GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / iommu / intel / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "perf.h"
36 #include "trace.h"
37 #include "perfmon.h"
38
39 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40 struct dmar_res_callback {
41         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
42         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
43         bool                    ignore_unhandled;
44         bool                    print_entry;
45 };
46
47 /*
48  * Assumptions:
49  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50  *    before IO devices managed by that unit.
51  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52  *    after IO devices managed by that unit.
53  * 3) Hotplug events are rare.
54  *
55  * Locking rules for DMA and interrupt remapping related global data structures:
56  * 1) Use dmar_global_lock in process context
57  * 2) Use RCU in interrupt context
58  */
59 DECLARE_RWSEM(dmar_global_lock);
60 LIST_HEAD(dmar_drhd_units);
61
62 struct acpi_table_header * __initdata dmar_tbl;
63 static int dmar_dev_scope_status = 1;
64 static DEFINE_IDA(dmar_seq_ids);
65
66 static int alloc_iommu(struct dmar_drhd_unit *drhd);
67 static void free_iommu(struct intel_iommu *iommu);
68
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 {
71         /*
72          * add INCLUDE_ALL at the tail, so scan the list will find it at
73          * the very end.
74          */
75         if (drhd->include_all)
76                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77         else
78                 list_add_rcu(&drhd->list, &dmar_drhd_units);
79 }
80
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 {
83         struct acpi_dmar_device_scope *scope;
84
85         *cnt = 0;
86         while (start < end) {
87                 scope = start;
88                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91                         (*cnt)++;
92                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94                         pr_warn("Unsupported device scope\n");
95                 }
96                 start += scope->length;
97         }
98         if (*cnt == 0)
99                 return NULL;
100
101         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 }
103
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105 {
106         int i;
107         struct device *tmp_dev;
108
109         if (*devices && *cnt) {
110                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111                         put_device(tmp_dev);
112                 kfree(*devices);
113         }
114
115         *devices = NULL;
116         *cnt = 0;
117 }
118
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
121
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124 {
125         int level = 0;
126         size_t size;
127         struct pci_dev *tmp;
128         struct dmar_pci_notify_info *info;
129
130         /*
131          * Ignore devices that have a domain number higher than what can
132          * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
133          */
134         if (pci_domain_nr(dev->bus) > U16_MAX)
135                 return NULL;
136
137         /* Only generate path[] for device addition event */
138         if (event == BUS_NOTIFY_ADD_DEVICE)
139                 for (tmp = dev; tmp; tmp = tmp->bus->self)
140                         level++;
141
142         size = struct_size(info, path, level);
143         if (size <= sizeof(dmar_pci_notify_info_buf)) {
144                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
145         } else {
146                 info = kzalloc(size, GFP_KERNEL);
147                 if (!info) {
148                         if (dmar_dev_scope_status == 0)
149                                 dmar_dev_scope_status = -ENOMEM;
150                         return NULL;
151                 }
152         }
153
154         info->event = event;
155         info->dev = dev;
156         info->seg = pci_domain_nr(dev->bus);
157         info->level = level;
158         if (event == BUS_NOTIFY_ADD_DEVICE) {
159                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
160                         level--;
161                         info->path[level].bus = tmp->bus->number;
162                         info->path[level].device = PCI_SLOT(tmp->devfn);
163                         info->path[level].function = PCI_FUNC(tmp->devfn);
164                         if (pci_is_root_bus(tmp->bus))
165                                 info->bus = tmp->bus->number;
166                 }
167         }
168
169         return info;
170 }
171
172 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
173 {
174         if ((void *)info != dmar_pci_notify_info_buf)
175                 kfree(info);
176 }
177
178 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
179                                 struct acpi_dmar_pci_path *path, int count)
180 {
181         int i;
182
183         if (info->bus != bus)
184                 goto fallback;
185         if (info->level != count)
186                 goto fallback;
187
188         for (i = 0; i < count; i++) {
189                 if (path[i].device != info->path[i].device ||
190                     path[i].function != info->path[i].function)
191                         goto fallback;
192         }
193
194         return true;
195
196 fallback:
197
198         if (count != 1)
199                 return false;
200
201         i = info->level - 1;
202         if (bus              == info->path[i].bus &&
203             path[0].device   == info->path[i].device &&
204             path[0].function == info->path[i].function) {
205                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
206                         bus, path[0].device, path[0].function);
207                 return true;
208         }
209
210         return false;
211 }
212
213 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
214 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
215                           void *start, void*end, u16 segment,
216                           struct dmar_dev_scope *devices,
217                           int devices_cnt)
218 {
219         int i, level;
220         struct device *tmp, *dev = &info->dev->dev;
221         struct acpi_dmar_device_scope *scope;
222         struct acpi_dmar_pci_path *path;
223
224         if (segment != info->seg)
225                 return 0;
226
227         for (; start < end; start += scope->length) {
228                 scope = start;
229                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
230                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
231                         continue;
232
233                 path = (struct acpi_dmar_pci_path *)(scope + 1);
234                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
235                 if (!dmar_match_pci_path(info, scope->bus, path, level))
236                         continue;
237
238                 /*
239                  * We expect devices with endpoint scope to have normal PCI
240                  * headers, and devices with bridge scope to have bridge PCI
241                  * headers.  However PCI NTB devices may be listed in the
242                  * DMAR table with bridge scope, even though they have a
243                  * normal PCI header.  NTB devices are identified by class
244                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
245                  * for this special case.
246                  */
247                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
248                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
249                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
250                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
251                       info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
252                         pr_warn("Device scope type does not match for %s\n",
253                                 pci_name(info->dev));
254                         return -EINVAL;
255                 }
256
257                 for_each_dev_scope(devices, devices_cnt, i, tmp)
258                         if (tmp == NULL) {
259                                 devices[i].bus = info->dev->bus->number;
260                                 devices[i].devfn = info->dev->devfn;
261                                 rcu_assign_pointer(devices[i].dev,
262                                                    get_device(dev));
263                                 return 1;
264                         }
265                 if (WARN_ON(i >= devices_cnt))
266                         return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273                           struct dmar_dev_scope *devices, int count)
274 {
275         int index;
276         struct device *tmp;
277
278         if (info->seg != segment)
279                 return 0;
280
281         for_each_active_dev_scope(devices, count, index, tmp)
282                 if (tmp == &info->dev->dev) {
283                         RCU_INIT_POINTER(devices[index].dev, NULL);
284                         synchronize_rcu();
285                         put_device(tmp);
286                         return 1;
287                 }
288
289         return 0;
290 }
291
292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293 {
294         int ret = 0;
295         struct dmar_drhd_unit *dmaru;
296         struct acpi_dmar_hardware_unit *drhd;
297
298         for_each_drhd_unit(dmaru) {
299                 if (dmaru->include_all)
300                         continue;
301
302                 drhd = container_of(dmaru->hdr,
303                                     struct acpi_dmar_hardware_unit, header);
304                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305                                 ((void *)drhd) + drhd->header.length,
306                                 dmaru->segment,
307                                 dmaru->devices, dmaru->devices_cnt);
308                 if (ret)
309                         break;
310         }
311         if (ret >= 0)
312                 ret = dmar_iommu_notify_scope_dev(info);
313         if (ret < 0 && dmar_dev_scope_status == 0)
314                 dmar_dev_scope_status = ret;
315
316         if (ret >= 0)
317                 intel_irq_remap_add_device(info);
318
319         return ret;
320 }
321
322 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323 {
324         struct dmar_drhd_unit *dmaru;
325
326         for_each_drhd_unit(dmaru)
327                 if (dmar_remove_dev_scope(info, dmaru->segment,
328                         dmaru->devices, dmaru->devices_cnt))
329                         break;
330         dmar_iommu_notify_scope_dev(info);
331 }
332
333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334 {
335         struct pci_dev *physfn = pci_physfn(pdev);
336
337         dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338 }
339
340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
341                                  unsigned long action, void *data)
342 {
343         struct pci_dev *pdev = to_pci_dev(data);
344         struct dmar_pci_notify_info *info;
345
346         /* Only care about add/remove events for physical functions.
347          * For VFs we actually do the lookup based on the corresponding
348          * PF in device_to_iommu() anyway. */
349         if (pdev->is_virtfn) {
350                 /*
351                  * Ensure that the VF device inherits the irq domain of the
352                  * PF device. Ideally the device would inherit the domain
353                  * from the bus, but DMAR can have multiple units per bus
354                  * which makes this impossible. The VF 'bus' could inherit
355                  * from the PF device, but that's yet another x86'sism to
356                  * inflict on everybody else.
