GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_R                  (1UL << 45)
320 #define CTXDESC_CD_0_A                  (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT         47
322 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT         48
325 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT         4
328 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT         0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
334         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
335          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS                 2
339 #define CMDQ_MAX_SZ_SHIFT               8
340
341 #define CMDQ_ERR_SHIFT                  24
342 #define CMDQ_ERR_MASK                   0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX        0
344 #define CMDQ_ERR_CERROR_ILL_IDX         1
345 #define CMDQ_ERR_CERROR_ABT_IDX         2
346
347 #define CMDQ_0_OP_SHIFT                 0
348 #define CMDQ_0_OP_MASK                  0xffUL
349 #define CMDQ_0_SSV                      (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT       32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
353 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT           32
356 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT         0
359 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT          32
362 #define CMDQ_TLBI_0_ASID_SHIFT          48
363 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT           12
368 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT            32
370 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT          0
372 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT           12
374 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT            12
379 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS                 4
384 #define EVTQ_MAX_SZ_SHIFT               7
385
386 #define EVTQ_0_ID_SHIFT                 0
387 #define EVTQ_0_ID_MASK                  0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS                 2
391 #define PRIQ_MAX_SZ_SHIFT               8
392
393 #define PRIQ_0_SID_SHIFT                0
394 #define PRIQ_0_SID_MASK                 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT               32
396 #define PRIQ_0_SSID_MASK                0xfffffUL
397 #define PRIQ_0_PERM_PRIV                (1UL << 58)
398 #define PRIQ_0_PERM_EXEC                (1UL << 59)
399 #define PRIQ_0_PERM_READ                (1UL << 60)
400 #define PRIQ_0_PERM_WRITE               (1UL << 61)
401 #define PRIQ_0_PRG_LAST                 (1UL << 62)
402 #define PRIQ_0_SSID_V                   (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT            0
405 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT               12
407 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US        100
411 #define ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US  1000000 /* 1s! */
412
413 #define MSI_IOVA_BASE                   0x8000000
414 #define MSI_IOVA_LENGTH                 0x100000
415
416 /* Until ACPICA headers cover IORT rev. C */
417 #ifndef ACPI_IORT_SMMU_HISILICON_HI161X
418 #define ACPI_IORT_SMMU_HISILICON_HI161X         0x1
419 #endif
420
421 #ifndef ACPI_IORT_SMMU_V3_CAVIUM_CN99XX
422 #define ACPI_IORT_SMMU_V3_CAVIUM_CN99XX         0x2
423 #endif
424
425 static bool disable_bypass;
426 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
427 MODULE_PARM_DESC(disable_bypass,
428         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
429
430 enum pri_resp {
431         PRI_RESP_DENY,
432         PRI_RESP_FAIL,
433         PRI_RESP_SUCC,
434 };
435
436 enum arm_smmu_msi_index {
437         EVTQ_MSI_INDEX,
438         GERROR_MSI_INDEX,
439         PRIQ_MSI_INDEX,
440         ARM_SMMU_MAX_MSIS,
441 };
442
443 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
444         [EVTQ_MSI_INDEX] = {
445                 ARM_SMMU_EVTQ_IRQ_CFG0,
446                 ARM_SMMU_EVTQ_IRQ_CFG1,
447                 ARM_SMMU_EVTQ_IRQ_CFG2,
448         },
449         [GERROR_MSI_INDEX] = {
450                 ARM_SMMU_GERROR_IRQ_CFG0,
451                 ARM_SMMU_GERROR_IRQ_CFG1,
452                 ARM_SMMU_GERROR_IRQ_CFG2,
453         },
454         [PRIQ_MSI_INDEX] = {
455                 ARM_SMMU_PRIQ_IRQ_CFG0,
456                 ARM_SMMU_PRIQ_IRQ_CFG1,
457                 ARM_SMMU_PRIQ_IRQ_CFG2,
458         },
459 };
460
461 struct arm_smmu_cmdq_ent {
462         /* Common fields */
463         u8                              opcode;
464         bool                            substream_valid;
465
466         /* Command-specific fields */
467         union {
468                 #define CMDQ_OP_PREFETCH_CFG    0x1
469                 struct {
470                         u32                     sid;
471                         u8                      size;
472                         u64                     addr;
473                 } prefetch;
474
475                 #define CMDQ_OP_CFGI_STE        0x3
476                 #define CMDQ_OP_CFGI_ALL        0x4
477                 struct {
478                         u32                     sid;
479                         union {
480                                 bool            leaf;
481                                 u8              span;
482                         };
483                 } cfgi;
484
485                 #define CMDQ_OP_TLBI_NH_ASID    0x11
486                 #define CMDQ_OP_TLBI_NH_VA      0x12
487                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
488                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
489                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
490                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
491                 struct {
492                         u16                     asid;
493                         u16                     vmid;
494                         bool                    leaf;
495                         u64                     addr;
496                 } tlbi;
497
498                 #define CMDQ_OP_PRI_RESP        0x41
499                 struct {
500                         u32                     sid;
501                         u32                     ssid;
502                         u16                     grpid;
503                         enum pri_resp           resp;
504                 } pri;
505
506                 #define CMDQ_OP_CMD_SYNC        0x46
507         };
508 };
509
510 struct arm_smmu_queue {
511         int                             irq; /* Wired interrupt */
512
513         __le64                          *base;
514         dma_addr_t                      base_dma;
515         u64                             q_base;
516
517         size_t                          ent_dwords;
518         u32                             max_n_shift;
519         u32                             prod;
520         u32                             cons;
521
522         u32 __iomem                     *prod_reg;
523         u32 __iomem                     *cons_reg;
524 };
525
526 struct arm_smmu_cmdq {
527         struct arm_smmu_queue           q;
528         spinlock_t                      lock;
529 };
530
531 struct arm_smmu_evtq {
532         struct arm_smmu_queue           q;
533         u32                             max_stalls;
534 };
535
536 struct arm_smmu_priq {
537         struct arm_smmu_queue           q;
538 };
539
540 /* High-level stream table and context descriptor structures */
541 struct arm_smmu_strtab_l1_desc {
542         u8                              span;
543
544         __le64                          *l2ptr;
545         dma_addr_t                      l2ptr_dma;
546 };
547
548 struct arm_smmu_s1_cfg {
549         __le64                          *cdptr;
550         dma_addr_t                      cdptr_dma;
551
552         struct arm_smmu_ctx_desc {
553                 u16     asid;
554                 u64     ttbr;
555                 u64     tcr;
556                 u64     mair;
557         }                               cd;
558 };
559
560 struct arm_smmu_s2_cfg {
561         u16                             vmid;
562         u64                             vttbr;
563         u64                             vtcr;
564 };
565
566 struct arm_smmu_strtab_ent {
567         /*
568          * An STE is "assigned" if the master emitting the corresponding SID
569          * is attached to a domain. The behaviour of an unassigned STE is
570          * determined by the disable_bypass parameter, whereas an assigned
571          * STE behaves according to s1_cfg/s2_cfg, which themselves are
572          * configured according to the domain type.
