GNU Linux-libre 4.9.328-gnu1
[releases.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/iommu.h>
28 #include <linux/iopoll.h>
29 #include <linux/module.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_iommu.h>
34 #include <linux/of_platform.h>
35 #include <linux/pci.h>
36 #include <linux/platform_device.h>
37
38 #include <linux/amba/bus.h>
39
40 #include "io-pgtable.h"
41
42 /* MMIO registers */
43 #define ARM_SMMU_IDR0                   0x0
44 #define IDR0_ST_LVL_SHIFT               27
45 #define IDR0_ST_LVL_MASK                0x3
46 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
47 #define IDR0_STALL_MODEL_SHIFT          24
48 #define IDR0_STALL_MODEL_MASK           0x3
49 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
50 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
51 #define IDR0_TTENDIAN_SHIFT             21
52 #define IDR0_TTENDIAN_MASK              0x3
53 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
54 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
55 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_CD2L                       (1 << 19)
57 #define IDR0_VMID16                     (1 << 18)
58 #define IDR0_PRI                        (1 << 16)
59 #define IDR0_SEV                        (1 << 14)
60 #define IDR0_MSI                        (1 << 13)
61 #define IDR0_ASID16                     (1 << 12)
62 #define IDR0_ATS                        (1 << 10)
63 #define IDR0_HYP                        (1 << 9)
64 #define IDR0_COHACC                     (1 << 4)
65 #define IDR0_TTF_SHIFT                  2
66 #define IDR0_TTF_MASK                   0x3
67 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
68 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
69 #define IDR0_S1P                        (1 << 1)
70 #define IDR0_S2P                        (1 << 0)
71
72 #define ARM_SMMU_IDR1                   0x4
73 #define IDR1_TABLES_PRESET              (1 << 30)
74 #define IDR1_QUEUES_PRESET              (1 << 29)
75 #define IDR1_REL                        (1 << 28)
76 #define IDR1_CMDQ_SHIFT                 21
77 #define IDR1_CMDQ_MASK                  0x1f
78 #define IDR1_EVTQ_SHIFT                 16
79 #define IDR1_EVTQ_MASK                  0x1f
80 #define IDR1_PRIQ_SHIFT                 11
81 #define IDR1_PRIQ_MASK                  0x1f
82 #define IDR1_SSID_SHIFT                 6
83 #define IDR1_SSID_MASK                  0x1f
84 #define IDR1_SID_SHIFT                  0
85 #define IDR1_SID_MASK                   0x3f
86
87 #define ARM_SMMU_IDR5                   0x14
88 #define IDR5_STALL_MAX_SHIFT            16
89 #define IDR5_STALL_MAX_MASK             0xffff
90 #define IDR5_GRAN64K                    (1 << 6)
91 #define IDR5_GRAN16K                    (1 << 5)
92 #define IDR5_GRAN4K                     (1 << 4)
93 #define IDR5_OAS_SHIFT                  0
94 #define IDR5_OAS_MASK                   0x7
95 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
96 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
97 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
101
102 #define ARM_SMMU_CR0                    0x20
103 #define CR0_CMDQEN                      (1 << 3)
104 #define CR0_EVTQEN                      (1 << 2)
105 #define CR0_PRIQEN                      (1 << 1)
106 #define CR0_SMMUEN                      (1 << 0)
107
108 #define ARM_SMMU_CR0ACK                 0x24
109
110 #define ARM_SMMU_CR1                    0x28
111 #define CR1_SH_NSH                      0
112 #define CR1_SH_OSH                      2
113 #define CR1_SH_ISH                      3
114 #define CR1_CACHE_NC                    0
115 #define CR1_CACHE_WB                    1
116 #define CR1_CACHE_WT                    2
117 #define CR1_TABLE_SH_SHIFT              10
118 #define CR1_TABLE_OC_SHIFT              8
119 #define CR1_TABLE_IC_SHIFT              6
120 #define CR1_QUEUE_SH_SHIFT              4
121 #define CR1_QUEUE_OC_SHIFT              2
122 #define CR1_QUEUE_IC_SHIFT              0
123
124 #define ARM_SMMU_CR2                    0x2c
125 #define CR2_PTM                         (1 << 2)
126 #define CR2_RECINVSID                   (1 << 1)
127 #define CR2_E2H                         (1 << 0)
128
129 #define ARM_SMMU_GBPA                   0x44
130 #define GBPA_ABORT                      (1 << 20)
131 #define GBPA_UPDATE                     (1 << 31)
132
133 #define ARM_SMMU_IRQ_CTRL               0x50
134 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
135 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
136 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
137
138 #define ARM_SMMU_IRQ_CTRLACK            0x54
139
140 #define ARM_SMMU_GERROR                 0x60
141 #define GERROR_SFM_ERR                  (1 << 8)
142 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
143 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
144 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
145 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
146 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
147 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
148 #define GERROR_CMDQ_ERR                 (1 << 0)
149 #define GERROR_ERR_MASK                 0xfd
150
151 #define ARM_SMMU_GERRORN                0x64
152
153 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
154 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
155 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
156
157 #define ARM_SMMU_STRTAB_BASE            0x80
158 #define STRTAB_BASE_RA                  (1UL << 62)
159 #define STRTAB_BASE_ADDR_SHIFT          6
160 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
161
162 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
163 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
164 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
165 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
166 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
167 #define STRTAB_BASE_CFG_FMT_SHIFT       16
168 #define STRTAB_BASE_CFG_FMT_MASK        0x3
169 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
170 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
171
172 #define ARM_SMMU_CMDQ_BASE              0x90
173 #define ARM_SMMU_CMDQ_PROD              0x98
174 #define ARM_SMMU_CMDQ_CONS              0x9c
175
176 #define ARM_SMMU_EVTQ_BASE              0xa0
177 #define ARM_SMMU_EVTQ_PROD              0x100a8
178 #define ARM_SMMU_EVTQ_CONS              0x100ac
179 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
180 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
181 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
182
183 #define ARM_SMMU_PRIQ_BASE              0xc0
184 #define ARM_SMMU_PRIQ_PROD              0x100c8
185 #define ARM_SMMU_PRIQ_CONS              0x100cc
186 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
187 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
188 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
189
190 /* Common MSI config fields */
191 #define MSI_CFG0_ADDR_SHIFT             2
192 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
193 #define MSI_CFG2_SH_SHIFT               4
194 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
195 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
196 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_MEMATTR_SHIFT          0
198 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
199
200 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
201 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
202 #define Q_OVERFLOW_FLAG                 (1 << 31)
203 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
204 #define Q_ENT(q, p)                     ((q)->base +                    \
205                                          Q_IDX(q, p) * (q)->ent_dwords)
206
207 #define Q_BASE_RWA                      (1UL << 62)
208 #define Q_BASE_ADDR_SHIFT               5
209 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
210 #define Q_BASE_LOG2SIZE_SHIFT           0
211 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
212
213 /*
214  * Stream table.