357                  */
358                 if (action == BUS_NOTIFY_ADD_DEVICE)
359                         vf_inherit_msi_domain(pdev);
360                 return NOTIFY_DONE;
361         }
362
363         if (action != BUS_NOTIFY_ADD_DEVICE &&
364             action != BUS_NOTIFY_REMOVED_DEVICE)
365                 return NOTIFY_DONE;
366
367         info = dmar_alloc_pci_notify_info(pdev, action);
368         if (!info)
369                 return NOTIFY_DONE;
370
371         down_write(&dmar_global_lock);
372         if (action == BUS_NOTIFY_ADD_DEVICE)
373                 dmar_pci_bus_add_dev(info);
374         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375                 dmar_pci_bus_del_dev(info);
376         up_write(&dmar_global_lock);
377
378         dmar_free_pci_notify_info(info);
379
380         return NOTIFY_OK;
381 }
382
383 static struct notifier_block dmar_pci_bus_nb = {
384         .notifier_call = dmar_pci_bus_notifier,
385         .priority = 1,
386 };
387
388 static struct dmar_drhd_unit *
389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390 {
391         struct dmar_drhd_unit *dmaru;
392
393         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394                                 dmar_rcu_check())
395                 if (dmaru->segment == drhd->segment &&
396                     dmaru->reg_base_addr == drhd->address)
397                         return dmaru;
398
399         return NULL;
400 }
401
402 /*
403  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404  * structure which uniquely represent one DMA remapping hardware unit
405  * present in the platform
406  */
407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408 {
409         struct acpi_dmar_hardware_unit *drhd;
410         struct dmar_drhd_unit *dmaru;
411         int ret;
412
413         drhd = (struct acpi_dmar_hardware_unit *)header;
414         dmaru = dmar_find_dmaru(drhd);
415         if (dmaru)
416                 goto out;
417
418         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419         if (!dmaru)
420                 return -ENOMEM;
421
422         /*
423          * If header is allocated from slab by ACPI _DSM method, we need to
424          * copy the content because the memory buffer will be freed on return.
425          */
426         dmaru->hdr = (void *)(dmaru + 1);
427         memcpy(dmaru->hdr, header, header->length);
428         dmaru->reg_base_addr = drhd->address;
429         dmaru->segment = drhd->segment;
430         /* The size of the register set is 2 ^ N 4 KB pages. */
431         dmaru->reg_size = 1UL << (drhd->size + 12);
432         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
433         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
434                                               ((void *)drhd) + drhd->header.length,
435                                               &dmaru->devices_cnt);
436         if (dmaru->devices_cnt && dmaru->devices == NULL) {
437                 kfree(dmaru);
438                 return -ENOMEM;
439         }
440
441         ret = alloc_iommu(dmaru);
442         if (ret) {
443                 dmar_free_dev_scope(&dmaru->devices,
444                                     &dmaru->devices_cnt);
445                 kfree(dmaru);
446                 return ret;
447         }
448         dmar_register_drhd_unit(dmaru);
449
450 out:
451         if (arg)
452                 (*(int *)arg)++;
453
454         return 0;
455 }
456
457 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
458 {
459         if (dmaru->devices && dmaru->devices_cnt)
460                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
461         if (dmaru->iommu)
462                 free_iommu(dmaru->iommu);
463         kfree(dmaru);
464 }
465
466 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
467                                       void *arg)
468 {
469         struct acpi_dmar_andd *andd = (void *)header;
470
471         /* Check for NUL termination within the designated length */
472         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
473                 pr_warn(FW_BUG
474                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
475                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
476                            dmi_get_system_info(DMI_BIOS_VENDOR),
477                            dmi_get_system_info(DMI_BIOS_VERSION),
478                            dmi_get_system_info(DMI_PRODUCT_VERSION));
479                 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
480                 return -EINVAL;
481         }
482         pr_info("ANDD device: %x name: %s\n", andd->device_number,
483                 andd->device_name);
484
485         return 0;
486 }
487
488 #ifdef CONFIG_ACPI_NUMA
489 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
490 {
491         struct acpi_dmar_rhsa *rhsa;
492         struct dmar_drhd_unit *drhd;
493
494         rhsa = (struct acpi_dmar_rhsa *)header;
495         for_each_drhd_unit(drhd) {
496                 if (drhd->reg_base_addr == rhsa->base_address) {
497                         int node = pxm_to_node(rhsa->proximity_domain);
498
499                         if (node != NUMA_NO_NODE && !node_online(node))
500                                 node = NUMA_NO_NODE;
501                         drhd->iommu->node = node;
502                         return 0;
503                 }
504         }
505         pr_warn(FW_BUG
506                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
507                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
508                 rhsa->base_address,
509                 dmi_get_system_info(DMI_BIOS_VENDOR),
510                 dmi_get_system_info(DMI_BIOS_VERSION),
511                 dmi_get_system_info(DMI_PRODUCT_VERSION));
512         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
513
514         return 0;
515 }
516 #else
517 #define dmar_parse_one_rhsa             dmar_res_noop
518 #endif
519
520 static void
521 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
522 {
523         struct acpi_dmar_hardware_unit *drhd;
524         struct acpi_dmar_reserved_memory *rmrr;
525         struct acpi_dmar_atsr *atsr;
526         struct acpi_dmar_rhsa *rhsa;
527         struct acpi_dmar_satc *satc;
528
529         switch (header->type) {
530         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
531                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
532                                     header);
533                 pr_info("DRHD base: %#016Lx flags: %#x\n",
534                         (unsigned long long)drhd->address, drhd->flags);
535                 break;
536         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
537                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
538                                     header);
539                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
540                         (unsigned long long)rmrr->base_address,
541                         (unsigned long long)rmrr->end_address);
542                 break;
543         case ACPI_DMAR_TYPE_ROOT_ATS:
544                 atsr = container_of(header, struct acpi_dmar_atsr, header);
545                 pr_info("ATSR flags: %#x\n", atsr->flags);
546                 break;
547         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
548                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
549                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
550                        (unsigned long long)rhsa->base_address,
551                        rhsa->proximity_domain);
552                 break;
553         case ACPI_DMAR_TYPE_NAMESPACE:
554                 /* We don't print this here because we need to sanity-check
555                    it first. So print it in dmar_parse_one_andd() instead. */
556                 break;
557         case ACPI_DMAR_TYPE_SATC:
558                 satc = container_of(header, struct acpi_dmar_satc, header);
559                 pr_info("SATC flags: 0x%x\n", satc->flags);
560                 break;
561         }
562 }
563
564 /**
565  * dmar_table_detect - checks to see if the platform supports DMAR devices
566  */
567 static int __init dmar_table_detect(void)
568 {
569         acpi_status status = AE_OK;
570
571         /* if we could find DMAR table, then there are DMAR devices */
572         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
573
574         if (ACPI_SUCCESS(status) && !dmar_tbl) {
575                 pr_warn("Unable to map DMAR\n");
576                 status = AE_NOT_FOUND;
577         }
578
579         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
580 }
581
582 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
583                                        size_t len, struct dmar_res_callback *cb)
584 {
585         struct acpi_dmar_header *iter, *next;
586         struct acpi_dmar_header *end = ((void *)start) + len;
587
588         for (iter = start; iter < end; iter = next) {
589                 next = (void *)iter + iter->length;
590                 if (iter->length == 0) {
591                         /* Avoid looping forever on bad ACPI tables */
592                         pr_debug(FW_BUG "Invalid 0-length structure\n");
593                         break;
594                 } else if (next > end) {
595                         /* Avoid passing table end */
596                         pr_warn(FW_BUG "Record passes table end\n");
597                         return -EINVAL;
598                 }
599
600                 if (cb->print_entry)
601                         dmar_table_print_dmar_entry(iter);
602
603                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
604                         /* continue for forward compatibility */
605                         pr_debug("Unknown DMAR structure type %d\n",
606                                  iter->type);
607                 } else if (cb->cb[iter->type]) {
608                         int ret;
609
610                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
611                         if (ret)
612                                 return ret;
613                 } else if (!cb->ignore_unhandled) {
614                         pr_warn("No handler for DMAR structure type %d\n",
615                                 iter->type);
616                         return -EINVAL;
617                 }
618         }
619
620         return 0;
621 }
622
623 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
624                                        struct dmar_res_callback *cb)
625 {
626         return dmar_walk_remapping_entries((void *)(dmar + 1),
627                         dmar->header.length - sizeof(*dmar), cb);
628 }
629
630 /**
631  * parse_dmar_table - parses the DMA reporting table
632  */
633 static int __init
634 parse_dmar_table(void)
635 {
636         struct acpi_table_dmar *dmar;
637         int drhd_count = 0;
638         int ret;
639         struct dmar_res_callback cb = {
640                 .print_entry = true,
641                 .ignore_unhandled = true,
642                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
643                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
644                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
645                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
646                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
647                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
648                 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
649         };
650
651         /*
652          * Do it again, earlier dmar_tbl mapping could be mapped with
653          * fixed map.
