
1452                                 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1453                         hc->hw.ctmt |= 2;
1454                         hc->hw.conn &= ~0x18;
1455 #ifdef REVERSE_BITORDER
1456                         hc->hw.cirm |= 0x80;
1457 #endif
1458                 } else {
1459                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1460                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1461                         if (!tics)
1462                                 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1463                         hc->hw.ctmt |= 1;
1464                         hc->hw.conn &= ~0x03;
1465 #ifdef REVERSE_BITORDER
1466                         hc->hw.cirm |= 0x40;
1467 #endif
1468                 }
1469                 break;
1470         case (ISDN_P_B_HDLC):
1471                 bch->state = protocol;
1472                 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1473                 if (chan & 2) {
1474                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1475                         hc->hw.last_bfifo_cnt[1] = 0;
1476                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1477                         hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1478                         hc->hw.ctmt &= ~2;
1479                         hc->hw.conn &= ~0x18;
1480                 } else {
1481                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1482                         hc->hw.last_bfifo_cnt[0] = 0;
1483                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1484                         hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1485                         hc->hw.ctmt &= ~1;
1486                         hc->hw.conn &= ~0x03;
1487                 }
1488                 break;
1489         default:
1490                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1491                 return -ENOPROTOOPT;
1492         }
1493         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1494         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1495         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1496         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1497         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1498 #ifdef REVERSE_BITORDER
1499         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1500 #endif
1501         return 0;
1502 }
1503
1504 static void
1505 deactivate_bchannel(struct bchannel *bch)
1506 {
1507         struct hfc_pci  *hc = bch->hw;
1508         u_long          flags;
1509
1510         spin_lock_irqsave(&hc->lock, flags);
1511         mISDN_clear_bchannel(bch);
1512         mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1513         spin_unlock_irqrestore(&hc->lock, flags);
1514 }
1515
1516 /*
1517  * Layer 1 B-channel hardware access
1518  */
1519 static int
1520 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1521 {
1522         return mISDN_ctrl_bchannel(bch, cq);
1523 }
1524 static int
1525 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1526 {
1527         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1528         struct hfc_pci  *hc = bch->hw;
1529         int             ret = -EINVAL;
1530         u_long          flags;
1531
1532         if (bch->debug & DEBUG_HW)
1533                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1534         switch (cmd) {
1535         case HW_TESTRX_RAW:
1536                 spin_lock_irqsave(&hc->lock, flags);
1537                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1538                 spin_unlock_irqrestore(&hc->lock, flags);
1539                 break;
1540         case HW_TESTRX_HDLC:
1541                 spin_lock_irqsave(&hc->lock, flags);
1542                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1543                 spin_unlock_irqrestore(&hc->lock, flags);
1544                 break;
1545         case HW_TESTRX_OFF:
1546                 spin_lock_irqsave(&hc->lock, flags);
1547                 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1548                 spin_unlock_irqrestore(&hc->lock, flags);
1549                 ret = 0;
1550                 break;
1551         case CLOSE_CHANNEL:
1552                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1553                 deactivate_bchannel(bch);
1554                 ch->protocol = ISDN_P_NONE;
1555                 ch->peer = NULL;
1556                 module_put(THIS_MODULE);
1557                 ret = 0;
1558                 break;
1559         case CONTROL_CHANNEL:
1560                 ret = channel_bctrl(bch, arg);
1561                 break;
1562         default:
1563                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1564                        __func__, cmd);
1565         }
1566         return ret;
1567 }
1568
1569 /*
1570  * Layer2 -> Layer 1 Dchannel data
1571  */
1572 static int
1573 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1574 {
1575         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1576         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1577         struct hfc_pci          *hc = dch->hw;
1578         int                     ret = -EINVAL;
1579         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1580         unsigned int            id;
1581         u_long                  flags;
1582
1583         switch (hh->prim) {
1584         case PH_DATA_REQ:
1585                 spin_lock_irqsave(&hc->lock, flags);
1586                 ret = dchannel_senddata(dch, skb);
1587                 if (ret > 0) { /* direct TX */
1588                         id = hh->id; /* skb can be freed */
1589                         hfcpci_fill_dfifo(dch->hw);
1590                         ret = 0;
1591                         spin_unlock_irqrestore(&hc->lock, flags);
1592                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1593                 } else
1594                         spin_unlock_irqrestore(&hc->lock, flags);
1595                 return ret;
1596         case PH_ACTIVATE_REQ:
1597                 spin_lock_irqsave(&hc->lock, flags);
1598                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1599                         ret = 0;
1600                         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1601                                 hc->hw.mst_m |= HFCPCI_MASTER;
1602                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1603                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1604                                 spin_unlock_irqrestore(&hc->lock, flags);
1605                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1606                                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1607                                 break;
1608                         }
1609                         test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1610                         Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1611                                   HFCPCI_DO_ACTION | 1);
1612                 } else
1613                         ret = l1_event(dch->l1, hh->prim);
1614                 spin_unlock_irqrestore(&hc->lock, flags);
1615                 break;
1616         case PH_DEACTIVATE_REQ:
1617                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1618                 spin_lock_irqsave(&hc->lock, flags);
1619                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1620                         struct sk_buff_head free_queue;
1621
1622                         __skb_queue_head_init(&free_queue);
1623                         /* prepare deactivation */
1624                         Write_hfc(hc, HFCPCI_STATES, 0x40);
1625                         skb_queue_splice_init(&dch->squeue, &free_queue);
1626                         if (dch->tx_skb) {
1627                                 __skb_queue_tail(&free_queue, dch->tx_skb);
1628                                 dch->tx_skb = NULL;
1629                         }
1630                         dch->tx_idx = 0;
1631                         if (dch->rx_skb) {
1632                                 __skb_queue_tail(&free_queue, dch->rx_skb);
1633                                 dch->rx_skb = NULL;
1634                         }
1635                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1636                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1637                                 del_timer(&dch->timer);
1638 #ifdef FIXME
1639                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1640                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1641 #endif
1642                         hc->hw.mst_m &= ~HFCPCI_MASTER;
1643                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1644                         ret = 0;
1645                         spin_unlock_irqrestore(&hc->lock, flags);
1646                         __skb_queue_purge(&free_queue);
1647                 } else {
1648                         ret = l1_event(dch->l1, hh->prim);
1649                         spin_unlock_irqrestore(&hc->lock, flags);
1650                 }
1651                 break;
1652         }
1653         if (!ret)
1654                 dev_kfree_skb(skb);
1655         return ret;
1656 }
1657
1658 /*
1659  * Layer2 -> Layer 1 Bchannel data
1660  */
1661 static int
1662 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1663 {
1664         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
1665         struct hfc_pci          *hc = bch->hw;
1666         int                     ret = -EINVAL;
1667         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1668         unsigned long           flags;
1669
1670         switch (hh->prim) {
1671         case PH_DATA_REQ:
1672                 spin_lock_irqsave(&hc->lock, flags);
1673                 ret = bchannel_senddata(bch, skb);
1674                 if (ret > 0) { /* direct TX */
1675                         hfcpci_fill_fifo(bch);
1676                         ret = 0;
1677                 }
1678                 spin_unlock_irqrestore(&hc->lock, flags);
1679                 return ret;
1680         case PH_ACTIVATE_REQ:
1681                 spin_lock_irqsave(&hc->lock, flags);
1682                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1683                         ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1684                 else
1685                         ret = 0;
1686                 spin_unlock_irqrestore(&hc->lock, flags);
1687                 if (!ret)
1688                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1689                                     NULL, GFP_KERNEL);
1690                 break;
1691         case PH_DEACTIVATE_REQ:
1692                 deactivate_bchannel(bch);
1693                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1694                             NULL, GFP_KERNEL);
1695                 ret = 0;