573          */
574         bool                            assigned;
575         struct arm_smmu_s1_cfg          *s1_cfg;
576         struct arm_smmu_s2_cfg          *s2_cfg;
577 };
578
579 struct arm_smmu_strtab_cfg {
580         __le64                          *strtab;
581         dma_addr_t                      strtab_dma;
582         struct arm_smmu_strtab_l1_desc  *l1_desc;
583         unsigned int                    num_l1_ents;
584
585         u64                             strtab_base;
586         u32                             strtab_base_cfg;
587 };
588
589 /* An SMMUv3 instance */
590 struct arm_smmu_device {
591         struct device                   *dev;
592         void __iomem                    *base;
593
594 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
595 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
596 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
597 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
598 #define ARM_SMMU_FEAT_PRI               (1 << 4)
599 #define ARM_SMMU_FEAT_ATS               (1 << 5)
600 #define ARM_SMMU_FEAT_SEV               (1 << 6)
601 #define ARM_SMMU_FEAT_MSI               (1 << 7)
602 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
603 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
604 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
605 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
606 #define ARM_SMMU_FEAT_HYP               (1 << 12)
607         u32                             features;
608
609 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
610 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY    (1 << 1)
611         u32                             options;
612
613         struct arm_smmu_cmdq            cmdq;
614         struct arm_smmu_evtq            evtq;
615         struct arm_smmu_priq            priq;
616
617         int                             gerr_irq;
618         int                             combined_irq;
619
620         unsigned long                   ias; /* IPA */
621         unsigned long                   oas; /* PA */
622         unsigned long                   pgsize_bitmap;
623
624 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
625         unsigned int                    asid_bits;
626         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
627
628 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
629         unsigned int                    vmid_bits;
630         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
631
632         unsigned int                    ssid_bits;
633         unsigned int                    sid_bits;
634
635         struct arm_smmu_strtab_cfg      strtab_cfg;
636
637         /* IOMMU core code handle */
638         struct iommu_device             iommu;
639 };
640
641 /* SMMU private data for each master */
642 struct arm_smmu_master_data {
643         struct arm_smmu_device          *smmu;
644         struct arm_smmu_strtab_ent      ste;
645 };
646
647 /* SMMU private data for an IOMMU domain */
648 enum arm_smmu_domain_stage {
649         ARM_SMMU_DOMAIN_S1 = 0,
650         ARM_SMMU_DOMAIN_S2,
651         ARM_SMMU_DOMAIN_NESTED,
652         ARM_SMMU_DOMAIN_BYPASS,
653 };
654
655 struct arm_smmu_domain {
656         struct arm_smmu_device          *smmu;
657         struct mutex                    init_mutex; /* Protects smmu pointer */
658
659         struct io_pgtable_ops           *pgtbl_ops;
660
661         enum arm_smmu_domain_stage      stage;
662         union {
663                 struct arm_smmu_s1_cfg  s1_cfg;
664                 struct arm_smmu_s2_cfg  s2_cfg;
665         };
666
667         struct iommu_domain             domain;
668 };
669
670 struct arm_smmu_option_prop {
671         u32 opt;
672         const char *prop;
673 };
674
675 static struct arm_smmu_option_prop arm_smmu_options[] = {
676         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
677         { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
678         { 0, NULL},
679 };
680
681 static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
682                                                  struct arm_smmu_device *smmu)
683 {
684         if ((offset > SZ_64K) &&
685             (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
686                 offset -= SZ_64K;
687
688         return smmu->base + offset;
689 }
690
691 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
692 {
693         return container_of(dom, struct arm_smmu_domain, domain);
694 }
695
696 static void parse_driver_options(struct arm_smmu_device *smmu)
697 {
698         int i = 0;
699
700         do {
701                 if (of_property_read_bool(smmu->dev->of_node,
702                                                 arm_smmu_options[i].prop)) {
703                         smmu->options |= arm_smmu_options[i].opt;
704                         dev_notice(smmu->dev, "option %s\n",
705                                 arm_smmu_options[i].prop);
706                 }
707         } while (arm_smmu_options[++i].opt);
708 }
709
710 /* Low-level queue manipulation functions */
711 static bool queue_full(struct arm_smmu_queue *q)
712 {
713         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
714                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
715 }
716
717 static bool queue_empty(struct arm_smmu_queue *q)
718 {
719         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
720                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
721 }
722
723 static void queue_sync_cons(struct arm_smmu_queue *q)
724 {
725         q->cons = readl_relaxed(q->cons_reg);
726 }
727
728 static void queue_inc_cons(struct arm_smmu_queue *q)
729 {
730         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
731
732         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
733
734         /*
735          * Ensure that all CPU accesses (reads and writes) to the queue
736          * are complete before we update the cons pointer.
737          */
738         mb();
739         writel_relaxed(q->cons, q->cons_reg);
740 }
741
742 static int queue_sync_prod(struct arm_smmu_queue *q)
743 {
744         int ret = 0;
745         u32 prod = readl_relaxed(q->prod_reg);
746
747         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
748                 ret = -EOVERFLOW;
749
750         q->prod = prod;
751         return ret;
752 }
753
754 static void queue_inc_prod(struct arm_smmu_queue *q)
755 {
756         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
757
758         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
759         writel(q->prod, q->prod_reg);
760 }
761
762 /*
763  * Wait for the SMMU to consume items. If drain is true, wait until the queue
764  * is empty. Otherwise, wait until there is at least one free slot.
765  */
766 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
767 {
768         ktime_t timeout;
769         unsigned int delay = 1;
770
771         /* Wait longer if it's queue drain */
772         timeout = ktime_add_us(ktime_get(), drain ?
773                                             ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US :
774                                             ARM_SMMU_POLL_TIMEOUT_US);
775
776         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
777                 if (ktime_compare(ktime_get(), timeout) > 0)
778                         return -ETIMEDOUT;
779
780                 if (wfe) {
781                         wfe();
782                 } else {
783                         cpu_relax();
784                         udelay(delay);
785                         delay *= 2;
786                 }
787         }
788
789         return 0;
790 }
791
792 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
793 {
794         int i;
795
796         for (i = 0; i < n_dwords; ++i)
797                 *dst++ = cpu_to_le64(*src++);
798 }
799
800 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
801 {
802         if (queue_full(q))
803                 return -ENOSPC;
804
805         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
806         queue_inc_prod(q);
807         return 0;
808 }
809
810 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
811 {
812         int i;
813
814         for (i = 0; i < n_dwords; ++i)
815                 *dst++ = le64_to_cpu(*src++);
816 }
817
818 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
819 {
820         if (queue_empty(q))
821                 return -EAGAIN;
822
823         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
824         queue_inc_cons(q);
825         return 0;
826 }
827
828 /* High-level queue accessors */
829 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
830 {
831         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
832         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
833
834         switch (ent->opcode) {
835         case CMDQ_OP_TLBI_EL2_ALL:
836         case CMDQ_OP_TLBI_NSNH_ALL:
837                 break;
838         case CMDQ_OP_PREFETCH_CFG:
839                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
840                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
841                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
842                 break;
843         case CMDQ_OP_CFGI_STE:
844                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
845                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
846                 break;
847         case CMDQ_OP_CFGI_ALL:
848                 /* Cover the entire SID range */
849                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
850                 break;
851         case CMDQ_OP_TLBI_NH_VA:
852                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
853                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
854                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
855                 break;
856         case CMDQ_OP_TLBI_S2_IPA:
857                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
858                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
859                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
860                 break;
861         case CMDQ_OP_TLBI_NH_ASID:
862                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
863                 /* Fallthrough */
864         case CMDQ_OP_TLBI_S12_VMALL:
865                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
866                 break;
867         case CMDQ_OP_PRI_RESP:
868                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
869                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
870                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
871                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
872                 switch (ent->pri.resp) {
873                 case PRI_RESP_DENY:
874                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
875                         break;
876                 case PRI_RESP_FAIL:
877                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
878                         break;
879                 case PRI_RESP_SUCC:
880                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
881                         break;
882                 default:
883                         return -EINVAL;
884                 }
885                 break;
886         case CMDQ_OP_CMD_SYNC:
887                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
888                 break;
889         default:
890                 return -ENOENT;
891         }
892
893         return 0;
894 }
895
896 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
897 {
898         static const char *cerror_str[] = {
899                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
900                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
901                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
902         };
903
904         int i;
905         u64 cmd[CMDQ_ENT_DWORDS];
906         struct arm_smmu_queue *q = &smmu->cmdq.q;
907         u32 cons = readl_relaxed(q->cons_reg);
908         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
909         struct arm_smmu_cmdq_ent cmd_sync = {
910                 .opcode = CMDQ_OP_CMD_SYNC,
911         };
912
913         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
914                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
915
916         switch (idx) {
917         case CMDQ_ERR_CERROR_ABT_IDX:
918                 dev_err(smmu->dev, "retrying command fetch\n");
919         case CMDQ_ERR_CERROR_NONE_IDX:
920                 return;
921         case CMDQ_ERR_CERROR_ILL_IDX:
922                 /* Fallthrough */
923         default:
924                 break;
925         }
926
927         /*
928          * We may have concurrent producers, so we need to be careful
929          * not to touch any of the shadow cmdq state.
930          */
931         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
932         dev_err(smmu->dev, "skipping command in error state:\n");
933         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
934                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
935
936         /* Convert the erroneous command into a CMD_SYNC */
937         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
938                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
939                 return;
940         }
941
942         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
943 }
944
945 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
946                                     struct arm_smmu_cmdq_ent *ent)
947 {
948         u64 cmd[CMDQ_ENT_DWORDS];
949         unsigned long flags;
950         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
951         struct arm_smmu_queue *q = &smmu->cmdq.q;
952
953         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
954                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
955                          ent->opcode);
956                 return;
957         }
958
959         spin_lock_irqsave(&smmu->cmdq.lock, flags);
960         while (queue_insert_raw(q, cmd) == -ENOSPC) {
961                 if (queue_poll_cons(q, false, wfe))
962                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
963         }
964
965         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
966                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
967         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
968 }
969
970 /* Context descriptor manipulation functions */
971 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
972 {
973         u64 val = 0;
974
975         /* Repack the TCR. Just care about TTBR0 for now */
976         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
977         val |= ARM_SMMU_TCR2CD(tcr, TG0);
978         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
979         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
980         val |= ARM_SMMU_TCR2CD(tcr, SH0);
981         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
982         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
983         val |= ARM_SMMU_TCR2CD(tcr, IPS);
984         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
985
986         return val;
987 }
988
989 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
990                                     struct arm_smmu_s1_cfg *cfg)
991 {
992         u64 val;
993
994         /*
995          * We don't need to issue any invalidation here, as we'll invalidate
996          * the STE when installing the new entry anyway.