654          */
655         dmar_table_detect();
656
657         /*
658          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
659          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
660          */
661         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
662
663         dmar = (struct acpi_table_dmar *)dmar_tbl;
664         if (!dmar)
665                 return -ENODEV;
666
667         if (dmar->width < PAGE_SHIFT - 1) {
668                 pr_warn("Invalid DMAR haw\n");
669                 return -EINVAL;
670         }
671
672         pr_info("Host address width %d\n", dmar->width + 1);
673         ret = dmar_walk_dmar_table(dmar, &cb);
674         if (ret == 0 && drhd_count == 0)
675                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
676
677         return ret;
678 }
679
680 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
681                                  int cnt, struct pci_dev *dev)
682 {
683         int index;
684         struct device *tmp;
685
686         while (dev) {
687                 for_each_active_dev_scope(devices, cnt, index, tmp)
688                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
689                                 return 1;
690
691                 /* Check our parent */
692                 dev = dev->bus->self;
693         }
694
695         return 0;
696 }
697
698 struct dmar_drhd_unit *
699 dmar_find_matched_drhd_unit(struct pci_dev *dev)
700 {
701         struct dmar_drhd_unit *dmaru;
702         struct acpi_dmar_hardware_unit *drhd;
703
704         dev = pci_physfn(dev);
705
706         rcu_read_lock();
707         for_each_drhd_unit(dmaru) {
708                 drhd = container_of(dmaru->hdr,
709                                     struct acpi_dmar_hardware_unit,
710                                     header);
711
712                 if (dmaru->include_all &&
713                     drhd->segment == pci_domain_nr(dev->bus))
714                         goto out;
715
716                 if (dmar_pci_device_match(dmaru->devices,
717                                           dmaru->devices_cnt, dev))
718                         goto out;
719         }
720         dmaru = NULL;
721 out:
722         rcu_read_unlock();
723
724         return dmaru;
725 }
726
727 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
728                                               struct acpi_device *adev)
729 {
730         struct dmar_drhd_unit *dmaru;
731         struct acpi_dmar_hardware_unit *drhd;
732         struct acpi_dmar_device_scope *scope;
733         struct device *tmp;
734         int i;
735         struct acpi_dmar_pci_path *path;
736
737         for_each_drhd_unit(dmaru) {
738                 drhd = container_of(dmaru->hdr,
739                                     struct acpi_dmar_hardware_unit,
740                                     header);
741
742                 for (scope = (void *)(drhd + 1);
743                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
744                      scope = ((void *)scope) + scope->length) {
745                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
746                                 continue;
747                         if (scope->enumeration_id != device_number)
748                                 continue;
749
750                         path = (void *)(scope + 1);
751                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
752                                 dev_name(&adev->dev), dmaru->reg_base_addr,
753                                 scope->bus, path->device, path->function);
754                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
755                                 if (tmp == NULL) {
756                                         dmaru->devices[i].bus = scope->bus;
757                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
758                                                                             path->function);
759                                         rcu_assign_pointer(dmaru->devices[i].dev,
760                                                            get_device(&adev->dev));
761                                         return;
762                                 }
763                         BUG_ON(i >= dmaru->devices_cnt);
764                 }
765         }
766         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
767                 device_number, dev_name(&adev->dev));
768 }
769
770 static int __init dmar_acpi_dev_scope_init(void)
771 {
772         struct acpi_dmar_andd *andd;
773
774         if (dmar_tbl == NULL)
775                 return -ENODEV;
776
777         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
778              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
779              andd = ((void *)andd) + andd->header.length) {
780                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
781                         acpi_handle h;
782                         struct acpi_device *adev;
783
784                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
785                                                           andd->device_name,
786                                                           &h))) {
787                                 pr_err("Failed to find handle for ACPI object %s\n",
788                                        andd->device_name);
789                                 continue;
790                         }
791                         adev = acpi_fetch_acpi_dev(h);
792                         if (!adev) {
793                                 pr_err("Failed to get device for ACPI object %s\n",
794                                        andd->device_name);
795                                 continue;
796                         }
797                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
798                 }
799         }
800         return 0;
801 }
802
803 int __init dmar_dev_scope_init(void)
804 {
805         struct pci_dev *dev = NULL;
806         struct dmar_pci_notify_info *info;
807
808         if (dmar_dev_scope_status != 1)
809                 return dmar_dev_scope_status;
810
811         if (list_empty(&dmar_drhd_units)) {
812                 dmar_dev_scope_status = -ENODEV;
813         } else {
814                 dmar_dev_scope_status = 0;
815
816                 dmar_acpi_dev_scope_init();
817
818                 for_each_pci_dev(dev) {
819                         if (dev->is_virtfn)
820                                 continue;
821
822                         info = dmar_alloc_pci_notify_info(dev,
823                                         BUS_NOTIFY_ADD_DEVICE);
824                         if (!info) {
825                                 pci_dev_put(dev);
826                                 return dmar_dev_scope_status;
827                         } else {
828                                 dmar_pci_bus_add_dev(info);
829                                 dmar_free_pci_notify_info(info);
830                         }
831                 }
832         }
833
834         return dmar_dev_scope_status;
835 }
836
837 void __init dmar_register_bus_notifier(void)
838 {
839         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
840 }
841
842
843 int __init dmar_table_init(void)
844 {
845         static int dmar_table_initialized;
846         int ret;
847
848         if (dmar_table_initialized == 0) {
849                 ret = parse_dmar_table();
850                 if (ret < 0) {
851                         if (ret != -ENODEV)
852                                 pr_info("Parse DMAR table failure.\n");
853                 } else  if (list_empty(&dmar_drhd_units)) {
854                         pr_info("No DMAR devices found\n");
855                         ret = -ENODEV;
856                 }
857
858                 if (ret < 0)
859                         dmar_table_initialized = ret;
860                 else
861                         dmar_table_initialized = 1;
862         }
863
864         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
865 }
866
867 static void warn_invalid_dmar(u64 addr, const char *message)
868 {
869         pr_warn_once(FW_BUG
870                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
871                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
872                 addr, message,
873                 dmi_get_system_info(DMI_BIOS_VENDOR),
874                 dmi_get_system_info(DMI_BIOS_VERSION),
875                 dmi_get_system_info(DMI_PRODUCT_VERSION));
876         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
877 }
878
879 static int __ref
880 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
881 {
882         struct acpi_dmar_hardware_unit *drhd;
883         void __iomem *addr;
884         u64 cap, ecap;
885
886         drhd = (void *)entry;
887         if (!drhd->address) {
888                 warn_invalid_dmar(0, "");
889                 return -EINVAL;
890         }
891
892         if (arg)
893                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
894         else
895                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
896         if (!addr) {
897                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
898                 return -EINVAL;
899         }
900
901         cap = dmar_readq(addr + DMAR_CAP_REG);
902         ecap = dmar_readq(addr + DMAR_ECAP_REG);
903
904         if (arg)
905                 iounmap(addr);
906         else
907                 early_iounmap(addr, VTD_PAGE_SIZE);
908
909         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
910                 warn_invalid_dmar(drhd->address, " returns all ones");
911                 return -EINVAL;
912         }
913
914         return 0;
915 }
916
917 void __init detect_intel_iommu(void)
918 {
919         int ret;
920         struct dmar_res_callback validate_drhd_cb = {
921                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
922                 .ignore_unhandled = true,
923         };
924
925         down_write(&dmar_global_lock);
926         ret = dmar_table_detect();
927         if (!ret)
928                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
929                                            &validate_drhd_cb);
930         if (!ret && !no_iommu && !iommu_detected &&
931             (!dmar_disabled || dmar_platform_optin())) {
932                 iommu_detected = 1;
933                 /* Make sure ACS will be enabled */
934                 pci_request_acs();
935         }
936
937 #ifdef CONFIG_X86
938         if (!ret) {
939                 x86_init.iommu.iommu_init = intel_iommu_init;
940                 x86_platform.iommu_shutdown = intel_iommu_shutdown;
941         }
942
943 #endif
944
945         if (dmar_tbl) {
946                 acpi_put_table(dmar_tbl);
947                 dmar_tbl = NULL;
948         }
949         up_write(&dmar_global_lock);
950 }
951
952 static void unmap_iommu(struct intel_iommu *iommu)
953 {
954         iounmap(iommu->reg);
955         release_mem_region(iommu->reg_phys, iommu->reg_size);
956 }
957
958 /**
959  * map_iommu: map the iommu's registers
960  * @iommu: the iommu to map
961  * @drhd: DMA remapping hardware definition structure
962  *
963  * Memory map the iommu's registers.  Start w/ a single page, and
964  * possibly expand if that turns out to be insufficent.