1696                 break;
1697         }
1698         if (!ret)
1699                 dev_kfree_skb(skb);
1700         return ret;
1701 }
1702
1703 /*
1704  * called for card init message
1705  */
1706
1707 static void
1708 inithfcpci(struct hfc_pci *hc)
1709 {
1710         printk(KERN_DEBUG "inithfcpci: entered\n");
1711         timer_setup(&hc->dch.timer, hfcpci_dbusy_timer, 0);
1712         hc->chanlimit = 2;
1713         mode_hfcpci(&hc->bch[0], 1, -1);
1714         mode_hfcpci(&hc->bch[1], 2, -1);
1715 }
1716
1717
1718 static int
1719 init_card(struct hfc_pci *hc)
1720 {
1721         int     cnt = 3;
1722         u_long  flags;
1723
1724         printk(KERN_DEBUG "init_card: entered\n");
1725
1726
1727         spin_lock_irqsave(&hc->lock, flags);
1728         disable_hwirq(hc);
1729         spin_unlock_irqrestore(&hc->lock, flags);
1730         if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1731                 printk(KERN_WARNING
1732                        "mISDN: couldn't get interrupt %d\n", hc->irq);
1733                 return -EIO;
1734         }
1735         spin_lock_irqsave(&hc->lock, flags);
1736         reset_hfcpci(hc);
1737         while (cnt) {
1738                 inithfcpci(hc);
1739                 /*
1740                  * Finally enable IRQ output
1741                  * this is only allowed, if an IRQ routine is already
1742                  * established for this HFC, so don't do that earlier
1743                  */
1744                 enable_hwirq(hc);
1745                 spin_unlock_irqrestore(&hc->lock, flags);
1746                 /* Timeout 80ms */
1747                 set_current_state(TASK_UNINTERRUPTIBLE);
1748                 schedule_timeout((80 * HZ) / 1000);
1749                 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1750                        hc->irq, hc->irqcnt);
1751                 /* now switch timer interrupt off */
1752                 spin_lock_irqsave(&hc->lock, flags);
1753                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1754                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1755                 /* reinit mode reg */
1756                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1757                 if (!hc->irqcnt) {
1758                         printk(KERN_WARNING
1759                                "HFC PCI: IRQ(%d) getting no interrupts "
1760                                "during init %d\n", hc->irq, 4 - cnt);
1761                         if (cnt == 1)
1762                                 break;
1763                         else {
1764                                 reset_hfcpci(hc);
1765                                 cnt--;
1766                         }
1767                 } else {
1768                         spin_unlock_irqrestore(&hc->lock, flags);
1769                         hc->initdone = 1;
1770                         return 0;
1771                 }
1772         }
1773         disable_hwirq(hc);
1774         spin_unlock_irqrestore(&hc->lock, flags);
1775         free_irq(hc->irq, hc);
1776         return -EIO;
1777 }
1778
1779 static int
1780 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1781 {
1782         int     ret = 0;
1783         u_char  slot;
1784
1785         switch (cq->op) {
1786         case MISDN_CTRL_GETOP:
1787                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1788                          MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1789                 break;
1790         case MISDN_CTRL_LOOP:
1791                 /* channel 0 disabled loop */
1792                 if (cq->channel < 0 || cq->channel > 2) {
1793                         ret = -EINVAL;
1794                         break;
1795                 }
1796                 if (cq->channel & 1) {
1797                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1798                                 slot = 0xC0;
1799                         else
1800                                 slot = 0x80;
1801                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1802                                __func__, slot);
1803                         Write_hfc(hc, HFCPCI_B1_SSL, slot);
1804                         Write_hfc(hc, HFCPCI_B1_RSL, slot);
1805                         hc->hw.conn = (hc->hw.conn & ~7) | 6;
1806                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1807                 }
1808                 if (cq->channel & 2) {
1809                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1810                                 slot = 0xC1;
1811                         else
1812                                 slot = 0x81;
1813                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1814                                __func__, slot);
1815                         Write_hfc(hc, HFCPCI_B2_SSL, slot);
1816                         Write_hfc(hc, HFCPCI_B2_RSL, slot);
1817                         hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1818                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1819                 }
1820                 if (cq->channel & 3)
1821                         hc->hw.trm |= 0x80;     /* enable IOM-loop */
1822                 else {
1823                         hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1824                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1825                         hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1826                 }
