GNU Linux-libre 4.14.303-gnu1
[releases.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_R                  (1UL << 45)
320 #define CTXDESC_CD_0_A                  (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT         47
322 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT         48
325 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT         4
328 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT         0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
334         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
335          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS                 2
339 #define CMDQ_MAX_SZ_SHIFT               8
340
341 #define CMDQ_ERR_SHIFT                  24
342 #define CMDQ_ERR_MASK                   0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX        0
344 #define CMDQ_ERR_CERROR_ILL_IDX         1
345 #define CMDQ_ERR_CERROR_ABT_IDX         2
346
347 #define CMDQ_0_OP_SHIFT                 0
348 #define CMDQ_0_OP_MASK                  0xffUL
349 #define CMDQ_0_SSV                      (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT       32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
353 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT           32
356 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT         0
359 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT          32
362 #define CMDQ_TLBI_0_ASID_SHIFT          48
363 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT           12
368 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT            32
370 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT          0
372 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT           12
374 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT            12
379 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS                 4
384 #define EVTQ_MAX_SZ_SHIFT               7
385
386 #define EVTQ_0_ID_SHIFT                 0
387 #define EVTQ_0_ID_MASK                  0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS                 2
391 #define PRIQ_MAX_SZ_SHIFT               8
392
393 #define PRIQ_0_SID_SHIFT                0
394 #define PRIQ_0_SID_MASK                 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT               32
396 #define PRIQ_0_SSID_MASK                0xfffffUL
397 #define PRIQ_0_PERM_PRIV                (1UL << 58)
398 #define PRIQ_0_PERM_EXEC                (1UL << 59)
399 #define PRIQ_0_PERM_READ                (1UL << 60)
400 #define PRIQ_0_PERM_WRITE               (1UL << 61)
401 #define PRIQ_0_PRG_LAST                 (1UL << 62)
402 #define PRIQ_0_SSID_V                   (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT            0
405 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT               12
407 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US        100
411 #define ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US  1000000 /* 1s! */
412
413 #define MSI_IOVA_BASE                   0x8000000
414 #define MSI_IOVA_LENGTH                 0x100000
415
416 /* Until ACPICA headers cover IORT rev. C */
417 #ifndef ACPI_IORT_SMMU_HISILICON_HI161X
418 #define ACPI_IORT_SMMU_HISILICON_HI161X         0x1
419 #endif
420
421 #ifndef ACPI_IORT_SMMU_V3_CAVIUM_CN99XX
422 #define ACPI_IORT_SMMU_V3_CAVIUM_CN99XX         0x2
423 #endif
424
425 static bool disable_bypass;
426 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
427 MODULE_PARM_DESC(disable_bypass,
428         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
429
430 enum pri_resp {
431         PRI_RESP_DENY,
432         PRI_RESP_FAIL,
433         PRI_RESP_SUCC,
434 };
435
436 enum arm_smmu_msi_index {
437         EVTQ_MSI_INDEX,
438         GERROR_MSI_INDEX,
439         PRIQ_MSI_INDEX,
440         ARM_SMMU_MAX_MSIS,
441 };
442
443 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
444         [EVTQ_MSI_INDEX] = {
445                 ARM_SMMU_EVTQ_IRQ_CFG0,
446                 ARM_SMMU_EVTQ_IRQ_CFG1,
447                 ARM_SMMU_EVTQ_IRQ_CFG2,
448         },
449         [GERROR_MSI_INDEX] = {
450                 ARM_SMMU_GERROR_IRQ_CFG0,
451                 ARM_SMMU_GERROR_IRQ_CFG1,
452                 ARM_SMMU_GERROR_IRQ_CFG2,
453         },
454         [PRIQ_MSI_INDEX] = {
455                 ARM_SMMU_PRIQ_IRQ_CFG0,
456                 ARM_SMMU_PRIQ_IRQ_CFG1,
457                 ARM_SMMU_PRIQ_IRQ_CFG2,
458         },
459 };
460
461 struct arm_smmu_cmdq_ent {
462         /* Common fields */
463         u8                              opcode;
464         bool                            substream_valid;
465
466         /* Command-specific fields */
467         union {
468                 #define CMDQ_OP_PREFETCH_CFG    0x1
469                 struct {
470                         u32                     sid;
471                         u8                      size;
472                         u64                     addr;
473                 } prefetch;
474
475                 #define CMDQ_OP_CFGI_STE        0x3
476                 #define CMDQ_OP_CFGI_ALL        0x4
477                 struct {
478                         u32                     sid;
479                         union {
480                                 bool            leaf;
481                                 u8              span;
482                         };
483                 } cfgi;
484
485                 #define CMDQ_OP_TLBI_NH_ASID    0x11
486                 #define CMDQ_OP_TLBI_NH_VA      0x12
487                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
488                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
489                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
490                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
491                 struct {
492                         u16                     asid;
493                         u16                     vmid;
494                         bool                    leaf;
495                         u64                     addr;
496                 } tlbi;
497
498                 #define CMDQ_OP_PRI_RESP        0x41
499                 struct {
500                         u32                     sid;
501                         u32                     ssid;
502                         u16                     grpid;
503                         enum pri_resp           resp;
504                 } pri;
505
506                 #define CMDQ_OP_CMD_SYNC        0x46
507         };
508 };
509
510 struct arm_smmu_queue {
511         int                             irq; /* Wired interrupt */
512
513         __le64                          *base;
514         dma_addr_t                      base_dma;
515         u64                             q_base;
516
517         size_t                          ent_dwords;
518         u32                             max_n_shift;
519         u32                             prod;
520         u32                             cons;
521
522         u32 __iomem                     *prod_reg;
523         u32 __iomem                     *cons_reg;
524 };
525
526 struct arm_smmu_cmdq {
527         struct arm_smmu_queue           q;
528         spinlock_t                      lock;
529 };
530
531 struct arm_smmu_evtq {
532         struct arm_smmu_queue           q;
533         u32                             max_stalls;
534 };
535
536 struct arm_smmu_priq {
537         struct arm_smmu_queue           q;
538 };
539
540 /* High-level stream table and context descriptor structures */
541 struct arm_smmu_strtab_l1_desc {
542         u8                              span;
543
544         __le64                          *l2ptr;
545         dma_addr_t                      l2ptr_dma;
546 };
547
548 struct arm_smmu_s1_cfg {
549         __le64                          *cdptr;
550         dma_addr_t                      cdptr_dma;
551
552         struct arm_smmu_ctx_desc {
553                 u16     asid;
554                 u64     ttbr;
555                 u64     tcr;
556                 u64     mair;
557         }                               cd;
558 };
559
560 struct arm_smmu_s2_cfg {
561         u16                             vmid;
562         u64                             vttbr;
563         u64                             vtcr;
564 };
565
566 struct arm_smmu_strtab_ent {
567         /*
568          * An STE is "assigned" if the master emitting the corresponding SID
569          * is attached to a domain. The behaviour of an unassigned STE is
570          * determined by the disable_bypass parameter, whereas an assigned
571          * STE behaves according to s1_cfg/s2_cfg, which themselves are
572          * configured according to the domain type.