965  */
966 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
967 {
968         u64 phys_addr = drhd->reg_base_addr;
969         int map_size, err=0;
970
971         iommu->reg_phys = phys_addr;
972         iommu->reg_size = drhd->reg_size;
973
974         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
975                 pr_err("Can't reserve memory\n");
976                 err = -EBUSY;
977                 goto out;
978         }
979
980         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
981         if (!iommu->reg) {
982                 pr_err("Can't map the region\n");
983                 err = -ENOMEM;
984                 goto release;
985         }
986
987         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
988         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
989
990         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
991                 err = -EINVAL;
992                 warn_invalid_dmar(phys_addr, " returns all ones");
993                 goto unmap;
994         }
995
996         /* the registers might be more than one page */
997         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
998                          cap_max_fault_reg_offset(iommu->cap));
999         map_size = VTD_PAGE_ALIGN(map_size);
1000         if (map_size > iommu->reg_size) {
1001                 iounmap(iommu->reg);
1002                 release_mem_region(iommu->reg_phys, iommu->reg_size);
1003                 iommu->reg_size = map_size;
1004                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1005                                         iommu->name)) {
1006                         pr_err("Can't reserve memory\n");
1007                         err = -EBUSY;
1008                         goto out;
1009                 }
1010                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1011                 if (!iommu->reg) {
1012                         pr_err("Can't map the region\n");
1013                         err = -ENOMEM;
1014                         goto release;
1015                 }
1016         }
1017
1018         if (cap_ecmds(iommu->cap)) {
1019                 int i;
1020
1021                 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1022                         iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1023                                                        i * DMA_ECMD_REG_STEP);
1024                 }
1025         }
1026
1027         err = 0;
1028         goto out;
1029
1030 unmap:
1031         iounmap(iommu->reg);
1032 release:
1033         release_mem_region(iommu->reg_phys, iommu->reg_size);
1034 out:
1035         return err;
1036 }
1037
1038 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1039 {
1040         struct intel_iommu *iommu;
1041         u32 ver, sts;
1042         int agaw = -1;
1043         int msagaw = -1;
1044         int err;
1045
1046         if (!drhd->reg_base_addr) {
1047                 warn_invalid_dmar(0, "");
1048                 return -EINVAL;
1049         }
1050
1051         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1052         if (!iommu)
1053                 return -ENOMEM;
1054
1055         iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1056                                         DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1057         if (iommu->seq_id < 0) {
1058                 pr_err("Failed to allocate seq_id\n");
1059                 err = iommu->seq_id;
1060                 goto error;
1061         }
1062         sprintf(iommu->name, "dmar%d", iommu->seq_id);
1063
1064         err = map_iommu(iommu, drhd);
1065         if (err) {
1066                 pr_err("Failed to map %s\n", iommu->name);
1067                 goto error_free_seq_id;
1068         }
1069
1070         err = -EINVAL;
1071         if (!cap_sagaw(iommu->cap) &&
1072             (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073                 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074                         iommu->name);
1075                 drhd->ignored = 1;
1076         }
1077
1078         if (!drhd->ignored) {
1079                 agaw = iommu_calculate_agaw(iommu);
1080                 if (agaw < 0) {
1081                         pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082                                iommu->seq_id);
1083                         drhd->ignored = 1;
1084                 }
1085         }
1086         if (!drhd->ignored) {
1087                 msagaw = iommu_calculate_max_sagaw(iommu);
1088                 if (msagaw < 0) {
1089                         pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090                                iommu->seq_id);
1091                         drhd->ignored = 1;
1092                         agaw = -1;
1093                 }
1094         }
1095         iommu->agaw = agaw;
1096         iommu->msagaw = msagaw;
1097         iommu->segment = drhd->segment;
1098         iommu->device_rbtree = RB_ROOT;
1099         spin_lock_init(&iommu->device_rbtree_lock);
1100         mutex_init(&iommu->iopf_lock);
1101         iommu->node = NUMA_NO_NODE;
1102
1103         ver = readl(iommu->reg + DMAR_VER_REG);
1104         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1105                 iommu->name,
1106                 (unsigned long long)drhd->reg_base_addr,
1107                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108                 (unsigned long long)iommu->cap,
1109                 (unsigned long long)iommu->ecap);
1110
1111         /* Reflect status in gcmd */
1112         sts = readl(iommu->reg + DMAR_GSTS_REG);
1113         if (sts & DMA_GSTS_IRES)
1114                 iommu->gcmd |= DMA_GCMD_IRE;
1115         if (sts & DMA_GSTS_TES)
1116                 iommu->gcmd |= DMA_GCMD_TE;
1117         if (sts & DMA_GSTS_QIES)
1118                 iommu->gcmd |= DMA_GCMD_QIE;
1119
1120         if (alloc_iommu_pmu(iommu))
1121                 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1122
1123         raw_spin_lock_init(&iommu->register_lock);
1124
1125         /*
1126          * A value of N in PSS field of eCap register indicates hardware
1127          * supports PASID field of N+1 bits.
1128          */
1129         if (pasid_supported(iommu))
1130                 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1131
1132         /*
1133          * This is only for hotplug; at boot time intel_iommu_enabled won't
1134          * be set yet. When intel_iommu_init() runs, it registers the units
1135          * present at boot time, then sets intel_iommu_enabled.
1136          */
1137         if (intel_iommu_enabled && !drhd->ignored) {
1138                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139                                              intel_iommu_groups,
1140                                              "%s", iommu->name);
1141                 if (err)
1142                         goto err_unmap;
1143
1144                 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145                 if (err)
1146                         goto err_sysfs;
1147
1148                 iommu_pmu_register(iommu);
1149         }
1150
1151         drhd->iommu = iommu;
1152         iommu->drhd = drhd;
1153
1154         return 0;
1155
1156 err_sysfs:
1157         iommu_device_sysfs_remove(&iommu->iommu);
1158 err_unmap:
1159         free_iommu_pmu(iommu);
1160         unmap_iommu(iommu);
1161 error_free_seq_id:
1162         ida_free(&dmar_seq_ids, iommu->seq_id);
1163 error:
1164         kfree(iommu);
1165         return err;
1166 }
1167
1168 static void free_iommu(struct intel_iommu *iommu)
1169 {
1170         if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171                 iommu_pmu_unregister(iommu);
1172                 iommu_device_unregister(&iommu->iommu);
1173                 iommu_device_sysfs_remove(&iommu->iommu);
1174         }
1175
1176         free_iommu_pmu(iommu);
1177
1178         if (iommu->irq) {
1179                 if (iommu->pr_irq) {
1180                         free_irq(iommu->pr_irq, iommu);
1181                         dmar_free_hwirq(iommu->pr_irq);
1182                         iommu->pr_irq = 0;
1183                 }
1184                 free_irq(iommu->irq, iommu);
1185                 dmar_free_hwirq(iommu->irq);
1186                 iommu->irq = 0;
1187         }
1188
1189         if (iommu->qi) {
1190                 free_page((unsigned long)iommu->qi->desc);
1191                 kfree(iommu->qi->desc_status);
1192                 kfree(iommu->qi);
1193         }
1194
1195         if (iommu->reg)
1196                 unmap_iommu(iommu);
1197
1198         ida_free(&dmar_seq_ids, iommu->seq_id);
1199         kfree(iommu);
1200 }
1201
1202 /*
1203  * Reclaim all the submitted descriptors which have completed its work.
1204  */
1205 static inline void reclaim_free_desc(struct q_inval *qi)
1206 {
1207         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1208                qi->desc_status[qi->free_tail] == QI_ABORT) {
1209                 qi->desc_status[qi->free_tail] = QI_FREE;
1210                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1211                 qi->free_cnt++;
1212         }
1213 }
1214
1215 static const char *qi_type_string(u8 type)
1216 {
1217         switch (type) {
1218         case QI_CC_TYPE:
1219                 return "Context-cache Invalidation";
1220         case QI_IOTLB_TYPE:
1221                 return "IOTLB Invalidation";
1222         case QI_DIOTLB_TYPE:
1223                 return "Device-TLB Invalidation";
1224         case QI_IEC_TYPE:
1225                 return "Interrupt Entry Cache Invalidation";
1226         case QI_IWD_TYPE:
1227                 return "Invalidation Wait";
1228         case QI_EIOTLB_TYPE:
1229                 return "PASID-based IOTLB Invalidation";
1230         case QI_PC_TYPE:
1231                 return "PASID-cache Invalidation";
1232         case QI_DEIOTLB_TYPE:
1233                 return "PASID-based Device-TLB Invalidation";
1234         case QI_PGRP_RESP_TYPE:
1235                 return "Page Group Response";
1236         default:
1237                 return "UNKNOWN";
1238         }
1239 }
1240
1241 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1242 {
1243         unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1244         u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1245         struct qi_desc *desc = iommu->qi->desc + head;
1246
1247         if (fault & DMA_FSTS_IQE)
1248                 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1249                        DMAR_IQER_REG_IQEI(iqe_err));
1250         if (fault & DMA_FSTS_ITE)
1251                 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1252                        DMAR_IQER_REG_ITESID(iqe_err));
1253         if (fault & DMA_FSTS_ICE)
1254                 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1255                        DMAR_IQER_REG_ICESID(iqe_err));
1256
1257         pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1258                qi_type_string(desc->qw0 & 0xf),
1259                (unsigned long long)desc->qw0,
1260                (unsigned long long)desc->qw1);
1261
1262         head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1263         head <<= qi_shift(iommu);
1264         desc = iommu->qi->desc + head;
1265
1266         pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1267                qi_type_string(desc->qw0 & 0xf),
1268                (unsigned long long)desc->qw0,
1269                (unsigned long long)desc->qw1);
1270 }
1271
1272 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1273 {
1274         u32 fault;
1275         int head, tail;
1276         struct device *dev;
1277         u64 iqe_err, ite_sid;
1278         struct q_inval *qi = iommu->qi;
1279         int shift = qi_shift(iommu);
1280
1281         if (qi->desc_status[wait_index] == QI_ABORT)
1282                 return -EAGAIN;
1283
1284         fault = readl(iommu->reg + DMAR_FSTS_REG);
1285         if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1286                 qi_dump_fault(iommu, fault);
1287
1288         /*
1289          * If IQE happens, the head points to the descriptor associated
1290          * with the error. No new descriptors are fetched until the IQE
1291          * is cleared.
