GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / iommu / exynos-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  */
6
7 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8 #define DEBUG
9 #endif
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/interrupt.h>
17 #include <linux/kmemleak.h>
18 #include <linux/list.h>
19 #include <linux/of.h>
20 #include <linux/of_iommu.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/dma-iommu.h>
26
27 typedef u32 sysmmu_iova_t;
28 typedef u32 sysmmu_pte_t;
29
30 /* We do not consider super section mapping (16MB) */
31 #define SECT_ORDER 20
32 #define LPAGE_ORDER 16
33 #define SPAGE_ORDER 12
34
35 #define SECT_SIZE (1 << SECT_ORDER)
36 #define LPAGE_SIZE (1 << LPAGE_ORDER)
37 #define SPAGE_SIZE (1 << SPAGE_ORDER)
38
39 #define SECT_MASK (~(SECT_SIZE - 1))
40 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
41 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
42
43 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
44                            ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
45 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
46 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
47 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
48                           ((*(sent) & 3) == 1))
49 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
50
51 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
52 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
53 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
54
55 /*
56  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
57  * v5.0 introduced support for 36bit physical address space by shifting
58  * all page entry values by 4 bits.
59  * All SYSMMU controllers in the system support the address spaces of the same
60  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
61  * value (0 or 4).
62  */
63 static short PG_ENT_SHIFT = -1;
64 #define SYSMMU_PG_ENT_SHIFT 0
65 #define SYSMMU_V5_PG_ENT_SHIFT 4
66
67 static const sysmmu_pte_t *LV1_PROT;
68 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
69         ((0 << 15) | (0 << 10)), /* no access */
70         ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
71         ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
72         ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
73 };
74 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
75         (0 << 4), /* no access */
76         (1 << 4), /* IOMMU_READ only */
77         (2 << 4), /* IOMMU_WRITE only */
78         (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
79 };
80
81 static const sysmmu_pte_t *LV2_PROT;
82 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
83         ((0 << 9) | (0 << 4)), /* no access */
84         ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
85         ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
86         ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
87 };
88 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
89         (0 << 2), /* no access */
90         (1 << 2), /* IOMMU_READ only */
91         (2 << 2), /* IOMMU_WRITE only */
92         (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
93 };
94
95 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
96
97 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
98 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
99 #define section_offs(iova) (iova & (SECT_SIZE - 1))
100 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
101 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
102 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
103 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
104
105 #define NUM_LV1ENTRIES 4096
106 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
107
108 static u32 lv1ent_offset(sysmmu_iova_t iova)
109 {
110         return iova >> SECT_ORDER;
111 }
112
113 static u32 lv2ent_offset(sysmmu_iova_t iova)
114 {
115         return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
116 }
117
118 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
119 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
120
121 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
122 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
123
124 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
125 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
126 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
127 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
128
129 #define CTRL_ENABLE     0x5
130 #define CTRL_BLOCK      0x7
131 #define CTRL_DISABLE    0x0
132
133 #define CFG_LRU         0x1
134 #define CFG_EAP         (1 << 2)
135 #define CFG_QOS(n)      ((n & 0xF) << 7)
136 #define CFG_ACGEN       (1 << 24) /* System MMU 3.3 only */
137 #define CFG_SYSSEL      (1 << 22) /* System MMU 3.2 only */
138 #define CFG_FLPDCACHE   (1 << 20) /* System MMU 3.2+ only */
139
140 /* common registers */
141 #define REG_MMU_CTRL            0x000
142 #define REG_MMU_CFG             0x004
143 #define REG_MMU_STATUS          0x008
144 #define REG_MMU_VERSION         0x034
145
146 #define MMU_MAJ_VER(val)        ((val) >> 7)
147 #define MMU_MIN_VER(val)        ((val) & 0x7F)
148 #define MMU_RAW_VER(reg)        (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
149
150 #define MAKE_MMU_VER(maj, min)  ((((maj) & 0xF) << 7) | ((min) & 0x7F))
151
152 /* v1.x - v3.x registers */
153 #define REG_MMU_FLUSH           0x00C
154 #define REG_MMU_FLUSH_ENTRY     0x010
155 #define REG_PT_BASE_ADDR        0x014
156 #define REG_INT_STATUS          0x018
157 #define REG_INT_CLEAR           0x01C
158
159 #define REG_PAGE_FAULT_ADDR     0x024
160 #define REG_AW_FAULT_ADDR       0x028
161 #define REG_AR_FAULT_ADDR       0x02C
162 #define REG_DEFAULT_SLAVE_ADDR  0x030
163
164 /* v5.x registers */
165 #define REG_V5_PT_BASE_PFN      0x00C
166 #define REG_V5_MMU_FLUSH_ALL    0x010
167 #define REG_V5_MMU_FLUSH_ENTRY  0x014
168 #define REG_V5_MMU_FLUSH_RANGE  0x018
169 #define REG_V5_MMU_FLUSH_START  0x020
170 #define REG_V5_MMU_FLUSH_END    0x024
171 #define REG_V5_INT_STATUS       0x060
172 #define REG_V5_INT_CLEAR        0x064
173 #define REG_V5_FAULT_AR_VA      0x070
174 #define REG_V5_FAULT_AW_VA      0x080
175
176 #define has_sysmmu(dev)         (dev_iommu_priv_get(dev) != NULL)
177
178 static struct device *dma_dev;
179 static struct kmem_cache *lv2table_kmem_cache;
180 static sysmmu_pte_t *zero_lv2_table;
181 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
182
183 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
184 {
185         return pgtable + lv1ent_offset(iova);
186 }
187
188 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
189 {
190         return (sysmmu_pte_t *)phys_to_virt(
191                                 lv2table_base(sent)) + lv2ent_offset(iova);
192 }
193
194 /*
195  * IOMMU fault information register
196  */
197 struct sysmmu_fault_info {
198         unsigned int bit;       /* bit number in STATUS register */
199         unsigned short addr_reg; /* register to read VA fault address */
200         const char *name;       /* human readable fault name */
201         unsigned int type;      /* fault type for report_iommu_fault */
202 };
203
204 static const struct sysmmu_fault_info sysmmu_faults[] = {
205         { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
206         { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
207         { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
208         { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
209         { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
210         { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
211         { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
212         { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
213 };
214
215 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
216         { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
217         { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
218         { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
219         { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
220         { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
221         { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
222         { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
223         { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
224         { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
225         { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
226 };
227
228 /*
229  * This structure is attached to dev->iommu->priv of the master device
230  * on device add, contains a list of SYSMMU controllers defined by device tree,
231  * which are bound to given master device. It is usually referenced by 'owner'
232  * pointer.