573          */
574         bool                            assigned;
575         struct arm_smmu_s1_cfg          *s1_cfg;
576         struct arm_smmu_s2_cfg          *s2_cfg;
577 };
578
579 struct arm_smmu_strtab_cfg {
580         __le64                          *strtab;
581         dma_addr_t                      strtab_dma;
582         struct arm_smmu_strtab_l1_desc  *l1_desc;
583         unsigned int                    num_l1_ents;
584
585         u64                             strtab_base;
586         u32                             strtab_base_cfg;
587 };
588
589 /* An SMMUv3 instance */
590 struct arm_smmu_device {
591         struct device                   *dev;
592         void __iomem                    *base;
593
594 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
595 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
596 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
597 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
598 #define ARM_SMMU_FEAT_PRI               (1 << 4)
599 #define ARM_SMMU_FEAT_ATS               (1 << 5)
600 #define ARM_SMMU_FEAT_SEV               (1 << 6)
601 #define ARM_SMMU_FEAT_MSI               (1 << 7)
602 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
603 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
604 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
605 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
606 #define ARM_SMMU_FEAT_HYP               (1 << 12)
607         u32                             features;
608
609 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
610 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY    (1 << 1)
611         u32                             options;
612
613         struct arm_smmu_cmdq            cmdq;
614         struct arm_smmu_evtq            evtq;
615         struct arm_smmu_priq            priq;
616
617         int                             gerr_irq;
618         int                             combined_irq;
619
620         unsigned long                   ias; /* IPA */
621         unsigned long                   oas; /* PA */
622         unsigned long                   pgsize_bitmap;
623
624 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
625         unsigned int                    asid_bits;
626         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
627
628 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
629         unsigned int                    vmid_bits;
630         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
631
632         unsigned int                    ssid_bits;
633         unsigned int                    sid_bits;
634
635         struct arm_smmu_strtab_cfg      strtab_cfg;
636
637         /* IOMMU core code handle */
638         struct iommu_device             iommu;
639 };
640
641 /* SMMU private data for each master */
642 struct arm_smmu_master_data {
643         struct arm_smmu_device          *smmu;
644         struct arm_smmu_strtab_ent      ste;
645 };
646
647 /* SMMU private data for an IOMMU domain */
648 enum arm_smmu_domain_stage {
649         ARM_SMMU_DOMAIN_S1 = 0,
650         ARM_SMMU_DOMAIN_S2,
651         ARM_SMMU_DOMAIN_NESTED,
652         ARM_SMMU_DOMAIN_BYPASS,
653 };
654
655 struct arm_smmu_domain {
656         struct arm_smmu_device          *smmu;
657         struct mutex                    init_mutex; /* Protects smmu pointer */
658
659         struct io_pgtable_ops           *pgtbl_ops;
660
661         enum arm_smmu_domain_stage      stage;
662         union {
663                 struct arm_smmu_s1_cfg  s1_cfg;
664                 struct arm_smmu_s2_cfg  s2_cfg;
665         };
666
667         struct iommu_domain             domain;
668 };
669
670 struct arm_smmu_option_prop {
671         u32 opt;
672         const char *prop;
673 };
674
675 static struct arm_smmu_option_prop arm_smmu_options[] = {
676         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
677         { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
678         { 0, NULL},
679 };
680
681 static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
682                                                  struct arm_smmu_device *smmu)
683 {
684         if ((offset > SZ_64K) &&
685             (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
686                 offset -= SZ_64K;
687
688         return smmu->base + offset;
689 }
690
691 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
692 {
693         return container_of(dom, struct arm_smmu_domain, domain);
694 }
695
696 static void parse_driver_options(struct arm_smmu_device *smmu)
697 {
698         int i = 0;
699
700         do {
701                 if (of_property_read_bool(smmu->dev->of_node,
702                                                 arm_smmu_options[i].prop)) {
703                         smmu->options |= arm_smmu_options[i].opt;
704                         dev_notice(smmu->dev, "option %s\n",
705                                 arm_smmu_options[i].prop);
706                 }
707         } while (arm_smmu_options[++i].opt);
708 }
709
710 /* Low-level queue manipulation functions */
711 static bool queue_full(struct arm_smmu_queue *q)
712 {
713         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
714                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
715 }
716
717 static bool queue_empty(struct arm_smmu_queue *q)
718 {
719         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
720                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
721 }
722
723 static void queue_sync_cons(struct arm_smmu_queue *q)
724 {
725         q->cons = readl_relaxed(q->cons_reg);
726 }
727
728 static void queue_inc_cons(struct arm_smmu_queue *q)
729 {
730         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
731
732         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
733
734         /*
735          * Ensure that all CPU accesses (reads and writes) to the queue
736          * are complete before we update the cons pointer.
737          */
738         mb();
739         writel_relaxed(q->cons, q->cons_reg);
740 }
741
742 static int queue_sync_prod(struct arm_smmu_queue *q)
743 {
744         int ret = 0;
745         u32 prod = readl_relaxed(q->prod_reg);
746
747         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
748                 ret = -EOVERFLOW;
749
750         q->prod = prod;
751         return ret;
752 }
753
754 static void queue_inc_prod(struct arm_smmu_queue *q)
755 {
756         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
757
758         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
759         writel(q->prod, q->prod_reg);
760 }
761
762 /*
763  * Wait for the SMMU to consume items. If drain is true, wait until the queue
764  * is empty. Otherwise, wait until there is at least one free slot.
765  */
766 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
767 {
768         ktime_t timeout;
769         unsigned int delay = 1;
770
771         /* Wait longer if it's queue drain */
772         timeout = ktime_add_us(ktime_get(), drain ?
773                                             ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US :
774                                             ARM_SMMU_POLL_TIMEOUT_US);
775
776         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
777                 if (ktime_compare(ktime_get(), timeout) > 0)
778                         return -ETIMEDOUT;
779
780                 if (wfe) {
781                         wfe();
782                 } else {
783                         cpu_relax();
784                         udelay(delay);
785                         delay *= 2;
786                 }
787         }
788
789         return 0;
790 }
791
792 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
793 {
794         int i;
795
796         for (i = 0; i < n_dwords; ++i)
797                 *dst++ = cpu_to_le64(*src++);
798 }
799
800 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
801 {
802         if (queue_full(q))
803                 return -ENOSPC;
804
805         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
806         queue_inc_prod(q);
807         return 0;
808 }
809
810 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
811 {
812         int i;
813
814         for (i = 0; i < n_dwords; ++i)
815                 *dst++ = le64_to_cpu(*src++);
816 }
817
818 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
819 {
820         if (queue_empty(q))
821                 return -EAGAIN;
822
823         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
824         queue_inc_cons(q);
825         return 0;
826 }
827
828 /* High-level queue accessors */
829 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
830 {
831         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
832         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
833
834         switch (ent->opcode) {
835         case CMDQ_OP_TLBI_EL2_ALL:
836         case CMDQ_OP_TLBI_NSNH_ALL:
837                 break;
838         case CMDQ_OP_PREFETCH_CFG:
839                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
840                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
841                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
842                 break;
843         case CMDQ_OP_CFGI_STE:
844                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
845                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
846                 break;
847         case CMDQ_OP_CFGI_ALL:
848                 /* Cover the entire SID range */
849                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
850                 break;
851         case CMDQ_OP_TLBI_NH_VA:
852                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
853                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
854                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
855                 break;
856         case CMDQ_OP_TLBI_S2_IPA:
857                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
858                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
859                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
860                 break;
861         case CMDQ_OP_TLBI_NH_ASID:
862                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
863                 /* Fallthrough */
864         case CMDQ_OP_TLBI_S12_VMALL:
865                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
866                 break;
867         case CMDQ_OP_PRI_RESP:
868                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
869                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
870                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
871                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
872                 switch (ent->pri.resp) {
873                 case PRI_RESP_DENY:
874                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
875                         break;
876                 case PRI_RESP_FAIL:
877                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
878                         break;
879                 case PRI_RESP_SUCC:
880                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
881                         break;
882                 default:
883                         return -EINVAL;
884                 }
885                 break;
886         case CMDQ_OP_CMD_SYNC:
887                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
888                 break;
889         default:
890                 return -ENOENT;
891         }
892
893         return 0;
894 }
895
896 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
897 {
898         static const char *cerror_str[] = {
899                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
900                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
901                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
902         };
903
904         int i;
905         u64 cmd[CMDQ_ENT_DWORDS];
906         struct arm_smmu_queue *q = &smmu->cmdq.q;
907         u32 cons = readl_relaxed(q->cons_reg);
908         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
909         struct arm_smmu_cmdq_ent cmd_sync = {
910                 .opcode = CMDQ_OP_CMD_SYNC,
911         };
912
913         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
914                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
915
916         switch (idx) {
917         case CMDQ_ERR_CERROR_ABT_IDX:
918                 dev_err(smmu->dev, "retrying command fetch\n");
919         case CMDQ_ERR_CERROR_NONE_IDX:
920                 return;
921         case CMDQ_ERR_CERROR_ILL_IDX:
922                 /* Fallthrough */
923         default:
924                 break;
925         }
926
927         /*
928          * We may have concurrent producers, so we need to be careful
929          * not to touch any of the shadow cmdq state.
930          */
931         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
932         dev_err(smmu->dev, "skipping command in error state:\n");
933         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
934                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
935
936         /* Convert the erroneous command into a CMD_SYNC */
937         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
938                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
939                 return;
940         }
941
942         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
943 }
944
945 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
946                                     struct arm_smmu_cmdq_ent *ent)
947 {
948         u64 cmd[CMDQ_ENT_DWORDS];
949         unsigned long flags;
950         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
951         struct arm_smmu_queue *q = &smmu->cmdq.q;
952
953         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
954                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
955                          ent->opcode);
956                 return;
957         }
958
959         spin_lock_irqsave(&smmu->cmdq.lock, flags);
960         while (queue_insert_raw(q, cmd) == -ENOSPC) {
961                 if (queue_poll_cons(q, false, wfe))
962                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
963         }
964
965         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
966                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
967         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
968 }
969
970 /* Context descriptor manipulation functions */
971 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
972 {
973         u64 val = 0;
974
975         /* Repack the TCR. Just care about TTBR0 for now */
976         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
977         val |= ARM_SMMU_TCR2CD(tcr, TG0);
978         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
979         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
980         val |= ARM_SMMU_TCR2CD(tcr, SH0);
981         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
982         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
983         val |= ARM_SMMU_TCR2CD(tcr, IPS);
984         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
985
986         return val;
987 }
988
989 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
990                                     struct arm_smmu_s1_cfg *cfg)
991 {
992         u64 val;
993
994         /*
995          * We don't need to issue any invalidation here, as we'll invalidate
996          * the STE when installing the new entry anyway.
