GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE           (1ULL << 3)
46
47 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
48 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
49 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
50
51 static u32 lpi_id_bits;
52
53 /*
54  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55  * deal with (one configuration byte per interrupt). PENDBASE has to
56  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57  */
58 #define LPI_NRBITS              lpi_id_bits
59 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61
62 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
63
64 /*
65  * Collection structure - just an ID, and a redistributor address to
66  * ping. We use one per CPU as a bag of interrupts assigned to this
67  * CPU.
68  */
69 struct its_collection {
70         u64                     target_address;
71         u16                     col_id;
72 };
73
74 /*
75  * The ITS_BASER structure - contains memory information, cached
76  * value of BASER register configuration and ITS page size.
77  */
78 struct its_baser {
79         void            *base;
80         u64             val;
81         u32             order;
82         u32             psz;
83 };
84
85 struct its_device;
86
87 /*
88  * The ITS structure - contains most of the infrastructure, with the
89  * top-level MSI domain, the command queue, the collections, and the
90  * list of devices writing to it.
91  *
92  * dev_alloc_lock has to be taken for device allocations, while the
93  * spinlock must be taken to parse data structures such as the device
94  * list.
95  */
96 struct its_node {
97         raw_spinlock_t          lock;
98         struct mutex            dev_alloc_lock;
99         struct list_head        entry;
100         void __iomem            *base;
101         void __iomem            *sgir_base;
102         phys_addr_t             phys_base;
103         struct its_cmd_block    *cmd_base;
104         struct its_cmd_block    *cmd_write;
105         struct its_baser        tables[GITS_BASER_NR_REGS];
106         struct its_collection   *collections;
107         struct fwnode_handle    *fwnode_handle;
108         u64                     (*get_msi_base)(struct its_device *its_dev);
109         u64                     typer;
110         u64                     cbaser_save;
111         u32                     ctlr_save;
112         u32                     mpidr;
113         struct list_head        its_device_list;
114         u64                     flags;
115         unsigned long           list_nr;
116         int                     numa_node;
117         unsigned int            msi_domain_flags;
118         u32                     pre_its_base; /* for Socionext Synquacer */
119         int                     vlpi_redist_offset;
120 };
121
122 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125
126 #define ITS_ITT_ALIGN           SZ_256
127
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS                                              \
130         ({                                                              \
131                 int nvpeid = 16;                                        \
132                 if (gic_rdists->has_rvpeid &&                           \
133                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
134                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
135                                       GICD_TYPER2_VID);                 \
136                                                                         \
137                 nvpeid;                                                 \
138         })
139 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
140
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
143
144 struct event_lpi_map {
145         unsigned long           *lpi_map;
146         u16                     *col_map;
147         irq_hw_number_t         lpi_base;
148         int                     nr_lpis;
149         raw_spinlock_t          vlpi_lock;
150         struct its_vm           *vm;
151         struct its_vlpi_map     *vlpi_maps;
152         int                     nr_vlpis;
153 };
154
155 /*
156  * The ITS view of a device - belongs to an ITS, owns an interrupt
157  * translation table, and a list of interrupts.  If it some of its
158  * LPIs are injected into a guest (GICv4), the event_map.vm field
159  * indicates which one.
160  */
161 struct its_device {
162         struct list_head        entry;
163         struct its_node         *its;
164         struct event_lpi_map    event_map;
165         void                    *itt;
166         u32                     nr_ites;
167         u32                     device_id;
168         bool                    shared;
169 };
170
171 static struct {
172         raw_spinlock_t          lock;
173         struct its_device       *dev;
174         struct its_vpe          **vpes;
175         int                     next_victim;
176 } vpe_proxy;
177
178 struct cpu_lpi_count {
179         atomic_t        managed;
180         atomic_t        unmanaged;
181 };
182
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193
194 static DEFINE_IDA(its_vpeid_ida);
195
196 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
200
201 /*
202  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203  * always have vSGIs mapped.
204  */
205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209
210 static bool rdists_support_shareable(void)
211 {
212         return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
213 }
214
215 static u16 get_its_list(struct its_vm *vm)
216 {
217         struct its_node *its;
218         unsigned long its_list = 0;
219
220         list_for_each_entry(its, &its_nodes, entry) {
221                 if (!is_v4(its))
222                         continue;
223
224                 if (require_its_list_vmovp(vm, its))
225                         __set_bit(its->list_nr, &its_list);
226         }
227
228         return (u16)its_list;
229 }
230
231 static inline u32 its_get_event_id(struct irq_data *d)
232 {
233         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
234         return d->hwirq - its_dev->event_map.lpi_base;
235 }
236
237 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
238                                                u32 event)
239 {
240         struct its_node *its = its_dev->its;
241
242         return its->collections + its_dev->event_map.col_map[event];
243 }
244
245 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
246                                                u32 event)
247 {
248         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
249                 return NULL;
250
251         return &its_dev->event_map.vlpi_maps[event];
252 }
253
254 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
255 {
256         if (irqd_is_forwarded_to_vcpu(d)) {
257                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
258                 u32 event = its_get_event_id(d);
259
260                 return dev_event_to_vlpi_map(its_dev, event);
261         }
262
263         return NULL;
264 }
265
266 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
267 {
268         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
269         return vpe->col_idx;
270 }
271
272 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
273 {
274         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
275 }
276
277 static struct irq_chip its_vpe_irq_chip;
278
279 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
280 {
281         struct its_vpe *vpe = NULL;
282         int cpu;
283
284         if (d->chip == &its_vpe_irq_chip) {
285                 vpe = irq_data_get_irq_chip_data(d);
286         } else {
287                 struct its_vlpi_map *map = get_vlpi_map(d);
288                 if (map)
289                         vpe = map->vpe;
290         }
291
292         if (vpe) {
293                 cpu = vpe_to_cpuid_lock(vpe, flags);
294         } else {
295                 /* Physical LPIs are already locked via the irq_desc lock */
296                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
297                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
298                 /* Keep GCC quiet... */
299                 *flags = 0;
300         }
301
302         return cpu;
303 }
304
305 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
306 {
307         struct its_vpe *vpe = NULL;
308
309         if (d->chip == &its_vpe_irq_chip) {
310                 vpe = irq_data_get_irq_chip_data(d);
311         } else {
312                 struct its_vlpi_map *map = get_vlpi_map(d);
313                 if (map)
314                         vpe = map->vpe;
315         }
316
317         if (vpe)
318                 vpe_to_cpuid_unlock(vpe, flags);
319 }
320
321 static struct its_collection *valid_col(struct its_collection *col)
322 {
323         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
324                 return NULL;
325
326         return col;
327 }
328
329 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
330 {
331         if (valid_col(its->collections + vpe->col_idx))
332                 return vpe;
333
334         return NULL;
335 }
336
337 /*
338  * ITS command descriptors - parameters to be encoded in a command
339  * block.
340  */
341 struct its_cmd_desc {
342         union {
343                 struct {
344                         struct its_device *dev;
345                         u32 event_id;
346                 } its_inv_cmd;
347
348                 struct {
349                         struct its_device *dev;
350                         u32 event_id;
351                 } its_clear_cmd;
352
353                 struct {
354                         struct its_device *dev;
355                         u32 event_id;
356                 } its_int_cmd;
357
358                 struct {
359                         struct its_device *dev;
360                         int valid;
361                 } its_mapd_cmd;
362
363                 struct {
364                         struct its_collection *col;
365                         int valid;
366                 } its_mapc_cmd;
367
368                 struct {
369                         struct its_device *dev;
370                         u32 phys_id;
371                         u32 event_id;
372                 } its_mapti_cmd;
373
374                 struct {
375                         struct its_device *dev;
376                         struct its_collection *col;
377                         u32 event_id;
378                 } its_movi_cmd;
379
380                 struct {
381                         struct its_device *dev;
382                         u32 event_id;
383                 } its_discard_cmd;
384
385                 struct {
386                         struct its_collection *col;
387                 } its_invall_cmd;
388
389                 struct {
390                         struct its_vpe *vpe;
391                 } its_vinvall_cmd;
392
393                 struct {
394                         struct its_vpe *vpe;
395                         struct its_collection *col;
396                         bool valid;
397                 } its_vmapp_cmd;
398
399                 struct {
400                         struct its_vpe *vpe;
401                         struct its_device *dev;
402                         u32 virt_id;
403                         u32 event_id;
404                         bool db_enabled;
405                 } its_vmapti_cmd;
406
407                 struct {
408                         struct its_vpe *vpe;
409                         struct its_device *dev;
410                         u32 event_id;
411                         bool db_enabled;
412                 } its_vmovi_cmd;
413
414                 struct {
415                         struct its_vpe *vpe;
416                         struct its_collection *col;
417                         u16 seq_num;
418                         u16 its_list;
419                 } its_vmovp_cmd;
420
421                 struct {
422                         struct its_vpe *vpe;
423                 } its_invdb_cmd;
424
425                 struct {
426                         struct its_vpe *vpe;
427                         u8 sgi;
428                         u8 priority;
429                         bool enable;
430                         bool group;
431                         bool clear;
432                 } its_vsgi_cmd;
433         };
434 };
435
436 /*
437  * The ITS command block, which is what the ITS actually parses.
438  */
439 struct its_cmd_block {
440         union {
441                 u64     raw_cmd[4];
442                 __le64  raw_cmd_le[4];
443         };
444 };
445
446 #define ITS_CMD_QUEUE_SZ                SZ_64K
447 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
448
449 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
450                                                     struct its_cmd_block *,
451                                                     struct its_cmd_desc *);
452
453 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
454                                               struct its_cmd_block *,
455                                               struct its_cmd_desc *);
456
457 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
458 {
459         u64 mask = GENMASK_ULL(h, l);
460         *raw_cmd &= ~mask;
461         *raw_cmd |= (val << l) & mask;
462 }
463
464 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
465 {
466         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
467 }
468
469 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
470 {
471         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
472 }
473
474 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
475 {
476         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
477 }
478
479 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
480 {
481         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
482 }
483
484 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
485 {
486         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
487 }
488
489 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
490 {
491         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
492 }
493
494 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
495 {
496         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
497 }
498
499 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
500 {
501         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
502 }
503
504 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
505 {
506         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
507 }
508
509 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
510 {
511         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
512 }
513
514 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
515 {
516         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
517 }
518
519 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
520 {
521         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
522 }
523
524 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
525 {
526         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
527 }
528
529 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
530 {
531         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
532 }
533
534 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
535 {
536         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
537 }
538
539 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
540 {
541         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
542 }
543
544 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
545 {
546         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
547 }
548
549 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
550 {
551         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
552 }
553
554 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
555 {
556         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
557 }
558
559 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
560 {
561         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
562 }
563
564 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
565                                         u32 vpe_db_lpi)
566 {
567         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
568 }
569
570 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
571                                         u32 vpe_db_lpi)
572 {
573         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
574 }
575
576 static void its_encode_db(struct its_cmd_block *cmd, bool db)
577 {
578         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
579 }
580
581 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
582 {
583         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
584 }
585
586 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
587 {
588         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
589 }
590
591 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
592 {
593         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
594 }
595
596 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
597 {
598         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
599 }
600
601 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
602 {
603         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
604 }
605
606 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
607 {
608         /* Let's fixup BE commands */
609         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
610         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
611         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
612         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
613 }
614
615 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
616                                                  struct its_cmd_block *cmd,
617                                                  struct its_cmd_desc *desc)
618 {
619         unsigned long itt_addr;
620         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
621
622         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
623         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
624
625         its_encode_cmd(cmd, GITS_CMD_MAPD);
626         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
627         its_encode_size(cmd, size - 1);
628         its_encode_itt(cmd, itt_addr);
629         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
630
631         its_fixup_cmd(cmd);
632
633         return NULL;
634 }
635
636 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
637                                                  struct its_cmd_block *cmd,
638                                                  struct its_cmd_desc *desc)
639 {
640         its_encode_cmd(cmd, GITS_CMD_MAPC);
641         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
642         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
643         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
644
645         its_fixup_cmd(cmd);
646
647         return desc->its_mapc_cmd.col;
648 }
649
650 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
651                                                   struct its_cmd_block *cmd,
652                                                   struct its_cmd_desc *desc)
653 {
654         struct its_collection *col;
655
656         col = dev_event_to_col(desc->its_mapti_cmd.dev,
657                                desc->its_mapti_cmd.event_id);
658
659         its_encode_cmd(cmd, GITS_CMD_MAPTI);
660         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
661         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
662         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
663         its_encode_collection(cmd, col->col_id);
664
665         its_fixup_cmd(cmd);
666
667         return valid_col(col);
668 }
669
670 static struct its_collection *its_build_movi_cmd(struct its_node *its,
671                                                  struct its_cmd_block *cmd,
672                                                  struct its_cmd_desc *desc)
673 {
674         struct its_collection *col;
675
676         col = dev_event_to_col(desc->its_movi_cmd.dev,
677                                desc->its_movi_cmd.event_id);
678
679         its_encode_cmd(cmd, GITS_CMD_MOVI);
680         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
681         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
682         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
683
684         its_fixup_cmd(cmd);
685
686         return valid_col(col);
687 }
688
689 static struct its_collection *its_build_discard_cmd(struct its_node *its,
690                                                     struct its_cmd_block *cmd,
691                                                     struct its_cmd_desc *desc)
692 {
693         struct its_collection *col;
694
695         col = dev_event_to_col(desc->its_discard_cmd.dev,
696                                desc->its_discard_cmd.event_id);
697
698         its_encode_cmd(cmd, GITS_CMD_DISCARD);
699         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
700         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
701
702         its_fixup_cmd(cmd);
703
704         return valid_col(col);
705 }
706
707 static struct its_collection *its_build_inv_cmd(struct its_node *its,
708                                                 struct its_cmd_block *cmd,
709                                                 struct its_cmd_desc *desc)
710 {
711         struct its_collection *col;
712
713         col = dev_event_to_col(desc->its_inv_cmd.dev,
714                                desc->its_inv_cmd.event_id);
715
716         its_encode_cmd(cmd, GITS_CMD_INV);
717         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
718         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
719
720         its_fixup_cmd(cmd);
721
722         return valid_col(col);
723 }
724
725 static struct its_collection *its_build_int_cmd(struct its_node *its,
726                                                 struct its_cmd_block *cmd,
727                                                 struct its_cmd_desc *desc)
728 {
729         struct its_collection *col;
730
731         col = dev_event_to_col(desc->its_int_cmd.dev,
732                                desc->its_int_cmd.event_id);
733
734         its_encode_cmd(cmd, GITS_CMD_INT);
735         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
736         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
737
738         its_fixup_cmd(cmd);
739
740         return valid_col(col);
741 }
742
743 static struct its_collection *its_build_clear_cmd(struct its_node *its,
744                                                   struct its_cmd_block *cmd,
745                                                   struct its_cmd_desc *desc)
746 {
747         struct its_collection *col;
748
749         col = dev_event_to_col(desc->its_clear_cmd.dev,
750                                desc->its_clear_cmd.event_id);
751
752         its_encode_cmd(cmd, GITS_CMD_CLEAR);
753         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
754         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
755
756         its_fixup_cmd(cmd);
757
758         return valid_col(col);
759 }
760
761 static struct its_collection *its_build_invall_cmd(struct its_node *its,
762                                                    struct its_cmd_block *cmd,
763                                                    struct its_cmd_desc *desc)
764 {
765         its_encode_cmd(cmd, GITS_CMD_INVALL);
766         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
767
768         its_fixup_cmd(cmd);
769
770         return desc->its_invall_cmd.col;
771 }
772
773 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
774                                              struct its_cmd_block *cmd,
775                                              struct its_cmd_desc *desc)
776 {
777         its_encode_cmd(cmd, GITS_CMD_VINVALL);
778         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
779
780         its_fixup_cmd(cmd);
781
782         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
783 }
784
785 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
786                                            struct its_cmd_block *cmd,
787                                            struct its_cmd_desc *desc)
788 {
789         unsigned long vpt_addr, vconf_addr;
790         u64 target;
791         bool alloc;
792
793         its_encode_cmd(cmd, GITS_CMD_VMAPP);
794         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
795         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
796
797         if (!desc->its_vmapp_cmd.valid) {
798                 if (is_v4_1(its)) {
799                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
800                         its_encode_alloc(cmd, alloc);
801                 }
802
803                 goto out;
804         }
805
806         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
807         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
808
809         its_encode_target(cmd, target);
810         its_encode_vpt_addr(cmd, vpt_addr);
811         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
812
813         if (!is_v4_1(its))
814                 goto out;
815
816         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
817
818         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
819
820         its_encode_alloc(cmd, alloc);
821
822         /*
823          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
824          * to be unmapped first, and in this case, we may remap the vPE
825          * back while the VPT is not empty. So we can't assume that the
826          * VPT is empty on map. This is why we never advertise PTZ.
