GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4  *
5  * Author       Andreas Eversberg (jolly@eversberg.eu)
6  * ported to mqueue mechanism:
7  *              Peter Sprenger (sprengermoving-bytes.de)
8  *
9  * inspired by existing hfc-pci driver:
10  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
12  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
13  *
14  * Thanks to Cologne Chip AG for this great controller!
15  */
16
17 /*
18  * module parameters:
19  * type:
20  *      By default (0), the card is automatically detected.
21  *      Or use the following combinations:
22  *      Bit 0-7   = 0x00001 = HFC-E1 (1 port)
23  * or   Bit 0-7   = 0x00004 = HFC-4S (4 ports)
24  * or   Bit 0-7   = 0x00008 = HFC-8S (8 ports)
25  *      Bit 8     = 0x00100 = uLaw (instead of aLaw)
26  *      Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
27  *      Bit 10    = spare
28  *      Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
29  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
30  *      Bit 13    = spare
31  *      Bit 14    = 0x04000 = Use external ram (128K)
32  *      Bit 15    = 0x08000 = Use external ram (512K)
33  *      Bit 16    = 0x10000 = Use 64 timeslots instead of 32
34  * or   Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
35  *      Bit 18    = spare
36  *      Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37  * (all other bits are reserved and shall be 0)
38  *      example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
39  *               bus (PCM master)
40  *
41  * port: (optional or required for all ports on all installed cards)
42  *      HFC-4S/HFC-8S only bits:
43  *      Bit 0     = 0x001 = Use master clock for this S/T interface
44  *                          (ony once per chip).
45  *      Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
46  *                          Don't use this unless you know what you are doing!
47  *      Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
48  *      example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49  *               received from port 1
50  *
51  *      HFC-E1 only bits:
52  *      Bit 0     = 0x0001 = interface: 0=copper, 1=optical
53  *      Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
54  *      Bit 2     = 0x0004 = Report LOS
55  *      Bit 3     = 0x0008 = Report AIS
56  *      Bit 4     = 0x0010 = Report SLIP
57  *      Bit 5     = 0x0020 = Report RDI
58  *      Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
59  *                           mode instead.
60  *      Bit 9     = 0x0200 = Force get clock from interface, even in NT mode.
61  * or   Bit 10    = 0x0400 = Force put clock to interface, even in TE mode.
62  *      Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
63  *                           (E1 only)
64  *      Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
65  *                           for default.
66  * (all other bits are reserved and shall be 0)
67  *
68  * debug:
69  *      NOTE: only one debug value must be given for all cards
70  *      enable debugging (see hfc_multi.h for debug options)
71  *
72  * poll:
73  *      NOTE: only one poll value must be given for all cards
74  *      Give the number of samples for each fifo process.
75  *      By default 128 is used. Decrease to reduce delay, increase to
76  *      reduce cpu load. If unsure, don't mess with it!
77  *      Valid is 8, 16, 32, 64, 128, 256.
78  *
79  * pcm:
80  *      NOTE: only one pcm value must be given for every card.
81  *      The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82  *      By default (0), the PCM bus id is 100 for the card that is PCM master.
83  *      If multiple cards are PCM master (because they are not interconnected),
84  *      each card with PCM master will have increasing PCM id.
85  *      All PCM busses with the same ID are expected to be connected and have
86  *      common time slots slots.
87  *      Only one chip of the PCM bus must be master, the others slave.
88  *      -1 means no support of PCM bus not even.
89  *      Omit this value, if all cards are interconnected or none is connected.
90  *      If unsure, don't give this parameter.
91  *
92  * dmask and bmask:
93  *      NOTE: One dmask value must be given for every HFC-E1 card.
94  *      If omitted, the E1 card has D-channel on time slot 16, which is default.
95  *      dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96  *      If multiple bits are set, multiple virtual card fragments are created.
97  *      For each bit set, a bmask value must be given. Each bit on the bmask
98  *      value stands for a B-channel. The bmask may not overlap with dmask or
99  *      with other bmask values for that card.
100  *      Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101  *              This will create one fragment with D-channel on slot 1 with
102  *              B-channels on slots 2..15, and a second fragment with D-channel
103  *              on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104  *      If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
105  *      not function.
106  *      Example: dmask=0x00000001 bmask=0xfffffffe
107  *              This will create a port with all 31 usable timeslots as
108  *              B-channels.
109  *      If no bits are set on bmask, no B-channel is created for that fragment.
110  *      Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111  *              This will create 31 ports with one D-channel only.
112  *      If you don't know how to use it, you don't need it!
113  *
114  * iomode:
115  *      NOTE: only one mode value must be given for every card.
116  *      -> See hfc_multi.h for HFC_IO_MODE_* values
117  *      By default, the IO mode is pci memory IO (MEMIO).
118  *      Some cards require specific IO mode, so it cannot be changed.
119  *      It may be useful to set IO mode to register io (REGIO) to solve
120  *      PCI bridge problems.
121  *      If unsure, don't give this parameter.
122  *
123  * clockdelay_nt:
124  *      NOTE: only one clockdelay_nt value must be given once for all cards.
125  *      Give the value of the clock control register (A_ST_CLK_DLY)
126  *      of the S/T interfaces in NT mode.
127  *      This register is needed for the TBR3 certification, so don't change it.
128  *
129  * clockdelay_te:
130  *      NOTE: only one clockdelay_te value must be given once
131  *      Give the value of the clock control register (A_ST_CLK_DLY)
132  *      of the S/T interfaces in TE mode.
133  *      This register is needed for the TBR3 certification, so don't change it.
134  *
135  * clock:
136  *      NOTE: only one clock value must be given once
137  *      Selects interface with clock source for mISDN and applications.
138  *      Set to card number starting with 1. Set to -1 to disable.
139  *      By default, the first card is used as clock source.
140  *
141  * hwid:
142  *      NOTE: only one hwid value must be given once
143  *      Enable special embedded devices with XHFC controllers.
144  */
145
146 /*
147  * debug register access (never use this, it will flood your system log)
148  * #define HFC_REGISTER_DEBUG
149  */
150
151 #define HFC_MULTI_VERSION       "2.03"
152
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/slab.h>
156 #include <linux/pci.h>
157 #include <linux/delay.h>
158 #include <linux/mISDNhw.h>
159 #include <linux/mISDNdsp.h>
160
161 /*
162   #define IRQCOUNT_DEBUG
163   #define IRQ_DEBUG
164 */
165
166 #include "hfc_multi.h"
167 #ifdef ECHOPREP
168 #include "gaintab.h"
169 #endif
170
171 #define MAX_CARDS       8
172 #define MAX_PORTS       (8 * MAX_CARDS)
173 #define MAX_FRAGS       (32 * MAX_CARDS)
174
175 static LIST_HEAD(HFClist);
176 static spinlock_t HFClock; /* global hfc list lock */
177
178 static void ph_state_change(struct dchannel *);
179
180 static struct hfc_multi *syncmaster;
181 static int plxsd_master; /* if we have a master card (yet) */
182 static spinlock_t plx_lock; /* may not acquire other lock inside */
183
184 #define TYP_E1          1
185 #define TYP_4S          4
186 #define TYP_8S          8
187
188 static int poll_timer = 6;      /* default = 128 samples = 16ms */
189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
191 #define CLKDEL_TE       0x0f    /* CLKDEL in TE mode */
192 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode
193                                    (0x60 MUST be included!) */
194
195 #define DIP_4S  0x1             /* DIP Switches for Beronet 1S/2S/4S cards */
196 #define DIP_8S  0x2             /* DIP Switches for Beronet 8S+ cards */
197 #define DIP_E1  0x3             /* DIP Switches for Beronet E1 cards */
198
199 /*
200  * module stuff
201  */
202
203 static uint     type[MAX_CARDS];
204 static int      pcm[MAX_CARDS];
205 static uint     dmask[MAX_CARDS];
206 static uint     bmask[MAX_FRAGS];
207 static uint     iomode[MAX_CARDS];
208 static uint     port[MAX_PORTS];
209 static uint     debug;
210 static uint     poll;
211 static int      clock;
212 static uint     timer;
213 static uint     clockdelay_te = CLKDEL_TE;
214 static uint     clockdelay_nt = CLKDEL_NT;
215 #define HWID_NONE       0
216 #define HWID_MINIP4     1
217 #define HWID_MINIP8     2
218 #define HWID_MINIP16    3
219 static uint     hwid = HWID_NONE;
220
221 static int      HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
222
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(HFC_MULTI_VERSION);
226 module_param(debug, uint, S_IRUGO | S_IWUSR);
227 module_param(poll, uint, S_IRUGO | S_IWUSR);
228 module_param(clock, int, S_IRUGO | S_IWUSR);
229 module_param(timer, uint, S_IRUGO | S_IWUSR);
230 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
231 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
232 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
233 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
234 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
235 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
236 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
237 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
238 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
239
240 #ifdef HFC_REGISTER_DEBUG
241 #define HFC_outb(hc, reg, val)                                  \
242         (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
243 #define HFC_outb_nodebug(hc, reg, val)                                  \
244         (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
245 #define HFC_inb(hc, reg)                                \
246         (hc->HFC_inb(hc, reg, __func__, __LINE__))
247 #define HFC_inb_nodebug(hc, reg)                                \
248         (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
249 #define HFC_inw(hc, reg)                                \
250         (hc->HFC_inw(hc, reg, __func__, __LINE__))
251 #define HFC_inw_nodebug(hc, reg)                                \
252         (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
253 #define HFC_wait(hc)                            \
254         (hc->HFC_wait(hc, __func__, __LINE__))
255 #define HFC_wait_nodebug(hc)                            \
256         (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
257 #else
258 #define HFC_outb(hc, reg, val)          (hc->HFC_outb(hc, reg, val))
259 #define HFC_outb_nodebug(hc, reg, val)  (hc->HFC_outb_nodebug(hc, reg, val))
260 #define HFC_inb(hc, reg)                (hc->HFC_inb(hc, reg))
261 #define HFC_inb_nodebug(hc, reg)        (hc->HFC_inb_nodebug(hc, reg))
262 #define HFC_inw(hc, reg)                (hc->HFC_inw(hc, reg))
263 #define HFC_inw_nodebug(hc, reg)        (hc->HFC_inw_nodebug(hc, reg))
264 #define HFC_wait(hc)                    (hc->HFC_wait(hc))
265 #define HFC_wait_nodebug(hc)            (hc->HFC_wait_nodebug(hc))
266 #endif
267
268 #ifdef CONFIG_MISDN_HFCMULTI_8xx
269 #include "hfc_multi_8xx.h"
270 #endif
271
272 /* HFC_IO_MODE_PCIMEM */
273 static void
274 #ifdef HFC_REGISTER_DEBUG
275 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
276                 const char *function, int line)
277 #else
278         HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
279 #endif
280 {
281         writeb(val, hc->pci_membase + reg);
282 }
283 static u_char
284 #ifdef HFC_REGISTER_DEBUG
285 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
286 #else
287         HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
288 #endif
289 {
290         return readb(hc->pci_membase + reg);
291 }
292 static u_short
293 #ifdef HFC_REGISTER_DEBUG
294 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
295 #else
296         HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
297 #endif
298 {
299         return readw(hc->pci_membase + reg);
300 }
301 static void
302 #ifdef HFC_REGISTER_DEBUG
303 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
304 #else
305         HFC_wait_pcimem(struct hfc_multi *hc)
306 #endif
307 {
308         while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
309                 cpu_relax();
310 }
311
312 /* HFC_IO_MODE_REGIO */
313 static void
314 #ifdef HFC_REGISTER_DEBUG
315 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
316                const char *function, int line)
317 #else
318         HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
319 #endif
320 {
321         outb(reg, hc->pci_iobase + 4);
322         outb(val, hc->pci_iobase);
323 }
324 static u_char
325 #ifdef HFC_REGISTER_DEBUG
326 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
327 #else
328         HFC_inb_regio(struct hfc_multi *hc, u_char reg)
329 #endif
330 {
331         outb(reg, hc->pci_iobase + 4);
332         return inb(hc->pci_iobase);
333 }
334 static u_short
335 #ifdef HFC_REGISTER_DEBUG
336 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
337 #else
338         HFC_inw_regio(struct hfc_multi *hc, u_char reg)
339 #endif
340 {
341         outb(reg, hc->pci_iobase + 4);
342         return inw(hc->pci_iobase);
343 }
344 static void
345 #ifdef HFC_REGISTER_DEBUG
346 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
347 #else
348         HFC_wait_regio(struct hfc_multi *hc)
349 #endif
350 {
351         outb(R_STATUS, hc->pci_iobase + 4);
352         while (inb(hc->pci_iobase) & V_BUSY)
353                 cpu_relax();
354 }
355
356 #ifdef HFC_REGISTER_DEBUG
357 static void
358 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
359                const char *function, int line)
360 {
361         char regname[256] = "", bits[9] = "xxxxxxxx";
362         int i;
363
364         i = -1;
365         while (hfc_register_names[++i].name) {
366                 if (hfc_register_names[i].reg == reg)
367                         strcat(regname, hfc_register_names[i].name);
368         }
369         if (regname[0] == '\0')
370                 strcpy(regname, "register");
371
372         bits[7] = '0' + (!!(val & 1));
373         bits[6] = '0' + (!!(val & 2));
374         bits[5] = '0' + (!!(val & 4));
375         bits[4] = '0' + (!!(val & 8));
376         bits[3] = '0' + (!!(val & 16));
377         bits[2] = '0' + (!!(val & 32));
378         bits[1] = '0' + (!!(val & 64));
379         bits[0] = '0' + (!!(val & 128));
380         printk(KERN_DEBUG
381                "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
382                hc->id, reg, regname, val, bits, function, line);
383         HFC_outb_nodebug(hc, reg, val);
384 }
385 static u_char
386 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
387 {
388         char regname[256] = "", bits[9] = "xxxxxxxx";
389         u_char val = HFC_inb_nodebug(hc, reg);
390         int i;
391
392         i = 0;
393         while (hfc_register_names[i++].name)
394                 ;
395         while (hfc_register_names[++i].name) {
396                 if (hfc_register_names[i].reg == reg)
397                         strcat(regname, hfc_register_names[i].name);
398         }
399         if (regname[0] == '\0')
400                 strcpy(regname, "register");
401
402         bits[7] = '0' + (!!(val & 1));
403         bits[6] = '0' + (!!(val & 2));
404         bits[5] = '0' + (!!(val & 4));
405         bits[4] = '0' + (!!(val & 8));
406         bits[3] = '0' + (!!(val & 16));
407         bits[2] = '0' + (!!(val & 32));
408         bits[1] = '0' + (!!(val & 64));
409         bits[0] = '0' + (!!(val & 128));
410         printk(KERN_DEBUG
411                "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
412                hc->id, reg, regname, val, bits, function, line);
413         return val;
414 }
415 static u_short
416 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
417 {
418         char regname[256] = "";
419         u_short val = HFC_inw_nodebug(hc, reg);
420         int i;
421
422         i = 0;
423         while (hfc_register_names[i++].name)
424                 ;
425         while (hfc_register_names[++i].name) {
426                 if (hfc_register_names[i].reg == reg)
427                         strcat(regname, hfc_register_names[i].name);
428         }
429         if (regname[0] == '\0')
430                 strcpy(regname, "register");
431
432         printk(KERN_DEBUG
433                "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
434                hc->id, reg, regname, val, function, line);
435         return val;
436 }
437 static void
438 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
439 {
440         printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
441                hc->id, function, line);
442         HFC_wait_nodebug(hc);
443 }
444 #endif
445
446 /* write fifo data (REGIO) */
447 static void
448 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
449 {
450         outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
451         while (len >> 2) {
452                 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
453                 data += 4;
454                 len -= 4;
455         }
456         while (len >> 1) {
457                 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
458                 data += 2;
459                 len -= 2;
460         }
461         while (len) {
462                 outb(*data, hc->pci_iobase);
463                 data++;
464                 len--;
465         }
466 }
467 /* write fifo data (PCIMEM) */
468 static void
469 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
470 {
471         while (len >> 2) {
472                 writel(cpu_to_le32(*(u32 *)data),
473                        hc->pci_membase + A_FIFO_DATA0);
474                 data += 4;
475                 len -= 4;
476         }
477         while (len >> 1) {
478                 writew(cpu_to_le16(*(u16 *)data),
479                        hc->pci_membase + A_FIFO_DATA0);
480                 data += 2;
481                 len -= 2;
482         }
483         while (len) {
484                 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
485                 data++;
486                 len--;
487         }
488 }
489
490 /* read fifo data (REGIO) */
491 static void
492 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
493 {
494         outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
495         while (len >> 2) {
496                 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
497                 data += 4;
498                 len -= 4;
499         }
500         while (len >> 1) {
501                 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
502                 data += 2;
503                 len -= 2;
504         }
505         while (len) {
506                 *data = inb(hc->pci_iobase);
507                 data++;
508                 len--;
509         }
510 }
511
512 /* read fifo data (PCIMEM) */
513 static void
514 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
515 {
516         while (len >> 2) {
517                 *(u32 *)data =
518                         le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
519                 data += 4;
520                 len -= 4;
521         }
522         while (len >> 1) {
523                 *(u16 *)data =
524                         le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
525                 data += 2;
526                 len -= 2;
527         }
528         while (len) {
529                 *data = readb(hc->pci_membase + A_FIFO_DATA0);
530                 data++;
531                 len--;
532         }
533 }
534
535 static void
536 enable_hwirq(struct hfc_multi *hc)
537 {
538         hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
539         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
540 }
541
542 static void
543 disable_hwirq(struct hfc_multi *hc)
544 {
545         hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
546         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
547 }
548
549 #define NUM_EC 2
550 #define MAX_TDM_CHAN 32
551
552
553 static inline void
554 enablepcibridge(struct hfc_multi *c)
555 {
556         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
557 }
558
559 static inline void
560 disablepcibridge(struct hfc_multi *c)
561 {
562         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
563 }
564
565 static inline unsigned char
566 readpcibridge(struct hfc_multi *hc, unsigned char address)
567 {
568         unsigned short cipv;
569         unsigned char data;
570
571         if (!hc->pci_iobase)
572                 return 0;
573
574         /* slow down a PCI read access by 1 PCI clock cycle */
575         HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
576
577         if (address == 0)
578                 cipv = 0x4000;
579         else
580                 cipv = 0x5800;
581
582         /* select local bridge port address by writing to CIP port */
583         /* data = HFC_inb(c, cipv); * was _io before */
584         outw(cipv, hc->pci_iobase + 4);
585         data = inb(hc->pci_iobase);
586
587         /* restore R_CTRL for normal PCI read cycle speed */
588         HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
589
590         return data;
591 }
592
593 static inline void
594 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
595 {
596         unsigned short cipv;
597         unsigned int datav;
598
599         if (!hc->pci_iobase)
600                 return;
601
602         if (address == 0)
603                 cipv = 0x4000;
604         else
605                 cipv = 0x5800;
606
607         /* select local bridge port address by writing to CIP port */
608         outw(cipv, hc->pci_iobase + 4);
609         /* define a 32 bit dword with 4 identical bytes for write sequence */
610         datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
611                 ((__u32) data << 24);
612
613         /*
614          * write this 32 bit dword to the bridge data port
615          * this will initiate a write sequence of up to 4 writes to the same
616          * address on the local bus interface the number of write accesses
617          * is undefined but >=1 and depends on the next PCI transaction
618          * during write sequence on the local bus
619          */
620         outl(datav, hc->pci_iobase);
621 }
622
623 static inline void
624 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
625 {
626         /* Do data pin read low byte */
627         HFC_outb(hc, R_GPIO_OUT1, reg);
628 }
629
630 static inline void
631 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
632 {
633         cpld_set_reg(hc, reg);
634
635         enablepcibridge(hc);
636         writepcibridge(hc, 1, val);
637         disablepcibridge(hc);
638
639         return;
640 }
641
642 static inline unsigned char
643 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
644 {
645         unsigned char bytein;
646
647         cpld_set_reg(hc, reg);
648
649         /* Do data pin read low byte */
650         HFC_outb(hc, R_GPIO_OUT1, reg);
651
652         enablepcibridge(hc);
653         bytein = readpcibridge(hc, 1);
654         disablepcibridge(hc);
655
656         return bytein;
657 }
658
659 static inline void
660 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
661 {
662         cpld_write_reg(hc, 0, 0xff & addr);
663         cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
664 }
665
666 static inline unsigned short
667 vpm_read_address(struct hfc_multi *c)
668 {
669         unsigned short addr;
670         unsigned short highbit;
671
672         addr = cpld_read_reg(c, 0);
673         highbit = cpld_read_reg(c, 1);
674
675         addr = addr | (highbit << 8);
676
677         return addr & 0x1ff;
678 }
679
680 static inline unsigned char
681 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
682 {
683         unsigned char res;
684
685         vpm_write_address(c, addr);
686
687         if (!which)
688                 cpld_set_reg(c, 2);
689         else
690                 cpld_set_reg(c, 3);
691
692         enablepcibridge(c);
693         res = readpcibridge(c, 1);
694         disablepcibridge(c);
695
696         cpld_set_reg(c, 0);
697
698         return res;
699 }
700
701 static inline void
702 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
703         unsigned char data)
704 {
705         vpm_write_address(c, addr);
706
707         enablepcibridge(c);
708
709         if (!which)
710                 cpld_set_reg(c, 2);
711         else
712                 cpld_set_reg(c, 3);
713
714         writepcibridge(c, 1, data);
715
716         cpld_set_reg(c, 0);
717
718         disablepcibridge(c);
719
720         {
721                 unsigned char regin;
722                 regin = vpm_in(c, which, addr);
723                 if (regin != data)
724                         printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
725                                "0x%x\n", data, addr, regin);
726         }
727
728 }
729
730
731 static void
732 vpm_init(struct hfc_multi *wc)
733 {
734         unsigned char reg;
735         unsigned int mask;
736         unsigned int i, x, y;
737         unsigned int ver;
738
739         for (x = 0; x < NUM_EC; x++) {
740                 /* Setup GPIO's */
741                 if (!x) {
742                         ver = vpm_in(wc, x, 0x1a0);
743                         printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
744                 }
745
746                 for (y = 0; y < 4; y++) {
747                         vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
748                         vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
749                         vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
750                 }
751
752                 /* Setup TDM path - sets fsync and tdm_clk as inputs */
753                 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
754                 vpm_out(wc, x, 0x1a3, reg & ~2);
755
756                 /* Setup Echo length (256 taps) */
757                 vpm_out(wc, x, 0x022, 1);
758                 vpm_out(wc, x, 0x023, 0xff);
759
760                 /* Setup timeslots */
761                 vpm_out(wc, x, 0x02f, 0x00);
762                 mask = 0x02020202 << (x * 4);
763
764                 /* Setup the tdm channel masks for all chips */
765                 for (i = 0; i < 4; i++)
766                         vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
767
768                 /* Setup convergence rate */
769                 printk(KERN_DEBUG "VPM: A-law mode\n");
770                 reg = 0x00 | 0x10 | 0x01;
771                 vpm_out(wc, x, 0x20, reg);
772                 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
773                 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
774
775                 vpm_out(wc, x, 0x24, 0x02);
776                 reg = vpm_in(wc, x, 0x24);
777                 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
778
779                 /* Initialize echo cans */
780                 for (i = 0; i < MAX_TDM_CHAN; i++) {
781                         if (mask & (0x00000001 << i))
782                                 vpm_out(wc, x, i, 0x00);
783                 }
784
785                 /*
786                  * ARM arch at least disallows a udelay of
787                  * more than 2ms... it gives a fake "__bad_udelay"
788                  * reference at link-time.