233 */
234 struct exynos_iommu_owner {
235         struct list_head controllers;   /* list of sysmmu_drvdata.owner_node */
236         struct iommu_domain *domain;    /* domain this device is attached */
237         struct mutex rpm_lock;          /* for runtime pm of all sysmmus */
238 };
239
240 /*
241  * This structure exynos specific generalization of struct iommu_domain.
242  * It contains list of SYSMMU controllers from all master devices, which has
243  * been attached to this domain and page tables of IO address space defined by
244  * it. It is usually referenced by 'domain' pointer.
245  */
246 struct exynos_iommu_domain {
247         struct list_head clients; /* list of sysmmu_drvdata.domain_node */
248         sysmmu_pte_t *pgtable;  /* lv1 page table, 16KB */
249         short *lv2entcnt;       /* free lv2 entry counter for each section */
250         spinlock_t lock;        /* lock for modyfying list of clients */
251         spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
252         struct iommu_domain domain; /* generic domain data structure */
253 };
254
255 /*
256  * This structure hold all data of a single SYSMMU controller, this includes
257  * hw resources like registers and clocks, pointers and list nodes to connect
258  * it to all other structures, internal state and parameters read from device
259  * tree. It is usually referenced by 'data' pointer.
260  */
261 struct sysmmu_drvdata {
262         struct device *sysmmu;          /* SYSMMU controller device */
263         struct device *master;          /* master device (owner) */
264         struct device_link *link;       /* runtime PM link to master */
265         void __iomem *sfrbase;          /* our registers */
266         struct clk *clk;                /* SYSMMU's clock */
267         struct clk *aclk;               /* SYSMMU's aclk clock */
268         struct clk *pclk;               /* SYSMMU's pclk clock */
269         struct clk *clk_master;         /* master's device clock */
270         spinlock_t lock;                /* lock for modyfying state */
271         bool active;                    /* current status */
272         struct exynos_iommu_domain *domain; /* domain we belong to */
273         struct list_head domain_node;   /* node for domain clients list */
274         struct list_head owner_node;    /* node for owner controllers list */
275         phys_addr_t pgtable;            /* assigned page table structure */
276         unsigned int version;           /* our version */
277
278         struct iommu_device iommu;      /* IOMMU core handle */
279 };
280
281 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
282 {
283         return container_of(dom, struct exynos_iommu_domain, domain);
284 }
285
286 static void sysmmu_unblock(struct sysmmu_drvdata *data)
287 {
288         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
289 }
290
291 static bool sysmmu_block(struct sysmmu_drvdata *data)
292 {
293         int i = 120;
294
295         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
296         while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
297                 --i;
298
299         if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
300                 sysmmu_unblock(data);
301                 return false;
302         }
303
304         return true;
305 }
306
307 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
308 {
309         if (MMU_MAJ_VER(data->version) < 5)
310                 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
311         else
312                 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
313 }
314
315 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
316                                 sysmmu_iova_t iova, unsigned int num_inv)
317 {
318         unsigned int i;
319
320         if (MMU_MAJ_VER(data->version) < 5) {
321                 for (i = 0; i < num_inv; i++) {
322                         writel((iova & SPAGE_MASK) | 1,
323                                      data->sfrbase + REG_MMU_FLUSH_ENTRY);
324                         iova += SPAGE_SIZE;
325                 }
326         } else {
327                 if (num_inv == 1) {
328                         writel((iova & SPAGE_MASK) | 1,
329                                      data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
330                 } else {
331                         writel((iova & SPAGE_MASK),
332                                      data->sfrbase + REG_V5_MMU_FLUSH_START);
333                         writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
334                                      data->sfrbase + REG_V5_MMU_FLUSH_END);
335                         writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
336                 }
337         }
338 }
339
340 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
341 {
342         if (MMU_MAJ_VER(data->version) < 5)
343                 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
344         else
345                 writel(pgd >> PAGE_SHIFT,
346                              data->sfrbase + REG_V5_PT_BASE_PFN);
347
348         __sysmmu_tlb_invalidate(data);
349 }
350
351 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
352 {
353         BUG_ON(clk_prepare_enable(data->clk_master));
354         BUG_ON(clk_prepare_enable(data->clk));
355         BUG_ON(clk_prepare_enable(data->pclk));
356         BUG_ON(clk_prepare_enable(data->aclk));
357 }
358
359 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
360 {
361         clk_disable_unprepare(data->aclk);
362         clk_disable_unprepare(data->pclk);
363         clk_disable_unprepare(data->clk);
364         clk_disable_unprepare(data->clk_master);
365 }
366
367 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
368 {
369         u32 ver;
370
371         __sysmmu_enable_clocks(data);
372
373         ver = readl(data->sfrbase + REG_MMU_VERSION);
374
375         /* controllers on some SoCs don't report proper version */
376         if (ver == 0x80000001u)
377                 data->version = MAKE_MMU_VER(1, 0);
378         else
379                 data->version = MMU_RAW_VER(ver);
380
381         dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