997          */
998         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
999 #ifdef __BIG_ENDIAN
1000               CTXDESC_CD_0_ENDI |
1001 #endif
1002               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
1003               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
1004               CTXDESC_CD_0_V;
1005         cfg->cdptr[0] = cpu_to_le64(val);
1006
1007         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
1008         cfg->cdptr[1] = cpu_to_le64(val);
1009
1010         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
1011 }
1012
1013 /* Stream table manipulation functions */
1014 static void
1015 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1016 {
1017         u64 val = 0;
1018
1019         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
1020                 << STRTAB_L1_DESC_SPAN_SHIFT;
1021         val |= desc->l2ptr_dma &
1022                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
1023
1024         *dst = cpu_to_le64(val);
1025 }
1026
1027 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1028 {
1029         struct arm_smmu_cmdq_ent cmd = {
1030                 .opcode = CMDQ_OP_CFGI_STE,
1031                 .cfgi   = {
1032                         .sid    = sid,
1033                         .leaf   = true,
1034                 },
1035         };
1036
1037         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1038         cmd.opcode = CMDQ_OP_CMD_SYNC;
1039         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1040 }
1041
1042 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1043                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1044 {
1045         /*
1046          * This is hideously complicated, but we only really care about
1047          * three cases at the moment:
1048          *
1049          * 1. Invalid (all zero) -> bypass/fault (init)
1050          * 2. Bypass/fault -> translation/bypass (attach)
1051          * 3. Translation/bypass -> bypass/fault (detach)
1052          *
1053          * Given that we can't update the STE atomically and the SMMU
1054          * doesn't read the thing in a defined order, that leaves us
1055          * with the following maintenance requirements:
1056          *
1057          * 1. Update Config, return (init time STEs aren't live)
1058          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1059          * 3. Update Config, sync
1060          */
1061         u64 val = le64_to_cpu(dst[0]);
1062         bool ste_live = false;
1063         struct arm_smmu_cmdq_ent prefetch_cmd = {
1064                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1065                 .prefetch       = {
1066                         .sid    = sid,
1067                 },
1068         };
1069
1070         if (val & STRTAB_STE_0_V) {
1071                 u64 cfg;
1072
1073                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1074                 switch (cfg) {
1075                 case STRTAB_STE_0_CFG_BYPASS:
1076                         break;
1077                 case STRTAB_STE_0_CFG_S1_TRANS:
1078                 case STRTAB_STE_0_CFG_S2_TRANS:
1079                         ste_live = true;
1080                         break;
1081                 case STRTAB_STE_0_CFG_ABORT:
1082                         if (disable_bypass)
1083                                 break;
1084                 default:
1085                         BUG(); /* STE corruption */
1086                 }
1087         }
1088
1089         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1090         val = STRTAB_STE_0_V;
1091
1092         /* Bypass/fault */
1093         if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1094                 if (!ste->assigned && disable_bypass)
1095                         val |= STRTAB_STE_0_CFG_ABORT;
1096                 else
1097                         val |= STRTAB_STE_0_CFG_BYPASS;
1098
1099                 dst[0] = cpu_to_le64(val);
1100                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1101                          << STRTAB_STE_1_SHCFG_SHIFT);
1102                 dst[2] = 0; /* Nuke the VMID */
1103                 if (ste_live)
1104                         arm_smmu_sync_ste_for_sid(smmu, sid);
1105                 return;
1106         }
1107
1108         if (ste->s1_cfg) {
1109                 BUG_ON(ste_live);
1110                 dst[1] = cpu_to_le64(
1111                          STRTAB_STE_1_S1C_CACHE_WBRA
1112                          << STRTAB_STE_1_S1CIR_SHIFT |
1113                          STRTAB_STE_1_S1C_CACHE_WBRA
1114                          << STRTAB_STE_1_S1COR_SHIFT |
1115                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1116 #ifdef CONFIG_PCI_ATS
1117                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1118 #endif
1119                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1120
1121                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1122                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1123
1124                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1125                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1126                         STRTAB_STE_0_CFG_S1_TRANS;
1127         }
1128
1129         if (ste->s2_cfg) {
1130                 BUG_ON(ste_live);
1131                 dst[2] = cpu_to_le64(
1132                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1133                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1134                           << STRTAB_STE_2_VTCR_SHIFT |
1135 #ifdef __BIG_ENDIAN
1136                          STRTAB_STE_2_S2ENDI |
1137 #endif
1138                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1139                          STRTAB_STE_2_S2R);
1140
1141                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1142                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1143
1144                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1145         }
1146
1147         arm_smmu_sync_ste_for_sid(smmu, sid);
1148         /* See comment in arm_smmu_write_ctx_desc() */
1149         WRITE_ONCE(dst[0], cpu_to_le64(val));
1150         arm_smmu_sync_ste_for_sid(smmu, sid);
1151
1152         /* It's likely that we'll want to use the new STE soon */
1153         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1154                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1155 }
1156
1157 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1158 {
1159         unsigned int i;
1160         struct arm_smmu_strtab_ent ste = { .assigned = false };
1161
1162         for (i = 0; i < nent; ++i) {
1163                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1164                 strtab += STRTAB_STE_DWORDS;
1165         }
1166 }
1167
1168 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1169 {
1170         size_t size;
1171         void *strtab;
1172         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1173         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1174
1175         if (desc->l2ptr)
1176                 return 0;
1177
1178         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1179         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1180
1181         desc->span = STRTAB_SPLIT + 1;
1182         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1183                                           GFP_KERNEL | __GFP_ZERO);
1184         if (!desc->l2ptr) {
1185                 dev_err(smmu->dev,
1186                         "failed to allocate l2 stream table for SID %u\n",
1187                         sid);
1188                 return -ENOMEM;
1189         }
1190
1191         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1192         arm_smmu_write_strtab_l1_desc(strtab, desc);
1193         return 0;
1194 }
1195
1196 /* IRQ and event handlers */
1197 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1198 {
1199         int i;
1200         struct arm_smmu_device *smmu = dev;
1201         struct arm_smmu_queue *q = &smmu->evtq.q;
1202         u64 evt[EVTQ_ENT_DWORDS];
1203
1204         do {
1205                 while (!queue_remove_raw(q, evt)) {
1206                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1207
1208                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1209                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1210                                 dev_info(smmu->dev, "\t0x%016llx\n",
1211                                          (unsigned long long)evt[i]);
1212
1213                 }
1214
1215                 /*
1216                  * Not much we can do on overflow, so scream and pretend we're
1217                  * trying harder.