215  *
216  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
217  * 2lvl: 128k L1 entries,
218  *       256 lazy entries per table (each table covers a PCI bus)
219  */
220 #define STRTAB_L1_SZ_SHIFT              20
221 #define STRTAB_SPLIT                    8
222
223 #define STRTAB_L1_DESC_DWORDS           1
224 #define STRTAB_L1_DESC_SPAN_SHIFT       0
225 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
226 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
227 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
228
229 #define STRTAB_STE_DWORDS               8
230 #define STRTAB_STE_0_V                  (1UL << 0)
231 #define STRTAB_STE_0_CFG_SHIFT          1
232 #define STRTAB_STE_0_CFG_MASK           0x7UL
233 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
234 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
235 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
237
238 #define STRTAB_STE_0_S1FMT_SHIFT        4
239 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
240 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
241 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
242 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
243 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
244
245 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
246 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
247 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
248 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
249 #define STRTAB_STE_1_S1C_SH_NSH         0UL
250 #define STRTAB_STE_1_S1C_SH_OSH         2UL
251 #define STRTAB_STE_1_S1C_SH_ISH         3UL
252 #define STRTAB_STE_1_S1CIR_SHIFT        2
253 #define STRTAB_STE_1_S1COR_SHIFT        4
254 #define STRTAB_STE_1_S1CSH_SHIFT        6
255
256 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
257
258 #define STRTAB_STE_1_EATS_ABT           0UL
259 #define STRTAB_STE_1_EATS_TRANS         1UL
260 #define STRTAB_STE_1_EATS_S1CHK         2UL
261 #define STRTAB_STE_1_EATS_SHIFT         28
262
263 #define STRTAB_STE_1_STRW_NSEL1         0UL
264 #define STRTAB_STE_1_STRW_EL2           2UL
265 #define STRTAB_STE_1_STRW_SHIFT         30
266
267 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
268 #define STRTAB_STE_1_SHCFG_SHIFT        44
269
270 #define STRTAB_STE_1_PRIVCFG_UNPRIV     2UL
271 #define STRTAB_STE_1_PRIVCFG_SHIFT      48
272
273 #define STRTAB_STE_2_S2VMID_SHIFT       0
274 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
275 #define STRTAB_STE_2_VTCR_SHIFT         32
276 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
277 #define STRTAB_STE_2_S2AA64             (1UL << 51)
278 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
279 #define STRTAB_STE_2_S2PTW              (1UL << 54)
280 #define STRTAB_STE_2_S2R                (1UL << 58)
281
282 #define STRTAB_STE_3_S2TTB_SHIFT        4
283 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
284
285 /* Context descriptor (stage-1 only) */
286 #define CTXDESC_CD_DWORDS               8
287 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
288 #define ARM64_TCR_T0SZ_SHIFT            0
289 #define ARM64_TCR_T0SZ_MASK             0x1fUL
290 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
291 #define ARM64_TCR_TG0_SHIFT             14
292 #define ARM64_TCR_TG0_MASK              0x3UL
293 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
294 #define ARM64_TCR_IRGN0_SHIFT           8
295 #define ARM64_TCR_IRGN0_MASK            0x3UL
296 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
297 #define ARM64_TCR_ORGN0_SHIFT           10
298 #define ARM64_TCR_ORGN0_MASK            0x3UL
299 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
300 #define ARM64_TCR_SH0_SHIFT             12
301 #define ARM64_TCR_SH0_MASK              0x3UL
302 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
303 #define ARM64_TCR_EPD0_SHIFT            7
304 #define ARM64_TCR_EPD0_MASK             0x1UL
305 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
306 #define ARM64_TCR_EPD1_SHIFT            23
307 #define ARM64_TCR_EPD1_MASK             0x1UL
308
309 #define CTXDESC_CD_0_ENDI               (1UL << 15)
310 #define CTXDESC_CD_0_V                  (1UL << 31)
311
312 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
313 #define ARM64_TCR_IPS_SHIFT             32
314 #define ARM64_TCR_IPS_MASK              0x7UL
315 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
316 #define ARM64_TCR_TBI0_SHIFT            37
317 #define ARM64_TCR_TBI0_MASK             0x1UL
318
319 #define CTXDESC_CD_0_AA64               (1UL << 41)
320 #define CTXDESC_CD_0_R                  (1UL << 45)
321 #define CTXDESC_CD_0_A                  (1UL << 46)
322 #define CTXDESC_CD_0_ASET_SHIFT         47
323 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
325 #define CTXDESC_CD_0_ASID_SHIFT         48
326 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
327
328 #define CTXDESC_CD_1_TTB0_SHIFT         4
329 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
330
331 #define CTXDESC_CD_3_MAIR_SHIFT         0
332
333 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
334 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
335         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
336          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
337
338 /* Command queue */
339 #define CMDQ_ENT_DWORDS                 2
340 #define CMDQ_MAX_SZ_SHIFT               8
341
342 #define CMDQ_ERR_SHIFT                  24
343 #define CMDQ_ERR_MASK                   0x7f
344 #define CMDQ_ERR_CERROR_NONE_IDX        0
345 #define CMDQ_ERR_CERROR_ILL_IDX         1
346 #define CMDQ_ERR_CERROR_ABT_IDX         2
347
348 #define CMDQ_0_OP_SHIFT                 0
349 #define CMDQ_0_OP_MASK                  0xffUL
350 #define CMDQ_0_SSV                      (1UL << 11)
351
352 #define CMDQ_PREFETCH_0_SID_SHIFT       32
353 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
354 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
355
356 #define CMDQ_CFGI_0_SID_SHIFT           32
357 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
358 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
359 #define CMDQ_CFGI_1_RANGE_SHIFT         0
360 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
361
362 #define CMDQ_TLBI_0_VMID_SHIFT          32
363 #define CMDQ_TLBI_0_ASID_SHIFT          48
364 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
365 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
366 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
367
368 #define CMDQ_PRI_0_SSID_SHIFT           12
369 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
370 #define CMDQ_PRI_0_SID_SHIFT            32
371 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
372 #define CMDQ_PRI_1_GRPID_SHIFT          0
373 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
374 #define CMDQ_PRI_1_RESP_SHIFT           12
375 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
377 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
378
379 #define CMDQ_SYNC_0_CS_SHIFT            12
380 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
381 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
382
383 /* Event queue */
384 #define EVTQ_ENT_DWORDS                 4
385 #define EVTQ_MAX_SZ_SHIFT               7
386
387 #define EVTQ_0_ID_SHIFT                 0
388 #define EVTQ_0_ID_MASK                  0xffUL
389
390 /* PRI queue */
391 #define PRIQ_ENT_DWORDS                 2
392 #define PRIQ_MAX_SZ_SHIFT               8
393
394 #define PRIQ_0_SID_SHIFT                0
395 #define PRIQ_0_SID_MASK                 0xffffffffUL
396 #define PRIQ_0_SSID_SHIFT               32
397 #define PRIQ_0_SSID_MASK                0xfffffUL
398 #define PRIQ_0_PERM_PRIV                (1UL << 58)
399 #define PRIQ_0_PERM_EXEC                (1UL << 59)
400 #define PRIQ_0_PERM_READ                (1UL << 60)
401 #define PRIQ_0_PERM_WRITE               (1UL << 61)
402 #define PRIQ_0_PRG_LAST                 (1UL << 62)
403 #define PRIQ_0_SSID_V                   (1UL << 63)
404
405 #define PRIQ_1_PRG_IDX_SHIFT            0
406 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
407 #define PRIQ_1_ADDR_SHIFT               12
408 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
409
410 /* High-level queue structures */
411 #define ARM_SMMU_POLL_TIMEOUT_US        100
412
413 static bool disable_bypass;
414 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
415 MODULE_PARM_DESC(disable_bypass,
416         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
417
418 enum pri_resp {
419         PRI_RESP_DENY,
420         PRI_RESP_FAIL,
421         PRI_RESP_SUCC,
422 };
423
424 enum arm_smmu_msi_index {
425         EVTQ_MSI_INDEX,
426         GERROR_MSI_INDEX,
427         PRIQ_MSI_INDEX,
428         ARM_SMMU_MAX_MSIS,
429 };
430
431 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
432         [EVTQ_MSI_INDEX] = {
433                 ARM_SMMU_EVTQ_IRQ_CFG0,
434                 ARM_SMMU_EVTQ_IRQ_CFG1,
435                 ARM_SMMU_EVTQ_IRQ_CFG2,
436         },
437         [GERROR_MSI_INDEX] = {
438                 ARM_SMMU_GERROR_IRQ_CFG0,
439                 ARM_SMMU_GERROR_IRQ_CFG1,
440                 ARM_SMMU_GERROR_IRQ_CFG2,
441         },
442         [PRIQ_MSI_INDEX] = {
443                 ARM_SMMU_PRIQ_IRQ_CFG0,
444                 ARM_SMMU_PRIQ_IRQ_CFG1,
445                 ARM_SMMU_PRIQ_IRQ_CFG2,
446         },
447 };
448
449 struct arm_smmu_cmdq_ent {
450         /* Common fields */
451         u8                              opcode;
452         bool                            substream_valid;
453
454         /* Command-specific fields */
455         union {
456                 #define CMDQ_OP_PREFETCH_CFG    0x1
457                 struct {
458                         u32                     sid;
459                         u8                      size;
460                         u64                     addr;
461                 } prefetch;
462
463                 #define CMDQ_OP_CFGI_STE        0x3
464                 #define CMDQ_OP_CFGI_ALL        0x4
465                 struct {
466                         u32                     sid;
467                         union {
468                                 bool            leaf;
469                                 u8              span;
470                         };
471                 } cfgi;
472
473                 #define CMDQ_OP_TLBI_NH_ASID    0x11
474                 #define CMDQ_OP_TLBI_NH_VA      0x12
475                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
476                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
477                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
478                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
479                 struct {
480                         u16                     asid;
481                         u16                     vmid;
482                         bool                    leaf;
483                         u64                     addr;
484                 } tlbi;
485
486                 #define CMDQ_OP_PRI_RESP        0x41
487                 struct {
488                         u32                     sid;
489                         u32                     ssid;
490                         u16                     grpid;
491                         enum pri_resp           resp;
492                 } pri;
493
494                 #define CMDQ_OP_CMD_SYNC        0x46
495         };
496 };
497
498 struct arm_smmu_queue {
499         int                             irq; /* Wired interrupt */
500
501         __le64                          *base;
502         dma_addr_t                      base_dma;
503         u64                             q_base;
504
505         size_t                          ent_dwords;
506         u32                             max_n_shift;
507         u32                             prod;
508         u32                             cons;
509
510         u32 __iomem                     *prod_reg;
511         u32 __iomem                     *cons_reg;
512 };
513
514 struct arm_smmu_cmdq {
515         struct arm_smmu_queue           q;
516         spinlock_t                      lock;
517 };
518
519 struct arm_smmu_evtq {
520         struct arm_smmu_queue           q;
521         u32                             max_stalls;
522 };
523
524 struct arm_smmu_priq {
525         struct arm_smmu_queue           q;
526 };
527
528 /* High-level stream table and context descriptor structures */
529 struct arm_smmu_strtab_l1_desc {
530         u8                              span;
531
532         __le64                          *l2ptr;
533         dma_addr_t                      l2ptr_dma;
534 };
535
536 struct arm_smmu_s1_cfg {
537         __le64                          *cdptr;
538         dma_addr_t                      cdptr_dma;
539
540         struct arm_smmu_ctx_desc {
541                 u16     asid;
542                 u64     ttbr;
543                 u64     tcr;
544                 u64     mair;
545         }                               cd;
546 };
547
548 struct arm_smmu_s2_cfg {
549         u16                             vmid;
550         u64                             vttbr;
551         u64                             vtcr;
552 };
553
554 struct arm_smmu_strtab_ent {
555         bool                            valid;
556
557         bool                            bypass; /* Overrides s1/s2 config */
558         struct arm_smmu_s1_cfg          *s1_cfg;
559         struct arm_smmu_s2_cfg          *s2_cfg;
560 };
561
562 struct arm_smmu_strtab_cfg {
563         __le64                          *strtab;
564         dma_addr_t                      strtab_dma;
565         struct arm_smmu_strtab_l1_desc  *l1_desc;
566         unsigned int                    num_l1_ents;
567
568         u64                             strtab_base;
569         u32                             strtab_base_cfg;
570 };
571
572 /* An SMMUv3 instance */
573 struct arm_smmu_device {
574         struct device                   *dev;
575         void __iomem                    *base;