1292          */
1293         if (fault & DMA_FSTS_IQE) {
1294                 head = readl(iommu->reg + DMAR_IQH_REG);
1295                 if ((head >> shift) == index) {
1296                         struct qi_desc *desc = qi->desc + head;
1297
1298                         /*
1299                          * desc->qw2 and desc->qw3 are either reserved or
1300                          * used by software as private data. We won't print
1301                          * out these two qw's for security consideration.
1302                          */
1303                         memcpy(desc, qi->desc + (wait_index << shift),
1304                                1 << shift);
1305                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1306                         pr_info("Invalidation Queue Error (IQE) cleared\n");
1307                         return -EINVAL;
1308                 }
1309         }
1310
1311         /*
1312          * If ITE happens, all pending wait_desc commands are aborted.
1313          * No new descriptors are fetched until the ITE is cleared.
1314          */
1315         if (fault & DMA_FSTS_ITE) {
1316                 head = readl(iommu->reg + DMAR_IQH_REG);
1317                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1318                 head |= 1;
1319                 tail = readl(iommu->reg + DMAR_IQT_REG);
1320                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1321
1322                 /*
1323                  * SID field is valid only when the ITE field is Set in FSTS_REG
1324                  * see Intel VT-d spec r4.1, section 11.4.9.9
1325                  */
1326                 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1327                 ite_sid = DMAR_IQER_REG_ITESID(iqe_err);
1328
1329                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1330                 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1331
1332                 do {
1333                         if (qi->desc_status[head] == QI_IN_USE)
1334                                 qi->desc_status[head] = QI_ABORT;
1335                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1336                 } while (head != tail);
1337
1338                 /*
1339                  * If device was released or isn't present, no need to retry
1340                  * the ATS invalidate request anymore.
1341                  *
1342                  * 0 value of ite_sid means old VT-d device, no ite_sid value.
1343                  * see Intel VT-d spec r4.1, section 11.4.9.9
1344                  */
1345                 if (ite_sid) {
1346                         dev = device_rbtree_find(iommu, ite_sid);
1347                         if (!dev || !dev_is_pci(dev) ||
1348                             !pci_device_is_present(to_pci_dev(dev)))
1349                                 return -ETIMEDOUT;
1350                 }
1351                 if (qi->desc_status[wait_index] == QI_ABORT)
1352                         return -EAGAIN;
1353         }
1354
1355         if (fault & DMA_FSTS_ICE) {
1356                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1357                 pr_info("Invalidation Completion Error (ICE) cleared\n");
1358         }
1359
1360         return 0;
1361 }
1362
1363 /*
1364  * Function to submit invalidation descriptors of all types to the queued
1365  * invalidation interface(QI). Multiple descriptors can be submitted at a
1366  * time, a wait descriptor will be appended to each submission to ensure
1367  * hardware has completed the invalidation before return. Wait descriptors
1368  * can be part of the submission but it will not be polled for completion.
1369  */
1370 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1371                    unsigned int count, unsigned long options)
1372 {
1373         struct q_inval *qi = iommu->qi;
1374         s64 devtlb_start_ktime = 0;
1375         s64 iotlb_start_ktime = 0;
1376         s64 iec_start_ktime = 0;
1377         struct qi_desc wait_desc;
1378         int wait_index, index;
1379         unsigned long flags;
1380         int offset, shift;
1381         int rc, i;
1382         u64 type;
1383
1384         if (!qi)
1385                 return 0;
1386
1387         type = desc->qw0 & GENMASK_ULL(3, 0);
1388
1389         if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1390             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1391                 iotlb_start_ktime = ktime_to_ns(ktime_get());
1392
1393         if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1394             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1395                 devtlb_start_ktime = ktime_to_ns(ktime_get());
1396
1397         if (type == QI_IEC_TYPE &&
1398             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1399                 iec_start_ktime = ktime_to_ns(ktime_get());
1400
1401 restart:
1402         rc = 0;
1403
1404         raw_spin_lock_irqsave(&qi->q_lock, flags);
1405         /*
1406          * Check if we have enough empty slots in the queue to submit,
1407          * the calculation is based on:
1408          * # of desc + 1 wait desc + 1 space between head and tail
1409          */
1410         while (qi->free_cnt < count + 2) {
1411                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1412                 cpu_relax();
1413                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1414         }
1415
1416         index = qi->free_head;
1417         wait_index = (index + count) % QI_LENGTH;
1418         shift = qi_shift(iommu);
1419
1420         for (i = 0; i < count; i++) {
1421                 offset = ((index + i) % QI_LENGTH) << shift;
1422                 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1423                 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1424                 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1425                                 desc[i].qw2, desc[i].qw3);
1426         }
1427         qi->desc_status[wait_index] = QI_IN_USE;
1428
1429         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1430                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1431         if (options & QI_OPT_WAIT_DRAIN)
1432                 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1433         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1434         wait_desc.qw2 = 0;
1435         wait_desc.qw3 = 0;
1436
1437         offset = wait_index << shift;
1438         memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1439
1440         qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1441         qi->free_cnt -= count + 1;
1442
1443         /*
1444          * update the HW tail register indicating the presence of
1445          * new descriptors.
1446          */
1447         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1448
1449         while (qi->desc_status[wait_index] != QI_DONE) {
1450                 /*
1451                  * We will leave the interrupts disabled, to prevent interrupt
1452                  * context to queue another cmd while a cmd is already submitted
1453                  * and waiting for completion on this cpu. This is to avoid
1454                  * a deadlock where the interrupt context can wait indefinitely
1455                  * for free slots in the queue.
1456                  */
1457                 rc = qi_check_fault(iommu, index, wait_index);
1458                 if (rc)
1459                         break;
1460
1461                 raw_spin_unlock(&qi->q_lock);
1462                 cpu_relax();
1463                 raw_spin_lock(&qi->q_lock);
1464         }
1465
1466         for (i = 0; i < count; i++)
1467                 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1468
1469         reclaim_free_desc(qi);
1470         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1471
1472         if (rc == -EAGAIN)
1473                 goto restart;
1474
1475         if (iotlb_start_ktime)
1476                 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1477                                 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1478
1479         if (devtlb_start_ktime)
1480                 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1481                                 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1482
1483         if (iec_start_ktime)
1484                 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1485                                 ktime_to_ns(ktime_get()) - iec_start_ktime);
1486
1487         return rc;
1488 }
1489
1490 /*
1491  * Flush the global interrupt entry cache.
1492  */
1493 void qi_global_iec(struct intel_iommu *iommu)
1494 {
1495         struct qi_desc desc;
1496
1497         desc.qw0 = QI_IEC_TYPE;
1498         desc.qw1 = 0;
1499         desc.qw2 = 0;
1500         desc.qw3 = 0;
1501
1502         /* should never fail */
1503         qi_submit_sync(iommu, &desc, 1, 0);
1504 }
1505
1506 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1507                       u64 type)
1508 {
1509         struct qi_desc desc;
1510
1511         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1512                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1513         desc.qw1 = 0;
1514         desc.qw2 = 0;
1515         desc.qw3 = 0;
1516
1517         qi_submit_sync(iommu, &desc, 1, 0);
1518 }
1519
1520 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1521                     unsigned int size_order, u64 type)
1522 {
1523         u8 dw = 0, dr = 0;
1524
1525         struct qi_desc desc;
1526         int ih = 0;
1527
1528         if (cap_write_drain(iommu->cap))
1529                 dw = 1;
1530
1531         if (cap_read_drain(iommu->cap))
1532                 dr = 1;
1533
1534         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1535                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1536         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1537                 | QI_IOTLB_AM(size_order);
1538         desc.qw2 = 0;
1539         desc.qw3 = 0;
1540
1541         qi_submit_sync(iommu, &desc, 1, 0);
1542 }
1543
1544 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1545                         u16 qdep, u64 addr, unsigned mask)
1546 {
1547         struct qi_desc desc;
1548
1549         /*
1550          * VT-d spec, section 4.3:
1551          *
1552          * Software is recommended to not submit any Device-TLB invalidation
1553          * requests while address remapping hardware is disabled.
1554          */
1555         if (!(iommu->gcmd & DMA_GCMD_TE))
1556                 return;
1557
1558         if (mask) {
1559                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1560                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1561         } else
1562                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1563
1564         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1565                 qdep = 0;
1566
1567         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1568                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1569         desc.qw2 = 0;
1570         desc.qw3 = 0;
1571
1572         qi_submit_sync(iommu, &desc, 1, 0);
1573 }
1574
1575 /* PASID-based IOTLB invalidation */
1576 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1577                      unsigned long npages, bool ih)
1578 {
1579         struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1580
1581         /*
1582          * npages == -1 means a PASID-selective invalidation, otherwise,
1583          * a positive value for Page-selective-within-PASID invalidation.