1218                  */
1219                 if (queue_sync_prod(q) == -EOVERFLOW)
1220                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1221         } while (!queue_empty(q));
1222
1223         /* Sync our overflow flag, as we believe we're up to speed */
1224         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1225         return IRQ_HANDLED;
1226 }
1227
1228 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1229 {
1230         u32 sid, ssid;
1231         u16 grpid;
1232         bool ssv, last;
1233
1234         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1235         ssv = evt[0] & PRIQ_0_SSID_V;
1236         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1237         last = evt[0] & PRIQ_0_PRG_LAST;
1238         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1239
1240         dev_info(smmu->dev, "unexpected PRI request received:\n");
1241         dev_info(smmu->dev,
1242                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1243                  sid, ssid, grpid, last ? "L" : "",
1244                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1245                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1246                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1247                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1248                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1249
1250         if (last) {
1251                 struct arm_smmu_cmdq_ent cmd = {
1252                         .opcode                 = CMDQ_OP_PRI_RESP,
1253                         .substream_valid        = ssv,
1254                         .pri                    = {
1255                                 .sid    = sid,
1256                                 .ssid   = ssid,
1257                                 .grpid  = grpid,
1258                                 .resp   = PRI_RESP_DENY,
1259                         },
1260                 };
1261
1262                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1263         }
1264 }
1265
1266 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1267 {
1268         struct arm_smmu_device *smmu = dev;
1269         struct arm_smmu_queue *q = &smmu->priq.q;
1270         u64 evt[PRIQ_ENT_DWORDS];
1271
1272         do {
1273                 while (!queue_remove_raw(q, evt))
1274                         arm_smmu_handle_ppr(smmu, evt);
1275
1276                 if (queue_sync_prod(q) == -EOVERFLOW)
1277                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1278         } while (!queue_empty(q));
1279
1280         /* Sync our overflow flag, as we believe we're up to speed */
1281         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1282         writel(q->cons, q->cons_reg);
1283         return IRQ_HANDLED;
1284 }
1285
1286 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1287 {
1288         /* We don't actually use CMD_SYNC interrupts for anything */
1289         return IRQ_HANDLED;
1290 }
1291
1292 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1293
1294 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1295 {
1296         u32 gerror, gerrorn, active;
1297         struct arm_smmu_device *smmu = dev;
1298
1299         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1300         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1301
1302         active = gerror ^ gerrorn;
1303         if (!(active & GERROR_ERR_MASK))
1304                 return IRQ_NONE; /* No errors pending */
1305
1306         dev_warn(smmu->dev,
1307                  "unexpected global error reported (0x%08x), this could be serious\n",
1308                  active);
1309
1310         if (active & GERROR_SFM_ERR) {
1311                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1312                 arm_smmu_device_disable(smmu);
1313         }
1314
1315         if (active & GERROR_MSI_GERROR_ABT_ERR)
1316                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1317
1318         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1319                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1320
1321         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1322                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1323
1324         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1325                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1326                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1327         }
1328
1329         if (active & GERROR_PRIQ_ABT_ERR)
1330                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1331
1332         if (active & GERROR_EVTQ_ABT_ERR)
1333                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1334
1335         if (active & GERROR_CMDQ_ERR)
1336                 arm_smmu_cmdq_skip_err(smmu);
1337
1338         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1339         return IRQ_HANDLED;
1340 }
1341
1342 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1343 {
1344         struct arm_smmu_device *smmu = dev;
1345
1346         arm_smmu_evtq_thread(irq, dev);
1347         if (smmu->features & ARM_SMMU_FEAT_PRI)
1348                 arm_smmu_priq_thread(irq, dev);
1349
1350         return IRQ_HANDLED;
1351 }
1352
1353 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1354 {
1355         arm_smmu_gerror_handler(irq, dev);
1356         arm_smmu_cmdq_sync_handler(irq, dev);
1357         return IRQ_WAKE_THREAD;
1358 }
1359
1360 /* IO_PGTABLE API */
1361 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1362 {
1363         struct arm_smmu_cmdq_ent cmd;
1364
1365         cmd.opcode = CMDQ_OP_CMD_SYNC;
1366         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1367 }
1368
1369 static void arm_smmu_tlb_sync(void *cookie)
1370 {
1371         struct arm_smmu_domain *smmu_domain = cookie;
1372         __arm_smmu_tlb_sync(smmu_domain->smmu);
1373 }
1374
1375 static void arm_smmu_tlb_inv_context(void *cookie)
1376 {
1377         struct arm_smmu_domain *smmu_domain = cookie;
1378         struct arm_smmu_device *smmu = smmu_domain->smmu;
1379         struct arm_smmu_cmdq_ent cmd;
1380
1381         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1382                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1383                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1384                 cmd.tlbi.vmid   = 0;
1385         } else {
1386                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1387                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1388         }
1389
1390         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1391         __arm_smmu_tlb_sync(smmu);
1392 }
1393
1394 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1395                                           size_t granule, bool leaf, void *cookie)
1396 {
1397         struct arm_smmu_domain *smmu_domain = cookie;
1398         struct arm_smmu_device *smmu = smmu_domain->smmu;
1399         struct arm_smmu_cmdq_ent cmd = {
1400                 .tlbi = {
1401                         .leaf   = leaf,
1402                         .addr   = iova,
1403                 },
1404         };
1405
1406         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1407                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1408                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1409         } else {
1410                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1411                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1412         }
1413
1414         do {
1415                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1416                 cmd.tlbi.addr += granule;
1417         } while (size -= granule);
1418 }
1419
1420 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1421         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1422         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1423         .tlb_sync       = arm_smmu_tlb_sync,
1424 };
1425
1426 /* IOMMU API */
1427 static bool arm_smmu_capable(enum iommu_cap cap)
1428 {
1429         switch (cap) {
1430         case IOMMU_CAP_CACHE_COHERENCY:
1431                 return true;
1432         case IOMMU_CAP_NOEXEC:
1433                 return true;
1434         default:
1435                 return false;
1436         }
1437 }
1438
1439 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1440 {
1441         struct arm_smmu_domain *smmu_domain;
1442
1443         if (type != IOMMU_DOMAIN_UNMANAGED &&
1444             type != IOMMU_DOMAIN_DMA &&
1445             type != IOMMU_DOMAIN_IDENTITY)
1446                 return NULL;
1447
1448         /*
1449          * Allocate the domain and initialise some of its data structures.
1450          * We can't really do anything meaningful until we've added a
1451          * master.
1452          */
1453         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1454         if (!smmu_domain)
1455                 return NULL;
1456
1457         if (type == IOMMU_DOMAIN_DMA &&
1458             iommu_get_dma_cookie(&smmu_domain->domain)) {
1459                 kfree(smmu_domain);
1460                 return NULL;
1461         }
1462
1463         mutex_init(&smmu_domain->init_mutex);
1464         return &smmu_domain->domain;
1465 }
1466
1467 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1468 {
1469         int idx, size = 1 << span;
1470
1471         do {
1472                 idx = find_first_zero_bit(map, size);
1473                 if (idx == size)
1474                         return -ENOSPC;
1475         } while (test_and_set_bit(idx, map));
1476
1477         return idx;
1478 }
1479
1480 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1481 {
1482         clear_bit(idx, map);
1483 }
1484
1485 static void arm_smmu_domain_free(struct iommu_domain *domain)
1486 {
1487         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1488         struct arm_smmu_device *smmu = smmu_domain->smmu;
1489
1490         iommu_put_dma_cookie(domain);
1491         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1492
1493         /* Free the CD and ASID, if we allocated them */
1494         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1495                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1496
1497                 if (cfg->cdptr) {
1498                         dmam_free_coherent(smmu_domain->smmu->dev,
1499                                            CTXDESC_CD_DWORDS << 3,
1500                                            cfg->cdptr,
1501                                            cfg->cdptr_dma);
1502
1503                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1504                 }
1505         } else {
1506                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1507                 if (cfg->vmid)
1508                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1509         }
1510
1511         kfree(smmu_domain);
1512 }
1513
1514 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1515                                        struct io_pgtable_cfg *pgtbl_cfg)
1516 {
1517         int ret;
1518         int asid;
1519         struct arm_smmu_device *smmu = smmu_domain->smmu;
1520         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1521
1522         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1523         if (asid < 0)
1524                 return asid;
1525
1526         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1527                                          &cfg->cdptr_dma,
1528                                          GFP_KERNEL | __GFP_ZERO);
1529         if (!cfg->cdptr) {
1530                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1531                 ret = -ENOMEM;
1532                 goto out_free_asid;
1533         }
1534
1535         cfg->cd.asid    = (u16)asid;
1536         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1537         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1538         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1539         return 0;
1540
1541 out_free_asid:
1542         arm_smmu_bitmap_free(smmu->asid_map, asid);
1543         return ret;
1544 }
1545
1546 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1547                                        struct io_pgtable_cfg *pgtbl_cfg)