827          */
828         its_encode_ptz(cmd, false);
829         its_encode_vconf_addr(cmd, vconf_addr);
830         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
831
832 out:
833         its_fixup_cmd(cmd);
834
835         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
836 }
837
838 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
839                                             struct its_cmd_block *cmd,
840                                             struct its_cmd_desc *desc)
841 {
842         u32 db;
843
844         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
845                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
846         else
847                 db = 1023;
848
849         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
850         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
851         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
852         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
853         its_encode_db_phys_id(cmd, db);
854         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
855
856         its_fixup_cmd(cmd);
857
858         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
859 }
860
861 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
862                                            struct its_cmd_block *cmd,
863                                            struct its_cmd_desc *desc)
864 {
865         u32 db;
866
867         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
868                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
869         else
870                 db = 1023;
871
872         its_encode_cmd(cmd, GITS_CMD_VMOVI);
873         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
874         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
875         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
876         its_encode_db_phys_id(cmd, db);
877         its_encode_db_valid(cmd, true);
878
879         its_fixup_cmd(cmd);
880
881         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
882 }
883
884 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
885                                            struct its_cmd_block *cmd,
886                                            struct its_cmd_desc *desc)
887 {
888         u64 target;
889
890         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
891         its_encode_cmd(cmd, GITS_CMD_VMOVP);
892         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
893         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
894         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
895         its_encode_target(cmd, target);
896
897         if (is_v4_1(its)) {
898                 its_encode_db(cmd, true);
899                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
900         }
901
902         its_fixup_cmd(cmd);
903
904         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
905 }
906
907 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
908                                           struct its_cmd_block *cmd,
909                                           struct its_cmd_desc *desc)
910 {
911         struct its_vlpi_map *map;
912
913         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
914                                     desc->its_inv_cmd.event_id);
915
916         its_encode_cmd(cmd, GITS_CMD_INV);
917         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
918         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
919
920         its_fixup_cmd(cmd);
921
922         return valid_vpe(its, map->vpe);
923 }
924
925 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
926                                           struct its_cmd_block *cmd,
927                                           struct its_cmd_desc *desc)
928 {
929         struct its_vlpi_map *map;
930
931         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
932                                     desc->its_int_cmd.event_id);
933
934         its_encode_cmd(cmd, GITS_CMD_INT);
935         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
936         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
937
938         its_fixup_cmd(cmd);
939
940         return valid_vpe(its, map->vpe);
941 }
942
943 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
944                                             struct its_cmd_block *cmd,
945                                             struct its_cmd_desc *desc)
946 {
947         struct its_vlpi_map *map;
948
949         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
950                                     desc->its_clear_cmd.event_id);
951
952         its_encode_cmd(cmd, GITS_CMD_CLEAR);
953         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
954         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
955
956         its_fixup_cmd(cmd);
957
958         return valid_vpe(its, map->vpe);
959 }
960
961 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
962                                            struct its_cmd_block *cmd,
963                                            struct its_cmd_desc *desc)
964 {
965         if (WARN_ON(!is_v4_1(its)))
966                 return NULL;
967
968         its_encode_cmd(cmd, GITS_CMD_INVDB);
969         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
970
971         its_fixup_cmd(cmd);
972
973         return valid_vpe(its, desc->its_invdb_cmd.vpe);
974 }
975
976 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
977                                           struct its_cmd_block *cmd,
978                                           struct its_cmd_desc *desc)
979 {
980         if (WARN_ON(!is_v4_1(its)))
981                 return NULL;
982
983         its_encode_cmd(cmd, GITS_CMD_VSGI);
984         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
985         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
986         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
987         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
988         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
989         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
990
991         its_fixup_cmd(cmd);
992
993         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
994 }
995
996 static u64 its_cmd_ptr_to_offset(struct its_node *its,
997                                  struct its_cmd_block *ptr)
998 {
999         return (ptr - its->cmd_base) * sizeof(*ptr);
1000 }
1001
1002 static int its_queue_full(struct its_node *its)
1003 {
1004         int widx;
1005         int ridx;
1006
1007         widx = its->cmd_write - its->cmd_base;
1008         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1009
1010         /* This is incredibly unlikely to happen, unless the ITS locks up. */
1011         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1012                 return 1;
1013
1014         return 0;
1015 }
1016
1017 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1018 {
1019         struct its_cmd_block *cmd;
1020         u32 count = 1000000;    /* 1s! */
1021
1022         while (its_queue_full(its)) {
1023                 count--;
1024                 if (!count) {
1025                         pr_err_ratelimited("ITS queue not draining\n");
1026                         return NULL;
1027                 }
1028                 cpu_relax();
1029                 udelay(1);
1030         }
1031
1032         cmd = its->cmd_write++;
1033
1034         /* Handle queue wrapping */
1035         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1036                 its->cmd_write = its->cmd_base;
1037
1038         /* Clear command  */
1039         cmd->raw_cmd[0] = 0;
1040         cmd->raw_cmd[1] = 0;
1041         cmd->raw_cmd[2] = 0;
1042         cmd->raw_cmd[3] = 0;
1043
1044         return cmd;
1045 }
1046
1047 static struct its_cmd_block *its_post_commands(struct its_node *its)
1048 {
1049         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1050
1051         writel_relaxed(wr, its->base + GITS_CWRITER);
1052
1053         return its->cmd_write;
1054 }
1055
1056 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1057 {
1058         /*
1059          * Make sure the commands written to memory are observable by
1060          * the ITS.
1061          */
1062         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1063                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1064         else
1065                 dsb(ishst);
1066 }
1067
1068 static int its_wait_for_range_completion(struct its_node *its,
1069                                          u64    prev_idx,
1070                                          struct its_cmd_block *to)
1071 {
1072         u64 rd_idx, to_idx, linear_idx;
1073         u32 count = 1000000;    /* 1s! */
1074
1075         /* Linearize to_idx if the command set has wrapped around */
1076         to_idx = its_cmd_ptr_to_offset(its, to);
1077         if (to_idx < prev_idx)
1078                 to_idx += ITS_CMD_QUEUE_SZ;
1079
1080         linear_idx = prev_idx;
1081
1082         while (1) {
1083                 s64 delta;
1084
1085                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1086
1087                 /*
1088                  * Compute the read pointer progress, taking the
1089                  * potential wrap-around into account.
1090                  */
1091                 delta = rd_idx - prev_idx;
1092                 if (rd_idx < prev_idx)
1093                         delta += ITS_CMD_QUEUE_SZ;
1094
1095                 linear_idx += delta;
1096                 if (linear_idx >= to_idx)
1097                         break;
1098
1099                 count--;
1100                 if (!count) {
1101                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1102                                            to_idx, linear_idx);
1103                         return -1;
1104                 }
1105                 prev_idx = rd_idx;
1106                 cpu_relax();
1107                 udelay(1);
1108         }
1109
1110         return 0;
1111 }
1112
1113 /* Warning, macro hell follows */
1114 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1115 void name(struct its_node *its,                                         \
1116           buildtype builder,                                            \
1117           struct its_cmd_desc *desc)                                    \
1118 {                                                                       \
1119         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1120         synctype *sync_obj;                                             \
1121         unsigned long flags;                                            \
1122         u64 rd_idx;                                                     \
1123                                                                         \
1124         raw_spin_lock_irqsave(&its->lock, flags);                       \
1125                                                                         \
1126         cmd = its_allocate_entry(its);                                  \
1127         if (!cmd) {             /* We're soooooo screewed... */         \
1128                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1129                 return;                                                 \
1130         }                                                               \
1131         sync_obj = builder(its, cmd, desc);                             \
1132         its_flush_cmd(its, cmd);                                        \
1133                                                                         \
1134         if (sync_obj) {                                                 \
1135                 sync_cmd = its_allocate_entry(its);                     \
1136                 if (!sync_cmd)                                          \
1137                         goto post;                                      \
1138                                                                         \
1139                 buildfn(its, sync_cmd, sync_obj);                       \
1140                 its_flush_cmd(its, sync_cmd);                           \
1141         }                                                               \
1142                                                                         \
1143 post:                                                                   \
1144         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1145         next_cmd = its_post_commands(its);                              \
1146         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1147                                                                         \
1148         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1149                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1150 }
1151
1152 static void its_build_sync_cmd(struct its_node *its,
1153                                struct its_cmd_block *sync_cmd,
1154                                struct its_collection *sync_col)
1155 {
1156         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1157         its_encode_target(sync_cmd, sync_col->target_address);
1158
1159         its_fixup_cmd(sync_cmd);
1160 }
1161
1162 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1163                              struct its_collection, its_build_sync_cmd)
1164
1165 static void its_build_vsync_cmd(struct its_node *its,
1166                                 struct its_cmd_block *sync_cmd,
1167                                 struct its_vpe *sync_vpe)
1168 {
1169         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1170         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1171
1172         its_fixup_cmd(sync_cmd);
1173 }
1174
1175 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1176                              struct its_vpe, its_build_vsync_cmd)
1177
1178 static void its_send_int(struct its_device *dev, u32 event_id)
1179 {
1180         struct its_cmd_desc desc;
1181
1182         desc.its_int_cmd.dev = dev;
1183         desc.its_int_cmd.event_id = event_id;
1184
1185         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1186 }
1187
1188 static void its_send_clear(struct its_device *dev, u32 event_id)
1189 {
1190         struct its_cmd_desc desc;
1191
1192         desc.its_clear_cmd.dev = dev;
1193         desc.its_clear_cmd.event_id = event_id;
1194
1195         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1196 }
1197
1198 static void its_send_inv(struct its_device *dev, u32 event_id)
1199 {
1200         struct its_cmd_desc desc;
1201
1202         desc.its_inv_cmd.dev = dev;
1203         desc.its_inv_cmd.event_id = event_id;
1204
1205         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1206 }
1207
1208 static void its_send_mapd(struct its_device *dev, int valid)
1209 {
1210         struct its_cmd_desc desc;
1211
1212         desc.its_mapd_cmd.dev = dev;
1213         desc.its_mapd_cmd.valid = !!valid;
1214
1215         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1216 }
1217
1218 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1219                           int valid)
1220 {
1221         struct its_cmd_desc desc;
1222
1223         desc.its_mapc_cmd.col = col;
1224         desc.its_mapc_cmd.valid = !!valid;
1225
1226         its_send_single_command(its, its_build_mapc_cmd, &desc);
1227 }
1228
1229 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1230 {
1231         struct its_cmd_desc desc;
1232
1233         desc.its_mapti_cmd.dev = dev;
1234         desc.its_mapti_cmd.phys_id = irq_id;
1235         desc.its_mapti_cmd.event_id = id;
1236
1237         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1238 }
1239
1240 static void its_send_movi(struct its_device *dev,
1241                           struct its_collection *col, u32 id)
1242 {
1243         struct its_cmd_desc desc;
1244
1245         desc.its_movi_cmd.dev = dev;
1246         desc.its_movi_cmd.col = col;
1247         desc.its_movi_cmd.event_id = id;
1248
1249         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1250 }
1251
1252 static void its_send_discard(struct its_device *dev, u32 id)
1253 {
1254         struct its_cmd_desc desc;
1255
1256         desc.its_discard_cmd.dev = dev;
1257         desc.its_discard_cmd.event_id = id;
1258
1259         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1260 }
1261
1262 static void its_send_invall(struct its_node *its, struct its_collection *col)
1263 {
1264         struct its_cmd_desc desc;
1265
1266         desc.its_invall_cmd.col = col;
1267
1268         its_send_single_command(its, its_build_invall_cmd, &desc);
1269 }
1270
1271 static void its_send_vmapti(struct its_device *dev, u32 id)
1272 {
1273         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1274         struct its_cmd_desc desc;
1275
1276         desc.its_vmapti_cmd.vpe = map->vpe;
1277         desc.its_vmapti_cmd.dev = dev;
1278         desc.its_vmapti_cmd.virt_id = map->vintid;
1279         desc.its_vmapti_cmd.event_id = id;
1280         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1281
1282         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1283 }
1284
1285 static void its_send_vmovi(struct its_device *dev, u32 id)
1286 {
1287         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1288         struct its_cmd_desc desc;
1289
1290         desc.its_vmovi_cmd.vpe = map->vpe;
1291         desc.its_vmovi_cmd.dev = dev;
1292         desc.its_vmovi_cmd.event_id = id;
1293         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1294
1295         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1296 }
1297
1298 static void its_send_vmapp(struct its_node *its,
1299                            struct its_vpe *vpe, bool valid)
1300 {
1301         struct its_cmd_desc desc;
1302
1303         desc.its_vmapp_cmd.vpe = vpe;
1304         desc.its_vmapp_cmd.valid = valid;
1305         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1306
1307         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1308 }
1309
1310 static void its_send_vmovp(struct its_vpe *vpe)
1311 {
1312         struct its_cmd_desc desc = {};
1313         struct its_node *its;
1314         unsigned long flags;
1315         int col_id = vpe->col_idx;
1316
1317         desc.its_vmovp_cmd.vpe = vpe;
1318
1319         if (!its_list_map) {
1320                 its = list_first_entry(&its_nodes, struct its_node, entry);
1321                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1322                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1323                 return;
1324         }
1325
1326         /*
1327          * Yet another marvel of the architecture. If using the
1328          * its_list "feature", we need to make sure that all ITSs
1329          * receive all VMOVP commands in the same order. The only way
1330          * to guarantee this is to make vmovp a serialization point.
1331          *
1332          * Wall <-- Head.
1333          */
1334         raw_spin_lock_irqsave(&vmovp_lock, flags);
1335
1336         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1337         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1338
1339         /* Emit VMOVPs */
1340         list_for_each_entry(its, &its_nodes, entry) {
1341                 if (!is_v4(its))
1342                         continue;
1343
1344                 if (!require_its_list_vmovp(vpe->its_vm, its))
1345                         continue;
1346
1347                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1348                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1349         }
1350
1351         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1352 }
1353
1354 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1355 {
1356         struct its_cmd_desc desc;
1357
1358         desc.its_vinvall_cmd.vpe = vpe;
1359         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1360 }
1361
1362 static void its_send_vinv(struct its_device *dev, u32 event_id)
1363 {
1364         struct its_cmd_desc desc;
1365
1366         /*
1367          * There is no real VINV command. This is just a normal INV,
1368          * with a VSYNC instead of a SYNC.
1369          */
1370         desc.its_inv_cmd.dev = dev;
1371         desc.its_inv_cmd.event_id = event_id;
1372
1373         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1374 }
1375
1376 static void its_send_vint(struct its_device *dev, u32 event_id)
1377 {
1378         struct its_cmd_desc desc;
1379
1380         /*
1381          * There is no real VINT command. This is just a normal INT,
1382          * with a VSYNC instead of a SYNC.
1383          */
1384         desc.its_int_cmd.dev = dev;
1385         desc.its_int_cmd.event_id = event_id;
1386
1387         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1388 }
1389
1390 static void its_send_vclear(struct its_device *dev, u32 event_id)
1391 {
1392         struct its_cmd_desc desc;
1393
1394         /*
1395          * There is no real VCLEAR command. This is just a normal CLEAR,
1396          * with a VSYNC instead of a SYNC.
1397          */
1398         desc.its_clear_cmd.dev = dev;
1399         desc.its_clear_cmd.event_id = event_id;
1400
1401         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1402 }
1403
1404 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1405 {
1406         struct its_cmd_desc desc;
1407
1408         desc.its_invdb_cmd.vpe = vpe;
1409         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1410 }
1411
1412 /*
1413  * irqchip functions - assumes MSI, mostly.
1414  */
1415 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1416 {
1417         struct its_vlpi_map *map = get_vlpi_map(d);
1418         irq_hw_number_t hwirq;
1419         void *va;
1420         u8 *cfg;
1421
1422         if (map) {
1423                 va = page_address(map->vm->vprop_page);
1424                 hwirq = map->vintid;
1425
1426                 /* Remember the updated property */
1427                 map->properties &= ~clr;
1428                 map->properties |= set | LPI_PROP_GROUP1;
1429         } else {
1430                 va = gic_rdists->prop_table_va;
1431                 hwirq = d->hwirq;
1432         }
1433
1434         cfg = va + hwirq - 8192;
1435         *cfg &= ~clr;
1436         *cfg |= set | LPI_PROP_GROUP1;
1437
1438         /*
1439          * Make the above write visible to the redistributors.
1440          * And yes, we're flushing exactly: One. Single. Byte.
1441          * Humpf...
1442          */
1443         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1444                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1445         else
1446                 dsb(ishst);
1447 }
1448
1449 static void wait_for_syncr(void __iomem *rdbase)
1450 {
1451         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1452                 cpu_relax();
1453 }
1454
1455 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1456 {
1457         void __iomem *rdbase;
1458         unsigned long flags;
1459         int cpu;
1460
1461         /* Target the redistributor this LPI is currently routed to */
1462         cpu = irq_to_cpuid_lock(d, &flags);
1463         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464
1465         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1466         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1467         wait_for_syncr(rdbase);
1468
1469         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1470         irq_to_cpuid_unlock(d, flags);
1471 }
1472
1473 static void direct_lpi_inv(struct irq_data *d)
1474 {
1475         struct its_vlpi_map *map = get_vlpi_map(d);
1476         u64 val;
1477
1478         if (map) {
1479                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1480
1481                 WARN_ON(!is_v4_1(its_dev->its));
1482
1483                 val  = GICR_INVLPIR_V;
1484                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1485                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1486         } else {
1487                 val = d->hwirq;
1488         }
1489
1490         __direct_lpi_inv(d, val);
1491 }
1492
1493 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1494 {
1495         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496
1497         lpi_write_config(d, clr, set);
1498         if (gic_rdists->has_direct_lpi &&
1499             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1500                 direct_lpi_inv(d);
1501         else if (!irqd_is_forwarded_to_vcpu(d))
1502                 its_send_inv(its_dev, its_get_event_id(d));
1503         else
1504                 its_send_vinv(its_dev, its_get_event_id(d));
1505 }
1506
1507 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1508 {
1509         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1510         u32 event = its_get_event_id(d);
1511         struct its_vlpi_map *map;
1512
1513         /*
1514          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1515          * here.
1516          */
1517         if (is_v4_1(its_dev->its))
1518                 return;
1519
1520         map = dev_event_to_vlpi_map(its_dev, event);
1521
1522         if (map->db_enabled == enable)
1523                 return;
1524
1525         map->db_enabled = enable;
1526
1527         /*
1528          * More fun with the architecture:
1529          *
1530          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1531          * value or to 1023, depending on the enable bit. But that
1532          * would be issuing a mapping for an /existing/ DevID+EventID
1533          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1534          * to the /same/ vPE, using this opportunity to adjust the
1535          * doorbell. Mouahahahaha. We loves it, Precious.
1536          */
1537         its_send_vmovi(its_dev, event);
1538 }
1539
1540 static void its_mask_irq(struct irq_data *d)
1541 {
1542         if (irqd_is_forwarded_to_vcpu(d))
1543                 its_vlpi_set_doorbell(d, false);
1544
1545         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1546 }
1547
1548 static void its_unmask_irq(struct irq_data *d)
1549 {
1550         if (irqd_is_forwarded_to_vcpu(d))
1551                 its_vlpi_set_doorbell(d, true);
1552
1553         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1554 }
1555
1556 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1557 {
1558         if (irqd_affinity_is_managed(d))
1559                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1560
1561         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1562 }
1563
1564 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1565 {
1566         if (irqd_affinity_is_managed(d))
1567                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1568         else
1569                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1570 }
1571
1572 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1573 {
1574         if (irqd_affinity_is_managed(d))
1575                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1576         else
1577                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1578 }
1579
1580 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1581                                               const struct cpumask *cpu_mask)
1582 {
1583         unsigned int cpu = nr_cpu_ids, tmp;
1584         int count = S32_MAX;
1585
1586         for_each_cpu(tmp, cpu_mask) {
1587                 int this_count = its_read_lpi_count(d, tmp);
1588                 if (this_count < count) {
1589                         cpu = tmp;
1590                         count = this_count;
1591                 }
1592         }
1593
1594         return cpu;
1595 }
1596
1597 /*
1598  * As suggested by Thomas Gleixner in:
1599  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1600  */
1601 static int its_select_cpu(struct irq_data *d,
1602                           const struct cpumask *aff_mask)
1603 {
1604         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1605         static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1606         static struct cpumask __tmpmask;
1607         struct cpumask *tmpmask;
1608         unsigned long flags;
1609         int cpu, node;
1610         node = its_dev->its->numa_node;
1611         tmpmask = &__tmpmask;
1612
1613         raw_spin_lock_irqsave(&tmpmask_lock, flags);
1614
1615         if (!irqd_affinity_is_managed(d)) {
1616                 /* First try the NUMA node */
1617                 if (node != NUMA_NO_NODE) {
1618                         /*
1619                          * Try the intersection of the affinity mask and the
1620                          * node mask (and the online mask, just to be safe).