997          */
998         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
999 #ifdef __BIG_ENDIAN
1000               CTXDESC_CD_0_ENDI |
1001 #endif
1002               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
1003               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
1004               CTXDESC_CD_0_V;
1005         cfg->cdptr[0] = cpu_to_le64(val);
1006
1007         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
1008         cfg->cdptr[1] = cpu_to_le64(val);
1009
1010         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
1011 }
1012
1013 /* Stream table manipulation functions */
1014 static void
1015 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1016 {
1017         u64 val = 0;
1018
1019         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
1020                 << STRTAB_L1_DESC_SPAN_SHIFT;
1021         val |= desc->l2ptr_dma &
1022                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
1023
1024         *dst = cpu_to_le64(val);
1025 }
1026
1027 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1028 {
1029         struct arm_smmu_cmdq_ent cmd = {
1030                 .opcode = CMDQ_OP_CFGI_STE,
1031                 .cfgi   = {
1032                         .sid    = sid,
1033                         .leaf   = true,
1034                 },
1035         };
1036
1037         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1038         cmd.opcode = CMDQ_OP_CMD_SYNC;
1039         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1040 }
1041
1042 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1043                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1044 {
1045         /*
1046          * This is hideously complicated, but we only really care about
1047          * three cases at the moment:
1048          *
1049          * 1. Invalid (all zero) -> bypass/fault (init)
1050          * 2. Bypass/fault -> translation/bypass (attach)
1051          * 3. Translation/bypass -> bypass/fault (detach)
1052          *
1053          * Given that we can't update the STE atomically and the SMMU
1054          * doesn't read the thing in a defined order, that leaves us
1055          * with the following maintenance requirements:
1056          *
1057          * 1. Update Config, return (init time STEs aren't live)
1058          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1059          * 3. Update Config, sync
1060          */
1061         u64 val = le64_to_cpu(dst[0]);
1062         bool ste_live = false;
1063         struct arm_smmu_cmdq_ent prefetch_cmd = {
1064                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1065                 .prefetch       = {
1066                         .sid    = sid,
1067                 },
1068         };
1069
1070         if (val & STRTAB_STE_0_V) {
1071                 u64 cfg;
1072
1073                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1074                 switch (cfg) {
1075                 case STRTAB_STE_0_CFG_BYPASS:
1076                         break;
1077                 case STRTAB_STE_0_CFG_S1_TRANS:
1078                 case STRTAB_STE_0_CFG_S2_TRANS:
1079                         ste_live = true;
1080                         break;
1081                 case STRTAB_STE_0_CFG_ABORT:
1082                         if (disable_bypass)
1083                                 break;
1084                 default:
1085                         BUG(); /* STE corruption */
1086                 }
1087         }
1088
1089         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1090         val = STRTAB_STE_0_V;
1091
1092         /* Bypass/fault */
1093         if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1094                 if (!ste->assigned && disable_bypass)
1095                         val |= STRTAB_STE_0_CFG_ABORT;
1096                 else
1097                         val |= STRTAB_STE_0_CFG_BYPASS;
1098
1099                 dst[0] = cpu_to_le64(val);
1100                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1101                          << STRTAB_STE_1_SHCFG_SHIFT);
1102                 dst[2] = 0; /* Nuke the VMID */
1103                 if (ste_live)
1104                         arm_smmu_sync_ste_for_sid(smmu, sid);
1105                 return;
1106         }
1107
1108         if (ste->s1_cfg) {
1109                 BUG_ON(ste_live);
1110                 dst[1] = cpu_to_le64(
1111                          STRTAB_STE_1_S1C_CACHE_WBRA
1112                          << STRTAB_STE_1_S1CIR_SHIFT |
1113                          STRTAB_STE_1_S1C_CACHE_WBRA
1114                          << STRTAB_STE_1_S1COR_SHIFT |
1115                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1116 #ifdef CONFIG_PCI_ATS
1117                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1118 #endif
1119                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1120
1121                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1122                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1123
1124                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1125                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1126                         STRTAB_STE_0_CFG_S1_TRANS;
1127         }
1128
1129         if (ste->s2_cfg) {
1130                 BUG_ON(ste_live);
1131                 dst[2] = cpu_to_le64(
1132                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1133                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1134                           << STRTAB_STE_2_VTCR_SHIFT |
1135 #ifdef __BIG_ENDIAN
1136                          STRTAB_STE_2_S2ENDI |
1137 #endif
1138                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1139                          STRTAB_STE_2_S2R);
1140
1141                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1142                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1143
1144                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1145         }
1146
1147         arm_smmu_sync_ste_for_sid(smmu, sid);
1148         /* See comment in arm_smmu_write_ctx_desc() */
1149         WRITE_ONCE(dst[0], cpu_to_le64(val));
1150         arm_smmu_sync_ste_for_sid(smmu, sid);
1151
1152         /* It's likely that we'll want to use the new STE soon */
1153         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1154                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1155 }
1156
1157 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1158 {
1159         unsigned int i;
1160         struct arm_smmu_strtab_ent ste = { .assigned = false };
1161
1162         for (i = 0; i < nent; ++i) {
1163                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1164                 strtab += STRTAB_STE_DWORDS;
1165         }
1166 }
1167
1168 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1169 {
1170         size_t size;
1171         void *strtab;
1172         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1173         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1174
1175         if (desc->l2ptr)
1176                 return 0;
1177
1178         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1179         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1180
1181         desc->span = STRTAB_SPLIT + 1;
1182         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1183                                           GFP_KERNEL | __GFP_ZERO);
1184         if (!desc->l2ptr) {
1185                 dev_err(smmu->dev,
1186                         "failed to allocate l2 stream table for SID %u\n",
1187                         sid);
1188                 return -ENOMEM;
1189         }
1190
1191         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1192         arm_smmu_write_strtab_l1_desc(strtab, desc);
1193         return 0;
1194 }
1195
1196 /* IRQ and event handlers */
1197 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1198 {
1199         int i;
1200         struct arm_smmu_device *smmu = dev;
1201         struct arm_smmu_queue *q = &smmu->evtq.q;
1202         u64 evt[EVTQ_ENT_DWORDS];
1203
1204         do {
1205                 while (!queue_remove_raw(q, evt)) {
1206                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1207
1208                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1209                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1210                                 dev_info(smmu->dev, "\t0x%016llx\n",
1211                                          (unsigned long long)evt[i]);
1212
1213                         cond_resched();
1214                 }
1215
1216                 /*
1217                  * Not much we can do on overflow, so scream and pretend we're
1218                  * trying harder.
