GNU Linux-libre 4.4.283-gnu1
[releases.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "2.0"
59 #define DRV_RELDATE     "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr = true;
72 static bool register_always = true;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100                  "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106                 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111                 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113                  "Number of seconds between the observation of a transport"
114                  " layer error and failing all I/O. \"off\" means that this"
115                  " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119                 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121                  "Maximum number of seconds that the SRP transport should"
122                  " insulate transport layer errors. After this time has been"
123                  " exceeded the SCSI host is removed. Should be"
124                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125                  " if fast_io_fail_tmo has not been set. \"off\" means that"
126                  " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143         .name   = "srp",
144         .add    = srp_add_one,
145         .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152         int tmo = *(int *)kp->arg;
153
154         if (tmo >= 0)
155                 return sprintf(buffer, "%d", tmo);
156         else
157                 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162         int tmo, res;
163
164         res = srp_parse_tmo(&tmo, val);
165         if (res)
166                 goto out;
167
168         if (kp->arg == &srp_reconnect_delay)
169                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
170                                     srp_dev_loss_tmo);
171         else if (kp->arg == &srp_fast_io_fail_tmo)
172                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
173         else
174                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
175                                     tmo);
176         if (res)
177                 goto out;
178         *(int *)kp->arg = tmo;
179
180 out:
181         return res;
182 }
183
184 static const struct kernel_param_ops srp_tmo_ops = {
185         .get = srp_tmo_get,
186         .set = srp_tmo_set,
187 };
188
189 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
190 {
191         return (struct srp_target_port *) host->hostdata;
192 }
193
194 static const char *srp_target_info(struct Scsi_Host *host)
195 {
196         return host_to_target(host)->target_name;
197 }
198
199 static int srp_target_is_topspin(struct srp_target_port *target)
200 {
201         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
202         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
203
204         return topspin_workarounds &&
205                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
206                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
207 }
208
209 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
210                                    gfp_t gfp_mask,
211                                    enum dma_data_direction direction)
212 {
213         struct srp_iu *iu;
214
215         iu = kmalloc(sizeof *iu, gfp_mask);
216         if (!iu)
217                 goto out;
218
219         iu->buf = kzalloc(size, gfp_mask);
220         if (!iu->buf)
221                 goto out_free_iu;
222
223         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
224                                     direction);
225         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
226                 goto out_free_buf;
227
228         iu->size      = size;
229         iu->direction = direction;
230
231         return iu;
232
233 out_free_buf:
234         kfree(iu->buf);
235 out_free_iu:
236         kfree(iu);
237 out:
238         return NULL;
239 }
240
241 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
242 {
243         if (!iu)
244                 return;
245
246         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
247                             iu->direction);
248         kfree(iu->buf);
249         kfree(iu);
250 }
251
252 static void srp_qp_event(struct ib_event *event, void *context)
253 {
254         pr_debug("QP event %s (%d)\n",
255                  ib_event_msg(event->event), event->event);
256 }
257
258 static int srp_init_qp(struct srp_target_port *target,
259                        struct ib_qp *qp)
260 {
261         struct ib_qp_attr *attr;
262         int ret;
263
264         attr = kmalloc(sizeof *attr, GFP_KERNEL);
265         if (!attr)
266                 return -ENOMEM;
267
268         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
269                                   target->srp_host->port,
270                                   be16_to_cpu(target->pkey),
271                                   &attr->pkey_index);
272         if (ret)
273                 goto out;
274
275         attr->qp_state        = IB_QPS_INIT;
276         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
277                                     IB_ACCESS_REMOTE_WRITE);
278         attr->port_num        = target->srp_host->port;
279
280         ret = ib_modify_qp(qp, attr,
281                            IB_QP_STATE          |
282                            IB_QP_PKEY_INDEX     |
283                            IB_QP_ACCESS_FLAGS   |
284                            IB_QP_PORT);
285
286 out:
287         kfree(attr);
288         return ret;
289 }
290
291 static int srp_new_cm_id(struct srp_rdma_ch *ch)
292 {
293         struct srp_target_port *target = ch->target;
294         struct ib_cm_id *new_cm_id;
295
296         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
297                                     srp_cm_handler, ch);
298         if (IS_ERR(new_cm_id))
299                 return PTR_ERR(new_cm_id);
300
301         if (ch->cm_id)
302                 ib_destroy_cm_id(ch->cm_id);
303         ch->cm_id = new_cm_id;
304         ch->path.sgid = target->sgid;
305         ch->path.dgid = target->orig_dgid;
306         ch->path.pkey = target->pkey;
307         ch->path.service_id = target->service_id;
308
309         return 0;
310 }
311
312 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
313 {
314         struct srp_device *dev = target->srp_host->srp_dev;
315         struct ib_fmr_pool_param fmr_param;
316
317         memset(&fmr_param, 0, sizeof(fmr_param));
318         fmr_param.pool_size         = target->scsi_host->can_queue;
319         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
320         fmr_param.cache             = 1;
321         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
322         fmr_param.page_shift        = ilog2(dev->mr_page_size);
323         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
324                                        IB_ACCESS_REMOTE_WRITE |
325                                        IB_ACCESS_REMOTE_READ);
326
327         return ib_create_fmr_pool(dev->pd, &fmr_param);
328 }
329
330 /**
331  * srp_destroy_fr_pool() - free the resources owned by a pool
332  * @pool: Fast registration pool to be destroyed.
333  */
334 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
335 {
336         int i;
337         struct srp_fr_desc *d;
338
339         if (!pool)
340                 return;
341
342         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
343                 if (d->mr)
344                         ib_dereg_mr(d->mr);
345         }
346         kfree(pool);
347 }
348
349 /**
350  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
351  * @device:            IB device to allocate fast registration descriptors for.
352  * @pd:                Protection domain associated with the FR descriptors.
353  * @pool_size:         Number of descriptors to allocate.
354  * @max_page_list_len: Maximum fast registration work request page list length.
355  */
356 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
357                                               struct ib_pd *pd, int pool_size,
358                                               int max_page_list_len)
359 {
360         struct srp_fr_pool *pool;
361         struct srp_fr_desc *d;
362         struct ib_mr *mr;
363         int i, ret = -EINVAL;
364
365         if (pool_size <= 0)
366                 goto err;
367         ret = -ENOMEM;
368         pool = kzalloc(sizeof(struct srp_fr_pool) +
369                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
370         if (!pool)
371                 goto err;
372         pool->size = pool_size;
373         pool->max_page_list_len = max_page_list_len;
374         spin_lock_init(&pool->lock);
375         INIT_LIST_HEAD(&pool->free_list);
376
377         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
378                 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
379                                  max_page_list_len);
380                 if (IS_ERR(mr)) {
381                         ret = PTR_ERR(mr);
382                         goto destroy_pool;
383                 }
384                 d->mr = mr;
385                 list_add_tail(&d->entry, &pool->free_list);
386         }
387
388 out:
389         return pool;
390
391 destroy_pool:
392         srp_destroy_fr_pool(pool);
393
394 err:
395         pool = ERR_PTR(ret);
396         goto out;
397 }
398
399 /**
400  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
401  * @pool: Pool to obtain descriptor from.
402  */
403 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
404 {
405         struct srp_fr_desc *d = NULL;
406         unsigned long flags;
407
408         spin_lock_irqsave(&pool->lock, flags);
409         if (!list_empty(&pool->free_list)) {
410                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
411                 list_del(&d->entry);
412         }
413         spin_unlock_irqrestore(&pool->lock, flags);
414
415         return d;
416 }
417
418 /**
419  * srp_fr_pool_put() - put an FR descriptor back in the free list
420  * @pool: Pool the descriptor was allocated from.
421  * @desc: Pointer to an array of fast registration descriptor pointers.
422  * @n:    Number of descriptors to put back.
423  *
424  * Note: The caller must already have queued an invalidation request for
425  * desc->mr->rkey before calling this function.
426  */
427 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
428                             int n)
429 {
430         unsigned long flags;
431         int i;
432
433         spin_lock_irqsave(&pool->lock, flags);
434         for (i = 0; i < n; i++)
435                 list_add(&desc[i]->entry, &pool->free_list);
436         spin_unlock_irqrestore(&pool->lock, flags);
437 }
438
439 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
440 {
441         struct srp_device *dev = target->srp_host->srp_dev;
442
443         return srp_create_fr_pool(dev->dev, dev->pd,
444                                   target->scsi_host->can_queue,
445                                   dev->max_pages_per_mr);
446 }
447
448 /**
449  * srp_destroy_qp() - destroy an RDMA queue pair
450  * @ch: SRP RDMA channel.
451  *
452  * Change a queue pair into the error state and wait until all receive
453  * completions have been processed before destroying it. This avoids that
454  * the receive completion handler can access the queue pair while it is
455  * being destroyed.
456  */
457 static void srp_destroy_qp(struct srp_rdma_ch *ch)
458 {
459         static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
460         static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
461         struct ib_recv_wr *bad_wr;
462         int ret;
463
464         /* Destroying a QP and reusing ch->done is only safe if not connected */
465         WARN_ON_ONCE(ch->connected);
466
467         ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
468         WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
469         if (ret)
470                 goto out;
471
472         init_completion(&ch->done);
473         ret = ib_post_recv(ch->qp, &wr, &bad_wr);
474         WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
475         if (ret == 0)
476                 wait_for_completion(&ch->done);
477
478 out:
479         ib_destroy_qp(ch->qp);
480 }
481
482 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
483 {
484         struct srp_target_port *target = ch->target;
485         struct srp_device *dev = target->srp_host->srp_dev;
486         struct ib_qp_init_attr *init_attr;
487         struct ib_cq *recv_cq, *send_cq;
488         struct ib_qp *qp;
489         struct ib_fmr_pool *fmr_pool = NULL;
490         struct srp_fr_pool *fr_pool = NULL;
491         const int m = dev->use_fast_reg ? 3 : 1;
492         struct ib_cq_init_attr cq_attr = {};
493         int ret;
494
495         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
496         if (!init_attr)
497                 return -ENOMEM;
498
499         /* + 1 for SRP_LAST_WR_ID */
500         cq_attr.cqe = target->queue_size + 1;
501         cq_attr.comp_vector = ch->comp_vector;
502         recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
503                                &cq_attr);
504         if (IS_ERR(recv_cq)) {
505                 ret = PTR_ERR(recv_cq);
506                 goto err;
507         }
508
509         cq_attr.cqe = m * target->queue_size;
510         cq_attr.comp_vector = ch->comp_vector;
511         send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
512                                &cq_attr);
513         if (IS_ERR(send_cq)) {
514                 ret = PTR_ERR(send_cq);
515                 goto err_recv_cq;
516         }
517
518         ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
519
520         init_attr->event_handler       = srp_qp_event;
521         init_attr->cap.max_send_wr     = m * target->queue_size;
522         init_attr->cap.max_recv_wr     = target->queue_size + 1;
523         init_attr->cap.max_recv_sge    = 1;
524         init_attr->cap.max_send_sge    = 1;
525         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
526         init_attr->qp_type             = IB_QPT_RC;
527         init_attr->send_cq             = send_cq;
528         init_attr->recv_cq             = recv_cq;
529
530         qp = ib_create_qp(dev->pd, init_attr);
531         if (IS_ERR(qp)) {
532                 ret = PTR_ERR(qp);
533                 goto err_send_cq;
534         }
535
536         ret = srp_init_qp(target, qp);
537         if (ret)
538                 goto err_qp;
539
540         if (dev->use_fast_reg) {
541                 fr_pool = srp_alloc_fr_pool(target);
542                 if (IS_ERR(fr_pool)) {
543                         ret = PTR_ERR(fr_pool);
544                         shost_printk(KERN_WARNING, target->scsi_host, PFX
545                                      "FR pool allocation failed (%d)\n", ret);
546                         goto err_qp;
547                 }
548         } else if (dev->use_fmr) {
549                 fmr_pool = srp_alloc_fmr_pool(target);
550                 if (IS_ERR(fmr_pool)) {
551                         ret = PTR_ERR(fmr_pool);
552                         shost_printk(KERN_WARNING, target->scsi_host, PFX
553                                      "FMR pool allocation failed (%d)\n", ret);
554                         goto err_qp;
555                 }
556         }
557
558         if (ch->qp)
559                 srp_destroy_qp(ch);
560         if (ch->recv_cq)
561                 ib_destroy_cq(ch->recv_cq);
562         if (ch->send_cq)
563                 ib_destroy_cq(ch->send_cq);
564
565         ch->qp = qp;
566         ch->recv_cq = recv_cq;
567         ch->send_cq = send_cq;
568
569         if (dev->use_fast_reg) {
570                 if (ch->fr_pool)
571                         srp_destroy_fr_pool(ch->fr_pool);
572                 ch->fr_pool = fr_pool;
573         } else if (dev->use_fmr) {
574                 if (ch->fmr_pool)
575                         ib_destroy_fmr_pool(ch->fmr_pool);
576                 ch->fmr_pool = fmr_pool;
577         }
578
579         kfree(init_attr);
580         return 0;
581
582 err_qp:
583         ib_destroy_qp(qp);
584
585 err_send_cq:
586         ib_destroy_cq(send_cq);
587
588 err_recv_cq:
589         ib_destroy_cq(recv_cq);
590
591 err:
592         kfree(init_attr);
593         return ret;
594 }
595
596 /*
597  * Note: this function may be called without srp_alloc_iu_bufs() having been
598  * invoked. Hence the ch->[rt]x_ring checks.