1621                          */
1622                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1623                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1624
1625                         /*
1626                          * Ideally, we would check if the mask is empty, and
1627                          * try again on the full node here.
1628                          *
1629                          * But it turns out that the way ACPI describes the
1630                          * affinity for ITSs only deals about memory, and
1631                          * not target CPUs, so it cannot describe a single
1632                          * ITS placed next to two NUMA nodes.
1633                          *
1634                          * Instead, just fallback on the online mask. This
1635                          * diverges from Thomas' suggestion above.
1636                          */
1637                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1638                         if (cpu < nr_cpu_ids)
1639                                 goto out;
1640
1641                         /* If we can't cross sockets, give up */
1642                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1643                                 goto out;
1644
1645                         /* If the above failed, expand the search */
1646                 }
1647
1648                 /* Try the intersection of the affinity and online masks */
1649                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1650
1651                 /* If that doesn't fly, the online mask is the last resort */
1652                 if (cpumask_empty(tmpmask))
1653                         cpumask_copy(tmpmask, cpu_online_mask);
1654
1655                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1656         } else {
1657                 cpumask_copy(tmpmask, aff_mask);
1658
1659                 /* If we cannot cross sockets, limit the search to that node */
1660                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1661                     node != NUMA_NO_NODE)
1662                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1663
1664                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1665         }
1666 out:
1667         raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1668
1669         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1670         return cpu;
1671 }
1672
1673 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1674                             bool force)
1675 {
1676         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1677         struct its_collection *target_col;
1678         u32 id = its_get_event_id(d);
1679         int cpu, prev_cpu;
1680
1681         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1682         if (irqd_is_forwarded_to_vcpu(d))
1683                 return -EINVAL;
1684
1685         prev_cpu = its_dev->event_map.col_map[id];
1686         its_dec_lpi_count(d, prev_cpu);
1687
1688         if (!force)
1689                 cpu = its_select_cpu(d, mask_val);
1690         else
1691                 cpu = cpumask_pick_least_loaded(d, mask_val);
1692
1693         if (cpu < 0 || cpu >= nr_cpu_ids)
1694                 goto err;
1695
1696         /* don't set the affinity when the target cpu is same as current one */
1697         if (cpu != prev_cpu) {
1698                 target_col = &its_dev->its->collections[cpu];
1699                 its_send_movi(its_dev, target_col, id);
1700                 its_dev->event_map.col_map[id] = cpu;
1701                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1702         }
1703
1704         its_inc_lpi_count(d, cpu);
1705
1706         return IRQ_SET_MASK_OK_DONE;
1707
1708 err:
1709         its_inc_lpi_count(d, prev_cpu);
1710         return -EINVAL;
1711 }
1712
1713 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1714 {
1715         struct its_node *its = its_dev->its;
1716
1717         return its->phys_base + GITS_TRANSLATER;
1718 }
1719
1720 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1721 {
1722         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1723         struct its_node *its;
1724         u64 addr;
1725
1726         its = its_dev->its;
1727         addr = its->get_msi_base(its_dev);
1728
1729         msg->address_lo         = lower_32_bits(addr);
1730         msg->address_hi         = upper_32_bits(addr);
1731         msg->data               = its_get_event_id(d);
1732
1733         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1734 }
1735
1736 static int its_irq_set_irqchip_state(struct irq_data *d,
1737                                      enum irqchip_irq_state which,
1738                                      bool state)
1739 {
1740         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1741         u32 event = its_get_event_id(d);
1742
1743         if (which != IRQCHIP_STATE_PENDING)
1744                 return -EINVAL;
1745
1746         if (irqd_is_forwarded_to_vcpu(d)) {
1747                 if (state)
1748                         its_send_vint(its_dev, event);
1749                 else
1750                         its_send_vclear(its_dev, event);
1751         } else {
1752                 if (state)
1753                         its_send_int(its_dev, event);
1754                 else
1755                         its_send_clear(its_dev, event);
1756         }
1757
1758         return 0;
1759 }
1760
1761 static int its_irq_retrigger(struct irq_data *d)
1762 {
1763         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1764 }
1765
1766 /*
1767  * Two favourable cases:
1768  *
1769  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1770  *     for vSGI delivery
1771  *
1772  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1773  *     and we're better off mapping all VPEs always
1774  *
1775  * If neither (a) nor (b) is true, then we map vPEs on demand.
1776  *
1777  */
1778 static bool gic_requires_eager_mapping(void)
1779 {
1780         if (!its_list_map || gic_rdists->has_rvpeid)
1781                 return true;
1782
1783         return false;
1784 }
1785
1786 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1787 {
1788         unsigned long flags;
1789
1790         if (gic_requires_eager_mapping())
1791                 return;
1792
1793         raw_spin_lock_irqsave(&vmovp_lock, flags);
1794
1795         /*
1796          * If the VM wasn't mapped yet, iterate over the vpes and get
1797          * them mapped now.
1798          */
1799         vm->vlpi_count[its->list_nr]++;
1800
1801         if (vm->vlpi_count[its->list_nr] == 1) {
1802                 int i;
1803
1804                 for (i = 0; i < vm->nr_vpes; i++) {
1805                         struct its_vpe *vpe = vm->vpes[i];
1806                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1807
1808                         /* Map the VPE to the first possible CPU */
1809                         vpe->col_idx = cpumask_first(cpu_online_mask);
1810                         its_send_vmapp(its, vpe, true);
1811                         its_send_vinvall(its, vpe);
1812                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1813                 }
1814         }
1815
1816         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1817 }
1818
1819 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1820 {
1821         unsigned long flags;
1822
1823         /* Not using the ITS list? Everything is always mapped. */
1824         if (gic_requires_eager_mapping())
1825                 return;
1826
1827         raw_spin_lock_irqsave(&vmovp_lock, flags);
1828
1829         if (!--vm->vlpi_count[its->list_nr]) {
1830                 int i;
1831
1832                 for (i = 0; i < vm->nr_vpes; i++)
1833                         its_send_vmapp(its, vm->vpes[i], false);
1834         }
1835
1836         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1837 }
1838
1839 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1840 {
1841         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1842         u32 event = its_get_event_id(d);
1843         int ret = 0;
1844
1845         if (!info->map)
1846                 return -EINVAL;
1847
1848         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1849
1850         if (!its_dev->event_map.vm) {
1851                 struct its_vlpi_map *maps;
1852
1853                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1854                                GFP_ATOMIC);
1855                 if (!maps) {
1856                         ret = -ENOMEM;
1857                         goto out;
1858                 }
1859
1860                 its_dev->event_map.vm = info->map->vm;
1861                 its_dev->event_map.vlpi_maps = maps;
1862         } else if (its_dev->event_map.vm != info->map->vm) {
1863                 ret = -EINVAL;
1864                 goto out;
1865         }
1866
1867         /* Get our private copy of the mapping information */
1868         its_dev->event_map.vlpi_maps[event] = *info->map;
1869
1870         if (irqd_is_forwarded_to_vcpu(d)) {
1871                 /* Already mapped, move it around */
1872                 its_send_vmovi(its_dev, event);
1873         } else {
1874                 /* Ensure all the VPEs are mapped on this ITS */
1875                 its_map_vm(its_dev->its, info->map->vm);
1876
1877                 /*
1878                  * Flag the interrupt as forwarded so that we can
1879                  * start poking the virtual property table.
1880                  */
1881                 irqd_set_forwarded_to_vcpu(d);
1882
1883                 /* Write out the property to the prop table */
1884                 lpi_write_config(d, 0xff, info->map->properties);
1885
1886                 /* Drop the physical mapping */
1887                 its_send_discard(its_dev, event);
1888
1889                 /* and install the virtual one */
1890                 its_send_vmapti(its_dev, event);
1891
1892                 /* Increment the number of VLPIs */
1893                 its_dev->event_map.nr_vlpis++;
1894         }
1895
1896 out:
1897         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1898         return ret;
1899 }
1900
1901 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1902 {
1903         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1904         struct its_vlpi_map *map;
1905         int ret = 0;
1906
1907         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1908
1909         map = get_vlpi_map(d);
1910
1911         if (!its_dev->event_map.vm || !map) {
1912                 ret = -EINVAL;
1913                 goto out;
1914         }
1915
1916         /* Copy our mapping information to the incoming request */
1917         *info->map = *map;
1918
1919 out:
1920         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1921         return ret;
1922 }
1923
1924 static int its_vlpi_unmap(struct irq_data *d)
1925 {
1926         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1927         u32 event = its_get_event_id(d);
1928         int ret = 0;
1929
1930         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1931
1932         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1933                 ret = -EINVAL;
1934                 goto out;
1935         }
1936
1937         /* Drop the virtual mapping */
1938         its_send_discard(its_dev, event);
1939
1940         /* and restore the physical one */
1941         irqd_clr_forwarded_to_vcpu(d);
1942         its_send_mapti(its_dev, d->hwirq, event);
1943         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1944                                     LPI_PROP_ENABLED |
1945                                     LPI_PROP_GROUP1));
1946
1947         /* Potentially unmap the VM from this ITS */
1948         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1949
1950         /*
1951          * Drop the refcount and make the device available again if
1952          * this was the last VLPI.
1953          */
1954         if (!--its_dev->event_map.nr_vlpis) {
1955                 its_dev->event_map.vm = NULL;
1956                 kfree(its_dev->event_map.vlpi_maps);
1957         }
1958
1959 out:
1960         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1961         return ret;
1962 }
1963
1964 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1965 {
1966         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1967
1968         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1969                 return -EINVAL;
1970
1971         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1972                 lpi_update_config(d, 0xff, info->config);
1973         else
1974                 lpi_write_config(d, 0xff, info->config);
1975         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1976
1977         return 0;
1978 }
1979
1980 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1981 {
1982         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1983         struct its_cmd_info *info = vcpu_info;
1984
1985         /* Need a v4 ITS */
1986         if (!is_v4(its_dev->its))
1987                 return -EINVAL;
1988
1989         /* Unmap request? */
1990         if (!info)
1991                 return its_vlpi_unmap(d);
1992
1993         switch (info->cmd_type) {
1994         case MAP_VLPI:
1995                 return its_vlpi_map(d, info);
1996
1997         case GET_VLPI:
1998                 return its_vlpi_get(d, info);
1999
2000         case PROP_UPDATE_VLPI:
2001         case PROP_UPDATE_AND_INV_VLPI:
2002                 return its_vlpi_prop_update(d, info);
2003
2004         default:
2005                 return -EINVAL;
2006         }
2007 }
2008
2009 static struct irq_chip its_irq_chip = {
2010         .name                   = "ITS",
2011         .irq_mask               = its_mask_irq,
2012         .irq_unmask             = its_unmask_irq,
2013         .irq_eoi                = irq_chip_eoi_parent,
2014         .irq_set_affinity       = its_set_affinity,
2015         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
2016         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
2017         .irq_retrigger          = its_irq_retrigger,
2018         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
2019 };
2020
2021
2022 /*
2023  * How we allocate LPIs:
2024  *
2025  * lpi_range_list contains ranges of LPIs that are to available to
2026  * allocate from. To allocate LPIs, just pick the first range that
2027  * fits the required allocation, and reduce it by the required
2028  * amount. Once empty, remove the range from the list.
2029  *
2030  * To free a range of LPIs, add a free range to the list, sort it and
2031  * merge the result if the new range happens to be adjacent to an
2032  * already free block.
2033  *
2034  * The consequence of the above is that allocation is cost is low, but
2035  * freeing is expensive. We assumes that freeing rarely occurs.
2036  */
2037 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2038
2039 static DEFINE_MUTEX(lpi_range_lock);
2040 static LIST_HEAD(lpi_range_list);
2041
2042 struct lpi_range {
2043         struct list_head        entry;
2044         u32                     base_id;
2045         u32                     span;
2046 };
2047
2048 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2049 {
2050         struct lpi_range *range;
2051
2052         range = kmalloc(sizeof(*range), GFP_KERNEL);
2053         if (range) {
2054                 range->base_id = base;
2055                 range->span = span;
2056         }
2057
2058         return range;
2059 }
2060
2061 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2062 {
2063         struct lpi_range *range, *tmp;
2064         int err = -ENOSPC;
2065
2066         mutex_lock(&lpi_range_lock);
2067
2068         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2069                 if (range->span >= nr_lpis) {
2070                         *base = range->base_id;
2071                         range->base_id += nr_lpis;
2072                         range->span -= nr_lpis;
2073
2074                         if (range->span == 0) {
2075                                 list_del(&range->entry);
2076                                 kfree(range);
2077                         }
2078
2079                         err = 0;
2080                         break;
2081                 }
2082         }
2083
2084         mutex_unlock(&lpi_range_lock);
2085
2086         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2087         return err;
2088 }
2089
2090 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2091 {
2092         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2093                 return;
2094         if (a->base_id + a->span != b->base_id)
2095                 return;
2096         b->base_id = a->base_id;
2097         b->span += a->span;
2098         list_del(&a->entry);
2099         kfree(a);
2100 }
2101
2102 static int free_lpi_range(u32 base, u32 nr_lpis)
2103 {
2104         struct lpi_range *new, *old;
2105
2106         new = mk_lpi_range(base, nr_lpis);
2107         if (!new)
2108                 return -ENOMEM;
2109
2110         mutex_lock(&lpi_range_lock);
2111
2112         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2113                 if (old->base_id < base)
2114                         break;
2115         }
2116         /*
2117          * old is the last element with ->base_id smaller than base,
2118          * so new goes right after it. If there are no elements with
2119          * ->base_id smaller than base, &old->entry ends up pointing
2120          * at the head of the list, and inserting new it the start of
2121          * the list is the right thing to do in that case as well.
2122          */
2123         list_add(&new->entry, &old->entry);
2124         /*
2125          * Now check if we can merge with the preceding and/or
2126          * following ranges.
2127          */
2128         merge_lpi_ranges(old, new);
2129         merge_lpi_ranges(new, list_next_entry(new, entry));
2130
2131         mutex_unlock(&lpi_range_lock);
2132         return 0;
2133 }
2134
2135 static int __init its_lpi_init(u32 id_bits)
2136 {
2137         u32 lpis = (1UL << id_bits) - 8192;
2138         u32 numlpis;
2139         int err;
2140
2141         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2142
2143         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2144                 lpis = numlpis;
2145                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2146                         lpis);
2147         }
2148
2149         /*
2150          * Initializing the allocator is just the same as freeing the
2151          * full range of LPIs.
2152          */
2153         err = free_lpi_range(8192, lpis);
2154         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2155         return err;
2156 }
2157
2158 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2159 {
2160         unsigned long *bitmap = NULL;
2161         int err = 0;
2162
2163         do {
2164                 err = alloc_lpi_range(nr_irqs, base);
2165                 if (!err)
2166                         break;
2167
2168                 nr_irqs /= 2;
2169         } while (nr_irqs > 0);
2170
2171         if (!nr_irqs)
2172                 err = -ENOSPC;
2173
2174         if (err)
2175                 goto out;
2176
2177         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2178         if (!bitmap)
2179                 goto out;
2180
2181         *nr_ids = nr_irqs;
2182
2183 out:
2184         if (!bitmap)
2185                 *base = *nr_ids = 0;
2186
2187         return bitmap;
2188 }
2189
2190 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2191 {
2192         WARN_ON(free_lpi_range(base, nr_ids));
2193         bitmap_free(bitmap);
2194 }
2195
2196 static void gic_reset_prop_table(void *va)
2197 {
2198         /* Priority 0xa0, Group-1, disabled */
2199         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2200
2201         /* Make sure the GIC will observe the written configuration */
2202         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2203 }
2204
2205 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2206 {
2207         struct page *prop_page;
2208
2209         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2210         if (!prop_page)
2211                 return NULL;
2212
2213         gic_reset_prop_table(page_address(prop_page));
2214
2215         return prop_page;
2216 }
2217
2218 static void its_free_prop_table(struct page *prop_page)
2219 {
2220         free_pages((unsigned long)page_address(prop_page),
2221                    get_order(LPI_PROPBASE_SZ));
2222 }
2223
2224 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2225 {
2226         phys_addr_t start, end, addr_end;
2227         u64 i;
2228
2229         /*
2230          * We don't bother checking for a kdump kernel as by
2231          * construction, the LPI tables are out of this kernel's
2232          * memory map.