1219                  */
1220                 if (queue_sync_prod(q) == -EOVERFLOW)
1221                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1222         } while (!queue_empty(q));
1223
1224         /* Sync our overflow flag, as we believe we're up to speed */
1225         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1226         return IRQ_HANDLED;
1227 }
1228
1229 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1230 {
1231         u32 sid, ssid;
1232         u16 grpid;
1233         bool ssv, last;
1234
1235         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1236         ssv = evt[0] & PRIQ_0_SSID_V;
1237         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1238         last = evt[0] & PRIQ_0_PRG_LAST;
1239         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1240
1241         dev_info(smmu->dev, "unexpected PRI request received:\n");
1242         dev_info(smmu->dev,
1243                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1244                  sid, ssid, grpid, last ? "L" : "",
1245                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1246                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1247                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1248                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1249                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1250
1251         if (last) {
1252                 struct arm_smmu_cmdq_ent cmd = {
1253                         .opcode                 = CMDQ_OP_PRI_RESP,
1254                         .substream_valid        = ssv,
1255                         .pri                    = {
1256                                 .sid    = sid,
1257                                 .ssid   = ssid,
1258                                 .grpid  = grpid,
1259                                 .resp   = PRI_RESP_DENY,
1260                         },
1261                 };
1262
1263                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1264         }
1265 }
1266
1267 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1268 {
1269         struct arm_smmu_device *smmu = dev;
1270         struct arm_smmu_queue *q = &smmu->priq.q;
1271         u64 evt[PRIQ_ENT_DWORDS];
1272
1273         do {
1274                 while (!queue_remove_raw(q, evt))
1275                         arm_smmu_handle_ppr(smmu, evt);
1276
1277                 if (queue_sync_prod(q) == -EOVERFLOW)
1278                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1279         } while (!queue_empty(q));
1280
1281         /* Sync our overflow flag, as we believe we're up to speed */
1282         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1283         writel(q->cons, q->cons_reg);
1284         return IRQ_HANDLED;
1285 }
1286
1287 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1288 {
1289         /* We don't actually use CMD_SYNC interrupts for anything */
1290         return IRQ_HANDLED;
1291 }
1292
1293 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1294
1295 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1296 {
1297         u32 gerror, gerrorn, active;
1298         struct arm_smmu_device *smmu = dev;
1299
1300         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1301         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1302
1303         active = gerror ^ gerrorn;
1304         if (!(active & GERROR_ERR_MASK))
1305                 return IRQ_NONE; /* No errors pending */
1306
1307         dev_warn(smmu->dev,
1308                  "unexpected global error reported (0x%08x), this could be serious\n",
1309                  active);
1310
1311         if (active & GERROR_SFM_ERR) {
1312                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1313                 arm_smmu_device_disable(smmu);
1314         }
1315
1316         if (active & GERROR_MSI_GERROR_ABT_ERR)
1317                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1318
1319         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1320                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1321
1322         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1323                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1324
1325         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1326                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1327                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1328         }
1329
1330         if (active & GERROR_PRIQ_ABT_ERR)
1331                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1332
1333         if (active & GERROR_EVTQ_ABT_ERR)
1334                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1335
1336         if (active & GERROR_CMDQ_ERR)
1337                 arm_smmu_cmdq_skip_err(smmu);
1338
1339         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1340         return IRQ_HANDLED;
1341 }
1342
1343 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1344 {
1345         struct arm_smmu_device *smmu = dev;
1346
1347         arm_smmu_evtq_thread(irq, dev);
1348         if (smmu->features & ARM_SMMU_FEAT_PRI)
1349                 arm_smmu_priq_thread(irq, dev);
1350
1351         return IRQ_HANDLED;
1352 }
1353
1354 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1355 {
1356         arm_smmu_gerror_handler(irq, dev);
1357         arm_smmu_cmdq_sync_handler(irq, dev);
1358         return IRQ_WAKE_THREAD;
1359 }
1360
1361 /* IO_PGTABLE API */
1362 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1363 {
1364         struct arm_smmu_cmdq_ent cmd;
1365
1366         cmd.opcode = CMDQ_OP_CMD_SYNC;
1367         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1368 }
1369
1370 static void arm_smmu_tlb_sync(void *cookie)
1371 {
1372         struct arm_smmu_domain *smmu_domain = cookie;
1373         __arm_smmu_tlb_sync(smmu_domain->smmu);
1374 }
1375
1376 static void arm_smmu_tlb_inv_context(void *cookie)
1377 {
1378         struct arm_smmu_domain *smmu_domain = cookie;
1379         struct arm_smmu_device *smmu = smmu_domain->smmu;
1380         struct arm_smmu_cmdq_ent cmd;
1381
1382         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1383                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1384                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1385                 cmd.tlbi.vmid   = 0;
1386         } else {
1387                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1388                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1389         }
1390
1391         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1392         __arm_smmu_tlb_sync(smmu);
1393 }
1394
1395 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1396                                           size_t granule, bool leaf, void *cookie)
1397 {
1398         struct arm_smmu_domain *smmu_domain = cookie;
1399         struct arm_smmu_device *smmu = smmu_domain->smmu;
1400         struct arm_smmu_cmdq_ent cmd = {
1401                 .tlbi = {
1402                         .leaf   = leaf,
1403                         .addr   = iova,
1404                 },
1405         };
1406
1407         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1408                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1409                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1410         } else {
1411                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1412                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1413         }
1414
1415         do {
1416                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1417                 cmd.tlbi.addr += granule;
1418         } while (size -= granule);
1419 }
1420
1421 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1422         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1423         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1424         .tlb_sync       = arm_smmu_tlb_sync,
1425 };
1426
1427 /* IOMMU API */
1428 static bool arm_smmu_capable(enum iommu_cap cap)
1429 {
1430         switch (cap) {
1431         case IOMMU_CAP_CACHE_COHERENCY:
1432                 return true;
1433         case IOMMU_CAP_NOEXEC:
1434                 return true;
1435         default:
1436                 return false;
1437         }
1438 }
1439
1440 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1441 {
1442         struct arm_smmu_domain *smmu_domain;
1443
1444         if (type != IOMMU_DOMAIN_UNMANAGED &&
1445             type != IOMMU_DOMAIN_DMA &&
1446             type != IOMMU_DOMAIN_IDENTITY)
1447                 return NULL;
1448
1449         /*
1450          * Allocate the domain and initialise some of its data structures.
1451          * We can't really do anything meaningful until we've added a
1452          * master.
1453          */
1454         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1455         if (!smmu_domain)
1456                 return NULL;
1457
1458         if (type == IOMMU_DOMAIN_DMA &&
1459             iommu_get_dma_cookie(&smmu_domain->domain)) {
1460                 kfree(smmu_domain);
1461                 return NULL;
1462         }
1463
1464         mutex_init(&smmu_domain->init_mutex);
1465         return &smmu_domain->domain;
1466 }
1467
1468 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1469 {
1470         int idx, size = 1 << span;
1471
1472         do {
1473                 idx = find_first_zero_bit(map, size);
1474                 if (idx == size)
1475                         return -ENOSPC;
1476         } while (test_and_set_bit(idx, map));
1477
1478         return idx;
1479 }
1480
1481 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1482 {
1483         clear_bit(idx, map);
1484 }
1485
1486 static void arm_smmu_domain_free(struct iommu_domain *domain)
1487 {
1488         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1489         struct arm_smmu_device *smmu = smmu_domain->smmu;
1490
1491         iommu_put_dma_cookie(domain);
1492         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1493
1494         /* Free the CD and ASID, if we allocated them */
1495         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1496                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1497
1498                 if (cfg->cdptr) {
1499                         dmam_free_coherent(smmu_domain->smmu->dev,
1500                                            CTXDESC_CD_DWORDS << 3,
1501                                            cfg->cdptr,
1502                                            cfg->cdptr_dma);
1503
1504                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1505                 }
1506         } else {
1507                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1508                 if (cfg->vmid)
1509                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1510         }
1511
1512         kfree(smmu_domain);
1513 }
1514
1515 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1516                                        struct io_pgtable_cfg *pgtbl_cfg)
1517 {
1518         int ret;
1519         int asid;
1520         struct arm_smmu_device *smmu = smmu_domain->smmu;
1521         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1522
1523         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1524         if (asid < 0)
1525                 return asid;
1526
1527         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1528                                          &cfg->cdptr_dma,
1529                                          GFP_KERNEL | __GFP_ZERO);
1530         if (!cfg->cdptr) {
1531                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1532                 ret = -ENOMEM;
1533                 goto out_free_asid;
1534         }
1535
1536         cfg->cd.asid    = (u16)asid;
1537         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1538         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1539         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1540         return 0;
1541
1542 out_free_asid:
1543         arm_smmu_bitmap_free(smmu->asid_map, asid);
1544         return ret;
1545 }
1546
1547 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1548                                        struct io_pgtable_cfg *pgtbl_cfg)