576
577 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
578 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
579 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
580 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
581 #define ARM_SMMU_FEAT_PRI               (1 << 4)
582 #define ARM_SMMU_FEAT_ATS               (1 << 5)
583 #define ARM_SMMU_FEAT_SEV               (1 << 6)
584 #define ARM_SMMU_FEAT_MSI               (1 << 7)
585 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
586 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
587 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
588 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
589 #define ARM_SMMU_FEAT_HYP               (1 << 12)
590         u32                             features;
591
592 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
593         u32                             options;
594
595         struct arm_smmu_cmdq            cmdq;
596         struct arm_smmu_evtq            evtq;
597         struct arm_smmu_priq            priq;
598
599         int                             gerr_irq;
600
601         unsigned long                   ias; /* IPA */
602         unsigned long                   oas; /* PA */
603         unsigned long                   pgsize_bitmap;
604
605 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
606         unsigned int                    asid_bits;
607         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
608
609 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
610         unsigned int                    vmid_bits;
611         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
612
613         unsigned int                    ssid_bits;
614         unsigned int                    sid_bits;
615
616         struct arm_smmu_strtab_cfg      strtab_cfg;
617 };
618
619 /* SMMU private data for each master */
620 struct arm_smmu_master_data {
621         struct arm_smmu_device          *smmu;
622         struct arm_smmu_strtab_ent      ste;
623 };
624
625 /* SMMU private data for an IOMMU domain */
626 enum arm_smmu_domain_stage {
627         ARM_SMMU_DOMAIN_S1 = 0,
628         ARM_SMMU_DOMAIN_S2,
629         ARM_SMMU_DOMAIN_NESTED,
630 };
631
632 struct arm_smmu_domain {
633         struct arm_smmu_device          *smmu;
634         struct mutex                    init_mutex; /* Protects smmu pointer */
635
636         struct io_pgtable_ops           *pgtbl_ops;
637         spinlock_t                      pgtbl_lock;
638
639         enum arm_smmu_domain_stage      stage;
640         union {
641                 struct arm_smmu_s1_cfg  s1_cfg;
642                 struct arm_smmu_s2_cfg  s2_cfg;
643         };
644
645         struct iommu_domain             domain;
646 };
647
648 struct arm_smmu_option_prop {
649         u32 opt;
650         const char *prop;
651 };
652
653 static struct arm_smmu_option_prop arm_smmu_options[] = {
654         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
655         { 0, NULL},
656 };
657
658 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
659 {
660         return container_of(dom, struct arm_smmu_domain, domain);
661 }
662
663 static void parse_driver_options(struct arm_smmu_device *smmu)
664 {
665         int i = 0;
666
667         do {
668                 if (of_property_read_bool(smmu->dev->of_node,
669                                                 arm_smmu_options[i].prop)) {
670                         smmu->options |= arm_smmu_options[i].opt;
671                         dev_notice(smmu->dev, "option %s\n",
672                                 arm_smmu_options[i].prop);
673                 }
674         } while (arm_smmu_options[++i].opt);
675 }
676
677 /* Low-level queue manipulation functions */
678 static bool queue_full(struct arm_smmu_queue *q)
679 {
680         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
681                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
682 }
683
684 static bool queue_empty(struct arm_smmu_queue *q)
685 {
686         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
687                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
688 }
689
690 static void queue_sync_cons(struct arm_smmu_queue *q)
691 {
692         q->cons = readl_relaxed(q->cons_reg);
693 }
694
695 static void queue_inc_cons(struct arm_smmu_queue *q)
696 {
697         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
698
699         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
700
701         /*
702          * Ensure that all CPU accesses (reads and writes) to the queue
703          * are complete before we update the cons pointer.
704          */
705         mb();
706         writel_relaxed(q->cons, q->cons_reg);
707 }
708
709 static int queue_sync_prod(struct arm_smmu_queue *q)
710 {
711         int ret = 0;
712         u32 prod = readl_relaxed(q->prod_reg);
713
714         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
715                 ret = -EOVERFLOW;
716
717         q->prod = prod;
718         return ret;
719 }
720
721 static void queue_inc_prod(struct arm_smmu_queue *q)
722 {
723         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
724
725         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
726         writel(q->prod, q->prod_reg);
727 }
728
729 /*
730  * Wait for the SMMU to consume items. If drain is true, wait until the queue
731  * is empty. Otherwise, wait until there is at least one free slot.
732  */
733 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
734 {
735         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
736
737         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
738                 if (ktime_compare(ktime_get(), timeout) > 0)
739                         return -ETIMEDOUT;
740
741                 if (wfe) {
742                         wfe();
743                 } else {
744                         cpu_relax();
745                         udelay(1);
746                 }
747         }
748
749         return 0;
750 }
751
752 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
753 {
754         int i;
755
756         for (i = 0; i < n_dwords; ++i)
757                 *dst++ = cpu_to_le64(*src++);
758 }
759
760 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
761 {
762         if (queue_full(q))
763                 return -ENOSPC;
764
765         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
766         queue_inc_prod(q);
767         return 0;
768 }
769
770 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
771 {
772         int i;
773
774         for (i = 0; i < n_dwords; ++i)
775                 *dst++ = le64_to_cpu(*src++);
776 }
777
778 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
779 {
780         if (queue_empty(q))
781                 return -EAGAIN;
782
783         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
784         queue_inc_cons(q);
785         return 0;
786 }
787
788 /* High-level queue accessors */
789 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
790 {
791         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
792         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
793
794         switch (ent->opcode) {
795         case CMDQ_OP_TLBI_EL2_ALL:
796         case CMDQ_OP_TLBI_NSNH_ALL:
797                 break;
798         case CMDQ_OP_PREFETCH_CFG:
799                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
800                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
801                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
802                 break;
803         case CMDQ_OP_CFGI_STE:
804                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
805                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
806                 break;
807         case CMDQ_OP_CFGI_ALL:
808                 /* Cover the entire SID range */
809                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
810                 break;
811         case CMDQ_OP_TLBI_NH_VA:
812                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
813                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
814                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
815                 break;
816         case CMDQ_OP_TLBI_S2_IPA:
817                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
818                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
819                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
820                 break;
821         case CMDQ_OP_TLBI_NH_ASID:
822                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
823                 /* Fallthrough */
824         case CMDQ_OP_TLBI_S12_VMALL:
825                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
826                 break;
827         case CMDQ_OP_PRI_RESP:
828                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
829                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
830                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
831                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
832                 switch (ent->pri.resp) {
833                 case PRI_RESP_DENY:
834                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
835                         break;
836                 case PRI_RESP_FAIL:
837                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
838                         break;
839                 case PRI_RESP_SUCC:
840                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
841                         break;
842                 default:
843                         return -EINVAL;
844                 }
845                 break;
846         case CMDQ_OP_CMD_SYNC:
847                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
848                 break;
849         default:
850                 return -ENOENT;
851         }
852
853         return 0;
854 }
855
856 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
857 {
858         static const char *cerror_str[] = {
859                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
860                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
861                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
862         };
863
864         int i;
865         u64 cmd[CMDQ_ENT_DWORDS];
866         struct arm_smmu_queue *q = &smmu->cmdq.q;
867         u32 cons = readl_relaxed(q->cons_reg);
868         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
869         struct arm_smmu_cmdq_ent cmd_sync = {
870                 .opcode = CMDQ_OP_CMD_SYNC,
871         };
872
873         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
874                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
875
876         switch (idx) {
877         case CMDQ_ERR_CERROR_ABT_IDX:
878                 dev_err(smmu->dev, "retrying command fetch\n");
879         case CMDQ_ERR_CERROR_NONE_IDX:
880                 return;
881         case CMDQ_ERR_CERROR_ILL_IDX:
882                 /* Fallthrough */
883         default:
884                 break;
885         }
886
887         /*
888          * We may have concurrent producers, so we need to be careful
889          * not to touch any of the shadow cmdq state.
890          */
891         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
892         dev_err(smmu->dev, "skipping command in error state:\n");
893         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
894                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
895
896         /* Convert the erroneous command into a CMD_SYNC */
897         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
898                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
899                 return;
900         }
901
902         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
903 }
904
905 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
906                                     struct arm_smmu_cmdq_ent *ent)
907 {
908         u64 cmd[CMDQ_ENT_DWORDS];
909         unsigned long flags;
910         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
911         struct arm_smmu_queue *q = &smmu->cmdq.q;
912
913         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
914                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
915                          ent->opcode);
916                 return;
917         }
918
919         spin_lock_irqsave(&smmu->cmdq.lock, flags);
920         while (queue_insert_raw(q, cmd) == -ENOSPC) {
921                 if (queue_poll_cons(q, false, wfe))
922                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
923         }
924
925         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
926                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
927         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
928 }
929
930 /* Context descriptor manipulation functions */
931 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
932 {
933         u64 val = 0;
934
935         /* Repack the TCR. Just care about TTBR0 for now */
936         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
937         val |= ARM_SMMU_TCR2CD(tcr, TG0);
938         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
939         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
940         val |= ARM_SMMU_TCR2CD(tcr, SH0);
941         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
942         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
943         val |= ARM_SMMU_TCR2CD(tcr, IPS);
944         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
945
946         return val;
947 }
948
949 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
950                                     struct arm_smmu_s1_cfg *cfg)
951 {
952         u64 val;
953
954         /*
955          * We don't need to issue any invalidation here, as we'll invalidate
956          * the STE when installing the new entry anyway.