382                 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
383
384         __sysmmu_disable_clocks(data);
385 }
386
387 static void show_fault_information(struct sysmmu_drvdata *data,
388                                    const struct sysmmu_fault_info *finfo,
389                                    sysmmu_iova_t fault_addr)
390 {
391         sysmmu_pte_t *ent;
392
393         dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
394                 dev_name(data->master), finfo->name, fault_addr);
395         dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
396         ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
397         dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
398         if (lv1ent_page(ent)) {
399                 ent = page_entry(ent, fault_addr);
400                 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
401         }
402 }
403
404 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
405 {
406         /* SYSMMU is in blocked state when interrupt occurred. */
407         struct sysmmu_drvdata *data = dev_id;
408         const struct sysmmu_fault_info *finfo;
409         unsigned int i, n, itype;
410         sysmmu_iova_t fault_addr = -1;
411         unsigned short reg_status, reg_clear;
412         int ret = -ENOSYS;
413
414         WARN_ON(!data->active);
415
416         if (MMU_MAJ_VER(data->version) < 5) {
417                 reg_status = REG_INT_STATUS;
418                 reg_clear = REG_INT_CLEAR;
419                 finfo = sysmmu_faults;
420                 n = ARRAY_SIZE(sysmmu_faults);
421         } else {
422                 reg_status = REG_V5_INT_STATUS;
423                 reg_clear = REG_V5_INT_CLEAR;
424                 finfo = sysmmu_v5_faults;
425                 n = ARRAY_SIZE(sysmmu_v5_faults);
426         }
427
428         spin_lock(&data->lock);
429
430         clk_enable(data->clk_master);
431
432         itype = __ffs(readl(data->sfrbase + reg_status));
433         for (i = 0; i < n; i++, finfo++)
434                 if (finfo->bit == itype)
435                         break;
436         /* unknown/unsupported fault */
437         BUG_ON(i == n);
438
439         /* print debug message */
440         fault_addr = readl(data->sfrbase + finfo->addr_reg);
441         show_fault_information(data, finfo, fault_addr);
442
443         if (data->domain)
444                 ret = report_iommu_fault(&data->domain->domain,
445                                         data->master, fault_addr, finfo->type);
446         /* fault is not recovered by fault handler */
447         BUG_ON(ret != 0);
448
449         writel(1 << itype, data->sfrbase + reg_clear);
450
451         sysmmu_unblock(data);
452
453         clk_disable(data->clk_master);
454
455         spin_unlock(&data->lock);
456
457         return IRQ_HANDLED;
458 }
459
460 static void __sysmmu_disable(struct sysmmu_drvdata *data)
461 {
462         unsigned long flags;
463
464         clk_enable(data->clk_master);
465
466         spin_lock_irqsave(&data->lock, flags);
467         writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
468         writel(0, data->sfrbase + REG_MMU_CFG);
469         data->active = false;
470         spin_unlock_irqrestore(&data->lock, flags);
471
472         __sysmmu_disable_clocks(data);
473 }
474
475 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
476 {
477         unsigned int cfg;
478
479         if (data->version <= MAKE_MMU_VER(3, 1))
480                 cfg = CFG_LRU | CFG_QOS(15);
481         else if (data->version <= MAKE_MMU_VER(3, 2))
482                 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
483         else
484                 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
485
486         cfg |= CFG_EAP; /* enable access protection bits check */
487
488         writel(cfg, data->sfrbase + REG_MMU_CFG);
489 }
490
491 static void __sysmmu_enable(struct sysmmu_drvdata *data)
492 {
493         unsigned long flags;
494
495         __sysmmu_enable_clocks(data);
496
497         spin_lock_irqsave(&data->lock, flags);
498         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
499         __sysmmu_init_config(data);
500         __sysmmu_set_ptbase(data, data->pgtable);
501         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
502         data->active = true;
503         spin_unlock_irqrestore(&data->lock, flags);
504
505         /*
506          * SYSMMU driver keeps master's clock enabled only for the short
507          * time, while accessing the registers. For performing address
508          * translation during DMA transaction it relies on the client
509          * driver to enable it.
510          */
511         clk_disable(data->clk_master);
512 }
513
514 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
515                                             sysmmu_iova_t iova)
516 {
517         unsigned long flags;
518
519         spin_lock_irqsave(&data->lock, flags);
520         if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
521                 clk_enable(data->clk_master);
522                 if (sysmmu_block(data)) {
523                         if (data->version >= MAKE_MMU_VER(5, 0))
524                                 __sysmmu_tlb_invalidate(data);
525                         else
526                                 __sysmmu_tlb_invalidate_entry(data, iova, 1);
527                         sysmmu_unblock(data);
528                 }
529                 clk_disable(data->clk_master);
530         }
531         spin_unlock_irqrestore(&data->lock, flags);
532 }
533
534 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
535                                         sysmmu_iova_t iova, size_t size)
536 {
537         unsigned long flags;
538
539         spin_lock_irqsave(&data->lock, flags);
540         if (data->active) {
541                 unsigned int num_inv = 1;
542
543                 clk_enable(data->clk_master);
544
545                 /*
546                  * L2TLB invalidation required
547                  * 4KB page: 1 invalidation
548                  * 64KB page: 16 invalidations
549                  * 1MB page: 64 invalidations
550                  * because it is set-associative TLB
551                  * with 8-way and 64 sets.