1549 {
1550         int vmid;
1551         struct arm_smmu_device *smmu = smmu_domain->smmu;
1552         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1553
1554         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1555         if (vmid < 0)
1556                 return vmid;
1557
1558         cfg->vmid       = (u16)vmid;
1559         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1560         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1561         return 0;
1562 }
1563
1564 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1565 {
1566         int ret;
1567         unsigned long ias, oas;
1568         enum io_pgtable_fmt fmt;
1569         struct io_pgtable_cfg pgtbl_cfg;
1570         struct io_pgtable_ops *pgtbl_ops;
1571         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1572                                  struct io_pgtable_cfg *);
1573         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1574         struct arm_smmu_device *smmu = smmu_domain->smmu;
1575
1576         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1577                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1578                 return 0;
1579         }
1580
1581         /* Restrict the stage to what we can actually support */
1582         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1583                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1584         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1585                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1586
1587         switch (smmu_domain->stage) {
1588         case ARM_SMMU_DOMAIN_S1:
1589                 ias = VA_BITS;
1590                 oas = smmu->ias;
1591                 fmt = ARM_64_LPAE_S1;
1592                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1593                 break;
1594         case ARM_SMMU_DOMAIN_NESTED:
1595         case ARM_SMMU_DOMAIN_S2:
1596                 ias = smmu->ias;
1597                 oas = smmu->oas;
1598                 fmt = ARM_64_LPAE_S2;
1599                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1600                 break;
1601         default:
1602                 return -EINVAL;
1603         }
1604
1605         pgtbl_cfg = (struct io_pgtable_cfg) {
1606                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1607                 .ias            = ias,
1608                 .oas            = oas,
1609                 .tlb            = &arm_smmu_gather_ops,
1610                 .iommu_dev      = smmu->dev,
1611         };
1612
1613         if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
1614                 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1615
1616         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1617         if (!pgtbl_ops)
1618                 return -ENOMEM;
1619
1620         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1621         domain->geometry.aperture_end = (1UL << ias) - 1;
1622         domain->geometry.force_aperture = true;
1623
1624         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1625         if (ret < 0) {
1626                 free_io_pgtable_ops(pgtbl_ops);
1627                 return ret;
1628         }
1629
1630         smmu_domain->pgtbl_ops = pgtbl_ops;
1631         return 0;
1632 }
1633
1634 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1635 {
1636         __le64 *step;
1637         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1638
1639         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1640                 struct arm_smmu_strtab_l1_desc *l1_desc;
1641                 int idx;
1642
1643                 /* Two-level walk */
1644                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1645                 l1_desc = &cfg->l1_desc[idx];
1646                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1647                 step = &l1_desc->l2ptr[idx];
1648         } else {
1649                 /* Simple linear lookup */
1650                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1651         }
1652
1653         return step;
1654 }
1655
1656 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1657 {
1658         int i, j;
1659         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1660         struct arm_smmu_device *smmu = master->smmu;
1661
1662         for (i = 0; i < fwspec->num_ids; ++i) {
1663                 u32 sid = fwspec->ids[i];
1664                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1665
1666                 /* Bridged PCI devices may end up with duplicated IDs */
1667                 for (j = 0; j < i; j++)
1668                         if (fwspec->ids[j] == sid)
1669                                 break;
1670                 if (j < i)
1671                         continue;
1672
1673                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1674         }
1675 }
1676
1677 static void arm_smmu_detach_dev(struct device *dev)
1678 {
1679         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1680
1681         master->ste.assigned = false;
1682         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1683 }
1684
1685 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1686 {
1687         int ret = 0;
1688         struct arm_smmu_device *smmu;
1689         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1690         struct arm_smmu_master_data *master;
1691         struct arm_smmu_strtab_ent *ste;
1692
1693         if (!dev->iommu_fwspec)
1694                 return -ENOENT;
1695
1696         master = dev->iommu_fwspec->iommu_priv;
1697         smmu = master->smmu;
1698         ste = &master->ste;
1699
1700         /* Already attached to a different domain? */
1701         if (ste->assigned)
1702                 arm_smmu_detach_dev(dev);
1703
1704         mutex_lock(&smmu_domain->init_mutex);
1705
1706         if (!smmu_domain->smmu) {
1707                 smmu_domain->smmu = smmu;
1708                 ret = arm_smmu_domain_finalise(domain);
1709                 if (ret) {
1710                         smmu_domain->smmu = NULL;
1711                         goto out_unlock;
1712                 }
1713         } else if (smmu_domain->smmu != smmu) {
1714                 dev_err(dev,
1715                         "cannot attach to SMMU %s (upstream of %s)\n",
1716                         dev_name(smmu_domain->smmu->dev),
1717                         dev_name(smmu->dev));
1718                 ret = -ENXIO;
1719                 goto out_unlock;
1720         }
1721
1722         ste->assigned = true;
1723
1724         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1725                 ste->s1_cfg = NULL;
1726                 ste->s2_cfg = NULL;
1727         } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1728                 ste->s1_cfg = &smmu_domain->s1_cfg;
1729                 ste->s2_cfg = NULL;
1730                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1731         } else {
1732                 ste->s1_cfg = NULL;
1733                 ste->s2_cfg = &smmu_domain->s2_cfg;
1734         }
1735
1736         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1737 out_unlock:
1738         mutex_unlock(&smmu_domain->init_mutex);
1739         return ret;
1740 }
1741
1742 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1743                         phys_addr_t paddr, size_t size, int prot)
1744 {
1745         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1746
1747         if (!ops)
1748                 return -ENODEV;
1749
1750         return ops->map(ops, iova, paddr, size, prot);
1751 }
1752
1753 static size_t
1754 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1755 {
1756         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1757
1758         if (!ops)
1759                 return 0;
1760
1761         return ops->unmap(ops, iova, size);
1762 }
1763
1764 static phys_addr_t
1765 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1766 {
1767         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1768
1769         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1770                 return iova;
1771
1772         if (!ops)
1773                 return 0;
1774
1775         return ops->iova_to_phys(ops, iova);
1776 }
1777
1778 static struct platform_driver arm_smmu_driver;
1779
1780 static int arm_smmu_match_node(struct device *dev, void *data)
1781 {
1782         return dev->fwnode == data;
1783 }
1784
1785 static
1786 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1787 {
1788         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1789                                                 fwnode, arm_smmu_match_node);
1790         put_device(dev);
1791         return dev ? dev_get_drvdata(dev) : NULL;
1792 }
1793
1794 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1795 {
1796         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1797
1798         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1799                 limit *= 1UL << STRTAB_SPLIT;
1800
1801         return sid < limit;
1802 }
1803
1804 static struct iommu_ops arm_smmu_ops;
1805
1806 static int arm_smmu_add_device(struct device *dev)
1807 {
1808         int i, ret;
1809         struct arm_smmu_device *smmu;
1810         struct arm_smmu_master_data *master;
1811         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1812         struct iommu_group *group;
1813
1814         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1815                 return -ENODEV;
1816         /*
1817          * We _can_ actually withstand dodgy bus code re-calling add_device()
1818          * without an intervening remove_device()/of_xlate() sequence, but
1819          * we're not going to do so quietly...
1820          */
1821         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1822                 master = fwspec->iommu_priv;
1823                 smmu = master->smmu;
1824         } else {
1825                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1826                 if (!smmu)
1827                         return -ENODEV;
1828                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1829                 if (!master)
1830                         return -ENOMEM;
1831
1832                 master->smmu = smmu;
1833                 fwspec->iommu_priv = master;
1834         }
1835
1836         /* Check the SIDs are in range of the SMMU and our stream table */
1837         for (i = 0; i < fwspec->num_ids; i++) {
1838                 u32 sid = fwspec->ids[i];
1839
1840                 if (!arm_smmu_sid_in_range(smmu, sid))
1841                         return -ERANGE;
1842
1843                 /* Ensure l2 strtab is initialised */
1844                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1845                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1846                         if (ret)
1847                                 return ret;
1848                 }
1849         }
1850
1851         group = iommu_group_get_for_dev(dev);
1852         if (!IS_ERR(group)) {
1853                 iommu_group_put(group);
1854                 iommu_device_link(&smmu->iommu, dev);
1855         }
1856
1857         return PTR_ERR_OR_ZERO(group);
1858 }
1859
1860 static void arm_smmu_remove_device(struct device *dev)
1861 {
1862         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1863         struct arm_smmu_master_data *master;
1864         struct arm_smmu_device *smmu;
1865
1866         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1867                 return;
1868
1869         master = fwspec->iommu_priv;
1870         smmu = master->smmu;
1871         if (master && master->ste.assigned)
1872                 arm_smmu_detach_dev(dev);
1873         iommu_group_remove_device(dev);
1874         iommu_device_unlink(&smmu->iommu, dev);
1875         kfree(master);
1876         iommu_fwspec_free(dev);
1877 }
1878
1879 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1880 {
1881         struct iommu_group *group;
1882
1883         /*
1884          * We don't support devices sharing stream IDs other than PCI RID
1885          * aliases, since the necessary ID-to-device lookup becomes rather
1886          * impractical given a potential sparse 32-bit stream ID space.