1827                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1828                 break;
1829         case MISDN_CTRL_CONNECT:
1830                 if (cq->channel == cq->p1) {
1831                         ret = -EINVAL;
1832                         break;
1833                 }
1834                 if (cq->channel < 1 || cq->channel > 2 ||
1835                     cq->p1 < 1 || cq->p1 > 2) {
1836                         ret = -EINVAL;
1837                         break;
1838                 }
1839                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1840                         slot = 0xC0;
1841                 else
1842                         slot = 0x80;
1843                 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1844                        __func__, slot);
1845                 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1846                 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1847                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1848                         slot = 0xC1;
1849                 else
1850                         slot = 0x81;
1851                 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1852                        __func__, slot);
1853                 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1854                 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1855                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1856                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1857                 hc->hw.trm |= 0x80;
1858                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1859                 break;
1860         case MISDN_CTRL_DISCONNECT:
1861                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1862                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1863                 hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1864                 break;
1865         case MISDN_CTRL_L1_TIMER3:
1866                 ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1867                 break;
1868         default:
1869                 printk(KERN_WARNING "%s: unknown Op %x\n",
1870                        __func__, cq->op);
1871                 ret = -EINVAL;
1872                 break;
1873         }
1874         return ret;
1875 }
1876
1877 static int
1878 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1879               struct channel_req *rq)
1880 {
1881         int err = 0;
1882
1883         if (debug & DEBUG_HW_OPEN)
1884                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1885                        hc->dch.dev.id, __builtin_return_address(0));
1886         if (rq->protocol == ISDN_P_NONE)
1887                 return -EINVAL;
1888         if (rq->adr.channel == 1) {
1889                 /* TODO: E-Channel */
1890                 return -EINVAL;
1891         }
1892         if (!hc->initdone) {
1893                 if (rq->protocol == ISDN_P_TE_S0) {
1894                         err = create_l1(&hc->dch, hfc_l1callback);
1895                         if (err)
1896                                 return err;
1897                 }
1898                 hc->hw.protocol = rq->protocol;
1899                 ch->protocol = rq->protocol;
1900                 err = init_card(hc);
1901                 if (err)
1902                         return err;
1903         } else {
1904                 if (rq->protocol != ch->protocol) {
1905                         if (hc->hw.protocol == ISDN_P_TE_S0)
1906                                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
1907                         if (rq->protocol == ISDN_P_TE_S0) {
1908                                 err = create_l1(&hc->dch, hfc_l1callback);
1909                                 if (err)
1910                                         return err;
1911                         }
1912                         hc->hw.protocol = rq->protocol;
1913                         ch->protocol = rq->protocol;
1914                         hfcpci_setmode(hc);
1915                 }
1916         }
1917
1918         if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1919             ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1920                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1921                             0, NULL, GFP_KERNEL);
1922         }
1923         rq->ch = ch;
1924         if (!try_module_get(THIS_MODULE))
1925                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1926         return 0;
1927 }
1928
1929 static int
1930 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1931 {
1932         struct bchannel         *bch;
1933
1934         if (rq->adr.channel == 0 || rq->adr.channel > 2)
1935                 return -EINVAL;
1936         if (rq->protocol == ISDN_P_NONE)
1937                 return -EINVAL;
1938         bch = &hc->bch[rq->adr.channel - 1];
1939         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1940                 return -EBUSY; /* b-channel can be only open once */
1941         bch->ch.protocol = rq->protocol;
1942         rq->ch = &bch->ch; /* TODO: E-channel */
1943         if (!try_module_get(THIS_MODULE))
1944                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1945         return 0;
1946 }
1947
1948 /*
1949  * device control function
1950  */
1951 static int
1952 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1953 {