1548 {
1549         int vmid;
1550         struct arm_smmu_device *smmu = smmu_domain->smmu;
1551         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1552
1553         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1554         if (vmid < 0)
1555                 return vmid;
1556
1557         cfg->vmid       = (u16)vmid;
1558         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1559         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1560         return 0;
1561 }
1562
1563 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1564 {
1565         int ret;
1566         unsigned long ias, oas;
1567         enum io_pgtable_fmt fmt;
1568         struct io_pgtable_cfg pgtbl_cfg;
1569         struct io_pgtable_ops *pgtbl_ops;
1570         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1571                                  struct io_pgtable_cfg *);
1572         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1573         struct arm_smmu_device *smmu = smmu_domain->smmu;
1574
1575         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1576                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1577                 return 0;
1578         }
1579
1580         /* Restrict the stage to what we can actually support */
1581         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1582                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1583         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1584                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1585
1586         switch (smmu_domain->stage) {
1587         case ARM_SMMU_DOMAIN_S1:
1588                 ias = VA_BITS;
1589                 oas = smmu->ias;
1590                 fmt = ARM_64_LPAE_S1;
1591                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1592                 break;
1593         case ARM_SMMU_DOMAIN_NESTED:
1594         case ARM_SMMU_DOMAIN_S2:
1595                 ias = smmu->ias;
1596                 oas = smmu->oas;
1597                 fmt = ARM_64_LPAE_S2;
1598                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1599                 break;
1600         default:
1601                 return -EINVAL;
1602         }
1603
1604         pgtbl_cfg = (struct io_pgtable_cfg) {
1605                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1606                 .ias            = ias,
1607                 .oas            = oas,
1608                 .tlb            = &arm_smmu_gather_ops,
1609                 .iommu_dev      = smmu->dev,
1610         };
1611
1612         if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
1613                 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1614
1615         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1616         if (!pgtbl_ops)
1617                 return -ENOMEM;
1618
1619         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1620         domain->geometry.aperture_end = (1UL << ias) - 1;
1621         domain->geometry.force_aperture = true;
1622
1623         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1624         if (ret < 0) {
1625                 free_io_pgtable_ops(pgtbl_ops);
1626                 return ret;
1627         }
1628
1629         smmu_domain->pgtbl_ops = pgtbl_ops;
1630         return 0;
1631 }
1632
1633 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1634 {
1635         __le64 *step;
1636         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1637
1638         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1639                 struct arm_smmu_strtab_l1_desc *l1_desc;
1640                 int idx;
1641
1642                 /* Two-level walk */
1643                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1644                 l1_desc = &cfg->l1_desc[idx];
1645                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1646                 step = &l1_desc->l2ptr[idx];
1647         } else {
1648                 /* Simple linear lookup */
1649                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1650         }
1651
1652         return step;
1653 }
1654
1655 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1656 {
1657         int i, j;
1658         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1659         struct arm_smmu_device *smmu = master->smmu;
1660
1661         for (i = 0; i < fwspec->num_ids; ++i) {
1662                 u32 sid = fwspec->ids[i];
1663                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1664
1665                 /* Bridged PCI devices may end up with duplicated IDs */
1666                 for (j = 0; j < i; j++)
1667                         if (fwspec->ids[j] == sid)
1668                                 break;
1669                 if (j < i)
1670                         continue;
1671
1672                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1673         }
1674 }
1675
1676 static void arm_smmu_detach_dev(struct device *dev)
1677 {
1678         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1679
1680         master->ste.assigned = false;
1681         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1682 }
1683
1684 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1685 {
1686         int ret = 0;
1687         struct arm_smmu_device *smmu;
1688         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1689         struct arm_smmu_master_data *master;
1690         struct arm_smmu_strtab_ent *ste;
1691
1692         if (!dev->iommu_fwspec)
1693                 return -ENOENT;
1694
1695         master = dev->iommu_fwspec->iommu_priv;
1696         smmu = master->smmu;
1697         ste = &master->ste;
1698
1699         /* Already attached to a different domain? */
1700         if (ste->assigned)
1701                 arm_smmu_detach_dev(dev);
1702
1703         mutex_lock(&smmu_domain->init_mutex);
1704
1705         if (!smmu_domain->smmu) {
1706                 smmu_domain->smmu = smmu;
1707                 ret = arm_smmu_domain_finalise(domain);
1708                 if (ret) {
1709                         smmu_domain->smmu = NULL;
1710                         goto out_unlock;
1711                 }
1712         } else if (smmu_domain->smmu != smmu) {
1713                 dev_err(dev,
1714                         "cannot attach to SMMU %s (upstream of %s)\n",
1715                         dev_name(smmu_domain->smmu->dev),
1716                         dev_name(smmu->dev));
1717                 ret = -ENXIO;
1718                 goto out_unlock;
1719         }
1720
1721         ste->assigned = true;
1722
1723         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1724                 ste->s1_cfg = NULL;
1725                 ste->s2_cfg = NULL;
1726         } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1727                 ste->s1_cfg = &smmu_domain->s1_cfg;
1728                 ste->s2_cfg = NULL;
1729                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1730         } else {
1731                 ste->s1_cfg = NULL;
1732                 ste->s2_cfg = &smmu_domain->s2_cfg;
1733         }
1734
1735         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1736 out_unlock:
1737         mutex_unlock(&smmu_domain->init_mutex);
1738         return ret;
1739 }
1740
1741 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1742                         phys_addr_t paddr, size_t size, int prot)
1743 {
1744         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1745
1746         if (!ops)
1747                 return -ENODEV;
1748
1749         return ops->map(ops, iova, paddr, size, prot);
1750 }
1751
1752 static size_t
1753 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1754 {
1755         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1756
1757         if (!ops)
1758                 return 0;
1759
1760         return ops->unmap(ops, iova, size);
1761 }
1762
1763 static phys_addr_t
1764 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1765 {
1766         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1767
1768         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1769                 return iova;
1770
1771         if (!ops)
1772                 return 0;
1773
1774         return ops->iova_to_phys(ops, iova);
1775 }
1776
1777 static struct platform_driver arm_smmu_driver;
1778
1779 static int arm_smmu_match_node(struct device *dev, void *data)
1780 {
1781         return dev->fwnode == data;
1782 }
1783
1784 static
1785 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1786 {
1787         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1788                                                 fwnode, arm_smmu_match_node);
1789         put_device(dev);
1790         return dev ? dev_get_drvdata(dev) : NULL;
1791 }
1792
1793 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1794 {
1795         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1796
1797         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1798                 limit *= 1UL << STRTAB_SPLIT;
1799
1800         return sid < limit;
1801 }
1802
1803 static struct iommu_ops arm_smmu_ops;
1804
1805 static int arm_smmu_add_device(struct device *dev)
1806 {
1807         int i, ret;
1808         struct arm_smmu_device *smmu;
1809         struct arm_smmu_master_data *master;
1810         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1811         struct iommu_group *group;
1812
1813         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1814                 return -ENODEV;
1815         /*
1816          * We _can_ actually withstand dodgy bus code re-calling add_device()
1817          * without an intervening remove_device()/of_xlate() sequence, but
1818          * we're not going to do so quietly...
1819          */
1820         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1821                 master = fwspec->iommu_priv;
1822                 smmu = master->smmu;
1823         } else {
1824                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1825                 if (!smmu)
1826                         return -ENODEV;
1827                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1828                 if (!master)
1829                         return -ENOMEM;
1830
1831                 master->smmu = smmu;
1832                 fwspec->iommu_priv = master;
1833         }
1834
1835         /* Check the SIDs are in range of the SMMU and our stream table */
1836         for (i = 0; i < fwspec->num_ids; i++) {
1837                 u32 sid = fwspec->ids[i];
1838
1839                 if (!arm_smmu_sid_in_range(smmu, sid))
1840                         return -ERANGE;
1841
1842                 /* Ensure l2 strtab is initialised */
1843                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1844                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1845                         if (ret)
1846                                 return ret;
1847                 }
1848         }
1849
1850         group = iommu_group_get_for_dev(dev);
1851         if (!IS_ERR(group)) {
1852                 iommu_group_put(group);
1853                 iommu_device_link(&smmu->iommu, dev);
1854         }
1855
1856         return PTR_ERR_OR_ZERO(group);
1857 }
1858
1859 static void arm_smmu_remove_device(struct device *dev)
1860 {
1861         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1862         struct arm_smmu_master_data *master;
1863         struct arm_smmu_device *smmu;
1864
1865         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1866                 return;
1867
1868         master = fwspec->iommu_priv;
1869         smmu = master->smmu;
1870         if (master && master->ste.assigned)
1871                 arm_smmu_detach_dev(dev);
1872         iommu_group_remove_device(dev);
1873         iommu_device_unlink(&smmu->iommu, dev);
1874         kfree(master);
1875         iommu_fwspec_free(dev);
1876 }
1877
1878 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1879 {
1880         struct iommu_group *group;
1881
1882         /*
1883          * We don't support devices sharing stream IDs other than PCI RID
1884          * aliases, since the necessary ID-to-device lookup becomes rather
1885          * impractical given a potential sparse 32-bit stream ID space.