2233          */
2234         if (is_kdump_kernel())
2235                 return true;
2236
2237         addr_end = addr + size - 1;
2238
2239         for_each_reserved_mem_range(i, &start, &end) {
2240                 if (addr >= start && addr_end <= end)
2241                         return true;
2242         }
2243
2244         /* Not found, not a good sign... */
2245         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2246                 &addr, &addr_end);
2247         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2248         return false;
2249 }
2250
2251 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2252 {
2253         if (efi_enabled(EFI_CONFIG_TABLES))
2254                 return efi_mem_reserve_persistent(addr, size);
2255
2256         return 0;
2257 }
2258
2259 static int __init its_setup_lpi_prop_table(void)
2260 {
2261         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2262                 u64 val;
2263
2264                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2265                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2266
2267                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2268                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2269                                                      LPI_PROPBASE_SZ,
2270                                                      MEMREMAP_WB);
2271                 gic_reset_prop_table(gic_rdists->prop_table_va);
2272         } else {
2273                 struct page *page;
2274
2275                 lpi_id_bits = min_t(u32,
2276                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2277                                     ITS_MAX_LPI_NRBITS);
2278                 page = its_allocate_prop_table(GFP_NOWAIT);
2279                 if (!page) {
2280                         pr_err("Failed to allocate PROPBASE\n");
2281                         return -ENOMEM;
2282                 }
2283
2284                 gic_rdists->prop_table_pa = page_to_phys(page);
2285                 gic_rdists->prop_table_va = page_address(page);
2286                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2287                                           LPI_PROPBASE_SZ));
2288         }
2289
2290         pr_info("GICv3: using LPI property table @%pa\n",
2291                 &gic_rdists->prop_table_pa);
2292
2293         return its_lpi_init(lpi_id_bits);
2294 }
2295
2296 static const char *its_base_type_string[] = {
2297         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2298         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2299         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2300         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2301         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2302         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2303         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2304 };
2305
2306 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2307 {
2308         u32 idx = baser - its->tables;
2309
2310         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2311 }
2312
2313 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2314                             u64 val)
2315 {
2316         u32 idx = baser - its->tables;
2317
2318         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2319         baser->val = its_read_baser(its, baser);
2320 }
2321
2322 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2323                            u64 cache, u64 shr, u32 order, bool indirect)
2324 {
2325         u64 val = its_read_baser(its, baser);
2326         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2327         u64 type = GITS_BASER_TYPE(val);
2328         u64 baser_phys, tmp;
2329         u32 alloc_pages, psz;
2330         struct page *page;
2331         void *base;
2332
2333         psz = baser->psz;
2334         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2335         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2336                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2337                         &its->phys_base, its_base_type_string[type],
2338                         alloc_pages, GITS_BASER_PAGES_MAX);
2339                 alloc_pages = GITS_BASER_PAGES_MAX;
2340                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2341         }
2342
2343         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2344         if (!page)
2345                 return -ENOMEM;
2346
2347         base = (void *)page_address(page);
2348         baser_phys = virt_to_phys(base);
2349
2350         /* Check if the physical address of the memory is above 48bits */
2351         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2352
2353                 /* 52bit PA is supported only when PageSize=64K */
2354                 if (psz != SZ_64K) {
2355                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2356                         free_pages((unsigned long)base, order);
2357                         return -ENXIO;
2358                 }
2359
2360                 /* Convert 52bit PA to 48bit field */
2361                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2362         }
2363
2364 retry_baser:
2365         val = (baser_phys                                        |
2366                 (type << GITS_BASER_TYPE_SHIFT)                  |
2367                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2368                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2369                 cache                                            |
2370                 shr                                              |
2371                 GITS_BASER_VALID);
2372
2373         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2374
2375         switch (psz) {
2376         case SZ_4K:
2377                 val |= GITS_BASER_PAGE_SIZE_4K;
2378                 break;
2379         case SZ_16K:
2380                 val |= GITS_BASER_PAGE_SIZE_16K;
2381                 break;
2382         case SZ_64K:
2383                 val |= GITS_BASER_PAGE_SIZE_64K;
2384                 break;
2385         }
2386
2387         if (!shr)
2388                 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2389
2390         its_write_baser(its, baser, val);
2391         tmp = baser->val;
2392
2393         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2394                 /*
2395                  * Shareability didn't stick. Just use
2396                  * whatever the read reported, which is likely
2397                  * to be the only thing this redistributor
2398                  * supports. If that's zero, make it
2399                  * non-cacheable as well.
2400                  */
2401                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2402                 if (!shr)
2403                         cache = GITS_BASER_nC;
2404
2405                 goto retry_baser;
2406         }
2407
2408         if (val != tmp) {
2409                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2410                        &its->phys_base, its_base_type_string[type],
2411                        val, tmp);
2412                 free_pages((unsigned long)base, order);
2413                 return -ENXIO;
2414         }
2415
2416         baser->order = order;
2417         baser->base = base;
2418         baser->psz = psz;
2419         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2420
2421         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2422                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2423                 its_base_type_string[type],
2424                 (unsigned long)virt_to_phys(base),
2425                 indirect ? "indirect" : "flat", (int)esz,
2426                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2427
2428         return 0;
2429 }
2430
2431 static bool its_parse_indirect_baser(struct its_node *its,
2432                                      struct its_baser *baser,
2433                                      u32 *order, u32 ids)
2434 {
2435         u64 tmp = its_read_baser(its, baser);
2436         u64 type = GITS_BASER_TYPE(tmp);
2437         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2438         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2439         u32 new_order = *order;
2440         u32 psz = baser->psz;
2441         bool indirect = false;
2442
2443         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444         if ((esz << ids) > (psz * 2)) {
2445                 /*
2446                  * Find out whether hw supports a single or two-level table by
2447                  * table by reading bit at offset '62' after writing '1' to it.
2448                  */
2449                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2451
2452                 if (indirect) {
2453                         /*
2454                          * The size of the lvl2 table is equal to ITS page size
2455                          * which is 'psz'. For computing lvl1 table size,
2456                          * subtract ID bits that sparse lvl2 table from 'ids'
2457                          * which is reported by ITS hardware times lvl1 table
2458                          * entry size.
2459                          */
2460                         ids -= ilog2(psz / (int)esz);
2461                         esz = GITS_LVL1_ENTRY_SIZE;
2462                 }
2463         }
2464
2465         /*
2466          * Allocate as many entries as required to fit the
2467          * range of device IDs that the ITS can grok... The ID
2468          * space being incredibly sparse, this results in a
2469          * massive waste of memory if two-level device table
2470          * feature is not supported by hardware.
2471          */
2472         new_order = max_t(u32, get_order(esz << ids), new_order);
2473         if (new_order > MAX_ORDER) {
2474                 new_order = MAX_ORDER;
2475                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2476                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2477                         &its->phys_base, its_base_type_string[type],
2478                         device_ids(its), ids);
2479         }
2480
2481         *order = new_order;
2482
2483         return indirect;
2484 }
2485
2486 static u32 compute_common_aff(u64 val)
2487 {
2488         u32 aff, clpiaff;
2489
2490         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2492
2493         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2494 }
2495
2496 static u32 compute_its_aff(struct its_node *its)
2497 {
2498         u64 val;
2499         u32 svpet;
2500
2501         /*
2502          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503          * the resulting affinity. We then use that to see if this match
2504          * our own affinity.
2505          */
2506         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509         return compute_common_aff(val);
2510 }
2511
2512 static struct its_node *find_sibling_its(struct its_node *cur_its)
2513 {
2514         struct its_node *its;
2515         u32 aff;
2516
2517         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2518                 return NULL;
2519
2520         aff = compute_its_aff(cur_its);
2521
2522         list_for_each_entry(its, &its_nodes, entry) {
2523                 u64 baser;
2524
2525                 if (!is_v4_1(its) || its == cur_its)
2526                         continue;
2527
2528                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2529                         continue;
2530
2531                 if (aff != compute_its_aff(its))
2532                         continue;
2533
2534                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535                 baser = its->tables[2].val;
2536                 if (!(baser & GITS_BASER_VALID))
2537                         continue;
2538
2539                 return its;
2540         }
2541
2542         return NULL;
2543 }
2544
2545 static void its_free_tables(struct its_node *its)
2546 {
2547         int i;
2548
2549         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2550                 if (its->tables[i].base) {
2551                         free_pages((unsigned long)its->tables[i].base,
2552                                    its->tables[i].order);
2553                         its->tables[i].base = NULL;
2554                 }
2555         }
2556 }
2557
2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559 {
2560         u64 psz = SZ_64K;
2561
2562         while (psz) {
2563                 u64 val, gpsz;
2564
2565                 val = its_read_baser(its, baser);
2566                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567
2568                 switch (psz) {
2569                 case SZ_64K:
2570                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2571                         break;
2572                 case SZ_16K:
2573                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2574                         break;
2575                 case SZ_4K:
2576                 default:
2577                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2578                         break;
2579                 }
2580
2581                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582
2583                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584                 its_write_baser(its, baser, val);
2585
2586                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587                         break;
2588
2589                 switch (psz) {
2590                 case SZ_64K:
2591                         psz = SZ_16K;
2592                         break;
2593                 case SZ_16K:
2594                         psz = SZ_4K;
2595                         break;
2596                 case SZ_4K:
2597                 default:
2598                         return -1;
2599                 }
2600         }
2601
2602         baser->psz = psz;
2603         return 0;
2604 }
2605
2606 static int its_alloc_tables(struct its_node *its)
2607 {
2608         u64 shr = GITS_BASER_InnerShareable;
2609         u64 cache = GITS_BASER_RaWaWb;
2610         int err, i;
2611
2612         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613                 /* erratum 24313: ignore memory access type */
2614                 cache = GITS_BASER_nCnB;
2615
2616         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2617                 cache = GITS_BASER_nC;
2618                 shr = 0;
2619         }
2620
2621         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2622                 struct its_baser *baser = its->tables + i;
2623                 u64 val = its_read_baser(its, baser);
2624                 u64 type = GITS_BASER_TYPE(val);
2625                 bool indirect = false;
2626                 u32 order;
2627
2628                 if (type == GITS_BASER_TYPE_NONE)
2629                         continue;
2630
2631                 if (its_probe_baser_psz(its, baser)) {
2632                         its_free_tables(its);
2633                         return -ENXIO;
2634                 }
2635
2636                 order = get_order(baser->psz);
2637
2638                 switch (type) {
2639                 case GITS_BASER_TYPE_DEVICE:
2640                         indirect = its_parse_indirect_baser(its, baser, &order,
2641                                                             device_ids(its));
2642                         break;
2643
2644                 case GITS_BASER_TYPE_VCPU:
2645                         if (is_v4_1(its)) {
2646                                 struct its_node *sibling;
2647
2648                                 WARN_ON(i != 2);
2649                                 if ((sibling = find_sibling_its(its))) {
2650                                         *baser = sibling->tables[2];
2651                                         its_write_baser(its, baser, baser->val);
2652                                         continue;
2653                                 }
2654                         }
2655
2656                         indirect = its_parse_indirect_baser(its, baser, &order,
2657                                                             ITS_MAX_VPEID_BITS);
2658                         break;
2659                 }
2660
2661                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2662                 if (err < 0) {
2663                         its_free_tables(its);
2664                         return err;
2665                 }
2666
2667                 /* Update settings which will be used for next BASERn */
2668                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2669                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2670         }
2671
2672         return 0;
2673 }
2674
2675 static u64 inherit_vpe_l1_table_from_its(void)
2676 {
2677         struct its_node *its;
2678         u64 val;
2679         u32 aff;
2680
2681         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2682         aff = compute_common_aff(val);
2683
2684         list_for_each_entry(its, &its_nodes, entry) {
2685                 u64 baser, addr;
2686
2687                 if (!is_v4_1(its))
2688                         continue;
2689
2690                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2691                         continue;
2692
2693                 if (aff != compute_its_aff(its))
2694                         continue;
2695
2696                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2697                 baser = its->tables[2].val;
2698                 if (!(baser & GITS_BASER_VALID))
2699                         continue;
2700
2701                 /* We have a winner! */
2702                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2703
2704                 val  = GICR_VPROPBASER_4_1_VALID;
2705                 if (baser & GITS_BASER_INDIRECT)
2706                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2707                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2708                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2709                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2710                 case GIC_PAGE_SIZE_64K:
2711                         addr = GITS_BASER_ADDR_48_to_52(baser);
2712                         break;
2713                 default:
2714                         addr = baser & GENMASK_ULL(47, 12);
2715                         break;
2716                 }
2717                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2718                 if (rdists_support_shareable()) {
2719                         val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2720                                           FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2721                         val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2722                                           FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2723                 }
2724                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2725
2726                 return val;
2727         }
2728
2729         return 0;
2730 }
2731
2732 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2733 {
2734         u32 aff;
2735         u64 val;
2736         int cpu;
2737
2738         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2739         aff = compute_common_aff(val);
2740
2741         for_each_possible_cpu(cpu) {
2742                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2743
2744                 if (!base || cpu == smp_processor_id())
2745                         continue;
2746
2747                 val = gic_read_typer(base + GICR_TYPER);
2748                 if (aff != compute_common_aff(val))
2749                         continue;
2750
2751                 /*
2752                  * At this point, we have a victim. This particular CPU
2753                  * has already booted, and has an affinity that matches
2754                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2755                  * Make sure we don't write the Z bit in that case.
2756                  */
2757                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2758                 val &= ~GICR_VPROPBASER_4_1_Z;
2759
2760                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2761                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2762
2763                 return val;
2764         }
2765
2766         return 0;
2767 }
2768
2769 static bool allocate_vpe_l2_table(int cpu, u32 id)
2770 {
2771         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2772         unsigned int psz, esz, idx, npg, gpsz;
2773         u64 val;
2774         struct page *page;
2775         __le64 *table;
2776
2777         if (!gic_rdists->has_rvpeid)
2778                 return true;
2779
2780         /* Skip non-present CPUs */
2781         if (!base)
2782                 return true;
2783
2784         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2785
2786         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2787         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2788         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2789
2790         switch (gpsz) {
2791         default:
2792                 WARN_ON(1);
2793                 fallthrough;
2794         case GIC_PAGE_SIZE_4K:
2795                 psz = SZ_4K;
2796                 break;
2797         case GIC_PAGE_SIZE_16K:
2798                 psz = SZ_16K;
2799                 break;
2800         case GIC_PAGE_SIZE_64K:
2801                 psz = SZ_64K;
2802                 break;
2803         }
2804
2805         /* Don't allow vpe_id that exceeds single, flat table limit */
2806         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2807                 return (id < (npg * psz / (esz * SZ_8)));
2808
2809         /* Compute 1st level table index & check if that exceeds table limit */
2810         idx = id >> ilog2(psz / (esz * SZ_8));
2811         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2812                 return false;
2813
2814         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2815
2816         /* Allocate memory for 2nd level table */
2817         if (!table[idx]) {
2818                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2819                 if (!page)
2820                         return false;
2821
2822                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2823                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2824                         gic_flush_dcache_to_poc(page_address(page), psz);
2825
2826                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2827
2828                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2829                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2830                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2831
2832                 /* Ensure updated table contents are visible to RD hardware */
2833                 dsb(sy);
2834         }
2835
2836         return true;
2837 }
2838
2839 static int allocate_vpe_l1_table(void)
2840 {
2841         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2842         u64 val, gpsz, npg, pa;
2843         unsigned int psz = SZ_64K;
2844         unsigned int np, epp, esz;
2845         struct page *page;
2846
2847         if (!gic_rdists->has_rvpeid)
2848                 return 0;
2849
2850         /*
2851          * if VPENDBASER.Valid is set, disable any previously programmed
2852          * VPE by setting PendingLast while clearing Valid. This has the
2853          * effect of making sure no doorbell will be generated and we can
2854          * then safely clear VPROPBASER.Valid.
2855          */
2856         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2857                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2858                                       vlpi_base + GICR_VPENDBASER);
2859
2860         /*
2861          * If we can inherit the configuration from another RD, let's do
2862          * so. Otherwise, we have to go through the allocation process. We
2863          * assume that all RDs have the exact same requirements, as
2864          * nothing will work otherwise.
2865          */
2866         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2867         if (val & GICR_VPROPBASER_4_1_VALID)
2868                 goto out;
2869
2870         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2871         if (!gic_data_rdist()->vpe_table_mask)
2872                 return -ENOMEM;
2873
2874         val = inherit_vpe_l1_table_from_its();
2875         if (val & GICR_VPROPBASER_4_1_VALID)
2876                 goto out;
2877
2878         /* First probe the page size */
2879         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2880         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2881         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2882         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2883         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2884
2885         switch (gpsz) {
2886         default:
2887                 gpsz = GIC_PAGE_SIZE_4K;
2888                 fallthrough;
2889         case GIC_PAGE_SIZE_4K:
2890                 psz = SZ_4K;
2891                 break;
2892         case GIC_PAGE_SIZE_16K:
2893                 psz = SZ_16K;
2894                 break;
2895         case GIC_PAGE_SIZE_64K:
2896                 psz = SZ_64K;
2897                 break;
2898         }
2899
2900         /*
2901          * Start populating the register from scratch, including RO fields
2902          * (which we want to print in debug cases...)
2903          */
2904         val = 0;
2905         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2906         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2907
2908         /* How many entries per GIC page? */
2909         esz++;
2910         epp = psz / (esz * SZ_8);
2911
2912         /*
2913          * If we need more than just a single L1 page, flag the table
2914          * as indirect and compute the number of required L1 pages.
2915          */
2916         if (epp < ITS_MAX_VPEID) {
2917                 int nl2;
2918
2919                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2920
2921                 /* Number of L2 pages required to cover the VPEID space */
2922                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2923
2924                 /* Number of L1 pages to point to the L2 pages */
2925                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2926         } else {
2927                 npg = 1;
2928         }
2929
2930         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2931
2932         /* Right, that's the number of CPU pages we need for L1 */
2933         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2934
2935         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2936                  np, npg, psz, epp, esz);
2937         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2938         if (!page)
2939                 return -ENOMEM;
2940
2941         gic_data_rdist()->vpe_l1_base = page_address(page);
2942         pa = virt_to_phys(page_address(page));
2943         WARN_ON(!IS_ALIGNED(pa, psz));
2944
2945         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2946         if (rdists_support_shareable()) {
2947                 val |= GICR_VPROPBASER_RaWb;
2948                 val |= GICR_VPROPBASER_InnerShareable;
2949         }
2950         val |= GICR_VPROPBASER_4_1_Z;
2951         val |= GICR_VPROPBASER_4_1_VALID;
2952
2953 out:
2954         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2955         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2956
2957         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2958                  smp_processor_id(), val,
2959                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2960
2961         return 0;
2962 }
2963
2964 static int its_alloc_collections(struct its_node *its)
2965 {
2966         int i;
2967
2968         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2969                                    GFP_KERNEL);
2970         if (!its->collections)
2971                 return -ENOMEM;
2972
2973         for (i = 0; i < nr_cpu_ids; i++)
2974                 its->collections[i].target_address = ~0ULL;
2975
2976         return 0;
2977 }
2978
2979 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2980 {
2981         struct page *pend_page;
2982
2983         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2984                                 get_order(LPI_PENDBASE_SZ));
2985         if (!pend_page)
2986                 return NULL;
2987
2988         /* Make sure the GIC will observe the zero-ed page */
2989         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2990
2991         return pend_page;
2992 }
2993
2994 static void its_free_pending_table(struct page *pt)
2995 {
2996         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2997 }
2998
2999 /*
3000  * Booting with kdump and LPIs enabled is generally fine. Any other
3001  * case is wrong in the absence of firmware/EFI support.
3002  */
3003 static bool enabled_lpis_allowed(void)
3004 {
3005         phys_addr_t addr;
3006         u64 val;
3007
3008         /* Check whether the property table is in a reserved region */
3009         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3010         addr = val & GENMASK_ULL(51, 12);
3011
3012         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3013 }
3014
3015 static int __init allocate_lpi_tables(void)
3016 {
3017         u64 val;
3018         int err, cpu;
3019
3020         /*
3021          * If LPIs are enabled while we run this from the boot CPU,
3022          * flag the RD tables as pre-allocated if the stars do align.
3023          */
3024         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3025         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3026                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3027                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3028                 pr_info("GICv3: Using preallocated redistributor tables\n");
3029         }
3030
3031         err = its_setup_lpi_prop_table();
3032         if (err)
3033                 return err;
3034
3035         /*
3036          * We allocate all the pending tables anyway, as we may have a
3037          * mix of RDs that have had LPIs enabled, and some that
3038          * don't. We'll free the unused ones as each CPU comes online.