599  */
600 static void srp_free_ch_ib(struct srp_target_port *target,
601                            struct srp_rdma_ch *ch)
602 {
603         struct srp_device *dev = target->srp_host->srp_dev;
604         int i;
605
606         if (!ch->target)
607                 return;
608
609         if (ch->cm_id) {
610                 ib_destroy_cm_id(ch->cm_id);
611                 ch->cm_id = NULL;
612         }
613
614         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
615         if (!ch->qp)
616                 return;
617
618         if (dev->use_fast_reg) {
619                 if (ch->fr_pool)
620                         srp_destroy_fr_pool(ch->fr_pool);
621         } else if (dev->use_fmr) {
622                 if (ch->fmr_pool)
623                         ib_destroy_fmr_pool(ch->fmr_pool);
624         }
625         srp_destroy_qp(ch);
626         ib_destroy_cq(ch->send_cq);
627         ib_destroy_cq(ch->recv_cq);
628
629         /*
630          * Avoid that the SCSI error handler tries to use this channel after
631          * it has been freed. The SCSI error handler can namely continue
632          * trying to perform recovery actions after scsi_remove_host()
633          * returned.
634          */
635         ch->target = NULL;
636
637         ch->qp = NULL;
638         ch->send_cq = ch->recv_cq = NULL;
639
640         if (ch->rx_ring) {
641                 for (i = 0; i < target->queue_size; ++i)
642                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
643                 kfree(ch->rx_ring);
644                 ch->rx_ring = NULL;
645         }
646         if (ch->tx_ring) {
647                 for (i = 0; i < target->queue_size; ++i)
648                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
649                 kfree(ch->tx_ring);
650                 ch->tx_ring = NULL;
651         }
652 }
653
654 static void srp_path_rec_completion(int status,
655                                     struct ib_sa_path_rec *pathrec,
656                                     void *ch_ptr)
657 {
658         struct srp_rdma_ch *ch = ch_ptr;
659         struct srp_target_port *target = ch->target;
660
661         ch->status = status;
662         if (status)
663                 shost_printk(KERN_ERR, target->scsi_host,
664                              PFX "Got failed path rec status %d\n", status);
665         else
666                 ch->path = *pathrec;
667         complete(&ch->done);
668 }
669
670 static int srp_lookup_path(struct srp_rdma_ch *ch)
671 {
672         struct srp_target_port *target = ch->target;
673         int ret = -ENODEV;
674
675         ch->path.numb_path = 1;
676
677         init_completion(&ch->done);
678
679         /*
680          * Avoid that the SCSI host can be removed by srp_remove_target()
681          * before srp_path_rec_completion() is called.
682          */
683         if (!scsi_host_get(target->scsi_host))
684                 goto out;
685
686         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
687                                                target->srp_host->srp_dev->dev,
688                                                target->srp_host->port,
689                                                &ch->path,
690                                                IB_SA_PATH_REC_SERVICE_ID |
691                                                IB_SA_PATH_REC_DGID       |
692                                                IB_SA_PATH_REC_SGID       |
693                                                IB_SA_PATH_REC_NUMB_PATH  |
694                                                IB_SA_PATH_REC_PKEY,
695                                                SRP_PATH_REC_TIMEOUT_MS,
696                                                GFP_KERNEL,
697                                                srp_path_rec_completion,
698                                                ch, &ch->path_query);
699         ret = ch->path_query_id;
700         if (ret < 0)
701                 goto put;
702
703         ret = wait_for_completion_interruptible(&ch->done);
704         if (ret < 0)
705                 goto put;
706
707         ret = ch->status;
708         if (ret < 0)
709                 shost_printk(KERN_WARNING, target->scsi_host,
710                              PFX "Path record query failed\n");
711
712 put:
713         scsi_host_put(target->scsi_host);
714
715 out:
716         return ret;
717 }
718
719 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
720 {
721         struct srp_target_port *target = ch->target;
722         struct {
723                 struct ib_cm_req_param param;
724                 struct srp_login_req   priv;
725         } *req = NULL;
726         int status;
727
728         req = kzalloc(sizeof *req, GFP_KERNEL);
729         if (!req)
730                 return -ENOMEM;
731
732         req->param.primary_path               = &ch->path;
733         req->param.alternate_path             = NULL;
734         req->param.service_id                 = target->service_id;
735         req->param.qp_num                     = ch->qp->qp_num;
736         req->param.qp_type                    = ch->qp->qp_type;
737         req->param.private_data               = &req->priv;
738         req->param.private_data_len           = sizeof req->priv;
739         req->param.flow_control               = 1;
740
741         get_random_bytes(&req->param.starting_psn, 4);
742         req->param.starting_psn              &= 0xffffff;
743
744         /*
745          * Pick some arbitrary defaults here; we could make these
746          * module parameters if anyone cared about setting them.
747          */
748         req->param.responder_resources        = 4;
749         req->param.remote_cm_response_timeout = 20;
750         req->param.local_cm_response_timeout  = 20;
751         req->param.retry_count                = target->tl_retry_count;
752         req->param.rnr_retry_count            = 7;
753         req->param.max_cm_retries             = 15;
754
755         req->priv.opcode        = SRP_LOGIN_REQ;
756         req->priv.tag           = 0;
757         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
758         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
759                                               SRP_BUF_FORMAT_INDIRECT);
760         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
761                                    SRP_MULTICHAN_SINGLE);
762         /*
763          * In the published SRP specification (draft rev. 16a), the
764          * port identifier format is 8 bytes of ID extension followed
765          * by 8 bytes of GUID.  Older drafts put the two halves in the
766          * opposite order, so that the GUID comes first.
767          *
768          * Targets conforming to these obsolete drafts can be
769          * recognized by the I/O Class they report.
770          */
771         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
772                 memcpy(req->priv.initiator_port_id,
773                        &target->sgid.global.interface_id, 8);
774                 memcpy(req->priv.initiator_port_id + 8,
775                        &target->initiator_ext, 8);
776                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
777                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
778         } else {
779                 memcpy(req->priv.initiator_port_id,
780                        &target->initiator_ext, 8);
781                 memcpy(req->priv.initiator_port_id + 8,
782                        &target->sgid.global.interface_id, 8);
783                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
784                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
785         }
786
787         /*
788          * Topspin/Cisco SRP targets will reject our login unless we
789          * zero out the first 8 bytes of our initiator port ID and set
790          * the second 8 bytes to the local node GUID.
791          */
792         if (srp_target_is_topspin(target)) {
793                 shost_printk(KERN_DEBUG, target->scsi_host,
794                              PFX "Topspin/Cisco initiator port ID workaround "
795                              "activated for target GUID %016llx\n",
796                              be64_to_cpu(target->ioc_guid));
797                 memset(req->priv.initiator_port_id, 0, 8);
798                 memcpy(req->priv.initiator_port_id + 8,
799                        &target->srp_host->srp_dev->dev->node_guid, 8);
800         }
801
802         status = ib_send_cm_req(ch->cm_id, &req->param);
803
804         kfree(req);
805
806         return status;
807 }
808
809 static bool srp_queue_remove_work(struct srp_target_port *target)
810 {
811         bool changed = false;
812
813         spin_lock_irq(&target->lock);
814         if (target->state != SRP_TARGET_REMOVED) {
815                 target->state = SRP_TARGET_REMOVED;
816                 changed = true;
817         }
818         spin_unlock_irq(&target->lock);
819
820         if (changed)
821                 queue_work(srp_remove_wq, &target->remove_work);
822
823         return changed;
824 }
825
826 static void srp_disconnect_target(struct srp_target_port *target)
827 {
828         struct srp_rdma_ch *ch;
829         int i;
830
831         /* XXX should send SRP_I_LOGOUT request */
832
833         for (i = 0; i < target->ch_count; i++) {
834                 ch = &target->ch[i];
835                 ch->connected = false;
836                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
837                         shost_printk(KERN_DEBUG, target->scsi_host,
838                                      PFX "Sending CM DREQ failed\n");
839                 }
840         }
841 }
842
843 static void srp_free_req_data(struct srp_target_port *target,
844                               struct srp_rdma_ch *ch)
845 {
846         struct srp_device *dev = target->srp_host->srp_dev;
847         struct ib_device *ibdev = dev->dev;
848         struct srp_request *req;
849         int i;
850
851         if (!ch->req_ring)
852                 return;
853
854         for (i = 0; i < target->req_ring_size; ++i) {
855                 req = &ch->req_ring[i];
856                 if (dev->use_fast_reg) {
857                         kfree(req->fr_list);
858                 } else {
859                         kfree(req->fmr_list);
860                         kfree(req->map_page);
861                 }
862                 if (req->indirect_dma_addr) {
863                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
864                                             target->indirect_size,
865                                             DMA_TO_DEVICE);
866                 }
867                 kfree(req->indirect_desc);
868         }
869
870         kfree(ch->req_ring);
871         ch->req_ring = NULL;
872 }
873
874 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
875 {
876         struct srp_target_port *target = ch->target;
877         struct srp_device *srp_dev = target->srp_host->srp_dev;
878         struct ib_device *ibdev = srp_dev->dev;
879         struct srp_request *req;
880         void *mr_list;
881         dma_addr_t dma_addr;
882         int i, ret = -ENOMEM;
883
884         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
885                                GFP_KERNEL);
886         if (!ch->req_ring)
887                 goto out;
888
889         for (i = 0; i < target->req_ring_size; ++i) {
890                 req = &ch->req_ring[i];
891                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
892                                   GFP_KERNEL);
893                 if (!mr_list)
894                         goto out;
895                 if (srp_dev->use_fast_reg) {
896                         req->fr_list = mr_list;
897                 } else {
898                         req->fmr_list = mr_list;
899                         req->map_page = kmalloc(srp_dev->max_pages_per_mr *
900                                                 sizeof(void *), GFP_KERNEL);
901                         if (!req->map_page)
902                                 goto out;
903                 }
904                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
905                 if (!req->indirect_desc)
906                         goto out;
907
908                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
909                                              target->indirect_size,
910                                              DMA_TO_DEVICE);
911                 if (ib_dma_mapping_error(ibdev, dma_addr))
912                         goto out;
913
914                 req->indirect_dma_addr = dma_addr;
915         }
916         ret = 0;
917
918 out:
919         return ret;
920 }
921
922 /**
923  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
924  * @shost: SCSI host whose attributes to remove from sysfs.
925  *
926  * Note: Any attributes defined in the host template and that did not exist
927  * before invocation of this function will be ignored.
928  */
929 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
930 {
931         struct device_attribute **attr;
932
933         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
934                 device_remove_file(&shost->shost_dev, *attr);
935 }
936
937 static void srp_remove_target(struct srp_target_port *target)
938 {
939         struct srp_rdma_ch *ch;
940         int i;
941
942         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
943
944         srp_del_scsi_host_attr(target->scsi_host);
945         srp_rport_get(target->rport);
946         srp_remove_host(target->scsi_host);
947         scsi_remove_host(target->scsi_host);
948         srp_stop_rport_timers(target->rport);
949         srp_disconnect_target(target);
950         for (i = 0; i < target->ch_count; i++) {
951                 ch = &target->ch[i];
952                 srp_free_ch_ib(target, ch);
953         }
954         cancel_work_sync(&target->tl_err_work);
955         srp_rport_put(target->rport);
956         for (i = 0; i < target->ch_count; i++) {
957                 ch = &target->ch[i];
958                 srp_free_req_data(target, ch);
959         }
960         kfree(target->ch);
961         target->ch = NULL;
962
963         spin_lock(&target->srp_host->target_lock);
964         list_del(&target->list);
965         spin_unlock(&target->srp_host->target_lock);
966
967         scsi_host_put(target->scsi_host);
968 }
969
970 static void srp_remove_work(struct work_struct *work)
971 {
972         struct srp_target_port *target =
973                 container_of(work, struct srp_target_port, remove_work);
974
975         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
976
977         srp_remove_target(target);
978 }
979
980 static void srp_rport_delete(struct srp_rport *rport)
981 {
982         struct srp_target_port *target = rport->lld_data;
983
984         srp_queue_remove_work(target);
985 }
986
987 /**
988  * srp_connected_ch() - number of connected channels
989  * @target: SRP target port.
990  */
991 static int srp_connected_ch(struct srp_target_port *target)
992 {
993         int i, c = 0;
994
995         for (i = 0; i < target->ch_count; i++)
996                 c += target->ch[i].connected;
997
998         return c;
999 }
1000
1001 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
1002 {
1003         struct srp_target_port *target = ch->target;
1004         int ret;
1005
1006         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
1007
1008         ret = srp_lookup_path(ch);
1009         if (ret)
1010                 goto out;
1011
1012         while (1) {
1013                 init_completion(&ch->done);
1014                 ret = srp_send_req(ch, multich);
1015                 if (ret)
1016                         goto out;
1017                 ret = wait_for_completion_interruptible(&ch->done);
1018                 if (ret < 0)
1019                         goto out;
1020
1021                 /*
1022                  * The CM event handling code will set status to
1023                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1024                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1025                  * redirect REJ back.