957          */
958         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
959 #ifdef __BIG_ENDIAN
960               CTXDESC_CD_0_ENDI |
961 #endif
962               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
963               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
964               CTXDESC_CD_0_V;
965         cfg->cdptr[0] = cpu_to_le64(val);
966
967         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
968         cfg->cdptr[1] = cpu_to_le64(val);
969
970         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
971 }
972
973 /* Stream table manipulation functions */
974 static void
975 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
976 {
977         u64 val = 0;
978
979         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
980                 << STRTAB_L1_DESC_SPAN_SHIFT;
981         val |= desc->l2ptr_dma &
982                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
983
984         *dst = cpu_to_le64(val);
985 }
986
987 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
988 {
989         struct arm_smmu_cmdq_ent cmd = {
990                 .opcode = CMDQ_OP_CFGI_STE,
991                 .cfgi   = {
992                         .sid    = sid,
993                         .leaf   = true,
994                 },
995         };
996
997         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
998         cmd.opcode = CMDQ_OP_CMD_SYNC;
999         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1000 }
1001
1002 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1003                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1004 {
1005         /*
1006          * This is hideously complicated, but we only really care about
1007          * three cases at the moment:
1008          *
1009          * 1. Invalid (all zero) -> bypass  (init)
1010          * 2. Bypass -> translation (attach)
1011          * 3. Translation -> bypass (detach)
1012          *
1013          * Given that we can't update the STE atomically and the SMMU
1014          * doesn't read the thing in a defined order, that leaves us
1015          * with the following maintenance requirements:
1016          *
1017          * 1. Update Config, return (init time STEs aren't live)
1018          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1019          * 3. Update Config, sync
1020          */
1021         u64 val = le64_to_cpu(dst[0]);
1022         bool ste_live = false;
1023         struct arm_smmu_cmdq_ent prefetch_cmd = {
1024                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1025                 .prefetch       = {
1026                         .sid    = sid,
1027                 },
1028         };
1029
1030         if (val & STRTAB_STE_0_V) {
1031                 u64 cfg;
1032
1033                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1034                 switch (cfg) {
1035                 case STRTAB_STE_0_CFG_BYPASS:
1036                         break;
1037                 case STRTAB_STE_0_CFG_S1_TRANS:
1038                 case STRTAB_STE_0_CFG_S2_TRANS:
1039                         ste_live = true;
1040                         break;
1041                 case STRTAB_STE_0_CFG_ABORT:
1042                         if (disable_bypass)
1043                                 break;
1044                 default:
1045                         BUG(); /* STE corruption */
1046                 }
1047         }
1048
1049         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1050         val = ste->valid ? STRTAB_STE_0_V : 0;
1051
1052         if (ste->bypass) {
1053                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1054                                       : STRTAB_STE_0_CFG_BYPASS;
1055                 dst[0] = cpu_to_le64(val);
1056                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1057                          << STRTAB_STE_1_SHCFG_SHIFT);
1058                 dst[2] = 0; /* Nuke the VMID */
1059                 if (ste_live)
1060                         arm_smmu_sync_ste_for_sid(smmu, sid);
1061                 return;
1062         }
1063
1064         if (ste->s1_cfg) {
1065                 BUG_ON(ste_live);
1066                 dst[1] = cpu_to_le64(
1067                          STRTAB_STE_1_S1C_CACHE_WBRA
1068                          << STRTAB_STE_1_S1CIR_SHIFT |
1069                          STRTAB_STE_1_S1C_CACHE_WBRA
1070                          << STRTAB_STE_1_S1COR_SHIFT |
1071                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1072 #ifdef CONFIG_PCI_ATS
1073                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1074 #endif
1075                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1076                          STRTAB_STE_1_PRIVCFG_UNPRIV <<
1077                          STRTAB_STE_1_PRIVCFG_SHIFT);
1078
1079                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1080                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1081
1082                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1083                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1084                         STRTAB_STE_0_CFG_S1_TRANS;
1085         }
1086
1087         if (ste->s2_cfg) {
1088                 BUG_ON(ste_live);
1089                 dst[2] = cpu_to_le64(
1090                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1091                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1092                           << STRTAB_STE_2_VTCR_SHIFT |
1093 #ifdef __BIG_ENDIAN
1094                          STRTAB_STE_2_S2ENDI |
1095 #endif
1096                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1097                          STRTAB_STE_2_S2R);
1098
1099                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1100                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1101
1102                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1103         }
1104
1105         arm_smmu_sync_ste_for_sid(smmu, sid);
1106         /* See comment in arm_smmu_write_ctx_desc() */
1107         WRITE_ONCE(dst[0], cpu_to_le64(val));
1108         arm_smmu_sync_ste_for_sid(smmu, sid);
1109
1110         /* It's likely that we'll want to use the new STE soon */
1111         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1112                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1113 }
1114
1115 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1116 {
1117         unsigned int i;
1118         struct arm_smmu_strtab_ent ste = {
1119                 .valid  = true,
1120                 .bypass = true,
1121         };
1122
1123         for (i = 0; i < nent; ++i) {
1124                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1125                 strtab += STRTAB_STE_DWORDS;
1126         }
1127 }
1128
1129 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1130 {
1131         size_t size;
1132         void *strtab;
1133         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1134         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1135
1136         if (desc->l2ptr)
1137                 return 0;
1138
1139         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1140         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1141
1142         desc->span = STRTAB_SPLIT + 1;
1143         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1144                                           GFP_KERNEL | __GFP_ZERO);
1145         if (!desc->l2ptr) {
1146                 dev_err(smmu->dev,
1147                         "failed to allocate l2 stream table for SID %u\n",
1148                         sid);
1149                 return -ENOMEM;
1150         }
1151
1152         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1153         arm_smmu_write_strtab_l1_desc(strtab, desc);
1154         return 0;
1155 }
1156
1157 /* IRQ and event handlers */
1158 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1159 {
1160         int i;
1161         struct arm_smmu_device *smmu = dev;
1162         struct arm_smmu_queue *q = &smmu->evtq.q;
1163         u64 evt[EVTQ_ENT_DWORDS];
1164
1165         do {
1166                 while (!queue_remove_raw(q, evt)) {
1167                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1168
1169                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1170                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1171                                 dev_info(smmu->dev, "\t0x%016llx\n",
1172                                          (unsigned long long)evt[i]);
1173
1174                         cond_resched();
1175                 }
1176
1177                 /*
1178                  * Not much we can do on overflow, so scream and pretend we're
1179                  * trying harder.
