GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / infiniband / sw / siw / siw_verbs.c
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2
3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
4 /* Copyright (c) 2008-2019, IBM Corporation */
5
6 #include <linux/errno.h>
7 #include <linux/types.h>
8 #include <linux/uaccess.h>
9 #include <linux/vmalloc.h>
10 #include <linux/xarray.h>
11 #include <net/addrconf.h>
12
13 #include <rdma/iw_cm.h>
14 #include <rdma/ib_verbs.h>
15 #include <rdma/ib_user_verbs.h>
16 #include <rdma/uverbs_ioctl.h>
17
18 #include "siw.h"
19 #include "siw_verbs.h"
20 #include "siw_mem.h"
21
22 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = {
23         [IB_QPS_RESET] = SIW_QP_STATE_IDLE,
24         [IB_QPS_INIT] = SIW_QP_STATE_IDLE,
25         [IB_QPS_RTR] = SIW_QP_STATE_RTR,
26         [IB_QPS_RTS] = SIW_QP_STATE_RTS,
27         [IB_QPS_SQD] = SIW_QP_STATE_CLOSING,
28         [IB_QPS_SQE] = SIW_QP_STATE_TERMINATE,
29         [IB_QPS_ERR] = SIW_QP_STATE_ERROR
30 };
31
32 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = {
33         [IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR",
34         [IB_QPS_RTS] = "RTS",     [IB_QPS_SQD] = "SQD",   [IB_QPS_SQE] = "SQE",
35         [IB_QPS_ERR] = "ERR"
36 };
37
38 void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry)
39 {
40         struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry);
41
42         kfree(entry);
43 }
44
45 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma)
46 {
47         struct siw_ucontext *uctx = to_siw_ctx(ctx);
48         size_t size = vma->vm_end - vma->vm_start;
49         struct rdma_user_mmap_entry *rdma_entry;
50         struct siw_user_mmap_entry *entry;
51         int rv = -EINVAL;
52
53         /*
54          * Must be page aligned
55          */
56         if (vma->vm_start & (PAGE_SIZE - 1)) {
57                 pr_warn("siw: mmap not page aligned\n");
58                 return -EINVAL;
59         }
60         rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma);
61         if (!rdma_entry) {
62                 siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n",
63                         vma->vm_pgoff, size);
64                 return -EINVAL;
65         }
66         entry = to_siw_mmap_entry(rdma_entry);
67
68         rv = remap_vmalloc_range(vma, entry->address, 0);
69         if (rv) {
70                 pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff,
71                         size);
72                 goto out;
73         }
74 out:
75         rdma_user_mmap_entry_put(rdma_entry);
76
77         return rv;
78 }
79
80 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata)
81 {
82         struct siw_device *sdev = to_siw_dev(base_ctx->device);
83         struct siw_ucontext *ctx = to_siw_ctx(base_ctx);
84         struct siw_uresp_alloc_ctx uresp = {};
85         int rv;
86
87         if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) {
88                 rv = -ENOMEM;
89                 goto err_out;
90         }
91         ctx->sdev = sdev;
92
93         uresp.dev_id = sdev->vendor_part_id;
94
95         if (udata->outlen < sizeof(uresp)) {
96                 rv = -EINVAL;
97                 goto err_out;
98         }
99         rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
100         if (rv)
101                 goto err_out;
102
103         siw_dbg(base_ctx->device, "success. now %d context(s)\n",
104                 atomic_read(&sdev->num_ctx));
105
106         return 0;
107
108 err_out:
109         atomic_dec(&sdev->num_ctx);
110         siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv,
111                 atomic_read(&sdev->num_ctx));
112
113         return rv;
114 }
115
116 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx)
117 {
118         struct siw_ucontext *uctx = to_siw_ctx(base_ctx);
119
120         atomic_dec(&uctx->sdev->num_ctx);
121 }
122
123 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr,
124                      struct ib_udata *udata)
125 {
126         struct siw_device *sdev = to_siw_dev(base_dev);
127
128         if (udata->inlen || udata->outlen)
129                 return -EINVAL;
130
131         memset(attr, 0, sizeof(*attr));
132
133         /* Revisit atomic caps if RFC 7306 gets supported */
134         attr->atomic_cap = 0;
135         attr->device_cap_flags = IB_DEVICE_MEM_MGT_EXTENSIONS;
136         attr->kernel_cap_flags = IBK_ALLOW_USER_UNREG;
137         attr->max_cq = sdev->attrs.max_cq;
138         attr->max_cqe = sdev->attrs.max_cqe;
139         attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL;
140         attr->max_mr = sdev->attrs.max_mr;
141         attr->max_mw = sdev->attrs.max_mw;
142         attr->max_mr_size = ~0ull;
143         attr->max_pd = sdev->attrs.max_pd;