1026                  */
1027                 ret = ch->status;
1028                 switch (ret) {
1029                 case 0:
1030                         ch->connected = true;
1031                         goto out;
1032
1033                 case SRP_PORT_REDIRECT:
1034                         ret = srp_lookup_path(ch);
1035                         if (ret)
1036                                 goto out;
1037                         break;
1038
1039                 case SRP_DLID_REDIRECT:
1040                         break;
1041
1042                 case SRP_STALE_CONN:
1043                         shost_printk(KERN_ERR, target->scsi_host, PFX
1044                                      "giving up on stale connection\n");
1045                         ret = -ECONNRESET;
1046                         goto out;
1047
1048                 default:
1049                         goto out;
1050                 }
1051         }
1052
1053 out:
1054         return ret <= 0 ? ret : -ENODEV;
1055 }
1056
1057 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1058 {
1059         struct ib_send_wr *bad_wr;
1060         struct ib_send_wr wr = {
1061                 .opcode             = IB_WR_LOCAL_INV,
1062                 .wr_id              = LOCAL_INV_WR_ID_MASK,
1063                 .next               = NULL,
1064                 .num_sge            = 0,
1065                 .send_flags         = 0,
1066                 .ex.invalidate_rkey = rkey,
1067         };
1068
1069         return ib_post_send(ch->qp, &wr, &bad_wr);
1070 }
1071
1072 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1073                            struct srp_rdma_ch *ch,
1074                            struct srp_request *req)
1075 {
1076         struct srp_target_port *target = ch->target;
1077         struct srp_device *dev = target->srp_host->srp_dev;
1078         struct ib_device *ibdev = dev->dev;
1079         int i, res;
1080
1081         if (!scsi_sglist(scmnd) ||
1082             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1083              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1084                 return;
1085
1086         if (dev->use_fast_reg) {
1087                 struct srp_fr_desc **pfr;
1088
1089                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1090                         res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1091                         if (res < 0) {
1092                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1093                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1094                                   (*pfr)->mr->rkey, res);
1095                                 queue_work(system_long_wq,
1096                                            &target->tl_err_work);
1097                         }
1098                 }
1099                 if (req->nmdesc)
1100                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1101                                         req->nmdesc);
1102         } else if (dev->use_fmr) {
1103                 struct ib_pool_fmr **pfmr;
1104
1105                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1106                         ib_fmr_pool_unmap(*pfmr);
1107         }
1108
1109         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1110                         scmnd->sc_data_direction);
1111 }
1112
1113 /**
1114  * srp_claim_req - Take ownership of the scmnd associated with a request.
1115  * @ch: SRP RDMA channel.
1116  * @req: SRP request.
1117  * @sdev: If not NULL, only take ownership for this SCSI device.
1118  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1119  *         ownership of @req->scmnd if it equals @scmnd.
1120  *
1121  * Return value:
1122  * Either NULL or a pointer to the SCSI command the caller became owner of.
1123  */
1124 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1125                                        struct srp_request *req,
1126                                        struct scsi_device *sdev,
1127                                        struct scsi_cmnd *scmnd)
1128 {
1129         unsigned long flags;
1130
1131         spin_lock_irqsave(&ch->lock, flags);
1132         if (req->scmnd &&
1133             (!sdev || req->scmnd->device == sdev) &&
1134             (!scmnd || req->scmnd == scmnd)) {
1135                 scmnd = req->scmnd;
1136                 req->scmnd = NULL;
1137         } else {
1138                 scmnd = NULL;
1139         }
1140         spin_unlock_irqrestore(&ch->lock, flags);
1141
1142         return scmnd;
1143 }
1144
1145 /**
1146  * srp_free_req() - Unmap data and add request to the free request list.
1147  * @ch:     SRP RDMA channel.
1148  * @req:    Request to be freed.
1149  * @scmnd:  SCSI command associated with @req.
1150  * @req_lim_delta: Amount to be added to @target->req_lim.
1151  */
1152 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1153                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1154 {
1155         unsigned long flags;
1156
1157         srp_unmap_data(scmnd, ch, req);
1158
1159         spin_lock_irqsave(&ch->lock, flags);
1160         ch->req_lim += req_lim_delta;
1161         spin_unlock_irqrestore(&ch->lock, flags);
1162 }
1163
1164 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1165                            struct scsi_device *sdev, int result)
1166 {
1167         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1168
1169         if (scmnd) {
1170                 srp_free_req(ch, req, scmnd, 0);
1171                 scmnd->result = result;
1172                 scmnd->scsi_done(scmnd);
1173         }
1174 }
1175
1176 static void srp_terminate_io(struct srp_rport *rport)
1177 {
1178         struct srp_target_port *target = rport->lld_data;
1179         struct srp_rdma_ch *ch;
1180         struct Scsi_Host *shost = target->scsi_host;
1181         struct scsi_device *sdev;
1182         int i, j;
1183
1184         /*
1185          * Invoking srp_terminate_io() while srp_queuecommand() is running
1186          * is not safe. Hence the warning statement below.
1187          */
1188         shost_for_each_device(sdev, shost)
1189                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1190
1191         for (i = 0; i < target->ch_count; i++) {
1192                 ch = &target->ch[i];
1193
1194                 for (j = 0; j < target->req_ring_size; ++j) {
1195                         struct srp_request *req = &ch->req_ring[j];
1196
1197                         srp_finish_req(ch, req, NULL,
1198                                        DID_TRANSPORT_FAILFAST << 16);
1199                 }
1200         }
1201 }
1202
1203 /*
1204  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1205  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1206  * srp_reset_device() or srp_reset_host() calls will occur while this function
1207  * is in progress. One way to realize that is not to call this function
1208  * directly but to call srp_reconnect_rport() instead since that last function
1209  * serializes calls of this function via rport->mutex and also blocks
1210  * srp_queuecommand() calls before invoking this function.
1211  */
1212 static int srp_rport_reconnect(struct srp_rport *rport)
1213 {
1214         struct srp_target_port *target = rport->lld_data;
1215         struct srp_rdma_ch *ch;
1216         int i, j, ret = 0;
1217         bool multich = false;
1218
1219         srp_disconnect_target(target);
1220
1221         if (target->state == SRP_TARGET_SCANNING)
1222                 return -ENODEV;
1223
1224         /*
1225          * Now get a new local CM ID so that we avoid confusing the target in
1226          * case things are really fouled up. Doing so also ensures that all CM
1227          * callbacks will have finished before a new QP is allocated.
1228          */
1229         for (i = 0; i < target->ch_count; i++) {
1230                 ch = &target->ch[i];
1231                 ret += srp_new_cm_id(ch);
1232         }
1233         for (i = 0; i < target->ch_count; i++) {
1234                 ch = &target->ch[i];
1235                 for (j = 0; j < target->req_ring_size; ++j) {
1236                         struct srp_request *req = &ch->req_ring[j];
1237
1238                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1239                 }
1240         }
1241         for (i = 0; i < target->ch_count; i++) {
1242                 ch = &target->ch[i];
1243                 /*
1244                  * Whether or not creating a new CM ID succeeded, create a new
1245                  * QP. This guarantees that all completion callback function
1246                  * invocations have finished before request resetting starts.
1247                  */
1248                 ret += srp_create_ch_ib(ch);
1249
1250                 INIT_LIST_HEAD(&ch->free_tx);
1251                 for (j = 0; j < target->queue_size; ++j)
1252                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1253         }
1254
1255         target->qp_in_error = false;
1256
1257         for (i = 0; i < target->ch_count; i++) {
1258                 ch = &target->ch[i];
1259                 if (ret)
1260                         break;
1261                 ret = srp_connect_ch(ch, multich);
1262                 multich = true;
1263         }
1264
1265         if (ret == 0)
1266                 shost_printk(KERN_INFO, target->scsi_host,
1267                              PFX "reconnect succeeded\n");
1268
1269         return ret;
1270 }
1271
1272 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1273                          unsigned int dma_len, u32 rkey)
1274 {
1275         struct srp_direct_buf *desc = state->desc;
1276
1277         WARN_ON_ONCE(!dma_len);
1278
1279         desc->va = cpu_to_be64(dma_addr);
1280         desc->key = cpu_to_be32(rkey);
1281         desc->len = cpu_to_be32(dma_len);
1282
1283         state->total_len += dma_len;
1284         state->desc++;
1285         state->ndesc++;
1286 }
1287
1288 static int srp_map_finish_fmr(struct srp_map_state *state,
1289                               struct srp_rdma_ch *ch)
1290 {
1291         struct srp_target_port *target = ch->target;
1292         struct srp_device *dev = target->srp_host->srp_dev;
1293         struct ib_pool_fmr *fmr;
1294         u64 io_addr = 0;
1295
1296         if (state->fmr.next >= state->fmr.end)
1297                 return -ENOMEM;
1298
1299         WARN_ON_ONCE(!dev->use_fmr);
1300
1301         if (state->npages == 0)
1302                 return 0;
1303
1304         if (state->npages == 1 && target->global_mr) {
1305                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1306                              target->global_mr->rkey);
1307                 goto reset_state;
1308         }
1309
1310         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1311                                    state->npages, io_addr);
1312         if (IS_ERR(fmr))
1313                 return PTR_ERR(fmr);
1314
1315         *state->fmr.next++ = fmr;
1316         state->nmdesc++;
1317
1318         srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1319                      state->dma_len, fmr->fmr->rkey);
1320
1321 reset_state:
1322         state->npages = 0;
1323         state->dma_len = 0;
1324
1325         return 0;
1326 }
1327
1328 static int srp_map_finish_fr(struct srp_map_state *state,
1329                              struct srp_rdma_ch *ch, int sg_nents)
1330 {
1331         struct srp_target_port *target = ch->target;
1332         struct srp_device *dev = target->srp_host->srp_dev;
1333         struct ib_send_wr *bad_wr;
1334         struct ib_reg_wr wr;
1335         struct srp_fr_desc *desc;
1336         u32 rkey;
1337         int n, err;
1338
1339         if (state->fr.next >= state->fr.end)
1340                 return -ENOMEM;
1341
1342         WARN_ON_ONCE(!dev->use_fast_reg);
1343
1344         if (sg_nents == 0)
1345                 return 0;
1346
1347         if (sg_nents == 1 && target->global_mr) {
1348                 srp_map_desc(state, sg_dma_address(state->sg),
1349                              sg_dma_len(state->sg),
1350                              target->global_mr->rkey);
1351                 return 1;
1352         }
1353
1354         desc = srp_fr_pool_get(ch->fr_pool);
1355         if (!desc)
1356                 return -ENOMEM;
1357
1358         rkey = ib_inc_rkey(desc->mr->rkey);
1359         ib_update_fast_reg_key(desc->mr, rkey);
1360
1361         n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, dev->mr_page_size);
1362         if (unlikely(n < 0))
1363                 return n;
1364
1365         wr.wr.next = NULL;
1366         wr.wr.opcode = IB_WR_REG_MR;
1367         wr.wr.wr_id = FAST_REG_WR_ID_MASK;
1368         wr.wr.num_sge = 0;
1369         wr.wr.send_flags = 0;
1370         wr.mr = desc->mr;
1371         wr.key = desc->mr->rkey;
1372         wr.access = (IB_ACCESS_LOCAL_WRITE |
1373                      IB_ACCESS_REMOTE_READ |
1374                      IB_ACCESS_REMOTE_WRITE);
1375
1376         *state->fr.next++ = desc;
1377         state->nmdesc++;
1378
1379         srp_map_desc(state, desc->mr->iova,
1380                      desc->mr->length, desc->mr->rkey);
1381
1382         err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1383         if (unlikely(err))
1384                 return err;
1385
1386         return n;
1387 }
1388
1389 static int srp_map_sg_entry(struct srp_map_state *state,
1390                             struct srp_rdma_ch *ch,
1391                             struct scatterlist *sg, int sg_index)
1392 {
1393         struct srp_target_port *target = ch->target;
1394         struct srp_device *dev = target->srp_host->srp_dev;
1395         struct ib_device *ibdev = dev->dev;
1396         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1397         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1398         unsigned int len = 0;
1399         int ret;
1400
1401         WARN_ON_ONCE(!dma_len);
1402
1403         while (dma_len) {
1404                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1405                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1406                         ret = srp_map_finish_fmr(state, ch);
1407                         if (ret)
1408                                 return ret;
1409                 }
1410
1411                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1412
1413                 if (!state->npages)
1414                         state->base_dma_addr = dma_addr;
1415                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1416                 state->dma_len += len;
1417                 dma_addr += len;
1418                 dma_len -= len;
1419         }
1420
1421         /*
1422          * If the last entry of the MR wasn't a full page, then we need to
1423          * close it out and start a new one -- we can only merge at page
1424          * boundries.
1425          */
1426         ret = 0;
1427         if (len != dev->mr_page_size)
1428                 ret = srp_map_finish_fmr(state, ch);
1429         return ret;
1430 }
1431
1432 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1433                           struct srp_request *req, struct scatterlist *scat,
1434                           int count)
1435 {
1436         struct scatterlist *sg;
1437         int i, ret;
1438
1439         state->desc = req->indirect_desc;
1440         state->pages = req->map_page;
1441         state->fmr.next = req->fmr_list;
1442         state->fmr.end = req->fmr_list + ch->target->cmd_sg_cnt;
1443
1444         for_each_sg(scat, sg, count, i) {
1445                 ret = srp_map_sg_entry(state, ch, sg, i);
1446                 if (ret)
1447                         return ret;
1448         }
1449
1450         ret = srp_map_finish_fmr(state, ch);
1451         if (ret)
1452                 return ret;
1453
1454         req->nmdesc = state->nmdesc;
1455
1456         return 0;
1457 }
1458
1459 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1460                          struct srp_request *req, struct scatterlist *scat,
1461                          int count)
1462 {
1463         state->desc = req->indirect_desc;
1464         state->fr.next = req->fr_list;
1465         state->fr.end = req->fr_list + ch->target->cmd_sg_cnt;
1466         state->sg = scat;
1467
1468         while (count) {
1469                 int i, n;
1470
1471                 n = srp_map_finish_fr(state, ch, count);
1472                 if (unlikely(n < 0))
1473                         return n;
1474
1475                 count -= n;
1476                 for (i = 0; i < n; i++)
1477                         state->sg = sg_next(state->sg);
1478         }
1479
1480         req->nmdesc = state->nmdesc;
1481
1482         return 0;
1483 }
1484
1485 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1486                           struct srp_request *req, struct scatterlist *scat,
1487                           int count)
1488 {
1489         struct srp_target_port *target = ch->target;
1490         struct srp_device *dev = target->srp_host->srp_dev;
1491         struct scatterlist *sg;
1492         int i;
1493
1494         state->desc = req->indirect_desc;
1495         for_each_sg(scat, sg, count, i) {
1496                 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1497                              ib_sg_dma_len(dev->dev, sg),
1498                              target->global_mr->rkey);
1499         }
1500
1501         req->nmdesc = state->nmdesc;
1502
1503         return 0;
1504 }
1505
1506 /*
1507  * Register the indirect data buffer descriptor with the HCA.