1954         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1955         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1956         struct hfc_pci          *hc = dch->hw;
1957         struct channel_req      *rq;
1958         int                     err = 0;
1959
1960         if (dch->debug & DEBUG_HW)
1961                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
1962                        __func__, cmd, arg);
1963         switch (cmd) {
1964         case OPEN_CHANNEL:
1965                 rq = arg;
1966                 if ((rq->protocol == ISDN_P_TE_S0) ||
1967                     (rq->protocol == ISDN_P_NT_S0))
1968                         err = open_dchannel(hc, ch, rq);
1969                 else
1970                         err = open_bchannel(hc, rq);
1971                 break;
1972         case CLOSE_CHANNEL:
1973                 if (debug & DEBUG_HW_OPEN)
1974                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1975                                __func__, hc->dch.dev.id,
1976                                __builtin_return_address(0));
1977                 module_put(THIS_MODULE);
1978                 break;
1979         case CONTROL_CHANNEL:
1980                 err = channel_ctrl(hc, arg);
1981                 break;
1982         default:
1983                 if (dch->debug & DEBUG_HW)
1984                         printk(KERN_DEBUG "%s: unknown command %x\n",
1985                                __func__, cmd);
1986                 return -EINVAL;
1987         }
1988         return err;
1989 }
1990
1991 static int
1992 setup_hw(struct hfc_pci *hc)
1993 {
1994         void    *buffer;
1995
1996         printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
1997         hc->hw.cirm = 0;
1998         hc->dch.state = 0;
1999         pci_set_master(hc->pdev);
2000         if (!hc->irq) {
2001                 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2002                 return -EINVAL;
2003         }
2004         hc->hw.pci_io =
2005                 (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2006
2007         if (!hc->hw.pci_io) {
2008                 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2009                 return -ENOMEM;
2010         }
2011         /* Allocate memory for FIFOS */
2012         /* the memory needs to be on a 32k boundary within the first 4G */
2013         if (dma_set_mask(&hc->pdev->dev, 0xFFFF8000)) {
2014                 printk(KERN_WARNING
2015                        "HFC-PCI: No usable DMA configuration!\n");
2016                 return -EIO;
2017         }
2018         buffer = dma_alloc_coherent(&hc->pdev->dev, 0x8000, &hc->hw.dmahandle,
2019                                     GFP_KERNEL);
2020         /* We silently assume the address is okay if nonzero */
2021         if (!buffer) {
2022                 printk(KERN_WARNING
2023                        "HFC-PCI: Error allocating memory for FIFO!\n");
2024                 return -ENOMEM;
2025         }
2026         hc->hw.fifos = buffer;
2027         pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2028         hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2029         if (unlikely(!hc->hw.pci_io)) {
2030                 printk(KERN_WARNING
2031                        "HFC-PCI: Error in ioremap for PCI!\n");
2032                 dma_free_coherent(&hc->pdev->dev, 0x8000, hc->hw.fifos,
2033                                   hc->hw.dmahandle);
2034                 return -ENOMEM;
2035         }
2036
2037         printk(KERN_INFO
2038                "HFC-PCI: defined at mem %#lx fifo %p(%pad) IRQ %d HZ %d\n",
2039                (u_long) hc->hw.pci_io, hc->hw.fifos,
2040                &hc->hw.dmahandle, hc->irq, HZ);
2041
2042         /* enable memory mapped ports, disable busmaster */
2043         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2044         hc->hw.int_m2 = 0;
2045         disable_hwirq(hc);
2046         hc->hw.int_m1 = 0;
2047         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2048         /* At this point the needed PCI config is done */
2049         /* fifos are still not enabled */
2050         timer_setup(&hc->hw.timer, hfcpci_Timer, 0);
2051         /* default PCM master */
2052         test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2053         return 0;
2054 }
2055
2056 static void
2057 release_card(struct hfc_pci *hc) {
2058         u_long  flags;
2059
2060         spin_lock_irqsave(&hc->lock, flags);
2061         hc->hw.int_m2 = 0; /* interrupt output off ! */
2062         disable_hwirq(hc);
2063         mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2064         mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2065         if (hc->dch.timer.function != NULL) {
2066                 del_timer(&hc->dch.timer);
2067                 hc->dch.timer.function = NULL;
2068         }
2069         spin_unlock_irqrestore(&hc->lock, flags);
2070         if (hc->hw.protocol == ISDN_P_TE_S0)
2071                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
2072         if (hc->initdone)
2073                 free_irq(hc->irq, hc);
2074         release_io_hfcpci(hc); /* must release after free_irq! */
2075         mISDN_unregister_device(&hc->dch.dev);
2076         mISDN_freebchannel(&hc->bch[1]);
2077         mISDN_freebchannel(&hc->bch[0]);
2078         mISDN_freedchannel(&hc->dch);
2079         pci_set_drvdata(hc->pdev, NULL);
2080         kfree(hc);
2081 }
2082
2083 static int
2084 setup_card(struct hfc_pci *card)
2085 {
2086         int             err = -EINVAL;