1886          */
1887         if (dev_is_pci(dev))
1888                 group = pci_device_group(dev);
1889         else
1890                 group = generic_device_group(dev);
1891
1892         return group;
1893 }
1894
1895 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1896                                     enum iommu_attr attr, void *data)
1897 {
1898         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1899
1900         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1901                 return -EINVAL;
1902
1903         switch (attr) {
1904         case DOMAIN_ATTR_NESTING:
1905                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1906                 return 0;
1907         default:
1908                 return -ENODEV;
1909         }
1910 }
1911
1912 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1913                                     enum iommu_attr attr, void *data)
1914 {
1915         int ret = 0;
1916         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1917
1918         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1919                 return -EINVAL;
1920
1921         mutex_lock(&smmu_domain->init_mutex);
1922
1923         switch (attr) {
1924         case DOMAIN_ATTR_NESTING:
1925                 if (smmu_domain->smmu) {
1926                         ret = -EPERM;
1927                         goto out_unlock;
1928                 }
1929
1930                 if (*(int *)data)
1931                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1932                 else
1933                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1934
1935                 break;
1936         default:
1937                 ret = -ENODEV;
1938         }
1939
1940 out_unlock:
1941         mutex_unlock(&smmu_domain->init_mutex);
1942         return ret;
1943 }
1944
1945 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1946 {
1947         return iommu_fwspec_add_ids(dev, args->args, 1);
1948 }
1949
1950 static void arm_smmu_get_resv_regions(struct device *dev,
1951                                       struct list_head *head)
1952 {
1953         struct iommu_resv_region *region;
1954         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1955
1956         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1957                                          prot, IOMMU_RESV_SW_MSI);
1958         if (!region)
1959                 return;
1960
1961         list_add_tail(&region->list, head);
1962
1963         iommu_dma_get_resv_regions(dev, head);
1964 }
1965
1966 static void arm_smmu_put_resv_regions(struct device *dev,
1967                                       struct list_head *head)
1968 {
1969         struct iommu_resv_region *entry, *next;
1970
1971         list_for_each_entry_safe(entry, next, head, list)
1972                 kfree(entry);
1973 }
1974
1975 static struct iommu_ops arm_smmu_ops = {
1976         .capable                = arm_smmu_capable,
1977         .domain_alloc           = arm_smmu_domain_alloc,
1978         .domain_free            = arm_smmu_domain_free,
1979         .attach_dev             = arm_smmu_attach_dev,
1980         .map                    = arm_smmu_map,
1981         .unmap                  = arm_smmu_unmap,
1982         .map_sg                 = default_iommu_map_sg,
1983         .iova_to_phys           = arm_smmu_iova_to_phys,
1984         .add_device             = arm_smmu_add_device,
1985         .remove_device          = arm_smmu_remove_device,
1986         .device_group           = arm_smmu_device_group,
1987         .domain_get_attr        = arm_smmu_domain_get_attr,
1988         .domain_set_attr        = arm_smmu_domain_set_attr,
1989         .of_xlate               = arm_smmu_of_xlate,
1990         .get_resv_regions       = arm_smmu_get_resv_regions,
1991         .put_resv_regions       = arm_smmu_put_resv_regions,
1992         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1993 };
1994
1995 /* Probing and initialisation functions */
1996 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1997                                    struct arm_smmu_queue *q,
1998                                    unsigned long prod_off,
1999                                    unsigned long cons_off,
2000                                    size_t dwords)
2001 {
2002         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
2003
2004         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
2005         if (!q->base) {
2006                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
2007                         qsz);
2008                 return -ENOMEM;
2009         }
2010
2011         q->prod_reg     = arm_smmu_page1_fixup(prod_off, smmu);
2012         q->cons_reg     = arm_smmu_page1_fixup(cons_off, smmu);
2013         q->ent_dwords   = dwords;
2014
2015         q->q_base  = Q_BASE_RWA;
2016         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
2017         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
2018                      << Q_BASE_LOG2SIZE_SHIFT;
2019
2020         q->prod = q->cons = 0;
2021         return 0;
2022 }
2023
2024 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2025 {
2026         int ret;
2027
2028         /* cmdq */
2029         spin_lock_init(&smmu->cmdq.lock);
2030         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2031                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
2032         if (ret)
2033                 return ret;
2034
2035         /* evtq */
2036         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2037                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2038         if (ret)
2039                 return ret;
2040
2041         /* priq */
2042         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2043                 return 0;
2044
2045         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2046                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2047 }
2048
2049 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2050 {
2051         unsigned int i;
2052         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2053         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2054         void *strtab = smmu->strtab_cfg.strtab;
2055
2056         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2057         if (!cfg->l1_desc) {
2058                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2059                 return -ENOMEM;
2060         }
2061
2062         for (i = 0; i < cfg->num_l1_ents; ++i) {
2063                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2064                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2065         }
2066
2067         return 0;
2068 }
2069
2070 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2071 {
2072         void *strtab;
2073         u64 reg;
2074         u32 size, l1size;
2075         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2076
2077         /* Calculate the L1 size, capped to the SIDSIZE. */
2078         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2079         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2080         cfg->num_l1_ents = 1 << size;
2081
2082         size += STRTAB_SPLIT;
2083         if (size < smmu->sid_bits)
2084                 dev_warn(smmu->dev,
2085                          "2-level strtab only covers %u/%u bits of SID\n",
2086                          size, smmu->sid_bits);
2087
2088         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2089         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2090                                      GFP_KERNEL | __GFP_ZERO);
2091         if (!strtab) {
2092                 dev_err(smmu->dev,
2093                         "failed to allocate l1 stream table (%u bytes)\n",
2094                         size);
2095                 return -ENOMEM;
2096         }
2097         cfg->strtab = strtab;
2098
2099         /* Configure strtab_base_cfg for 2 levels */
2100         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2101         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2102                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2103         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2104                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2105         cfg->strtab_base_cfg = reg;
2106
2107         return arm_smmu_init_l1_strtab(smmu);
2108 }
2109
2110 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2111 {
2112         void *strtab;
2113         u64 reg;
2114         u32 size;
2115         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2116
2117         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2118         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2119                                      GFP_KERNEL | __GFP_ZERO);
2120         if (!strtab) {
2121                 dev_err(smmu->dev,
2122                         "failed to allocate linear stream table (%u bytes)\n",
2123                         size);
2124                 return -ENOMEM;
2125         }
2126         cfg->strtab = strtab;
2127         cfg->num_l1_ents = 1 << smmu->sid_bits;
2128
2129         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2130         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2131         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2132                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2133         cfg->strtab_base_cfg = reg;
2134
2135         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2136         return 0;
2137 }
2138
2139 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2140 {
2141         u64 reg;
2142         int ret;
2143
2144         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2145                 ret = arm_smmu_init_strtab_2lvl(smmu);
2146         else
2147                 ret = arm_smmu_init_strtab_linear(smmu);
2148
2149         if (ret)
2150                 return ret;
2151
2152         /* Set the strtab base address */
2153         reg  = smmu->strtab_cfg.strtab_dma &
2154                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2155         reg |= STRTAB_BASE_RA;
2156         smmu->strtab_cfg.strtab_base = reg;
2157
2158         /* Allocate the first VMID for stage-2 bypass STEs */
2159         set_bit(0, smmu->vmid_map);
2160         return 0;
2161 }
2162
2163 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2164 {
2165         int ret;
2166
2167         ret = arm_smmu_init_queues(smmu);
2168         if (ret)
2169                 return ret;
2170
2171         return arm_smmu_init_strtab(smmu);
2172 }
2173
2174 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2175                                    unsigned int reg_off, unsigned int ack_off)
2176 {
2177         u32 reg;
2178
2179         writel_relaxed(val, smmu->base + reg_off);
2180         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2181                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2182 }
2183
2184 /* GBPA is "special" */
2185 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2186 {
2187         int ret;
2188         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2189
2190         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2191                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2192         if (ret)
2193                 return ret;
2194
2195         reg &= ~clr;
2196         reg |= set;
2197         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2198         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2199                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2200 }
2201
2202 static void arm_smmu_free_msis(void *data)
2203 {
2204         struct device *dev = data;
2205         platform_msi_domain_free_irqs(dev);
2206 }
2207
2208 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2209 {
2210         phys_addr_t doorbell;
2211         struct device *dev = msi_desc_to_dev(desc);
2212         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2213         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2214
2215         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2216         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2217
2218         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2219         writel_relaxed(msg->data, smmu->base + cfg[1]);
2220         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2221 }
2222
2223 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2224 {
2225         struct msi_desc *desc;
2226         int ret, nvec = ARM_SMMU_MAX_MSIS;
2227         struct device *dev = smmu->dev;
2228
2229         /* Clear the MSI address regs */
2230         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2231         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2232
2233         if (smmu->features & ARM_SMMU_FEAT_PRI)
2234                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2235         else
2236                 nvec--;
2237
2238         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2239                 return;
2240
2241         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2242         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2243         if (ret) {
2244                 dev_warn(dev, "failed to allocate MSIs\n");
2245                 return;
2246         }
2247
2248         for_each_msi_entry(desc, dev) {
2249                 switch (desc->platform.msi_index) {
2250                 case EVTQ_MSI_INDEX:
2251                         smmu->evtq.q.irq = desc->irq;
2252                         break;
2253                 case GERROR_MSI_INDEX:
2254                         smmu->gerr_irq = desc->irq;
2255                         break;
2256                 case PRIQ_MSI_INDEX:
2257                         smmu->priq.q.irq = desc->irq;
2258                         break;
2259                 default:        /* Unknown */
2260                         continue;
2261                 }
2262         }
2263
2264         /* Add callback to free MSIs on teardown */
2265         devm_add_action(dev, arm_smmu_free_msis, dev);
2266 }
2267
2268 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2269 {
2270         int irq, ret;
2271
2272         arm_smmu_setup_msis(smmu);
2273
2274         /* Request interrupt lines */
2275         irq = smmu->evtq.q.irq;
2276         if (irq) {
2277                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2278                                                 arm_smmu_evtq_thread,
2279                                                 IRQF_ONESHOT,
2280                                                 "arm-smmu-v3-evtq", smmu);
2281                 if (ret < 0)
2282                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2283         }
2284
2285         irq = smmu->cmdq.q.irq;
2286         if (irq) {
2287                 ret = devm_request_irq(smmu->dev, irq,
2288                                        arm_smmu_cmdq_sync_handler, 0,
2289                                        "arm-smmu-v3-cmdq-sync", smmu);
2290                 if (ret < 0)
2291                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2292         }
2293
2294         irq = smmu->gerr_irq;
2295         if (irq) {
2296                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2297                                        0, "arm-smmu-v3-gerror", smmu);
2298                 if (ret < 0)
2299                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2300         }
2301
2302         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2303                 irq = smmu->priq.q.irq;
2304                 if (irq) {
2305                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2306                                                         arm_smmu_priq_thread,
2307                                                         IRQF_ONESHOT,
2308                                                         "arm-smmu-v3-priq",
2309                                                         smmu);
2310                         if (ret < 0)
2311                                 dev_warn(smmu->dev,
2312                                          "failed to enable priq irq\n");
2313                 }
2314         }
2315 }
2316
2317 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2318 {
2319         int ret, irq;
2320         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2321
2322         /* Disable IRQs first */
2323         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2324                                       ARM_SMMU_IRQ_CTRLACK);
2325         if (ret) {
2326                 dev_err(smmu->dev, "failed to disable irqs\n");
2327                 return ret;
2328         }
2329
2330         irq = smmu->combined_irq;
2331         if (irq) {
2332                 /*
2333                  * Cavium ThunderX2 implementation doesn't not support unique
2334                  * irq lines. Use single irq line for all the SMMUv3 interrupts.