1508  *
1509  * Note: since the indirect data buffer descriptor has been allocated with
1510  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1511  * memory buffer.
1512  */
1513 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1514                        void **next_mr, void **end_mr, u32 idb_len,
1515                        __be32 *idb_rkey)
1516 {
1517         struct srp_target_port *target = ch->target;
1518         struct srp_device *dev = target->srp_host->srp_dev;
1519         struct srp_map_state state;
1520         struct srp_direct_buf idb_desc;
1521         u64 idb_pages[1];
1522         struct scatterlist idb_sg[1];
1523         int ret;
1524
1525         memset(&state, 0, sizeof(state));
1526         memset(&idb_desc, 0, sizeof(idb_desc));
1527         state.gen.next = next_mr;
1528         state.gen.end = end_mr;
1529         state.desc = &idb_desc;
1530         state.base_dma_addr = req->indirect_dma_addr;
1531         state.dma_len = idb_len;
1532
1533         if (dev->use_fast_reg) {
1534                 state.sg = idb_sg;
1535                 sg_init_one(idb_sg, req->indirect_desc, idb_len);
1536                 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1537 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1538                 idb_sg->dma_length = idb_sg->length;          /* hack^2 */
1539 #endif
1540                 ret = srp_map_finish_fr(&state, ch, 1);
1541                 if (ret < 0)
1542                         return ret;
1543         } else if (dev->use_fmr) {
1544                 state.pages = idb_pages;
1545                 state.pages[0] = (req->indirect_dma_addr &
1546                                   dev->mr_page_mask);
1547                 state.npages = 1;
1548                 ret = srp_map_finish_fmr(&state, ch);
1549                 if (ret < 0)
1550                         return ret;
1551         } else {
1552                 return -EINVAL;
1553         }
1554
1555         *idb_rkey = idb_desc.key;
1556
1557         return 0;
1558 }
1559
1560 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1561                         struct srp_request *req)
1562 {
1563         struct srp_target_port *target = ch->target;
1564         struct scatterlist *scat;
1565         struct srp_cmd *cmd = req->cmd->buf;
1566         int len, nents, count, ret;
1567         struct srp_device *dev;
1568         struct ib_device *ibdev;
1569         struct srp_map_state state;
1570         struct srp_indirect_buf *indirect_hdr;
1571         u32 idb_len, table_len;
1572         __be32 idb_rkey;
1573         u8 fmt;
1574
1575         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1576                 return sizeof (struct srp_cmd);
1577
1578         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1579             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1580                 shost_printk(KERN_WARNING, target->scsi_host,
1581                              PFX "Unhandled data direction %d\n",
1582                              scmnd->sc_data_direction);
1583                 return -EINVAL;
1584         }
1585
1586         nents = scsi_sg_count(scmnd);
1587         scat  = scsi_sglist(scmnd);
1588
1589         dev = target->srp_host->srp_dev;
1590         ibdev = dev->dev;
1591
1592         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1593         if (unlikely(count == 0))
1594                 return -EIO;
1595
1596         fmt = SRP_DATA_DESC_DIRECT;
1597         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1598
1599         if (count == 1 && target->global_mr) {
1600                 /*
1601                  * The midlayer only generated a single gather/scatter
1602                  * entry, or DMA mapping coalesced everything to a
1603                  * single entry.  So a direct descriptor along with
1604                  * the DMA MR suffices.
1605                  */
1606                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1607
1608                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1609                 buf->key = cpu_to_be32(target->global_mr->rkey);
1610                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1611
1612                 req->nmdesc = 0;
1613                 goto map_complete;
1614         }
1615
1616         /*
1617          * We have more than one scatter/gather entry, so build our indirect
1618          * descriptor table, trying to merge as many entries as we can.
1619          */
1620         indirect_hdr = (void *) cmd->add_data;
1621
1622         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1623                                    target->indirect_size, DMA_TO_DEVICE);
1624
1625         memset(&state, 0, sizeof(state));
1626         if (dev->use_fast_reg)
1627                 srp_map_sg_fr(&state, ch, req, scat, count);
1628         else if (dev->use_fmr)
1629                 srp_map_sg_fmr(&state, ch, req, scat, count);
1630         else
1631                 srp_map_sg_dma(&state, ch, req, scat, count);
1632
1633         /* We've mapped the request, now pull as much of the indirect
1634          * descriptor table as we can into the command buffer. If this
1635          * target is not using an external indirect table, we are
1636          * guaranteed to fit into the command, as the SCSI layer won't
1637          * give us more S/G entries than we allow.
1638          */
1639         if (state.ndesc == 1) {
1640                 /*
1641                  * Memory registration collapsed the sg-list into one entry,
1642                  * so use a direct descriptor.
1643                  */
1644                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1645
1646                 *buf = req->indirect_desc[0];
1647                 goto map_complete;
1648         }
1649
1650         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1651                                                 !target->allow_ext_sg)) {
1652                 shost_printk(KERN_ERR, target->scsi_host,
1653                              "Could not fit S/G list into SRP_CMD\n");
1654                 return -EIO;
1655         }
1656
1657         count = min(state.ndesc, target->cmd_sg_cnt);
1658         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1659         idb_len = sizeof(struct srp_indirect_buf) + table_len;
1660
1661         fmt = SRP_DATA_DESC_INDIRECT;
1662         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1663         len += count * sizeof (struct srp_direct_buf);
1664
1665         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1666                count * sizeof (struct srp_direct_buf));
1667
1668         if (!target->global_mr) {
1669                 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1670                                   idb_len, &idb_rkey);
1671                 if (ret < 0)
1672                         return ret;
1673                 req->nmdesc++;
1674         } else {
1675                 idb_rkey = cpu_to_be32(target->global_mr->rkey);
1676         }
1677
1678         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1679         indirect_hdr->table_desc.key = idb_rkey;
1680         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1681         indirect_hdr->len = cpu_to_be32(state.total_len);
1682
1683         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1684                 cmd->data_out_desc_cnt = count;
1685         else
1686                 cmd->data_in_desc_cnt = count;
1687
1688         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1689                                       DMA_TO_DEVICE);
1690
1691 map_complete:
1692         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1693                 cmd->buf_fmt = fmt << 4;
1694         else
1695                 cmd->buf_fmt = fmt;
1696
1697         return len;
1698 }
1699
1700 /*
1701  * Return an IU and possible credit to the free pool
1702  */
1703 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1704                           enum srp_iu_type iu_type)
1705 {
1706         unsigned long flags;
1707
1708         spin_lock_irqsave(&ch->lock, flags);
1709         list_add(&iu->list, &ch->free_tx);
1710         if (iu_type != SRP_IU_RSP)
1711                 ++ch->req_lim;
1712         spin_unlock_irqrestore(&ch->lock, flags);
1713 }
1714
1715 /*
1716  * Must be called with ch->lock held to protect req_lim and free_tx.
1717  * If IU is not sent, it must be returned using srp_put_tx_iu().
1718  *
1719  * Note:
1720  * An upper limit for the number of allocated information units for each
1721  * request type is:
1722  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1723  *   more than Scsi_Host.can_queue requests.
1724  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1725  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1726  *   one unanswered SRP request to an initiator.
1727  */
1728 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1729                                       enum srp_iu_type iu_type)
1730 {
1731         struct srp_target_port *target = ch->target;
1732         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1733         struct srp_iu *iu;
1734
1735         srp_send_completion(ch->send_cq, ch);
1736
1737         if (list_empty(&ch->free_tx))
1738                 return NULL;
1739
1740         /* Initiator responses to target requests do not consume credits */
1741         if (iu_type != SRP_IU_RSP) {
1742                 if (ch->req_lim <= rsv) {
1743                         ++target->zero_req_lim;
1744                         return NULL;
1745                 }
1746
1747                 --ch->req_lim;
1748         }
1749
1750         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1751         list_del(&iu->list);
1752         return iu;
1753 }
1754
1755 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1756 {
1757         struct srp_target_port *target = ch->target;
1758         struct ib_sge list;
1759         struct ib_send_wr wr, *bad_wr;
1760
1761         list.addr   = iu->dma;
1762         list.length = len;
1763         list.lkey   = target->lkey;
1764
1765         wr.next       = NULL;
1766         wr.wr_id      = (uintptr_t) iu;
1767         wr.sg_list    = &list;
1768         wr.num_sge    = 1;
1769         wr.opcode     = IB_WR_SEND;
1770         wr.send_flags = IB_SEND_SIGNALED;
1771
1772         return ib_post_send(ch->qp, &wr, &bad_wr);
1773 }
1774
1775 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1776 {
1777         struct srp_target_port *target = ch->target;
1778         struct ib_recv_wr wr, *bad_wr;
1779         struct ib_sge list;
1780
1781         list.addr   = iu->dma;
1782         list.length = iu->size;
1783         list.lkey   = target->lkey;
1784
1785         wr.next     = NULL;
1786         wr.wr_id    = (uintptr_t) iu;
1787         wr.sg_list  = &list;
1788         wr.num_sge  = 1;
1789
1790         return ib_post_recv(ch->qp, &wr, &bad_wr);
1791 }
1792
1793 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1794 {
1795         struct srp_target_port *target = ch->target;
1796         struct srp_request *req;
1797         struct scsi_cmnd *scmnd;
1798         unsigned long flags;
1799
1800         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1801                 spin_lock_irqsave(&ch->lock, flags);
1802                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1803                 if (rsp->tag == ch->tsk_mgmt_tag) {
1804                         ch->tsk_mgmt_status = -1;
1805                         if (be32_to_cpu(rsp->resp_data_len) >= 4)
1806                                 ch->tsk_mgmt_status = rsp->data[3];
1807                         complete(&ch->tsk_mgmt_done);
1808                 } else {
1809                         shost_printk(KERN_ERR, target->scsi_host,
1810                                      "Received tsk mgmt response too late for tag %#llx\n",
1811                                      rsp->tag);
1812                 }
1813                 spin_unlock_irqrestore(&ch->lock, flags);
1814         } else {
1815                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1816                 if (scmnd && scmnd->host_scribble) {
1817                         req = (void *)scmnd->host_scribble;
1818                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1819                 } else {
1820                         scmnd = NULL;
1821                 }
1822                 if (!scmnd) {
1823                         shost_printk(KERN_ERR, target->scsi_host,
1824                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1825                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1826
1827                         spin_lock_irqsave(&ch->lock, flags);
1828                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1829                         spin_unlock_irqrestore(&ch->lock, flags);
1830
1831                         return;
1832                 }
1833                 scmnd->result = rsp->status;
1834
1835                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1836                         memcpy(scmnd->sense_buffer, rsp->data +
1837                                be32_to_cpu(rsp->resp_data_len),
1838                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1839                                      SCSI_SENSE_BUFFERSIZE));
1840                 }
1841
1842                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1843                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1844                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1845                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1846                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1847                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1848                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1849                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1850
1851                 srp_free_req(ch, req, scmnd,
1852                              be32_to_cpu(rsp->req_lim_delta));
1853
1854                 scmnd->host_scribble = NULL;
1855                 scmnd->scsi_done(scmnd);
1856         }
1857 }
1858
1859 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1860                                void *rsp, int len)
1861 {
1862         struct srp_target_port *target = ch->target;
1863         struct ib_device *dev = target->srp_host->srp_dev->dev;
1864         unsigned long flags;
1865         struct srp_iu *iu;
1866         int err;
1867
1868         spin_lock_irqsave(&ch->lock, flags);
1869         ch->req_lim += req_delta;
1870         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1871         spin_unlock_irqrestore(&ch->lock, flags);
1872
1873         if (!iu) {
1874                 shost_printk(KERN_ERR, target->scsi_host, PFX
1875                              "no IU available to send response\n");
1876                 return 1;
1877         }
1878
1879         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1880         memcpy(iu->buf, rsp, len);
1881         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1882
1883         err = srp_post_send(ch, iu, len);
1884         if (err) {
1885                 shost_printk(KERN_ERR, target->scsi_host, PFX
1886                              "unable to post response: %d\n", err);
1887                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1888         }
1889
1890         return err;
1891 }
1892
1893 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1894                                  struct srp_cred_req *req)
1895 {
1896         struct srp_cred_rsp rsp = {
1897                 .opcode = SRP_CRED_RSP,
1898                 .tag = req->tag,
1899         };
1900         s32 delta = be32_to_cpu(req->req_lim_delta);
1901
1902         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1903                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1904                              "problems processing SRP_CRED_REQ\n");
1905 }
1906
1907 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1908                                 struct srp_aer_req *req)
1909 {
1910         struct srp_target_port *target = ch->target;
1911         struct srp_aer_rsp rsp = {
1912                 .opcode = SRP_AER_RSP,
1913                 .tag = req->tag,
1914         };
1915         s32 delta = be32_to_cpu(req->req_lim_delta);
1916
1917         shost_printk(KERN_ERR, target->scsi_host, PFX
1918                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1919
1920         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1921                 shost_printk(KERN_ERR, target->scsi_host, PFX
1922                              "problems processing SRP_AER_REQ\n");
1923 }
1924
1925 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1926 {
1927         struct srp_target_port *target = ch->target;
1928         struct ib_device *dev = target->srp_host->srp_dev->dev;
1929         struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1930         int res;
1931         u8 opcode;
1932
1933         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1934                                    DMA_FROM_DEVICE);
1935
1936         opcode = *(u8 *) iu->buf;
1937
1938         if (0) {
1939                 shost_printk(KERN_ERR, target->scsi_host,
1940                              PFX "recv completion, opcode 0x%02x\n", opcode);
1941                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1942                                iu->buf, wc->byte_len, true);
1943         }
1944
1945         switch (opcode) {
1946         case SRP_RSP:
1947                 srp_process_rsp(ch, iu->buf);
1948                 break;
1949
1950         case SRP_CRED_REQ:
1951                 srp_process_cred_req(ch, iu->buf);
1952                 break;
1953
1954         case SRP_AER_REQ:
1955                 srp_process_aer_req(ch, iu->buf);
1956                 break;
1957
1958         case SRP_T_LOGOUT:
1959                 /* XXX Handle target logout */
1960                 shost_printk(KERN_WARNING, target->scsi_host,
1961                              PFX "Got target logout request\n");
1962                 break;
1963
1964         default:
1965                 shost_printk(KERN_WARNING, target->scsi_host,
1966                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1967                 break;
1968         }
1969
1970         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1971                                       DMA_FROM_DEVICE);
1972
1973         res = srp_post_recv(ch, iu);
1974         if (res != 0)
1975                 shost_printk(KERN_ERR, target->scsi_host,
1976                              PFX "Recv failed with error code %d\n", res);
1977 }
1978
1979 /**
1980  * srp_tl_err_work() - handle a transport layer error
1981  * @work: Work structure embedded in an SRP target port.