1887          */
1888         if (dev_is_pci(dev))
1889                 group = pci_device_group(dev);
1890         else
1891                 group = generic_device_group(dev);
1892
1893         return group;
1894 }
1895
1896 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1897                                     enum iommu_attr attr, void *data)
1898 {
1899         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1900
1901         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1902                 return -EINVAL;
1903
1904         switch (attr) {
1905         case DOMAIN_ATTR_NESTING:
1906                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1907                 return 0;
1908         default:
1909                 return -ENODEV;
1910         }
1911 }
1912
1913 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1914                                     enum iommu_attr attr, void *data)
1915 {
1916         int ret = 0;
1917         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1918
1919         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1920                 return -EINVAL;
1921
1922         mutex_lock(&smmu_domain->init_mutex);
1923
1924         switch (attr) {
1925         case DOMAIN_ATTR_NESTING:
1926                 if (smmu_domain->smmu) {
1927                         ret = -EPERM;
1928                         goto out_unlock;
1929                 }
1930
1931                 if (*(int *)data)
1932                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1933                 else
1934                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1935
1936                 break;
1937         default:
1938                 ret = -ENODEV;
1939         }
1940
1941 out_unlock:
1942         mutex_unlock(&smmu_domain->init_mutex);
1943         return ret;
1944 }
1945
1946 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1947 {
1948         return iommu_fwspec_add_ids(dev, args->args, 1);
1949 }
1950
1951 static void arm_smmu_get_resv_regions(struct device *dev,
1952                                       struct list_head *head)
1953 {
1954         struct iommu_resv_region *region;
1955         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1956
1957         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1958                                          prot, IOMMU_RESV_SW_MSI);
1959         if (!region)
1960                 return;
1961
1962         list_add_tail(&region->list, head);
1963
1964         iommu_dma_get_resv_regions(dev, head);
1965 }
1966
1967 static void arm_smmu_put_resv_regions(struct device *dev,
1968                                       struct list_head *head)
1969 {
1970         struct iommu_resv_region *entry, *next;
1971
1972         list_for_each_entry_safe(entry, next, head, list)
1973                 kfree(entry);
1974 }
1975
1976 static struct iommu_ops arm_smmu_ops = {
1977         .capable                = arm_smmu_capable,
1978         .domain_alloc           = arm_smmu_domain_alloc,
1979         .domain_free            = arm_smmu_domain_free,
1980         .attach_dev             = arm_smmu_attach_dev,
1981         .map                    = arm_smmu_map,
1982         .unmap                  = arm_smmu_unmap,
1983         .map_sg                 = default_iommu_map_sg,
1984         .iova_to_phys           = arm_smmu_iova_to_phys,
1985         .add_device             = arm_smmu_add_device,
1986         .remove_device          = arm_smmu_remove_device,
1987         .device_group           = arm_smmu_device_group,
1988         .domain_get_attr        = arm_smmu_domain_get_attr,
1989         .domain_set_attr        = arm_smmu_domain_set_attr,
1990         .of_xlate               = arm_smmu_of_xlate,
1991         .get_resv_regions       = arm_smmu_get_resv_regions,
1992         .put_resv_regions       = arm_smmu_put_resv_regions,
1993         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1994 };
1995
1996 /* Probing and initialisation functions */
1997 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1998                                    struct arm_smmu_queue *q,
1999                                    unsigned long prod_off,
2000                                    unsigned long cons_off,
2001                                    size_t dwords)
2002 {
2003         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
2004
2005         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
2006         if (!q->base) {
2007                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
2008                         qsz);
2009                 return -ENOMEM;
2010         }
2011
2012         q->prod_reg     = arm_smmu_page1_fixup(prod_off, smmu);
2013         q->cons_reg     = arm_smmu_page1_fixup(cons_off, smmu);
2014         q->ent_dwords   = dwords;
2015
2016         q->q_base  = Q_BASE_RWA;
2017         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
2018         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
2019                      << Q_BASE_LOG2SIZE_SHIFT;
2020
2021         q->prod = q->cons = 0;
2022         return 0;
2023 }
2024
2025 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2026 {
2027         int ret;
2028
2029         /* cmdq */
2030         spin_lock_init(&smmu->cmdq.lock);
2031         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2032                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
2033         if (ret)
2034                 return ret;
2035
2036         /* evtq */
2037         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2038                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2039         if (ret)
2040                 return ret;
2041
2042         /* priq */
2043         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2044                 return 0;
2045
2046         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2047                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2048 }
2049
2050 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2051 {
2052         unsigned int i;
2053         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2054         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2055         void *strtab = smmu->strtab_cfg.strtab;
2056
2057         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2058         if (!cfg->l1_desc) {
2059                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2060                 return -ENOMEM;
2061         }
2062
2063         for (i = 0; i < cfg->num_l1_ents; ++i) {
2064                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2065                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2066         }
2067
2068         return 0;
2069 }
2070
2071 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2072 {
2073         void *strtab;
2074         u64 reg;
2075         u32 size, l1size;
2076         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2077
2078         /* Calculate the L1 size, capped to the SIDSIZE. */
2079         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2080         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2081         cfg->num_l1_ents = 1 << size;
2082
2083         size += STRTAB_SPLIT;
2084         if (size < smmu->sid_bits)
2085                 dev_warn(smmu->dev,
2086                          "2-level strtab only covers %u/%u bits of SID\n",
2087                          size, smmu->sid_bits);
2088
2089         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2090         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2091                                      GFP_KERNEL | __GFP_ZERO);
2092         if (!strtab) {
2093                 dev_err(smmu->dev,
2094                         "failed to allocate l1 stream table (%u bytes)\n",
2095                         size);
2096                 return -ENOMEM;
2097         }
2098         cfg->strtab = strtab;
2099
2100         /* Configure strtab_base_cfg for 2 levels */
2101         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2102         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2103                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2104         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2105                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2106         cfg->strtab_base_cfg = reg;
2107
2108         return arm_smmu_init_l1_strtab(smmu);
2109 }
2110
2111 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2112 {
2113         void *strtab;
2114         u64 reg;
2115         u32 size;
2116         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2117
2118         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2119         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2120                                      GFP_KERNEL | __GFP_ZERO);
2121         if (!strtab) {
2122                 dev_err(smmu->dev,
2123                         "failed to allocate linear stream table (%u bytes)\n",
2124                         size);
2125                 return -ENOMEM;
2126         }
2127         cfg->strtab = strtab;
2128         cfg->num_l1_ents = 1 << smmu->sid_bits;
2129
2130         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2131         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2132         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2133                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2134         cfg->strtab_base_cfg = reg;
2135
2136         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2137         return 0;
2138 }
2139
2140 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2141 {
2142         u64 reg;
2143         int ret;
2144
2145         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2146                 ret = arm_smmu_init_strtab_2lvl(smmu);
2147         else
2148                 ret = arm_smmu_init_strtab_linear(smmu);
2149
2150         if (ret)
2151                 return ret;
2152
2153         /* Set the strtab base address */
2154         reg  = smmu->strtab_cfg.strtab_dma &
2155                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2156         reg |= STRTAB_BASE_RA;
2157         smmu->strtab_cfg.strtab_base = reg;
2158
2159         /* Allocate the first VMID for stage-2 bypass STEs */
2160         set_bit(0, smmu->vmid_map);
2161         return 0;
2162 }
2163
2164 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2165 {
2166         int ret;
2167
2168         ret = arm_smmu_init_queues(smmu);
2169         if (ret)
2170                 return ret;
2171
2172         return arm_smmu_init_strtab(smmu);
2173 }
2174
2175 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2176                                    unsigned int reg_off, unsigned int ack_off)
2177 {
2178         u32 reg;
2179
2180         writel_relaxed(val, smmu->base + reg_off);
2181         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2182                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2183 }
2184
2185 /* GBPA is "special" */
2186 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2187 {
2188         int ret;
2189         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2190
2191         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2192                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2193         if (ret)
2194                 return ret;
2195
2196         reg &= ~clr;
2197         reg |= set;
2198         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2199         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2200                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2201 }
2202
2203 static void arm_smmu_free_msis(void *data)
2204 {
2205         struct device *dev = data;
2206         platform_msi_domain_free_irqs(dev);
2207 }
2208
2209 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2210 {
2211         phys_addr_t doorbell;
2212         struct device *dev = msi_desc_to_dev(desc);
2213         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2214         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2215
2216         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2217         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2218
2219         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2220         writel_relaxed(msg->data, smmu->base + cfg[1]);
2221         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2222 }
2223
2224 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2225 {
2226         struct msi_desc *desc;
2227         int ret, nvec = ARM_SMMU_MAX_MSIS;
2228         struct device *dev = smmu->dev;
2229
2230         /* Clear the MSI address regs */
2231         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2232         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2233
2234         if (smmu->features & ARM_SMMU_FEAT_PRI)
2235                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2236         else
2237                 nvec--;
2238
2239         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2240                 return;
2241
2242         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2243         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2244         if (ret) {
2245                 dev_warn(dev, "failed to allocate MSIs\n");
2246                 return;
2247         }
2248
2249         for_each_msi_entry(desc, dev) {
2250                 switch (desc->platform.msi_index) {
2251                 case EVTQ_MSI_INDEX:
2252                         smmu->evtq.q.irq = desc->irq;
2253                         break;
2254                 case GERROR_MSI_INDEX:
2255                         smmu->gerr_irq = desc->irq;
2256                         break;
2257                 case PRIQ_MSI_INDEX:
2258                         smmu->priq.q.irq = desc->irq;
2259                         break;
2260                 default:        /* Unknown */
2261                         continue;
2262                 }
2263         }
2264
2265         /* Add callback to free MSIs on teardown */
2266         devm_add_action(dev, arm_smmu_free_msis, dev);
2267 }
2268
2269 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2270 {
2271         int irq, ret;
2272
2273         arm_smmu_setup_msis(smmu);
2274
2275         /* Request interrupt lines */
2276         irq = smmu->evtq.q.irq;
2277         if (irq) {
2278                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2279                                                 arm_smmu_evtq_thread,
2280                                                 IRQF_ONESHOT,
2281                                                 "arm-smmu-v3-evtq", smmu);
2282                 if (ret < 0)
2283                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2284         }
2285
2286         irq = smmu->cmdq.q.irq;
2287         if (irq) {
2288                 ret = devm_request_irq(smmu->dev, irq,
2289                                        arm_smmu_cmdq_sync_handler, 0,
2290                                        "arm-smmu-v3-cmdq-sync", smmu);
2291                 if (ret < 0)
2292                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2293         }
2294
2295         irq = smmu->gerr_irq;
2296         if (irq) {
2297                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2298                                        0, "arm-smmu-v3-gerror", smmu);
2299                 if (ret < 0)
2300                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2301         }
2302
2303         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2304                 irq = smmu->priq.q.irq;
2305                 if (irq) {
2306                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2307                                                         arm_smmu_priq_thread,
2308                                                         IRQF_ONESHOT,
2309                                                         "arm-smmu-v3-priq",
2310                                                         smmu);
2311                         if (ret < 0)
2312                                 dev_warn(smmu->dev,
2313                                          "failed to enable priq irq\n");
2314                 }
2315         }
2316 }
2317
2318 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2319 {
2320         int ret, irq;
2321         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2322
2323         /* Disable IRQs first */
2324         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2325                                       ARM_SMMU_IRQ_CTRLACK);
2326         if (ret) {
2327                 dev_err(smmu->dev, "failed to disable irqs\n");
2328                 return ret;
2329         }
2330
2331         irq = smmu->combined_irq;
2332         if (irq) {
2333                 /*
2334                  * Cavium ThunderX2 implementation doesn't not support unique
2335                  * irq lines. Use single irq line for all the SMMUv3 interrupts.