552                  * 1MB page can be cached in one of all sets.
553                  * 64KB page can be one of 16 consecutive sets.
554                  */
555                 if (MMU_MAJ_VER(data->version) == 2)
556                         num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
557
558                 if (sysmmu_block(data)) {
559                         __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
560                         sysmmu_unblock(data);
561                 }
562                 clk_disable(data->clk_master);
563         }
564         spin_unlock_irqrestore(&data->lock, flags);
565 }
566
567 static const struct iommu_ops exynos_iommu_ops;
568
569 static int exynos_sysmmu_probe(struct platform_device *pdev)
570 {
571         int irq, ret;
572         struct device *dev = &pdev->dev;
573         struct sysmmu_drvdata *data;
574         struct resource *res;
575
576         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
577         if (!data)
578                 return -ENOMEM;
579
580         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
581         data->sfrbase = devm_ioremap_resource(dev, res);
582         if (IS_ERR(data->sfrbase))
583                 return PTR_ERR(data->sfrbase);
584
585         irq = platform_get_irq(pdev, 0);
586         if (irq <= 0)
587                 return irq;
588
589         ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
590                                 dev_name(dev), data);
591         if (ret) {
592                 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
593                 return ret;
594         }
595
596         data->clk = devm_clk_get(dev, "sysmmu");
597         if (PTR_ERR(data->clk) == -ENOENT)
598                 data->clk = NULL;
599         else if (IS_ERR(data->clk))
600                 return PTR_ERR(data->clk);
601
602         data->aclk = devm_clk_get(dev, "aclk");
603         if (PTR_ERR(data->aclk) == -ENOENT)
604                 data->aclk = NULL;
605         else if (IS_ERR(data->aclk))
606                 return PTR_ERR(data->aclk);
607
608         data->pclk = devm_clk_get(dev, "pclk");
609         if (PTR_ERR(data->pclk) == -ENOENT)
610                 data->pclk = NULL;
611         else if (IS_ERR(data->pclk))
612                 return PTR_ERR(data->pclk);
613
614         if (!data->clk && (!data->aclk || !data->pclk)) {
615                 dev_err(dev, "Failed to get device clock(s)!\n");
616                 return -ENOSYS;
617         }
618
619         data->clk_master = devm_clk_get(dev, "master");
620         if (PTR_ERR(data->clk_master) == -ENOENT)
621                 data->clk_master = NULL;
622         else if (IS_ERR(data->clk_master))
623                 return PTR_ERR(data->clk_master);
624
625         data->sysmmu = dev;
626         spin_lock_init(&data->lock);
627
628         ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
629                                      dev_name(data->sysmmu));
630         if (ret)
631                 return ret;
632
633         iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
634         iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
635
636         ret = iommu_device_register(&data->iommu);
637         if (ret)
638                 goto err_iommu_register;
639
640         platform_set_drvdata(pdev, data);
641
642         __sysmmu_get_version(data);
643         if (PG_ENT_SHIFT < 0) {
644                 if (MMU_MAJ_VER(data->version) < 5) {
645                         PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
646                         LV1_PROT = SYSMMU_LV1_PROT;
647                         LV2_PROT = SYSMMU_LV2_PROT;
648                 } else {
649                         PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
650                         LV1_PROT = SYSMMU_V5_LV1_PROT;
651                         LV2_PROT = SYSMMU_V5_LV2_PROT;
652                 }
653         }
654
655         /*
656          * use the first registered sysmmu device for performing
657          * dma mapping operations on iommu page tables (cpu cache flush)
658          */
659         if (!dma_dev)
660                 dma_dev = &pdev->dev;
661
662         pm_runtime_enable(dev);
663
664         return 0;
665
666 err_iommu_register:
667         iommu_device_sysfs_remove(&data->iommu);
668         return ret;
669 }
670
671 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
672 {
673         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
674         struct device *master = data->master;
675
676         if (master) {
677                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
678
679                 mutex_lock(&owner->rpm_lock);
680                 if (data->domain) {
681                         dev_dbg(data->sysmmu, "saving state\n");
682                         __sysmmu_disable(data);
683                 }
684                 mutex_unlock(&owner->rpm_lock);
685         }
686         return 0;
687 }
688
689 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
690 {
691         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
692         struct device *master = data->master;
693
694         if (master) {
695                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
696
697                 mutex_lock(&owner->rpm_lock);
698                 if (data->domain) {
699                         dev_dbg(data->sysmmu, "restoring state\n");
700                         __sysmmu_enable(data);
701                 }
702                 mutex_unlock(&owner->rpm_lock);
703         }
704         return 0;
705 }
706
707 static const struct dev_pm_ops sysmmu_pm_ops = {
708         SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
709         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
710                                 pm_runtime_force_resume)
711 };
712
713 static const struct of_device_id sysmmu_of_match[] = {
714         { .compatible   = "samsung,exynos-sysmmu", },
715         { },
716 };
717
718 static struct platform_driver exynos_sysmmu_driver __refdata = {
719         .probe  = exynos_sysmmu_probe,
720         .driver = {
721                 .name           = "exynos-sysmmu",
722                 .of_match_table = sysmmu_of_match,
723                 .pm             = &sysmmu_pm_ops,
724                 .suppress_bind_attrs = true,
725         }
726 };
727
728 static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
729 {
730         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
731                                 DMA_TO_DEVICE);