1982  *
1983  * Note: This function may get invoked before the rport has been created,
1984  * hence the target->rport test.
1985  */
1986 static void srp_tl_err_work(struct work_struct *work)
1987 {
1988         struct srp_target_port *target;
1989
1990         target = container_of(work, struct srp_target_port, tl_err_work);
1991         if (target->rport)
1992                 srp_start_tl_fail_timers(target->rport);
1993 }
1994
1995 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1996                               bool send_err, struct srp_rdma_ch *ch)
1997 {
1998         struct srp_target_port *target = ch->target;
1999
2000         if (wr_id == SRP_LAST_WR_ID) {
2001                 complete(&ch->done);
2002                 return;
2003         }
2004
2005         if (ch->connected && !target->qp_in_error) {
2006                 if (wr_id & LOCAL_INV_WR_ID_MASK) {
2007                         shost_printk(KERN_ERR, target->scsi_host, PFX
2008                                      "LOCAL_INV failed with status %s (%d)\n",
2009                                      ib_wc_status_msg(wc_status), wc_status);
2010                 } else if (wr_id & FAST_REG_WR_ID_MASK) {
2011                         shost_printk(KERN_ERR, target->scsi_host, PFX
2012                                      "FAST_REG_MR failed status %s (%d)\n",
2013                                      ib_wc_status_msg(wc_status), wc_status);
2014                 } else {
2015                         shost_printk(KERN_ERR, target->scsi_host,
2016                                      PFX "failed %s status %s (%d) for iu %p\n",
2017                                      send_err ? "send" : "receive",
2018                                      ib_wc_status_msg(wc_status), wc_status,
2019                                      (void *)(uintptr_t)wr_id);
2020                 }
2021                 queue_work(system_long_wq, &target->tl_err_work);
2022         }
2023         target->qp_in_error = true;
2024 }
2025
2026 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
2027 {
2028         struct srp_rdma_ch *ch = ch_ptr;
2029         struct ib_wc wc;
2030
2031         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2032         while (ib_poll_cq(cq, 1, &wc) > 0) {
2033                 if (likely(wc.status == IB_WC_SUCCESS)) {
2034                         srp_handle_recv(ch, &wc);
2035                 } else {
2036                         srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
2037                 }
2038         }
2039 }
2040
2041 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
2042 {
2043         struct srp_rdma_ch *ch = ch_ptr;
2044         struct ib_wc wc;
2045         struct srp_iu *iu;
2046
2047         while (ib_poll_cq(cq, 1, &wc) > 0) {
2048                 if (likely(wc.status == IB_WC_SUCCESS)) {
2049                         iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
2050                         list_add(&iu->list, &ch->free_tx);
2051                 } else {
2052                         srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
2053                 }
2054         }
2055 }
2056
2057 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2058 {
2059         struct srp_target_port *target = host_to_target(shost);
2060         struct srp_rport *rport = target->rport;
2061         struct srp_rdma_ch *ch;
2062         struct srp_request *req;
2063         struct srp_iu *iu;
2064         struct srp_cmd *cmd;
2065         struct ib_device *dev;
2066         unsigned long flags;
2067         u32 tag;
2068         u16 idx;
2069         int len, ret;
2070         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
2071
2072         /*
2073          * The SCSI EH thread is the only context from which srp_queuecommand()
2074          * can get invoked for blocked devices (SDEV_BLOCK /
2075          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2076          * locking the rport mutex if invoked from inside the SCSI EH.
2077          */
2078         if (in_scsi_eh)
2079                 mutex_lock(&rport->mutex);
2080
2081         scmnd->result = srp_chkready(target->rport);
2082         if (unlikely(scmnd->result))
2083                 goto err;
2084
2085         WARN_ON_ONCE(scmnd->request->tag < 0);
2086         tag = blk_mq_unique_tag(scmnd->request);
2087         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2088         idx = blk_mq_unique_tag_to_tag(tag);
2089         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2090                   dev_name(&shost->shost_gendev), tag, idx,
2091                   target->req_ring_size);
2092
2093         spin_lock_irqsave(&ch->lock, flags);
2094         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2095         spin_unlock_irqrestore(&ch->lock, flags);
2096
2097         if (!iu)
2098                 goto err;
2099
2100         req = &ch->req_ring[idx];
2101         dev = target->srp_host->srp_dev->dev;
2102         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2103                                    DMA_TO_DEVICE);
2104
2105         scmnd->host_scribble = (void *) req;
2106
2107         cmd = iu->buf;
2108         memset(cmd, 0, sizeof *cmd);
2109
2110         cmd->opcode = SRP_CMD;
2111         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2112         cmd->tag    = tag;
2113         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2114
2115         req->scmnd    = scmnd;
2116         req->cmd      = iu;
2117
2118         len = srp_map_data(scmnd, ch, req);
2119         if (len < 0) {
2120                 shost_printk(KERN_ERR, target->scsi_host,
2121                              PFX "Failed to map data (%d)\n", len);
2122                 /*
2123                  * If we ran out of memory descriptors (-ENOMEM) because an
2124                  * application is queuing many requests with more than
2125                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2126                  * to reduce queue depth temporarily.
2127                  */
2128                 scmnd->result = len == -ENOMEM ?
2129                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2130                 goto err_iu;
2131         }
2132
2133         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2134                                       DMA_TO_DEVICE);
2135
2136         if (srp_post_send(ch, iu, len)) {
2137                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2138                 scmnd->result = DID_ERROR << 16;
2139                 goto err_unmap;
2140         }
2141
2142         ret = 0;
2143
2144 unlock_rport:
2145         if (in_scsi_eh)
2146                 mutex_unlock(&rport->mutex);
2147
2148         return ret;
2149
2150 err_unmap:
2151         srp_unmap_data(scmnd, ch, req);
2152
2153 err_iu:
2154         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2155
2156         /*
2157          * Avoid that the loops that iterate over the request ring can
2158          * encounter a dangling SCSI command pointer.
2159          */
2160         req->scmnd = NULL;
2161
2162 err:
2163         if (scmnd->result) {
2164                 scmnd->scsi_done(scmnd);
2165                 ret = 0;
2166         } else {
2167                 ret = SCSI_MLQUEUE_HOST_BUSY;
2168         }
2169
2170         goto unlock_rport;
2171 }
2172
2173 /*
2174  * Note: the resources allocated in this function are freed in
2175  * srp_free_ch_ib().
2176  */
2177 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2178 {
2179         struct srp_target_port *target = ch->target;
2180         int i;
2181
2182         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2183                               GFP_KERNEL);
2184         if (!ch->rx_ring)
2185                 goto err_no_ring;
2186         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2187                               GFP_KERNEL);
2188         if (!ch->tx_ring)
2189                 goto err_no_ring;
2190
2191         for (i = 0; i < target->queue_size; ++i) {
2192                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2193                                               ch->max_ti_iu_len,
2194                                               GFP_KERNEL, DMA_FROM_DEVICE);
2195                 if (!ch->rx_ring[i])
2196                         goto err;
2197         }
2198
2199         for (i = 0; i < target->queue_size; ++i) {
2200                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2201                                               target->max_iu_len,
2202                                               GFP_KERNEL, DMA_TO_DEVICE);
2203                 if (!ch->tx_ring[i])
2204                         goto err;
2205
2206                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2207         }
2208
2209         return 0;
2210
2211 err:
2212         for (i = 0; i < target->queue_size; ++i) {
2213                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2214                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2215         }
2216
2217
2218 err_no_ring:
2219         kfree(ch->tx_ring);
2220         ch->tx_ring = NULL;
2221         kfree(ch->rx_ring);
2222         ch->rx_ring = NULL;
2223
2224         return -ENOMEM;
2225 }
2226
2227 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2228 {
2229         uint64_t T_tr_ns, max_compl_time_ms;
2230         uint32_t rq_tmo_jiffies;
2231
2232         /*
2233          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2234          * table 91), both the QP timeout and the retry count have to be set
2235          * for RC QP's during the RTR to RTS transition.
2236          */
2237         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2238                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2239
2240         /*
2241          * Set target->rq_tmo_jiffies to one second more than the largest time
2242          * it can take before an error completion is generated. See also
2243          * C9-140..142 in the IBTA spec for more information about how to
2244          * convert the QP Local ACK Timeout value to nanoseconds.
2245          */
2246         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2247         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2248         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2249         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2250
2251         return rq_tmo_jiffies;
2252 }
2253
2254 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2255                                const struct srp_login_rsp *lrsp,
2256                                struct srp_rdma_ch *ch)
2257 {
2258         struct srp_target_port *target = ch->target;
2259         struct ib_qp_attr *qp_attr = NULL;
2260         int attr_mask = 0;
2261         int ret;
2262         int i;
2263
2264         if (lrsp->opcode == SRP_LOGIN_RSP) {
2265                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2266                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2267
2268                 /*
2269                  * Reserve credits for task management so we don't
2270                  * bounce requests back to the SCSI mid-layer.
2271                  */
2272                 target->scsi_host->can_queue
2273                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2274                               target->scsi_host->can_queue);
2275                 target->scsi_host->cmd_per_lun
2276                         = min_t(int, target->scsi_host->can_queue,
2277                                 target->scsi_host->cmd_per_lun);
2278         } else {
2279                 shost_printk(KERN_WARNING, target->scsi_host,
2280                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2281                 ret = -ECONNRESET;
2282                 goto error;
2283         }
2284
2285         if (!ch->rx_ring) {
2286                 ret = srp_alloc_iu_bufs(ch);
2287                 if (ret)
2288                         goto error;
2289         }
2290
2291         ret = -ENOMEM;
2292         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2293         if (!qp_attr)
2294                 goto error;
2295
2296         qp_attr->qp_state = IB_QPS_RTR;
2297         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2298         if (ret)
2299                 goto error_free;
2300
2301         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2302         if (ret)
2303                 goto error_free;
2304
2305         for (i = 0; i < target->queue_size; i++) {
2306                 struct srp_iu *iu = ch->rx_ring[i];
2307
2308                 ret = srp_post_recv(ch, iu);
2309                 if (ret)
2310                         goto error_free;
2311         }
2312
2313         qp_attr->qp_state = IB_QPS_RTS;
2314         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2315         if (ret)
2316                 goto error_free;
2317
2318         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2319
2320         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2321         if (ret)
2322                 goto error_free;
2323
2324         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2325
2326 error_free:
2327         kfree(qp_attr);
2328
2329 error:
2330         ch->status = ret;
2331 }
2332
2333 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2334                                struct ib_cm_event *event,
2335                                struct srp_rdma_ch *ch)
2336 {
2337         struct srp_target_port *target = ch->target;
2338         struct Scsi_Host *shost = target->scsi_host;
2339         struct ib_class_port_info *cpi;
2340         int opcode;
2341
2342         switch (event->param.rej_rcvd.reason) {
2343         case IB_CM_REJ_PORT_CM_REDIRECT:
2344                 cpi = event->param.rej_rcvd.ari;
2345                 ch->path.dlid = cpi->redirect_lid;
2346                 ch->path.pkey = cpi->redirect_pkey;
2347                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2348                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2349
2350                 ch->status = ch->path.dlid ?