789                  * long delays in kernel code are pretty sucky anyway
790                  * for now work around it using 5 x 2ms instead of 1 x 10ms
791                  */
792
793                 udelay(2000);
794                 udelay(2000);
795                 udelay(2000);
796                 udelay(2000);
797                 udelay(2000);
798
799                 /* Put in bypass mode */
800                 for (i = 0; i < MAX_TDM_CHAN; i++) {
801                         if (mask & (0x00000001 << i))
802                                 vpm_out(wc, x, i, 0x01);
803                 }
804
805                 /* Enable bypass */
806                 for (i = 0; i < MAX_TDM_CHAN; i++) {
807                         if (mask & (0x00000001 << i))
808                                 vpm_out(wc, x, 0x78 + i, 0x01);
809                 }
810
811         }
812 }
813
814 #ifdef UNUSED
815 static void
816 vpm_check(struct hfc_multi *hctmp)
817 {
818         unsigned char gpi2;
819
820         gpi2 = HFC_inb(hctmp, R_GPI_IN2);
821
822         if ((gpi2 & 0x3) != 0x3)
823                 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
824 }
825 #endif /* UNUSED */
826
827
828 /*
829  * Interface to enable/disable the HW Echocan
830  *
831  * these functions are called within a spin_lock_irqsave on
832  * the channel instance lock, so we are not disturbed by irqs
833  *
834  * we can later easily change the interface to make  other
835  * things configurable, for now we configure the taps
836  *
837  */
838
839 static void
840 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
841 {
842         unsigned int timeslot;
843         unsigned int unit;
844         struct bchannel *bch = hc->chan[ch].bch;
845 #ifdef TXADJ
846         int txadj = -4;
847         struct sk_buff *skb;
848 #endif
849         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
850                 return;
851
852         if (!bch)
853                 return;
854
855 #ifdef TXADJ
856         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
857                                sizeof(int), &txadj, GFP_ATOMIC);
858         if (skb)
859                 recv_Bchannel_skb(bch, skb);
860 #endif
861
862         timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
863         unit = ch % 4;
864
865         printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
866                taps, timeslot);
867
868         vpm_out(hc, unit, timeslot, 0x7e);
869 }
870
871 static void
872 vpm_echocan_off(struct hfc_multi *hc, int ch)
873 {
874         unsigned int timeslot;
875         unsigned int unit;
876         struct bchannel *bch = hc->chan[ch].bch;
877 #ifdef TXADJ
878         int txadj = 0;
879         struct sk_buff *skb;
880 #endif
881
882         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
883                 return;
884
885         if (!bch)
886                 return;
887
888 #ifdef TXADJ
889         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
890                                sizeof(int), &txadj, GFP_ATOMIC);
891         if (skb)
892                 recv_Bchannel_skb(bch, skb);
893 #endif
894
895         timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
896         unit = ch % 4;
897
898         printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
899                timeslot);
900         /* FILLME */
901         vpm_out(hc, unit, timeslot, 0x01);
902 }
903
904
905 /*
906  * Speech Design resync feature
907  * NOTE: This is called sometimes outside interrupt handler.
908  * We must lock irqsave, so no other interrupt (other card) will occur!
909  * Also multiple interrupts may nest, so must lock each access (lists, card)!
910  */
911 static inline void
912 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
913 {
914         struct hfc_multi *hc, *next, *pcmmaster = NULL;
915         void __iomem *plx_acc_32;
916         u_int pv;
917         u_long flags;
918
919         spin_lock_irqsave(&HFClock, flags);
920         spin_lock(&plx_lock); /* must be locked inside other locks */
921
922         if (debug & DEBUG_HFCMULTI_PLXSD)
923                 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
924                        __func__, syncmaster);
925
926         /* select new master */
927         if (newmaster) {
928                 if (debug & DEBUG_HFCMULTI_PLXSD)
929                         printk(KERN_DEBUG "using provided controller\n");
930         } else {
931                 list_for_each_entry_safe(hc, next, &HFClist, list) {
932                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
933                                 if (hc->syncronized) {
934                                         newmaster = hc;
935                                         break;
936                                 }
937                         }
938                 }
939         }
940
941         /* Disable sync of all cards */
942         list_for_each_entry_safe(hc, next, &HFClist, list) {
943                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
944                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
945                         pv = readl(plx_acc_32);
946                         pv &= ~PLX_SYNC_O_EN;
947                         writel(pv, plx_acc_32);
948                         if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
949                                 pcmmaster = hc;
950                                 if (hc->ctype == HFC_TYPE_E1) {
951                                         if (debug & DEBUG_HFCMULTI_PLXSD)
952                                                 printk(KERN_DEBUG
953                                                        "Schedule SYNC_I\n");
954                                         hc->e1_resync |= 1; /* get SYNC_I */
955                                 }
956                         }
957                 }
958         }
959
960         if (newmaster) {
961                 hc = newmaster;
962                 if (debug & DEBUG_HFCMULTI_PLXSD)
963                         printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
964                                "interface.\n", hc->id, hc);
965                 /* Enable new sync master */
966                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
967                 pv = readl(plx_acc_32);
968                 pv |= PLX_SYNC_O_EN;
969                 writel(pv, plx_acc_32);
970                 /* switch to jatt PLL, if not disabled by RX_SYNC */
971                 if (hc->ctype == HFC_TYPE_E1
972                     && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
973                         if (debug & DEBUG_HFCMULTI_PLXSD)
974                                 printk(KERN_DEBUG "Schedule jatt PLL\n");
975                         hc->e1_resync |= 2; /* switch to jatt */
976                 }
977         } else {
978                 if (pcmmaster) {
979                         hc = pcmmaster;
980                         if (debug & DEBUG_HFCMULTI_PLXSD)
981                                 printk(KERN_DEBUG
982                                        "id=%d (0x%p) = PCM master syncronized "
983                                        "with QUARTZ\n", hc->id, hc);
984                         if (hc->ctype == HFC_TYPE_E1) {
985                                 /* Use the crystal clock for the PCM
986                                    master card */
987                                 if (debug & DEBUG_HFCMULTI_PLXSD)
988                                         printk(KERN_DEBUG
989                                                "Schedule QUARTZ for HFC-E1\n");
990                                 hc->e1_resync |= 4; /* switch quartz */
991                         } else {
992                                 if (debug & DEBUG_HFCMULTI_PLXSD)
993                                         printk(KERN_DEBUG
994                                                "QUARTZ is automatically "
995                                                "enabled by HFC-%dS\n", hc->ctype);
996                         }
997                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
998                         pv = readl(plx_acc_32);
999                         pv |= PLX_SYNC_O_EN;
1000                         writel(pv, plx_acc_32);
1001                 } else
1002                         if (!rm)
1003                                 printk(KERN_ERR "%s no pcm master, this MUST "
1004                                        "not happen!\n", __func__);
1005         }
1006         syncmaster = newmaster;
1007
1008         spin_unlock(&plx_lock);
1009         spin_unlock_irqrestore(&HFClock, flags);
1010 }
1011
1012 /* This must be called AND hc must be locked irqsave!!! */
1013 static inline void
1014 plxsd_checksync(struct hfc_multi *hc, int rm)
1015 {
1016         if (hc->syncronized) {
1017                 if (syncmaster == NULL) {
1018                         if (debug & DEBUG_HFCMULTI_PLXSD)
1019                                 printk(KERN_DEBUG "%s: GOT sync on card %d"
1020                                        " (id=%d)\n", __func__, hc->id + 1,
1021                                        hc->id);
1022                         hfcmulti_resync(hc, hc, rm);
1023                 }
1024         } else {
1025                 if (syncmaster == hc) {
1026                         if (debug & DEBUG_HFCMULTI_PLXSD)
1027                                 printk(KERN_DEBUG "%s: LOST sync on card %d"
1028                                        " (id=%d)\n", __func__, hc->id + 1,
1029                                        hc->id);
1030                         hfcmulti_resync(hc, NULL, rm);
1031                 }
1032         }
1033 }
1034
1035
1036 /*
1037  * free hardware resources used by driver
1038  */
1039 static void
1040 release_io_hfcmulti(struct hfc_multi *hc)
1041 {
1042         void __iomem *plx_acc_32;
1043         u_int   pv;
1044         u_long  plx_flags;
1045
1046         if (debug & DEBUG_HFCMULTI_INIT)
1047                 printk(KERN_DEBUG "%s: entered\n", __func__);
1048
1049         /* soft reset also masks all interrupts */
1050         hc->hw.r_cirm |= V_SRES;
1051         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1052         udelay(1000);
1053         hc->hw.r_cirm &= ~V_SRES;
1054         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1055         udelay(1000); /* instead of 'wait' that may cause locking */
1056
1057         /* release Speech Design card, if PLX was initialized */
1058         if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1059                 if (debug & DEBUG_HFCMULTI_PLXSD)
1060                         printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1061                                __func__, hc->id + 1);
1062                 spin_lock_irqsave(&plx_lock, plx_flags);
1063                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1064                 writel(PLX_GPIOC_INIT, plx_acc_32);
1065                 pv = readl(plx_acc_32);
1066                 /* Termination off */
1067                 pv &= ~PLX_TERM_ON;
1068                 /* Disconnect the PCM */
1069                 pv |= PLX_SLAVE_EN_N;
1070                 pv &= ~PLX_MASTER_EN;
1071                 pv &= ~PLX_SYNC_O_EN;
1072                 /* Put the DSP in Reset */
1073                 pv &= ~PLX_DSP_RES_N;
1074                 writel(pv, plx_acc_32);
1075                 if (debug & DEBUG_HFCMULTI_INIT)
1076                         printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1077                                __func__, pv);
1078                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1079         }
1080
1081         /* disable memory mapped ports / io ports */
1082         test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1083         if (hc->pci_dev)
1084                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1085         if (hc->pci_membase)
1086                 iounmap(hc->pci_membase);
1087         if (hc->plx_membase)
1088                 iounmap(hc->plx_membase);
1089         if (hc->pci_iobase)
1090                 release_region(hc->pci_iobase, 8);
1091         if (hc->xhfc_membase)
1092                 iounmap((void *)hc->xhfc_membase);
1093
1094         if (hc->pci_dev) {
1095                 pci_disable_device(hc->pci_dev);
1096                 pci_set_drvdata(hc->pci_dev, NULL);
1097         }
1098         if (debug & DEBUG_HFCMULTI_INIT)
1099                 printk(KERN_DEBUG "%s: done\n", __func__);
1100 }
1101
1102 /*
1103  * function called to reset the HFC chip. A complete software reset of chip
1104  * and fifos is done. All configuration of the chip is done.
1105  */
1106
1107 static int
1108 init_chip(struct hfc_multi *hc)
1109 {
1110         u_long                  flags, val, val2 = 0, rev;
1111         int                     i, err = 0;
1112         u_char                  r_conf_en, rval;
1113         void __iomem            *plx_acc_32;
1114         u_int                   pv;
1115         u_long                  plx_flags, hfc_flags;
1116         int                     plx_count;
1117         struct hfc_multi        *pos, *next, *plx_last_hc;
1118
1119         spin_lock_irqsave(&hc->lock, flags);
1120         /* reset all registers */
1121         memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1122
1123         /* revision check */
1124         if (debug & DEBUG_HFCMULTI_INIT)
1125                 printk(KERN_DEBUG "%s: entered\n", __func__);
1126         val = HFC_inb(hc, R_CHIP_ID);
1127         if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1128             (val >> 1) != 0x31) {
1129                 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1130                 err = -EIO;
1131                 goto out;
1132         }
1133         rev = HFC_inb(hc, R_CHIP_RV);
1134         printk(KERN_INFO
1135                "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1136                val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1137                " (old FIFO handling)" : "");
1138         if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1139                 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1140                 printk(KERN_WARNING
1141                        "HFC_multi: NOTE: Your chip is revision 0, "
1142                        "ask Cologne Chip for update. Newer chips "
1143                        "have a better FIFO handling. Old chips "
1144                        "still work but may have slightly lower "
1145                        "HDLC transmit performance.\n");
1146         }
1147         if (rev > 1) {
1148                 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1149                        "consider chip revision = %ld. The chip / "
1150                        "bridge may not work.\n", rev);
1151         }
1152
1153         /* set s-ram size */
1154         hc->Flen = 0x10;
1155         hc->Zmin = 0x80;
1156         hc->Zlen = 384;
1157         hc->DTMFbase = 0x1000;
1158         if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1159                 if (debug & DEBUG_HFCMULTI_INIT)
1160                         printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1161                                __func__);
1162                 hc->hw.r_ctrl |= V_EXT_RAM;
1163                 hc->hw.r_ram_sz = 1;
1164                 hc->Flen = 0x20;
1165                 hc->Zmin = 0xc0;
1166                 hc->Zlen = 1856;
1167                 hc->DTMFbase = 0x2000;
1168         }
1169         if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1170                 if (debug & DEBUG_HFCMULTI_INIT)
1171                         printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1172                                __func__);
1173                 hc->hw.r_ctrl |= V_EXT_RAM;
1174                 hc->hw.r_ram_sz = 2;
1175                 hc->Flen = 0x20;
1176                 hc->Zmin = 0xc0;
1177                 hc->Zlen = 8000;
1178                 hc->DTMFbase = 0x2000;
1179         }
1180         if (hc->ctype == HFC_TYPE_XHFC) {
1181                 hc->Flen = 0x8;
1182                 hc->Zmin = 0x0;
1183                 hc->Zlen = 64;
1184                 hc->DTMFbase = 0x0;
1185         }
1186         hc->max_trans = poll << 1;
1187         if (hc->max_trans > hc->Zlen)
1188                 hc->max_trans = hc->Zlen;
1189
1190         /* Speech Design PLX bridge */
1191         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1192                 if (debug & DEBUG_HFCMULTI_PLXSD)
1193                         printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1194                                __func__, hc->id + 1);
1195                 spin_lock_irqsave(&plx_lock, plx_flags);
1196                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1197                 writel(PLX_GPIOC_INIT, plx_acc_32);
1198                 pv = readl(plx_acc_32);
1199                 /* The first and the last cards are terminating the PCM bus */
1200                 pv |= PLX_TERM_ON; /* hc is currently the last */
1201                 /* Disconnect the PCM */
1202                 pv |= PLX_SLAVE_EN_N;
1203                 pv &= ~PLX_MASTER_EN;
1204                 pv &= ~PLX_SYNC_O_EN;
1205                 /* Put the DSP in Reset */
1206                 pv &= ~PLX_DSP_RES_N;
1207                 writel(pv, plx_acc_32);
1208                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1209                 if (debug & DEBUG_HFCMULTI_INIT)
1210                         printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1211                                __func__, pv);
1212                 /*
1213                  * If we are the 3rd PLXSD card or higher, we must turn
1214                  * termination of last PLXSD card off.
1215                  */
1216                 spin_lock_irqsave(&HFClock, hfc_flags);
1217                 plx_count = 0;
1218                 plx_last_hc = NULL;
1219                 list_for_each_entry_safe(pos, next, &HFClist, list) {
1220                         if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1221                                 plx_count++;
1222                                 if (pos != hc)
1223                                         plx_last_hc = pos;
1224                         }
1225                 }
1226                 if (plx_count >= 3) {
1227                         if (debug & DEBUG_HFCMULTI_PLXSD)
1228                                 printk(KERN_DEBUG "%s: card %d is between, so "
1229                                        "we disable termination\n",
1230                                        __func__, plx_last_hc->id + 1);
1231                         spin_lock_irqsave(&plx_lock, plx_flags);
1232                         plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1233                         pv = readl(plx_acc_32);
1234                         pv &= ~PLX_TERM_ON;
1235                         writel(pv, plx_acc_32);
1236                         spin_unlock_irqrestore(&plx_lock, plx_flags);
1237                         if (debug & DEBUG_HFCMULTI_INIT)
1238                                 printk(KERN_DEBUG
1239                                        "%s: term off: PLX_GPIO=%x\n",
1240                                        __func__, pv);
1241                 }
1242                 spin_unlock_irqrestore(&HFClock, hfc_flags);
1243                 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1244         }
1245
1246         if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1247                 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1248
1249         /* we only want the real Z2 read-pointer for revision > 0 */
1250         if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1251                 hc->hw.r_ram_sz |= V_FZ_MD;
1252
1253         /* select pcm mode */
1254         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1255                 if (debug & DEBUG_HFCMULTI_INIT)
1256                         printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1257                                __func__);
1258         } else
1259                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1260                         if (debug & DEBUG_HFCMULTI_INIT)
1261                                 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1262                                        __func__);
1263                         hc->hw.r_pcm_md0 |= V_PCM_MD;
1264                 } else {
1265                         if (debug & DEBUG_HFCMULTI_INIT)
1266                                 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1267                                        __func__);
1268                 }
1269
1270         /* soft reset */
1271         HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1272         if (hc->ctype == HFC_TYPE_XHFC)
1273                 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1274                          0x11 /* 16 Bytes TX/RX */);
1275         else
1276                 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1277         HFC_outb(hc, R_FIFO_MD, 0);
1278         if (hc->ctype == HFC_TYPE_XHFC)
1279                 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1280         else
1281                 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1282                         | V_RLD_EPR;
1283         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1284         udelay(100);
1285         hc->hw.r_cirm = 0;
1286         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1287         udelay(100);
1288         if (hc->ctype != HFC_TYPE_XHFC)
1289                 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1290
1291         /* Speech Design PLX bridge pcm and sync mode */
1292         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1293                 spin_lock_irqsave(&plx_lock, plx_flags);
1294                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1295                 pv = readl(plx_acc_32);
1296                 /* Connect PCM */
1297                 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1298                         pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1299                         pv |= PLX_SYNC_O_EN;
1300                         if (debug & DEBUG_HFCMULTI_INIT)
1301                                 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1302                                        __func__, pv);
1303                 } else {
1304                         pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1305                         pv &= ~PLX_SYNC_O_EN;
1306                         if (debug & DEBUG_HFCMULTI_INIT)
1307                                 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1308                                        __func__, pv);
1309                 }
1310                 writel(pv, plx_acc_32);
1311                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1312         }
1313
1314         /* PCM setup */
1315         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1316         if (hc->slots == 32)
1317                 HFC_outb(hc, R_PCM_MD1, 0x00);
1318         if (hc->slots == 64)
1319                 HFC_outb(hc, R_PCM_MD1, 0x10);
1320         if (hc->slots == 128)
1321                 HFC_outb(hc, R_PCM_MD1, 0x20);
1322         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1323         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1324                 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1325         else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1326                 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1327         else
1328                 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1329         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1330         for (i = 0; i < 256; i++) {
1331                 HFC_outb_nodebug(hc, R_SLOT, i);
1332                 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1333                 if (hc->ctype != HFC_TYPE_XHFC)
1334                         HFC_outb_nodebug(hc, A_CONF, 0);
1335                 hc->slot_owner[i] = -1;
1336         }
1337
1338         /* set clock speed */
1339         if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1340                 if (debug & DEBUG_HFCMULTI_INIT)
1341                         printk(KERN_DEBUG
1342                                "%s: setting double clock\n", __func__);
1343                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1344         }
1345
1346         if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1347                 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1348
1349         /* B410P GPIO */
1350         if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1351                 printk(KERN_NOTICE "Setting GPIOs\n");
1352                 HFC_outb(hc, R_GPIO_SEL, 0x30);
1353                 HFC_outb(hc, R_GPIO_EN1, 0x3);
1354                 udelay(1000);
1355                 printk(KERN_NOTICE "calling vpm_init\n");
1356                 vpm_init(hc);
1357         }
1358
1359         /* check if R_F0_CNT counts (8 kHz frame count) */
1360         val = HFC_inb(hc, R_F0_CNTL);
1361         val += HFC_inb(hc, R_F0_CNTH) << 8;
1362         if (debug & DEBUG_HFCMULTI_INIT)
1363                 printk(KERN_DEBUG
1364                        "HFC_multi F0_CNT %ld after reset\n", val);
1365         spin_unlock_irqrestore(&hc->lock, flags);
1366         set_current_state(TASK_UNINTERRUPTIBLE);
1367         schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1368         spin_lock_irqsave(&hc->lock, flags);
1369         val2 = HFC_inb(hc, R_F0_CNTL);
1370         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1371         if (debug & DEBUG_HFCMULTI_INIT)
1372                 printk(KERN_DEBUG
1373                        "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1374                        val2);
1375         if (val2 >= val + 8) { /* 1 ms */
1376                 /* it counts, so we keep the pcm mode */
1377                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1378                         printk(KERN_INFO "controller is PCM bus MASTER\n");
1379                 else
1380                         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1381                                 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1382                         else {
1383                                 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1384                                 printk(KERN_INFO "controller is PCM bus SLAVE "
1385                                        "(auto detected)\n");
1386                         }
1387         } else {
1388                 /* does not count */
1389                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1390                 controller_fail:
1391                         printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1392                                "pulse. Seems that controller fails.\n");
1393                         err = -EIO;
1394                         goto out;
1395                 }
1396                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1397                         printk(KERN_INFO "controller is PCM bus SLAVE "
1398                                "(ignoring missing PCM clock)\n");
1399                 } else {
1400                         /* only one pcm master */
1401                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1402                             && plxsd_master) {
1403                                 printk(KERN_ERR "HFC_multi ERROR, no clock "
1404                                        "on another Speech Design card found. "
1405                                        "Please be sure to connect PCM cable.\n");
1406                                 err = -EIO;
1407                                 goto out;
1408                         }
1409                         /* retry with master clock */
1410                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1411                                 spin_lock_irqsave(&plx_lock, plx_flags);
1412                                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1413                                 pv = readl(plx_acc_32);
1414                                 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1415                                 pv |= PLX_SYNC_O_EN;
1416                                 writel(pv, plx_acc_32);
1417                                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1418                                 if (debug & DEBUG_HFCMULTI_INIT)
1419                                         printk(KERN_DEBUG "%s: master: "
1420                                                "PLX_GPIO=%x\n", __func__, pv);
1421                         }
1422                         hc->hw.r_pcm_md0 |= V_PCM_MD;
1423                         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1424                         spin_unlock_irqrestore(&hc->lock, flags);
1425                         set_current_state(TASK_UNINTERRUPTIBLE);
1426                         schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1427                         spin_lock_irqsave(&hc->lock, flags);
1428                         val2 = HFC_inb(hc, R_F0_CNTL);
1429                         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1430                         if (debug & DEBUG_HFCMULTI_INIT)
1431                                 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1432                                        "10 ms (2nd try)\n", val2);
1433                         if (val2 >= val + 8) { /* 1 ms */
1434                                 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1435                                                  &hc->chip);
1436                                 printk(KERN_INFO "controller is PCM bus MASTER "
1437                                        "(auto detected)\n");
1438                         } else
1439                                 goto controller_fail;
1440                 }
1441         }
1442
1443         /* Release the DSP Reset */
1444         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1445                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1446                         plxsd_master = 1;
1447                 spin_lock_irqsave(&plx_lock, plx_flags);
1448                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1449                 pv = readl(plx_acc_32);
1450                 pv |=  PLX_DSP_RES_N;
1451                 writel(pv, plx_acc_32);
1452                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1453                 if (debug & DEBUG_HFCMULTI_INIT)
1454                         printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1455                                __func__, pv);
1456         }
1457
1458         /* pcm id */
1459         if (hc->pcm)
1460                 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1461                        hc->pcm);
1462         else {
1463                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1464                     || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1465                         PCM_cnt++; /* SD has proprietary bridging */
1466                 }
1467                 hc->pcm = PCM_cnt;
1468                 printk(KERN_INFO "controller has PCM BUS ID %d "
1469                        "(auto selected)\n", hc->pcm);
1470         }
1471
1472         /* set up timer */
1473         HFC_outb(hc, R_TI_WD, poll_timer);
1474         hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1475
1476         /* set E1 state machine IRQ */
1477         if (hc->ctype == HFC_TYPE_E1)
1478                 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1479
1480         /* set DTMF detection */
1481         if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1482                 if (debug & DEBUG_HFCMULTI_INIT)
1483                         printk(KERN_DEBUG "%s: enabling DTMF detection "
1484                                "for all B-channel\n", __func__);
1485                 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1486                 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1487                         hc->hw.r_dtmf |= V_ULAW_SEL;