732         *ent = cpu_to_le32(val);
733         dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
734                                    DMA_TO_DEVICE);
735 }
736
737 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
738 {
739         struct exynos_iommu_domain *domain;
740         dma_addr_t handle;
741         int i;
742
743         /* Check if correct PTE offsets are initialized */
744         BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
745
746         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
747         if (!domain)
748                 return NULL;
749
750         if (type == IOMMU_DOMAIN_DMA) {
751                 if (iommu_get_dma_cookie(&domain->domain) != 0)
752                         goto err_pgtable;
753         } else if (type != IOMMU_DOMAIN_UNMANAGED) {
754                 goto err_pgtable;
755         }
756
757         domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
758         if (!domain->pgtable)
759                 goto err_dma_cookie;
760
761         domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
762         if (!domain->lv2entcnt)
763                 goto err_counter;
764
765         /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
766         for (i = 0; i < NUM_LV1ENTRIES; i++)
767                 domain->pgtable[i] = ZERO_LV2LINK;
768
769         handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
770                                 DMA_TO_DEVICE);
771         /* For mapping page table entries we rely on dma == phys */
772         BUG_ON(handle != virt_to_phys(domain->pgtable));
773         if (dma_mapping_error(dma_dev, handle))
774                 goto err_lv2ent;
775
776         spin_lock_init(&domain->lock);
777         spin_lock_init(&domain->pgtablelock);
778         INIT_LIST_HEAD(&domain->clients);
779
780         domain->domain.geometry.aperture_start = 0;
781         domain->domain.geometry.aperture_end   = ~0UL;
782         domain->domain.geometry.force_aperture = true;
783
784         return &domain->domain;
785
786 err_lv2ent:
787         free_pages((unsigned long)domain->lv2entcnt, 1);
788 err_counter:
789         free_pages((unsigned long)domain->pgtable, 2);
790 err_dma_cookie:
791         if (type == IOMMU_DOMAIN_DMA)
792                 iommu_put_dma_cookie(&domain->domain);
793 err_pgtable:
794         kfree(domain);
795         return NULL;
796 }
797
798 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
799 {
800         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
801         struct sysmmu_drvdata *data, *next;
802         unsigned long flags;
803         int i;
804
805         WARN_ON(!list_empty(&domain->clients));
806
807         spin_lock_irqsave(&domain->lock, flags);
808
809         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
810                 spin_lock(&data->lock);
811                 __sysmmu_disable(data);
812                 data->pgtable = 0;
813                 data->domain = NULL;
814                 list_del_init(&data->domain_node);
815                 spin_unlock(&data->lock);
816         }
817
818         spin_unlock_irqrestore(&domain->lock, flags);
819
820         if (iommu_domain->type == IOMMU_DOMAIN_DMA)
821                 iommu_put_dma_cookie(iommu_domain);
822
823         dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
824                          DMA_TO_DEVICE);
825
826         for (i = 0; i < NUM_LV1ENTRIES; i++)
827                 if (lv1ent_page(domain->pgtable + i)) {
828                         phys_addr_t base = lv2table_base(domain->pgtable + i);
829
830                         dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
831                                          DMA_TO_DEVICE);
832                         kmem_cache_free(lv2table_kmem_cache,
833                                         phys_to_virt(base));
834                 }
835
836         free_pages((unsigned long)domain->pgtable, 2);
837         free_pages((unsigned long)domain->lv2entcnt, 1);
838         kfree(domain);
839 }
840
841 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
842                                     struct device *dev)
843 {
844         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
845         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
846         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
847         struct sysmmu_drvdata *data, *next;
848         unsigned long flags;
849
850         if (!has_sysmmu(dev) || owner->domain != iommu_domain)
851                 return;
852
853         mutex_lock(&owner->rpm_lock);
854
855         list_for_each_entry(data, &owner->controllers, owner_node) {
856                 pm_runtime_get_noresume(data->sysmmu);
857                 if (pm_runtime_active(data->sysmmu))
858                         __sysmmu_disable(data);
859                 pm_runtime_put(data->sysmmu);
860         }
861
862         spin_lock_irqsave(&domain->lock, flags);
863         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
864                 spin_lock(&data->lock);
865                 data->pgtable = 0;
866                 data->domain = NULL;
867                 list_del_init(&data->domain_node);
868                 spin_unlock(&data->lock);
869         }
870         owner->domain = NULL;
871         spin_unlock_irqrestore(&domain->lock, flags);
872
873         mutex_unlock(&owner->rpm_lock);
874
875         dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
876                 &pagetable);
877 }
878
879 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
880                                    struct device *dev)
881 {
882         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
883         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
884         struct sysmmu_drvdata *data;
885         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
886         unsigned long flags;
887
888         if (!has_sysmmu(dev))
889                 return -ENODEV;
890
891         if (owner->domain)
892                 exynos_iommu_detach_device(owner->domain, dev);
893
894         mutex_lock(&owner->rpm_lock);
895
896         spin_lock_irqsave(&domain->lock, flags);
897         list_for_each_entry(data, &owner->controllers, owner_node) {
898                 spin_lock(&data->lock);
899                 data->pgtable = pagetable;
900                 data->domain = domain;
901                 list_add_tail(&data->domain_node, &domain->clients);
902                 spin_unlock(&data->lock);
903         }
904         owner->domain = iommu_domain;