2336                  */
2337                 ret = devm_request_threaded_irq(smmu->dev, irq,
2338                                         arm_smmu_combined_irq_handler,
2339                                         arm_smmu_combined_irq_thread,
2340                                         IRQF_ONESHOT,
2341                                         "arm-smmu-v3-combined-irq", smmu);
2342                 if (ret < 0)
2343                         dev_warn(smmu->dev, "failed to enable combined irq\n");
2344         } else
2345                 arm_smmu_setup_unique_irqs(smmu);
2346
2347         if (smmu->features & ARM_SMMU_FEAT_PRI)
2348                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2349
2350         /* Enable interrupt generation on the SMMU */
2351         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2352                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2353         if (ret)
2354                 dev_warn(smmu->dev, "failed to enable irqs\n");
2355
2356         return 0;
2357 }
2358
2359 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2360 {
2361         int ret;
2362
2363         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2364         if (ret)
2365                 dev_err(smmu->dev, "failed to clear cr0\n");
2366
2367         return ret;
2368 }
2369
2370 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2371 {
2372         int ret;
2373         u32 reg, enables;
2374         struct arm_smmu_cmdq_ent cmd;
2375
2376         /* Clear CR0 and sync (disables SMMU and queue processing) */
2377         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2378         if (reg & CR0_SMMUEN)
2379                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2380
2381         ret = arm_smmu_device_disable(smmu);
2382         if (ret)
2383                 return ret;
2384
2385         /* CR1 (table and queue memory attributes) */
2386         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2387               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2388               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2389               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2390               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2391               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2392         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2393
2394         /* CR2 (random crap) */
2395         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2396         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2397
2398         /* Stream table */
2399         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2400                        smmu->base + ARM_SMMU_STRTAB_BASE);
2401         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2402                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2403
2404         /* Command queue */
2405         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2406         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2407         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2408
2409         enables = CR0_CMDQEN;
2410         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2411                                       ARM_SMMU_CR0ACK);
2412         if (ret) {
2413                 dev_err(smmu->dev, "failed to enable command queue\n");
2414                 return ret;
2415         }
2416
2417         /* Invalidate any cached configuration */
2418         cmd.opcode = CMDQ_OP_CFGI_ALL;
2419         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2420         cmd.opcode = CMDQ_OP_CMD_SYNC;
2421         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2422
2423         /* Invalidate any stale TLB entries */
2424         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2425                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2426                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2427         }
2428
2429         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2430         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2431         cmd.opcode = CMDQ_OP_CMD_SYNC;
2432         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2433
2434         /* Event queue */
2435         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2436         writel_relaxed(smmu->evtq.q.prod,
2437                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
2438         writel_relaxed(smmu->evtq.q.cons,
2439                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2440
2441         enables |= CR0_EVTQEN;
2442         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2443                                       ARM_SMMU_CR0ACK);
2444         if (ret) {
2445                 dev_err(smmu->dev, "failed to enable event queue\n");
2446                 return ret;
2447         }
2448
2449         /* PRI queue */
2450         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2451                 writeq_relaxed(smmu->priq.q.q_base,
2452                                smmu->base + ARM_SMMU_PRIQ_BASE);
2453                 writel_relaxed(smmu->priq.q.prod,
2454                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2455                 writel_relaxed(smmu->priq.q.cons,
2456                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2457
2458                 enables |= CR0_PRIQEN;
2459                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2460                                               ARM_SMMU_CR0ACK);
2461                 if (ret) {
2462                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2463                         return ret;
2464                 }
2465         }
2466
2467         ret = arm_smmu_setup_irqs(smmu);
2468         if (ret) {
2469                 dev_err(smmu->dev, "failed to setup irqs\n");
2470                 return ret;
2471         }
2472
2473
2474         /* Enable the SMMU interface, or ensure bypass */
2475         if (!bypass || disable_bypass) {
2476                 enables |= CR0_SMMUEN;
2477         } else {
2478                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2479                 if (ret) {
2480                         dev_err(smmu->dev, "GBPA not responding to update\n");
2481                         return ret;
2482                 }
2483         }
2484         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2485                                       ARM_SMMU_CR0ACK);
2486         if (ret) {
2487                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2488                 return ret;
2489         }
2490
2491         return 0;
2492 }
2493
2494 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2495 {
2496         u32 reg;
2497         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2498
2499         /* IDR0 */
2500         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2501
2502         /* 2-level structures */
2503         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2504                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2505
2506         if (reg & IDR0_CD2L)
2507                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2508
2509         /*
2510          * Translation table endianness.
2511          * We currently require the same endianness as the CPU, but this
2512          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2513          */
2514         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2515         case IDR0_TTENDIAN_MIXED:
2516                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2517                 break;
2518 #ifdef __BIG_ENDIAN
2519         case IDR0_TTENDIAN_BE:
2520                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2521                 break;
2522 #else
2523         case IDR0_TTENDIAN_LE:
2524                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2525                 break;
2526 #endif
2527         default:
2528                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2529                 return -ENXIO;
2530         }
2531
2532         /* Boolean feature flags */
2533         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2534                 smmu->features |= ARM_SMMU_FEAT_PRI;
2535
2536         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2537                 smmu->features |= ARM_SMMU_FEAT_ATS;
2538
2539         if (reg & IDR0_SEV)
2540                 smmu->features |= ARM_SMMU_FEAT_SEV;
2541
2542         if (reg & IDR0_MSI)
2543                 smmu->features |= ARM_SMMU_FEAT_MSI;
2544
2545         if (reg & IDR0_HYP)
2546                 smmu->features |= ARM_SMMU_FEAT_HYP;
2547
2548         /*
2549          * The coherency feature as set by FW is used in preference to the ID
2550          * register, but warn on mismatch.