1488                 HFC_outb(hc, R_DTMF_N, 102 - 1);
1489                 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1490         }
1491
1492         /* conference engine */
1493         if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1494                 r_conf_en = V_CONF_EN | V_ULAW;
1495         else
1496                 r_conf_en = V_CONF_EN;
1497         if (hc->ctype != HFC_TYPE_XHFC)
1498                 HFC_outb(hc, R_CONF_EN, r_conf_en);
1499
1500         /* setting leds */
1501         switch (hc->leds) {
1502         case 1: /* HFC-E1 OEM */
1503                 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1504                         HFC_outb(hc, R_GPIO_SEL, 0x32);
1505                 else
1506                         HFC_outb(hc, R_GPIO_SEL, 0x30);
1507
1508                 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1509                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1510
1511                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1512                 break;
1513
1514         case 2: /* HFC-4S OEM */
1515         case 3:
1516                 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1517                 HFC_outb(hc, R_GPIO_EN1, 0xff);
1518                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1519                 break;
1520         }
1521
1522         if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1523                 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1524                 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1525         }
1526
1527         /* set master clock */
1528         if (hc->masterclk >= 0) {
1529                 if (debug & DEBUG_HFCMULTI_INIT)
1530                         printk(KERN_DEBUG "%s: setting ST master clock "
1531                                "to port %d (0..%d)\n",
1532                                __func__, hc->masterclk, hc->ports - 1);
1533                 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1534                 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1535         }
1536
1537
1538
1539         /* setting misc irq */
1540         HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1541         if (debug & DEBUG_HFCMULTI_INIT)
1542                 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1543                        hc->hw.r_irqmsk_misc);
1544
1545         /* RAM access test */
1546         HFC_outb(hc, R_RAM_ADDR0, 0);
1547         HFC_outb(hc, R_RAM_ADDR1, 0);
1548         HFC_outb(hc, R_RAM_ADDR2, 0);
1549         for (i = 0; i < 256; i++) {
1550                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1551                 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1552         }
1553         for (i = 0; i < 256; i++) {
1554                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1555                 HFC_inb_nodebug(hc, R_RAM_DATA);
1556                 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1557                 if (rval != ((i * 3) & 0xff)) {
1558                         printk(KERN_DEBUG
1559                                "addr:%x val:%x should:%x\n", i, rval,
1560                                (i * 3) & 0xff);
1561                         err++;
1562                 }
1563         }
1564         if (err) {
1565                 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1566                 err = -EIO;
1567                 goto out;
1568         }
1569
1570         if (debug & DEBUG_HFCMULTI_INIT)
1571                 printk(KERN_DEBUG "%s: done\n", __func__);
1572 out:
1573         spin_unlock_irqrestore(&hc->lock, flags);
1574         return err;
1575 }
1576
1577
1578 /*
1579  * control the watchdog
1580  */
1581 static void
1582 hfcmulti_watchdog(struct hfc_multi *hc)
1583 {
1584         hc->wdcount++;
1585
1586         if (hc->wdcount > 10) {
1587                 hc->wdcount = 0;
1588                 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1589                         V_GPIO_OUT3 : V_GPIO_OUT2;
1590
1591                 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1592                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1593                 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1594         }
1595 }
1596
1597
1598
1599 /*
1600  * output leds
1601  */
1602 static void
1603 hfcmulti_leds(struct hfc_multi *hc)
1604 {
1605         unsigned long lled;
1606         unsigned long leddw;
1607         int i, state, active, leds;
1608         struct dchannel *dch;
1609         int led[4];
1610
1611         switch (hc->leds) {
1612         case 1: /* HFC-E1 OEM */
1613                 /* 2 red steady:       LOS
1614                  * 1 red steady:       L1 not active
1615                  * 2 green steady:     L1 active
1616                  * 1st green flashing: activity on TX
1617                  * 2nd green flashing: activity on RX
1618                  */
1619                 led[0] = 0;
1620                 led[1] = 0;
1621                 led[2] = 0;
1622                 led[3] = 0;
1623                 dch = hc->chan[hc->dnum[0]].dch;
1624                 if (dch) {
1625                         if (hc->chan[hc->dnum[0]].los)
1626                                 led[1] = 1;
1627                         if (hc->e1_state != 1) {
1628                                 led[0] = 1;
1629                                 hc->flash[2] = 0;
1630                                 hc->flash[3] = 0;
1631                         } else {
1632                                 led[2] = 1;
1633                                 led[3] = 1;
1634                                 if (!hc->flash[2] && hc->activity_tx)
1635                                         hc->flash[2] = poll;
1636                                 if (!hc->flash[3] && hc->activity_rx)
1637                                         hc->flash[3] = poll;
1638                                 if (hc->flash[2] && hc->flash[2] < 1024)
1639                                         led[2] = 0;
1640                                 if (hc->flash[3] && hc->flash[3] < 1024)
1641                                         led[3] = 0;
1642                                 if (hc->flash[2] >= 2048)
1643                                         hc->flash[2] = 0;
1644                                 if (hc->flash[3] >= 2048)
1645                                         hc->flash[3] = 0;
1646                                 if (hc->flash[2])
1647                                         hc->flash[2] += poll;
1648                                 if (hc->flash[3])
1649                                         hc->flash[3] += poll;
1650                         }
1651                 }
1652                 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1653                 /* leds are inverted */
1654                 if (leds != (int)hc->ledstate) {
1655                         HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1656                         hc->ledstate = leds;
1657                 }
1658                 break;
1659
1660         case 2: /* HFC-4S OEM */
1661                 /* red steady:     PH_DEACTIVATE
1662                  * green steady:   PH_ACTIVATE
1663                  * green flashing: activity on TX
1664                  */
1665                 for (i = 0; i < 4; i++) {
1666                         state = 0;
1667                         active = -1;
1668                         dch = hc->chan[(i << 2) | 2].dch;
1669                         if (dch) {
1670                                 state = dch->state;
1671                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1672                                         active = 3;
1673                                 else
1674                                         active = 7;
1675                         }
1676                         if (state) {
1677                                 if (state == active) {
1678                                         led[i] = 1; /* led green */
1679                                         hc->activity_tx |= hc->activity_rx;
1680                                         if (!hc->flash[i] &&
1681                                                 (hc->activity_tx & (1 << i)))
1682                                                         hc->flash[i] = poll;
1683                                         if (hc->flash[i] && hc->flash[i] < 1024)
1684                                                 led[i] = 0; /* led off */
1685                                         if (hc->flash[i] >= 2048)
1686                                                 hc->flash[i] = 0;
1687                                         if (hc->flash[i])
1688                                                 hc->flash[i] += poll;
1689                                 } else {
1690                                         led[i] = 2; /* led red */
1691                                         hc->flash[i] = 0;
1692                                 }
1693                         } else
1694                                 led[i] = 0; /* led off */
1695                 }
1696                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1697                         leds = 0;
1698                         for (i = 0; i < 4; i++) {
1699                                 if (led[i] == 1) {
1700                                         /*green*/
1701                                         leds |= (0x2 << (i * 2));
1702                                 } else if (led[i] == 2) {
1703                                         /*red*/
1704                                         leds |= (0x1 << (i * 2));
1705                                 }
1706                         }
1707                         if (leds != (int)hc->ledstate) {
1708                                 vpm_out(hc, 0, 0x1a8 + 3, leds);
1709                                 hc->ledstate = leds;
1710                         }
1711                 } else {
1712                         leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1713                                 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1714                                 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1715                                 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1716                         if (leds != (int)hc->ledstate) {
1717                                 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1718                                 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1719                                 hc->ledstate = leds;
1720                         }
1721                 }
1722                 break;
1723
1724         case 3: /* HFC 1S/2S Beronet */
1725                 /* red steady:     PH_DEACTIVATE
1726                  * green steady:   PH_ACTIVATE
1727                  * green flashing: activity on TX
1728                  */
1729                 for (i = 0; i < 2; i++) {
1730                         state = 0;
1731                         active = -1;
1732                         dch = hc->chan[(i << 2) | 2].dch;
1733                         if (dch) {
1734                                 state = dch->state;
1735                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1736                                         active = 3;
1737                                 else
1738                                         active = 7;
1739                         }
1740                         if (state) {
1741                                 if (state == active) {
1742                                         led[i] = 1; /* led green */
1743                                         hc->activity_tx |= hc->activity_rx;
1744                                         if (!hc->flash[i] &&
1745                                                 (hc->activity_tx & (1 << i)))
1746                                                         hc->flash[i] = poll;
1747                                         if (hc->flash[i] < 1024)
1748                                                 led[i] = 0; /* led off */
1749                                         if (hc->flash[i] >= 2048)
1750                                                 hc->flash[i] = 0;
1751                                         if (hc->flash[i])
1752                                                 hc->flash[i] += poll;
1753                                 } else {
1754                                         led[i] = 2; /* led red */
1755                                         hc->flash[i] = 0;
1756                                 }
1757                         } else
1758                                 led[i] = 0; /* led off */
1759                 }
1760                 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1761                         | ((led[1]&1) << 3);
1762                 if (leds != (int)hc->ledstate) {
1763                         HFC_outb_nodebug(hc, R_GPIO_EN1,
1764                                          ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1765                         HFC_outb_nodebug(hc, R_GPIO_OUT1,
1766                                          ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1767                         hc->ledstate = leds;
1768                 }
1769                 break;
1770         case 8: /* HFC 8S+ Beronet */
1771                 /* off:      PH_DEACTIVATE
1772                  * steady:   PH_ACTIVATE
1773                  * flashing: activity on TX
1774                  */
1775                 lled = 0xff; /* leds off */
1776                 for (i = 0; i < 8; i++) {
1777                         state = 0;
1778                         active = -1;
1779                         dch = hc->chan[(i << 2) | 2].dch;
1780                         if (dch) {
1781                                 state = dch->state;
1782                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1783                                         active = 3;
1784                                 else
1785                                         active = 7;
1786                         }
1787                         if (state) {
1788                                 if (state == active) {
1789                                         lled &= ~(1 << i); /* led on */
1790                                         hc->activity_tx |= hc->activity_rx;
1791                                         if (!hc->flash[i] &&
1792                                                 (hc->activity_tx & (1 << i)))
1793                                                         hc->flash[i] = poll;
1794                                         if (hc->flash[i] < 1024)
1795                                                 lled |= 1 << i; /* led off */
1796                                         if (hc->flash[i] >= 2048)
1797                                                 hc->flash[i] = 0;
1798                                         if (hc->flash[i])
1799                                                 hc->flash[i] += poll;
1800                                 } else
1801                                         hc->flash[i] = 0;
1802                         }
1803                 }
1804                 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1805                 if (leddw != hc->ledstate) {
1806                         /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1807                            HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1808                         /* was _io before */
1809                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1810                         outw(0x4000, hc->pci_iobase + 4);
1811                         outl(leddw, hc->pci_iobase);
1812                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1813                         hc->ledstate = leddw;
1814                 }
1815                 break;
1816         }
1817         hc->activity_tx = 0;
1818         hc->activity_rx = 0;
1819 }
1820 /*
1821  * read dtmf coefficients
1822  */
1823
1824 static void
1825 hfcmulti_dtmf(struct hfc_multi *hc)
1826 {
1827         s32             *coeff;
1828         u_int           mantissa;
1829         int             co, ch;
1830         struct bchannel *bch = NULL;
1831         u8              exponent;
1832         int             dtmf = 0;
1833         int             addr;
1834         u16             w_float;
1835         struct sk_buff  *skb;
1836         struct mISDNhead *hh;
1837
1838         if (debug & DEBUG_HFCMULTI_DTMF)
1839                 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1840         for (ch = 0; ch <= 31; ch++) {
1841                 /* only process enabled B-channels */
1842                 bch = hc->chan[ch].bch;
1843                 if (!bch)
1844                         continue;
1845                 if (!hc->created[hc->chan[ch].port])
1846                         continue;
1847                 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1848                         continue;
1849                 if (debug & DEBUG_HFCMULTI_DTMF)
1850                         printk(KERN_DEBUG "%s: dtmf channel %d:",
1851                                __func__, ch);
1852                 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1853                 dtmf = 1;
1854                 for (co = 0; co < 8; co++) {
1855                         /* read W(n-1) coefficient */
1856                         addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1857                         HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1858                         HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1859                         HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1860                                          | V_ADDR_INC);
1861                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1862                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1863                         if (debug & DEBUG_HFCMULTI_DTMF)
1864                                 printk(" %04x", w_float);
1865
1866                         /* decode float (see chip doc) */
1867                         mantissa = w_float & 0x0fff;
1868                         if (w_float & 0x8000)
1869                                 mantissa |= 0xfffff000;
1870                         exponent = (w_float >> 12) & 0x7;
1871                         if (exponent) {
1872                                 mantissa ^= 0x1000;
1873                                 mantissa <<= (exponent - 1);
1874                         }
1875
1876                         /* store coefficient */
1877                         coeff[co << 1] = mantissa;
1878
1879                         /* read W(n) coefficient */
1880                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1881                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1882                         if (debug & DEBUG_HFCMULTI_DTMF)
1883                                 printk(" %04x", w_float);
1884
1885                         /* decode float (see chip doc) */
1886                         mantissa = w_float & 0x0fff;
1887                         if (w_float & 0x8000)
1888                                 mantissa |= 0xfffff000;
1889                         exponent = (w_float >> 12) & 0x7;
1890                         if (exponent) {
1891                                 mantissa ^= 0x1000;
1892                                 mantissa <<= (exponent - 1);
1893                         }
1894
1895                         /* store coefficient */
1896                         coeff[(co << 1) | 1] = mantissa;
1897                 }
1898                 if (debug & DEBUG_HFCMULTI_DTMF)
1899                         printk(" DTMF ready %08x %08x %08x %08x "
1900                                "%08x %08x %08x %08x\n",
1901                                coeff[0], coeff[1], coeff[2], coeff[3],
1902                                coeff[4], coeff[5], coeff[6], coeff[7]);
1903                 hc->chan[ch].coeff_count++;
1904                 if (hc->chan[ch].coeff_count == 8) {
1905                         hc->chan[ch].coeff_count = 0;
1906                         skb = mI_alloc_skb(512, GFP_ATOMIC);
1907                         if (!skb) {
1908                                 printk(KERN_DEBUG "%s: No memory for skb\n",
1909                                        __func__);
1910                                 continue;
1911                         }
1912                         hh = mISDN_HEAD_P(skb);
1913                         hh->prim = PH_CONTROL_IND;
1914                         hh->id = DTMF_HFC_COEF;
1915                         skb_put_data(skb, hc->chan[ch].coeff, 512);
1916                         recv_Bchannel_skb(bch, skb);
1917                 }
1918         }
1919
1920         /* restart DTMF processing */
1921         hc->dtmf = dtmf;
1922         if (dtmf)
1923                 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1924 }
1925
1926
1927 /*
1928  * fill fifo as much as possible
1929  */
1930
1931 static void
1932 hfcmulti_tx(struct hfc_multi *hc, int ch)
1933 {
1934         int i, ii, temp, len = 0;
1935         int Zspace, z1, z2; /* must be int for calculation */
1936         int Fspace, f1, f2;
1937         u_char *d;
1938         int *txpending, slot_tx;
1939         struct  bchannel *bch;
1940         struct  dchannel *dch;
1941         struct  sk_buff **sp = NULL;
1942         int *idxp;
1943
1944         bch = hc->chan[ch].bch;
1945         dch = hc->chan[ch].dch;
1946         if ((!dch) && (!bch))
1947                 return;
1948
1949         txpending = &hc->chan[ch].txpending;
1950         slot_tx = hc->chan[ch].slot_tx;
1951         if (dch) {
1952                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1953                         return;
1954                 sp = &dch->tx_skb;
1955                 idxp = &dch->tx_idx;
1956         } else {
1957                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1958                         return;
1959                 sp = &bch->tx_skb;
1960                 idxp = &bch->tx_idx;
1961         }
1962         if (*sp)
1963                 len = (*sp)->len;
1964
1965         if ((!len) && *txpending != 1)
1966                 return; /* no data */
1967
1968         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1969             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1970             (hc->chan[ch].slot_rx < 0) &&
1971             (hc->chan[ch].slot_tx < 0))
1972                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1973         else
1974                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1975         HFC_wait_nodebug(hc);
1976
1977         if (*txpending == 2) {
1978                 /* reset fifo */
1979                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1980                 HFC_wait_nodebug(hc);
1981                 HFC_outb(hc, A_SUBCH_CFG, 0);
1982                 *txpending = 1;
1983         }
1984 next_frame:
1985         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1986                 f1 = HFC_inb_nodebug(hc, A_F1);
1987                 f2 = HFC_inb_nodebug(hc, A_F2);
1988                 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1989                         if (debug & DEBUG_HFCMULTI_FIFO)
1990                                 printk(KERN_DEBUG
1991                                        "%s(card %d): reread f2 because %d!=%d\n",
1992                                        __func__, hc->id + 1, temp, f2);
1993                         f2 = temp; /* repeat until F2 is equal */
1994                 }
1995                 Fspace = f2 - f1 - 1;
1996                 if (Fspace < 0)
1997                         Fspace += hc->Flen;
1998                 /*
1999                  * Old FIFO handling doesn't give us the current Z2 read
2000                  * pointer, so we cannot send the next frame before the fifo
2001                  * is empty. It makes no difference except for a slightly
2002                  * lower performance.
2003                  */
2004                 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
2005                         if (f1 != f2)
2006                                 Fspace = 0;
2007                         else
2008                                 Fspace = 1;
2009                 }
2010                 /* one frame only for ST D-channels, to allow resending */
2011                 if (hc->ctype != HFC_TYPE_E1 && dch) {
2012                         if (f1 != f2)
2013                                 Fspace = 0;
2014                 }
2015                 /* F-counter full condition */
2016                 if (Fspace == 0)
2017                         return;
2018         }
2019         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2020         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2021         while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
2022                 if (debug & DEBUG_HFCMULTI_FIFO)
2023                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
2024                                "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2025                 z2 = temp; /* repeat unti Z2 is equal */
2026         }
2027         hc->chan[ch].Zfill = z1 - z2;
2028         if (hc->chan[ch].Zfill < 0)
2029                 hc->chan[ch].Zfill += hc->Zlen;
2030         Zspace = z2 - z1;
2031         if (Zspace <= 0)
2032                 Zspace += hc->Zlen;
2033         Zspace -= 4; /* keep not too full, so pointers will not overrun */
2034         /* fill transparent data only to maxinum transparent load (minus 4) */
2035         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2036                 Zspace = Zspace - hc->Zlen + hc->max_trans;
2037         if (Zspace <= 0) /* no space of 4 bytes */
2038                 return;
2039
2040         /* if no data */
2041         if (!len) {
2042                 if (z1 == z2) { /* empty */
2043                         /* if done with FIFO audio data during PCM connection */
2044                         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2045                             *txpending && slot_tx >= 0) {
2046                                 if (debug & DEBUG_HFCMULTI_MODE)
2047                                         printk(KERN_DEBUG
2048                                                "%s: reconnecting PCM due to no "
2049                                                "more FIFO data: channel %d "
2050                                                "slot_tx %d\n",
2051                                                __func__, ch, slot_tx);
2052                                 /* connect slot */
2053                                 if (hc->ctype == HFC_TYPE_XHFC)
2054                                         HFC_outb(hc, A_CON_HDLC, 0xc0
2055                                                  | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2056                                 /* Enable FIFO, no interrupt */
2057                                 else
2058                                         HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2059                                                  V_HDLC_TRP | V_IFF);
2060                                 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2061                                 HFC_wait_nodebug(hc);
2062                                 if (hc->ctype == HFC_TYPE_XHFC)
2063                                         HFC_outb(hc, A_CON_HDLC, 0xc0
2064                                                  | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2065                                 /* Enable FIFO, no interrupt */
2066                                 else
2067                                         HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2068                                                  V_HDLC_TRP | V_IFF);
2069                                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2070                                 HFC_wait_nodebug(hc);
2071                         }
2072                         *txpending = 0;
2073                 }
2074                 return; /* no data */
2075         }
2076
2077         /* "fill fifo if empty" feature */
2078         if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2079             && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2080                 if (debug & DEBUG_HFCMULTI_FILL)
2081                         printk(KERN_DEBUG "%s: buffer empty, so we have "
2082                                "underrun\n", __func__);
2083                 /* fill buffer, to prevent future underrun */
2084                 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2085                 Zspace -= (poll >> 1);
2086         }
2087
2088         /* if audio data and connected slot */
2089         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2090             && slot_tx >= 0) {
2091                 if (debug & DEBUG_HFCMULTI_MODE)
2092                         printk(KERN_DEBUG "%s: disconnecting PCM due to "
2093                                "FIFO data: channel %d slot_tx %d\n",
2094                                __func__, ch, slot_tx);
2095                 /* disconnect slot */
2096                 if (hc->ctype == HFC_TYPE_XHFC)
2097                         HFC_outb(hc, A_CON_HDLC, 0x80
2098                                  | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2099                 /* Enable FIFO, no interrupt */
2100                 else
2101                         HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2102                                  V_HDLC_TRP | V_IFF);
2103                 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2104                 HFC_wait_nodebug(hc);
2105                 if (hc->ctype == HFC_TYPE_XHFC)
2106                         HFC_outb(hc, A_CON_HDLC, 0x80
2107                                  | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2108                 /* Enable FIFO, no interrupt */
2109                 else
2110                         HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2111                                  V_HDLC_TRP | V_IFF);
2112                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2113                 HFC_wait_nodebug(hc);
2114         }
2115         *txpending = 1;
2116
2117         /* show activity */
2118         if (dch)
2119                 hc->activity_tx |= 1 << hc->chan[ch].port;
2120
2121         /* fill fifo to what we have left */
2122         ii = len;
2123         if (dch || test_bit(FLG_HDLC, &bch->Flags))
2124                 temp = 1;
2125         else
2126                 temp = 0;
2127         i = *idxp;
2128         d = (*sp)->data + i;
2129         if (ii - i > Zspace)
2130                 ii = Zspace + i;
2131         if (debug & DEBUG_HFCMULTI_FIFO)
2132                 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2133                        "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2134                        __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2135                        temp ? "HDLC" : "TRANS");
2136
2137         /* Have to prep the audio data */
2138         hc->write_fifo(hc, d, ii - i);
2139         hc->chan[ch].Zfill += ii - i;
2140         *idxp = ii;
2141
2142         /* if not all data has been written */
2143         if (ii != len) {
2144                 /* NOTE: fifo is started by the calling function */
2145                 return;
2146         }
2147
2148         /* if all data has been written, terminate frame */
2149         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2150                 /* increment f-counter */
2151                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2152                 HFC_wait_nodebug(hc);
2153         }
2154
2155         dev_kfree_skb(*sp);
2156         /* check for next frame */
2157         if (bch && get_next_bframe(bch)) {
2158                 len = (*sp)->len;
2159                 goto next_frame;
2160         }
2161         if (dch && get_next_dframe(dch)) {
2162                 len = (*sp)->len;
2163                 goto next_frame;
2164         }
2165
2166         /*
2167          * now we have no more data, so in case of transparent,
2168          * we set the last byte in fifo to 'silence' in case we will get
2169          * no more data at all. this prevents sending an undefined value.