144         attr->max_qp = sdev->attrs.max_qp;
145         attr->max_qp_init_rd_atom = sdev->attrs.max_ird;
146         attr->max_qp_rd_atom = sdev->attrs.max_ord;
147         attr->max_qp_wr = sdev->attrs.max_qp_wr;
148         attr->max_recv_sge = sdev->attrs.max_sge;
149         attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird;
150         attr->max_send_sge = sdev->attrs.max_sge;
151         attr->max_sge_rd = sdev->attrs.max_sge_rd;
152         attr->max_srq = sdev->attrs.max_srq;
153         attr->max_srq_sge = sdev->attrs.max_srq_sge;
154         attr->max_srq_wr = sdev->attrs.max_srq_wr;
155         attr->page_size_cap = PAGE_SIZE;
156         attr->vendor_id = SIW_VENDOR_ID;
157         attr->vendor_part_id = sdev->vendor_part_id;
158
159         addrconf_addr_eui48((u8 *)&attr->sys_image_guid,
160                             sdev->netdev->dev_addr);
161
162         return 0;
163 }
164
165 int siw_query_port(struct ib_device *base_dev, u32 port,
166                    struct ib_port_attr *attr)
167 {
168         struct siw_device *sdev = to_siw_dev(base_dev);
169         int rv;
170
171         memset(attr, 0, sizeof(*attr));
172
173         rv = ib_get_eth_speed(base_dev, port, &attr->active_speed,
174                          &attr->active_width);
175         attr->gid_tbl_len = 1;
176         attr->max_msg_sz = -1;
177         attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
178         attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
179         attr->phys_state = sdev->state == IB_PORT_ACTIVE ?
180                 IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED;
181         attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP;
182         attr->state = sdev->state;
183         /*
184          * All zero
185          *
186          * attr->lid = 0;
187          * attr->bad_pkey_cntr = 0;
188          * attr->qkey_viol_cntr = 0;
189          * attr->sm_lid = 0;
190          * attr->lmc = 0;
191          * attr->max_vl_num = 0;
192          * attr->sm_sl = 0;
193          * attr->subnet_timeout = 0;
194          * attr->init_type_repy = 0;
195          */
196         return rv;
197 }
198
199 int siw_get_port_immutable(struct ib_device *base_dev, u32 port,
200                            struct ib_port_immutable *port_immutable)
201 {
202         struct ib_port_attr attr;
203         int rv = siw_query_port(base_dev, port, &attr);
204
205         if (rv)
206                 return rv;
207
208         port_immutable->gid_tbl_len = attr.gid_tbl_len;
209         port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
210
211         return 0;
212 }
213
214 int siw_query_gid(struct ib_device *base_dev, u32 port, int idx,
215                   union ib_gid *gid)
216 {
217         struct siw_device *sdev = to_siw_dev(base_dev);
218
219         /* subnet_prefix == interface_id == 0; */
220         memset(gid, 0, sizeof(*gid));
221         memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6);
222
223         return 0;
224 }
225
226 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata)
227 {
228         struct siw_device *sdev = to_siw_dev(pd->device);
229
230         if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) {
231                 atomic_dec(&sdev->num_pd);
232                 return -ENOMEM;
233         }
234         siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd));
235
236         return 0;
237 }
238
239 int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata)
240 {
241         struct siw_device *sdev = to_siw_dev(pd->device);
242
243         siw_dbg_pd(pd, "free PD\n");
244         atomic_dec(&sdev->num_pd);
245         return 0;
246 }
247
248 void siw_qp_get_ref(struct ib_qp *base_qp)
249 {
250         siw_qp_get(to_siw_qp(base_qp));
251 }
252
253 void siw_qp_put_ref(struct ib_qp *base_qp)
254 {
255         siw_qp_put(to_siw_qp(base_qp));
256 }
257
258 static struct rdma_user_mmap_entry *
259 siw_mmap_entry_insert(struct siw_ucontext *uctx,
260                       void *address, size_t length,
261                       u64 *offset)
262 {
263         struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
264         int rv;
265
266         *offset = SIW_INVAL_UOBJ_KEY;
267         if (!entry)
268                 return NULL;
269
270         entry->address = address;
271
272         rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext,
273                                          &entry->rdma_entry,
274                                          length);
275         if (rv) {
276                 kfree(entry);
277                 return NULL;
278         }
279
280         *offset = rdma_user_mmap_get_offset(&entry->rdma_entry);
281
282         return &entry->rdma_entry;
283 }
284
285 /*
286  * siw_create_qp()
287  *
288  * Create QP of requested size on given device.