2351                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2352                 break;
2353
2354         case IB_CM_REJ_PORT_REDIRECT:
2355                 if (srp_target_is_topspin(target)) {
2356                         /*
2357                          * Topspin/Cisco SRP gateways incorrectly send
2358                          * reject reason code 25 when they mean 24
2359                          * (port redirect).
2360                          */
2361                         memcpy(ch->path.dgid.raw,
2362                                event->param.rej_rcvd.ari, 16);
2363
2364                         shost_printk(KERN_DEBUG, shost,
2365                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2366                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2367                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2368
2369                         ch->status = SRP_PORT_REDIRECT;
2370                 } else {
2371                         shost_printk(KERN_WARNING, shost,
2372                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2373                         ch->status = -ECONNRESET;
2374                 }
2375                 break;
2376
2377         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2378                 shost_printk(KERN_WARNING, shost,
2379                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2380                 ch->status = -ECONNRESET;
2381                 break;
2382
2383         case IB_CM_REJ_CONSUMER_DEFINED:
2384                 opcode = *(u8 *) event->private_data;
2385                 if (opcode == SRP_LOGIN_REJ) {
2386                         struct srp_login_rej *rej = event->private_data;
2387                         u32 reason = be32_to_cpu(rej->reason);
2388
2389                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2390                                 shost_printk(KERN_WARNING, shost,
2391                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2392                         else
2393                                 shost_printk(KERN_WARNING, shost, PFX
2394                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2395                                              target->sgid.raw,
2396                                              target->orig_dgid.raw, reason);
2397                 } else
2398                         shost_printk(KERN_WARNING, shost,
2399                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2400                                      " opcode 0x%02x\n", opcode);
2401                 ch->status = -ECONNRESET;
2402                 break;
2403
2404         case IB_CM_REJ_STALE_CONN:
2405                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2406                 ch->status = SRP_STALE_CONN;
2407                 break;
2408
2409         default:
2410                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2411                              event->param.rej_rcvd.reason);
2412                 ch->status = -ECONNRESET;
2413         }
2414 }
2415
2416 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2417 {
2418         struct srp_rdma_ch *ch = cm_id->context;
2419         struct srp_target_port *target = ch->target;
2420         int comp = 0;
2421
2422         switch (event->event) {
2423         case IB_CM_REQ_ERROR:
2424                 shost_printk(KERN_DEBUG, target->scsi_host,
2425                              PFX "Sending CM REQ failed\n");
2426                 comp = 1;
2427                 ch->status = -ECONNRESET;
2428                 break;
2429
2430         case IB_CM_REP_RECEIVED:
2431                 comp = 1;
2432                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2433                 break;
2434
2435         case IB_CM_REJ_RECEIVED:
2436                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2437                 comp = 1;
2438
2439                 srp_cm_rej_handler(cm_id, event, ch);
2440                 break;
2441
2442         case IB_CM_DREQ_RECEIVED:
2443                 shost_printk(KERN_WARNING, target->scsi_host,
2444                              PFX "DREQ received - connection closed\n");
2445                 ch->connected = false;
2446                 if (ib_send_cm_drep(cm_id, NULL, 0))
2447                         shost_printk(KERN_ERR, target->scsi_host,
2448                                      PFX "Sending CM DREP failed\n");
2449                 queue_work(system_long_wq, &target->tl_err_work);
2450                 break;
2451
2452         case IB_CM_TIMEWAIT_EXIT:
2453                 shost_printk(KERN_ERR, target->scsi_host,
2454                              PFX "connection closed\n");
2455                 comp = 1;
2456
2457                 ch->status = 0;
2458                 break;
2459
2460         case IB_CM_MRA_RECEIVED:
2461         case IB_CM_DREQ_ERROR:
2462         case IB_CM_DREP_RECEIVED:
2463                 break;
2464
2465         default:
2466                 shost_printk(KERN_WARNING, target->scsi_host,
2467                              PFX "Unhandled CM event %d\n", event->event);
2468                 break;
2469         }
2470
2471         if (comp)
2472                 complete(&ch->done);
2473
2474         return 0;
2475 }
2476
2477 /**
2478  * srp_change_queue_depth - setting device queue depth
2479  * @sdev: scsi device struct
2480  * @qdepth: requested queue depth
2481  *
2482  * Returns queue depth.
2483  */
2484 static int
2485 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2486 {
2487         if (!sdev->tagged_supported)
2488                 qdepth = 1;
2489         return scsi_change_queue_depth(sdev, qdepth);
2490 }
2491
2492 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2493                              u8 func, u8 *status)
2494 {
2495         struct srp_target_port *target = ch->target;
2496         struct srp_rport *rport = target->rport;
2497         struct ib_device *dev = target->srp_host->srp_dev->dev;
2498         struct srp_iu *iu;
2499         struct srp_tsk_mgmt *tsk_mgmt;
2500         int res;
2501
2502         if (!ch->connected || target->qp_in_error)
2503                 return -1;
2504
2505         /*
2506          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2507          * invoked while a task management function is being sent.
2508          */
2509         mutex_lock(&rport->mutex);
2510         spin_lock_irq(&ch->lock);
2511         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2512         spin_unlock_irq(&ch->lock);
2513
2514         if (!iu) {
2515                 mutex_unlock(&rport->mutex);
2516
2517                 return -1;
2518         }
2519
2520         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2521                                    DMA_TO_DEVICE);
2522         tsk_mgmt = iu->buf;
2523         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2524
2525         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2526         int_to_scsilun(lun, &tsk_mgmt->lun);
2527         tsk_mgmt->tsk_mgmt_func = func;
2528         tsk_mgmt->task_tag      = req_tag;
2529
2530         spin_lock_irq(&ch->lock);
2531         ch->tsk_mgmt_tag = (ch->tsk_mgmt_tag + 1) | SRP_TAG_TSK_MGMT;
2532         tsk_mgmt->tag = ch->tsk_mgmt_tag;
2533         spin_unlock_irq(&ch->lock);
2534
2535         init_completion(&ch->tsk_mgmt_done);
2536
2537         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2538                                       DMA_TO_DEVICE);
2539         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2540                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2541                 mutex_unlock(&rport->mutex);
2542
2543                 return -1;
2544         }
2545         res = wait_for_completion_timeout(&ch->tsk_mgmt_done,
2546                                         msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS));
2547         if (res > 0 && status)
2548                 *status = ch->tsk_mgmt_status;
2549         mutex_unlock(&rport->mutex);
2550
2551         WARN_ON_ONCE(res < 0);
2552
2553         return res > 0 ? 0 : -1;
2554 }
2555
2556 static int srp_abort(struct scsi_cmnd *scmnd)
2557 {
2558         struct srp_target_port *target = host_to_target(scmnd->device->host);
2559         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2560         u32 tag;
2561         u16 ch_idx;
2562         struct srp_rdma_ch *ch;
2563         int ret;
2564
2565         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2566
2567         if (!req)
2568                 return SUCCESS;
2569         tag = blk_mq_unique_tag(scmnd->request);
2570         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2571         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2572                 return SUCCESS;
2573         ch = &target->ch[ch_idx];
2574         if (!srp_claim_req(ch, req, NULL, scmnd))
2575                 return SUCCESS;
2576         shost_printk(KERN_ERR, target->scsi_host,
2577                      "Sending SRP abort for tag %#x\n", tag);
2578         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2579                               SRP_TSK_ABORT_TASK, NULL) == 0)
2580                 ret = SUCCESS;
2581         else if (target->rport->state == SRP_RPORT_LOST)
2582                 ret = FAST_IO_FAIL;
2583         else
2584                 ret = FAILED;
2585         if (ret == SUCCESS) {
2586                 srp_free_req(ch, req, scmnd, 0);
2587                 scmnd->result = DID_ABORT << 16;
2588                 scmnd->scsi_done(scmnd);
2589         }
2590
2591         return ret;
2592 }
2593
2594 static int srp_reset_device(struct scsi_cmnd *scmnd)
2595 {
2596         struct srp_target_port *target = host_to_target(scmnd->device->host);
2597         struct srp_rdma_ch *ch;
2598         u8 status;
2599
2600         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2601
2602         ch = &target->ch[0];
2603         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2604                               SRP_TSK_LUN_RESET, &status))
2605                 return FAILED;
2606         if (status)
2607                 return FAILED;
2608
2609         return SUCCESS;
2610 }
2611
2612 static int srp_reset_host(struct scsi_cmnd *scmnd)
2613 {
2614         struct srp_target_port *target = host_to_target(scmnd->device->host);
2615
2616         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2617
2618         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2619 }
2620
2621 static int srp_slave_configure(struct scsi_device *sdev)
2622 {
2623         struct Scsi_Host *shost = sdev->host;
2624         struct srp_target_port *target = host_to_target(shost);
2625         struct request_queue *q = sdev->request_queue;
2626         unsigned long timeout;
2627
2628         if (sdev->type == TYPE_DISK) {
2629                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2630                 blk_queue_rq_timeout(q, timeout);
2631         }
2632
2633         return 0;
2634 }
2635
2636 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2637                            char *buf)
2638 {
2639         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2640
2641         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2642 }
2643
2644 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2645                              char *buf)
2646 {
2647         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2648
2649         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2650 }
2651
2652 static ssize_t show_service_id(struct device *dev,
2653                                struct device_attribute *attr, char *buf)
2654 {
2655         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2656
2657         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2658 }
2659
2660 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2661                          char *buf)
2662 {
2663         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2664
2665         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2666 }
2667
2668 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2669                          char *buf)
2670 {
2671         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2672
2673         return sprintf(buf, "%pI6\n", target->sgid.raw);
2674 }
2675
2676 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2677                          char *buf)
2678 {
2679         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2680         struct srp_rdma_ch *ch = &target->ch[0];
2681
2682         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2683 }
2684
2685 static ssize_t show_orig_dgid(struct device *dev,
2686                               struct device_attribute *attr, char *buf)
2687 {
2688         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2689
2690         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2691 }
2692
2693 static ssize_t show_req_lim(struct device *dev,
2694                             struct device_attribute *attr, char *buf)
2695 {
2696         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2697         struct srp_rdma_ch *ch;
2698         int i, req_lim = INT_MAX;
2699
2700         for (i = 0; i < target->ch_count; i++) {
2701                 ch = &target->ch[i];
2702                 req_lim = min(req_lim, ch->req_lim);
2703         }
2704         return sprintf(buf, "%d\n", req_lim);
2705 }
2706
2707 static ssize_t show_zero_req_lim(struct device *dev,
2708                                  struct device_attribute *attr, char *buf)
2709 {
2710         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2711
2712         return sprintf(buf, "%d\n", target->zero_req_lim);
2713 }
2714
2715 static ssize_t show_local_ib_port(struct device *dev,
2716                                   struct device_attribute *attr, char *buf)
2717 {
2718         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2719
2720         return sprintf(buf, "%d\n", target->srp_host->port);
2721 }
2722
2723 static ssize_t show_local_ib_device(struct device *dev,
2724                                     struct device_attribute *attr, char *buf)
2725 {
2726         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2727
2728         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2729 }
2730
2731 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2732                              char *buf)
2733 {
2734         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2735
2736         return sprintf(buf, "%d\n", target->ch_count);
2737 }
2738
2739 static ssize_t show_comp_vector(struct device *dev,
2740                                 struct device_attribute *attr, char *buf)
2741 {
2742         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2743
2744         return sprintf(buf, "%d\n", target->comp_vector);
2745 }
2746
2747 static ssize_t show_tl_retry_count(struct device *dev,
2748                                    struct device_attribute *attr, char *buf)
2749 {
2750         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2751
2752         return sprintf(buf, "%d\n", target->tl_retry_count);
2753 }
2754
2755 static ssize_t show_cmd_sg_entries(struct device *dev,
2756                                    struct device_attribute *attr, char *buf)
2757 {
2758         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2759
2760         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2761 }
2762
2763 static ssize_t show_allow_ext_sg(struct device *dev,
2764                                  struct device_attribute *attr, char *buf)
2765 {
2766         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2767
2768         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2769 }
2770
2771 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2772 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2773 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2774 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2775 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2776 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2777 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2778 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2779 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2780 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2781 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2782 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2783 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2784 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2785 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2786 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2787
2788 static struct device_attribute *srp_host_attrs[] = {
2789         &dev_attr_id_ext,
2790         &dev_attr_ioc_guid,
2791         &dev_attr_service_id,
2792         &dev_attr_pkey,
2793         &dev_attr_sgid,
2794         &dev_attr_dgid,
2795         &dev_attr_orig_dgid,
2796         &dev_attr_req_lim,
2797         &dev_attr_zero_req_lim,
2798         &dev_attr_local_ib_port,
2799         &dev_attr_local_ib_device,
2800         &dev_attr_ch_count,
2801         &dev_attr_comp_vector,
2802         &dev_attr_tl_retry_count,
2803         &dev_attr_cmd_sg_entries,
2804         &dev_attr_allow_ext_sg,
2805         NULL
2806 };
2807
2808 static struct scsi_host_template srp_template = {
2809         .module                         = THIS_MODULE,
2810         .name                           = "InfiniBand SRP initiator",
2811         .proc_name                      = DRV_NAME,
2812         .slave_configure                = srp_slave_configure,
2813         .info                           = srp_target_info,
2814         .queuecommand                   = srp_queuecommand,
2815         .change_queue_depth             = srp_change_queue_depth,
2816         .eh_abort_handler               = srp_abort,
2817         .eh_device_reset_handler        = srp_reset_device,
2818         .eh_host_reset_handler          = srp_reset_host,
2819         .skip_settle_delay              = true,
2820         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2821         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2822         .this_id                        = -1,
2823         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2824         .use_clustering                 = ENABLE_CLUSTERING,
2825         .shost_attrs                    = srp_host_attrs,
2826         .track_queue_depth              = 1,
2827 };
2828
2829 static int srp_sdev_count(struct Scsi_Host *host)
2830 {
2831         struct scsi_device *sdev;
2832         int c = 0;
2833
2834         shost_for_each_device(sdev, host)
2835                 c++;
2836
2837         return c;
2838 }
2839
2840 /*
2841  * Return values:
2842  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2843  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2844  *    removal has been scheduled.