1180                  */
1181                 if (queue_sync_prod(q) == -EOVERFLOW)
1182                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1183         } while (!queue_empty(q));
1184
1185         /* Sync our overflow flag, as we believe we're up to speed */
1186         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1187         return IRQ_HANDLED;
1188 }
1189
1190 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1191 {
1192         u32 sid, ssid;
1193         u16 grpid;
1194         bool ssv, last;
1195
1196         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1197         ssv = evt[0] & PRIQ_0_SSID_V;
1198         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1199         last = evt[0] & PRIQ_0_PRG_LAST;
1200         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1201
1202         dev_info(smmu->dev, "unexpected PRI request received:\n");
1203         dev_info(smmu->dev,
1204                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1205                  sid, ssid, grpid, last ? "L" : "",
1206                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1207                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1208                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1209                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1210                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1211
1212         if (last) {
1213                 struct arm_smmu_cmdq_ent cmd = {
1214                         .opcode                 = CMDQ_OP_PRI_RESP,
1215                         .substream_valid        = ssv,
1216                         .pri                    = {
1217                                 .sid    = sid,
1218                                 .ssid   = ssid,
1219                                 .grpid  = grpid,
1220                                 .resp   = PRI_RESP_DENY,
1221                         },
1222                 };
1223
1224                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1225         }
1226 }
1227
1228 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1229 {
1230         struct arm_smmu_device *smmu = dev;
1231         struct arm_smmu_queue *q = &smmu->priq.q;
1232         u64 evt[PRIQ_ENT_DWORDS];
1233
1234         do {
1235                 while (!queue_remove_raw(q, evt))
1236                         arm_smmu_handle_ppr(smmu, evt);
1237
1238                 if (queue_sync_prod(q) == -EOVERFLOW)
1239                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1240         } while (!queue_empty(q));
1241
1242         /* Sync our overflow flag, as we believe we're up to speed */
1243         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1244         writel(q->cons, q->cons_reg);
1245         return IRQ_HANDLED;
1246 }
1247
1248 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1249 {
1250         /* We don't actually use CMD_SYNC interrupts for anything */
1251         return IRQ_HANDLED;
1252 }
1253
1254 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1255
1256 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1257 {
1258         u32 gerror, gerrorn, active;
1259         struct arm_smmu_device *smmu = dev;
1260
1261         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1262         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1263
1264         active = gerror ^ gerrorn;
1265         if (!(active & GERROR_ERR_MASK))
1266                 return IRQ_NONE; /* No errors pending */
1267
1268         dev_warn(smmu->dev,
1269                  "unexpected global error reported (0x%08x), this could be serious\n",
1270                  active);
1271
1272         if (active & GERROR_SFM_ERR) {
1273                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1274                 arm_smmu_device_disable(smmu);
1275         }
1276
1277         if (active & GERROR_MSI_GERROR_ABT_ERR)
1278                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1279
1280         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1281                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1282
1283         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1284                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1285
1286         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1287                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1288                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1289         }
1290
1291         if (active & GERROR_PRIQ_ABT_ERR)
1292                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1293
1294         if (active & GERROR_EVTQ_ABT_ERR)
1295                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1296
1297         if (active & GERROR_CMDQ_ERR)
1298                 arm_smmu_cmdq_skip_err(smmu);
1299
1300         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1301         return IRQ_HANDLED;
1302 }
1303
1304 /* IO_PGTABLE API */
1305 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1306 {
1307         struct arm_smmu_cmdq_ent cmd;
1308
1309         cmd.opcode = CMDQ_OP_CMD_SYNC;
1310         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1311 }
1312
1313 static void arm_smmu_tlb_sync(void *cookie)
1314 {
1315         struct arm_smmu_domain *smmu_domain = cookie;
1316         __arm_smmu_tlb_sync(smmu_domain->smmu);
1317 }
1318
1319 static void arm_smmu_tlb_inv_context(void *cookie)
1320 {
1321         struct arm_smmu_domain *smmu_domain = cookie;
1322         struct arm_smmu_device *smmu = smmu_domain->smmu;
1323         struct arm_smmu_cmdq_ent cmd;
1324
1325         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1326                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1327                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1328                 cmd.tlbi.vmid   = 0;
1329         } else {
1330                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1331                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1332         }
1333
1334         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1335         __arm_smmu_tlb_sync(smmu);
1336 }
1337
1338 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1339                                           size_t granule, bool leaf, void *cookie)
1340 {
1341         struct arm_smmu_domain *smmu_domain = cookie;
1342         struct arm_smmu_device *smmu = smmu_domain->smmu;
1343         struct arm_smmu_cmdq_ent cmd = {
1344                 .tlbi = {
1345                         .leaf   = leaf,
1346                         .addr   = iova,
1347                 },
1348         };
1349
1350         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1351                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1352                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1353         } else {
1354                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1355                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1356         }
1357
1358         do {
1359                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1360                 cmd.tlbi.addr += granule;
1361         } while (size -= granule);
1362 }
1363
1364 static struct iommu_gather_ops arm_smmu_gather_ops = {
1365         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1366         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1367         .tlb_sync       = arm_smmu_tlb_sync,
1368 };
1369
1370 /* IOMMU API */
1371 static bool arm_smmu_capable(enum iommu_cap cap)
1372 {
1373         switch (cap) {
1374         case IOMMU_CAP_CACHE_COHERENCY:
1375                 return true;
1376         case IOMMU_CAP_INTR_REMAP:
1377                 return true; /* MSIs are just memory writes */
1378         case IOMMU_CAP_NOEXEC:
1379                 return true;
1380         default:
1381                 return false;
1382         }
1383 }
1384
1385 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1386 {
1387         struct arm_smmu_domain *smmu_domain;
1388
1389         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1390                 return NULL;
1391
1392         /*
1393          * Allocate the domain and initialise some of its data structures.
1394          * We can't really do anything meaningful until we've added a
1395          * master.
1396          */
1397         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1398         if (!smmu_domain)
1399                 return NULL;
1400
1401         if (type == IOMMU_DOMAIN_DMA &&
1402             iommu_get_dma_cookie(&smmu_domain->domain)) {
1403                 kfree(smmu_domain);
1404                 return NULL;
1405         }
1406
1407         mutex_init(&smmu_domain->init_mutex);
1408         spin_lock_init(&smmu_domain->pgtbl_lock);
1409         return &smmu_domain->domain;
1410 }
1411
1412 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1413 {
1414         int idx, size = 1 << span;
1415
1416         do {
1417                 idx = find_first_zero_bit(map, size);
1418                 if (idx == size)
1419                         return -ENOSPC;
1420         } while (test_and_set_bit(idx, map));
1421
1422         return idx;
1423 }
1424
1425 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1426 {
1427         clear_bit(idx, map);
1428 }
1429
1430 static void arm_smmu_domain_free(struct iommu_domain *domain)
1431 {
1432         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1433         struct arm_smmu_device *smmu = smmu_domain->smmu;
1434
1435         iommu_put_dma_cookie(domain);
1436         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1437
1438         /* Free the CD and ASID, if we allocated them */
1439         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1440                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1441
1442                 if (cfg->cdptr) {
1443                         dmam_free_coherent(smmu_domain->smmu->dev,
1444                                            CTXDESC_CD_DWORDS << 3,
1445                                            cfg->cdptr,
1446                                            cfg->cdptr_dma);
1447
1448                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1449                 }
1450         } else {
1451                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1452                 if (cfg->vmid)
1453                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1454         }
1455
1456         kfree(smmu_domain);
1457 }
1458
1459 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1460                                        struct io_pgtable_cfg *pgtbl_cfg)
1461 {
1462         int ret;
1463         int asid;
1464         struct arm_smmu_device *smmu = smmu_domain->smmu;
1465         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1466
1467         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1468         if (asid < 0)
1469                 return asid;
1470
1471         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1472                                          &cfg->cdptr_dma,
1473                                          GFP_KERNEL | __GFP_ZERO);
1474         if (!cfg->cdptr) {
1475                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1476                 ret = -ENOMEM;
1477                 goto out_free_asid;
1478         }
1479
1480         cfg->cd.asid    = (u16)asid;
1481         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1482         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1483         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1484         return 0;
1485
1486 out_free_asid:
1487         arm_smmu_bitmap_free(smmu->asid_map, asid);
1488         return ret;
1489 }
1490
1491 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1492                                        struct io_pgtable_cfg *pgtbl_cfg)
1493 {
1494         int vmid;
1495         struct arm_smmu_device *smmu = smmu_domain->smmu;
1496         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1497
1498         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1499         if (vmid < 0)
1500                 return vmid;
1501
1502         cfg->vmid       = (u16)vmid;
1503         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1504         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1505         return 0;
1506 }
1507
1508 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1509 {
1510         int ret;
1511         unsigned long ias, oas;
1512         enum io_pgtable_fmt fmt;
1513         struct io_pgtable_cfg pgtbl_cfg;
1514         struct io_pgtable_ops *pgtbl_ops;
1515         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1516                                  struct io_pgtable_cfg *);
1517         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1518         struct arm_smmu_device *smmu = smmu_domain->smmu;
1519
1520         /* Restrict the stage to what we can actually support */
1521         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1522                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1523         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1524                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1525
1526         switch (smmu_domain->stage) {
1527         case ARM_SMMU_DOMAIN_S1:
1528                 ias = VA_BITS;
1529                 oas = smmu->ias;
1530                 fmt = ARM_64_LPAE_S1;
1531                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1532                 break;
1533         case ARM_SMMU_DOMAIN_NESTED:
1534         case ARM_SMMU_DOMAIN_S2:
1535                 ias = smmu->ias;
1536                 oas = smmu->oas;
1537                 fmt = ARM_64_LPAE_S2;
1538                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1539                 break;
1540         default:
1541                 return -EINVAL;
1542         }
1543
1544         pgtbl_cfg = (struct io_pgtable_cfg) {
1545                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1546                 .ias            = ias,
1547                 .oas            = oas,
1548                 .tlb            = &arm_smmu_gather_ops,
1549                 .iommu_dev      = smmu->dev,
1550         };
1551
1552         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1553         if (!pgtbl_ops)
1554                 return -ENOMEM;
1555
1556         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1557         domain->geometry.aperture_end = (1UL << ias) - 1;
1558         domain->geometry.force_aperture = true;
1559
1560         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1561         if (ret < 0) {
1562                 free_io_pgtable_ops(pgtbl_ops);
1563                 return ret;
1564         }
1565
1566         smmu_domain->pgtbl_ops = pgtbl_ops;
1567         return 0;
1568 }
1569
1570 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1571 {
1572         __le64 *step;
1573         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1574
1575         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1576                 struct arm_smmu_strtab_l1_desc *l1_desc;