1584          * 0 is not a valid input.
1585          */
1586         if (WARN_ON(!npages)) {
1587                 pr_err("Invalid input npages = %ld\n", npages);
1588                 return;
1589         }
1590
1591         if (npages == -1) {
1592                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1593                                 QI_EIOTLB_DID(did) |
1594                                 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1595                                 QI_EIOTLB_TYPE;
1596                 desc.qw1 = 0;
1597         } else {
1598                 int mask = ilog2(__roundup_pow_of_two(npages));
1599                 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1600
1601                 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1602                         addr = ALIGN_DOWN(addr, align);
1603
1604                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1605                                 QI_EIOTLB_DID(did) |
1606                                 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1607                                 QI_EIOTLB_TYPE;
1608                 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1609                                 QI_EIOTLB_IH(ih) |
1610                                 QI_EIOTLB_AM(mask);
1611         }
1612
1613         qi_submit_sync(iommu, &desc, 1, 0);
1614 }
1615
1616 /* PASID-based device IOTLB Invalidate */
1617 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1618                               u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1619 {
1620         unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1621         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1622
1623         /*
1624          * VT-d spec, section 4.3:
1625          *
1626          * Software is recommended to not submit any Device-TLB invalidation
1627          * requests while address remapping hardware is disabled.
1628          */
1629         if (!(iommu->gcmd & DMA_GCMD_TE))
1630                 return;
1631
1632         desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1633                 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1634                 QI_DEV_IOTLB_PFSID(pfsid);
1635
1636         /*
1637          * If S bit is 0, we only flush a single page. If S bit is set,
1638          * The least significant zero bit indicates the invalidation address
1639          * range. VT-d spec 6.5.2.6.
1640          * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1641          * size order = 0 is PAGE_SIZE 4KB
1642          * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1643          * ECAP.
1644          */
1645         if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1646                 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1647                                     addr, size_order);
1648
1649         /* Take page address */
1650         desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1651
1652         if (size_order) {
1653                 /*
1654                  * Existing 0s in address below size_order may be the least
1655                  * significant bit, we must set them to 1s to avoid having
1656                  * smaller size than desired.
1657                  */
1658                 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1659                                         VTD_PAGE_SHIFT);
1660                 /* Clear size_order bit to indicate size */
1661                 desc.qw1 &= ~mask;
1662                 /* Set the S bit to indicate flushing more than 1 page */
1663                 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1664         }
1665
1666         qi_submit_sync(iommu, &desc, 1, 0);
1667 }
1668
1669 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1670                           u64 granu, u32 pasid)
1671 {
1672         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1673
1674         desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1675                         QI_PC_GRAN(granu) | QI_PC_TYPE;
1676         qi_submit_sync(iommu, &desc, 1, 0);
1677 }
1678
1679 /*
1680  * Disable Queued Invalidation interface.
1681  */
1682 void dmar_disable_qi(struct intel_iommu *iommu)
1683 {
1684         unsigned long flags;
1685         u32 sts;
1686         cycles_t start_time = get_cycles();
1687
1688         if (!ecap_qis(iommu->ecap))
1689                 return;
1690
1691         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1692
1693         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1694         if (!(sts & DMA_GSTS_QIES))
1695                 goto end;
1696
1697         /*
1698          * Give a chance to HW to complete the pending invalidation requests.
1699          */
1700         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1701                 readl(iommu->reg + DMAR_IQH_REG)) &&
1702                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1703                 cpu_relax();
1704
1705         iommu->gcmd &= ~DMA_GCMD_QIE;
1706         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1707
1708         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1709                       !(sts & DMA_GSTS_QIES), sts);
1710 end:
1711         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1712 }
1713
1714 /*
1715  * Enable queued invalidation.
1716  */
1717 static void __dmar_enable_qi(struct intel_iommu *iommu)
1718 {
1719         u32 sts;
1720         unsigned long flags;
1721         struct q_inval *qi = iommu->qi;
1722         u64 val = virt_to_phys(qi->desc);
1723
1724         qi->free_head = qi->free_tail = 0;
1725         qi->free_cnt = QI_LENGTH;
1726
1727         /*
1728          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1729          * is present.
1730          */
1731         if (ecap_smts(iommu->ecap))
1732                 val |= BIT_ULL(11) | BIT_ULL(0);
1733
1734         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1735
1736         /* write zero to the tail reg */
1737         writel(0, iommu->reg + DMAR_IQT_REG);
1738
1739         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1740
1741         iommu->gcmd |= DMA_GCMD_QIE;
1742         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1743
1744         /* Make sure hardware complete it */
1745         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1746
1747         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1748 }
1749
1750 /*
1751  * Enable Queued Invalidation interface. This is a must to support
1752  * interrupt-remapping. Also used by DMA-remapping, which replaces
1753  * register based IOTLB invalidation.
1754  */
1755 int dmar_enable_qi(struct intel_iommu *iommu)
1756 {
1757         struct q_inval *qi;
1758         struct page *desc_page;
1759
1760         if (!ecap_qis(iommu->ecap))
1761                 return -ENOENT;
1762
1763         /*
1764          * queued invalidation is already setup and enabled.
1765          */
1766         if (iommu->qi)
1767                 return 0;
1768
1769         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1770         if (!iommu->qi)
1771                 return -ENOMEM;
1772
1773         qi = iommu->qi;
1774
1775         /*
1776          * Need two pages to accommodate 256 descriptors of 256 bits each
1777          * if the remapping hardware supports scalable mode translation.
1778          */
1779         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1780                                      !!ecap_smts(iommu->ecap));
1781         if (!desc_page) {
1782                 kfree(qi);
1783                 iommu->qi = NULL;
1784                 return -ENOMEM;
1785         }
1786
1787         qi->desc = page_address(desc_page);
1788
1789         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1790         if (!qi->desc_status) {
1791                 free_page((unsigned long) qi->desc);
1792                 kfree(qi);
1793                 iommu->qi = NULL;
1794                 return -ENOMEM;
1795         }
1796
1797         raw_spin_lock_init(&qi->q_lock);
1798
1799         __dmar_enable_qi(iommu);
1800
1801         return 0;
1802 }
1803
1804 /* iommu interrupt handling. Most stuff are MSI-like. */
1805
1806 enum faulttype {
1807         DMA_REMAP,
1808         INTR_REMAP,
1809         UNKNOWN,
1810 };
1811
1812 static const char *dma_remap_fault_reasons[] =
1813 {
1814         "Software",
1815         "Present bit in root entry is clear",
1816         "Present bit in context entry is clear",
1817         "Invalid context entry",
1818         "Access beyond MGAW",
1819         "PTE Write access is not set",
1820         "PTE Read access is not set",
1821         "Next page table ptr is invalid",
1822         "Root table address invalid",
1823         "Context table ptr is invalid",
1824         "non-zero reserved fields in RTP",
1825         "non-zero reserved fields in CTP",
1826         "non-zero reserved fields in PTE",
1827         "PCE for translation request specifies blocking",
1828 };
1829
1830 static const char * const dma_remap_sm_fault_reasons[] = {
1831         "SM: Invalid Root Table Address",
1832         "SM: TTM 0 for request with PASID",
1833         "SM: TTM 0 for page group request",
1834         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1835         "SM: Error attempting to access Root Entry",
1836         "SM: Present bit in Root Entry is clear",
1837         "SM: Non-zero reserved field set in Root Entry",
1838         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1839         "SM: Error attempting to access Context Entry",
1840         "SM: Present bit in Context Entry is clear",
1841         "SM: Non-zero reserved field set in the Context Entry",
1842         "SM: Invalid Context Entry",
1843         "SM: DTE field in Context Entry is clear",
1844         "SM: PASID Enable field in Context Entry is clear",
1845         "SM: PASID is larger than the max in Context Entry",
1846         "SM: PRE field in Context-Entry is clear",
1847         "SM: RID_PASID field error in Context-Entry",
1848         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1849         "SM: Error attempting to access the PASID Directory Entry",
1850         "SM: Present bit in Directory Entry is clear",
1851         "SM: Non-zero reserved field set in PASID Directory Entry",
1852         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1853         "SM: Error attempting to access PASID Table Entry",
1854         "SM: Present bit in PASID Table Entry is clear",
1855         "SM: Non-zero reserved field set in PASID Table Entry",
1856         "SM: Invalid Scalable-Mode PASID Table Entry",
1857         "SM: ERE field is clear in PASID Table Entry",
1858         "SM: SRE field is clear in PASID Table Entry",
1859         "Unknown", "Unknown",/* 0x5E-0x5F */
1860         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1861         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1862         "SM: Error attempting to access first-level paging entry",
1863         "SM: Present bit in first-level paging entry is clear",
1864         "SM: Non-zero reserved field set in first-level paging entry",
1865         "SM: Error attempting to access FL-PML4 entry",
1866         "SM: First-level entry address beyond MGAW in Nested translation",
1867         "SM: Read permission error in FL-PML4 entry in Nested translation",
1868         "SM: Read permission error in first-level paging entry in Nested translation",
1869         "SM: Write permission error in first-level paging entry in Nested translation",