289  *
290  * @qp:         Queue pait
291  * @attrs:      Initial QP attributes.
292  * @udata:      used to provide QP ID, SQ and RQ size back to user.
293  */
294
295 int siw_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *attrs,
296                   struct ib_udata *udata)
297 {
298         struct ib_pd *pd = ibqp->pd;
299         struct siw_qp *qp = to_siw_qp(ibqp);
300         struct ib_device *base_dev = pd->device;
301         struct siw_device *sdev = to_siw_dev(base_dev);
302         struct siw_ucontext *uctx =
303                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
304                                           base_ucontext);
305         unsigned long flags;
306         int num_sqe, num_rqe, rv = 0;
307         size_t length;
308
309         siw_dbg(base_dev, "create new QP\n");
310
311         if (attrs->create_flags)
312                 return -EOPNOTSUPP;
313
314         if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) {
315                 siw_dbg(base_dev, "too many QP's\n");
316                 rv = -ENOMEM;
317                 goto err_atomic;
318         }
319         if (attrs->qp_type != IB_QPT_RC) {
320                 siw_dbg(base_dev, "only RC QP's supported\n");
321                 rv = -EOPNOTSUPP;
322                 goto err_atomic;
323         }
324         if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) ||
325             (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) ||
326             (attrs->cap.max_send_sge > SIW_MAX_SGE) ||
327             (attrs->cap.max_recv_sge > SIW_MAX_SGE)) {
328                 siw_dbg(base_dev, "QP size error\n");
329                 rv = -EINVAL;
330                 goto err_atomic;
331         }
332         if (attrs->cap.max_inline_data > SIW_MAX_INLINE) {
333                 siw_dbg(base_dev, "max inline send: %d > %d\n",
334                         attrs->cap.max_inline_data, (int)SIW_MAX_INLINE);
335                 rv = -EINVAL;
336                 goto err_atomic;
337         }
338         /*
339          * NOTE: we allow for zero element SQ and RQ WQE's SGL's
340          * but not for a QP unable to hold any WQE (SQ + RQ)
341          */
342         if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) {
343                 siw_dbg(base_dev, "QP must have send or receive queue\n");
344                 rv = -EINVAL;
345                 goto err_atomic;
346         }
347
348         if (!attrs->send_cq || (!attrs->recv_cq && !attrs->srq)) {
349                 siw_dbg(base_dev, "send CQ or receive CQ invalid\n");
350                 rv = -EINVAL;
351                 goto err_atomic;
352         }
353
354         init_rwsem(&qp->state_lock);
355         spin_lock_init(&qp->sq_lock);
356         spin_lock_init(&qp->rq_lock);
357         spin_lock_init(&qp->orq_lock);
358
359         rv = siw_qp_add(sdev, qp);
360         if (rv)
361                 goto err_atomic;
362
363         num_sqe = attrs->cap.max_send_wr;
364         num_rqe = attrs->cap.max_recv_wr;
365
366         /* All queue indices are derived from modulo operations
367          * on a free running 'get' (consumer) and 'put' (producer)
368          * unsigned counter. Having queue sizes at power of two
369          * avoids handling counter wrap around.