2845  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2846  */
2847 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2848 {
2849         struct srp_rport_identifiers ids;
2850         struct srp_rport *rport;
2851
2852         target->state = SRP_TARGET_SCANNING;
2853         sprintf(target->target_name, "SRP.T10:%016llX",
2854                 be64_to_cpu(target->id_ext));
2855
2856         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2857                 return -ENODEV;
2858
2859         memcpy(ids.port_id, &target->id_ext, 8);
2860         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2861         ids.roles = SRP_RPORT_ROLE_TARGET;
2862         rport = srp_rport_add(target->scsi_host, &ids);
2863         if (IS_ERR(rport)) {
2864                 scsi_remove_host(target->scsi_host);
2865                 return PTR_ERR(rport);
2866         }
2867
2868         rport->lld_data = target;
2869         target->rport = rport;
2870
2871         spin_lock(&host->target_lock);
2872         list_add_tail(&target->list, &host->target_list);
2873         spin_unlock(&host->target_lock);
2874
2875         scsi_scan_target(&target->scsi_host->shost_gendev,
2876                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2877
2878         if (srp_connected_ch(target) < target->ch_count ||
2879             target->qp_in_error) {
2880                 shost_printk(KERN_INFO, target->scsi_host,
2881                              PFX "SCSI scan failed - removing SCSI host\n");
2882                 srp_queue_remove_work(target);
2883                 goto out;
2884         }
2885
2886         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2887                  dev_name(&target->scsi_host->shost_gendev),
2888                  srp_sdev_count(target->scsi_host));
2889
2890         spin_lock_irq(&target->lock);
2891         if (target->state == SRP_TARGET_SCANNING)
2892                 target->state = SRP_TARGET_LIVE;
2893         spin_unlock_irq(&target->lock);
2894
2895 out:
2896         return 0;
2897 }
2898
2899 static void srp_release_dev(struct device *dev)
2900 {
2901         struct srp_host *host =
2902                 container_of(dev, struct srp_host, dev);
2903
2904         complete(&host->released);
2905 }
2906
2907 static struct class srp_class = {
2908         .name    = "infiniband_srp",
2909         .dev_release = srp_release_dev
2910 };
2911
2912 /**
2913  * srp_conn_unique() - check whether the connection to a target is unique
2914  * @host:   SRP host.
2915  * @target: SRP target port.
2916  */
2917 static bool srp_conn_unique(struct srp_host *host,
2918                             struct srp_target_port *target)
2919 {
2920         struct srp_target_port *t;
2921         bool ret = false;
2922
2923         if (target->state == SRP_TARGET_REMOVED)
2924                 goto out;
2925
2926         ret = true;
2927
2928         spin_lock(&host->target_lock);
2929         list_for_each_entry(t, &host->target_list, list) {
2930                 if (t != target &&
2931                     target->id_ext == t->id_ext &&
2932                     target->ioc_guid == t->ioc_guid &&
2933                     target->initiator_ext == t->initiator_ext) {
2934                         ret = false;
2935                         break;
2936                 }
2937         }
2938         spin_unlock(&host->target_lock);
2939
2940 out:
2941         return ret;
2942 }
2943
2944 /*
2945  * Target ports are added by writing
2946  *
2947  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2948  *     pkey=<P_Key>,service_id=<service ID>
2949  *
2950  * to the add_target sysfs attribute.
2951  */
2952 enum {
2953         SRP_OPT_ERR             = 0,
2954         SRP_OPT_ID_EXT          = 1 << 0,
2955         SRP_OPT_IOC_GUID        = 1 << 1,
2956         SRP_OPT_DGID            = 1 << 2,
2957         SRP_OPT_PKEY            = 1 << 3,
2958         SRP_OPT_SERVICE_ID      = 1 << 4,
2959         SRP_OPT_MAX_SECT        = 1 << 5,
2960         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2961         SRP_OPT_IO_CLASS        = 1 << 7,
2962         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2963         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2964         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2965         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2966         SRP_OPT_COMP_VECTOR     = 1 << 12,
2967         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2968         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2969         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2970                                    SRP_OPT_IOC_GUID     |
2971                                    SRP_OPT_DGID         |
2972                                    SRP_OPT_PKEY         |
2973                                    SRP_OPT_SERVICE_ID),
2974 };
2975
2976 static const match_table_t srp_opt_tokens = {
2977         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2978         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2979         { SRP_OPT_DGID,                 "dgid=%s"               },
2980         { SRP_OPT_PKEY,                 "pkey=%x"               },
2981         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2982         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2983         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2984         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2985         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2986         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2987         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2988         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2989         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2990         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2991         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2992         { SRP_OPT_ERR,                  NULL                    }
2993 };
2994
2995 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2996 {
2997         char *options, *sep_opt;
2998         char *p;
2999         char dgid[3];
3000         substring_t args[MAX_OPT_ARGS];
3001         int opt_mask = 0;
3002         int token;
3003         int ret = -EINVAL;
3004         int i;
3005
3006         options = kstrdup(buf, GFP_KERNEL);
3007         if (!options)
3008                 return -ENOMEM;
3009
3010         sep_opt = options;
3011         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3012                 if (!*p)
3013                         continue;
3014
3015                 token = match_token(p, srp_opt_tokens, args);
3016                 opt_mask |= token;
3017
3018                 switch (token) {
3019                 case SRP_OPT_ID_EXT:
3020                         p = match_strdup(args);
3021                         if (!p) {
3022                                 ret = -ENOMEM;
3023                                 goto out;
3024                         }
3025                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3026                         kfree(p);
3027                         break;
3028
3029                 case SRP_OPT_IOC_GUID:
3030                         p = match_strdup(args);
3031                         if (!p) {
3032                                 ret = -ENOMEM;
3033                                 goto out;
3034                         }
3035                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
3036                         kfree(p);
3037                         break;
3038
3039                 case SRP_OPT_DGID:
3040                         p = match_strdup(args);
3041                         if (!p) {
3042                                 ret = -ENOMEM;
3043                                 goto out;
3044                         }
3045                         if (strlen(p) != 32) {
3046                                 pr_warn("bad dest GID parameter '%s'\n", p);
3047                                 kfree(p);
3048                                 goto out;
3049                         }
3050
3051                         for (i = 0; i < 16; ++i) {
3052                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
3053                                 if (sscanf(dgid, "%hhx",
3054                                            &target->orig_dgid.raw[i]) < 1) {
3055                                         ret = -EINVAL;
3056                                         kfree(p);
3057                                         goto out;
3058                                 }
3059                         }
3060                         kfree(p);
3061                         break;
3062
3063                 case SRP_OPT_PKEY:
3064                         if (match_hex(args, &token)) {
3065                                 pr_warn("bad P_Key parameter '%s'\n", p);
3066                                 goto out;
3067                         }
3068                         target->pkey = cpu_to_be16(token);
3069                         break;
3070
3071                 case SRP_OPT_SERVICE_ID:
3072                         p = match_strdup(args);
3073                         if (!p) {
3074                                 ret = -ENOMEM;
3075                                 goto out;
3076                         }
3077                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3078                         kfree(p);
3079                         break;
3080
3081                 case SRP_OPT_MAX_SECT:
3082                         if (match_int(args, &token)) {
3083                                 pr_warn("bad max sect parameter '%s'\n", p);
3084                                 goto out;
3085                         }
3086                         target->scsi_host->max_sectors = token;
3087                         break;
3088
3089                 case SRP_OPT_QUEUE_SIZE:
3090                         if (match_int(args, &token) || token < 1) {
3091                                 pr_warn("bad queue_size parameter '%s'\n", p);
3092                                 goto out;
3093                         }
3094                         target->scsi_host->can_queue = token;
3095                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3096                                              SRP_TSK_MGMT_SQ_SIZE;
3097                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3098                                 target->scsi_host->cmd_per_lun = token;
3099                         break;
3100
3101                 case SRP_OPT_MAX_CMD_PER_LUN:
3102                         if (match_int(args, &token) || token < 1) {
3103                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3104                                         p);
3105                                 goto out;
3106                         }
3107                         target->scsi_host->cmd_per_lun = token;
3108                         break;
3109
3110                 case SRP_OPT_IO_CLASS:
3111                         if (match_hex(args, &token)) {
3112                                 pr_warn("bad IO class parameter '%s'\n", p);
3113                                 goto out;
3114                         }
3115                         if (token != SRP_REV10_IB_IO_CLASS &&
3116                             token != SRP_REV16A_IB_IO_CLASS) {
3117                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3118                                         token, SRP_REV10_IB_IO_CLASS,
3119                                         SRP_REV16A_IB_IO_CLASS);
3120                                 goto out;
3121                         }
3122                         target->io_class = token;
3123                         break;
3124
3125                 case SRP_OPT_INITIATOR_EXT:
3126                         p = match_strdup(args);
3127                         if (!p) {
3128                                 ret = -ENOMEM;
3129                                 goto out;
3130                         }
3131                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3132                         kfree(p);
3133                         break;
3134
3135                 case SRP_OPT_CMD_SG_ENTRIES:
3136                         if (match_int(args, &token) || token < 1 || token > 255) {
3137                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3138                                         p);
3139                                 goto out;
3140                         }
3141                         target->cmd_sg_cnt = token;
3142                         break;
3143
3144                 case SRP_OPT_ALLOW_EXT_SG:
3145                         if (match_int(args, &token)) {
3146                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3147                                 goto out;
3148                         }
3149                         target->allow_ext_sg = !!token;
3150                         break;
3151
3152                 case SRP_OPT_SG_TABLESIZE:
3153                         if (match_int(args, &token) || token < 1 ||
3154                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3155                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3156                                         p);
3157                                 goto out;
3158                         }
3159                         target->sg_tablesize = token;
3160                         break;
3161
3162                 case SRP_OPT_COMP_VECTOR:
3163                         if (match_int(args, &token) || token < 0) {
3164                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3165                                 goto out;
3166                         }
3167                         target->comp_vector = token;
3168                         break;
3169
3170                 case SRP_OPT_TL_RETRY_COUNT:
3171                         if (match_int(args, &token) || token < 2 || token > 7) {
3172                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3173                                         p);
3174                                 goto out;
3175                         }
3176                         target->tl_retry_count = token;
3177                         break;
3178
3179                 default:
3180                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3181                                 p);
3182                         goto out;
3183                 }
3184         }
3185
3186         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3187                 ret = 0;
3188         else
3189                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3190                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3191                             !(srp_opt_tokens[i].token & opt_mask))
3192                                 pr_warn("target creation request is missing parameter '%s'\n",
3193                                         srp_opt_tokens[i].pattern);
3194
3195         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3196             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3197                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3198                         target->scsi_host->cmd_per_lun,
3199                         target->scsi_host->can_queue);
3200
3201 out:
3202         kfree(options);
3203         return ret;
3204 }
3205
3206 static ssize_t srp_create_target(struct device *dev,
3207                                  struct device_attribute *attr,
3208                                  const char *buf, size_t count)
3209 {
3210         struct srp_host *host =
3211                 container_of(dev, struct srp_host, dev);
3212         struct Scsi_Host *target_host;
3213         struct srp_target_port *target;
3214         struct srp_rdma_ch *ch;
3215         struct srp_device *srp_dev = host->srp_dev;
3216         struct ib_device *ibdev = srp_dev->dev;
3217         int ret, node_idx, node, cpu, i;
3218         bool multich = false;
3219
3220         target_host = scsi_host_alloc(&srp_template,
3221                                       sizeof (struct srp_target_port));
3222         if (!target_host)
3223                 return -ENOMEM;
3224
3225         target_host->transportt  = ib_srp_transport_template;
3226         target_host->max_channel = 0;
3227         target_host->max_id      = 1;
3228         target_host->max_lun     = -1LL;
3229         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3230
3231         target = host_to_target(target_host);
3232
3233         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3234         target->scsi_host       = target_host;
3235         target->srp_host        = host;
3236         target->lkey            = host->srp_dev->pd->local_dma_lkey;
3237         target->global_mr       = host->srp_dev->global_mr;
3238         target->cmd_sg_cnt      = cmd_sg_entries;
3239         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3240         target->allow_ext_sg    = allow_ext_sg;
3241         target->tl_retry_count  = 7;
3242         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3243
3244         /*
3245          * Avoid that the SCSI host can be removed by srp_remove_target()
3246          * before this function returns.