2335                  */
2336                 ret = devm_request_threaded_irq(smmu->dev, irq,
2337                                         arm_smmu_combined_irq_handler,
2338                                         arm_smmu_combined_irq_thread,
2339                                         IRQF_ONESHOT,
2340                                         "arm-smmu-v3-combined-irq", smmu);
2341                 if (ret < 0)
2342                         dev_warn(smmu->dev, "failed to enable combined irq\n");
2343         } else
2344                 arm_smmu_setup_unique_irqs(smmu);
2345
2346         if (smmu->features & ARM_SMMU_FEAT_PRI)
2347                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2348
2349         /* Enable interrupt generation on the SMMU */
2350         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2351                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2352         if (ret)
2353                 dev_warn(smmu->dev, "failed to enable irqs\n");
2354
2355         return 0;
2356 }
2357
2358 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2359 {
2360         int ret;
2361
2362         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2363         if (ret)
2364                 dev_err(smmu->dev, "failed to clear cr0\n");
2365
2366         return ret;
2367 }
2368
2369 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2370 {
2371         int ret;
2372         u32 reg, enables;
2373         struct arm_smmu_cmdq_ent cmd;
2374
2375         /* Clear CR0 and sync (disables SMMU and queue processing) */
2376         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2377         if (reg & CR0_SMMUEN)
2378                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2379
2380         ret = arm_smmu_device_disable(smmu);
2381         if (ret)
2382                 return ret;
2383
2384         /* CR1 (table and queue memory attributes) */
2385         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2386               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2387               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2388               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2389               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2390               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2391         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2392
2393         /* CR2 (random crap) */
2394         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2395         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2396
2397         /* Stream table */
2398         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2399                        smmu->base + ARM_SMMU_STRTAB_BASE);
2400         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2401                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2402
2403         /* Command queue */
2404         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2405         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2406         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2407
2408         enables = CR0_CMDQEN;
2409         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2410                                       ARM_SMMU_CR0ACK);
2411         if (ret) {
2412                 dev_err(smmu->dev, "failed to enable command queue\n");
2413                 return ret;
2414         }
2415
2416         /* Invalidate any cached configuration */
2417         cmd.opcode = CMDQ_OP_CFGI_ALL;
2418         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2419         cmd.opcode = CMDQ_OP_CMD_SYNC;
2420         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2421
2422         /* Invalidate any stale TLB entries */
2423         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2424                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2425                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2426         }
2427
2428         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2429         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2430         cmd.opcode = CMDQ_OP_CMD_SYNC;
2431         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2432
2433         /* Event queue */
2434         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2435         writel_relaxed(smmu->evtq.q.prod,
2436                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
2437         writel_relaxed(smmu->evtq.q.cons,
2438                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2439
2440         enables |= CR0_EVTQEN;
2441         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2442                                       ARM_SMMU_CR0ACK);
2443         if (ret) {
2444                 dev_err(smmu->dev, "failed to enable event queue\n");
2445                 return ret;
2446         }
2447
2448         /* PRI queue */
2449         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2450                 writeq_relaxed(smmu->priq.q.q_base,
2451                                smmu->base + ARM_SMMU_PRIQ_BASE);
2452                 writel_relaxed(smmu->priq.q.prod,
2453                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2454                 writel_relaxed(smmu->priq.q.cons,
2455                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2456
2457                 enables |= CR0_PRIQEN;
2458                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2459                                               ARM_SMMU_CR0ACK);
2460                 if (ret) {
2461                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2462                         return ret;
2463                 }
2464         }
2465
2466         ret = arm_smmu_setup_irqs(smmu);
2467         if (ret) {
2468                 dev_err(smmu->dev, "failed to setup irqs\n");
2469                 return ret;
2470         }
2471
2472
2473         /* Enable the SMMU interface, or ensure bypass */
2474         if (!bypass || disable_bypass) {
2475                 enables |= CR0_SMMUEN;
2476         } else {
2477                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2478                 if (ret) {
2479                         dev_err(smmu->dev, "GBPA not responding to update\n");
2480                         return ret;
2481                 }
2482         }
2483         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2484                                       ARM_SMMU_CR0ACK);
2485         if (ret) {
2486                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2487                 return ret;
2488         }
2489
2490         return 0;
2491 }
2492
2493 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2494 {
2495         u32 reg;
2496         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2497
2498         /* IDR0 */
2499         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2500
2501         /* 2-level structures */
2502         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2503                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2504
2505         if (reg & IDR0_CD2L)
2506                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2507
2508         /*
2509          * Translation table endianness.
2510          * We currently require the same endianness as the CPU, but this
2511          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2512          */
2513         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2514         case IDR0_TTENDIAN_MIXED:
2515                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2516                 break;
2517 #ifdef __BIG_ENDIAN
2518         case IDR0_TTENDIAN_BE:
2519                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2520                 break;
2521 #else
2522         case IDR0_TTENDIAN_LE:
2523                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2524                 break;
2525 #endif
2526         default:
2527                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2528                 return -ENXIO;
2529         }
2530
2531         /* Boolean feature flags */
2532         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2533                 smmu->features |= ARM_SMMU_FEAT_PRI;
2534
2535         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2536                 smmu->features |= ARM_SMMU_FEAT_ATS;
2537
2538         if (reg & IDR0_SEV)
2539                 smmu->features |= ARM_SMMU_FEAT_SEV;
2540
2541         if (reg & IDR0_MSI)
2542                 smmu->features |= ARM_SMMU_FEAT_MSI;
2543
2544         if (reg & IDR0_HYP)
2545                 smmu->features |= ARM_SMMU_FEAT_HYP;
2546
2547         /*
2548          * The coherency feature as set by FW is used in preference to the ID
2549          * register, but warn on mismatch.