2551          */
2552         if (!!(reg & IDR0_COHACC) != coherent)
2553                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2554                          coherent ? "true" : "false");
2555
2556         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2557         case IDR0_STALL_MODEL_STALL:
2558                 /* Fallthrough */
2559         case IDR0_STALL_MODEL_FORCE:
2560                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2561         }
2562
2563         if (reg & IDR0_S1P)
2564                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2565
2566         if (reg & IDR0_S2P)
2567                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2568
2569         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2570                 dev_err(smmu->dev, "no translation support!\n");
2571                 return -ENXIO;
2572         }
2573
2574         /* We only support the AArch64 table format at present */
2575         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2576         case IDR0_TTF_AARCH32_64:
2577                 smmu->ias = 40;
2578                 /* Fallthrough */
2579         case IDR0_TTF_AARCH64:
2580                 break;
2581         default:
2582                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2583                 return -ENXIO;
2584         }
2585
2586         /* ASID/VMID sizes */
2587         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2588         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2589
2590         /* IDR1 */
2591         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2592         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2593                 dev_err(smmu->dev, "embedded implementation not supported\n");
2594                 return -ENXIO;
2595         }
2596
2597         /* Queue sizes, capped at 4k */
2598         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2599                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2600         if (!smmu->cmdq.q.max_n_shift) {
2601                 /* Odd alignment restrictions on the base, so ignore for now */
2602                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2603                 return -ENXIO;
2604         }
2605
2606         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2607                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2608         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2609                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2610
2611         /* SID/SSID sizes */
2612         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2613         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2614
2615         /*
2616          * If the SMMU supports fewer bits than would fill a single L2 stream
2617          * table, use a linear table instead.
2618          */
2619         if (smmu->sid_bits <= STRTAB_SPLIT)
2620                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2621
2622         /* IDR5 */
2623         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2624
2625         /* Maximum number of outstanding stalls */
2626         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2627                                 & IDR5_STALL_MAX_MASK;
2628
2629         /* Page sizes */
2630         if (reg & IDR5_GRAN64K)
2631                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2632         if (reg & IDR5_GRAN16K)
2633                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2634         if (reg & IDR5_GRAN4K)
2635                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2636
2637         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2638                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2639         else
2640                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2641
2642         /* Output address size */
2643         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2644         case IDR5_OAS_32_BIT:
2645                 smmu->oas = 32;
2646                 break;
2647         case IDR5_OAS_36_BIT:
2648                 smmu->oas = 36;
2649                 break;
2650         case IDR5_OAS_40_BIT:
2651                 smmu->oas = 40;
2652                 break;
2653         case IDR5_OAS_42_BIT:
2654                 smmu->oas = 42;
2655                 break;
2656         case IDR5_OAS_44_BIT:
2657                 smmu->oas = 44;
2658                 break;
2659         default:
2660                 dev_info(smmu->dev,
2661                         "unknown output address size. Truncating to 48-bit\n");
2662                 /* Fallthrough */
2663         case IDR5_OAS_48_BIT:
2664                 smmu->oas = 48;
2665         }
2666
2667         /* Set the DMA mask for our table walker */
2668         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2669                 dev_warn(smmu->dev,
2670                          "failed to set DMA mask for table walker\n");
2671
2672         smmu->ias = max(smmu->ias, smmu->oas);
2673
2674         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2675                  smmu->ias, smmu->oas, smmu->features);
2676         return 0;
2677 }
2678
2679 #ifdef CONFIG_ACPI
2680 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
2681 {
2682         switch (model) {
2683         case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2684                 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2685                 break;
2686         case ACPI_IORT_SMMU_HISILICON_HI161X:
2687                 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
2688                 break;
2689         }
2690
2691         dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
2692 }
2693
2694 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2695                                       struct arm_smmu_device *smmu)
2696 {
2697         struct acpi_iort_smmu_v3 *iort_smmu;
2698         struct device *dev = smmu->dev;
2699         struct acpi_iort_node *node;
2700
2701         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2702
2703         /* Retrieve SMMUv3 specific data */
2704         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2705
2706         acpi_smmu_get_options(iort_smmu->model, smmu);
2707
2708         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2709                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2710
2711         return 0;
2712 }
2713 #else
2714 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2715                                              struct arm_smmu_device *smmu)
2716 {
2717         return -ENODEV;
2718 }
2719 #endif
2720
2721 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2722                                     struct arm_smmu_device *smmu)
2723 {
2724         struct device *dev = &pdev->dev;
2725         u32 cells;
2726         int ret = -EINVAL;
2727
2728         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2729                 dev_err(dev, "missing #iommu-cells property\n");
2730         else if (cells != 1)
2731                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2732         else
2733                 ret = 0;
2734
2735         parse_driver_options(smmu);
2736
2737         if (of_dma_is_coherent(dev->of_node))
2738                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2739
2740         return ret;
2741 }
2742
2743 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
2744 {
2745         if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
2746                 return SZ_64K;
2747         else
2748                 return SZ_128K;
2749 }
2750
2751 static int arm_smmu_device_probe(struct platform_device *pdev)
2752 {
2753         int irq, ret;
2754         struct resource *res;
2755         resource_size_t ioaddr;
2756         struct arm_smmu_device *smmu;
2757         struct device *dev = &pdev->dev;
2758         bool bypass;
2759
2760         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2761         if (!smmu) {
2762                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2763                 return -ENOMEM;
2764         }
2765         smmu->dev = dev;
2766
2767         if (dev->of_node) {
2768                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2769         } else {
2770                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2771                 if (ret == -ENODEV)
2772                         return ret;
2773         }
2774
2775         /* Set bypass mode according to firmware probing result */
2776         bypass = !!ret;
2777
2778         /* Base address */
2779         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2780         if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2781                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2782                 return -EINVAL;
2783         }
2784         ioaddr = res->start;
2785
2786         smmu->base = devm_ioremap_resource(dev, res);
2787         if (IS_ERR(smmu->base))
2788                 return PTR_ERR(smmu->base);
2789
2790         /* Interrupt lines */
2791
2792         irq = platform_get_irq_byname(pdev, "combined");
2793         if (irq > 0)
2794                 smmu->combined_irq = irq;
2795         else {
2796                 irq = platform_get_irq_byname(pdev, "eventq");
2797                 if (irq > 0)
2798                         smmu->evtq.q.irq = irq;
2799
2800                 irq = platform_get_irq_byname(pdev, "priq");
2801                 if (irq > 0)
2802                         smmu->priq.q.irq = irq;
2803
2804                 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2805                 if (irq > 0)
2806                         smmu->cmdq.q.irq = irq;
2807
2808                 irq = platform_get_irq_byname(pdev, "gerror");
2809                 if (irq > 0)
2810                         smmu->gerr_irq = irq;
2811         }
2812         /* Probe the h/w */
2813         ret = arm_smmu_device_hw_probe(smmu);
2814         if (ret)
2815                 return ret;
2816
2817         /* Initialise in-memory data structures */
2818         ret = arm_smmu_init_structures(smmu);
2819         if (ret)
2820                 return ret;
2821
2822         /* Record our private device structure */
2823         platform_set_drvdata(pdev, smmu);
2824
2825         /* Reset the device */
2826         ret = arm_smmu_device_reset(smmu, bypass);
2827         if (ret)
2828                 return ret;
2829
2830         /* And we're up. Go go go! */
2831         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2832                                      "smmu3.%pa", &ioaddr);
2833         if (ret)
2834                 return ret;
2835
2836         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2837         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2838
2839         ret = iommu_device_register(&smmu->iommu);
2840         if (ret) {
2841                 dev_err(dev, "Failed to register iommu\n");
2842                 return ret;
2843         }
2844
2845 #ifdef CONFIG_PCI
2846         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2847                 pci_request_acs();
2848                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2849                 if (ret)
2850                         return ret;
2851         }
2852 #endif
2853 #ifdef CONFIG_ARM_AMBA
2854         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2855                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2856                 if (ret)
2857                         return ret;
2858         }
2859 #endif
2860         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2861                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2862                 if (ret)
2863                         return ret;
2864         }
2865         return 0;
2866 }
2867
2868 static int arm_smmu_device_remove(struct platform_device *pdev)
2869 {
2870         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2871
2872         arm_smmu_device_disable(smmu);
2873
2874         return 0;
2875 }
2876
2877 static void arm_smmu_device_shutdown(struct platform_device *pdev)
2878 {
2879         arm_smmu_device_remove(pdev);
2880 }
2881
2882 static const struct of_device_id arm_smmu_of_match[] = {
2883         { .compatible = "arm,smmu-v3", },
2884         { },
2885 };
2886 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2887
2888 static struct platform_driver arm_smmu_driver = {
2889         .driver = {
2890                 .name           = "arm-smmu-v3",
2891                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2892         },
2893         .probe  = arm_smmu_device_probe,
2894         .remove = arm_smmu_device_remove,
2895         .shutdown = arm_smmu_device_shutdown,
2896 };
2897 module_platform_driver(arm_smmu_driver);
2898
2899 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);
2900
2901 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2902 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2903 MODULE_LICENSE("GPL v2");