3039          */
3040         for_each_possible_cpu(cpu) {
3041                 struct page *pend_page;
3042
3043                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3044                 if (!pend_page) {
3045                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3046                         return -ENOMEM;
3047                 }
3048
3049                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3050         }
3051
3052         return 0;
3053 }
3054
3055 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3056 {
3057         u32 count = 1000000;    /* 1s! */
3058         bool clean;
3059         u64 val;
3060
3061         do {
3062                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3063                 clean = !(val & GICR_VPENDBASER_Dirty);
3064                 if (!clean) {
3065                         count--;
3066                         cpu_relax();
3067                         udelay(1);
3068                 }
3069         } while (!clean && count);
3070
3071         if (unlikely(!clean))
3072                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3073
3074         return val;
3075 }
3076
3077 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3078 {
3079         u64 val;
3080
3081         /* Make sure we wait until the RD is done with the initial scan */
3082         val = read_vpend_dirty_clear(vlpi_base);
3083         val &= ~GICR_VPENDBASER_Valid;
3084         val &= ~clr;
3085         val |= set;
3086         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3087
3088         val = read_vpend_dirty_clear(vlpi_base);
3089         if (unlikely(val & GICR_VPENDBASER_Dirty))
3090                 val |= GICR_VPENDBASER_PendingLast;
3091
3092         return val;
3093 }
3094
3095 static void its_cpu_init_lpis(void)
3096 {
3097         void __iomem *rbase = gic_data_rdist_rd_base();
3098         struct page *pend_page;
3099         phys_addr_t paddr;
3100         u64 val, tmp;
3101
3102         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3103                 return;
3104
3105         val = readl_relaxed(rbase + GICR_CTLR);
3106         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3107             (val & GICR_CTLR_ENABLE_LPIS)) {
3108                 /*
3109                  * Check that we get the same property table on all
3110                  * RDs. If we don't, this is hopeless.
3111                  */
3112                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3113                 paddr &= GENMASK_ULL(51, 12);
3114                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3115                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3116
3117                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3118                 paddr &= GENMASK_ULL(51, 16);
3119
3120                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3121                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3122
3123                 goto out;
3124         }
3125
3126         pend_page = gic_data_rdist()->pend_page;
3127         paddr = page_to_phys(pend_page);
3128
3129         /* set PROPBASE */
3130         val = (gic_rdists->prop_table_pa |
3131                GICR_PROPBASER_InnerShareable |
3132                GICR_PROPBASER_RaWaWb |
3133                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3134
3135         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3136         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3137
3138         if (!rdists_support_shareable())
3139                 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3140
3141         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3142                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3143                         /*
3144                          * The HW reports non-shareable, we must
3145                          * remove the cacheability attributes as
3146                          * well.
3147                          */
3148                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3149                                  GICR_PROPBASER_CACHEABILITY_MASK);
3150                         val |= GICR_PROPBASER_nC;
3151                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3152                 }
3153                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3154                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3155         }
3156
3157         /* set PENDBASE */
3158         val = (page_to_phys(pend_page) |
3159                GICR_PENDBASER_InnerShareable |
3160                GICR_PENDBASER_RaWaWb);
3161
3162         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3163         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3164
3165         if (!rdists_support_shareable())
3166                 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3167
3168         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3169                 /*
3170                  * The HW reports non-shareable, we must remove the
3171                  * cacheability attributes as well.
3172                  */
3173                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3174                          GICR_PENDBASER_CACHEABILITY_MASK);
3175                 val |= GICR_PENDBASER_nC;
3176                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3177         }
3178
3179         /* Enable LPIs */
3180         val = readl_relaxed(rbase + GICR_CTLR);
3181         val |= GICR_CTLR_ENABLE_LPIS;
3182         writel_relaxed(val, rbase + GICR_CTLR);
3183
3184 out:
3185         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3186                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3187
3188                 /*
3189                  * It's possible for CPU to receive VLPIs before it is
3190                  * scheduled as a vPE, especially for the first CPU, and the
3191                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3192                  * as out of range and dropped by GIC.
3193                  * So we initialize IDbits to known value to avoid VLPI drop.
3194                  */
3195                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3196                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3197                         smp_processor_id(), val);
3198                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3199
3200                 /*
3201                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3202                  * ancient programming gets left in and has possibility of
3203                  * corrupting memory.
3204                  */
3205                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3206         }
3207
3208         if (allocate_vpe_l1_table()) {
3209                 /*
3210                  * If the allocation has failed, we're in massive trouble.
3211                  * Disable direct injection, and pray that no VM was
3212                  * already running...
3213                  */
3214                 gic_rdists->has_rvpeid = false;
3215                 gic_rdists->has_vlpis = false;
3216         }
3217
3218         /* Make sure the GIC has seen the above */
3219         dsb(sy);
3220         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3221         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3222                 smp_processor_id(),
3223                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3224                 "reserved" : "allocated",
3225                 &paddr);
3226 }
3227
3228 static void its_cpu_init_collection(struct its_node *its)
3229 {
3230         int cpu = smp_processor_id();
3231         u64 target;
3232
3233         /* avoid cross node collections and its mapping */
3234         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3235                 struct device_node *cpu_node;
3236
3237                 cpu_node = of_get_cpu_node(cpu, NULL);
3238                 if (its->numa_node != NUMA_NO_NODE &&
3239                         its->numa_node != of_node_to_nid(cpu_node))
3240                         return;
3241         }
3242
3243         /*
3244          * We now have to bind each collection to its target
3245          * redistributor.
3246          */
3247         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3248                 /*
3249                  * This ITS wants the physical address of the
3250                  * redistributor.
3251                  */
3252                 target = gic_data_rdist()->phys_base;
3253         } else {
3254                 /* This ITS wants a linear CPU number. */
3255                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3256                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3257         }
3258
3259         /* Perform collection mapping */
3260         its->collections[cpu].target_address = target;
3261         its->collections[cpu].col_id = cpu;
3262
3263         its_send_mapc(its, &its->collections[cpu], 1);
3264         its_send_invall(its, &its->collections[cpu]);
3265 }
3266
3267 static void its_cpu_init_collections(void)
3268 {
3269         struct its_node *its;
3270
3271         raw_spin_lock(&its_lock);
3272
3273         list_for_each_entry(its, &its_nodes, entry)
3274                 its_cpu_init_collection(its);
3275
3276         raw_spin_unlock(&its_lock);
3277 }
3278
3279 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3280 {
3281         struct its_device *its_dev = NULL, *tmp;
3282         unsigned long flags;
3283
3284         raw_spin_lock_irqsave(&its->lock, flags);
3285
3286         list_for_each_entry(tmp, &its->its_device_list, entry) {
3287                 if (tmp->device_id == dev_id) {
3288                         its_dev = tmp;
3289                         break;
3290                 }
3291         }
3292
3293         raw_spin_unlock_irqrestore(&its->lock, flags);
3294
3295         return its_dev;
3296 }
3297
3298 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3299 {
3300         int i;
3301
3302         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3303                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3304                         return &its->tables[i];
3305         }
3306
3307         return NULL;
3308 }
3309
3310 static bool its_alloc_table_entry(struct its_node *its,
3311                                   struct its_baser *baser, u32 id)
3312 {
3313         struct page *page;
3314         u32 esz, idx;
3315         __le64 *table;
3316
3317         /* Don't allow device id that exceeds single, flat table limit */
3318         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3319         if (!(baser->val & GITS_BASER_INDIRECT))
3320                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3321
3322         /* Compute 1st level table index & check if that exceeds table limit */
3323         idx = id >> ilog2(baser->psz / esz);
3324         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3325                 return false;
3326
3327         table = baser->base;
3328
3329         /* Allocate memory for 2nd level table */
3330         if (!table[idx]) {
3331                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3332                                         get_order(baser->psz));
3333                 if (!page)
3334                         return false;
3335
3336                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3337                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3338                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3339
3340                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3341
3342                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3343                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3344                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3345
3346                 /* Ensure updated table contents are visible to ITS hardware */
3347                 dsb(sy);
3348         }
3349
3350         return true;
3351 }
3352
3353 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3354 {
3355         struct its_baser *baser;
3356
3357         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3358
3359         /* Don't allow device id that exceeds ITS hardware limit */
3360         if (!baser)
3361                 return (ilog2(dev_id) < device_ids(its));
3362
3363         return its_alloc_table_entry(its, baser, dev_id);
3364 }
3365
3366 static bool its_alloc_vpe_table(u32 vpe_id)
3367 {
3368         struct its_node *its;
3369         int cpu;
3370
3371         /*
3372          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3373          * could try and only do it on ITSs corresponding to devices
3374          * that have interrupts targeted at this VPE, but the
3375          * complexity becomes crazy (and you have tons of memory
3376          * anyway, right?).
3377          */
3378         list_for_each_entry(its, &its_nodes, entry) {
3379                 struct its_baser *baser;
3380
3381                 if (!is_v4(its))
3382                         continue;
3383
3384                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3385                 if (!baser)
3386                         return false;
3387
3388                 if (!its_alloc_table_entry(its, baser, vpe_id))
3389                         return false;
3390         }
3391
3392         /* Non v4.1? No need to iterate RDs and go back early. */
3393         if (!gic_rdists->has_rvpeid)
3394                 return true;
3395
3396         /*
3397          * Make sure the L2 tables are allocated for all copies of
3398          * the L1 table on *all* v4.1 RDs.
3399          */
3400         for_each_possible_cpu(cpu) {
3401                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3402                         return false;
3403         }
3404
3405         return true;
3406 }
3407
3408 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3409                                             int nvecs, bool alloc_lpis)
3410 {
3411         struct its_device *dev;
3412         unsigned long *lpi_map = NULL;
3413         unsigned long flags;
3414         u16 *col_map = NULL;
3415         void *itt;
3416         int lpi_base;
3417         int nr_lpis;
3418         int nr_ites;
3419         int sz;
3420
3421         if (!its_alloc_device_table(its, dev_id))
3422                 return NULL;
3423
3424         if (WARN_ON(!is_power_of_2(nvecs)))
3425                 nvecs = roundup_pow_of_two(nvecs);
3426
3427         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3428         /*
3429          * Even if the device wants a single LPI, the ITT must be
3430          * sized as a power of two (and you need at least one bit...).
3431          */
3432         nr_ites = max(2, nvecs);
3433         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3434         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3435         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3436         if (alloc_lpis) {
3437                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3438                 if (lpi_map)
3439                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3440                                           GFP_KERNEL);
3441         } else {
3442                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3443                 nr_lpis = 0;
3444                 lpi_base = 0;
3445         }
3446
3447         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3448                 kfree(dev);
3449                 kfree(itt);
3450                 bitmap_free(lpi_map);
3451                 kfree(col_map);
3452                 return NULL;
3453         }
3454
3455         gic_flush_dcache_to_poc(itt, sz);
3456
3457         dev->its = its;
3458         dev->itt = itt;
3459         dev->nr_ites = nr_ites;
3460         dev->event_map.lpi_map = lpi_map;
3461         dev->event_map.col_map = col_map;
3462         dev->event_map.lpi_base = lpi_base;
3463         dev->event_map.nr_lpis = nr_lpis;
3464         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3465         dev->device_id = dev_id;
3466         INIT_LIST_HEAD(&dev->entry);
3467
3468         raw_spin_lock_irqsave(&its->lock, flags);
3469         list_add(&dev->entry, &its->its_device_list);
3470         raw_spin_unlock_irqrestore(&its->lock, flags);
3471
3472         /* Map device to its ITT */
3473         its_send_mapd(dev, 1);
3474
3475         return dev;
3476 }
3477
3478 static void its_free_device(struct its_device *its_dev)
3479 {
3480         unsigned long flags;
3481
3482         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3483         list_del(&its_dev->entry);
3484         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3485         kfree(its_dev->event_map.col_map);
3486         kfree(its_dev->itt);
3487         kfree(its_dev);
3488 }
3489
3490 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3491 {
3492         int idx;
3493
3494         /* Find a free LPI region in lpi_map and allocate them. */
3495         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3496                                       dev->event_map.nr_lpis,
3497                                       get_count_order(nvecs));
3498         if (idx < 0)
3499                 return -ENOSPC;
3500
3501         *hwirq = dev->event_map.lpi_base + idx;
3502
3503         return 0;
3504 }
3505
3506 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3507                            int nvec, msi_alloc_info_t *info)
3508 {
3509         struct its_node *its;
3510         struct its_device *its_dev;
3511         struct msi_domain_info *msi_info;
3512         u32 dev_id;
3513         int err = 0;
3514
3515         /*
3516          * We ignore "dev" entirely, and rely on the dev_id that has
3517          * been passed via the scratchpad. This limits this domain's
3518          * usefulness to upper layers that definitely know that they
3519          * are built on top of the ITS.
3520          */
3521         dev_id = info->scratchpad[0].ul;
3522
3523         msi_info = msi_get_domain_info(domain);
3524         its = msi_info->data;
3525
3526         if (!gic_rdists->has_direct_lpi &&
3527             vpe_proxy.dev &&
3528             vpe_proxy.dev->its == its &&
3529             dev_id == vpe_proxy.dev->device_id) {
3530                 /* Bad luck. Get yourself a better implementation */
3531                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3532                           dev_id);
3533                 return -EINVAL;
3534         }
3535
3536         mutex_lock(&its->dev_alloc_lock);
3537         its_dev = its_find_device(its, dev_id);
3538         if (its_dev) {
3539                 /*
3540                  * We already have seen this ID, probably through
3541                  * another alias (PCI bridge of some sort). No need to
3542                  * create the device.
3543                  */
3544                 its_dev->shared = true;
3545                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3546                 goto out;
3547         }
3548
3549         its_dev = its_create_device(its, dev_id, nvec, true);
3550         if (!its_dev) {
3551                 err = -ENOMEM;
3552                 goto out;
3553         }
3554
3555         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3556                 its_dev->shared = true;
3557
3558         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3559 out:
3560         mutex_unlock(&its->dev_alloc_lock);
3561         info->scratchpad[0].ptr = its_dev;
3562         return err;
3563 }
3564
3565 static struct msi_domain_ops its_msi_domain_ops = {
3566         .msi_prepare    = its_msi_prepare,
3567 };
3568
3569 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3570                                     unsigned int virq,
3571                                     irq_hw_number_t hwirq)
3572 {
3573         struct irq_fwspec fwspec;
3574
3575         if (irq_domain_get_of_node(domain->parent)) {
3576                 fwspec.fwnode = domain->parent->fwnode;
3577                 fwspec.param_count = 3;
3578                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3579                 fwspec.param[1] = hwirq;
3580                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3581         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3582                 fwspec.fwnode = domain->parent->fwnode;
3583                 fwspec.param_count = 2;
3584                 fwspec.param[0] = hwirq;
3585                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3586         } else {
3587                 return -EINVAL;
3588         }
3589
3590         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3591 }
3592
3593 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3594                                 unsigned int nr_irqs, void *args)
3595 {
3596         msi_alloc_info_t *info = args;
3597         struct its_device *its_dev = info->scratchpad[0].ptr;
3598         struct its_node *its = its_dev->its;
3599         struct irq_data *irqd;
3600         irq_hw_number_t hwirq;
3601         int err;
3602         int i;
3603
3604         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3605         if (err)
3606                 return err;
3607
3608         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3609         if (err)
3610                 return err;
3611
3612         for (i = 0; i < nr_irqs; i++) {
3613                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3614                 if (err)
3615                         return err;
3616
3617                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3618                                               hwirq + i, &its_irq_chip, its_dev);
3619                 irqd = irq_get_irq_data(virq + i);
3620                 irqd_set_single_target(irqd);
3621                 irqd_set_affinity_on_activate(irqd);
3622                 irqd_set_resend_when_in_progress(irqd);
3623                 pr_debug("ID:%d pID:%d vID:%d\n",
3624                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3625                          (int)(hwirq + i), virq + i);
3626         }
3627
3628         return 0;
3629 }
3630
3631 static int its_irq_domain_activate(struct irq_domain *domain,
3632                                    struct irq_data *d, bool reserve)
3633 {
3634         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3635         u32 event = its_get_event_id(d);
3636         int cpu;
3637
3638         cpu = its_select_cpu(d, cpu_online_mask);
3639         if (cpu < 0 || cpu >= nr_cpu_ids)
3640                 return -EINVAL;
3641
3642         its_inc_lpi_count(d, cpu);
3643         its_dev->event_map.col_map[event] = cpu;
3644         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3645
3646         /* Map the GIC IRQ and event to the device */
3647         its_send_mapti(its_dev, d->hwirq, event);
3648         return 0;
3649 }
3650
3651 static void its_irq_domain_deactivate(struct irq_domain *domain,
3652                                       struct irq_data *d)
3653 {
3654         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3655         u32 event = its_get_event_id(d);
3656
3657         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3658         /* Stop the delivery of interrupts */
3659         its_send_discard(its_dev, event);
3660 }
3661
3662 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3663                                 unsigned int nr_irqs)
3664 {
3665         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3666         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3667         struct its_node *its = its_dev->its;
3668         int i;
3669
3670         bitmap_release_region(its_dev->event_map.lpi_map,
3671                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3672                               get_count_order(nr_irqs));
3673
3674         for (i = 0; i < nr_irqs; i++) {
3675                 struct irq_data *data = irq_domain_get_irq_data(domain,
3676                                                                 virq + i);
3677                 /* Nuke the entry in the domain */
3678                 irq_domain_reset_irq_data(data);
3679         }
3680
3681         mutex_lock(&its->dev_alloc_lock);
3682
3683         /*
3684          * If all interrupts have been freed, start mopping the
3685          * floor. This is conditioned on the device not being shared.
3686          */
3687         if (!its_dev->shared &&
3688             bitmap_empty(its_dev->event_map.lpi_map,
3689                          its_dev->event_map.nr_lpis)) {
3690                 its_lpi_free(its_dev->event_map.lpi_map,
3691                              its_dev->event_map.lpi_base,
3692                              its_dev->event_map.nr_lpis);
3693
3694                 /* Unmap device/itt */
3695                 its_send_mapd(its_dev, 0);
3696                 its_free_device(its_dev);
3697         }
3698
3699         mutex_unlock(&its->dev_alloc_lock);
3700
3701         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3702 }
3703
3704 static const struct irq_domain_ops its_domain_ops = {
3705         .alloc                  = its_irq_domain_alloc,
3706         .free                   = its_irq_domain_free,
3707         .activate               = its_irq_domain_activate,
3708         .deactivate             = its_irq_domain_deactivate,
3709 };
3710
3711 /*
3712  * This is insane.
3713  *
3714  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3715  * likely), the only way to perform an invalidate is to use a fake
3716  * device to issue an INV command, implying that the LPI has first
3717  * been mapped to some event on that device. Since this is not exactly
3718  * cheap, we try to keep that mapping around as long as possible, and
3719  * only issue an UNMAP if we're short on available slots.