2550          */
2551         if (!!(reg & IDR0_COHACC) != coherent)
2552                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2553                          coherent ? "true" : "false");
2554
2555         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2556         case IDR0_STALL_MODEL_STALL:
2557                 /* Fallthrough */
2558         case IDR0_STALL_MODEL_FORCE:
2559                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2560         }
2561
2562         if (reg & IDR0_S1P)
2563                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2564
2565         if (reg & IDR0_S2P)
2566                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2567
2568         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2569                 dev_err(smmu->dev, "no translation support!\n");
2570                 return -ENXIO;
2571         }
2572
2573         /* We only support the AArch64 table format at present */
2574         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2575         case IDR0_TTF_AARCH32_64:
2576                 smmu->ias = 40;
2577                 /* Fallthrough */
2578         case IDR0_TTF_AARCH64:
2579                 break;
2580         default:
2581                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2582                 return -ENXIO;
2583         }
2584
2585         /* ASID/VMID sizes */
2586         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2587         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2588
2589         /* IDR1 */
2590         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2591         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2592                 dev_err(smmu->dev, "embedded implementation not supported\n");
2593                 return -ENXIO;
2594         }
2595
2596         /* Queue sizes, capped at 4k */
2597         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2598                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2599         if (!smmu->cmdq.q.max_n_shift) {
2600                 /* Odd alignment restrictions on the base, so ignore for now */
2601                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2602                 return -ENXIO;
2603         }
2604
2605         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2606                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2607         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2608                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2609
2610         /* SID/SSID sizes */
2611         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2612         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2613
2614         /*
2615          * If the SMMU supports fewer bits than would fill a single L2 stream
2616          * table, use a linear table instead.
2617          */
2618         if (smmu->sid_bits <= STRTAB_SPLIT)
2619                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2620
2621         /* IDR5 */
2622         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2623
2624         /* Maximum number of outstanding stalls */
2625         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2626                                 & IDR5_STALL_MAX_MASK;
2627
2628         /* Page sizes */
2629         if (reg & IDR5_GRAN64K)
2630                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2631         if (reg & IDR5_GRAN16K)
2632                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2633         if (reg & IDR5_GRAN4K)
2634                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2635
2636         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2637                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2638         else
2639                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2640
2641         /* Output address size */
2642         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2643         case IDR5_OAS_32_BIT:
2644                 smmu->oas = 32;
2645                 break;
2646         case IDR5_OAS_36_BIT:
2647                 smmu->oas = 36;
2648                 break;
2649         case IDR5_OAS_40_BIT:
2650                 smmu->oas = 40;
2651                 break;
2652         case IDR5_OAS_42_BIT:
2653                 smmu->oas = 42;
2654                 break;
2655         case IDR5_OAS_44_BIT:
2656                 smmu->oas = 44;
2657                 break;
2658         default:
2659                 dev_info(smmu->dev,
2660                         "unknown output address size. Truncating to 48-bit\n");
2661                 /* Fallthrough */
2662         case IDR5_OAS_48_BIT:
2663                 smmu->oas = 48;
2664         }
2665
2666         /* Set the DMA mask for our table walker */
2667         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2668                 dev_warn(smmu->dev,
2669                          "failed to set DMA mask for table walker\n");
2670
2671         smmu->ias = max(smmu->ias, smmu->oas);
2672
2673         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2674                  smmu->ias, smmu->oas, smmu->features);
2675         return 0;
2676 }
2677
2678 #ifdef CONFIG_ACPI
2679 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
2680 {
2681         switch (model) {
2682         case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2683                 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2684                 break;
2685         case ACPI_IORT_SMMU_HISILICON_HI161X:
2686                 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
2687                 break;
2688         }
2689
2690         dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
2691 }
2692
2693 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2694                                       struct arm_smmu_device *smmu)
2695 {
2696         struct acpi_iort_smmu_v3 *iort_smmu;
2697         struct device *dev = smmu->dev;
2698         struct acpi_iort_node *node;
2699
2700         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2701
2702         /* Retrieve SMMUv3 specific data */
2703         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2704
2705         acpi_smmu_get_options(iort_smmu->model, smmu);
2706
2707         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2708                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2709
2710         return 0;
2711 }
2712 #else
2713 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2714                                              struct arm_smmu_device *smmu)
2715 {
2716         return -ENODEV;
2717 }
2718 #endif
2719
2720 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2721                                     struct arm_smmu_device *smmu)
2722 {
2723         struct device *dev = &pdev->dev;
2724         u32 cells;
2725         int ret = -EINVAL;
2726
2727         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2728                 dev_err(dev, "missing #iommu-cells property\n");
2729         else if (cells != 1)
2730                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2731         else
2732                 ret = 0;
2733
2734         parse_driver_options(smmu);
2735
2736         if (of_dma_is_coherent(dev->of_node))
2737                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2738
2739         return ret;
2740 }
2741
2742 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
2743 {
2744         if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
2745                 return SZ_64K;
2746         else
2747                 return SZ_128K;
2748 }
2749
2750 static int arm_smmu_device_probe(struct platform_device *pdev)
2751 {
2752         int irq, ret;
2753         struct resource *res;
2754         resource_size_t ioaddr;
2755         struct arm_smmu_device *smmu;
2756         struct device *dev = &pdev->dev;
2757         bool bypass;
2758
2759         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2760         if (!smmu) {
2761                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2762                 return -ENOMEM;
2763         }
2764         smmu->dev = dev;
2765
2766         if (dev->of_node) {
2767                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2768         } else {
2769                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2770                 if (ret == -ENODEV)
2771                         return ret;
2772         }
2773
2774         /* Set bypass mode according to firmware probing result */
2775         bypass = !!ret;
2776
2777         /* Base address */
2778         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2779         if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2780                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2781                 return -EINVAL;
2782         }
2783         ioaddr = res->start;
2784
2785         smmu->base = devm_ioremap_resource(dev, res);
2786         if (IS_ERR(smmu->base))
2787                 return PTR_ERR(smmu->base);
2788
2789         /* Interrupt lines */
2790
2791         irq = platform_get_irq_byname(pdev, "combined");
2792         if (irq > 0)
2793                 smmu->combined_irq = irq;
2794         else {
2795                 irq = platform_get_irq_byname(pdev, "eventq");
2796                 if (irq > 0)
2797                         smmu->evtq.q.irq = irq;
2798
2799                 irq = platform_get_irq_byname(pdev, "priq");
2800                 if (irq > 0)
2801                         smmu->priq.q.irq = irq;
2802
2803                 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2804                 if (irq > 0)
2805                         smmu->cmdq.q.irq = irq;
2806
2807                 irq = platform_get_irq_byname(pdev, "gerror");
2808                 if (irq > 0)
2809                         smmu->gerr_irq = irq;
2810         }
2811         /* Probe the h/w */
2812         ret = arm_smmu_device_hw_probe(smmu);
2813         if (ret)
2814                 return ret;
2815
2816         /* Initialise in-memory data structures */
2817         ret = arm_smmu_init_structures(smmu);
2818         if (ret)
2819                 return ret;
2820
2821         /* Record our private device structure */
2822         platform_set_drvdata(pdev, smmu);
2823
2824         /* Reset the device */
2825         ret = arm_smmu_device_reset(smmu, bypass);
2826         if (ret)
2827                 return ret;
2828
2829         /* And we're up. Go go go! */
2830         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2831                                      "smmu3.%pa", &ioaddr);
2832         if (ret)
2833                 return ret;
2834
2835         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2836         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2837
2838         ret = iommu_device_register(&smmu->iommu);
2839         if (ret) {
2840                 dev_err(dev, "Failed to register iommu\n");
2841                 return ret;
2842         }
2843
2844 #ifdef CONFIG_PCI
2845         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2846                 pci_request_acs();
2847                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2848                 if (ret)
2849                         return ret;
2850         }
2851 #endif
2852 #ifdef CONFIG_ARM_AMBA
2853         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2854                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2855                 if (ret)
2856                         return ret;
2857         }
2858 #endif
2859         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2860                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2861                 if (ret)
2862                         return ret;
2863         }
2864         return 0;
2865 }
2866
2867 static int arm_smmu_device_remove(struct platform_device *pdev)
2868 {
2869         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2870
2871         arm_smmu_device_disable(smmu);
2872
2873         return 0;
2874 }
2875
2876 static void arm_smmu_device_shutdown(struct platform_device *pdev)
2877 {
2878         arm_smmu_device_remove(pdev);
2879 }
2880
2881 static const struct of_device_id arm_smmu_of_match[] = {
2882         { .compatible = "arm,smmu-v3", },
2883         { },
2884 };
2885 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2886
2887 static struct platform_driver arm_smmu_driver = {
2888         .driver = {
2889                 .name           = "arm-smmu-v3",
2890                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2891         },
2892         .probe  = arm_smmu_device_probe,
2893         .remove = arm_smmu_device_remove,
2894         .shutdown = arm_smmu_device_shutdown,
2895 };
2896 module_platform_driver(arm_smmu_driver);
2897
2898 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);
2899
2900 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2901 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2902 MODULE_LICENSE("GPL v2");