1577                 int idx;
1578
1579                 /* Two-level walk */
1580                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1581                 l1_desc = &cfg->l1_desc[idx];
1582                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1583                 step = &l1_desc->l2ptr[idx];
1584         } else {
1585                 /* Simple linear lookup */
1586                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1587         }
1588
1589         return step;
1590 }
1591
1592 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1593 {
1594         int i, j;
1595         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1596         struct arm_smmu_device *smmu = master->smmu;
1597
1598         for (i = 0; i < fwspec->num_ids; ++i) {
1599                 u32 sid = fwspec->ids[i];
1600                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1601
1602                 /* Bridged PCI devices may end up with duplicated IDs */
1603                 for (j = 0; j < i; j++)
1604                         if (fwspec->ids[j] == sid)
1605                                 break;
1606                 if (j < i)
1607                         continue;
1608
1609                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1610         }
1611
1612         return 0;
1613 }
1614
1615 static void arm_smmu_detach_dev(struct device *dev)
1616 {
1617         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1618
1619         master->ste.bypass = true;
1620         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1621                 dev_warn(dev, "failed to install bypass STE\n");
1622 }
1623
1624 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1625 {
1626         int ret = 0;
1627         struct arm_smmu_device *smmu;
1628         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1629         struct arm_smmu_master_data *master;
1630         struct arm_smmu_strtab_ent *ste;
1631
1632         if (!dev->iommu_fwspec)
1633                 return -ENOENT;
1634
1635         master = dev->iommu_fwspec->iommu_priv;
1636         smmu = master->smmu;
1637         ste = &master->ste;
1638
1639         /* Already attached to a different domain? */
1640         if (!ste->bypass)
1641                 arm_smmu_detach_dev(dev);
1642
1643         mutex_lock(&smmu_domain->init_mutex);
1644
1645         if (!smmu_domain->smmu) {
1646                 smmu_domain->smmu = smmu;
1647                 ret = arm_smmu_domain_finalise(domain);
1648                 if (ret) {
1649                         smmu_domain->smmu = NULL;
1650                         goto out_unlock;
1651                 }
1652         } else if (smmu_domain->smmu != smmu) {
1653                 dev_err(dev,
1654                         "cannot attach to SMMU %s (upstream of %s)\n",
1655                         dev_name(smmu_domain->smmu->dev),
1656                         dev_name(smmu->dev));
1657                 ret = -ENXIO;
1658                 goto out_unlock;
1659         }
1660
1661         ste->bypass = false;
1662         ste->valid = true;
1663
1664         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1665                 ste->s1_cfg = &smmu_domain->s1_cfg;
1666                 ste->s2_cfg = NULL;
1667                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1668         } else {
1669                 ste->s1_cfg = NULL;
1670                 ste->s2_cfg = &smmu_domain->s2_cfg;
1671         }
1672
1673         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1674         if (ret < 0)
1675                 ste->valid = false;
1676
1677 out_unlock:
1678         mutex_unlock(&smmu_domain->init_mutex);
1679         return ret;
1680 }
1681
1682 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1683                         phys_addr_t paddr, size_t size, int prot)
1684 {
1685         int ret;
1686         unsigned long flags;
1687         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1688         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1689
1690         if (!ops)
1691                 return -ENODEV;
1692
1693         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1694         ret = ops->map(ops, iova, paddr, size, prot);
1695         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1696         return ret;
1697 }
1698
1699 static size_t
1700 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1701 {
1702         size_t ret;
1703         unsigned long flags;
1704         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1705         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1706
1707         if (!ops)
1708                 return 0;
1709
1710         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1711         ret = ops->unmap(ops, iova, size);
1712         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1713         return ret;
1714 }
1715
1716 static phys_addr_t
1717 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1718 {
1719         phys_addr_t ret;
1720         unsigned long flags;
1721         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1722         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1723
1724         if (!ops)
1725                 return 0;
1726
1727         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1728         ret = ops->iova_to_phys(ops, iova);
1729         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1730
1731         return ret;
1732 }
1733
1734 static struct platform_driver arm_smmu_driver;
1735
1736 static int arm_smmu_match_node(struct device *dev, void *data)
1737 {
1738         return dev->of_node == data;
1739 }
1740
1741 static struct arm_smmu_device *arm_smmu_get_by_node(struct device_node *np)
1742 {
1743         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1744                                                 np, arm_smmu_match_node);
1745         put_device(dev);
1746         return dev ? dev_get_drvdata(dev) : NULL;
1747 }
1748
1749 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1750 {
1751         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1752
1753         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1754                 limit *= 1UL << STRTAB_SPLIT;
1755
1756         return sid < limit;
1757 }
1758
1759 static struct iommu_ops arm_smmu_ops;
1760
1761 static int arm_smmu_add_device(struct device *dev)
1762 {
1763         int i, ret;
1764         struct arm_smmu_device *smmu;
1765         struct arm_smmu_master_data *master;
1766         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1767         struct iommu_group *group;
1768
1769         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1770                 return -ENODEV;
1771         /*
1772          * We _can_ actually withstand dodgy bus code re-calling add_device()
1773          * without an intervening remove_device()/of_xlate() sequence, but
1774          * we're not going to do so quietly...
1775          */
1776         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1777                 master = fwspec->iommu_priv;
1778                 smmu = master->smmu;
1779         } else {
1780                 smmu = arm_smmu_get_by_node(to_of_node(fwspec->iommu_fwnode));
1781                 if (!smmu)
1782                         return -ENODEV;
1783                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1784                 if (!master)
1785                         return -ENOMEM;
1786
1787                 master->smmu = smmu;
1788                 fwspec->iommu_priv = master;
1789         }
1790
1791         /* Check the SIDs are in range of the SMMU and our stream table */
1792         for (i = 0; i < fwspec->num_ids; i++) {
1793                 u32 sid = fwspec->ids[i];
1794
1795                 if (!arm_smmu_sid_in_range(smmu, sid))
1796                         return -ERANGE;
1797
1798                 /* Ensure l2 strtab is initialised */
1799                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1800                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1801                         if (ret)
1802                                 return ret;
1803                 }
1804         }
1805
1806         group = iommu_group_get_for_dev(dev);
1807         if (!IS_ERR(group))
1808                 iommu_group_put(group);
1809
1810         return PTR_ERR_OR_ZERO(group);
1811 }
1812
1813 static void arm_smmu_remove_device(struct device *dev)
1814 {
1815         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1816         struct arm_smmu_master_data *master;
1817
1818         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1819                 return;
1820
1821         master = fwspec->iommu_priv;
1822         if (master && master->ste.valid)
1823                 arm_smmu_detach_dev(dev);
1824         iommu_group_remove_device(dev);
1825         kfree(master);
1826         iommu_fwspec_free(dev);
1827 }
1828
1829 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1830 {
1831         struct iommu_group *group;
1832
1833         /*
1834          * We don't support devices sharing stream IDs other than PCI RID
1835          * aliases, since the necessary ID-to-device lookup becomes rather
1836          * impractical given a potential sparse 32-bit stream ID space.
1837          */
1838         if (dev_is_pci(dev))
1839                 group = pci_device_group(dev);
1840         else
1841                 group = generic_device_group(dev);
1842
1843         return group;
1844 }
1845
1846 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1847                                     enum iommu_attr attr, void *data)
1848 {
1849         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1850
1851         switch (attr) {
1852         case DOMAIN_ATTR_NESTING:
1853                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1854                 return 0;
1855         default:
1856                 return -ENODEV;
1857         }
1858 }
1859
1860 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1861                                     enum iommu_attr attr, void *data)
1862 {
1863         int ret = 0;
1864         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1865
1866         mutex_lock(&smmu_domain->init_mutex);
1867
1868         switch (attr) {
1869         case DOMAIN_ATTR_NESTING:
1870                 if (smmu_domain->smmu) {
1871                         ret = -EPERM;
1872                         goto out_unlock;
1873                 }
1874
1875                 if (*(int *)data)
1876                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1877                 else
1878                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1879
1880                 break;
1881         default:
1882                 ret = -ENODEV;
1883         }
1884
1885 out_unlock:
1886         mutex_unlock(&smmu_domain->init_mutex);
1887         return ret;
1888 }
1889
1890 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1891 {
1892         return iommu_fwspec_add_ids(dev, args->args, 1);
1893 }
1894
1895 static struct iommu_ops arm_smmu_ops = {
1896         .capable                = arm_smmu_capable,
1897         .domain_alloc           = arm_smmu_domain_alloc,
1898         .domain_free            = arm_smmu_domain_free,
1899         .attach_dev             = arm_smmu_attach_dev,
1900         .map                    = arm_smmu_map,
1901         .unmap                  = arm_smmu_unmap,
1902         .map_sg                 = default_iommu_map_sg,
1903         .iova_to_phys           = arm_smmu_iova_to_phys,
1904         .add_device             = arm_smmu_add_device,
1905         .remove_device          = arm_smmu_remove_device,
1906         .device_group           = arm_smmu_device_group,
1907         .domain_get_attr        = arm_smmu_domain_get_attr,
1908         .domain_set_attr        = arm_smmu_domain_set_attr,
1909         .of_xlate               = arm_smmu_of_xlate,
1910         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1911 };
1912
1913 /* Probing and initialisation functions */
1914 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1915                                    struct arm_smmu_queue *q,
1916                                    unsigned long prod_off,
1917                                    unsigned long cons_off,
1918                                    size_t dwords)
1919 {
1920         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1921
1922         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1923         if (!q->base) {
1924                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1925                         qsz);
1926                 return -ENOMEM;
1927         }
1928
1929         q->prod_reg     = smmu->base + prod_off;
1930         q->cons_reg     = smmu->base + cons_off;
1931         q->ent_dwords   = dwords;
1932
1933         q->q_base  = Q_BASE_RWA;
1934         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1935         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1936                      << Q_BASE_LOG2SIZE_SHIFT;
1937
1938         q->prod = q->cons = 0;
1939         return 0;
1940 }
1941
1942 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1943 {
1944         int ret;
1945
1946         /* cmdq */
1947         spin_lock_init(&smmu->cmdq.lock);
1948         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1949                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1950         if (ret)
1951                 return ret;
1952
1953         /* evtq */
1954         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1955                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1956         if (ret)
1957                 return ret;
1958
1959         /* priq */
1960         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1961                 return 0;
1962
1963         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1964                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1965 }
1966
1967 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1968 {
1969         unsigned int i;
1970         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1971         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1972         void *strtab = smmu->strtab_cfg.strtab;
1973
1974         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1975         if (!cfg->l1_desc) {
1976                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1977                 return -ENOMEM;
1978         }
1979
1980         for (i = 0; i < cfg->num_l1_ents; ++i) {
1981                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1982                 strtab += STRTAB_L1_DESC_DWORDS << 3;
1983         }
1984
1985         return 0;
1986 }
1987
1988 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1989 {
1990         void *strtab;
1991         u64 reg;
1992         u32 size, l1size;
1993         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1994
1995         /*
1996          * If we can resolve everything with a single L2 table, then we
1997          * just need a single L1 descriptor. Otherwise, calculate the L1
1998          * size, capped to the SIDSIZE.