2170          */
2171         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2172                 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2173 }
2174
2175
2176 /* NOTE: only called if E1 card is in active state */
2177 static void
2178 hfcmulti_rx(struct hfc_multi *hc, int ch)
2179 {
2180         int temp;
2181         int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2182         int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2183         int again = 0;
2184         struct  bchannel *bch;
2185         struct  dchannel *dch = NULL;
2186         struct sk_buff  *skb, **sp = NULL;
2187         int     maxlen;
2188
2189         bch = hc->chan[ch].bch;
2190         if (bch) {
2191                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2192                         return;
2193         } else if (hc->chan[ch].dch) {
2194                 dch = hc->chan[ch].dch;
2195                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2196                         return;
2197         } else {
2198                 return;
2199         }
2200 next_frame:
2201         /* on first AND before getting next valid frame, R_FIFO must be written
2202            to. */
2203         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2204             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2205             (hc->chan[ch].slot_rx < 0) &&
2206             (hc->chan[ch].slot_tx < 0))
2207                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2208         else
2209                 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2210         HFC_wait_nodebug(hc);
2211
2212         /* ignore if rx is off BUT change fifo (above) to start pending TX */
2213         if (hc->chan[ch].rx_off) {
2214                 if (bch)
2215                         bch->dropcnt += poll; /* not exact but fair enough */
2216                 return;
2217         }
2218
2219         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2220                 f1 = HFC_inb_nodebug(hc, A_F1);
2221                 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2222                         if (debug & DEBUG_HFCMULTI_FIFO)
2223                                 printk(KERN_DEBUG
2224                                        "%s(card %d): reread f1 because %d!=%d\n",
2225                                        __func__, hc->id + 1, temp, f1);
2226                         f1 = temp; /* repeat until F1 is equal */
2227                 }
2228                 f2 = HFC_inb_nodebug(hc, A_F2);
2229         }
2230         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2231         while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2232                 if (debug & DEBUG_HFCMULTI_FIFO)
2233                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
2234                                "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2235                 z1 = temp; /* repeat until Z1 is equal */
2236         }
2237         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2238         Zsize = z1 - z2;
2239         if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2240                 /* complete hdlc frame */
2241                 Zsize++;
2242         if (Zsize < 0)
2243                 Zsize += hc->Zlen;
2244         /* if buffer is empty */
2245         if (Zsize <= 0)
2246                 return;
2247
2248         if (bch) {
2249                 maxlen = bchannel_get_rxbuf(bch, Zsize);
2250                 if (maxlen < 0) {
2251                         pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2252                                 hc->id + 1, bch->nr, Zsize);
2253                         return;
2254                 }
2255                 sp = &bch->rx_skb;
2256                 maxlen = bch->maxlen;
2257         } else { /* Dchannel */
2258                 sp = &dch->rx_skb;
2259                 maxlen = dch->maxlen + 3;
2260                 if (*sp == NULL) {
2261                         *sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2262                         if (*sp == NULL) {
2263                                 pr_warn("card%d: No mem for dch rx_skb\n",
2264                                         hc->id + 1);
2265                                 return;
2266                         }
2267                 }
2268         }
2269         /* show activity */
2270         if (dch)
2271                 hc->activity_rx |= 1 << hc->chan[ch].port;
2272
2273         /* empty fifo with what we have */
2274         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2275                 if (debug & DEBUG_HFCMULTI_FIFO)
2276                         printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2277                                "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2278                                "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2279                                Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2280                                f1, f2, Zsize + (*sp)->len, again);
2281                 /* HDLC */
2282                 if ((Zsize + (*sp)->len) > maxlen) {
2283                         if (debug & DEBUG_HFCMULTI_FIFO)
2284                                 printk(KERN_DEBUG
2285                                        "%s(card %d): hdlc-frame too large.\n",
2286                                        __func__, hc->id + 1);
2287                         skb_trim(*sp, 0);
2288                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2289                         HFC_wait_nodebug(hc);
2290                         return;
2291                 }
2292
2293                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2294
2295                 if (f1 != f2) {
2296                         /* increment Z2,F2-counter */
2297                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2298                         HFC_wait_nodebug(hc);
2299                         /* check size */
2300                         if ((*sp)->len < 4) {
2301                                 if (debug & DEBUG_HFCMULTI_FIFO)
2302                                         printk(KERN_DEBUG
2303                                                "%s(card %d): Frame below minimum "
2304                                                "size\n", __func__, hc->id + 1);
2305                                 skb_trim(*sp, 0);
2306                                 goto next_frame;
2307                         }
2308                         /* there is at least one complete frame, check crc */
2309                         if ((*sp)->data[(*sp)->len - 1]) {
2310                                 if (debug & DEBUG_HFCMULTI_CRC)
2311                                         printk(KERN_DEBUG
2312                                                "%s: CRC-error\n", __func__);
2313                                 skb_trim(*sp, 0);
2314                                 goto next_frame;
2315                         }
2316                         skb_trim(*sp, (*sp)->len - 3);
2317                         if ((*sp)->len < MISDN_COPY_SIZE) {
2318                                 skb = *sp;
2319                                 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2320                                 if (*sp) {
2321                                         skb_put_data(*sp, skb->data, skb->len);
2322                                         skb_trim(skb, 0);
2323                                 } else {
2324                                         printk(KERN_DEBUG "%s: No mem\n",
2325                                                __func__);
2326                                         *sp = skb;
2327                                         skb = NULL;
2328                                 }
2329                         } else {
2330                                 skb = NULL;
2331                         }
2332                         if (debug & DEBUG_HFCMULTI_FIFO) {
2333                                 printk(KERN_DEBUG "%s(card %d):",
2334                                        __func__, hc->id + 1);
2335                                 temp = 0;
2336                                 while (temp < (*sp)->len)
2337                                         printk(" %02x", (*sp)->data[temp++]);
2338                                 printk("\n");
2339                         }
2340                         if (dch)
2341                                 recv_Dchannel(dch);
2342                         else
2343                                 recv_Bchannel(bch, MISDN_ID_ANY, false);
2344                         *sp = skb;
2345                         again++;
2346                         goto next_frame;
2347                 }
2348                 /* there is an incomplete frame */
2349         } else {
2350                 /* transparent */
2351                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2352                 if (debug & DEBUG_HFCMULTI_FIFO)
2353                         printk(KERN_DEBUG
2354                                "%s(card %d): fifo(%d) reading %d bytes "
2355                                "(z1=%04x, z2=%04x) TRANS\n",
2356                                __func__, hc->id + 1, ch, Zsize, z1, z2);
2357                 /* only bch is transparent */
2358                 recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2359         }
2360 }
2361
2362
2363 /*
2364  * Interrupt handler
2365  */
2366 static void
2367 signal_state_up(struct dchannel *dch, int info, char *msg)
2368 {
2369         struct sk_buff  *skb;
2370         int             id, data = info;
2371
2372         if (debug & DEBUG_HFCMULTI_STATE)
2373                 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2374
2375         id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2376
2377         skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2378                                GFP_ATOMIC);
2379         if (!skb)
2380                 return;
2381         recv_Dchannel_skb(dch, skb);
2382 }
2383
2384 static inline void
2385 handle_timer_irq(struct hfc_multi *hc)
2386 {
2387         int             ch, temp;
2388         struct dchannel *dch;
2389         u_long          flags;
2390
2391         /* process queued resync jobs */
2392         if (hc->e1_resync) {
2393                 /* lock, so e1_resync gets not changed */
2394                 spin_lock_irqsave(&HFClock, flags);
2395                 if (hc->e1_resync & 1) {
2396                         if (debug & DEBUG_HFCMULTI_PLXSD)
2397                                 printk(KERN_DEBUG "Enable SYNC_I\n");
2398                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2399                         /* disable JATT, if RX_SYNC is set */
2400                         if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2401                                 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2402                 }
2403                 if (hc->e1_resync & 2) {
2404                         if (debug & DEBUG_HFCMULTI_PLXSD)
2405                                 printk(KERN_DEBUG "Enable jatt PLL\n");
2406                         HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2407                 }
2408                 if (hc->e1_resync & 4) {
2409                         if (debug & DEBUG_HFCMULTI_PLXSD)
2410                                 printk(KERN_DEBUG
2411                                        "Enable QUARTZ for HFC-E1\n");
2412                         /* set jatt to quartz */
2413                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2414                                  | V_JATT_OFF);
2415                         /* switch to JATT, in case it is not already */
2416                         HFC_outb(hc, R_SYNC_OUT, 0);
2417                 }
2418                 hc->e1_resync = 0;
2419                 spin_unlock_irqrestore(&HFClock, flags);
2420         }
2421
2422         if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2423                 for (ch = 0; ch <= 31; ch++) {
2424                         if (hc->created[hc->chan[ch].port]) {
2425                                 hfcmulti_tx(hc, ch);
2426                                 /* fifo is started when switching to rx-fifo */
2427                                 hfcmulti_rx(hc, ch);
2428                                 if (hc->chan[ch].dch &&
2429                                     hc->chan[ch].nt_timer > -1) {
2430                                         dch = hc->chan[ch].dch;
2431                                         if (!(--hc->chan[ch].nt_timer)) {
2432                                                 schedule_event(dch,
2433                                                                FLG_PHCHANGE);
2434                                                 if (debug &
2435                                                     DEBUG_HFCMULTI_STATE)
2436                                                         printk(KERN_DEBUG
2437                                                                "%s: nt_timer at "
2438                                                                "state %x\n",
2439                                                                __func__,
2440                                                                dch->state);
2441                                         }
2442                                 }
2443                         }
2444                 }
2445         if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2446                 dch = hc->chan[hc->dnum[0]].dch;
2447                 /* LOS */
2448                 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2449                 hc->chan[hc->dnum[0]].los = temp;
2450                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2451                         if (!temp && hc->chan[hc->dnum[0]].los)
2452                                 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2453                                                 "LOS detected");
2454                         if (temp && !hc->chan[hc->dnum[0]].los)
2455                                 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2456                                                 "LOS gone");
2457                 }
2458                 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2459                         /* AIS */
2460                         temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2461                         if (!temp && hc->chan[hc->dnum[0]].ais)
2462                                 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2463                                                 "AIS detected");
2464                         if (temp && !hc->chan[hc->dnum[0]].ais)
2465                                 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2466                                                 "AIS gone");
2467                         hc->chan[hc->dnum[0]].ais = temp;
2468                 }
2469                 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2470                         /* SLIP */
2471                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2472                         if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2473                                 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2474                                                 " bit SLIP detected RX");
2475                         hc->chan[hc->dnum[0]].slip_rx = temp;
2476                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2477                         if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2478                                 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2479                                                 " bit SLIP detected TX");
2480                         hc->chan[hc->dnum[0]].slip_tx = temp;
2481                 }
2482                 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2483                         /* RDI */
2484                         temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2485                         if (!temp && hc->chan[hc->dnum[0]].rdi)
2486                                 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2487                                                 "RDI detected");
2488                         if (temp && !hc->chan[hc->dnum[0]].rdi)
2489                                 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2490                                                 "RDI gone");
2491                         hc->chan[hc->dnum[0]].rdi = temp;
2492                 }
2493                 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2494                 switch (hc->chan[hc->dnum[0]].sync) {
2495                 case 0:
2496                         if ((temp & 0x60) == 0x60) {
2497                                 if (debug & DEBUG_HFCMULTI_SYNC)
2498                                         printk(KERN_DEBUG
2499                                                "%s: (id=%d) E1 now "
2500                                                "in clock sync\n",
2501                                                __func__, hc->id);
2502                                 HFC_outb(hc, R_RX_OFF,
2503                                     hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2504                                 HFC_outb(hc, R_TX_OFF,
2505                                     hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2506                                 hc->chan[hc->dnum[0]].sync = 1;
2507                                 goto check_framesync;
2508                         }
2509                         break;
2510                 case 1:
2511                         if ((temp & 0x60) != 0x60) {
2512                                 if (debug & DEBUG_HFCMULTI_SYNC)
2513                                         printk(KERN_DEBUG
2514                                                "%s: (id=%d) E1 "
2515                                                "lost clock sync\n",
2516                                                __func__, hc->id);
2517                                 hc->chan[hc->dnum[0]].sync = 0;
2518                                 break;
2519                         }
2520                 check_framesync:
2521                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2522                         if (temp == 0x27) {
2523                                 if (debug & DEBUG_HFCMULTI_SYNC)
2524                                         printk(KERN_DEBUG
2525                                                "%s: (id=%d) E1 "
2526                                                "now in frame sync\n",
2527                                                __func__, hc->id);
2528                                 hc->chan[hc->dnum[0]].sync = 2;
2529                         }
2530                         break;
2531                 case 2:
2532                         if ((temp & 0x60) != 0x60) {
2533                                 if (debug & DEBUG_HFCMULTI_SYNC)
2534                                         printk(KERN_DEBUG
2535                                                "%s: (id=%d) E1 lost "
2536                                                "clock & frame sync\n",
2537                                                __func__, hc->id);
2538                                 hc->chan[hc->dnum[0]].sync = 0;
2539                                 break;
2540                         }
2541                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2542                         if (temp != 0x27) {
2543                                 if (debug & DEBUG_HFCMULTI_SYNC)
2544                                         printk(KERN_DEBUG
2545                                                "%s: (id=%d) E1 "
2546                                                "lost frame sync\n",
2547                                                __func__, hc->id);
2548                                 hc->chan[hc->dnum[0]].sync = 1;
2549                         }
2550                         break;
2551                 }
2552         }
2553
2554         if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2555                 hfcmulti_watchdog(hc);
2556
2557         if (hc->leds)
2558                 hfcmulti_leds(hc);
2559 }
2560
2561 static void
2562 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2563 {
2564         struct dchannel *dch;
2565         int             ch;
2566         int             active;
2567         u_char          st_status, temp;
2568
2569         /* state machine */
2570         for (ch = 0; ch <= 31; ch++) {
2571                 if (hc->chan[ch].dch) {
2572                         dch = hc->chan[ch].dch;
2573                         if (r_irq_statech & 1) {
2574                                 HFC_outb_nodebug(hc, R_ST_SEL,
2575                                                  hc->chan[ch].port);
2576                                 /* undocumented: delay after R_ST_SEL */
2577                                 udelay(1);
2578                                 /* undocumented: status changes during read */
2579                                 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2580                                 while (st_status != (temp =
2581                                                      HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2582                                         if (debug & DEBUG_HFCMULTI_STATE)
2583                                                 printk(KERN_DEBUG "%s: reread "
2584                                                        "STATE because %d!=%d\n",
2585                                                        __func__, temp,
2586                                                        st_status);
2587                                         st_status = temp; /* repeat */
2588                                 }
2589
2590                                 /* Speech Design TE-sync indication */
2591                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2592                                     dch->dev.D.protocol == ISDN_P_TE_S0) {
2593                                         if (st_status & V_FR_SYNC_ST)
2594                                                 hc->syncronized |=
2595                                                         (1 << hc->chan[ch].port);
2596                                         else
2597                                                 hc->syncronized &=
2598                                                         ~(1 << hc->chan[ch].port);
2599                                 }
2600                                 dch->state = st_status & 0x0f;
2601                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2602                                         active = 3;
2603                                 else
2604                                         active = 7;
2605                                 if (dch->state == active) {
2606                                         HFC_outb_nodebug(hc, R_FIFO,
2607                                                          (ch << 1) | 1);
2608                                         HFC_wait_nodebug(hc);
2609                                         HFC_outb_nodebug(hc,
2610                                                          R_INC_RES_FIFO, V_RES_F);
2611                                         HFC_wait_nodebug(hc);
2612                                         dch->tx_idx = 0;
2613                                 }
2614                                 schedule_event(dch, FLG_PHCHANGE);
2615                                 if (debug & DEBUG_HFCMULTI_STATE)
2616                                         printk(KERN_DEBUG
2617                                                "%s: S/T newstate %x port %d\n",
2618                                                __func__, dch->state,
2619                                                hc->chan[ch].port);
2620                         }
2621                         r_irq_statech >>= 1;
2622                 }
2623         }
2624         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2625                 plxsd_checksync(hc, 0);
2626 }
2627
2628 static void
2629 fifo_irq(struct hfc_multi *hc, int block)
2630 {
2631         int     ch, j;
2632         struct dchannel *dch;
2633         struct bchannel *bch;
2634         u_char r_irq_fifo_bl;
2635
2636         r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2637         j = 0;
2638         while (j < 8) {
2639                 ch = (block << 2) + (j >> 1);
2640                 dch = hc->chan[ch].dch;
2641                 bch = hc->chan[ch].bch;
2642                 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2643                         j += 2;
2644                         continue;
2645                 }
2646                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2647                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2648                         hfcmulti_tx(hc, ch);
2649                         /* start fifo */
2650                         HFC_outb_nodebug(hc, R_FIFO, 0);
2651                         HFC_wait_nodebug(hc);
2652                 }
2653                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2654                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2655                         hfcmulti_tx(hc, ch);
2656                         /* start fifo */
2657                         HFC_outb_nodebug(hc, R_FIFO, 0);
2658                         HFC_wait_nodebug(hc);
2659                 }
2660                 j++;
2661                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2662                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2663                         hfcmulti_rx(hc, ch);
2664                 }
2665                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2666                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2667                         hfcmulti_rx(hc, ch);
2668                 }
2669                 j++;
2670         }
2671 }
2672
2673 #ifdef IRQ_DEBUG
2674 int irqsem;
2675 #endif
2676 static irqreturn_t
2677 hfcmulti_interrupt(int intno, void *dev_id)
2678 {
2679 #ifdef IRQCOUNT_DEBUG
2680         static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2681                 iq5 = 0, iq6 = 0, iqcnt = 0;
2682 #endif
2683         struct hfc_multi        *hc = dev_id;
2684         struct dchannel         *dch;
2685         u_char                  r_irq_statech, status, r_irq_misc, r_irq_oview;
2686         int                     i;
2687         void __iomem            *plx_acc;
2688         u_short                 wval;
2689         u_char                  e1_syncsta, temp, temp2;
2690         u_long                  flags;
2691
2692         if (!hc) {
2693                 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2694                 return IRQ_NONE;
2695         }
2696
2697         spin_lock(&hc->lock);
2698
2699 #ifdef IRQ_DEBUG
2700         if (irqsem)
2701                 printk(KERN_ERR "irq for card %d during irq from "
2702                        "card %d, this is no bug.\n", hc->id + 1, irqsem);
2703         irqsem = hc->id + 1;
2704 #endif
2705 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2706         if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2707                 goto irq_notforus;
2708 #endif
2709         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2710                 spin_lock_irqsave(&plx_lock, flags);
2711                 plx_acc = hc->plx_membase + PLX_INTCSR;
2712                 wval = readw(plx_acc);
2713                 spin_unlock_irqrestore(&plx_lock, flags);
2714                 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2715                         goto irq_notforus;
2716         }
2717
2718         status = HFC_inb_nodebug(hc, R_STATUS);
2719         r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2720 #ifdef IRQCOUNT_DEBUG
2721         if (r_irq_statech)
2722                 iq1++;
2723         if (status & V_DTMF_STA)
2724                 iq2++;
2725         if (status & V_LOST_STA)
2726                 iq3++;
2727         if (status & V_EXT_IRQSTA)
2728                 iq4++;
2729         if (status & V_MISC_IRQSTA)
2730                 iq5++;
2731         if (status & V_FR_IRQSTA)
2732                 iq6++;
2733         if (iqcnt++ > 5000) {
2734                 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2735                        iq1, iq2, iq3, iq4, iq5, iq6);
2736                 iqcnt = 0;
2737         }
2738 #endif
2739
2740         if (!r_irq_statech &&
2741             !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2742                         V_MISC_IRQSTA | V_FR_IRQSTA))) {
2743                 /* irq is not for us */
2744                 goto irq_notforus;
2745         }
2746         hc->irqcnt++;
2747         if (r_irq_statech) {
2748                 if (hc->ctype != HFC_TYPE_E1)
2749                         ph_state_irq(hc, r_irq_statech);
2750         }
2751         if (status & V_EXT_IRQSTA)
2752                 ; /* external IRQ */
2753         if (status & V_LOST_STA) {
2754                 /* LOST IRQ */
2755                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2756         }
2757         if (status & V_MISC_IRQSTA) {
2758                 /* misc IRQ */
2759                 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2760                 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2761                 if (r_irq_misc & V_STA_IRQ) {
2762                         if (hc->ctype == HFC_TYPE_E1) {
2763                                 /* state machine */
2764                                 dch = hc->chan[hc->dnum[0]].dch;
2765                                 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2766                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2767                                     && hc->e1_getclock) {
2768                                         if (e1_syncsta & V_FR_SYNC_E1)
2769                                                 hc->syncronized = 1;
2770                                         else
2771                                                 hc->syncronized = 0;
2772                                 }
2773                                 /* undocumented: status changes during read */
2774                                 temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2775                                 while (temp != (temp2 =
2776                                                       HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2777                                         if (debug & DEBUG_HFCMULTI_STATE)
2778                                                 printk(KERN_DEBUG "%s: reread "
2779                                                        "STATE because %d!=%d\n",
2780                                                     __func__, temp, temp2);
2781                                         temp = temp2; /* repeat */
2782                                 }
2783                                 /* broadcast state change to all fragments */
2784                                 if (debug & DEBUG_HFCMULTI_STATE)
2785                                         printk(KERN_DEBUG
2786                                                "%s: E1 (id=%d) newstate %x\n",
2787                                             __func__, hc->id, temp & 0x7);
2788                                 for (i = 0; i < hc->ports; i++) {
2789                                         dch = hc->chan[hc->dnum[i]].dch;
2790                                         dch->state = temp & 0x7;
2791                                         schedule_event(dch, FLG_PHCHANGE);
2792                                 }
2793
2794                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2795                                         plxsd_checksync(hc, 0);
2796                         }
2797                 }
2798                 if (r_irq_misc & V_TI_IRQ) {
2799                         if (hc->iclock_on)
2800                                 mISDN_clock_update(hc->iclock, poll, NULL);
2801                         handle_timer_irq(hc);
2802                 }
2803
2804                 if (r_irq_misc & V_DTMF_IRQ)
2805                         hfcmulti_dtmf(hc);
2806
2807                 if (r_irq_misc & V_IRQ_PROC) {
2808                         static int irq_proc_cnt;
2809                         if (!irq_proc_cnt++)
2810                                 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2811                                        " this should not happen\n", __func__);
2812                 }
2813
2814         }
2815         if (status & V_FR_IRQSTA) {
2816                 /* FIFO IRQ */
2817                 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2818                 for (i = 0; i < 8; i++) {
2819                         if (r_irq_oview & (1 << i))
2820                                 fifo_irq(hc, i);
2821                 }
2822         }
2823
2824 #ifdef IRQ_DEBUG
2825         irqsem = 0;
2826 #endif
2827         spin_unlock(&hc->lock);
2828         return IRQ_HANDLED;
2829
2830 irq_notforus:
2831 #ifdef IRQ_DEBUG
2832         irqsem = 0;
2833 #endif
2834         spin_unlock(&hc->lock);
2835         return IRQ_NONE;
2836 }
2837
2838
2839 /*
2840  * timer callback for D-chan busy resolution. Currently no function
2841  */
2842
2843 static void
2844 hfcmulti_dbusy_timer(struct timer_list *t)
2845 {
2846 }
2847
2848
2849 /*
2850  * activate/deactivate hardware for selected channels and mode
2851  *
2852  * configure B-channel with the given protocol
2853  * ch eqals to the HFC-channel (0-31)
2854  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2855  * for S/T, 1-31 for E1)
2856  * the hdlc interrupts will be set/unset
2857  */
2858 static int
2859 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2860               int bank_tx, int slot_rx, int bank_rx)
2861 {
2862         int flow_tx = 0, flow_rx = 0, routing = 0;
2863         int oslot_tx, oslot_rx;
2864         int conf;
2865
2866         if (ch < 0 || ch > 31)
2867                 return -EINVAL;
2868         oslot_tx = hc->chan[ch].slot_tx;
2869         oslot_rx = hc->chan[ch].slot_rx;
2870         conf = hc->chan[ch].conf;