3720  *
3721  * Broken by design(tm).
3722  *
3723  * GICv4.1, on the other hand, mandates that we're able to invalidate
3724  * by writing to a MMIO register. It doesn't implement the whole of
3725  * DirectLPI, but that's good enough. And most of the time, we don't
3726  * even have to invalidate anything, as the redistributor can be told
3727  * whether to generate a doorbell or not (we thus leave it enabled,
3728  * always).
3729  */
3730 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3731 {
3732         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3733         if (gic_rdists->has_rvpeid)
3734                 return;
3735
3736         /* Already unmapped? */
3737         if (vpe->vpe_proxy_event == -1)
3738                 return;
3739
3740         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3741         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3742
3743         /*
3744          * We don't track empty slots at all, so let's move the
3745          * next_victim pointer if we can quickly reuse that slot
3746          * instead of nuking an existing entry. Not clear that this is
3747          * always a win though, and this might just generate a ripple
3748          * effect... Let's just hope VPEs don't migrate too often.
3749          */
3750         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3751                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3752
3753         vpe->vpe_proxy_event = -1;
3754 }
3755
3756 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3757 {
3758         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3759         if (gic_rdists->has_rvpeid)
3760                 return;
3761
3762         if (!gic_rdists->has_direct_lpi) {
3763                 unsigned long flags;
3764
3765                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3766                 its_vpe_db_proxy_unmap_locked(vpe);
3767                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3768         }
3769 }
3770
3771 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3772 {
3773         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3774         if (gic_rdists->has_rvpeid)
3775                 return;
3776
3777         /* Already mapped? */
3778         if (vpe->vpe_proxy_event != -1)
3779                 return;
3780
3781         /* This slot was already allocated. Kick the other VPE out. */
3782         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3783                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3784
3785         /* Map the new VPE instead */
3786         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3787         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3788         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3789
3790         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3791         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3792 }
3793
3794 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3795 {
3796         unsigned long flags;
3797         struct its_collection *target_col;
3798
3799         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3800         if (gic_rdists->has_rvpeid)
3801                 return;
3802
3803         if (gic_rdists->has_direct_lpi) {
3804                 void __iomem *rdbase;
3805
3806                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3807                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3808                 wait_for_syncr(rdbase);
3809
3810                 return;
3811         }
3812
3813         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3814
3815         its_vpe_db_proxy_map_locked(vpe);
3816
3817         target_col = &vpe_proxy.dev->its->collections[to];
3818         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3819         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3820
3821         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3822 }
3823
3824 static int its_vpe_set_affinity(struct irq_data *d,
3825                                 const struct cpumask *mask_val,
3826                                 bool force)
3827 {
3828         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3829         struct cpumask common, *table_mask;
3830         unsigned long flags;
3831         int from, cpu;
3832
3833         /*
3834          * Changing affinity is mega expensive, so let's be as lazy as
3835          * we can and only do it if we really have to. Also, if mapped
3836          * into the proxy device, we need to move the doorbell
3837          * interrupt to its new location.
3838          *
3839          * Another thing is that changing the affinity of a vPE affects
3840          * *other interrupts* such as all the vLPIs that are routed to
3841          * this vPE. This means that the irq_desc lock is not enough to
3842          * protect us, and that we must ensure nobody samples vpe->col_idx
3843          * during the update, hence the lock below which must also be
3844          * taken on any vLPI handling path that evaluates vpe->col_idx.
3845          */
3846         from = vpe_to_cpuid_lock(vpe, &flags);
3847         table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3848
3849         /*
3850          * If we are offered another CPU in the same GICv4.1 ITS
3851          * affinity, pick this one. Otherwise, any CPU will do.
3852          */
3853         if (table_mask && cpumask_and(&common, mask_val, table_mask))
3854                 cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3855         else
3856                 cpu = cpumask_first(mask_val);
3857
3858         if (from == cpu)
3859                 goto out;
3860
3861         vpe->col_idx = cpu;
3862
3863         its_send_vmovp(vpe);
3864         its_vpe_db_proxy_move(vpe, from, cpu);
3865
3866 out:
3867         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3868         vpe_to_cpuid_unlock(vpe, flags);
3869
3870         return IRQ_SET_MASK_OK_DONE;
3871 }
3872
3873 static void its_wait_vpt_parse_complete(void)
3874 {
3875         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3876         u64 val;
3877
3878         if (!gic_rdists->has_vpend_valid_dirty)
3879                 return;
3880
3881         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3882                                                        val,
3883                                                        !(val & GICR_VPENDBASER_Dirty),
3884                                                        1, 500));
3885 }
3886
3887 static void its_vpe_schedule(struct its_vpe *vpe)
3888 {
3889         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3890         u64 val;
3891
3892         /* Schedule the VPE */
3893         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3894                 GENMASK_ULL(51, 12);
3895         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3896         if (rdists_support_shareable()) {
3897                 val |= GICR_VPROPBASER_RaWb;
3898                 val |= GICR_VPROPBASER_InnerShareable;
3899         }
3900         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3901
3902         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3903                 GENMASK_ULL(51, 16);
3904         if (rdists_support_shareable()) {
3905                 val |= GICR_VPENDBASER_RaWaWb;
3906                 val |= GICR_VPENDBASER_InnerShareable;
3907         }
3908         /*
3909          * There is no good way of finding out if the pending table is
3910          * empty as we can race against the doorbell interrupt very
3911          * easily. So in the end, vpe->pending_last is only an
3912          * indication that the vcpu has something pending, not one
3913          * that the pending table is empty. A good implementation
3914          * would be able to read its coarse map pretty quickly anyway,
3915          * making this a tolerable issue.
3916          */
3917         val |= GICR_VPENDBASER_PendingLast;
3918         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3919         val |= GICR_VPENDBASER_Valid;
3920         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3921 }
3922
3923 static void its_vpe_deschedule(struct its_vpe *vpe)
3924 {
3925         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3926         u64 val;
3927
3928         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3929
3930         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3931         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3932 }
3933
3934 static void its_vpe_invall(struct its_vpe *vpe)
3935 {
3936         struct its_node *its;
3937
3938         list_for_each_entry(its, &its_nodes, entry) {
3939                 if (!is_v4(its))
3940                         continue;
3941
3942                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3943                         continue;
3944
3945                 /*
3946                  * Sending a VINVALL to a single ITS is enough, as all
3947                  * we need is to reach the redistributors.
3948                  */
3949                 its_send_vinvall(its, vpe);
3950                 return;
3951         }
3952 }
3953
3954 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3955 {
3956         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3957         struct its_cmd_info *info = vcpu_info;
3958
3959         switch (info->cmd_type) {
3960         case SCHEDULE_VPE:
3961                 its_vpe_schedule(vpe);
3962                 return 0;
3963
3964         case DESCHEDULE_VPE:
3965                 its_vpe_deschedule(vpe);
3966                 return 0;
3967
3968         case COMMIT_VPE:
3969                 its_wait_vpt_parse_complete();
3970                 return 0;
3971
3972         case INVALL_VPE:
3973                 its_vpe_invall(vpe);
3974                 return 0;
3975
3976         default:
3977                 return -EINVAL;
3978         }
3979 }
3980
3981 static void its_vpe_send_cmd(struct its_vpe *vpe,
3982                              void (*cmd)(struct its_device *, u32))
3983 {
3984         unsigned long flags;
3985
3986         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3987
3988         its_vpe_db_proxy_map_locked(vpe);
3989         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3990
3991         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3992 }
3993
3994 static void its_vpe_send_inv(struct irq_data *d)
3995 {
3996         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3997
3998         if (gic_rdists->has_direct_lpi)
3999                 __direct_lpi_inv(d, d->parent_data->hwirq);
4000         else
4001                 its_vpe_send_cmd(vpe, its_send_inv);
4002 }
4003
4004 static void its_vpe_mask_irq(struct irq_data *d)
4005 {
4006         /*
4007          * We need to unmask the LPI, which is described by the parent
4008          * irq_data. Instead of calling into the parent (which won't
4009          * exactly do the right thing, let's simply use the
4010          * parent_data pointer. Yes, I'm naughty.
4011          */
4012         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4013         its_vpe_send_inv(d);
4014 }
4015
4016 static void its_vpe_unmask_irq(struct irq_data *d)
4017 {
4018         /* Same hack as above... */
4019         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4020         its_vpe_send_inv(d);
4021 }
4022
4023 static int its_vpe_set_irqchip_state(struct irq_data *d,
4024                                      enum irqchip_irq_state which,
4025                                      bool state)
4026 {
4027         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4028
4029         if (which != IRQCHIP_STATE_PENDING)
4030                 return -EINVAL;
4031
4032         if (gic_rdists->has_direct_lpi) {
4033                 void __iomem *rdbase;
4034
4035                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4036                 if (state) {
4037                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4038                 } else {
4039                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4040                         wait_for_syncr(rdbase);
4041                 }
4042         } else {
4043                 if (state)
4044                         its_vpe_send_cmd(vpe, its_send_int);
4045                 else
4046                         its_vpe_send_cmd(vpe, its_send_clear);
4047         }
4048
4049         return 0;
4050 }
4051
4052 static int its_vpe_retrigger(struct irq_data *d)
4053 {
4054         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4055 }
4056
4057 static struct irq_chip its_vpe_irq_chip = {
4058         .name                   = "GICv4-vpe",
4059         .irq_mask               = its_vpe_mask_irq,
4060         .irq_unmask             = its_vpe_unmask_irq,
4061         .irq_eoi                = irq_chip_eoi_parent,
4062         .irq_set_affinity       = its_vpe_set_affinity,
4063         .irq_retrigger          = its_vpe_retrigger,
4064         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4065         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4066 };
4067
4068 static struct its_node *find_4_1_its(void)
4069 {
4070         static struct its_node *its = NULL;
4071
4072         if (!its) {
4073                 list_for_each_entry(its, &its_nodes, entry) {
4074                         if (is_v4_1(its))
4075                                 return its;
4076                 }
4077
4078                 /* Oops? */
4079                 its = NULL;
4080         }
4081
4082         return its;
4083 }
4084
4085 static void its_vpe_4_1_send_inv(struct irq_data *d)
4086 {
4087         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4088         struct its_node *its;
4089
4090         /*
4091          * GICv4.1 wants doorbells to be invalidated using the
4092          * INVDB command in order to be broadcast to all RDs. Send
4093          * it to the first valid ITS, and let the HW do its magic.
4094          */
4095         its = find_4_1_its();
4096         if (its)
4097                 its_send_invdb(its, vpe);
4098 }
4099
4100 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4101 {
4102         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4103         its_vpe_4_1_send_inv(d);
4104 }
4105
4106 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4107 {
4108         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4109         its_vpe_4_1_send_inv(d);
4110 }
4111
4112 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4113                                  struct its_cmd_info *info)
4114 {
4115         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4116         u64 val = 0;
4117
4118         /* Schedule the VPE */
4119         val |= GICR_VPENDBASER_Valid;
4120         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4121         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4122         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4123
4124         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4125 }
4126
4127 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4128                                    struct its_cmd_info *info)
4129 {
4130         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4131         u64 val;
4132
4133         if (info->req_db) {
4134                 unsigned long flags;
4135
4136                 /*
4137                  * vPE is going to block: make the vPE non-resident with
4138                  * PendingLast clear and DB set. The GIC guarantees that if
4139                  * we read-back PendingLast clear, then a doorbell will be
4140                  * delivered when an interrupt comes.
4141                  *
4142                  * Note the locking to deal with the concurrent update of
4143                  * pending_last from the doorbell interrupt handler that can
4144                  * run concurrently.
4145                  */
4146                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4147                 val = its_clear_vpend_valid(vlpi_base,
4148                                             GICR_VPENDBASER_PendingLast,
4149                                             GICR_VPENDBASER_4_1_DB);
4150                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4151                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4152         } else {
4153                 /*
4154                  * We're not blocking, so just make the vPE non-resident
4155                  * with PendingLast set, indicating that we'll be back.
4156                  */
4157                 val = its_clear_vpend_valid(vlpi_base,
4158                                             0,
4159                                             GICR_VPENDBASER_PendingLast);
4160                 vpe->pending_last = true;
4161         }
4162 }
4163
4164 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4165 {
4166         void __iomem *rdbase;
4167         unsigned long flags;
4168         u64 val;
4169         int cpu;
4170
4171         val  = GICR_INVALLR_V;
4172         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4173
4174         /* Target the redistributor this vPE is currently known on */
4175         cpu = vpe_to_cpuid_lock(vpe, &flags);
4176         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4177         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4178         gic_write_lpir(val, rdbase + GICR_INVALLR);
4179
4180         wait_for_syncr(rdbase);
4181         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4182         vpe_to_cpuid_unlock(vpe, flags);
4183 }
4184
4185 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4186 {
4187         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4188         struct its_cmd_info *info = vcpu_info;
4189
4190         switch (info->cmd_type) {
4191         case SCHEDULE_VPE:
4192                 its_vpe_4_1_schedule(vpe, info);
4193                 return 0;
4194
4195         case DESCHEDULE_VPE:
4196                 its_vpe_4_1_deschedule(vpe, info);
4197                 return 0;
4198
4199         case COMMIT_VPE:
4200                 its_wait_vpt_parse_complete();
4201                 return 0;
4202
4203         case INVALL_VPE:
4204                 its_vpe_4_1_invall(vpe);
4205                 return 0;
4206
4207         default:
4208                 return -EINVAL;
4209         }
4210 }
4211
4212 static struct irq_chip its_vpe_4_1_irq_chip = {
4213         .name                   = "GICv4.1-vpe",
4214         .irq_mask               = its_vpe_4_1_mask_irq,
4215         .irq_unmask             = its_vpe_4_1_unmask_irq,
4216         .irq_eoi                = irq_chip_eoi_parent,
4217         .irq_set_affinity       = its_vpe_set_affinity,
4218         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4219 };
4220
4221 static void its_configure_sgi(struct irq_data *d, bool clear)
4222 {
4223         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4224         struct its_cmd_desc desc;
4225
4226         desc.its_vsgi_cmd.vpe = vpe;
4227         desc.its_vsgi_cmd.sgi = d->hwirq;
4228         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4229         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4230         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4231         desc.its_vsgi_cmd.clear = clear;
4232
4233         /*
4234          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4235          * destination VPE is mapped there. Since we map them eagerly at
4236          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4237          */
4238         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4239 }
4240
4241 static void its_sgi_mask_irq(struct irq_data *d)
4242 {
4243         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244
4245         vpe->sgi_config[d->hwirq].enabled = false;
4246         its_configure_sgi(d, false);
4247 }
4248
4249 static void its_sgi_unmask_irq(struct irq_data *d)
4250 {
4251         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4252
4253         vpe->sgi_config[d->hwirq].enabled = true;
4254         its_configure_sgi(d, false);
4255 }
4256
4257 static int its_sgi_set_affinity(struct irq_data *d,
4258                                 const struct cpumask *mask_val,
4259                                 bool force)
4260 {
4261         /*
4262          * There is no notion of affinity for virtual SGIs, at least
4263          * not on the host (since they can only be targeting a vPE).
4264          * Tell the kernel we've done whatever it asked for.
4265          */
4266         irq_data_update_effective_affinity(d, mask_val);
4267         return IRQ_SET_MASK_OK;
4268 }
4269
4270 static int its_sgi_set_irqchip_state(struct irq_data *d,
4271                                      enum irqchip_irq_state which,
4272                                      bool state)
4273 {
4274         if (which != IRQCHIP_STATE_PENDING)
4275                 return -EINVAL;
4276
4277         if (state) {
4278                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279                 struct its_node *its = find_4_1_its();
4280                 u64 val;
4281
4282                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4283                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4284                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4285         } else {
4286                 its_configure_sgi(d, true);
4287         }
4288
4289         return 0;
4290 }
4291
4292 static int its_sgi_get_irqchip_state(struct irq_data *d,
4293                                      enum irqchip_irq_state which, bool *val)
4294 {
4295         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296         void __iomem *base;
4297         unsigned long flags;
4298         u32 count = 1000000;    /* 1s! */
4299         u32 status;
4300         int cpu;
4301
4302         if (which != IRQCHIP_STATE_PENDING)
4303                 return -EINVAL;
4304
4305         /*
4306          * Locking galore! We can race against two different events:
4307          *
4308          * - Concurrent vPE affinity change: we must make sure it cannot
4309          *   happen, or we'll talk to the wrong redistributor. This is
4310          *   identical to what happens with vLPIs.
4311          *
4312          * - Concurrent VSGIPENDR access: As it involves accessing two
4313          *   MMIO registers, this must be made atomic one way or another.
4314          */
4315         cpu = vpe_to_cpuid_lock(vpe, &flags);
4316         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4317         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4318         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4319         do {
4320                 status = readl_relaxed(base + GICR_VSGIPENDR);
4321                 if (!(status & GICR_VSGIPENDR_BUSY))
4322                         goto out;
4323
4324                 count--;
4325                 if (!count) {
4326                         pr_err_ratelimited("Unable to get SGI status\n");
4327                         goto out;
4328                 }
4329                 cpu_relax();
4330                 udelay(1);
4331         } while (count);
4332
4333 out:
4334         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4335         vpe_to_cpuid_unlock(vpe, flags);
4336
4337         if (!count)
4338                 return -ENXIO;
4339
4340         *val = !!(status & (1 << d->hwirq));
4341
4342         return 0;
4343 }
4344
4345 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4346 {
4347         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4348         struct its_cmd_info *info = vcpu_info;
4349
4350         switch (info->cmd_type) {
4351         case PROP_UPDATE_VSGI:
4352                 vpe->sgi_config[d->hwirq].priority = info->priority;
4353                 vpe->sgi_config[d->hwirq].group = info->group;
4354                 its_configure_sgi(d, false);
4355                 return 0;
4356
4357         default:
4358                 return -EINVAL;
4359         }
4360 }
4361
4362 static struct irq_chip its_sgi_irq_chip = {
4363         .name                   = "GICv4.1-sgi",
4364         .irq_mask               = its_sgi_mask_irq,
4365         .irq_unmask             = its_sgi_unmask_irq,
4366         .irq_set_affinity       = its_sgi_set_affinity,
4367         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4368         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4369         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4370 };
4371
4372 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4373                                     unsigned int virq, unsigned int nr_irqs,
4374                                     void *args)
4375 {
4376         struct its_vpe *vpe = args;
4377         int i;
4378
4379         /* Yes, we do want 16 SGIs */
4380         WARN_ON(nr_irqs != 16);
4381
4382         for (i = 0; i < 16; i++) {
4383                 vpe->sgi_config[i].priority = 0;
4384                 vpe->sgi_config[i].enabled = false;
4385                 vpe->sgi_config[i].group = false;
4386
4387                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4388                                               &its_sgi_irq_chip, vpe);
4389                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4390         }
4391
4392         return 0;
4393 }
4394
4395 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4396                                     unsigned int virq,
4397                                     unsigned int nr_irqs)
4398 {
4399         /* Nothing to do */
4400 }
4401
4402 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4403                                        struct irq_data *d, bool reserve)
4404 {
4405         /* Write out the initial SGI configuration */
4406         its_configure_sgi(d, false);
4407         return 0;
4408 }
4409
4410 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4411                                           struct irq_data *d)
4412 {
4413         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4414
4415         /*
4416          * The VSGI command is awkward:
4417          *
4418          * - To change the configuration, CLEAR must be set to false,
4419          *   leaving the pending bit unchanged.