1870         "SM: Error attempting to access second-level paging entry",
1871         "SM: Read/Write permission error in second-level paging entry",
1872         "SM: Non-zero reserved field set in second-level paging entry",
1873         "SM: Invalid second-level page table pointer",
1874         "SM: A/D bit update needed in second-level entry when set up in no snoop",
1875         "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1876         "SM: Address in first-level translation is not canonical",
1877         "SM: U/S set 0 for first-level translation with user privilege",
1878         "SM: No execute permission for request with PASID and ER=1",
1879         "SM: Address beyond the DMA hardware max",
1880         "SM: Second-level entry address beyond the max",
1881         "SM: No write permission for Write/AtomicOp request",
1882         "SM: No read permission for Read/AtomicOp request",
1883         "SM: Invalid address-interrupt address",
1884         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1885         "SM: A/D bit update needed in first-level entry when set up in no snoop",
1886 };
1887
1888 static const char *irq_remap_fault_reasons[] =
1889 {
1890         "Detected reserved fields in the decoded interrupt-remapped request",
1891         "Interrupt index exceeded the interrupt-remapping table size",
1892         "Present field in the IRTE entry is clear",
1893         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1894         "Detected reserved fields in the IRTE entry",
1895         "Blocked a compatibility format interrupt request",
1896         "Blocked an interrupt request due to source-id verification failure",
1897 };
1898
1899 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1900 {
1901         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1902                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1903                 *fault_type = INTR_REMAP;
1904                 return irq_remap_fault_reasons[fault_reason - 0x20];
1905         } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1906                         ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1907                 *fault_type = DMA_REMAP;
1908                 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1909         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1910                 *fault_type = DMA_REMAP;
1911                 return dma_remap_fault_reasons[fault_reason];
1912         } else {
1913                 *fault_type = UNKNOWN;
1914                 return "Unknown";
1915         }
1916 }
1917
1918
1919 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1920 {
1921         if (iommu->irq == irq)
1922                 return DMAR_FECTL_REG;
1923         else if (iommu->pr_irq == irq)
1924                 return DMAR_PECTL_REG;
1925         else if (iommu->perf_irq == irq)
1926                 return DMAR_PERFINTRCTL_REG;
1927         else
1928                 BUG();
1929 }
1930
1931 void dmar_msi_unmask(struct irq_data *data)
1932 {
1933         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1934         int reg = dmar_msi_reg(iommu, data->irq);
1935         unsigned long flag;
1936
1937         /* unmask it */
1938         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1939         writel(0, iommu->reg + reg);
1940         /* Read a reg to force flush the post write */
1941         readl(iommu->reg + reg);
1942         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1943 }
1944
1945 void dmar_msi_mask(struct irq_data *data)
1946 {
1947         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1948         int reg = dmar_msi_reg(iommu, data->irq);
1949         unsigned long flag;
1950
1951         /* mask it */
1952         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1953         writel(DMA_FECTL_IM, iommu->reg + reg);
1954         /* Read a reg to force flush the post write */
1955         readl(iommu->reg + reg);
1956         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1957 }
1958
1959 void dmar_msi_write(int irq, struct msi_msg *msg)
1960 {
1961         struct intel_iommu *iommu = irq_get_handler_data(irq);
1962         int reg = dmar_msi_reg(iommu, irq);
1963         unsigned long flag;
1964
1965         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1966         writel(msg->data, iommu->reg + reg + 4);
1967         writel(msg->address_lo, iommu->reg + reg + 8);
1968         writel(msg->address_hi, iommu->reg + reg + 12);
1969         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1970 }
1971
1972 void dmar_msi_read(int irq, struct msi_msg *msg)
1973 {
1974         struct intel_iommu *iommu = irq_get_handler_data(irq);
1975         int reg = dmar_msi_reg(iommu, irq);
1976         unsigned long flag;
1977
1978         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1979         msg->data = readl(iommu->reg + reg + 4);
1980         msg->address_lo = readl(iommu->reg + reg + 8);
1981         msg->address_hi = readl(iommu->reg + reg + 12);
1982         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1983 }
1984
1985 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1986                 u8 fault_reason, u32 pasid, u16 source_id,
1987                 unsigned long long addr)
1988 {
1989         const char *reason;
1990         int fault_type;
1991
1992         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1993
1994         if (fault_type == INTR_REMAP) {
1995                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1996                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1997                        PCI_FUNC(source_id & 0xFF), addr >> 48,
1998                        fault_reason, reason);
1999
2000                 return 0;
2001         }
2002
2003         if (pasid == IOMMU_PASID_INVALID)
2004                 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
2005                        type ? "DMA Read" : "DMA Write",
2006                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
2007                        PCI_FUNC(source_id & 0xFF), addr,
2008                        fault_reason, reason);
2009         else
2010                 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
2011                        type ? "DMA Read" : "DMA Write", pasid,
2012                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
2013                        PCI_FUNC(source_id & 0xFF), addr,
2014                        fault_reason, reason);
2015
2016         dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
2017
2018         return 0;
2019 }
2020
2021 #define PRIMARY_FAULT_REG_LEN (16)
2022 irqreturn_t dmar_fault(int irq, void *dev_id)
2023 {
2024         struct intel_iommu *iommu = dev_id;
2025         int reg, fault_index;
2026         u32 fault_status;
2027         unsigned long flag;
2028         static DEFINE_RATELIMIT_STATE(rs,
2029                                       DEFAULT_RATELIMIT_INTERVAL,
2030                                       DEFAULT_RATELIMIT_BURST);
2031
2032         raw_spin_lock_irqsave(&iommu->register_lock, flag);
2033         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2034         if (fault_status && __ratelimit(&rs))
2035                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
2036
2037         /* TBD: ignore advanced fault log currently */
2038         if (!(fault_status & DMA_FSTS_PPF))
2039                 goto unlock_exit;
2040
2041         fault_index = dma_fsts_fault_record_index(fault_status);
2042         reg = cap_fault_reg_offset(iommu->cap);
2043         while (1) {
2044                 /* Disable printing, simply clear the fault when ratelimited */
2045                 bool ratelimited = !__ratelimit(&rs);
2046                 u8 fault_reason;
2047                 u16 source_id;
2048                 u64 guest_addr;
2049                 u32 pasid;
2050                 int type;
2051                 u32 data;
2052                 bool pasid_present;
2053
2054                 /* highest 32 bits */
2055                 data = readl(iommu->reg + reg +
2056                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2057                 if (!(data & DMA_FRCD_F))
2058                         break;
2059
2060                 if (!ratelimited) {
2061                         fault_reason = dma_frcd_fault_reason(data);
2062                         type = dma_frcd_type(data);
2063
2064                         pasid = dma_frcd_pasid_value(data);
2065                         data = readl(iommu->reg + reg +
2066                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
2067                         source_id = dma_frcd_source_id(data);
2068
2069                         pasid_present = dma_frcd_pasid_present(data);
2070                         guest_addr = dmar_readq(iommu->reg + reg +
2071                                         fault_index * PRIMARY_FAULT_REG_LEN);
2072                         guest_addr = dma_frcd_page_addr(guest_addr);
2073                 }
2074
2075                 /* clear the fault */
2076                 writel(DMA_FRCD_F, iommu->reg + reg +
2077                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
2078
2079                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2080
2081                 if (!ratelimited)
2082                         /* Using pasid -1 if pasid is not present */
2083                         dmar_fault_do_one(iommu, type, fault_reason,
2084                                           pasid_present ? pasid : IOMMU_PASID_INVALID,
2085                                           source_id, guest_addr);
2086
2087                 fault_index++;
2088                 if (fault_index >= cap_num_fault_regs(iommu->cap))
2089                         fault_index = 0;
2090                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2091         }
2092
2093         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2094                iommu->reg + DMAR_FSTS_REG);
2095
2096 unlock_exit:
2097         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2098         return IRQ_HANDLED;
2099 }
2100
2101 int dmar_set_interrupt(struct intel_iommu *iommu)
2102 {
2103         int irq, ret;
2104
2105         /*
2106          * Check if the fault interrupt is already initialized.
2107          */
2108         if (iommu->irq)
2109                 return 0;
2110
2111         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2112         if (irq > 0) {
2113                 iommu->irq = irq;
2114         } else {
2115                 pr_err("No free IRQ vectors\n");
2116                 return -EINVAL;
2117         }
2118
2119         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2120         if (ret)
2121                 pr_err("Can't request irq\n");
2122         return ret;
2123 }
2124
2125 int __init enable_drhd_fault_handling(void)
2126 {
2127         struct dmar_drhd_unit *drhd;
2128         struct intel_iommu *iommu;
2129
2130         /*
2131          * Enable fault control interrupt.
2132          */
2133         for_each_iommu(iommu, drhd) {
2134                 u32 fault_status;
2135                 int ret = dmar_set_interrupt(iommu);
2136
2137                 if (ret) {
2138                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2139                                (unsigned long long)drhd->reg_base_addr, ret);
2140                         return -1;
2141                 }
2142
2143                 /*
2144                  * Clear any previous faults.