2871
2872         if (debug & DEBUG_HFCMULTI_MODE)
2873                 printk(KERN_DEBUG
2874                        "%s: card %d channel %d protocol %x slot old=%d new=%d "
2875                        "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2876                        __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2877                        bank_tx, oslot_rx, slot_rx, bank_rx);
2878
2879         if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2880                 /* remove from slot */
2881                 if (debug & DEBUG_HFCMULTI_MODE)
2882                         printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2883                                __func__, oslot_tx);
2884                 if (hc->slot_owner[oslot_tx << 1] == ch) {
2885                         HFC_outb(hc, R_SLOT, oslot_tx << 1);
2886                         HFC_outb(hc, A_SL_CFG, 0);
2887                         if (hc->ctype != HFC_TYPE_XHFC)
2888                                 HFC_outb(hc, A_CONF, 0);
2889                         hc->slot_owner[oslot_tx << 1] = -1;
2890                 } else {
2891                         if (debug & DEBUG_HFCMULTI_MODE)
2892                                 printk(KERN_DEBUG
2893                                        "%s: we are not owner of this tx slot "
2894                                        "anymore, channel %d is.\n",
2895                                        __func__, hc->slot_owner[oslot_tx << 1]);
2896                 }
2897         }
2898
2899         if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2900                 /* remove from slot */
2901                 if (debug & DEBUG_HFCMULTI_MODE)
2902                         printk(KERN_DEBUG
2903                                "%s: remove from slot %d (RX)\n",
2904                                __func__, oslot_rx);
2905                 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2906                         HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2907                         HFC_outb(hc, A_SL_CFG, 0);
2908                         hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2909                 } else {
2910                         if (debug & DEBUG_HFCMULTI_MODE)
2911                                 printk(KERN_DEBUG
2912                                        "%s: we are not owner of this rx slot "
2913                                        "anymore, channel %d is.\n",
2914                                        __func__,
2915                                        hc->slot_owner[(oslot_rx << 1) | 1]);
2916                 }
2917         }
2918
2919         if (slot_tx < 0) {
2920                 flow_tx = 0x80; /* FIFO->ST */
2921                 /* disable pcm slot */
2922                 hc->chan[ch].slot_tx = -1;
2923                 hc->chan[ch].bank_tx = 0;
2924         } else {
2925                 /* set pcm slot */
2926                 if (hc->chan[ch].txpending)
2927                         flow_tx = 0x80; /* FIFO->ST */
2928                 else
2929                         flow_tx = 0xc0; /* PCM->ST */
2930                 /* put on slot */
2931                 routing = bank_tx ? 0xc0 : 0x80;
2932                 if (conf >= 0 || bank_tx > 1)
2933                         routing = 0x40; /* loop */
2934                 if (debug & DEBUG_HFCMULTI_MODE)
2935                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2936                                " %d flow %02x routing %02x conf %d (TX)\n",
2937                                __func__, ch, slot_tx, bank_tx,
2938                                flow_tx, routing, conf);
2939                 HFC_outb(hc, R_SLOT, slot_tx << 1);
2940                 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2941                 if (hc->ctype != HFC_TYPE_XHFC)
2942                         HFC_outb(hc, A_CONF,
2943                                  (conf < 0) ? 0 : (conf | V_CONF_SL));
2944                 hc->slot_owner[slot_tx << 1] = ch;
2945                 hc->chan[ch].slot_tx = slot_tx;
2946                 hc->chan[ch].bank_tx = bank_tx;
2947         }
2948         if (slot_rx < 0) {
2949                 /* disable pcm slot */
2950                 flow_rx = 0x80; /* ST->FIFO */
2951                 hc->chan[ch].slot_rx = -1;
2952                 hc->chan[ch].bank_rx = 0;
2953         } else {
2954                 /* set pcm slot */
2955                 if (hc->chan[ch].txpending)
2956                         flow_rx = 0x80; /* ST->FIFO */
2957                 else
2958                         flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2959                 /* put on slot */
2960                 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2961                 if (conf >= 0 || bank_rx > 1)
2962                         routing = 0x40; /* loop */
2963                 if (debug & DEBUG_HFCMULTI_MODE)
2964                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2965                                " %d flow %02x routing %02x conf %d (RX)\n",
2966                                __func__, ch, slot_rx, bank_rx,
2967                                flow_rx, routing, conf);
2968                 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2969                 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2970                 hc->slot_owner[(slot_rx << 1) | 1] = ch;
2971                 hc->chan[ch].slot_rx = slot_rx;
2972                 hc->chan[ch].bank_rx = bank_rx;
2973         }
2974
2975         switch (protocol) {
2976         case (ISDN_P_NONE):
2977                 /* disable TX fifo */
2978                 HFC_outb(hc, R_FIFO, ch << 1);
2979                 HFC_wait(hc);
2980                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2981                 HFC_outb(hc, A_SUBCH_CFG, 0);
2982                 HFC_outb(hc, A_IRQ_MSK, 0);
2983                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2984                 HFC_wait(hc);
2985                 /* disable RX fifo */
2986                 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2987                 HFC_wait(hc);
2988                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2989                 HFC_outb(hc, A_SUBCH_CFG, 0);
2990                 HFC_outb(hc, A_IRQ_MSK, 0);
2991                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2992                 HFC_wait(hc);
2993                 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2994                         hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2995                                 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2996                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2997                         /* undocumented: delay after R_ST_SEL */
2998                         udelay(1);
2999                         HFC_outb(hc, A_ST_CTRL0,
3000                                  hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3001                 }
3002                 if (hc->chan[ch].bch) {
3003                         test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3004                         test_and_clear_bit(FLG_TRANSPARENT,
3005                                            &hc->chan[ch].bch->Flags);
3006                 }
3007                 break;
3008         case (ISDN_P_B_RAW): /* B-channel */
3009
3010                 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
3011                     (hc->chan[ch].slot_rx < 0) &&
3012                     (hc->chan[ch].slot_tx < 0)) {
3013
3014                         printk(KERN_DEBUG
3015                                "Setting B-channel %d to echo cancelable "
3016                                "state on PCM slot %d\n", ch,
3017                                ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3018                         printk(KERN_DEBUG
3019                                "Enabling pass through for channel\n");
3020                         vpm_out(hc, ch, ((ch / 4) * 8) +
3021                                 ((ch % 4) * 4) + 1, 0x01);
3022                         /* rx path */
3023                         /* S/T -> PCM */
3024                         HFC_outb(hc, R_FIFO, (ch << 1));
3025                         HFC_wait(hc);
3026                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3027                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3028                                               ((ch % 4) * 4) + 1) << 1);
3029                         HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3030
3031                         /* PCM -> FIFO */
3032                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3033                         HFC_wait(hc);
3034                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3035                         HFC_outb(hc, A_SUBCH_CFG, 0);
3036                         HFC_outb(hc, A_IRQ_MSK, 0);
3037                         if (hc->chan[ch].protocol != protocol) {
3038                                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3039                                 HFC_wait(hc);
3040                         }
3041                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3042                                                ((ch % 4) * 4) + 1) << 1) | 1);
3043                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3044
3045                         /* tx path */
3046                         /* PCM -> S/T */
3047                         HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3048                         HFC_wait(hc);
3049                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3050                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3051                                                ((ch % 4) * 4)) << 1) | 1);
3052                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3053
3054                         /* FIFO -> PCM */
3055                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3056                         HFC_wait(hc);
3057                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3058                         HFC_outb(hc, A_SUBCH_CFG, 0);
3059                         HFC_outb(hc, A_IRQ_MSK, 0);
3060                         if (hc->chan[ch].protocol != protocol) {
3061                                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3062                                 HFC_wait(hc);
3063                         }
3064                         /* tx silence */
3065                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3066                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3067                                               ((ch % 4) * 4)) << 1);
3068                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3069                 } else {
3070                         /* enable TX fifo */
3071                         HFC_outb(hc, R_FIFO, ch << 1);
3072                         HFC_wait(hc);
3073                         if (hc->ctype == HFC_TYPE_XHFC)
3074                                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3075                                          V_HDLC_TRP | V_IFF);
3076                         /* Enable FIFO, no interrupt */
3077                         else
3078                                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3079                                          V_HDLC_TRP | V_IFF);
3080                         HFC_outb(hc, A_SUBCH_CFG, 0);
3081                         HFC_outb(hc, A_IRQ_MSK, 0);
3082                         if (hc->chan[ch].protocol != protocol) {
3083                                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3084                                 HFC_wait(hc);
3085                         }
3086                         /* tx silence */
3087                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3088                         /* enable RX fifo */
3089                         HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3090                         HFC_wait(hc);
3091                         if (hc->ctype == HFC_TYPE_XHFC)
3092                                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3093                                          V_HDLC_TRP);
3094                         /* Enable FIFO, no interrupt*/
3095                         else
3096                                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3097                                          V_HDLC_TRP);
3098                         HFC_outb(hc, A_SUBCH_CFG, 0);
3099                         HFC_outb(hc, A_IRQ_MSK, 0);
3100                         if (hc->chan[ch].protocol != protocol) {
3101                                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3102                                 HFC_wait(hc);
3103                         }
3104                 }
3105                 if (hc->ctype != HFC_TYPE_E1) {
3106                         hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3107                                 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3108                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3109                         /* undocumented: delay after R_ST_SEL */
3110                         udelay(1);
3111                         HFC_outb(hc, A_ST_CTRL0,
3112                                  hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3113                 }
3114                 if (hc->chan[ch].bch)
3115                         test_and_set_bit(FLG_TRANSPARENT,
3116                                          &hc->chan[ch].bch->Flags);
3117                 break;
3118         case (ISDN_P_B_HDLC): /* B-channel */
3119         case (ISDN_P_TE_S0): /* D-channel */
3120         case (ISDN_P_NT_S0):
3121         case (ISDN_P_TE_E1):
3122         case (ISDN_P_NT_E1):
3123                 /* enable TX fifo */
3124                 HFC_outb(hc, R_FIFO, ch << 1);
3125                 HFC_wait(hc);
3126                 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3127                         /* E1 or B-channel */
3128                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3129                         HFC_outb(hc, A_SUBCH_CFG, 0);
3130                 } else {
3131                         /* D-Channel without HDLC fill flags */
3132                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3133                         HFC_outb(hc, A_SUBCH_CFG, 2);
3134                 }
3135                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3136                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3137                 HFC_wait(hc);
3138                 /* enable RX fifo */
3139                 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3140                 HFC_wait(hc);
3141                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3142                 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3143                         HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3144                 else
3145                         HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3146                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3147                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3148                 HFC_wait(hc);
3149                 if (hc->chan[ch].bch) {
3150                         test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3151                         if (hc->ctype != HFC_TYPE_E1) {
3152                                 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3153                                         ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3154                                 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3155                                 /* undocumented: delay after R_ST_SEL */
3156                                 udelay(1);
3157                                 HFC_outb(hc, A_ST_CTRL0,
3158                                          hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3159                         }
3160                 }
3161                 break;
3162         default:
3163                 printk(KERN_DEBUG "%s: protocol not known %x\n",
3164                        __func__, protocol);
3165                 hc->chan[ch].protocol = ISDN_P_NONE;
3166                 return -ENOPROTOOPT;
3167         }
3168         hc->chan[ch].protocol = protocol;
3169         return 0;
3170 }
3171
3172
3173 /*
3174  * connect/disconnect PCM
3175  */
3176
3177 static void
3178 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3179              int slot_rx, int bank_rx)
3180 {
3181         if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3182                 /* disable PCM */
3183                 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3184                 return;
3185         }
3186
3187         /* enable pcm */
3188         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3189                       slot_rx, bank_rx);
3190 }
3191
3192 /*
3193  * set/disable conference
3194  */
3195
3196 static void
3197 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3198 {
3199         if (num >= 0 && num <= 7)
3200                 hc->chan[ch].conf = num;
3201         else
3202                 hc->chan[ch].conf = -1;
3203         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3204                       hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3205                       hc->chan[ch].bank_rx);
3206 }
3207
3208
3209 /*
3210  * set/disable sample loop
3211  */
3212
3213 /* NOTE: this function is experimental and therefore disabled */
3214
3215 /*
3216  * Layer 1 callback function
3217  */
3218 static int
3219 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3220 {
3221         struct hfc_multi        *hc = dch->hw;
3222         struct sk_buff_head     free_queue;
3223         u_long  flags;
3224
3225         switch (cmd) {
3226         case INFO3_P8:
3227         case INFO3_P10:
3228                 break;
3229         case HW_RESET_REQ:
3230                 /* start activation */
3231                 spin_lock_irqsave(&hc->lock, flags);
3232                 if (hc->ctype == HFC_TYPE_E1) {
3233                         if (debug & DEBUG_HFCMULTI_MSG)
3234                                 printk(KERN_DEBUG
3235                                        "%s: HW_RESET_REQ no BRI\n",
3236                                        __func__);
3237                 } else {
3238                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3239                         /* undocumented: delay after R_ST_SEL */
3240                         udelay(1);
3241                         HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3242                         udelay(6); /* wait at least 5,21us */
3243                         HFC_outb(hc, A_ST_WR_STATE, 3);
3244                         HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3245                         /* activate */
3246                 }
3247                 spin_unlock_irqrestore(&hc->lock, flags);
3248                 l1_event(dch->l1, HW_POWERUP_IND);
3249                 break;
3250         case HW_DEACT_REQ:
3251                 __skb_queue_head_init(&free_queue);
3252                 /* start deactivation */
3253                 spin_lock_irqsave(&hc->lock, flags);
3254                 if (hc->ctype == HFC_TYPE_E1) {
3255                         if (debug & DEBUG_HFCMULTI_MSG)
3256                                 printk(KERN_DEBUG
3257                                        "%s: HW_DEACT_REQ no BRI\n",
3258                                        __func__);
3259                 } else {
3260                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3261                         /* undocumented: delay after R_ST_SEL */
3262                         udelay(1);
3263                         HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3264                         /* deactivate */
3265                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3266                                 hc->syncronized &=
3267                                         ~(1 << hc->chan[dch->slot].port);
3268                                 plxsd_checksync(hc, 0);
3269                         }
3270                 }
3271                 skb_queue_splice_init(&dch->squeue, &free_queue);
3272                 if (dch->tx_skb) {
3273                         __skb_queue_tail(&free_queue, dch->tx_skb);
3274                         dch->tx_skb = NULL;
3275                 }
3276                 dch->tx_idx = 0;
3277                 if (dch->rx_skb) {
3278                         __skb_queue_tail(&free_queue, dch->rx_skb);
3279                         dch->rx_skb = NULL;
3280                 }
3281                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3282                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3283                         del_timer(&dch->timer);
3284                 spin_unlock_irqrestore(&hc->lock, flags);
3285                 __skb_queue_purge(&free_queue);
3286                 break;
3287         case HW_POWERUP_REQ:
3288                 spin_lock_irqsave(&hc->lock, flags);
3289                 if (hc->ctype == HFC_TYPE_E1) {
3290                         if (debug & DEBUG_HFCMULTI_MSG)
3291                                 printk(KERN_DEBUG
3292                                        "%s: HW_POWERUP_REQ no BRI\n",
3293                                        __func__);
3294                 } else {
3295                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3296                         /* undocumented: delay after R_ST_SEL */
3297                         udelay(1);
3298                         HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3299                         udelay(6); /* wait at least 5,21us */
3300                         HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3301                 }
3302                 spin_unlock_irqrestore(&hc->lock, flags);
3303                 break;
3304         case PH_ACTIVATE_IND:
3305                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3306                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3307                             GFP_ATOMIC);
3308                 break;
3309         case PH_DEACTIVATE_IND:
3310                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3311                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3312                             GFP_ATOMIC);
3313                 break;
3314         default:
3315                 if (dch->debug & DEBUG_HW)
3316                         printk(KERN_DEBUG "%s: unknown command %x\n",
3317                                __func__, cmd);
3318                 return -1;
3319         }
3320         return 0;
3321 }
3322
3323 /*
3324  * Layer2 -> Layer 1 Transfer
3325  */
3326
3327 static int
3328 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3329 {
3330         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
3331         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
3332         struct hfc_multi        *hc = dch->hw;
3333         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3334         int                     ret = -EINVAL;
3335         unsigned int            id;
3336         u_long                  flags;
3337
3338         switch (hh->prim) {
3339         case PH_DATA_REQ:
3340                 if (skb->len < 1)
3341                         break;
3342                 spin_lock_irqsave(&hc->lock, flags);
3343                 ret = dchannel_senddata(dch, skb);
3344                 if (ret > 0) { /* direct TX */
3345                         id = hh->id; /* skb can be freed */
3346                         hfcmulti_tx(hc, dch->slot);
3347                         ret = 0;
3348                         /* start fifo */
3349                         HFC_outb(hc, R_FIFO, 0);
3350                         HFC_wait(hc);
3351                         spin_unlock_irqrestore(&hc->lock, flags);
3352                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3353                 } else
3354                         spin_unlock_irqrestore(&hc->lock, flags);
3355                 return ret;
3356         case PH_ACTIVATE_REQ:
3357                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3358                         spin_lock_irqsave(&hc->lock, flags);
3359                         ret = 0;
3360                         if (debug & DEBUG_HFCMULTI_MSG)
3361                                 printk(KERN_DEBUG
3362                                        "%s: PH_ACTIVATE port %d (0..%d)\n",
3363                                        __func__, hc->chan[dch->slot].port,
3364                                        hc->ports - 1);
3365                         /* start activation */
3366                         if (hc->ctype == HFC_TYPE_E1) {
3367                                 ph_state_change(dch);
3368                                 if (debug & DEBUG_HFCMULTI_STATE)
3369                                         printk(KERN_DEBUG
3370                                                "%s: E1 report state %x \n",
3371                                                __func__, dch->state);
3372                         } else {
3373                                 HFC_outb(hc, R_ST_SEL,
3374                                          hc->chan[dch->slot].port);
3375                                 /* undocumented: delay after R_ST_SEL */
3376                                 udelay(1);
3377                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3378                                 /* G1 */
3379                                 udelay(6); /* wait at least 5,21us */
3380                                 HFC_outb(hc, A_ST_WR_STATE, 1);
3381                                 HFC_outb(hc, A_ST_WR_STATE, 1 |
3382                                          (V_ST_ACT * 3)); /* activate */
3383                                 dch->state = 1;
3384                         }
3385                         spin_unlock_irqrestore(&hc->lock, flags);
3386                 } else
3387                         ret = l1_event(dch->l1, hh->prim);
3388                 break;
3389         case PH_DEACTIVATE_REQ:
3390                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3391                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3392                         struct sk_buff_head free_queue;
3393
3394                         __skb_queue_head_init(&free_queue);
3395                         spin_lock_irqsave(&hc->lock, flags);
3396                         if (debug & DEBUG_HFCMULTI_MSG)
3397                                 printk(KERN_DEBUG
3398                                        "%s: PH_DEACTIVATE port %d (0..%d)\n",
3399                                        __func__, hc->chan[dch->slot].port,
3400                                        hc->ports - 1);
3401                         /* start deactivation */
3402                         if (hc->ctype == HFC_TYPE_E1) {
3403                                 if (debug & DEBUG_HFCMULTI_MSG)
3404                                         printk(KERN_DEBUG
3405                                                "%s: PH_DEACTIVATE no BRI\n",
3406                                                __func__);
3407                         } else {
3408                                 HFC_outb(hc, R_ST_SEL,
3409                                          hc->chan[dch->slot].port);
3410                                 /* undocumented: delay after R_ST_SEL */
3411                                 udelay(1);
3412                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3413                                 /* deactivate */
3414                                 dch->state = 1;
3415                         }
3416                         skb_queue_splice_init(&dch->squeue, &free_queue);
3417                         if (dch->tx_skb) {
3418                                 __skb_queue_tail(&free_queue, dch->tx_skb);
3419                                 dch->tx_skb = NULL;
3420                         }
3421                         dch->tx_idx = 0;
3422                         if (dch->rx_skb) {
3423                                 __skb_queue_tail(&free_queue, dch->rx_skb);
3424                                 dch->rx_skb = NULL;
3425                         }
3426                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3427                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3428                                 del_timer(&dch->timer);
3429 #ifdef FIXME
3430                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3431                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3432 #endif
3433                         ret = 0;
3434                         spin_unlock_irqrestore(&hc->lock, flags);
3435                         __skb_queue_purge(&free_queue);
3436                 } else
3437                         ret = l1_event(dch->l1, hh->prim);
3438                 break;
3439         }
3440         if (!ret)
3441                 dev_kfree_skb(skb);
3442         return ret;
3443 }
3444
3445 static void
3446 deactivate_bchannel(struct bchannel *bch)
3447 {
3448         struct hfc_multi        *hc = bch->hw;
3449         u_long                  flags;
3450
3451         spin_lock_irqsave(&hc->lock, flags);
3452         mISDN_clear_bchannel(bch);
3453         hc->chan[bch->slot].coeff_count = 0;
3454         hc->chan[bch->slot].rx_off = 0;
3455         hc->chan[bch->slot].conf = -1;
3456         mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3457         spin_unlock_irqrestore(&hc->lock, flags);
3458 }
3459
3460 static int
3461 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3462 {
3463         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3464         struct hfc_multi        *hc = bch->hw;
3465         int                     ret = -EINVAL;
3466         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3467         unsigned long           flags;
3468
3469         switch (hh->prim) {
3470         case PH_DATA_REQ:
3471                 if (!skb->len)
3472                         break;
3473                 spin_lock_irqsave(&hc->lock, flags);
3474                 ret = bchannel_senddata(bch, skb);
3475                 if (ret > 0) { /* direct TX */
3476                         hfcmulti_tx(hc, bch->slot);
3477                         ret = 0;
3478                         /* start fifo */
3479                         HFC_outb_nodebug(hc, R_FIFO, 0);
3480                         HFC_wait_nodebug(hc);
3481                 }
3482                 spin_unlock_irqrestore(&hc->lock, flags);
3483                 return ret;
3484         case PH_ACTIVATE_REQ:
3485                 if (debug & DEBUG_HFCMULTI_MSG)
3486                         printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3487                                __func__, bch->slot);
3488                 spin_lock_irqsave(&hc->lock, flags);
3489                 /* activate B-channel if not already activated */
3490                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3491                         hc->chan[bch->slot].txpending = 0;
3492                         ret = mode_hfcmulti(hc, bch->slot,
3493                                             ch->protocol,
3494                                             hc->chan[bch->slot].slot_tx,
3495                                             hc->chan[bch->slot].bank_tx,
3496                                             hc->chan[bch->slot].slot_rx,
3497                                             hc->chan[bch->slot].bank_rx);
3498                         if (!ret) {
3499                                 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3500                                     && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3501                                         /* start decoder */
3502                                         hc->dtmf = 1;
3503                                         if (debug & DEBUG_HFCMULTI_DTMF)
3504                                                 printk(KERN_DEBUG
3505                                                        "%s: start dtmf decoder\n",
3506                                                        __func__);
3507                                         HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3508                                                  V_RST_DTMF);
3509                                 }
3510                         }
3511                 } else
3512                         ret = 0;
3513                 spin_unlock_irqrestore(&hc->lock, flags);
3514                 if (!ret)
3515                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3516                                     GFP_KERNEL);
3517                 break;
3518         case PH_CONTROL_REQ:
3519                 spin_lock_irqsave(&hc->lock, flags);
3520                 switch (hh->id) {
3521                 case HFC_SPL_LOOP_ON: /* set sample loop */
3522                         if (debug & DEBUG_HFCMULTI_MSG)
3523                                 printk(KERN_DEBUG
3524                                        "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3525                                        __func__, skb->len);
3526                         ret = 0;
3527                         break;
3528                 case HFC_SPL_LOOP_OFF: /* set silence */
3529                         if (debug & DEBUG_HFCMULTI_MSG)
3530                                 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3531                                        __func__);
3532                         ret = 0;
3533                         break;
3534                 default:
3535                         printk(KERN_ERR
3536                                "%s: unknown PH_CONTROL_REQ info %x\n",
3537                                __func__, hh->id);
3538                         ret = -EINVAL;
3539                 }
3540                 spin_unlock_irqrestore(&hc->lock, flags);
3541                 break;
3542         case PH_DEACTIVATE_REQ:
3543                 deactivate_bchannel(bch); /* locked there */
3544                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3545                             GFP_KERNEL);
3546                 ret = 0;
3547                 break;
3548         }
3549         if (!ret)
3550                 dev_kfree_skb(skb);
3551         return ret;
3552 }
3553
3554 /*
3555  * bchannel control function
3556  */
3557 static int
3558 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3559 {
3560         int                     ret = 0;
3561         struct dsp_features     *features =
3562                 (struct dsp_features *)(*((u_long *)&cq->p1));
3563         struct hfc_multi        *hc = bch->hw;
3564         int                     slot_tx;
3565         int                     bank_tx;
3566         int                     slot_rx;
3567         int                     bank_rx;
3568         int                     num;
3569
3570         switch (cq->op) {
3571         case MISDN_CTRL_GETOP:
3572                 ret = mISDN_ctrl_bchannel(bch, cq);
3573                 cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3574                 break;
3575         case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3576                 ret = mISDN_ctrl_bchannel(bch, cq);
3577                 hc->chan[bch->slot].rx_off = !!cq->p1;
3578                 if (!hc->chan[bch->slot].rx_off) {
3579                         /* reset fifo on rx on */
3580                         HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3581                         HFC_wait_nodebug(hc);
3582                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3583                         HFC_wait_nodebug(hc);
3584                 }
3585                 if (debug & DEBUG_HFCMULTI_MSG)
3586                         printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3587                                __func__, bch->nr, hc->chan[bch->slot].rx_off);
3588                 break;
3589         case MISDN_CTRL_FILL_EMPTY:
3590                 ret = mISDN_ctrl_bchannel(bch, cq);
3591                 hc->silence = bch->fill[0];
3592                 memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3593                 break;
3594         case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3595                 if (debug & DEBUG_HFCMULTI_MSG)
3596                         printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3597                                __func__);
3598                 /* create confirm */
3599                 features->hfc_id = hc->id;
3600                 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3601                         features->hfc_dtmf = 1;
3602                 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3603                         features->hfc_conf = 1;
3604                 features->hfc_loops = 0;
3605                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3606                         features->hfc_echocanhw = 1;
3607                 } else {
3608                         features->pcm_id = hc->pcm;
3609                         features->pcm_slots = hc->slots;
3610                         features->pcm_banks = 2;
3611                 }
3612                 break;
3613         case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3614                 slot_tx = cq->p1 & 0xff;
3615                 bank_tx = cq->p1 >> 8;
3616                 slot_rx = cq->p2 & 0xff;
3617                 bank_rx = cq->p2 >> 8;
3618                 if (debug & DEBUG_HFCMULTI_MSG)
3619                         printk(KERN_DEBUG
3620                                "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3621                                "slot %d bank %d (RX)\n",
3622                                __func__, slot_tx, bank_tx,
3623                                slot_rx, bank_rx);
3624                 if (slot_tx < hc->slots && bank_tx <= 2 &&
3625                     slot_rx < hc->slots && bank_rx <= 2)
3626                         hfcmulti_pcm(hc, bch->slot,
3627                                      slot_tx, bank_tx, slot_rx, bank_rx);
3628                 else {
3629                         printk(KERN_WARNING
3630                                "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3631                                "slot %d bank %d (RX) out of range\n",
3632                                __func__, slot_tx, bank_tx,
3633                                slot_rx, bank_rx);
3634                         ret = -EINVAL;
3635                 }
3636                 break;
3637         case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3638                 if (debug & DEBUG_HFCMULTI_MSG)
3639                         printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3640                                __func__);
3641                 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3642                 break;
3643         case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3644                 num = cq->p1 & 0xff;
3645                 if (debug & DEBUG_HFCMULTI_MSG)
3646                         printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3647                                __func__, num);
3648                 if (num <= 7)
3649                         hfcmulti_conf(hc, bch->slot, num);
3650                 else {
3651                         printk(KERN_WARNING
3652                                "%s: HW_CONF_JOIN conf %d out of range\n",
3653                                __func__, num);
3654                         ret = -EINVAL;
3655                 }
3656                 break;
3657         case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3658                 if (debug & DEBUG_HFCMULTI_MSG)
3659                         printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3660                 hfcmulti_conf(hc, bch->slot, -1);
3661                 break;
3662         case MISDN_CTRL_HFC_ECHOCAN_ON:
3663                 if (debug & DEBUG_HFCMULTI_MSG)
3664                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3665                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3666                         vpm_echocan_on(hc, bch->slot, cq->p1);
3667                 else
3668                         ret = -EINVAL;
3669                 break;
3670
3671         case MISDN_CTRL_HFC_ECHOCAN_OFF:
3672                 if (debug & DEBUG_HFCMULTI_MSG)
3673                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3674                                __func__);
3675                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3676                         vpm_echocan_off(hc, bch->slot);
3677                 else
3678                         ret = -EINVAL;
3679                 break;
3680         default:
3681                 ret = mISDN_ctrl_bchannel(bch, cq);
3682                 break;
3683         }
3684         return ret;
3685 }
3686
3687 static int
3688 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3689 {
3690         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3691         struct hfc_multi        *hc = bch->hw;
3692         int                     err = -EINVAL;
3693         u_long  flags;
3694
3695         if (bch->debug & DEBUG_HW)
3696                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3697                        __func__, cmd, arg);
3698         switch (cmd) {
3699         case CLOSE_CHANNEL:
3700                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3701                 deactivate_bchannel(bch); /* locked there */
3702                 ch->protocol = ISDN_P_NONE;
3703                 ch->peer = NULL;
3704                 module_put(THIS_MODULE);
3705                 err = 0;
3706                 break;
3707         case CONTROL_CHANNEL:
3708                 spin_lock_irqsave(&hc->lock, flags);
3709                 err = channel_bctrl(bch, arg);
3710                 spin_unlock_irqrestore(&hc->lock, flags);
3711                 break;
3712         default:
3713                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3714                        __func__, cmd);
3715         }
3716         return err;
3717 }
3718
3719 /*
3720  * handle D-channel events
3721  *
3722  * handle state change event
3723  */
3724 static void
3725 ph_state_change(struct dchannel *dch)
3726 {
3727         struct hfc_multi *hc;
3728         int ch, i;
3729
3730         if (!dch) {
3731                 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3732                 return;
3733         }
3734         hc = dch->hw;
3735         ch = dch->slot;
3736
3737         if (hc->ctype == HFC_TYPE_E1) {
3738                 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3739                         if (debug & DEBUG_HFCMULTI_STATE)
3740                                 printk(KERN_DEBUG
3741                                        "%s: E1 TE (id=%d) newstate %x\n",
3742                                        __func__, hc->id, dch->state);
3743                 } else {
3744                         if (debug & DEBUG_HFCMULTI_STATE)
3745                                 printk(KERN_DEBUG
3746                                        "%s: E1 NT (id=%d) newstate %x\n",
3747                                        __func__, hc->id, dch->state);
3748                 }
3749                 switch (dch->state) {
3750                 case (1):
3751                         if (hc->e1_state != 1) {
3752                                 for (i = 1; i <= 31; i++) {
3753                                         /* reset fifos on e1 activation */
3754                                         HFC_outb_nodebug(hc, R_FIFO,
3755                                                          (i << 1) | 1);
3756                                         HFC_wait_nodebug(hc);
3757                                         HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3758                                                          V_RES_F);
3759                                         HFC_wait_nodebug(hc);
3760                                 }
3761                         }
3762                         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3763                         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3764                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3765                         break;
3766
3767                 default:
3768                         if (hc->e1_state != 1)
3769                                 return;
3770                         test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3771                         _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3772                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3773                 }
3774                 hc->e1_state = dch->state;
3775         } else {
3776                 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3777                         if (debug & DEBUG_HFCMULTI_STATE)
3778                                 printk(KERN_DEBUG
3779                                        "%s: S/T TE newstate %x\n",
3780                                        __func__, dch->state);
3781                         switch (dch->state) {
3782                         case (0):
3783                                 l1_event(dch->l1, HW_RESET_IND);
3784                                 break;
3785                         case (3):
3786                                 l1_event(dch->l1, HW_DEACT_IND);
3787                                 break;
3788                         case (5):
3789                         case (8):
3790                                 l1_event(dch->l1, ANYSIGNAL);
3791                                 break;
3792                         case (6):
3793                                 l1_event(dch->l1, INFO2);
3794                                 break;
3795                         case (7):
3796                                 l1_event(dch->l1, INFO4_P8);
3797                                 break;
3798                         }
3799                 } else {
3800                         if (debug & DEBUG_HFCMULTI_STATE)
3801                                 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3802                                        __func__, dch->state);
3803                         switch (dch->state) {
3804                         case (2):
3805                                 if (hc->chan[ch].nt_timer == 0) {
3806                                         hc->chan[ch].nt_timer = -1;
3807                                         HFC_outb(hc, R_ST_SEL,
3808                                                  hc->chan[ch].port);
3809                                         /* undocumented: delay after R_ST_SEL */
3810                                         udelay(1);
3811                                         HFC_outb(hc, A_ST_WR_STATE, 4 |
3812                                                  V_ST_LD_STA); /* G4 */
3813                                         udelay(6); /* wait at least 5,21us */
3814                                         HFC_outb(hc, A_ST_WR_STATE, 4);
3815                                         dch->state = 4;
3816                                 } else {
3817                                         /* one extra count for the next event */
3818                                         hc->chan[ch].nt_timer =
3819                                                 nt_t1_count[poll_timer] + 1;
3820                                         HFC_outb(hc, R_ST_SEL,
3821                                                  hc->chan[ch].port);
3822                                         /* undocumented: delay after R_ST_SEL */
3823                                         udelay(1);
3824                                         /* allow G2 -> G3 transition */
3825                                         HFC_outb(hc, A_ST_WR_STATE, 2 |
3826                                                  V_SET_G2_G3);
3827                                 }
3828                                 break;
3829                         case (1):
3830                                 hc->chan[ch].nt_timer = -1;
3831                                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3832                                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3833                                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3834                                 break;
3835                         case (4):
3836                                 hc->chan[ch].nt_timer = -1;
3837                                 break;
3838                         case (3):
3839                                 hc->chan[ch].nt_timer = -1;
3840                                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3841                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3842                                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3843                                 break;
3844                         }
3845                 }
3846         }
3847 }
3848
3849 /*
3850  * called for card mode init message
3851  */
3852
3853 static void
3854 hfcmulti_initmode(struct dchannel *dch)
3855 {
3856         struct hfc_multi *hc = dch->hw;
3857         u_char          a_st_wr_state, r_e1_wr_sta;
3858         int             i, pt;
3859
3860         if (debug & DEBUG_HFCMULTI_INIT)
3861                 printk(KERN_DEBUG "%s: entered\n", __func__);
3862
3863         i = dch->slot;
3864         pt = hc->chan[i].port;
3865         if (hc->ctype == HFC_TYPE_E1) {
3866                 /* E1 */
3867                 hc->chan[hc->dnum[pt]].slot_tx = -1;
3868                 hc->chan[hc->dnum[pt]].slot_rx = -1;
3869                 hc->chan[hc->dnum[pt]].conf = -1;
3870                 if (hc->dnum[pt]) {
3871                         mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3872                                       -1, 0, -1, 0);
3873                         timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3874                 }
3875                 for (i = 1; i <= 31; i++) {
3876                         if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3877                                 continue;
3878                         hc->chan[i].slot_tx = -1;
3879                         hc->chan[i].slot_rx = -1;
3880                         hc->chan[i].conf = -1;
3881                         mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3882                 }
3883         }
3884         if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3885                 /* E1, port 0 */
3886                 dch = hc->chan[hc->dnum[0]].dch;
3887                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3888                         HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3889                         HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3890                 }
3891                 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3892                         HFC_outb(hc, R_RX0, 0);
3893                         hc->hw.r_tx0 = 0 | V_OUT_EN;
3894                 } else {
3895                         HFC_outb(hc, R_RX0, 1);
3896                         hc->hw.r_tx0 = 1 | V_OUT_EN;
3897                 }
3898                 hc->hw.r_tx1 = V_ATX | V_NTRI;
3899                 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3900                 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3901                 HFC_outb(hc, R_TX_FR0, 0x00);
3902                 HFC_outb(hc, R_TX_FR1, 0xf8);
3903
3904                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3905                         HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3906
3907                 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3908
3909                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3910                         HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3911
3912                 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3913                         if (debug & DEBUG_HFCMULTI_INIT)
3914                                 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3915                                        __func__);
3916                         r_e1_wr_sta = 0; /* G0 */
3917                         hc->e1_getclock = 0;
3918                 } else {
3919                         if (debug & DEBUG_HFCMULTI_INIT)
3920                                 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3921                                        __func__);
3922                         r_e1_wr_sta = 0; /* F0 */
3923                         hc->e1_getclock = 1;
3924                 }
3925                 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3926                         HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3927                 else
3928                         HFC_outb(hc, R_SYNC_OUT, 0);
3929                 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3930                         hc->e1_getclock = 1;
3931                 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3932                         hc->e1_getclock = 0;
3933                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3934                         /* SLAVE (clock master) */
3935                         if (debug & DEBUG_HFCMULTI_INIT)
3936                                 printk(KERN_DEBUG
3937                                        "%s: E1 port is clock master "
3938                                        "(clock from PCM)\n", __func__);
3939                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3940                 } else {
3941                         if (hc->e1_getclock) {
3942                                 /* MASTER (clock slave) */
3943                                 if (debug & DEBUG_HFCMULTI_INIT)
3944                                         printk(KERN_DEBUG
3945                                                "%s: E1 port is clock slave "
3946                                                "(clock to PCM)\n", __func__);
3947                                 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3948                         } else {
3949                                 /* MASTER (clock master) */
3950                                 if (debug & DEBUG_HFCMULTI_INIT)
3951                                         printk(KERN_DEBUG "%s: E1 port is "
3952                                                "clock master "
3953                                                "(clock from QUARTZ)\n",
3954                                                __func__);
3955                                 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3956                                          V_PCM_SYNC | V_JATT_OFF);
3957                                 HFC_outb(hc, R_SYNC_OUT, 0);
3958                         }
3959                 }
3960                 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3961                 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3962                 HFC_outb(hc, R_PWM0, 0x50);
3963                 HFC_outb(hc, R_PWM1, 0xff);
3964                 /* state machine setup */
3965                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3966                 udelay(6); /* wait at least 5,21us */
3967                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3968                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3969                         hc->syncronized = 0;
3970                         plxsd_checksync(hc, 0);
3971                 }
3972         }
3973         if (hc->ctype != HFC_TYPE_E1) {
3974                 /* ST */
3975                 hc->chan[i].slot_tx = -1;
3976                 hc->chan[i].slot_rx = -1;
3977                 hc->chan[i].conf = -1;
3978                 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3979                 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3980                 hc->chan[i - 2].slot_tx = -1;
3981                 hc->chan[i - 2].slot_rx = -1;
3982                 hc->chan[i - 2].conf = -1;
3983                 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3984                 hc->chan[i - 1].slot_tx = -1;
3985                 hc->chan[i - 1].slot_rx = -1;
3986                 hc->chan[i - 1].conf = -1;
3987                 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3988                 /* select interface */
3989                 HFC_outb(hc, R_ST_SEL, pt);
3990                 /* undocumented: delay after R_ST_SEL */
3991                 udelay(1);
3992                 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3993                         if (debug & DEBUG_HFCMULTI_INIT)
3994                                 printk(KERN_DEBUG
3995                                        "%s: ST port %d is NT-mode\n",
3996                                        __func__, pt);
3997                         /* clock delay */
3998                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3999                         a_st_wr_state = 1; /* G1 */
4000                         hc->hw.a_st_ctrl0[pt] = V_ST_MD;
4001                 } else {
4002                         if (debug & DEBUG_HFCMULTI_INIT)
4003                                 printk(KERN_DEBUG
4004                                        "%s: ST port %d is TE-mode\n",
4005                                        __func__, pt);
4006                         /* clock delay */
4007                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
4008                         a_st_wr_state = 2; /* F2 */
4009                         hc->hw.a_st_ctrl0[pt] = 0;
4010                 }
4011                 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
4012                         hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
4013                 if (hc->ctype == HFC_TYPE_XHFC) {
4014                         hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
4015                         HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
4016                                  0x7c << 1 /* V_ST_PULSE */);
4017                 }
4018                 /* line setup */
4019                 HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
4020                 /* disable E-channel */
4021                 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
4022                     test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4023                         HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4024                 else
4025                         HFC_outb(hc, A_ST_CTRL1, 0);
4026                 /* enable B-channel receive */
4027                 HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
4028                 /* state machine setup */
4029                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4030                 udelay(6); /* wait at least 5,21us */
4031                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4032                 hc->hw.r_sci_msk |= 1 << pt;
4033                 /* state machine interrupts */
4034                 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4035                 /* unset sync on port */
4036                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4037                         hc->syncronized &=
4038                                 ~(1 << hc->chan[dch->slot].port);
4039                         plxsd_checksync(hc, 0);
4040                 }
4041         }
4042         if (debug & DEBUG_HFCMULTI_INIT)
4043                 printk("%s: done\n", __func__);
4044 }
4045
4046
4047 static int
4048 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4049               struct channel_req *rq)
4050 {
4051         int     err = 0;
4052         u_long  flags;
4053
4054         if (debug & DEBUG_HW_OPEN)
4055                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4056                        dch->dev.id, __builtin_return_address(0));
4057         if (rq->protocol == ISDN_P_NONE)
4058                 return -EINVAL;
4059         if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4060             (dch->dev.D.protocol != rq->protocol)) {
4061                 if (debug & DEBUG_HFCMULTI_MODE)
4062                         printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4063                                __func__, dch->dev.D.protocol, rq->protocol);
4064         }
4065         if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4066             (rq->protocol != ISDN_P_TE_S0))
4067                 l1_event(dch->l1, CLOSE_CHANNEL);
4068         if (dch->dev.D.protocol != rq->protocol) {
4069                 if (rq->protocol == ISDN_P_TE_S0) {
4070                         err = create_l1(dch, hfcm_l1callback);
4071                         if (err)
4072                                 return err;
4073                 }
4074                 dch->dev.D.protocol = rq->protocol;
4075                 spin_lock_irqsave(&hc->lock, flags);
4076                 hfcmulti_initmode(dch);
4077                 spin_unlock_irqrestore(&hc->lock, flags);
4078         }
4079         if (test_bit(FLG_ACTIVE, &dch->Flags))
4080                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4081                             0, NULL, GFP_KERNEL);
4082         rq->ch = &dch->dev.D;
4083         if (!try_module_get(THIS_MODULE))
4084                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4085         return 0;
4086 }
4087
4088 static int
4089 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4090               struct channel_req *rq)
4091 {
4092         struct bchannel *bch;
4093         int             ch;
4094
4095         if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4096                 return -EINVAL;
4097         if (rq->protocol == ISDN_P_NONE)
4098                 return -EINVAL;
4099         if (hc->ctype == HFC_TYPE_E1)
4100                 ch = rq->adr.channel;
4101         else
4102                 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4103         bch = hc->chan[ch].bch;
4104         if (!bch) {
4105                 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4106                        __func__, ch);
4107                 return -EINVAL;
4108         }
4109         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4110                 return -EBUSY; /* b-channel can be only open once */
4111         bch->ch.protocol = rq->protocol;
4112         hc->chan[ch].rx_off = 0;
4113         rq->ch = &bch->ch;
4114         if (!try_module_get(THIS_MODULE))
4115                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4116         return 0;
4117 }
4118
4119 /*
4120  * device control function
4121  */
4122 static int
4123 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4124 {
4125         struct hfc_multi        *hc = dch->hw;
4126         int     ret = 0;
4127         int     wd_mode, wd_cnt;
4128
4129         switch (cq->op) {
4130         case MISDN_CTRL_GETOP:
4131                 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4132                 break;
4133         case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4134                 wd_cnt = cq->p1 & 0xf;
4135                 wd_mode = !!(cq->p1 >> 4);
4136                 if (debug & DEBUG_HFCMULTI_MSG)
4137                         printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4138                                ", counter 0x%x\n", __func__,
4139                                wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4140                 /* set the watchdog timer */
4141                 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4142                 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4143                 if (hc->ctype == HFC_TYPE_XHFC)
4144                         hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4145                 /* init the watchdog register and reset the counter */
4146                 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4147                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4148                         /* enable the watchdog output for Speech-Design */
4149                         HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4150                         HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4151                         HFC_outb(hc, R_GPIO_OUT1, 0);
4152                         HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4153                 }
4154                 break;
4155         case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4156                 if (debug & DEBUG_HFCMULTI_MSG)
4157                         printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4158                                __func__);
4159                 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4160                 break;
4161         case MISDN_CTRL_L1_TIMER3:
4162                 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4163                 break;
4164         default:
4165                 printk(KERN_WARNING "%s: unknown Op %x\n",
4166                        __func__, cq->op);
4167                 ret = -EINVAL;
4168                 break;
4169         }
4170         return ret;
4171 }
4172
4173 static int
4174 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4175 {
4176         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
4177         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
4178         struct hfc_multi        *hc = dch->hw;
4179         struct channel_req      *rq;
4180         int                     err = 0;
4181         u_long                  flags;
4182
4183         if (dch->debug & DEBUG_HW)
4184                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4185                        __func__, cmd, arg);
4186         switch (cmd) {
4187         case OPEN_CHANNEL:
4188                 rq = arg;
4189                 switch (rq->protocol) {
4190                 case ISDN_P_TE_S0:
4191                 case ISDN_P_NT_S0:
4192                         if (hc->ctype == HFC_TYPE_E1) {
4193                                 err = -EINVAL;
4194                                 break;
4195                         }
4196                         err = open_dchannel(hc, dch, rq); /* locked there */
4197                         break;
4198                 case ISDN_P_TE_E1:
4199                 case ISDN_P_NT_E1:
4200                         if (hc->ctype != HFC_TYPE_E1) {
4201                                 err = -EINVAL;
4202                                 break;
4203                         }
4204                         err = open_dchannel(hc, dch, rq); /* locked there */
4205                         break;
4206                 default:
4207                         spin_lock_irqsave(&hc->lock, flags);
4208                         err = open_bchannel(hc, dch, rq);
4209                         spin_unlock_irqrestore(&hc->lock, flags);
4210                 }
4211                 break;
4212         case CLOSE_CHANNEL:
4213                 if (debug & DEBUG_HW_OPEN)
4214                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4215                                __func__, dch->dev.id,
4216                                __builtin_return_address(0));
4217                 module_put(THIS_MODULE);
4218                 break;
4219         case CONTROL_CHANNEL:
4220                 spin_lock_irqsave(&hc->lock, flags);
4221                 err = channel_dctrl(dch, arg);
4222                 spin_unlock_irqrestore(&hc->lock, flags);
4223                 break;
4224         default:
4225                 if (dch->debug & DEBUG_HW)
4226                         printk(KERN_DEBUG "%s: unknown command %x\n",
4227                                __func__, cmd);
4228                 err = -EINVAL;
4229         }
4230         return err;
4231 }
4232
4233 static int
4234 clockctl(void *priv, int enable)
4235 {
4236         struct hfc_multi *hc = priv;
4237
4238         hc->iclock_on = enable;
4239         return 0;
4240 }
4241
4242 /*
4243  * initialize the card
4244  */
4245
4246 /*
4247  * start timer irq, wait some time and check if we have interrupts.