4420          * - To clear the pending bit, CLEAR must be set to true, leaving
4421          *   the configuration unchanged.
4422          *
4423          * You just can't do both at once, hence the two commands below.
4424          */
4425         vpe->sgi_config[d->hwirq].enabled = false;
4426         its_configure_sgi(d, false);
4427         its_configure_sgi(d, true);
4428 }
4429
4430 static const struct irq_domain_ops its_sgi_domain_ops = {
4431         .alloc          = its_sgi_irq_domain_alloc,
4432         .free           = its_sgi_irq_domain_free,
4433         .activate       = its_sgi_irq_domain_activate,
4434         .deactivate     = its_sgi_irq_domain_deactivate,
4435 };
4436
4437 static int its_vpe_id_alloc(void)
4438 {
4439         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4440 }
4441
4442 static void its_vpe_id_free(u16 id)
4443 {
4444         ida_simple_remove(&its_vpeid_ida, id);
4445 }
4446
4447 static int its_vpe_init(struct its_vpe *vpe)
4448 {
4449         struct page *vpt_page;
4450         int vpe_id;
4451
4452         /* Allocate vpe_id */
4453         vpe_id = its_vpe_id_alloc();
4454         if (vpe_id < 0)
4455                 return vpe_id;
4456
4457         /* Allocate VPT */
4458         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4459         if (!vpt_page) {
4460                 its_vpe_id_free(vpe_id);
4461                 return -ENOMEM;
4462         }
4463
4464         if (!its_alloc_vpe_table(vpe_id)) {
4465                 its_vpe_id_free(vpe_id);
4466                 its_free_pending_table(vpt_page);
4467                 return -ENOMEM;
4468         }
4469
4470         raw_spin_lock_init(&vpe->vpe_lock);
4471         vpe->vpe_id = vpe_id;
4472         vpe->vpt_page = vpt_page;
4473         if (gic_rdists->has_rvpeid)
4474                 atomic_set(&vpe->vmapp_count, 0);
4475         else
4476                 vpe->vpe_proxy_event = -1;
4477
4478         return 0;
4479 }
4480
4481 static void its_vpe_teardown(struct its_vpe *vpe)
4482 {
4483         its_vpe_db_proxy_unmap(vpe);
4484         its_vpe_id_free(vpe->vpe_id);
4485         its_free_pending_table(vpe->vpt_page);
4486 }
4487
4488 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4489                                     unsigned int virq,
4490                                     unsigned int nr_irqs)
4491 {
4492         struct its_vm *vm = domain->host_data;
4493         int i;
4494
4495         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4496
4497         for (i = 0; i < nr_irqs; i++) {
4498                 struct irq_data *data = irq_domain_get_irq_data(domain,
4499                                                                 virq + i);
4500                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4501
4502                 BUG_ON(vm != vpe->its_vm);
4503
4504                 clear_bit(data->hwirq, vm->db_bitmap);
4505                 its_vpe_teardown(vpe);
4506                 irq_domain_reset_irq_data(data);
4507         }
4508
4509         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4510                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4511                 its_free_prop_table(vm->vprop_page);
4512         }
4513 }
4514
4515 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4516                                     unsigned int nr_irqs, void *args)
4517 {
4518         struct irq_chip *irqchip = &its_vpe_irq_chip;
4519         struct its_vm *vm = args;
4520         unsigned long *bitmap;
4521         struct page *vprop_page;
4522         int base, nr_ids, i, err = 0;
4523
4524         BUG_ON(!vm);
4525
4526         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4527         if (!bitmap)
4528                 return -ENOMEM;
4529
4530         if (nr_ids < nr_irqs) {
4531                 its_lpi_free(bitmap, base, nr_ids);
4532                 return -ENOMEM;
4533         }
4534
4535         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4536         if (!vprop_page) {
4537                 its_lpi_free(bitmap, base, nr_ids);
4538                 return -ENOMEM;
4539         }
4540
4541         vm->db_bitmap = bitmap;
4542         vm->db_lpi_base = base;
4543         vm->nr_db_lpis = nr_ids;
4544         vm->vprop_page = vprop_page;
4545
4546         if (gic_rdists->has_rvpeid)
4547                 irqchip = &its_vpe_4_1_irq_chip;
4548
4549         for (i = 0; i < nr_irqs; i++) {
4550                 vm->vpes[i]->vpe_db_lpi = base + i;
4551                 err = its_vpe_init(vm->vpes[i]);
4552                 if (err)
4553                         break;
4554                 err = its_irq_gic_domain_alloc(domain, virq + i,
4555                                                vm->vpes[i]->vpe_db_lpi);
4556                 if (err)
4557                         break;
4558                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4559                                               irqchip, vm->vpes[i]);
4560                 set_bit(i, bitmap);
4561                 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4562         }
4563
4564         if (err) {
4565                 if (i > 0)
4566                         its_vpe_irq_domain_free(domain, virq, i);
4567
4568                 its_lpi_free(bitmap, base, nr_ids);
4569                 its_free_prop_table(vprop_page);
4570         }
4571
4572         return err;
4573 }
4574
4575 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4576                                        struct irq_data *d, bool reserve)
4577 {
4578         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4579         struct its_node *its;
4580
4581         /*
4582          * If we use the list map, we issue VMAPP on demand... Unless
4583          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4584          * so that VSGIs can work.
4585          */
4586         if (!gic_requires_eager_mapping())
4587                 return 0;
4588
4589         /* Map the VPE to the first possible CPU */
4590         vpe->col_idx = cpumask_first(cpu_online_mask);
4591
4592         list_for_each_entry(its, &its_nodes, entry) {
4593                 if (!is_v4(its))
4594                         continue;
4595
4596                 its_send_vmapp(its, vpe, true);
4597                 its_send_vinvall(its, vpe);
4598         }
4599
4600         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4601
4602         return 0;
4603 }
4604
4605 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4606                                           struct irq_data *d)
4607 {
4608         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4609         struct its_node *its;
4610
4611         /*
4612          * If we use the list map on GICv4.0, we unmap the VPE once no
4613          * VLPIs are associated with the VM.
4614          */
4615         if (!gic_requires_eager_mapping())
4616                 return;
4617
4618         list_for_each_entry(its, &its_nodes, entry) {
4619                 if (!is_v4(its))
4620                         continue;
4621
4622                 its_send_vmapp(its, vpe, false);
4623         }
4624
4625         /*
4626          * There may be a direct read to the VPT after unmapping the
4627          * vPE, to guarantee the validity of this, we make the VPT
4628          * memory coherent with the CPU caches here.
4629          */
4630         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4631                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4632                                         LPI_PENDBASE_SZ);
4633 }
4634
4635 static const struct irq_domain_ops its_vpe_domain_ops = {
4636         .alloc                  = its_vpe_irq_domain_alloc,
4637         .free                   = its_vpe_irq_domain_free,
4638         .activate               = its_vpe_irq_domain_activate,
4639         .deactivate             = its_vpe_irq_domain_deactivate,
4640 };
4641
4642 static int its_force_quiescent(void __iomem *base)
4643 {
4644         u32 count = 1000000;    /* 1s */
4645         u32 val;
4646
4647         val = readl_relaxed(base + GITS_CTLR);
4648         /*
4649          * GIC architecture specification requires the ITS to be both
4650          * disabled and quiescent for writes to GITS_BASER<n> or
4651          * GITS_CBASER to not have UNPREDICTABLE results.
4652          */
4653         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4654                 return 0;
4655
4656         /* Disable the generation of all interrupts to this ITS */
4657         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4658         writel_relaxed(val, base + GITS_CTLR);
4659
4660         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4661         while (1) {
4662                 val = readl_relaxed(base + GITS_CTLR);
4663                 if (val & GITS_CTLR_QUIESCENT)
4664                         return 0;
4665
4666                 count--;
4667                 if (!count)
4668                         return -EBUSY;
4669
4670                 cpu_relax();
4671                 udelay(1);
4672         }
4673 }
4674
4675 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4676 {
4677         struct its_node *its = data;
4678
4679         /* erratum 22375: only alloc 8MB table size (20 bits) */
4680         its->typer &= ~GITS_TYPER_DEVBITS;
4681         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4682         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4683
4684         return true;
4685 }
4686
4687 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4688 {
4689         struct its_node *its = data;
4690
4691         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4692
4693         return true;
4694 }
4695
4696 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4697 {
4698         struct its_node *its = data;
4699
4700         /* On QDF2400, the size of the ITE is 16Bytes */
4701         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4702         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4703
4704         return true;
4705 }
4706
4707 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4708 {
4709         struct its_node *its = its_dev->its;
4710
4711         /*
4712          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4713          * which maps 32-bit writes targeted at a separate window of
4714          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4715          * with device ID taken from bits [device_id_bits + 1:2] of
4716          * the window offset.
4717          */
4718         return its->pre_its_base + (its_dev->device_id << 2);
4719 }
4720
4721 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4722 {
4723         struct its_node *its = data;
4724         u32 pre_its_window[2];
4725         u32 ids;
4726
4727         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4728                                            "socionext,synquacer-pre-its",
4729                                            pre_its_window,
4730                                            ARRAY_SIZE(pre_its_window))) {
4731
4732                 its->pre_its_base = pre_its_window[0];
4733                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4734
4735                 ids = ilog2(pre_its_window[1]) - 2;
4736                 if (device_ids(its) > ids) {
4737                         its->typer &= ~GITS_TYPER_DEVBITS;
4738                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4739                 }
4740
4741                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4742                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4743                 return true;
4744         }
4745         return false;
4746 }
4747
4748 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4749 {
4750         struct its_node *its = data;
4751
4752         /*
4753          * Hip07 insists on using the wrong address for the VLPI
4754          * page. Trick it into doing the right thing...
4755          */
4756         its->vlpi_redist_offset = SZ_128K;
4757         return true;
4758 }
4759
4760 static bool __maybe_unused its_enable_rk3588001(void *data)
4761 {
4762         struct its_node *its = data;
4763
4764         if (!of_machine_is_compatible("rockchip,rk3588") &&
4765             !of_machine_is_compatible("rockchip,rk3588s"))
4766                 return false;
4767
4768         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4769         gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4770
4771         return true;
4772 }
4773
4774 static bool its_set_non_coherent(void *data)
4775 {
4776         struct its_node *its = data;
4777
4778         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4779         return true;
4780 }
4781
4782 static const struct gic_quirk its_quirks[] = {
4783 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4784         {
4785                 .desc   = "ITS: Cavium errata 22375, 24313",
4786                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4787                 .mask   = 0xffff0fff,
4788                 .init   = its_enable_quirk_cavium_22375,
4789         },
4790 #endif
4791 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4792         {
4793                 .desc   = "ITS: Cavium erratum 23144",
4794                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4795                 .mask   = 0xffff0fff,
4796                 .init   = its_enable_quirk_cavium_23144,
4797         },
4798 #endif
4799 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4800         {
4801                 .desc   = "ITS: QDF2400 erratum 0065",
4802                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4803                 .mask   = 0xffffffff,
4804                 .init   = its_enable_quirk_qdf2400_e0065,
4805         },
4806 #endif
4807 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4808         {
4809                 /*
4810                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4811                  * implementation, but with a 'pre-ITS' added that requires
4812                  * special handling in software.
4813                  */
4814                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4815                 .iidr   = 0x0001143b,
4816                 .mask   = 0xffffffff,
4817                 .init   = its_enable_quirk_socionext_synquacer,
4818         },
4819 #endif
4820 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4821         {
4822                 .desc   = "ITS: Hip07 erratum 161600802",
4823                 .iidr   = 0x00000004,
4824                 .mask   = 0xffffffff,
4825                 .init   = its_enable_quirk_hip07_161600802,
4826         },
4827 #endif
4828 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4829         {
4830                 .desc   = "ITS: Rockchip erratum RK3588001",
4831                 .iidr   = 0x0201743b,
4832                 .mask   = 0xffffffff,
4833                 .init   = its_enable_rk3588001,
4834         },
4835 #endif
4836         {
4837                 .desc   = "ITS: non-coherent attribute",
4838                 .property = "dma-noncoherent",
4839                 .init   = its_set_non_coherent,
4840         },
4841         {
4842         }
4843 };
4844
4845 static void its_enable_quirks(struct its_node *its)
4846 {
4847         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4848
4849         gic_enable_quirks(iidr, its_quirks, its);
4850
4851         if (is_of_node(its->fwnode_handle))
4852                 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4853                                      its_quirks, its);
4854 }
4855
4856 static int its_save_disable(void)
4857 {
4858         struct its_node *its;
4859         int err = 0;
4860
4861         raw_spin_lock(&its_lock);
4862         list_for_each_entry(its, &its_nodes, entry) {
4863                 void __iomem *base;
4864
4865                 base = its->base;
4866                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4867                 err = its_force_quiescent(base);
4868                 if (err) {
4869                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4870                                &its->phys_base, err);
4871                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4872                         goto err;
4873                 }
4874
4875                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4876         }
4877
4878 err:
4879         if (err) {
4880                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4881                         void __iomem *base;
4882
4883                         base = its->base;
4884                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4885                 }
4886         }
4887         raw_spin_unlock(&its_lock);
4888
4889         return err;
4890 }
4891
4892 static void its_restore_enable(void)
4893 {
4894         struct its_node *its;
4895         int ret;
4896
4897         raw_spin_lock(&its_lock);
4898         list_for_each_entry(its, &its_nodes, entry) {
4899                 void __iomem *base;
4900                 int i;
4901
4902                 base = its->base;
4903
4904                 /*
4905                  * Make sure that the ITS is disabled. If it fails to quiesce,
4906                  * don't restore it since writing to CBASER or BASER<n>
4907                  * registers is undefined according to the GIC v3 ITS
4908                  * Specification.
4909                  *
4910                  * Firmware resuming with the ITS enabled is terminally broken.
4911                  */
4912                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4913                 ret = its_force_quiescent(base);
4914                 if (ret) {
4915                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4916                                &its->phys_base, ret);
4917                         continue;
4918                 }
4919
4920                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4921
4922                 /*
4923                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4924                  * cmd_write line up with it.
4925                  */
4926                 its->cmd_write = its->cmd_base;
4927                 gits_write_cwriter(0, base + GITS_CWRITER);
4928
4929                 /* Restore GITS_BASER from the value cache. */
4930                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4931                         struct its_baser *baser = &its->tables[i];
4932
4933                         if (!(baser->val & GITS_BASER_VALID))
4934                                 continue;
4935
4936                         its_write_baser(its, baser, baser->val);
4937                 }
4938                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4939
4940                 /*
4941                  * Reinit the collection if it's stored in the ITS. This is
4942                  * indicated by the col_id being less than the HCC field.
4943                  * CID < HCC as specified in the GIC v3 Documentation.
4944                  */
4945                 if (its->collections[smp_processor_id()].col_id <
4946                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4947                         its_cpu_init_collection(its);
4948         }
4949         raw_spin_unlock(&its_lock);
4950 }
4951
4952 static struct syscore_ops its_syscore_ops = {
4953         .suspend = its_save_disable,
4954         .resume = its_restore_enable,
4955 };
4956
4957 static void __init __iomem *its_map_one(struct resource *res, int *err)
4958 {
4959         void __iomem *its_base;
4960         u32 val;
4961
4962         its_base = ioremap(res->start, SZ_64K);
4963         if (!its_base) {
4964                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4965                 *err = -ENOMEM;
4966                 return NULL;
4967         }
4968
4969         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4970         if (val != 0x30 && val != 0x40) {
4971                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4972                 *err = -ENODEV;
4973                 goto out_unmap;
4974         }
4975
4976         *err = its_force_quiescent(its_base);
4977         if (*err) {
4978                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4979                 goto out_unmap;
4980         }
4981
4982         return its_base;
4983
4984 out_unmap:
4985         iounmap(its_base);
4986         return NULL;
4987 }
4988
4989 static int its_init_domain(struct its_node *its)
4990 {
4991         struct irq_domain *inner_domain;
4992         struct msi_domain_info *info;
4993
4994         info = kzalloc(sizeof(*info), GFP_KERNEL);
4995         if (!info)
4996                 return -ENOMEM;
4997
4998         info->ops = &its_msi_domain_ops;
4999         info->data = its;
5000
5001         inner_domain = irq_domain_create_hierarchy(its_parent,
5002                                                    its->msi_domain_flags, 0,
5003                                                    its->fwnode_handle, &its_domain_ops,
5004                                                    info);
5005         if (!inner_domain) {
5006                 kfree(info);
5007                 return -ENOMEM;
5008         }
5009
5010         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5011
5012         return 0;
5013 }
5014
5015 static int its_init_vpe_domain(void)
5016 {
5017         struct its_node *its;
5018         u32 devid;
5019         int entries;
5020
5021         if (gic_rdists->has_direct_lpi) {
5022                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5023                 return 0;
5024         }
5025
5026         /* Any ITS will do, even if not v4 */
5027         its = list_first_entry(&its_nodes, struct its_node, entry);
5028
5029         entries = roundup_pow_of_two(nr_cpu_ids);
5030         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5031                                  GFP_KERNEL);
5032         if (!vpe_proxy.vpes)
5033                 return -ENOMEM;
5034
5035         /* Use the last possible DevID */
5036         devid = GENMASK(device_ids(its) - 1, 0);
5037         vpe_proxy.dev = its_create_device(its, devid, entries, false);
5038         if (!vpe_proxy.dev) {
5039                 kfree(vpe_proxy.vpes);
5040                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5041                 return -ENOMEM;
5042         }
5043
5044         BUG_ON(entries > vpe_proxy.dev->nr_ites);
5045
5046         raw_spin_lock_init(&vpe_proxy.lock);
5047         vpe_proxy.next_victim = 0;
5048         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5049                 devid, vpe_proxy.dev->nr_ites);
5050
5051         return 0;
5052 }
5053
5054 static int __init its_compute_its_list_map(struct its_node *its)
5055 {
5056         int its_number;
5057         u32 ctlr;
5058
5059         /*
5060          * This is assumed to be done early enough that we're
5061          * guaranteed to be single-threaded, hence no
5062          * locking. Should this change, we should address
5063          * this.