905         spin_unlock_irqrestore(&domain->lock, flags);
906
907         list_for_each_entry(data, &owner->controllers, owner_node) {
908                 pm_runtime_get_noresume(data->sysmmu);
909                 if (pm_runtime_active(data->sysmmu))
910                         __sysmmu_enable(data);
911                 pm_runtime_put(data->sysmmu);
912         }
913
914         mutex_unlock(&owner->rpm_lock);
915
916         dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
917                 &pagetable);
918
919         return 0;
920 }
921
922 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
923                 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
924 {
925         if (lv1ent_section(sent)) {
926                 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
927                 return ERR_PTR(-EADDRINUSE);
928         }
929
930         if (lv1ent_fault(sent)) {
931                 dma_addr_t handle;
932                 sysmmu_pte_t *pent;
933                 bool need_flush_flpd_cache = lv1ent_zero(sent);
934
935                 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
936                 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
937                 if (!pent)
938                         return ERR_PTR(-ENOMEM);
939
940                 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
941                 kmemleak_ignore(pent);
942                 *pgcounter = NUM_LV2ENTRIES;
943                 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
944                                         DMA_TO_DEVICE);
945                 if (dma_mapping_error(dma_dev, handle)) {
946                         kmem_cache_free(lv2table_kmem_cache, pent);
947                         return ERR_PTR(-EADDRINUSE);
948                 }
949
950                 /*
951                  * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
952                  * FLPD cache may cache the address of zero_l2_table. This
953                  * function replaces the zero_l2_table with new L2 page table
954                  * to write valid mappings.
955                  * Accessing the valid area may cause page fault since FLPD
956                  * cache may still cache zero_l2_table for the valid area
957                  * instead of new L2 page table that has the mapping
958                  * information of the valid area.
959                  * Thus any replacement of zero_l2_table with other valid L2
960                  * page table must involve FLPD cache invalidation for System
961                  * MMU v3.3.
962                  * FLPD cache invalidation is performed with TLB invalidation
963                  * by VPN without blocking. It is safe to invalidate TLB without
964                  * blocking because the target address of TLB invalidation is
965                  * not currently mapped.
966                  */
967                 if (need_flush_flpd_cache) {
968                         struct sysmmu_drvdata *data;
969
970                         spin_lock(&domain->lock);
971                         list_for_each_entry(data, &domain->clients, domain_node)
972                                 sysmmu_tlb_invalidate_flpdcache(data, iova);
973                         spin_unlock(&domain->lock);
974                 }
975         }
976
977         return page_entry(sent, iova);
978 }
979
980 static int lv1set_section(struct exynos_iommu_domain *domain,
981                           sysmmu_pte_t *sent, sysmmu_iova_t iova,
982                           phys_addr_t paddr, int prot, short *pgcnt)
983 {
984         if (lv1ent_section(sent)) {
985                 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
986                         iova);
987                 return -EADDRINUSE;
988         }
989
990         if (lv1ent_page(sent)) {
991                 if (*pgcnt != NUM_LV2ENTRIES) {
992                         WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
993                                 iova);
994                         return -EADDRINUSE;
995                 }
996
997                 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
998                 *pgcnt = 0;
999         }
1000
1001         exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1002
1003         spin_lock(&domain->lock);
1004         if (lv1ent_page_zero(sent)) {
1005                 struct sysmmu_drvdata *data;
1006                 /*
1007                  * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1008                  * entry by speculative prefetch of SLPD which has no mapping.
1009                  */
1010                 list_for_each_entry(data, &domain->clients, domain_node)
1011                         sysmmu_tlb_invalidate_flpdcache(data, iova);
1012         }
1013         spin_unlock(&domain->lock);
1014
1015         return 0;
1016 }
1017
1018 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1019                        int prot, short *pgcnt)
1020 {
1021         if (size == SPAGE_SIZE) {
1022                 if (WARN_ON(!lv2ent_fault(pent)))
1023                         return -EADDRINUSE;
1024
1025                 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1026                 *pgcnt -= 1;
1027         } else { /* size == LPAGE_SIZE */
1028                 int i;
1029                 dma_addr_t pent_base = virt_to_phys(pent);
1030
1031                 dma_sync_single_for_cpu(dma_dev, pent_base,
1032                                         sizeof(*pent) * SPAGES_PER_LPAGE,
1033                                         DMA_TO_DEVICE);
1034                 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1035                         if (WARN_ON(!lv2ent_fault(pent))) {
1036                                 if (i > 0)
1037                                         memset(pent - i, 0, sizeof(*pent) * i);
1038                                 return -EADDRINUSE;
1039                         }
1040
1041                         *pent = mk_lv2ent_lpage(paddr, prot);
1042                 }
1043                 dma_sync_single_for_device(dma_dev, pent_base,
1044                                            sizeof(*pent) * SPAGES_PER_LPAGE,
1045                                            DMA_TO_DEVICE);
1046                 *pgcnt -= SPAGES_PER_LPAGE;
1047         }
1048
1049         return 0;
1050 }
1051
1052 /*
1053  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1054  *
1055  * System MMU v3.x has advanced logic to improve address translation
1056  * performance with caching more page table entries by a page table walk.