3247          */
3248         scsi_host_get(target->scsi_host);
3249
3250         mutex_lock(&host->add_target_mutex);
3251
3252         ret = srp_parse_options(buf, target);
3253         if (ret)
3254                 goto out;
3255
3256         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3257
3258         if (!srp_conn_unique(target->srp_host, target)) {
3259                 shost_printk(KERN_INFO, target->scsi_host,
3260                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3261                              be64_to_cpu(target->id_ext),
3262                              be64_to_cpu(target->ioc_guid),
3263                              be64_to_cpu(target->initiator_ext));
3264                 ret = -EEXIST;
3265                 goto out;
3266         }
3267
3268         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3269             target->cmd_sg_cnt < target->sg_tablesize) {
3270                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3271                 target->sg_tablesize = target->cmd_sg_cnt;
3272         }
3273
3274         target_host->sg_tablesize = target->sg_tablesize;
3275         target->indirect_size = target->sg_tablesize *
3276                                 sizeof (struct srp_direct_buf);
3277         target->max_iu_len = sizeof (struct srp_cmd) +
3278                              sizeof (struct srp_indirect_buf) +
3279                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3280
3281         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3282         INIT_WORK(&target->remove_work, srp_remove_work);
3283         spin_lock_init(&target->lock);
3284         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3285         if (ret)
3286                 goto out;
3287
3288         ret = -ENOMEM;
3289         target->ch_count = max_t(unsigned, num_online_nodes(),
3290                                  min(ch_count ? :
3291                                      min(4 * num_online_nodes(),
3292                                          ibdev->num_comp_vectors),
3293                                      num_online_cpus()));
3294         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3295                              GFP_KERNEL);
3296         if (!target->ch)
3297                 goto out;
3298
3299         node_idx = 0;
3300         for_each_online_node(node) {
3301                 const int ch_start = (node_idx * target->ch_count /
3302                                       num_online_nodes());
3303                 const int ch_end = ((node_idx + 1) * target->ch_count /
3304                                     num_online_nodes());
3305                 const int cv_start = node_idx * ibdev->num_comp_vectors /
3306                                      num_online_nodes();
3307                 const int cv_end = (node_idx + 1) * ibdev->num_comp_vectors /
3308                                    num_online_nodes();
3309                 int cpu_idx = 0;
3310
3311                 for_each_online_cpu(cpu) {
3312                         if (cpu_to_node(cpu) != node)
3313                                 continue;
3314                         if (ch_start + cpu_idx >= ch_end)
3315                                 continue;
3316                         ch = &target->ch[ch_start + cpu_idx];
3317                         ch->target = target;
3318                         ch->comp_vector = cv_start == cv_end ? cv_start :
3319                                 cv_start + cpu_idx % (cv_end - cv_start);
3320                         spin_lock_init(&ch->lock);
3321                         INIT_LIST_HEAD(&ch->free_tx);
3322                         ret = srp_new_cm_id(ch);
3323                         if (ret)
3324                                 goto err_disconnect;
3325
3326                         ret = srp_create_ch_ib(ch);
3327                         if (ret)
3328                                 goto err_disconnect;
3329
3330                         ret = srp_alloc_req_data(ch);
3331                         if (ret)
3332                                 goto err_disconnect;
3333
3334                         ret = srp_connect_ch(ch, multich);
3335                         if (ret) {
3336                                 shost_printk(KERN_ERR, target->scsi_host,
3337                                              PFX "Connection %d/%d failed\n",
3338                                              ch_start + cpu_idx,
3339                                              target->ch_count);
3340                                 if (node_idx == 0 && cpu_idx == 0) {
3341                                         goto err_disconnect;
3342                                 } else {
3343                                         srp_free_ch_ib(target, ch);
3344                                         srp_free_req_data(target, ch);
3345                                         target->ch_count = ch - target->ch;
3346                                         goto connected;
3347                                 }
3348                         }
3349
3350                         multich = true;
3351                         cpu_idx++;
3352                 }
3353                 node_idx++;
3354         }
3355
3356 connected:
3357         target->scsi_host->nr_hw_queues = target->ch_count;
3358
3359         ret = srp_add_target(host, target);
3360         if (ret)
3361                 goto err_disconnect;
3362
3363         if (target->state != SRP_TARGET_REMOVED) {
3364                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3365                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3366                              be64_to_cpu(target->id_ext),
3367                              be64_to_cpu(target->ioc_guid),
3368                              be16_to_cpu(target->pkey),
3369                              be64_to_cpu(target->service_id),
3370                              target->sgid.raw, target->orig_dgid.raw);
3371         }
3372
3373         ret = count;
3374
3375 out:
3376         mutex_unlock(&host->add_target_mutex);
3377
3378         scsi_host_put(target->scsi_host);
3379         if (ret < 0)
3380                 scsi_host_put(target->scsi_host);
3381
3382         return ret;
3383
3384 err_disconnect:
3385         srp_disconnect_target(target);
3386
3387         for (i = 0; i < target->ch_count; i++) {
3388                 ch = &target->ch[i];
3389                 srp_free_ch_ib(target, ch);
3390                 srp_free_req_data(target, ch);
3391         }
3392
3393         kfree(target->ch);
3394         goto out;
3395 }
3396
3397 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3398
3399 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3400                           char *buf)
3401 {
3402         struct srp_host *host = container_of(dev, struct srp_host, dev);
3403
3404         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3405 }
3406
3407 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3408
3409 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3410                          char *buf)
3411 {
3412         struct srp_host *host = container_of(dev, struct srp_host, dev);
3413
3414         return sprintf(buf, "%d\n", host->port);
3415 }
3416
3417 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3418
3419 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3420 {
3421         struct srp_host *host;
3422
3423         host = kzalloc(sizeof *host, GFP_KERNEL);
3424         if (!host)
3425                 return NULL;
3426
3427         INIT_LIST_HEAD(&host->target_list);
3428         spin_lock_init(&host->target_lock);
3429         init_completion(&host->released);
3430         mutex_init(&host->add_target_mutex);
3431         host->srp_dev = device;
3432         host->port = port;
3433
3434         host->dev.class = &srp_class;
3435         host->dev.parent = device->dev->dma_device;
3436         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3437
3438         if (device_register(&host->dev))
3439                 goto free_host;
3440         if (device_create_file(&host->dev, &dev_attr_add_target))
3441                 goto err_class;
3442         if (device_create_file(&host->dev, &dev_attr_ibdev))
3443                 goto err_class;
3444         if (device_create_file(&host->dev, &dev_attr_port))
3445                 goto err_class;
3446
3447         return host;
3448
3449 err_class:
3450         device_unregister(&host->dev);
3451
3452 free_host:
3453         kfree(host);
3454
3455         return NULL;
3456 }
3457
3458 static void srp_add_one(struct ib_device *device)
3459 {
3460         struct srp_device *srp_dev;
3461         struct ib_device_attr *dev_attr;
3462         struct srp_host *host;
3463         int mr_page_shift, p;
3464         u64 max_pages_per_mr;
3465
3466         dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3467         if (!dev_attr)
3468                 return;
3469
3470         if (ib_query_device(device, dev_attr)) {
3471                 pr_warn("Query device failed for %s\n", device->name);
3472                 goto free_attr;
3473         }
3474
3475         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3476         if (!srp_dev)
3477                 goto free_attr;
3478
3479         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3480                             device->map_phys_fmr && device->unmap_fmr);
3481         srp_dev->has_fr = (dev_attr->device_cap_flags &
3482                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3483         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3484                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3485
3486         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3487                                  (!srp_dev->has_fmr || prefer_fr));
3488         srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3489
3490         /*
3491          * Use the smallest page size supported by the HCA, down to a
3492          * minimum of 4096 bytes. We're unlikely to build large sglists
3493          * out of smaller entries.
3494          */
3495         mr_page_shift           = max(12, ffs(dev_attr->page_size_cap) - 1);
3496         srp_dev->mr_page_size   = 1 << mr_page_shift;
3497         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3498         max_pages_per_mr        = dev_attr->max_mr_size;
3499         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3500         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3501                                           max_pages_per_mr);
3502         if (srp_dev->use_fast_reg) {
3503                 srp_dev->max_pages_per_mr =
3504                         min_t(u32, srp_dev->max_pages_per_mr,
3505                               dev_attr->max_fast_reg_page_list_len);
3506         }
3507         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3508                                    srp_dev->max_pages_per_mr;
3509         pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3510                  device->name, mr_page_shift, dev_attr->max_mr_size,
3511                  dev_attr->max_fast_reg_page_list_len,
3512                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3513
3514         INIT_LIST_HEAD(&srp_dev->dev_list);
3515
3516         srp_dev->dev = device;
3517         srp_dev->pd  = ib_alloc_pd(device);
3518         if (IS_ERR(srp_dev->pd))
3519                 goto free_dev;
3520
3521         if (!register_always || (!srp_dev->has_fmr && !srp_dev->has_fr)) {
3522                 srp_dev->global_mr = ib_get_dma_mr(srp_dev->pd,
3523                                                    IB_ACCESS_LOCAL_WRITE |
3524                                                    IB_ACCESS_REMOTE_READ |
3525                                                    IB_ACCESS_REMOTE_WRITE);
3526                 if (IS_ERR(srp_dev->global_mr))
3527                         goto err_pd;
3528         } else {
3529                 srp_dev->global_mr = NULL;
3530         }
3531
3532         for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3533                 host = srp_add_port(srp_dev, p);
3534                 if (host)
3535                         list_add_tail(&host->list, &srp_dev->dev_list);
3536         }
3537
3538         ib_set_client_data(device, &srp_client, srp_dev);
3539
3540         goto free_attr;
3541
3542 err_pd:
3543         ib_dealloc_pd(srp_dev->pd);
3544
3545 free_dev:
3546         kfree(srp_dev);
3547
3548 free_attr:
3549         kfree(dev_attr);
3550 }
3551
3552 static void srp_remove_one(struct ib_device *device, void *client_data)
3553 {
3554         struct srp_device *srp_dev;
3555         struct srp_host *host, *tmp_host;
3556         struct srp_target_port *target;
3557
3558         srp_dev = client_data;
3559         if (!srp_dev)
3560                 return;
3561
3562         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3563                 device_unregister(&host->dev);
3564                 /*
3565                  * Wait for the sysfs entry to go away, so that no new
3566                  * target ports can be created.
3567                  */
3568                 wait_for_completion(&host->released);
3569
3570                 /*
3571                  * Remove all target ports.
3572                  */
3573                 spin_lock(&host->target_lock);
3574                 list_for_each_entry(target, &host->target_list, list)
3575                         srp_queue_remove_work(target);
3576                 spin_unlock(&host->target_lock);
3577
3578                 /*
3579                  * Wait for tl_err and target port removal tasks.
3580                  */
3581                 flush_workqueue(system_long_wq);
3582                 flush_workqueue(srp_remove_wq);
3583
3584                 kfree(host);
3585         }
3586
3587         if (srp_dev->global_mr)
3588                 ib_dereg_mr(srp_dev->global_mr);
3589         ib_dealloc_pd(srp_dev->pd);
3590
3591         kfree(srp_dev);
3592 }
3593
3594 static struct srp_function_template ib_srp_transport_functions = {
3595         .has_rport_state         = true,
3596         .reset_timer_if_blocked  = true,
3597         .reconnect_delay         = &srp_reconnect_delay,
3598         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3599         .dev_loss_tmo            = &srp_dev_loss_tmo,
3600         .reconnect               = srp_rport_reconnect,
3601         .rport_delete            = srp_rport_delete,
3602         .terminate_rport_io      = srp_terminate_io,
3603 };
3604
3605 static int __init srp_init_module(void)
3606 {
3607         int ret;
3608
3609         BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3610
3611         if (srp_sg_tablesize) {
3612                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3613                 if (!cmd_sg_entries)
3614                         cmd_sg_entries = srp_sg_tablesize;
3615         }
3616
3617         if (!cmd_sg_entries)
3618                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3619
3620         if (cmd_sg_entries > 255) {
3621                 pr_warn("Clamping cmd_sg_entries to 255\n");
3622                 cmd_sg_entries = 255;
3623         }
3624
3625         if (!indirect_sg_entries)
3626                 indirect_sg_entries = cmd_sg_entries;
3627         else if (indirect_sg_entries < cmd_sg_entries) {
3628                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3629                         cmd_sg_entries);
3630                 indirect_sg_entries = cmd_sg_entries;
3631         }
3632
3633         srp_remove_wq = create_workqueue("srp_remove");
3634         if (!srp_remove_wq) {
3635                 ret = -ENOMEM;
3636                 goto out;
3637         }
3638
3639         ret = -ENOMEM;
3640         ib_srp_transport_template =
3641                 srp_attach_transport(&ib_srp_transport_functions);
3642         if (!ib_srp_transport_template)
3643                 goto destroy_wq;
3644
3645         ret = class_register(&srp_class);
3646         if (ret) {
3647                 pr_err("couldn't register class infiniband_srp\n");
3648                 goto release_tr;
3649         }
3650
3651         ib_sa_register_client(&srp_sa_client);
3652
3653         ret = ib_register_client(&srp_client);
3654         if (ret) {
3655                 pr_err("couldn't register IB client\n");
3656                 goto unreg_sa;
3657         }
3658
3659 out:
3660         return ret;
3661
3662 unreg_sa:
3663         ib_sa_unregister_client(&srp_sa_client);
3664         class_unregister(&srp_class);
3665
3666 release_tr:
3667         srp_release_transport(ib_srp_transport_template);
3668
3669 destroy_wq:
3670         destroy_workqueue(srp_remove_wq);
3671         goto out;
3672 }
3673
3674 static void __exit srp_cleanup_module(void)
3675 {
3676         ib_unregister_client(&srp_client);
3677         ib_sa_unregister_client(&srp_sa_client);
3678         class_unregister(&srp_class);
3679         srp_release_transport(ib_srp_transport_template);
3680         destroy_workqueue(srp_remove_wq);
3681 }
3682
3683 module_init(srp_init_module);
3684 module_exit(srp_cleanup_module);