2087         u_int           i;
2088         char            name[MISDN_MAX_IDLEN];
2089
2090         card->dch.debug = debug;
2091         spin_lock_init(&card->lock);
2092         mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2093         card->dch.hw = card;
2094         card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2095         card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2096                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2097         card->dch.dev.D.send = hfcpci_l2l1D;
2098         card->dch.dev.D.ctrl = hfc_dctrl;
2099         card->dch.dev.nrbchan = 2;
2100         for (i = 0; i < 2; i++) {
2101                 card->bch[i].nr = i + 1;
2102                 set_channelmap(i + 1, card->dch.dev.channelmap);
2103                 card->bch[i].debug = debug;
2104                 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2105                 card->bch[i].hw = card;
2106                 card->bch[i].ch.send = hfcpci_l2l1B;
2107                 card->bch[i].ch.ctrl = hfc_bctrl;
2108                 card->bch[i].ch.nr = i + 1;
2109                 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2110         }
2111         err = setup_hw(card);
2112         if (err)
2113                 goto error;
2114         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2115         err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2116         if (err)
2117                 goto error;
2118         HFC_cnt++;
2119         printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2120         return 0;
2121 error:
2122         mISDN_freebchannel(&card->bch[1]);
2123         mISDN_freebchannel(&card->bch[0]);
2124         mISDN_freedchannel(&card->dch);
2125         kfree(card);
2126         return err;
2127 }
2128
2129 /* private data in the PCI devices list */
2130 struct _hfc_map {
2131         u_int   subtype;
2132         u_int   flag;
2133         char    *name;
2134 };
2135
2136 static const struct _hfc_map hfc_map[] =
2137 {
2138         {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2139         {HFC_CCD_B000, 0, "Billion B000"},
2140         {HFC_CCD_B006, 0, "Billion B006"},
2141         {HFC_CCD_B007, 0, "Billion B007"},
2142         {HFC_CCD_B008, 0, "Billion B008"},
2143         {HFC_CCD_B009, 0, "Billion B009"},
2144         {HFC_CCD_B00A, 0, "Billion B00A"},
2145         {HFC_CCD_B00B, 0, "Billion B00B"},
2146         {HFC_CCD_B00C, 0, "Billion B00C"},
2147         {HFC_CCD_B100, 0, "Seyeon B100"},
2148         {HFC_CCD_B700, 0, "Primux II S0 B700"},
2149         {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2150         {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2151         {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2152         {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2153         {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2154         {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2155         {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2156         {HFC_DIGI_DF_M_IOM2_E, 0,
2157          "Digi International DataFire Micro V IOM2 (Europe)"},
2158         {HFC_DIGI_DF_M_E, 0,
2159          "Digi International DataFire Micro V (Europe)"},
2160         {HFC_DIGI_DF_M_IOM2_A, 0,
2161          "Digi International DataFire Micro V IOM2 (North America)"},
2162         {HFC_DIGI_DF_M_A, 0,
2163          "Digi International DataFire Micro V (North America)"},
2164         {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2165         {},
2166 };
2167
2168 static const struct pci_device_id hfc_ids[] =
2169 {
2170         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2171           (unsigned long) &hfc_map[0] },
2172         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2173           (unsigned long) &hfc_map[1] },
2174         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2175           (unsigned long) &hfc_map[2] },
2176         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2177           (unsigned long) &hfc_map[3] },
2178         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2179           (unsigned long) &hfc_map[4] },
2180         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2181           (unsigned long) &hfc_map[5] },
2182         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2183           (unsigned long) &hfc_map[6] },
2184         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2185           (unsigned long) &hfc_map[7] },
2186         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2187           (unsigned long) &hfc_map[8] },
2188         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2189           (unsigned long) &hfc_map[9] },
2190         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2191           (unsigned long) &hfc_map[10] },
2192         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2193           (unsigned long) &hfc_map[11] },
2194         { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2195           (unsigned long) &hfc_map[12] },
2196         { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2197           (unsigned long) &hfc_map[13] },
2198         { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2199           (unsigned long) &hfc_map[14] },
2200         { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2201           (unsigned long) &hfc_map[15] },
2202         { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2203           (unsigned long) &hfc_map[16] },