1057  * However, the logic has a bug that while caching faulty page table entries,
1058  * System MMU reports page fault if the cached fault entry is hit even though
1059  * the fault entry is updated to a valid entry after the entry is cached.
1060  * To prevent caching faulty page table entries which may be updated to valid
1061  * entries later, the virtual memory manager should care about the workaround
1062  * for the problem. The following describes the workaround.
1063  *
1064  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1065  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1066  *
1067  * Precisely, any start address of I/O virtual region must be aligned with
1068  * the following sizes for System MMU v3.1 and v3.2.
1069  * System MMU v3.1: 128KiB
1070  * System MMU v3.2: 256KiB
1071  *
1072  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1073  * more workarounds.
1074  * - Any two consecutive I/O virtual regions must have a hole of size larger
1075  *   than or equal to 128KiB.
1076  * - Start address of an I/O virtual region must be aligned by 128KiB.
1077  */
1078 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1079                             unsigned long l_iova, phys_addr_t paddr, size_t size,
1080                             int prot, gfp_t gfp)
1081 {
1082         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1083         sysmmu_pte_t *entry;
1084         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1085         unsigned long flags;
1086         int ret = -ENOMEM;
1087
1088         BUG_ON(domain->pgtable == NULL);
1089         prot &= SYSMMU_SUPPORTED_PROT_BITS;
1090
1091         spin_lock_irqsave(&domain->pgtablelock, flags);
1092
1093         entry = section_entry(domain->pgtable, iova);
1094
1095         if (size == SECT_SIZE) {
1096                 ret = lv1set_section(domain, entry, iova, paddr, prot,
1097                                      &domain->lv2entcnt[lv1ent_offset(iova)]);
1098         } else {
1099                 sysmmu_pte_t *pent;
1100
1101                 pent = alloc_lv2entry(domain, entry, iova,
1102                                       &domain->lv2entcnt[lv1ent_offset(iova)]);
1103
1104                 if (IS_ERR(pent))
1105                         ret = PTR_ERR(pent);
1106                 else
1107                         ret = lv2set_page(pent, paddr, size, prot,
1108                                        &domain->lv2entcnt[lv1ent_offset(iova)]);
1109         }
1110
1111         if (ret)
1112                 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1113                         __func__, ret, size, iova);
1114
1115         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1116
1117         return ret;
1118 }
1119
1120 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1121                                               sysmmu_iova_t iova, size_t size)
1122 {
1123         struct sysmmu_drvdata *data;
1124         unsigned long flags;
1125
1126         spin_lock_irqsave(&domain->lock, flags);
1127
1128         list_for_each_entry(data, &domain->clients, domain_node)
1129                 sysmmu_tlb_invalidate_entry(data, iova, size);
1130
1131         spin_unlock_irqrestore(&domain->lock, flags);
1132 }
1133
1134 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1135                                  unsigned long l_iova, size_t size,
1136                                  struct iommu_iotlb_gather *gather)
1137 {
1138         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1139         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1140         sysmmu_pte_t *ent;
1141         size_t err_pgsize;
1142         unsigned long flags;
1143
1144         BUG_ON(domain->pgtable == NULL);
1145
1146         spin_lock_irqsave(&domain->pgtablelock, flags);
1147
1148         ent = section_entry(domain->pgtable, iova);
1149
1150         if (lv1ent_section(ent)) {
1151                 if (WARN_ON(size < SECT_SIZE)) {
1152                         err_pgsize = SECT_SIZE;
1153                         goto err;
1154                 }
1155
1156                 /* workaround for h/w bug in System MMU v3.3 */
1157                 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1158                 size = SECT_SIZE;
1159                 goto done;
1160         }
1161
1162         if (unlikely(lv1ent_fault(ent))) {
1163                 if (size > SECT_SIZE)
1164                         size = SECT_SIZE;
1165                 goto done;
1166         }
1167
1168         /* lv1ent_page(sent) == true here */
1169
1170         ent = page_entry(ent, iova);
1171
1172         if (unlikely(lv2ent_fault(ent))) {
1173                 size = SPAGE_SIZE;
1174                 goto done;
1175         }
1176
1177         if (lv2ent_small(ent)) {
1178                 exynos_iommu_set_pte(ent, 0);
1179                 size = SPAGE_SIZE;
1180                 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1181                 goto done;
1182         }
1183
1184         /* lv1ent_large(ent) == true here */
1185         if (WARN_ON(size < LPAGE_SIZE)) {
1186                 err_pgsize = LPAGE_SIZE;
1187                 goto err;
1188         }
1189
1190         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1191                                 sizeof(*ent) * SPAGES_PER_LPAGE,
1192                                 DMA_TO_DEVICE);
1193         memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1194         dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1195                                    sizeof(*ent) * SPAGES_PER_LPAGE,
1196                                    DMA_TO_DEVICE);
1197         size = LPAGE_SIZE;
1198         domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1199 done:
1200         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1201
1202         exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1203
1204         return size;
1205 err:
1206         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1207
1208         pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1209                 __func__, size, iova, err_pgsize);
1210
1211         return 0;
1212 }
1213
1214 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1215                                           dma_addr_t iova)
1216 {
1217         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1218         sysmmu_pte_t *entry;
1219         unsigned long flags;
1220         phys_addr_t phys = 0;
1221
1222         spin_lock_irqsave(&domain->pgtablelock, flags);
1223
1224         entry = section_entry(domain->pgtable, iova);
1225
1226         if (lv1ent_section(entry)) {
1227                 phys = section_phys(entry) + section_offs(iova);
1228         } else if (lv1ent_page(entry)) {
1229                 entry = page_entry(entry, iova);
1230
1231                 if (lv2ent_large(entry))
1232                         phys = lpage_phys(entry) + lpage_offs(iova);
1233                 else if (lv2ent_small(entry))
1234                         phys = spage_phys(entry) + spage_offs(iova);
1235         }
1236
1237         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1238
1239         return phys;
1240 }
1241
1242 static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1243 {
1244         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1245         struct sysmmu_drvdata *data;
1246
1247         if (!has_sysmmu(dev))
1248                 return ERR_PTR(-ENODEV);
1249
1250         list_for_each_entry(data, &owner->controllers, owner_node) {
1251                 /*
1252                  * SYSMMU will be runtime activated via device link
1253                  * (dependency) to its master device, so there are no
1254                  * direct calls to pm_runtime_get/put in this driver.