1999          */
2000         if (smmu->sid_bits < STRTAB_SPLIT) {
2001                 size = 0;
2002         } else {
2003                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2004                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2005         }
2006         cfg->num_l1_ents = 1 << size;
2007
2008         size += STRTAB_SPLIT;
2009         if (size < smmu->sid_bits)
2010                 dev_warn(smmu->dev,
2011                          "2-level strtab only covers %u/%u bits of SID\n",
2012                          size, smmu->sid_bits);
2013
2014         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2015         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2016                                      GFP_KERNEL | __GFP_ZERO);
2017         if (!strtab) {
2018                 dev_err(smmu->dev,
2019                         "failed to allocate l1 stream table (%u bytes)\n",
2020                         size);
2021                 return -ENOMEM;
2022         }
2023         cfg->strtab = strtab;
2024
2025         /* Configure strtab_base_cfg for 2 levels */
2026         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2027         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2028                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2029         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2030                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2031         cfg->strtab_base_cfg = reg;
2032
2033         return arm_smmu_init_l1_strtab(smmu);
2034 }
2035
2036 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2037 {
2038         void *strtab;
2039         u64 reg;
2040         u32 size;
2041         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2042
2043         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2044         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2045                                      GFP_KERNEL | __GFP_ZERO);
2046         if (!strtab) {
2047                 dev_err(smmu->dev,
2048                         "failed to allocate linear stream table (%u bytes)\n",
2049                         size);
2050                 return -ENOMEM;
2051         }
2052         cfg->strtab = strtab;
2053         cfg->num_l1_ents = 1 << smmu->sid_bits;
2054
2055         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2056         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2057         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2058                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2059         cfg->strtab_base_cfg = reg;
2060
2061         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2062         return 0;
2063 }
2064
2065 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2066 {
2067         u64 reg;
2068         int ret;
2069
2070         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2071                 ret = arm_smmu_init_strtab_2lvl(smmu);
2072         else
2073                 ret = arm_smmu_init_strtab_linear(smmu);
2074
2075         if (ret)
2076                 return ret;
2077
2078         /* Set the strtab base address */
2079         reg  = smmu->strtab_cfg.strtab_dma &
2080                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2081         reg |= STRTAB_BASE_RA;
2082         smmu->strtab_cfg.strtab_base = reg;
2083
2084         /* Allocate the first VMID for stage-2 bypass STEs */
2085         set_bit(0, smmu->vmid_map);
2086         return 0;
2087 }
2088
2089 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2090 {
2091         int ret;
2092
2093         ret = arm_smmu_init_queues(smmu);
2094         if (ret)
2095                 return ret;
2096
2097         return arm_smmu_init_strtab(smmu);
2098 }
2099
2100 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2101                                    unsigned int reg_off, unsigned int ack_off)
2102 {
2103         u32 reg;
2104
2105         writel_relaxed(val, smmu->base + reg_off);
2106         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2107                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2108 }
2109
2110 /* GBPA is "special" */
2111 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2112 {
2113         int ret;
2114         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2115
2116         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2117                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2118         if (ret)
2119                 return ret;
2120
2121         reg &= ~clr;
2122         reg |= set;
2123         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2124         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2125                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2126 }
2127
2128 static void arm_smmu_free_msis(void *data)
2129 {
2130         struct device *dev = data;
2131         platform_msi_domain_free_irqs(dev);
2132 }
2133
2134 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2135 {
2136         phys_addr_t doorbell;
2137         struct device *dev = msi_desc_to_dev(desc);
2138         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2139         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2140
2141         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2142         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2143
2144         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2145         writel_relaxed(msg->data, smmu->base + cfg[1]);
2146         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2147 }
2148
2149 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2150 {
2151         struct msi_desc *desc;
2152         int ret, nvec = ARM_SMMU_MAX_MSIS;
2153         struct device *dev = smmu->dev;
2154
2155         /* Clear the MSI address regs */
2156         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2157         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2158
2159         if (smmu->features & ARM_SMMU_FEAT_PRI)
2160                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2161         else
2162                 nvec--;
2163
2164         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2165                 return;
2166
2167         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2168         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2169         if (ret) {
2170                 dev_warn(dev, "failed to allocate MSIs\n");
2171                 return;
2172         }
2173
2174         for_each_msi_entry(desc, dev) {
2175                 switch (desc->platform.msi_index) {
2176                 case EVTQ_MSI_INDEX:
2177                         smmu->evtq.q.irq = desc->irq;
2178                         break;
2179                 case GERROR_MSI_INDEX:
2180                         smmu->gerr_irq = desc->irq;
2181                         break;
2182                 case PRIQ_MSI_INDEX:
2183                         smmu->priq.q.irq = desc->irq;
2184                         break;
2185                 default:        /* Unknown */
2186                         continue;
2187                 }
2188         }
2189
2190         /* Add callback to free MSIs on teardown */
2191         devm_add_action(dev, arm_smmu_free_msis, dev);
2192 }
2193
2194 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2195 {
2196         int ret, irq;
2197         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2198
2199         /* Disable IRQs first */
2200         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2201                                       ARM_SMMU_IRQ_CTRLACK);
2202         if (ret) {
2203                 dev_err(smmu->dev, "failed to disable irqs\n");
2204                 return ret;
2205         }
2206
2207         arm_smmu_setup_msis(smmu);
2208
2209         /* Request interrupt lines */
2210         irq = smmu->evtq.q.irq;
2211         if (irq) {
2212                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2213                                                 arm_smmu_evtq_thread,
2214                                                 IRQF_ONESHOT,
2215                                                 "arm-smmu-v3-evtq", smmu);
2216                 if (ret < 0)
2217                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2218         }
2219
2220         irq = smmu->cmdq.q.irq;
2221         if (irq) {
2222                 ret = devm_request_irq(smmu->dev, irq,
2223                                        arm_smmu_cmdq_sync_handler, 0,
2224                                        "arm-smmu-v3-cmdq-sync", smmu);
2225                 if (ret < 0)
2226                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2227         }
2228
2229         irq = smmu->gerr_irq;
2230         if (irq) {
2231                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2232                                        0, "arm-smmu-v3-gerror", smmu);
2233                 if (ret < 0)
2234                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2235         }
2236
2237         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2238                 irq = smmu->priq.q.irq;
2239                 if (irq) {
2240                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2241                                                         arm_smmu_priq_thread,
2242                                                         IRQF_ONESHOT,
2243                                                         "arm-smmu-v3-priq",
2244                                                         smmu);
2245                         if (ret < 0)
2246                                 dev_warn(smmu->dev,
2247                                          "failed to enable priq irq\n");
2248                         else
2249                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2250                 }
2251         }
2252
2253         /* Enable interrupt generation on the SMMU */
2254         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2255                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2256         if (ret)
2257                 dev_warn(smmu->dev, "failed to enable irqs\n");
2258
2259         return 0;
2260 }
2261
2262 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2263 {
2264         int ret;
2265
2266         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2267         if (ret)
2268                 dev_err(smmu->dev, "failed to clear cr0\n");
2269
2270         return ret;
2271 }
2272
2273 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2274 {
2275         int ret;
2276         u32 reg, enables;
2277         struct arm_smmu_cmdq_ent cmd;
2278
2279         /* Clear CR0 and sync (disables SMMU and queue processing) */
2280         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2281         if (reg & CR0_SMMUEN)
2282                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2283
2284         ret = arm_smmu_device_disable(smmu);
2285         if (ret)
2286                 return ret;
2287
2288         /* CR1 (table and queue memory attributes) */
2289         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2290               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2291               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2292               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2293               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2294               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2295         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2296
2297         /* CR2 (random crap) */
2298         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2299         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2300
2301         /* Stream table */
2302         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2303                        smmu->base + ARM_SMMU_STRTAB_BASE);
2304         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2305                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2306
2307         /* Command queue */
2308         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2309         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2310         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2311
2312         enables = CR0_CMDQEN;
2313         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2314                                       ARM_SMMU_CR0ACK);
2315         if (ret) {
2316                 dev_err(smmu->dev, "failed to enable command queue\n");
2317                 return ret;
2318         }
2319
2320         /* Invalidate any cached configuration */
2321         cmd.opcode = CMDQ_OP_CFGI_ALL;
2322         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2323         cmd.opcode = CMDQ_OP_CMD_SYNC;
2324         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2325
2326         /* Invalidate any stale TLB entries */
2327         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2328                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2329                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2330         }
2331
2332         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2333         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2334         cmd.opcode = CMDQ_OP_CMD_SYNC;
2335         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2336
2337         /* Event queue */
2338         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2339         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2340         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2341
2342         enables |= CR0_EVTQEN;
2343         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2344                                       ARM_SMMU_CR0ACK);
2345         if (ret) {
2346                 dev_err(smmu->dev, "failed to enable event queue\n");
2347                 return ret;
2348         }
2349
2350         /* PRI queue */
2351         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2352                 writeq_relaxed(smmu->priq.q.q_base,
2353                                smmu->base + ARM_SMMU_PRIQ_BASE);
2354                 writel_relaxed(smmu->priq.q.prod,
2355                                smmu->base + ARM_SMMU_PRIQ_PROD);
2356                 writel_relaxed(smmu->priq.q.cons,
2357                                smmu->base + ARM_SMMU_PRIQ_CONS);
2358
2359                 enables |= CR0_PRIQEN;
2360                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2361                                               ARM_SMMU_CR0ACK);
2362                 if (ret) {
2363                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2364                         return ret;
2365                 }
2366         }
2367
2368         ret = arm_smmu_setup_irqs(smmu);
2369         if (ret) {
2370                 dev_err(smmu->dev, "failed to setup irqs\n");
2371                 return ret;
2372         }
2373
2374
2375         /* Enable the SMMU interface, or ensure bypass */
2376         if (!bypass || disable_bypass) {
2377                 enables |= CR0_SMMUEN;
2378         } else {
2379                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2380                 if (ret) {
2381                         dev_err(smmu->dev, "GBPA not responding to update\n");
2382                         return ret;
2383                 }
2384         }
2385         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2386                                       ARM_SMMU_CR0ACK);
2387         if (ret) {
2388                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2389                 return ret;
2390         }
2391
2392         return 0;
2393 }
2394
2395 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2396 {
2397         u32 reg;
2398         bool coherent;
2399
2400         /* IDR0 */
2401         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2402
2403         /* 2-level structures */
2404         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2405                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2406
2407         if (reg & IDR0_CD2L)
2408                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2409
2410         /*
2411          * Translation table endianness.