5064          */
5065         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5066         if (its_number >= GICv4_ITS_LIST_MAX) {
5067                 pr_err("ITS@%pa: No ITSList entry available!\n",
5068                        &its->phys_base);
5069                 return -EINVAL;
5070         }
5071
5072         ctlr = readl_relaxed(its->base + GITS_CTLR);
5073         ctlr &= ~GITS_CTLR_ITS_NUMBER;
5074         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5075         writel_relaxed(ctlr, its->base + GITS_CTLR);
5076         ctlr = readl_relaxed(its->base + GITS_CTLR);
5077         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5078                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5079                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5080         }
5081
5082         if (test_and_set_bit(its_number, &its_list_map)) {
5083                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5084                        &its->phys_base, its_number);
5085                 return -EINVAL;
5086         }
5087
5088         return its_number;
5089 }
5090
5091 static int __init its_probe_one(struct its_node *its)
5092 {
5093         u64 baser, tmp;
5094         struct page *page;
5095         u32 ctlr;
5096         int err;
5097
5098         its_enable_quirks(its);
5099
5100         if (is_v4(its)) {
5101                 if (!(its->typer & GITS_TYPER_VMOVP)) {
5102                         err = its_compute_its_list_map(its);
5103                         if (err < 0)
5104                                 goto out;
5105
5106                         its->list_nr = err;
5107
5108                         pr_info("ITS@%pa: Using ITS number %d\n",
5109                                 &its->phys_base, err);
5110                 } else {
5111                         pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5112                 }
5113
5114                 if (is_v4_1(its)) {
5115                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5116
5117                         its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5118                         if (!its->sgir_base) {
5119                                 err = -ENOMEM;
5120                                 goto out;
5121                         }
5122
5123                         its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5124
5125                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5126                                 &its->phys_base, its->mpidr, svpet);
5127                 }
5128         }
5129
5130         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5131                                 get_order(ITS_CMD_QUEUE_SZ));
5132         if (!page) {
5133                 err = -ENOMEM;
5134                 goto out_unmap_sgir;
5135         }
5136         its->cmd_base = (void *)page_address(page);
5137         its->cmd_write = its->cmd_base;
5138
5139         err = its_alloc_tables(its);
5140         if (err)
5141                 goto out_free_cmd;
5142
5143         err = its_alloc_collections(its);
5144         if (err)
5145                 goto out_free_tables;
5146
5147         baser = (virt_to_phys(its->cmd_base)    |
5148                  GITS_CBASER_RaWaWb             |
5149                  GITS_CBASER_InnerShareable     |
5150                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5151                  GITS_CBASER_VALID);
5152
5153         gits_write_cbaser(baser, its->base + GITS_CBASER);
5154         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5155
5156         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5157                 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5158
5159         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5160                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5161                         /*
5162                          * The HW reports non-shareable, we must
5163                          * remove the cacheability attributes as
5164                          * well.
5165                          */
5166                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5167                                    GITS_CBASER_CACHEABILITY_MASK);
5168                         baser |= GITS_CBASER_nC;
5169                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5170                 }
5171                 pr_info("ITS: using cache flushing for cmd queue\n");
5172                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5173         }
5174
5175         gits_write_cwriter(0, its->base + GITS_CWRITER);
5176         ctlr = readl_relaxed(its->base + GITS_CTLR);
5177         ctlr |= GITS_CTLR_ENABLE;
5178         if (is_v4(its))
5179                 ctlr |= GITS_CTLR_ImDe;
5180         writel_relaxed(ctlr, its->base + GITS_CTLR);
5181
5182         err = its_init_domain(its);
5183         if (err)
5184                 goto out_free_tables;
5185
5186         raw_spin_lock(&its_lock);
5187         list_add(&its->entry, &its_nodes);
5188         raw_spin_unlock(&its_lock);
5189
5190         return 0;
5191
5192 out_free_tables:
5193         its_free_tables(its);
5194 out_free_cmd:
5195         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5196 out_unmap_sgir:
5197         if (its->sgir_base)
5198                 iounmap(its->sgir_base);
5199 out:
5200         pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5201         return err;
5202 }
5203
5204 static bool gic_rdists_supports_plpis(void)
5205 {
5206         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5207 }
5208
5209 static int redist_disable_lpis(void)
5210 {
5211         void __iomem *rbase = gic_data_rdist_rd_base();
5212         u64 timeout = USEC_PER_SEC;
5213         u64 val;
5214
5215         if (!gic_rdists_supports_plpis()) {
5216                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5217                 return -ENXIO;
5218         }
5219
5220         val = readl_relaxed(rbase + GICR_CTLR);
5221         if (!(val & GICR_CTLR_ENABLE_LPIS))
5222                 return 0;
5223
5224         /*
5225          * If coming via a CPU hotplug event, we don't need to disable
5226          * LPIs before trying to re-enable them. They are already
5227          * configured and all is well in the world.
5228          *
5229          * If running with preallocated tables, there is nothing to do.
5230          */
5231         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5232             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5233                 return 0;
5234
5235         /*
5236          * From that point on, we only try to do some damage control.
5237          */
5238         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5239                 smp_processor_id());
5240         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5241
5242         /* Disable LPIs */
5243         val &= ~GICR_CTLR_ENABLE_LPIS;
5244         writel_relaxed(val, rbase + GICR_CTLR);
5245
5246         /* Make sure any change to GICR_CTLR is observable by the GIC */
5247         dsb(sy);
5248
5249         /*
5250          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5251          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5252          * Error out if we time out waiting for RWP to clear.
5253          */
5254         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5255                 if (!timeout) {
5256                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5257                                smp_processor_id());
5258                         return -ETIMEDOUT;
5259                 }
5260                 udelay(1);
5261                 timeout--;
5262         }
5263
5264         /*
5265          * After it has been written to 1, it is IMPLEMENTATION
5266          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5267          * cleared to 0. Error out if clearing the bit failed.
5268          */
5269         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5270                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5271                 return -EBUSY;
5272         }
5273
5274         return 0;
5275 }
5276
5277 int its_cpu_init(void)
5278 {
5279         if (!list_empty(&its_nodes)) {
5280                 int ret;
5281
5282                 ret = redist_disable_lpis();
5283                 if (ret)
5284                         return ret;
5285
5286                 its_cpu_init_lpis();
5287                 its_cpu_init_collections();
5288         }
5289
5290         return 0;
5291 }
5292
5293 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5294 {
5295         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5296         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5297 }
5298
5299 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5300                     rdist_memreserve_cpuhp_cleanup_workfn);
5301
5302 static int its_cpu_memreserve_lpi(unsigned int cpu)
5303 {
5304         struct page *pend_page;
5305         int ret = 0;
5306
5307         /* This gets to run exactly once per CPU */
5308         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5309                 return 0;
5310
5311         pend_page = gic_data_rdist()->pend_page;
5312         if (WARN_ON(!pend_page)) {
5313                 ret = -ENOMEM;
5314                 goto out;
5315         }
5316         /*
5317          * If the pending table was pre-programmed, free the memory we
5318          * preemptively allocated. Otherwise, reserve that memory for
5319          * later kexecs.
5320          */
5321         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5322                 its_free_pending_table(pend_page);
5323                 gic_data_rdist()->pend_page = NULL;
5324         } else {
5325                 phys_addr_t paddr = page_to_phys(pend_page);
5326                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5327         }
5328
5329 out:
5330         /* Last CPU being brought up gets to issue the cleanup */
5331         if (!IS_ENABLED(CONFIG_SMP) ||
5332             cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5333                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5334
5335         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5336         return ret;
5337 }
5338
5339 /* Mark all the BASER registers as invalid before they get reprogrammed */
5340 static int __init its_reset_one(struct resource *res)
5341 {
5342         void __iomem *its_base;
5343         int err, i;
5344
5345         its_base = its_map_one(res, &err);
5346         if (!its_base)
5347                 return err;
5348
5349         for (i = 0; i < GITS_BASER_NR_REGS; i++)
5350                 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5351
5352         iounmap(its_base);
5353         return 0;
5354 }
5355
5356 static const struct of_device_id its_device_id[] = {
5357         {       .compatible     = "arm,gic-v3-its",     },
5358         {},
5359 };
5360
5361 static struct its_node __init *its_node_init(struct resource *res,
5362                                              struct fwnode_handle *handle, int numa_node)
5363 {
5364         void __iomem *its_base;
5365         struct its_node *its;
5366         int err;
5367
5368         its_base = its_map_one(res, &err);
5369         if (!its_base)
5370                 return NULL;
5371
5372         pr_info("ITS %pR\n", res);
5373
5374         its = kzalloc(sizeof(*its), GFP_KERNEL);
5375         if (!its)
5376                 goto out_unmap;
5377
5378         raw_spin_lock_init(&its->lock);
5379         mutex_init(&its->dev_alloc_lock);
5380         INIT_LIST_HEAD(&its->entry);
5381         INIT_LIST_HEAD(&its->its_device_list);
5382
5383         its->typer = gic_read_typer(its_base + GITS_TYPER);
5384         its->base = its_base;
5385         its->phys_base = res->start;
5386         its->get_msi_base = its_irq_get_msi_base;
5387         its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5388
5389         its->numa_node = numa_node;
5390         its->fwnode_handle = handle;
5391
5392         return its;
5393
5394 out_unmap:
5395         iounmap(its_base);
5396         return NULL;
5397 }
5398
5399 static void its_node_destroy(struct its_node *its)
5400 {
5401         iounmap(its->base);
5402         kfree(its);
5403 }
5404
5405 static int __init its_of_probe(struct device_node *node)
5406 {
5407         struct device_node *np;
5408         struct resource res;
5409         int err;
5410
5411         /*
5412          * Make sure *all* the ITS are reset before we probe any, as
5413          * they may be sharing memory. If any of the ITS fails to
5414          * reset, don't even try to go any further, as this could
5415          * result in something even worse.
5416          */
5417         for (np = of_find_matching_node(node, its_device_id); np;
5418              np = of_find_matching_node(np, its_device_id)) {
5419                 if (!of_device_is_available(np) ||
5420                     !of_property_read_bool(np, "msi-controller") ||
5421                     of_address_to_resource(np, 0, &res))
5422                         continue;
5423
5424                 err = its_reset_one(&res);
5425                 if (err)
5426                         return err;
5427         }
5428
5429         for (np = of_find_matching_node(node, its_device_id); np;
5430              np = of_find_matching_node(np, its_device_id)) {
5431                 struct its_node *its;
5432
5433                 if (!of_device_is_available(np))
5434                         continue;
5435                 if (!of_property_read_bool(np, "msi-controller")) {
5436                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5437                                 np);
5438                         continue;
5439                 }
5440
5441                 if (of_address_to_resource(np, 0, &res)) {
5442                         pr_warn("%pOF: no regs?\n", np);
5443                         continue;
5444                 }
5445
5446
5447                 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5448                 if (!its)
5449                         return -ENOMEM;
5450
5451                 err = its_probe_one(its);
5452                 if (err)  {
5453                         its_node_destroy(its);
5454                         return err;
5455                 }
5456         }
5457         return 0;
5458 }
5459
5460 #ifdef CONFIG_ACPI
5461
5462 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5463
5464 #ifdef CONFIG_ACPI_NUMA
5465 struct its_srat_map {
5466         /* numa node id */
5467         u32     numa_node;
5468         /* GIC ITS ID */
5469         u32     its_id;
5470 };
5471
5472 static struct its_srat_map *its_srat_maps __initdata;
5473 static int its_in_srat __initdata;
5474
5475 static int __init acpi_get_its_numa_node(u32 its_id)
5476 {
5477         int i;
5478
5479         for (i = 0; i < its_in_srat; i++) {
5480                 if (its_id == its_srat_maps[i].its_id)
5481                         return its_srat_maps[i].numa_node;
5482         }
5483         return NUMA_NO_NODE;
5484 }
5485
5486 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5487                                           const unsigned long end)
5488 {
5489         return 0;
5490 }
5491
5492 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5493                          const unsigned long end)
5494 {
5495         int node;
5496         struct acpi_srat_gic_its_affinity *its_affinity;
5497
5498         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5499         if (!its_affinity)
5500                 return -EINVAL;
5501
5502         if (its_affinity->header.length < sizeof(*its_affinity)) {
5503                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5504                         its_affinity->header.length);
5505                 return -EINVAL;
5506         }
5507
5508         /*
5509          * Note that in theory a new proximity node could be created by this
5510          * entry as it is an SRAT resource allocation structure.
5511          * We do not currently support doing so.
5512          */
5513         node = pxm_to_node(its_affinity->proximity_domain);
5514
5515         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5516                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5517                 return 0;
5518         }
5519
5520         its_srat_maps[its_in_srat].numa_node = node;
5521         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5522         its_in_srat++;
5523         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5524                 its_affinity->proximity_domain, its_affinity->its_id, node);
5525
5526         return 0;
5527 }
5528
5529 static void __init acpi_table_parse_srat_its(void)
5530 {
5531         int count;
5532
5533         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5534                         sizeof(struct acpi_table_srat),
5535                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5536                         gic_acpi_match_srat_its, 0);
5537         if (count <= 0)
5538                 return;
5539
5540         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5541                                       GFP_KERNEL);
5542         if (!its_srat_maps)
5543                 return;
5544
5545         acpi_table_parse_entries(ACPI_SIG_SRAT,
5546                         sizeof(struct acpi_table_srat),
5547                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5548                         gic_acpi_parse_srat_its, 0);
5549 }
5550
5551 /* free the its_srat_maps after ITS probing */
5552 static void __init acpi_its_srat_maps_free(void)
5553 {
5554         kfree(its_srat_maps);
5555 }
5556 #else
5557 static void __init acpi_table_parse_srat_its(void)      { }
5558 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5559 static void __init acpi_its_srat_maps_free(void) { }
5560 #endif
5561
5562 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5563                                           const unsigned long end)
5564 {
5565         struct acpi_madt_generic_translator *its_entry;
5566         struct fwnode_handle *dom_handle;
5567         struct its_node *its;
5568         struct resource res;
5569         int err;
5570
5571         its_entry = (struct acpi_madt_generic_translator *)header;
5572         memset(&res, 0, sizeof(res));
5573         res.start = its_entry->base_address;
5574         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5575         res.flags = IORESOURCE_MEM;
5576
5577         dom_handle = irq_domain_alloc_fwnode(&res.start);
5578         if (!dom_handle) {
5579                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5580                        &res.start);
5581                 return -ENOMEM;
5582         }
5583
5584         err = iort_register_domain_token(its_entry->translation_id, res.start,
5585                                          dom_handle);
5586         if (err) {
5587                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5588                        &res.start, its_entry->translation_id);
5589                 goto dom_err;
5590         }
5591
5592         its = its_node_init(&res, dom_handle,
5593                             acpi_get_its_numa_node(its_entry->translation_id));
5594         if (!its) {
5595                 err = -ENOMEM;
5596                 goto node_err;
5597         }
5598
5599         err = its_probe_one(its);
5600         if (!err)
5601                 return 0;
5602
5603 node_err:
5604         iort_deregister_domain_token(its_entry->translation_id);
5605 dom_err:
5606         irq_domain_free_fwnode(dom_handle);
5607         return err;
5608 }
5609
5610 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5611                                  const unsigned long end)
5612 {
5613         struct acpi_madt_generic_translator *its_entry;
5614         struct resource res;
5615
5616         its_entry = (struct acpi_madt_generic_translator *)header;
5617         res = (struct resource) {
5618                 .start  = its_entry->base_address,
5619                 .end    = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5620                 .flags  = IORESOURCE_MEM,
5621         };
5622
5623         return its_reset_one(&res);
5624 }
5625
5626 static void __init its_acpi_probe(void)
5627 {
5628         acpi_table_parse_srat_its();
5629         /*
5630          * Make sure *all* the ITS are reset before we probe any, as
5631          * they may be sharing memory. If any of the ITS fails to
5632          * reset, don't even try to go any further, as this could
5633          * result in something even worse.
5634          */
5635         if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5636                                   its_acpi_reset, 0) > 0)
5637                 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5638                                       gic_acpi_parse_madt_its, 0);
5639         acpi_its_srat_maps_free();
5640 }
5641 #else
5642 static void __init its_acpi_probe(void) { }
5643 #endif
5644
5645 int __init its_lpi_memreserve_init(void)
5646 {
5647         int state;
5648
5649         if (!efi_enabled(EFI_CONFIG_TABLES))
5650                 return 0;
5651
5652         if (list_empty(&its_nodes))
5653                 return 0;
5654
5655         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5656         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5657                                   "irqchip/arm/gicv3/memreserve:online",
5658                                   its_cpu_memreserve_lpi,
5659                                   NULL);
5660         if (state < 0)
5661                 return state;
5662
5663         gic_rdists->cpuhp_memreserve_state = state;
5664
5665         return 0;
5666 }
5667
5668 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5669                     struct irq_domain *parent_domain)
5670 {
5671         struct device_node *of_node;
5672         struct its_node *its;
5673         bool has_v4 = false;
5674         bool has_v4_1 = false;
5675         int err;
5676
5677         gic_rdists = rdists;
5678
5679         its_parent = parent_domain;
5680         of_node = to_of_node(handle);
5681         if (of_node)
5682                 its_of_probe(of_node);
5683         else
5684                 its_acpi_probe();
5685
5686         if (list_empty(&its_nodes)) {
5687                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5688                 return -ENXIO;
5689         }
5690
5691         err = allocate_lpi_tables();
5692         if (err)
5693                 return err;
5694
5695         list_for_each_entry(its, &its_nodes, entry) {
5696                 has_v4 |= is_v4(its);
5697                 has_v4_1 |= is_v4_1(its);
5698         }
5699
5700         /* Don't bother with inconsistent systems */
5701         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5702                 rdists->has_rvpeid = false;
5703
5704         if (has_v4 & rdists->has_vlpis) {
5705                 const struct irq_domain_ops *sgi_ops;
5706
5707                 if (has_v4_1)
5708                         sgi_ops = &its_sgi_domain_ops;
5709                 else
5710                         sgi_ops = NULL;
5711
5712                 if (its_init_vpe_domain() ||
5713                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5714                         rdists->has_vlpis = false;
5715                         pr_err("ITS: Disabling GICv4 support\n");
5716                 }
5717         }
5718
5719         register_syscore_ops(&its_syscore_ops);
5720
5721         return 0;
5722 }