2204         { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2205           (unsigned long) &hfc_map[17] },
2206         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2207           (unsigned long) &hfc_map[18] },
2208         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2209           (unsigned long) &hfc_map[19] },
2210         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2211           (unsigned long) &hfc_map[20] },
2212         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2213           (unsigned long) &hfc_map[21] },
2214         { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2215           (unsigned long) &hfc_map[22] },
2216         {},
2217 };
2218
2219 static int
2220 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2221 {
2222         int             err = -ENOMEM;
2223         struct hfc_pci  *card;
2224         struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2225
2226         card = kzalloc(sizeof(struct hfc_pci), GFP_KERNEL);
2227         if (!card) {
2228                 printk(KERN_ERR "No kmem for HFC card\n");
2229                 return err;
2230         }
2231         card->pdev = pdev;
2232         card->subtype = m->subtype;
2233         err = pci_enable_device(pdev);
2234         if (err) {
2235                 kfree(card);
2236                 return err;
2237         }
2238
2239         printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2240                m->name, pci_name(pdev));
2241
2242         card->irq = pdev->irq;
2243         pci_set_drvdata(pdev, card);
2244         err = setup_card(card);
2245         if (err)
2246                 pci_set_drvdata(pdev, NULL);
2247         return err;
2248 }
2249
2250 static void
2251 hfc_remove_pci(struct pci_dev *pdev)
2252 {
2253         struct hfc_pci  *card = pci_get_drvdata(pdev);
2254
2255         if (card)
2256                 release_card(card);
2257         else
2258                 if (debug)
2259                         printk(KERN_DEBUG "%s: drvdata already removed\n",
2260                                __func__);
2261 }
2262
2263
2264 static struct pci_driver hfc_driver = {
2265         .name = "hfcpci",
2266         .probe = hfc_probe,
2267         .remove = hfc_remove_pci,
2268         .id_table = hfc_ids,
2269 };
2270
2271 static int
2272 _hfcpci_softirq(struct device *dev, void *unused)
2273 {
2274         struct hfc_pci  *hc = dev_get_drvdata(dev);
2275         struct bchannel *bch;
2276         if (hc == NULL)
2277                 return 0;
2278
2279         if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2280                 spin_lock_irq(&hc->lock);
2281                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2282                 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2283                         main_rec_hfcpci(bch);
2284                         tx_birq(bch);
2285                 }
2286                 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2287                 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2288                         main_rec_hfcpci(bch);
2289                         tx_birq(bch);
2290                 }
2291                 spin_unlock_irq(&hc->lock);
2292         }
2293         return 0;
2294 }
2295
2296 static void
2297 hfcpci_softirq(struct timer_list *unused)
2298 {
2299         WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, NULL,
2300                                       _hfcpci_softirq) != 0);
2301
2302         /* if next event would be in the past ... */
2303         if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2304                 hfc_jiffies = jiffies + 1;
2305         else
2306                 hfc_jiffies += tics;
2307         hfc_tl.expires = hfc_jiffies;
2308         add_timer(&hfc_tl);
2309 }
2310
2311 static int __init
2312 HFC_init(void)
2313 {
2314         int             err;
2315
2316         if (!poll)
2317                 poll = HFCPCI_BTRANS_THRESHOLD;
2318
2319         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2320                 tics = (poll * HZ) / 8000;
2321                 if (tics < 1)
2322                         tics = 1;
2323                 poll = (tics * 8000) / HZ;
2324                 if (poll > 256 || poll < 8) {
2325                         printk(KERN_ERR "%s: Wrong poll value %d not in range "
2326                                "of 8..256.\n", __func__, poll);
2327                         err = -EINVAL;
2328                         return err;
2329                 }
2330         }
2331         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2332                 printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2333                        __func__, poll);
2334                 timer_setup(&hfc_tl, hfcpci_softirq, 0);
2335                 hfc_tl.expires = jiffies + tics;
2336                 hfc_jiffies = hfc_tl.expires;
2337                 add_timer(&hfc_tl);
2338         } else
2339                 tics = 0; /* indicate the use of controller's timer */
2340
2341         err = pci_register_driver(&hfc_driver);
2342         if (err) {
2343                 if (timer_pending(&hfc_tl))
2344                         del_timer(&hfc_tl);
2345         }
2346
2347         return err;
2348 }
2349
2350 static void __exit
2351 HFC_cleanup(void)
2352 {
2353         del_timer_sync(&hfc_tl);
2354
2355         pci_unregister_driver(&hfc_driver);
2356 }
2357
2358 module_init(HFC_init);
2359 module_exit(HFC_cleanup);
2360
2361 MODULE_DEVICE_TABLE(pci, hfc_ids);