2412          * We currently require the same endianness as the CPU, but this
2413          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2414          */
2415         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2416         case IDR0_TTENDIAN_MIXED:
2417                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2418                 break;
2419 #ifdef __BIG_ENDIAN
2420         case IDR0_TTENDIAN_BE:
2421                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2422                 break;
2423 #else
2424         case IDR0_TTENDIAN_LE:
2425                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2426                 break;
2427 #endif
2428         default:
2429                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2430                 return -ENXIO;
2431         }
2432
2433         /* Boolean feature flags */
2434         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2435                 smmu->features |= ARM_SMMU_FEAT_PRI;
2436
2437         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2438                 smmu->features |= ARM_SMMU_FEAT_ATS;
2439
2440         if (reg & IDR0_SEV)
2441                 smmu->features |= ARM_SMMU_FEAT_SEV;
2442
2443         if (reg & IDR0_MSI)
2444                 smmu->features |= ARM_SMMU_FEAT_MSI;
2445
2446         if (reg & IDR0_HYP)
2447                 smmu->features |= ARM_SMMU_FEAT_HYP;
2448
2449         /*
2450          * The dma-coherent property is used in preference to the ID
2451          * register, but warn on mismatch.
2452          */
2453         coherent = of_dma_is_coherent(smmu->dev->of_node);
2454         if (coherent)
2455                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2456
2457         if (!!(reg & IDR0_COHACC) != coherent)
2458                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2459                          coherent ? "true" : "false");
2460
2461         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2462         case IDR0_STALL_MODEL_STALL:
2463                 /* Fallthrough */
2464         case IDR0_STALL_MODEL_FORCE:
2465                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2466         }
2467
2468         if (reg & IDR0_S1P)
2469                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2470
2471         if (reg & IDR0_S2P)
2472                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2473
2474         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2475                 dev_err(smmu->dev, "no translation support!\n");
2476                 return -ENXIO;
2477         }
2478
2479         /* We only support the AArch64 table format at present */
2480         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2481         case IDR0_TTF_AARCH32_64:
2482                 smmu->ias = 40;
2483                 /* Fallthrough */
2484         case IDR0_TTF_AARCH64:
2485                 break;
2486         default:
2487                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2488                 return -ENXIO;
2489         }
2490
2491         /* ASID/VMID sizes */
2492         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2493         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2494
2495         /* IDR1 */
2496         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2497         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2498                 dev_err(smmu->dev, "embedded implementation not supported\n");
2499                 return -ENXIO;
2500         }
2501
2502         /* Queue sizes, capped at 4k */
2503         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2504                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2505         if (!smmu->cmdq.q.max_n_shift) {
2506                 /* Odd alignment restrictions on the base, so ignore for now */
2507                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2508                 return -ENXIO;
2509         }
2510
2511         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2512                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2513         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2514                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2515
2516         /* SID/SSID sizes */
2517         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2518         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2519
2520         /* IDR5 */
2521         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2522
2523         /* Maximum number of outstanding stalls */
2524         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2525                                 & IDR5_STALL_MAX_MASK;
2526
2527         /* Page sizes */
2528         if (reg & IDR5_GRAN64K)
2529                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2530         if (reg & IDR5_GRAN16K)
2531                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2532         if (reg & IDR5_GRAN4K)
2533                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2534
2535         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2536                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2537         else
2538                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2539
2540         /* Output address size */
2541         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2542         case IDR5_OAS_32_BIT:
2543                 smmu->oas = 32;
2544                 break;
2545         case IDR5_OAS_36_BIT:
2546                 smmu->oas = 36;
2547                 break;
2548         case IDR5_OAS_40_BIT:
2549                 smmu->oas = 40;
2550                 break;
2551         case IDR5_OAS_42_BIT:
2552                 smmu->oas = 42;
2553                 break;
2554         case IDR5_OAS_44_BIT:
2555                 smmu->oas = 44;
2556                 break;
2557         default:
2558                 dev_info(smmu->dev,
2559                         "unknown output address size. Truncating to 48-bit\n");
2560                 /* Fallthrough */
2561         case IDR5_OAS_48_BIT:
2562                 smmu->oas = 48;
2563         }
2564
2565         /* Set the DMA mask for our table walker */
2566         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2567                 dev_warn(smmu->dev,
2568                          "failed to set DMA mask for table walker\n");
2569
2570         smmu->ias = max(smmu->ias, smmu->oas);
2571
2572         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2573                  smmu->ias, smmu->oas, smmu->features);
2574         return 0;
2575 }
2576
2577 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2578 {
2579         int irq, ret;
2580         struct resource *res;
2581         struct arm_smmu_device *smmu;
2582         struct device *dev = &pdev->dev;
2583         bool bypass = true;
2584         u32 cells;
2585
2586         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2587                 dev_err(dev, "missing #iommu-cells property\n");
2588         else if (cells != 1)
2589                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2590         else
2591                 bypass = false;
2592
2593         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2594         if (!smmu) {
2595                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2596                 return -ENOMEM;
2597         }
2598         smmu->dev = dev;
2599
2600         /* Base address */
2601         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2602         if (resource_size(res) + 1 < SZ_128K) {
2603                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2604                 return -EINVAL;
2605         }
2606
2607         smmu->base = devm_ioremap_resource(dev, res);
2608         if (IS_ERR(smmu->base))
2609                 return PTR_ERR(smmu->base);
2610
2611         /* Interrupt lines */
2612         irq = platform_get_irq_byname(pdev, "eventq");
2613         if (irq > 0)
2614                 smmu->evtq.q.irq = irq;
2615
2616         irq = platform_get_irq_byname(pdev, "priq");
2617         if (irq > 0)
2618                 smmu->priq.q.irq = irq;
2619
2620         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2621         if (irq > 0)
2622                 smmu->cmdq.q.irq = irq;
2623
2624         irq = platform_get_irq_byname(pdev, "gerror");
2625         if (irq > 0)
2626                 smmu->gerr_irq = irq;
2627
2628         parse_driver_options(smmu);
2629
2630         /* Probe the h/w */
2631         ret = arm_smmu_device_probe(smmu);
2632         if (ret)
2633                 return ret;
2634
2635         /* Initialise in-memory data structures */
2636         ret = arm_smmu_init_structures(smmu);
2637         if (ret)
2638                 return ret;
2639
2640         /* Record our private device structure */
2641         platform_set_drvdata(pdev, smmu);
2642
2643         /* Reset the device */
2644         ret = arm_smmu_device_reset(smmu, bypass);
2645         if (ret)
2646                 return ret;
2647
2648         /* And we're up. Go go go! */
2649         of_iommu_set_ops(dev->of_node, &arm_smmu_ops);
2650 #ifdef CONFIG_PCI
2651         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2652                 pci_request_acs();
2653                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2654                 if (ret)
2655                         return ret;
2656         }
2657 #endif
2658 #ifdef CONFIG_ARM_AMBA
2659         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2660                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2661                 if (ret)
2662                         return ret;
2663         }
2664 #endif
2665         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2666                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2667                 if (ret)
2668                         return ret;
2669         }
2670         return 0;
2671 }
2672
2673 static int arm_smmu_device_remove(struct platform_device *pdev)
2674 {
2675         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2676
2677         arm_smmu_device_disable(smmu);
2678         return 0;
2679 }
2680
2681 static struct of_device_id arm_smmu_of_match[] = {
2682         { .compatible = "arm,smmu-v3", },
2683         { },
2684 };
2685 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2686
2687 static struct platform_driver arm_smmu_driver = {
2688         .driver = {
2689                 .name           = "arm-smmu-v3",
2690                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2691         },
2692         .probe  = arm_smmu_device_dt_probe,
2693         .remove = arm_smmu_device_remove,
2694 };
2695
2696 static int __init arm_smmu_init(void)
2697 {
2698         static bool registered;
2699         int ret = 0;
2700
2701         if (!registered) {
2702                 ret = platform_driver_register(&arm_smmu_driver);
2703                 registered = !ret;
2704         }
2705         return ret;
2706 }
2707
2708 static void __exit arm_smmu_exit(void)
2709 {
2710         return platform_driver_unregister(&arm_smmu_driver);
2711 }
2712
2713 subsys_initcall(arm_smmu_init);
2714 module_exit(arm_smmu_exit);
2715
2716 static int __init arm_smmu_of_init(struct device_node *np)
2717 {
2718         int ret = arm_smmu_init();
2719
2720         if (ret)
2721                 return ret;
2722
2723         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2724                 return -ENODEV;
2725
2726         return 0;
2727 }
2728 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2729
2730 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2731 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2732 MODULE_LICENSE("GPL v2");