4248  * if not, reset chip and try again.
4249  */
4250 static int
4251 init_card(struct hfc_multi *hc)
4252 {
4253         int     err = -EIO;
4254         u_long  flags;
4255         void    __iomem *plx_acc;
4256         u_long  plx_flags;
4257
4258         if (debug & DEBUG_HFCMULTI_INIT)
4259                 printk(KERN_DEBUG "%s: entered\n", __func__);
4260
4261         spin_lock_irqsave(&hc->lock, flags);
4262         /* set interrupts but leave global interrupt disabled */
4263         hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4264         disable_hwirq(hc);
4265         spin_unlock_irqrestore(&hc->lock, flags);
4266
4267         if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4268                         "HFC-multi", hc)) {
4269                 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4270                        hc->irq);
4271                 hc->irq = 0;
4272                 return -EIO;
4273         }
4274
4275         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4276                 spin_lock_irqsave(&plx_lock, plx_flags);
4277                 plx_acc = hc->plx_membase + PLX_INTCSR;
4278                 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4279                        plx_acc); /* enable PCI & LINT1 irq */
4280                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4281         }
4282
4283         if (debug & DEBUG_HFCMULTI_INIT)
4284                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4285                        __func__, hc->irq, hc->irqcnt);
4286         err = init_chip(hc);
4287         if (err)
4288                 goto error;
4289         /*
4290          * Finally enable IRQ output
4291          * this is only allowed, if an IRQ routine is already
4292          * established for this HFC, so don't do that earlier
4293          */
4294         spin_lock_irqsave(&hc->lock, flags);
4295         enable_hwirq(hc);
4296         spin_unlock_irqrestore(&hc->lock, flags);
4297         /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4298         set_current_state(TASK_UNINTERRUPTIBLE);
4299         schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4300         /* turn IRQ off until chip is completely initialized */
4301         spin_lock_irqsave(&hc->lock, flags);
4302         disable_hwirq(hc);
4303         spin_unlock_irqrestore(&hc->lock, flags);
4304         if (debug & DEBUG_HFCMULTI_INIT)
4305                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4306                        __func__, hc->irq, hc->irqcnt);
4307         if (hc->irqcnt) {
4308                 if (debug & DEBUG_HFCMULTI_INIT)
4309                         printk(KERN_DEBUG "%s: done\n", __func__);
4310
4311                 return 0;
4312         }
4313         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4314                 printk(KERN_INFO "ignoring missing interrupts\n");
4315                 return 0;
4316         }
4317
4318         printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4319                hc->irq);
4320
4321         err = -EIO;
4322
4323 error:
4324         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4325                 spin_lock_irqsave(&plx_lock, plx_flags);
4326                 plx_acc = hc->plx_membase + PLX_INTCSR;
4327                 writew(0x00, plx_acc); /*disable IRQs*/
4328                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4329         }
4330
4331         if (debug & DEBUG_HFCMULTI_INIT)
4332                 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4333         if (hc->irq) {
4334                 free_irq(hc->irq, hc);
4335                 hc->irq = 0;
4336         }
4337
4338         if (debug & DEBUG_HFCMULTI_INIT)
4339                 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4340         return err;
4341 }
4342
4343 /*
4344  * find pci device and set it up
4345  */
4346
4347 static int
4348 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4349           const struct pci_device_id *ent)
4350 {
4351         struct hm_map   *m = (struct hm_map *)ent->driver_data;
4352
4353         printk(KERN_INFO
4354                "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4355                m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4356
4357         hc->pci_dev = pdev;
4358         if (m->clock2)
4359                 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4360
4361         if (ent->vendor == PCI_VENDOR_ID_DIGIUM &&
4362             ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) {
4363                 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4364                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4365                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4366                 hc->slots = 32;
4367         }
4368
4369         if (hc->pci_dev->irq <= 0) {
4370                 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4371                 return -EIO;
4372         }
4373         if (pci_enable_device(hc->pci_dev)) {
4374                 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4375                 return -EIO;
4376         }
4377         hc->leds = m->leds;
4378         hc->ledstate = 0xAFFEAFFE;
4379         hc->opticalsupport = m->opticalsupport;
4380
4381         hc->pci_iobase = 0;
4382         hc->pci_membase = NULL;
4383         hc->plx_membase = NULL;
4384
4385         /* set memory access methods */
4386         if (m->io_mode) /* use mode from card config */
4387                 hc->io_mode = m->io_mode;
4388         switch (hc->io_mode) {
4389         case HFC_IO_MODE_PLXSD:
4390                 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4391                 hc->slots = 128; /* required */
4392                 hc->HFC_outb = HFC_outb_pcimem;
4393                 hc->HFC_inb = HFC_inb_pcimem;
4394                 hc->HFC_inw = HFC_inw_pcimem;
4395                 hc->HFC_wait = HFC_wait_pcimem;
4396                 hc->read_fifo = read_fifo_pcimem;
4397                 hc->write_fifo = write_fifo_pcimem;
4398                 hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4399                 /* MEMBASE 1 is PLX PCI Bridge */
4400
4401                 if (!hc->plx_origmembase) {
4402                         printk(KERN_WARNING
4403                                "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4404                         pci_disable_device(hc->pci_dev);
4405                         return -EIO;
4406                 }
4407
4408                 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4409                 if (!hc->plx_membase) {
4410                         printk(KERN_WARNING
4411                                "HFC-multi: failed to remap plx address space. "
4412                                "(internal error)\n");
4413                         pci_disable_device(hc->pci_dev);
4414                         return -EIO;
4415                 }
4416                 printk(KERN_INFO
4417                        "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4418                        (u_long)hc->plx_membase, hc->plx_origmembase);
4419
4420                 hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4421                 /* MEMBASE 1 is PLX PCI Bridge */
4422                 if (!hc->pci_origmembase) {
4423                         printk(KERN_WARNING
4424                                "HFC-multi: No IO-Memory for PCI card found\n");
4425                         pci_disable_device(hc->pci_dev);
4426                         return -EIO;
4427                 }
4428
4429                 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4430                 if (!hc->pci_membase) {
4431                         printk(KERN_WARNING "HFC-multi: failed to remap io "
4432                                "address space. (internal error)\n");
4433                         pci_disable_device(hc->pci_dev);
4434                         return -EIO;
4435                 }
4436
4437                 printk(KERN_INFO
4438                        "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4439                        "leds-type %d\n",
4440                        hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4441                        hc->pci_dev->irq, HZ, hc->leds);
4442                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4443                 break;
4444         case HFC_IO_MODE_PCIMEM:
4445                 hc->HFC_outb = HFC_outb_pcimem;
4446                 hc->HFC_inb = HFC_inb_pcimem;
4447                 hc->HFC_inw = HFC_inw_pcimem;
4448                 hc->HFC_wait = HFC_wait_pcimem;
4449                 hc->read_fifo = read_fifo_pcimem;
4450                 hc->write_fifo = write_fifo_pcimem;
4451                 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4452                 if (!hc->pci_origmembase) {
4453                         printk(KERN_WARNING
4454                                "HFC-multi: No IO-Memory for PCI card found\n");
4455                         pci_disable_device(hc->pci_dev);
4456                         return -EIO;
4457                 }
4458
4459                 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4460                 if (!hc->pci_membase) {
4461                         printk(KERN_WARNING
4462                                "HFC-multi: failed to remap io address space. "
4463                                "(internal error)\n");
4464                         pci_disable_device(hc->pci_dev);
4465                         return -EIO;
4466                 }
4467                 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4468                        "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4469                        hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4470                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4471                 break;
4472         case HFC_IO_MODE_REGIO:
4473                 hc->HFC_outb = HFC_outb_regio;
4474                 hc->HFC_inb = HFC_inb_regio;
4475                 hc->HFC_inw = HFC_inw_regio;
4476                 hc->HFC_wait = HFC_wait_regio;
4477                 hc->read_fifo = read_fifo_regio;
4478                 hc->write_fifo = write_fifo_regio;
4479                 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4480                 if (!hc->pci_iobase) {
4481                         printk(KERN_WARNING
4482                                "HFC-multi: No IO for PCI card found\n");
4483                         pci_disable_device(hc->pci_dev);
4484                         return -EIO;
4485                 }
4486
4487                 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4488                         printk(KERN_WARNING "HFC-multi: failed to request "
4489                                "address space at 0x%08lx (internal error)\n",
4490                                hc->pci_iobase);
4491                         pci_disable_device(hc->pci_dev);
4492                         return -EIO;
4493                 }
4494
4495                 printk(KERN_INFO
4496                        "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4497                        m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4498                        hc->pci_dev->irq, HZ, hc->leds);
4499                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4500                 break;
4501         default:
4502                 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4503                 pci_disable_device(hc->pci_dev);
4504                 return -EIO;
4505         }
4506
4507         pci_set_drvdata(hc->pci_dev, hc);
4508
4509         /* At this point the needed PCI config is done */
4510         /* fifos are still not enabled */
4511         return 0;
4512 }
4513
4514
4515 /*
4516  * remove port
4517  */
4518
4519 static void
4520 release_port(struct hfc_multi *hc, struct dchannel *dch)
4521 {
4522         int     pt, ci, i = 0;
4523         u_long  flags;
4524         struct bchannel *pb;
4525
4526         ci = dch->slot;
4527         pt = hc->chan[ci].port;
4528
4529         if (debug & DEBUG_HFCMULTI_INIT)
4530                 printk(KERN_DEBUG "%s: entered for port %d\n",
4531                        __func__, pt + 1);
4532
4533         if (pt >= hc->ports) {
4534                 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4535                        __func__, pt + 1);
4536                 return;
4537         }
4538
4539         if (debug & DEBUG_HFCMULTI_INIT)
4540                 printk(KERN_DEBUG "%s: releasing port=%d\n",
4541                        __func__, pt + 1);
4542
4543         if (dch->dev.D.protocol == ISDN_P_TE_S0)
4544                 l1_event(dch->l1, CLOSE_CHANNEL);
4545
4546         hc->chan[ci].dch = NULL;
4547
4548         if (hc->created[pt]) {
4549                 hc->created[pt] = 0;
4550                 mISDN_unregister_device(&dch->dev);
4551         }
4552
4553         spin_lock_irqsave(&hc->lock, flags);
4554
4555         if (dch->timer.function) {
4556                 del_timer(&dch->timer);
4557                 dch->timer.function = NULL;
4558         }
4559
4560         if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4561                 /* remove sync */
4562                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4563                         hc->syncronized = 0;
4564                         plxsd_checksync(hc, 1);
4565                 }
4566                 /* free channels */
4567                 for (i = 0; i <= 31; i++) {
4568                         if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4569                                 continue;
4570                         if (hc->chan[i].bch) {
4571                                 if (debug & DEBUG_HFCMULTI_INIT)
4572                                         printk(KERN_DEBUG
4573                                                "%s: free port %d channel %d\n",
4574                                                __func__, hc->chan[i].port + 1, i);
4575                                 pb = hc->chan[i].bch;
4576                                 hc->chan[i].bch = NULL;
4577                                 spin_unlock_irqrestore(&hc->lock, flags);
4578                                 mISDN_freebchannel(pb);
4579                                 kfree(pb);
4580                                 kfree(hc->chan[i].coeff);
4581                                 spin_lock_irqsave(&hc->lock, flags);
4582                         }
4583                 }
4584         } else {
4585                 /* remove sync */
4586                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4587                         hc->syncronized &=
4588                                 ~(1 << hc->chan[ci].port);
4589                         plxsd_checksync(hc, 1);
4590                 }
4591                 /* free channels */
4592                 if (hc->chan[ci - 2].bch) {
4593                         if (debug & DEBUG_HFCMULTI_INIT)
4594                                 printk(KERN_DEBUG
4595                                        "%s: free port %d channel %d\n",
4596                                        __func__, hc->chan[ci - 2].port + 1,
4597                                        ci - 2);
4598                         pb = hc->chan[ci - 2].bch;
4599                         hc->chan[ci - 2].bch = NULL;
4600                         spin_unlock_irqrestore(&hc->lock, flags);
4601                         mISDN_freebchannel(pb);
4602                         kfree(pb);
4603                         kfree(hc->chan[ci - 2].coeff);
4604                         spin_lock_irqsave(&hc->lock, flags);
4605                 }
4606                 if (hc->chan[ci - 1].bch) {
4607                         if (debug & DEBUG_HFCMULTI_INIT)
4608                                 printk(KERN_DEBUG
4609                                        "%s: free port %d channel %d\n",
4610                                        __func__, hc->chan[ci - 1].port + 1,
4611                                        ci - 1);
4612                         pb = hc->chan[ci - 1].bch;
4613                         hc->chan[ci - 1].bch = NULL;
4614                         spin_unlock_irqrestore(&hc->lock, flags);
4615                         mISDN_freebchannel(pb);
4616                         kfree(pb);
4617                         kfree(hc->chan[ci - 1].coeff);
4618                         spin_lock_irqsave(&hc->lock, flags);
4619                 }
4620         }
4621
4622         spin_unlock_irqrestore(&hc->lock, flags);
4623
4624         if (debug & DEBUG_HFCMULTI_INIT)
4625                 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4626                         pt+1, ci);
4627         mISDN_freedchannel(dch);
4628         kfree(dch);
4629
4630         if (debug & DEBUG_HFCMULTI_INIT)
4631                 printk(KERN_DEBUG "%s: done!\n", __func__);
4632 }
4633
4634 static void
4635 release_card(struct hfc_multi *hc)
4636 {
4637         u_long  flags;
4638         int     ch;
4639
4640         if (debug & DEBUG_HFCMULTI_INIT)
4641                 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4642                        __func__, hc->id);
4643
4644         /* unregister clock source */
4645         if (hc->iclock)
4646                 mISDN_unregister_clock(hc->iclock);
4647
4648         /* disable and free irq */
4649         spin_lock_irqsave(&hc->lock, flags);
4650         disable_hwirq(hc);
4651         spin_unlock_irqrestore(&hc->lock, flags);
4652         udelay(1000);
4653         if (hc->irq) {
4654                 if (debug & DEBUG_HFCMULTI_INIT)
4655                         printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4656                             __func__, hc->irq, hc);
4657                 free_irq(hc->irq, hc);
4658                 hc->irq = 0;
4659
4660         }
4661
4662         /* disable D-channels & B-channels */
4663         if (debug & DEBUG_HFCMULTI_INIT)
4664                 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4665                        __func__);
4666         for (ch = 0; ch <= 31; ch++) {
4667                 if (hc->chan[ch].dch)
4668                         release_port(hc, hc->chan[ch].dch);
4669         }
4670
4671         /* dimm leds */
4672         if (hc->leds)
4673                 hfcmulti_leds(hc);
4674
4675         /* release hardware */
4676         release_io_hfcmulti(hc);
4677
4678         if (debug & DEBUG_HFCMULTI_INIT)
4679                 printk(KERN_DEBUG "%s: remove instance from list\n",
4680                        __func__);
4681         list_del(&hc->list);
4682
4683         if (debug & DEBUG_HFCMULTI_INIT)
4684                 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4685         if (hc == syncmaster)
4686                 syncmaster = NULL;
4687         kfree(hc);
4688         if (debug & DEBUG_HFCMULTI_INIT)
4689                 printk(KERN_DEBUG "%s: card successfully removed\n",
4690                        __func__);
4691 }
4692
4693 static void
4694 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4695 {
4696         /* set optical line type */
4697         if (port[Port_cnt] & 0x001) {
4698                 if (!m->opticalsupport)  {
4699                         printk(KERN_INFO
4700                                "This board has no optical "
4701                                "support\n");
4702                 } else {
4703                         if (debug & DEBUG_HFCMULTI_INIT)
4704                                 printk(KERN_DEBUG
4705                                        "%s: PORT set optical "
4706                                        "interfacs: card(%d) "
4707                                        "port(%d)\n",
4708                                        __func__,
4709                                        HFC_cnt + 1, 1);
4710                         test_and_set_bit(HFC_CFG_OPTICAL,
4711                             &hc->chan[hc->dnum[0]].cfg);
4712                 }
4713         }
4714         /* set LOS report */
4715         if (port[Port_cnt] & 0x004) {
4716                 if (debug & DEBUG_HFCMULTI_INIT)
4717                         printk(KERN_DEBUG "%s: PORT set "
4718                                "LOS report: card(%d) port(%d)\n",
4719                                __func__, HFC_cnt + 1, 1);
4720                 test_and_set_bit(HFC_CFG_REPORT_LOS,
4721                     &hc->chan[hc->dnum[0]].cfg);
4722         }
4723         /* set AIS report */
4724         if (port[Port_cnt] & 0x008) {
4725                 if (debug & DEBUG_HFCMULTI_INIT)
4726                         printk(KERN_DEBUG "%s: PORT set "
4727                                "AIS report: card(%d) port(%d)\n",
4728                                __func__, HFC_cnt + 1, 1);
4729                 test_and_set_bit(HFC_CFG_REPORT_AIS,
4730                     &hc->chan[hc->dnum[0]].cfg);
4731         }
4732         /* set SLIP report */
4733         if (port[Port_cnt] & 0x010) {
4734                 if (debug & DEBUG_HFCMULTI_INIT)
4735                         printk(KERN_DEBUG
4736                                "%s: PORT set SLIP report: "
4737                                "card(%d) port(%d)\n",
4738                                __func__, HFC_cnt + 1, 1);
4739                 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4740                     &hc->chan[hc->dnum[0]].cfg);
4741         }
4742         /* set RDI report */
4743         if (port[Port_cnt] & 0x020) {
4744                 if (debug & DEBUG_HFCMULTI_INIT)
4745                         printk(KERN_DEBUG
4746                                "%s: PORT set RDI report: "
4747                                "card(%d) port(%d)\n",
4748                                __func__, HFC_cnt + 1, 1);
4749                 test_and_set_bit(HFC_CFG_REPORT_RDI,
4750                     &hc->chan[hc->dnum[0]].cfg);
4751         }
4752         /* set CRC-4 Mode */
4753         if (!(port[Port_cnt] & 0x100)) {
4754                 if (debug & DEBUG_HFCMULTI_INIT)
4755                         printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4756                                " card(%d) port(%d)\n",
4757                                __func__, HFC_cnt + 1, 1);
4758                 test_and_set_bit(HFC_CFG_CRC4,
4759                     &hc->chan[hc->dnum[0]].cfg);
4760         } else {
4761                 if (debug & DEBUG_HFCMULTI_INIT)
4762                         printk(KERN_DEBUG "%s: PORT turn off CRC4"
4763                                " report: card(%d) port(%d)\n",
4764                                __func__, HFC_cnt + 1, 1);
4765         }
4766         /* set forced clock */
4767         if (port[Port_cnt] & 0x0200) {
4768                 if (debug & DEBUG_HFCMULTI_INIT)
4769                         printk(KERN_DEBUG "%s: PORT force getting clock from "
4770                                "E1: card(%d) port(%d)\n",
4771                                __func__, HFC_cnt + 1, 1);
4772                 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4773         } else
4774                 if (port[Port_cnt] & 0x0400) {
4775                         if (debug & DEBUG_HFCMULTI_INIT)
4776                                 printk(KERN_DEBUG "%s: PORT force putting clock to "
4777                                        "E1: card(%d) port(%d)\n",
4778                                        __func__, HFC_cnt + 1, 1);
4779                         test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4780                 }
4781         /* set JATT PLL */
4782         if (port[Port_cnt] & 0x0800) {
4783                 if (debug & DEBUG_HFCMULTI_INIT)
4784                         printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4785                                "E1: card(%d) port(%d)\n",
4786                                __func__, HFC_cnt + 1, 1);
4787                 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4788         }
4789         /* set elastic jitter buffer */
4790         if (port[Port_cnt] & 0x3000) {
4791                 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4792                 if (debug & DEBUG_HFCMULTI_INIT)
4793                         printk(KERN_DEBUG
4794                                "%s: PORT set elastic "
4795                                "buffer to %d: card(%d) port(%d)\n",
4796                             __func__, hc->chan[hc->dnum[0]].jitter,
4797                                HFC_cnt + 1, 1);
4798         } else
4799                 hc->chan[hc->dnum[0]].jitter = 2; /* default */
4800 }
4801
4802 static int
4803 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4804 {
4805         struct dchannel *dch;
4806         struct bchannel *bch;
4807         int             ch, ret = 0;
4808         char            name[MISDN_MAX_IDLEN];
4809         int             bcount = 0;
4810
4811         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4812         if (!dch)
4813                 return -ENOMEM;
4814         dch->debug = debug;
4815         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4816         dch->hw = hc;
4817         dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4818         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4819             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4820         dch->dev.D.send = handle_dmsg;
4821         dch->dev.D.ctrl = hfcm_dctrl;
4822         dch->slot = hc->dnum[pt];
4823         hc->chan[hc->dnum[pt]].dch = dch;
4824         hc->chan[hc->dnum[pt]].port = pt;
4825         hc->chan[hc->dnum[pt]].nt_timer = -1;
4826         for (ch = 1; ch <= 31; ch++) {
4827                 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4828                         continue;
4829                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4830                 if (!bch) {
4831                         printk(KERN_ERR "%s: no memory for bchannel\n",
4832                             __func__);
4833                         ret = -ENOMEM;
4834                         goto free_chan;
4835                 }
4836                 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4837                 if (!hc->chan[ch].coeff) {
4838                         printk(KERN_ERR "%s: no memory for coeffs\n",
4839                             __func__);
4840                         ret = -ENOMEM;
4841                         kfree(bch);
4842                         goto free_chan;
4843                 }
4844                 bch->nr = ch;
4845                 bch->slot = ch;
4846                 bch->debug = debug;
4847                 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4848                 bch->hw = hc;
4849                 bch->ch.send = handle_bmsg;
4850                 bch->ch.ctrl = hfcm_bctrl;
4851                 bch->ch.nr = ch;
4852                 list_add(&bch->ch.list, &dch->dev.bchannels);
4853                 hc->chan[ch].bch = bch;
4854                 hc->chan[ch].port = pt;
4855                 set_channelmap(bch->nr, dch->dev.channelmap);
4856                 bcount++;
4857         }
4858         dch->dev.nrbchan = bcount;
4859         if (pt == 0)
4860                 init_e1_port_hw(hc, m);
4861         if (hc->ports > 1)
4862                 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4863                                 HFC_cnt + 1, pt+1);
4864         else
4865                 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4866         ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4867         if (ret)
4868                 goto free_chan;
4869         hc->created[pt] = 1;
4870         return ret;
4871 free_chan:
4872         release_port(hc, dch);
4873         return ret;
4874 }
4875
4876 static int
4877 init_multi_port(struct hfc_multi *hc, int pt)
4878 {
4879         struct dchannel *dch;
4880         struct bchannel *bch;
4881         int             ch, i, ret = 0;
4882         char            name[MISDN_MAX_IDLEN];
4883
4884         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4885         if (!dch)
4886                 return -ENOMEM;
4887         dch->debug = debug;
4888         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4889         dch->hw = hc;
4890         dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4891         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4892                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4893         dch->dev.D.send = handle_dmsg;
4894         dch->dev.D.ctrl = hfcm_dctrl;
4895         dch->dev.nrbchan = 2;
4896         i = pt << 2;
4897         dch->slot = i + 2;
4898         hc->chan[i + 2].dch = dch;
4899         hc->chan[i + 2].port = pt;
4900         hc->chan[i + 2].nt_timer = -1;
4901         for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4902                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4903                 if (!bch) {
4904                         printk(KERN_ERR "%s: no memory for bchannel\n",
4905                                __func__);
4906                         ret = -ENOMEM;
4907                         goto free_chan;
4908                 }
4909                 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4910                 if (!hc->chan[i + ch].coeff) {
4911                         printk(KERN_ERR "%s: no memory for coeffs\n",
4912                                __func__);
4913                         ret = -ENOMEM;
4914                         kfree(bch);
4915                         goto free_chan;
4916                 }
4917                 bch->nr = ch + 1;