2145                  */
2146                 dmar_fault(iommu->irq, iommu);
2147                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2148                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2149         }
2150
2151         return 0;
2152 }
2153
2154 /*
2155  * Re-enable Queued Invalidation interface.
2156  */
2157 int dmar_reenable_qi(struct intel_iommu *iommu)
2158 {
2159         if (!ecap_qis(iommu->ecap))
2160                 return -ENOENT;
2161
2162         if (!iommu->qi)
2163                 return -ENOENT;
2164
2165         /*
2166          * First disable queued invalidation.
2167          */
2168         dmar_disable_qi(iommu);
2169         /*
2170          * Then enable queued invalidation again. Since there is no pending
2171          * invalidation requests now, it's safe to re-enable queued
2172          * invalidation.
2173          */
2174         __dmar_enable_qi(iommu);
2175
2176         return 0;
2177 }
2178
2179 /*
2180  * Check interrupt remapping support in DMAR table description.
2181  */
2182 int __init dmar_ir_support(void)
2183 {
2184         struct acpi_table_dmar *dmar;
2185         dmar = (struct acpi_table_dmar *)dmar_tbl;
2186         if (!dmar)
2187                 return 0;
2188         return dmar->flags & 0x1;
2189 }
2190
2191 /* Check whether DMAR units are in use */
2192 static inline bool dmar_in_use(void)
2193 {
2194         return irq_remapping_enabled || intel_iommu_enabled;
2195 }
2196
2197 static int __init dmar_free_unused_resources(void)
2198 {
2199         struct dmar_drhd_unit *dmaru, *dmaru_n;
2200
2201         if (dmar_in_use())
2202                 return 0;
2203
2204         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2205                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2206
2207         down_write(&dmar_global_lock);
2208         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2209                 list_del(&dmaru->list);
2210                 dmar_free_drhd(dmaru);
2211         }
2212         up_write(&dmar_global_lock);
2213
2214         return 0;
2215 }
2216
2217 late_initcall(dmar_free_unused_resources);
2218
2219 /*
2220  * DMAR Hotplug Support
2221  * For more details, please refer to Intel(R) Virtualization Technology
2222  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2223  * "Remapping Hardware Unit Hot Plug".
2224  */
2225 static guid_t dmar_hp_guid =
2226         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2227                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2228
2229 /*
2230  * Currently there's only one revision and BIOS will not check the revision id,
2231  * so use 0 for safety.
2232  */
2233 #define DMAR_DSM_REV_ID                 0
2234 #define DMAR_DSM_FUNC_DRHD              1
2235 #define DMAR_DSM_FUNC_ATSR              2
2236 #define DMAR_DSM_FUNC_RHSA              3
2237 #define DMAR_DSM_FUNC_SATC              4
2238
2239 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2240 {
2241         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2242 }
2243
2244 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2245                                   dmar_res_handler_t handler, void *arg)
2246 {
2247         int ret = -ENODEV;
2248         union acpi_object *obj;
2249         struct acpi_dmar_header *start;
2250         struct dmar_res_callback callback;
2251         static int res_type[] = {
2252                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2253                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2254                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2255                 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2256         };
2257
2258         if (!dmar_detect_dsm(handle, func))
2259                 return 0;
2260
2261         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2262                                       func, NULL, ACPI_TYPE_BUFFER);
2263         if (!obj)
2264                 return -ENODEV;
2265
2266         memset(&callback, 0, sizeof(callback));
2267         callback.cb[res_type[func]] = handler;
2268         callback.arg[res_type[func]] = arg;
2269         start = (struct acpi_dmar_header *)obj->buffer.pointer;
2270         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2271
2272         ACPI_FREE(obj);
2273
2274         return ret;
2275 }
2276
2277 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2278 {
2279         int ret;
2280         struct dmar_drhd_unit *dmaru;
2281
2282         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2283         if (!dmaru)
2284                 return -ENODEV;
2285
2286         ret = dmar_ir_hotplug(dmaru, true);
2287         if (ret == 0)
2288                 ret = dmar_iommu_hotplug(dmaru, true);
2289
2290         return ret;
2291 }
2292
2293 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2294 {
2295         int i, ret;
2296         struct device *dev;
2297         struct dmar_drhd_unit *dmaru;
2298
2299         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2300         if (!dmaru)
2301                 return 0;
2302
2303         /*
2304          * All PCI devices managed by this unit should have been destroyed.
2305          */
2306         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2307                 for_each_active_dev_scope(dmaru->devices,
2308                                           dmaru->devices_cnt, i, dev)
2309                         return -EBUSY;
2310         }
2311
2312         ret = dmar_ir_hotplug(dmaru, false);
2313         if (ret == 0)
2314                 ret = dmar_iommu_hotplug(dmaru, false);
2315
2316         return ret;
2317 }
2318
2319 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2320 {
2321         struct dmar_drhd_unit *dmaru;
2322
2323         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2324         if (dmaru) {
2325                 list_del_rcu(&dmaru->list);
2326                 synchronize_rcu();
2327                 dmar_free_drhd(dmaru);
2328         }
2329
2330         return 0;
2331 }
2332
2333 static int dmar_hotplug_insert(acpi_handle handle)
2334 {
2335         int ret;
2336         int drhd_count = 0;
2337
2338         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2339                                      &dmar_validate_one_drhd, (void *)1);
2340         if (ret)
2341                 goto out;
2342
2343         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344                                      &dmar_parse_one_drhd, (void *)&drhd_count);
2345         if (ret == 0 && drhd_count == 0) {
2346                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2347                 goto out;
2348         } else if (ret) {
2349                 goto release_drhd;
2350         }
2351
2352         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2353                                      &dmar_parse_one_rhsa, NULL);
2354         if (ret)
2355                 goto release_drhd;
2356
2357         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2358                                      &dmar_parse_one_atsr, NULL);
2359         if (ret)
2360                 goto release_atsr;
2361
2362         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2363                                      &dmar_hp_add_drhd, NULL);
2364         if (!ret)
2365                 return 0;
2366
2367         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2368                                &dmar_hp_remove_drhd, NULL);
2369 release_atsr:
2370         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2371                                &dmar_release_one_atsr, NULL);
2372 release_drhd:
2373         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2374                                &dmar_hp_release_drhd, NULL);
2375 out:
2376         return ret;
2377 }
2378
2379 static int dmar_hotplug_remove(acpi_handle handle)
2380 {
2381         int ret;
2382
2383         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2384                                      &dmar_check_one_atsr, NULL);
2385         if (ret)
2386                 return ret;
2387
2388         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2389                                      &dmar_hp_remove_drhd, NULL);
2390         if (ret == 0) {
2391                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2392                                                &dmar_release_one_atsr, NULL));
2393                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2394                                                &dmar_hp_release_drhd, NULL));
2395         } else {
2396                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2397                                        &dmar_hp_add_drhd, NULL);
2398         }
2399
2400         return ret;
2401 }
2402
2403 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2404                                        void *context, void **retval)
2405 {
2406         acpi_handle *phdl = retval;
2407
2408         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2409                 *phdl = handle;
2410                 return AE_CTRL_TERMINATE;
2411         }
2412
2413         return AE_OK;
2414 }
2415
2416 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2417 {
2418         int ret;
2419         acpi_handle tmp = NULL;
2420         acpi_status status;
2421
2422         if (!dmar_in_use())
2423                 return 0;
2424
2425         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2426                 tmp = handle;
2427         } else {
2428                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2429                                              ACPI_UINT32_MAX,
2430                                              dmar_get_dsm_handle,
2431                                              NULL, NULL, &tmp);
2432                 if (ACPI_FAILURE(status)) {
2433                         pr_warn("Failed to locate _DSM method.\n");
2434                         return -ENXIO;
2435                 }
2436         }
2437         if (tmp == NULL)
2438                 return 0;
2439
2440         down_write(&dmar_global_lock);
2441         if (insert)
2442                 ret = dmar_hotplug_insert(tmp);
2443         else
2444                 ret = dmar_hotplug_remove(tmp);
2445         up_write(&dmar_global_lock);
2446
2447         return ret;
2448 }
2449
2450 int dmar_device_add(acpi_handle handle)
2451 {
2452         return dmar_device_hotplug(handle, true);
2453 }
2454
2455 int dmar_device_remove(acpi_handle handle)
2456 {
2457         return dmar_device_hotplug(handle, false);
2458 }
2459
2460 /*
2461  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2462  *
2463  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2464  * the ACPI DMAR table. This means that the platform boot firmware has made
2465  * sure no device can issue DMA outside of RMRR regions.
2466  */
2467 bool dmar_platform_optin(void)
2468 {
2469         struct acpi_table_dmar *dmar;
2470         acpi_status status;
2471         bool ret;
2472
2473         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2474                                 (struct acpi_table_header **)&dmar);
2475         if (ACPI_FAILURE(status))
2476                 return false;
2477
2478         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2479         acpi_put_table((struct acpi_table_header *)dmar);
2480
2481         return ret;
2482 }
2483 EXPORT_SYMBOL_GPL(dmar_platform_optin);