1255                  */
1256                 data->link = device_link_add(dev, data->sysmmu,
1257                                              DL_FLAG_STATELESS |
1258                                              DL_FLAG_PM_RUNTIME);
1259         }
1260
1261         /* There is always at least one entry, see exynos_iommu_of_xlate() */
1262         data = list_first_entry(&owner->controllers,
1263                                 struct sysmmu_drvdata, owner_node);
1264
1265         return &data->iommu;
1266 }
1267
1268 static void exynos_iommu_release_device(struct device *dev)
1269 {
1270         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1271         struct sysmmu_drvdata *data;
1272
1273         if (!has_sysmmu(dev))
1274                 return;
1275
1276         if (owner->domain) {
1277                 struct iommu_group *group = iommu_group_get(dev);
1278
1279                 if (group) {
1280                         WARN_ON(owner->domain !=
1281                                 iommu_group_default_domain(group));
1282                         exynos_iommu_detach_device(owner->domain, dev);
1283                         iommu_group_put(group);
1284                 }
1285         }
1286
1287         list_for_each_entry(data, &owner->controllers, owner_node)
1288                 device_link_del(data->link);
1289 }
1290
1291 static int exynos_iommu_of_xlate(struct device *dev,
1292                                  struct of_phandle_args *spec)
1293 {
1294         struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1295         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1296         struct sysmmu_drvdata *data, *entry;
1297
1298         if (!sysmmu)
1299                 return -ENODEV;
1300
1301         data = platform_get_drvdata(sysmmu);
1302         if (!data) {
1303                 put_device(&sysmmu->dev);
1304                 return -ENODEV;
1305         }
1306
1307         if (!owner) {
1308                 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1309                 if (!owner) {
1310                         put_device(&sysmmu->dev);
1311                         return -ENOMEM;
1312                 }
1313
1314                 INIT_LIST_HEAD(&owner->controllers);
1315                 mutex_init(&owner->rpm_lock);
1316                 dev_iommu_priv_set(dev, owner);
1317         }
1318
1319         list_for_each_entry(entry, &owner->controllers, owner_node)
1320                 if (entry == data)
1321                         return 0;
1322
1323         list_add_tail(&data->owner_node, &owner->controllers);
1324         data->master = dev;
1325
1326         return 0;
1327 }
1328
1329 static const struct iommu_ops exynos_iommu_ops = {
1330         .domain_alloc = exynos_iommu_domain_alloc,
1331         .domain_free = exynos_iommu_domain_free,
1332         .attach_dev = exynos_iommu_attach_device,
1333         .detach_dev = exynos_iommu_detach_device,
1334         .map = exynos_iommu_map,
1335         .unmap = exynos_iommu_unmap,
1336         .iova_to_phys = exynos_iommu_iova_to_phys,
1337         .device_group = generic_device_group,
1338         .probe_device = exynos_iommu_probe_device,
1339         .release_device = exynos_iommu_release_device,
1340         .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1341         .of_xlate = exynos_iommu_of_xlate,
1342 };
1343
1344 static int __init exynos_iommu_init(void)
1345 {
1346         struct device_node *np;
1347         int ret;
1348
1349         np = of_find_matching_node(NULL, sysmmu_of_match);
1350         if (!np)
1351                 return 0;
1352
1353         of_node_put(np);
1354
1355         lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1356                                 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1357         if (!lv2table_kmem_cache) {
1358                 pr_err("%s: Failed to create kmem cache\n", __func__);
1359                 return -ENOMEM;
1360         }
1361
1362         ret = platform_driver_register(&exynos_sysmmu_driver);
1363         if (ret) {
1364                 pr_err("%s: Failed to register driver\n", __func__);
1365                 goto err_reg_driver;
1366         }
1367
1368         zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1369         if (zero_lv2_table == NULL) {
1370                 pr_err("%s: Failed to allocate zero level2 page table\n",
1371                         __func__);
1372                 ret = -ENOMEM;
1373                 goto err_zero_lv2;
1374         }
1375
1376         ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1377         if (ret) {
1378                 pr_err("%s: Failed to register exynos-iommu driver.\n",
1379                                                                 __func__);
1380                 goto err_set_iommu;
1381         }
1382
1383         return 0;
1384 err_set_iommu:
1385         kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1386 err_zero_lv2:
1387         platform_driver_unregister(&exynos_sysmmu_driver);
1388 err_reg_driver:
1389         kmem_cache_destroy(lv2table_kmem_cache);
1390         return ret;
1391 }
1392 core_initcall(exynos_iommu_init);