4918                 bch->slot = i + ch;
4919                 bch->debug = debug;
4920                 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4921                 bch->hw = hc;
4922                 bch->ch.send = handle_bmsg;
4923                 bch->ch.ctrl = hfcm_bctrl;
4924                 bch->ch.nr = ch + 1;
4925                 list_add(&bch->ch.list, &dch->dev.bchannels);
4926                 hc->chan[i + ch].bch = bch;
4927                 hc->chan[i + ch].port = pt;
4928                 set_channelmap(bch->nr, dch->dev.channelmap);
4929         }
4930         /* set master clock */
4931         if (port[Port_cnt] & 0x001) {
4932                 if (debug & DEBUG_HFCMULTI_INIT)
4933                         printk(KERN_DEBUG
4934                                "%s: PROTOCOL set master clock: "
4935                                "card(%d) port(%d)\n",
4936                                __func__, HFC_cnt + 1, pt + 1);
4937                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4938                         printk(KERN_ERR "Error: Master clock "
4939                                "for port(%d) of card(%d) is only"
4940                                " possible with TE-mode\n",
4941                                pt + 1, HFC_cnt + 1);
4942                         ret = -EINVAL;
4943                         goto free_chan;
4944                 }
4945                 if (hc->masterclk >= 0) {
4946                         printk(KERN_ERR "Error: Master clock "
4947                                "for port(%d) of card(%d) already "
4948                                "defined for port(%d)\n",
4949                                pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4950                         ret = -EINVAL;
4951                         goto free_chan;
4952                 }
4953                 hc->masterclk = pt;
4954         }
4955         /* set transmitter line to non capacitive */
4956         if (port[Port_cnt] & 0x002) {
4957                 if (debug & DEBUG_HFCMULTI_INIT)
4958                         printk(KERN_DEBUG
4959                                "%s: PROTOCOL set non capacitive "
4960                                "transmitter: card(%d) port(%d)\n",
4961                                __func__, HFC_cnt + 1, pt + 1);
4962                 test_and_set_bit(HFC_CFG_NONCAP_TX,
4963                                  &hc->chan[i + 2].cfg);
4964         }
4965         /* disable E-channel */
4966         if (port[Port_cnt] & 0x004) {
4967                 if (debug & DEBUG_HFCMULTI_INIT)
4968                         printk(KERN_DEBUG
4969                                "%s: PROTOCOL disable E-channel: "
4970                                "card(%d) port(%d)\n",
4971                                __func__, HFC_cnt + 1, pt + 1);
4972                 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4973                                  &hc->chan[i + 2].cfg);
4974         }
4975         if (hc->ctype == HFC_TYPE_XHFC) {
4976                 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4977                          HFC_cnt + 1, pt + 1);
4978                 ret = mISDN_register_device(&dch->dev, NULL, name);
4979         } else {
4980                 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4981                          hc->ctype, HFC_cnt + 1, pt + 1);
4982                 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4983         }
4984         if (ret)
4985                 goto free_chan;
4986         hc->created[pt] = 1;
4987         return ret;
4988 free_chan:
4989         release_port(hc, dch);
4990         return ret;
4991 }
4992
4993 static int
4994 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4995               const struct pci_device_id *ent)
4996 {
4997         int             ret_err = 0;
4998         int             pt;
4999         struct hfc_multi        *hc;
5000         u_long          flags;
5001         u_char          dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
5002         int             i, ch;
5003         u_int           maskcheck;
5004
5005         if (HFC_cnt >= MAX_CARDS) {
5006                 printk(KERN_ERR "too many cards (max=%d).\n",
5007                        MAX_CARDS);
5008                 return -EINVAL;
5009         }
5010         if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
5011                 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
5012                        "type[%d] %d was supplied as module parameter\n",
5013                        m->vendor_name, m->card_name, m->type, HFC_cnt,
5014                        type[HFC_cnt] & 0xff);
5015                 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
5016                        "first, to see cards and their types.");
5017                 return -EINVAL;
5018         }
5019         if (debug & DEBUG_HFCMULTI_INIT)
5020                 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
5021                        __func__, m->vendor_name, m->card_name, m->type,
5022                        type[HFC_cnt]);
5023
5024         /* allocate card+fifo structure */
5025         hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
5026         if (!hc) {
5027                 printk(KERN_ERR "No kmem for HFC-Multi card\n");
5028                 return -ENOMEM;
5029         }
5030         spin_lock_init(&hc->lock);
5031         hc->mtyp = m;
5032         hc->ctype =  m->type;
5033         hc->ports = m->ports;
5034         hc->id = HFC_cnt;
5035         hc->pcm = pcm[HFC_cnt];
5036         hc->io_mode = iomode[HFC_cnt];
5037         if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5038                 /* fragment card */
5039                 pt = 0;
5040                 maskcheck = 0;
5041                 for (ch = 0; ch <= 31; ch++) {
5042                         if (!((1 << ch) & dmask[E1_cnt]))
5043                                 continue;
5044                         hc->dnum[pt] = ch;
5045                         hc->bmask[pt] = bmask[bmask_cnt++];
5046                         if ((maskcheck & hc->bmask[pt])
5047                          || (dmask[E1_cnt] & hc->bmask[pt])) {
5048                                 printk(KERN_INFO
5049                                        "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5050                                        E1_cnt + 1, pt);
5051                                 kfree(hc);
5052                                 return -EINVAL;
5053                         }
5054                         maskcheck |= hc->bmask[pt];
5055                         printk(KERN_INFO
5056                                "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5057                                 E1_cnt + 1, ch, hc->bmask[pt]);
5058                         pt++;
5059                 }
5060                 hc->ports = pt;
5061         }
5062         if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5063                 /* default card layout */
5064                 hc->dnum[0] = 16;
5065                 hc->bmask[0] = 0xfffefffe;
5066                 hc->ports = 1;
5067         }
5068
5069         /* set chip specific features */
5070         hc->masterclk = -1;
5071         if (type[HFC_cnt] & 0x100) {
5072                 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5073                 hc->silence = 0xff; /* ulaw silence */
5074         } else
5075                 hc->silence = 0x2a; /* alaw silence */
5076         if ((poll >> 1) > sizeof(hc->silence_data)) {
5077                 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5078                        "please fix\n");
5079                 kfree(hc);
5080                 return -EINVAL;
5081         }
5082         for (i = 0; i < (poll >> 1); i++)
5083                 hc->silence_data[i] = hc->silence;
5084
5085         if (hc->ctype != HFC_TYPE_XHFC) {
5086                 if (!(type[HFC_cnt] & 0x200))
5087                         test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5088                 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5089         }
5090
5091         if (type[HFC_cnt] & 0x800)
5092                 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5093         if (type[HFC_cnt] & 0x1000) {
5094                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5095                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5096         }
5097         if (type[HFC_cnt] & 0x4000)
5098                 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5099         if (type[HFC_cnt] & 0x8000)
5100                 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5101         hc->slots = 32;
5102         if (type[HFC_cnt] & 0x10000)
5103                 hc->slots = 64;
5104         if (type[HFC_cnt] & 0x20000)
5105                 hc->slots = 128;
5106         if (type[HFC_cnt] & 0x80000) {
5107                 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5108                 hc->wdcount = 0;
5109                 hc->wdbyte = V_GPIO_OUT2;
5110                 printk(KERN_NOTICE "Watchdog enabled\n");
5111         }
5112
5113         if (pdev && ent)
5114                 /* setup pci, hc->slots may change due to PLXSD */
5115                 ret_err = setup_pci(hc, pdev, ent);
5116         else
5117 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5118                 ret_err = setup_embedded(hc, m);
5119 #else
5120         {
5121                 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5122                 ret_err = -EIO;
5123         }
5124 #endif
5125         if (ret_err) {
5126                 if (hc == syncmaster)
5127                         syncmaster = NULL;
5128                 kfree(hc);
5129                 return ret_err;
5130         }
5131
5132         hc->HFC_outb_nodebug = hc->HFC_outb;
5133         hc->HFC_inb_nodebug = hc->HFC_inb;
5134         hc->HFC_inw_nodebug = hc->HFC_inw;
5135         hc->HFC_wait_nodebug = hc->HFC_wait;
5136 #ifdef HFC_REGISTER_DEBUG
5137         hc->HFC_outb = HFC_outb_debug;
5138         hc->HFC_inb = HFC_inb_debug;
5139         hc->HFC_inw = HFC_inw_debug;
5140         hc->HFC_wait = HFC_wait_debug;
5141 #endif
5142         /* create channels */
5143         for (pt = 0; pt < hc->ports; pt++) {
5144                 if (Port_cnt >= MAX_PORTS) {
5145                         printk(KERN_ERR "too many ports (max=%d).\n",
5146                                MAX_PORTS);
5147                         ret_err = -EINVAL;
5148                         goto free_card;
5149                 }
5150                 if (hc->ctype == HFC_TYPE_E1)
5151                         ret_err = init_e1_port(hc, m, pt);
5152                 else
5153                         ret_err = init_multi_port(hc, pt);
5154                 if (debug & DEBUG_HFCMULTI_INIT)
5155                         printk(KERN_DEBUG
5156                             "%s: Registering D-channel, card(%d) port(%d) "
5157                                "result %d\n",
5158                             __func__, HFC_cnt + 1, pt + 1, ret_err);
5159
5160                 if (ret_err) {
5161                         while (pt) { /* release already registered ports */
5162                                 pt--;
5163                                 if (hc->ctype == HFC_TYPE_E1)
5164                                         release_port(hc,
5165                                                 hc->chan[hc->dnum[pt]].dch);
5166                                 else
5167                                         release_port(hc,
5168                                                 hc->chan[(pt << 2) + 2].dch);
5169                         }
5170                         goto free_card;
5171                 }
5172                 if (hc->ctype != HFC_TYPE_E1)
5173                         Port_cnt++; /* for each S0 port */
5174         }
5175         if (hc->ctype == HFC_TYPE_E1) {
5176                 Port_cnt++; /* for each E1 port */
5177                 E1_cnt++;
5178         }
5179
5180         /* disp switches */
5181         switch (m->dip_type) {
5182         case DIP_4S:
5183                 /*
5184                  * Get DIP setting for beroNet 1S/2S/4S cards
5185                  * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5186                  * GPI 19/23 (R_GPI_IN2))
5187                  */
5188                 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5189                         ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5190                         (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5191
5192                 /* Port mode (TE/NT) jumpers */
5193                 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5194
5195                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5196                         pmj = ~pmj & 0xf;
5197
5198                 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5199                        m->vendor_name, m->card_name, dips, pmj);
5200                 break;
5201         case DIP_8S:
5202                 /*
5203                  * Get DIP Setting for beroNet 8S0+ cards
5204                  * Enable PCI auxbridge function
5205                  */
5206                 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5207                 /* prepare access to auxport */
5208                 outw(0x4000, hc->pci_iobase + 4);
5209                 /*
5210                  * some dummy reads are required to
5211                  * read valid DIP switch data
5212                  */
5213                 dips = inb(hc->pci_iobase);
5214                 dips = inb(hc->pci_iobase);
5215                 dips = inb(hc->pci_iobase);
5216                 dips = ~inb(hc->pci_iobase) & 0x3F;
5217                 outw(0x0, hc->pci_iobase + 4);
5218                 /* disable PCI auxbridge function */
5219                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5220                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5221                        m->vendor_name, m->card_name, dips);
5222                 break;
5223         case DIP_E1:
5224                 /*
5225                  * get DIP Setting for beroNet E1 cards
5226                  * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5227                  */
5228                 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5229                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5230                        m->vendor_name, m->card_name, dips);
5231                 break;
5232         }
5233
5234         /* add to list */
5235         spin_lock_irqsave(&HFClock, flags);
5236         list_add_tail(&hc->list, &HFClist);
5237         spin_unlock_irqrestore(&HFClock, flags);
5238
5239         /* use as clock source */
5240         if (clock == HFC_cnt + 1)
5241                 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5242
5243         /* initialize hardware */
5244         hc->irq = (m->irq) ? : hc->pci_dev->irq;
5245         ret_err = init_card(hc);
5246         if (ret_err) {
5247                 printk(KERN_ERR "init card returns %d\n", ret_err);
5248                 release_card(hc);
5249                 return ret_err;
5250         }
5251
5252         /* start IRQ and return */
5253         spin_lock_irqsave(&hc->lock, flags);
5254         enable_hwirq(hc);
5255         spin_unlock_irqrestore(&hc->lock, flags);
5256         return 0;
5257
5258 free_card:
5259         release_io_hfcmulti(hc);
5260         if (hc == syncmaster)
5261                 syncmaster = NULL;
5262         kfree(hc);
5263         return ret_err;
5264 }
5265
5266 static void hfc_remove_pci(struct pci_dev *pdev)
5267 {
5268         struct hfc_multi        *card = pci_get_drvdata(pdev);
5269         u_long                  flags;
5270
5271         if (debug)
5272                 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5273                        "device:%x subvendor:%x subdevice:%x\n",
5274                        pdev->vendor, pdev->device,
5275                        pdev->subsystem_vendor, pdev->subsystem_device);
5276
5277         if (card) {
5278                 spin_lock_irqsave(&HFClock, flags);
5279                 release_card(card);
5280                 spin_unlock_irqrestore(&HFClock, flags);
5281         }  else {
5282                 if (debug)
5283                         printk(KERN_DEBUG "%s: drvdata already removed\n",
5284                                __func__);
5285         }
5286 }
5287
5288 #define VENDOR_CCD      "Cologne Chip AG"
5289 #define VENDOR_BN       "beroNet GmbH"
5290 #define VENDOR_DIG      "Digium Inc."
5291 #define VENDOR_JH       "Junghanns.NET GmbH"
5292 #define VENDOR_PRIM     "PrimuX"
5293
5294 static const struct hm_map hfcm_map[] = {
5295         /*0*/   {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5296         /*1*/   {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5297         /*2*/   {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5298         /*3*/   {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5299         /*4*/   {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5300         /*5*/   {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5301         /*6*/   {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5302         /*7*/   {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5303         /*8*/   {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5304         /*9*/   {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5305         /*10*/  {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5306         /*11*/  {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5307
5308         /*12*/  {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5309         /*13*/  {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5310                  HFC_IO_MODE_REGIO, 0},
5311         /*14*/  {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5312         /*15*/  {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5313
5314         /*16*/  {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5315         /*17*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5316         /*18*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5317
5318         /*19*/  {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5319         /*20*/  {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5320         /*21*/  {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5321         /*22*/  {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5322
5323         /*23*/  {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5324         /*24*/  {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5325         /*25*/  {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5326
5327         /*26*/  {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5328                  HFC_IO_MODE_PLXSD, 0},
5329         /*27*/  {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5330                  HFC_IO_MODE_PLXSD, 0},
5331         /*28*/  {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5332         /*29*/  {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5333         /*30*/  {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5334         /*31*/  {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5335                  HFC_IO_MODE_EMBSD, XHFC_IRQ},
5336         /*32*/  {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5337         /*33*/  {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5338         /*34*/  {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5339 };
5340
5341 #undef H
5342 #define H(x)    ((unsigned long)&hfcm_map[x])
5343 static const struct pci_device_id hfmultipci_ids[] = {
5344
5345         /* Cards with HFC-4S Chip */
5346         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5347           PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5348         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5349           PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5350         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5351           PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5352         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5353           PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5354         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5355           PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5356         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5357           PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5358         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5359           PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5360         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5361           PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5362         { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5363           PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5364         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5365           PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5366         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5367           PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5368         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5369           PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5370         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5371           PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5372         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5373           PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5374         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5375           0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5376         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5377           0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5378
5379         /* Cards with HFC-8S Chip */
5380         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5381           PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5382         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5383           PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5384         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5385           PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5386         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5387           PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5388         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5389           PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5390         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5391           PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5392         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5393           PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5394         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5395           PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5396         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5397           PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5398
5399
5400         /* Cards with HFC-E1 Chip */
5401         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5402           PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5403         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5404           PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5405         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5406           PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5407         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5408           PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5409
5410         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5411           PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5412         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5413           PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5414         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5415           PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5416
5417         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5418           PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5419         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5420           PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5421
5422         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5423           PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5424
5425         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5426         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5427         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5428         {0, }
5429 };
5430 #undef H
5431
5432 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5433
5434 static int
5435 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5436 {
5437         struct hm_map   *m = (struct hm_map *)ent->driver_data;
5438         int             ret;
5439
5440         if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5441                     ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5442                     ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5443                     ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5444                 printk(KERN_ERR
5445                        "Unknown HFC multiport controller (vendor:%04x device:%04x "
5446                        "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5447                        pdev->device, pdev->subsystem_vendor,
5448                        pdev->subsystem_device);
5449                 printk(KERN_ERR
5450                        "Please contact the driver maintainer for support.\n");
5451                 return -ENODEV;
5452         }
5453         ret = hfcmulti_init(m, pdev, ent);
5454         if (ret)
5455                 return ret;
5456         HFC_cnt++;
5457         printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5458         return 0;
5459 }
5460
5461 static struct pci_driver hfcmultipci_driver = {
5462         .name           = "hfc_multi",
5463         .probe          = hfcmulti_probe,
5464         .remove         = hfc_remove_pci,
5465         .id_table       = hfmultipci_ids,
5466 };
5467
5468 static void __exit
5469 HFCmulti_cleanup(void)
5470 {
5471         struct hfc_multi *card, *next;
5472
5473         /* get rid of all devices of this driver */
5474         list_for_each_entry_safe(card, next, &HFClist, list)
5475                 release_card(card);
5476         pci_unregister_driver(&hfcmultipci_driver);
5477 }
5478
5479 static int __init
5480 HFCmulti_init(void)
5481 {
5482         int err;
5483         int i, xhfc = 0;
5484         struct hm_map m;
5485
5486         printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5487
5488 #ifdef IRQ_DEBUG
5489         printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5490 #endif
5491
5492         spin_lock_init(&HFClock);
5493         spin_lock_init(&plx_lock);
5494
5495         if (debug & DEBUG_HFCMULTI_INIT)
5496                 printk(KERN_DEBUG "%s: init entered\n", __func__);
5497
5498         switch (poll) {
5499         case 0:
5500                 poll_timer = 6;
5501                 poll = 128;
5502                 break;
5503         case 8:
5504                 poll_timer = 2;
5505                 break;
5506         case 16:
5507                 poll_timer = 3;
5508                 break;
5509         case 32:
5510                 poll_timer = 4;
5511                 break;
5512         case 64:
5513                 poll_timer = 5;
5514                 break;
5515         case 128:
5516                 poll_timer = 6;
5517                 break;
5518         case 256:
5519                 poll_timer = 7;
5520                 break;
5521         default:
5522                 printk(KERN_ERR
5523                        "%s: Wrong poll value (%d).\n", __func__, poll);
5524                 err = -EINVAL;
5525                 return err;
5526
5527         }
5528
5529         if (!clock)
5530                 clock = 1;
5531
5532         /* Register the embedded devices.
5533          * This should be done before the PCI cards registration */
5534         switch (hwid) {
5535         case HWID_MINIP4:
5536                 xhfc = 1;
5537                 m = hfcm_map[31];
5538                 break;
5539         case HWID_MINIP8:
5540                 xhfc = 2;
5541                 m = hfcm_map[31];
5542                 break;
5543         case HWID_MINIP16:
5544                 xhfc = 4;
5545                 m = hfcm_map[31];
5546                 break;
5547         default:
5548                 xhfc = 0;
5549         }
5550
5551         for (i = 0; i < xhfc; ++i) {
5552                 err = hfcmulti_init(&m, NULL, NULL);
5553                 if (err) {
5554                         printk(KERN_ERR "error registering embedded driver: "
5555                                "%x\n", err);
5556                         return err;
5557                 }
5558                 HFC_cnt++;
5559                 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5560         }
5561
5562         /* Register the PCI cards */
5563         err = pci_register_driver(&hfcmultipci_driver);
5564         if (err < 0) {
5565                 printk(KERN_ERR "error registering pci driver: %x\n", err);
5566                 return err;
5567         }
5568
5569         return 0;
5570 }
5571
5572
5573 module_init(HFCmulti_init);
5574 module_exit(HFCmulti_cleanup);