370          */
371         if (num_sqe)
372                 num_sqe = roundup_pow_of_two(num_sqe);
373         else {
374                 /* Zero sized SQ is not supported */
375                 rv = -EINVAL;
376                 goto err_out_xa;
377         }
378         if (num_rqe)
379                 num_rqe = roundup_pow_of_two(num_rqe);
380
381         if (udata)
382                 qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe));
383         else
384                 qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe));
385
386         if (qp->sendq == NULL) {
387                 rv = -ENOMEM;
388                 goto err_out_xa;
389         }
390         if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) {
391                 if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR)
392                         qp->attrs.flags |= SIW_SIGNAL_ALL_WR;
393                 else {
394                         rv = -EINVAL;
395                         goto err_out_xa;
396                 }
397         }
398         qp->pd = pd;
399         qp->scq = to_siw_cq(attrs->send_cq);
400         qp->rcq = to_siw_cq(attrs->recv_cq);
401
402         if (attrs->srq) {
403                 /*
404                  * SRQ support.
405                  * Verbs 6.3.7: ignore RQ size, if SRQ present
406                  * Verbs 6.3.5: do not check PD of SRQ against PD of QP
407                  */
408                 qp->srq = to_siw_srq(attrs->srq);
409                 qp->attrs.rq_size = 0;
410                 siw_dbg(base_dev, "QP [%u]: SRQ attached\n",
411                         qp->base_qp.qp_num);
412         } else if (num_rqe) {
413                 if (udata)
414                         qp->recvq =
415                                 vmalloc_user(num_rqe * sizeof(struct siw_rqe));
416                 else
417                         qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe));
418
419                 if (qp->recvq == NULL) {
420                         rv = -ENOMEM;
421                         goto err_out_xa;
422                 }
423                 qp->attrs.rq_size = num_rqe;
424         }
425         qp->attrs.sq_size = num_sqe;
426         qp->attrs.sq_max_sges = attrs->cap.max_send_sge;
427         qp->attrs.rq_max_sges = attrs->cap.max_recv_sge;
428
429         /* Make those two tunables fixed for now. */
430         qp->tx_ctx.gso_seg_limit = 1;
431         qp->tx_ctx.zcopy_tx = zcopy_tx;
432
433         qp->attrs.state = SIW_QP_STATE_IDLE;
434
435         if (udata) {
436                 struct siw_uresp_create_qp uresp = {};
437
438                 uresp.num_sqe = num_sqe;
439                 uresp.num_rqe = num_rqe;
440                 uresp.qp_id = qp_id(qp);
441
442                 if (qp->sendq) {
443                         length = num_sqe * sizeof(struct siw_sqe);
444                         qp->sq_entry =
445                                 siw_mmap_entry_insert(uctx, qp->sendq,
446                                                       length, &uresp.sq_key);
447                         if (!qp->sq_entry) {
448                                 rv = -ENOMEM;
449                                 goto err_out_xa;
450                         }
451                 }
452
453                 if (qp->recvq) {
454                         length = num_rqe * sizeof(struct siw_rqe);
455                         qp->rq_entry =
456                                 siw_mmap_entry_insert(uctx, qp->recvq,
457                                                       length, &uresp.rq_key);
458                         if (!qp->rq_entry) {
459                                 uresp.sq_key = SIW_INVAL_UOBJ_KEY;
460                                 rv = -ENOMEM;
461                                 goto err_out_xa;
462                         }
463                 }
464
465                 if (udata->outlen < sizeof(uresp)) {
466                         rv = -EINVAL;
467                         goto err_out_xa;
468                 }
469                 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
470                 if (rv)
471                         goto err_out_xa;
472         }
473         qp->tx_cpu = siw_get_tx_cpu(sdev);
474         if (qp->tx_cpu < 0) {
475                 rv = -EINVAL;
476                 goto err_out_xa;
477         }
478         INIT_LIST_HEAD(&qp->devq);
479         spin_lock_irqsave(&sdev->lock, flags);
480         list_add_tail(&qp->devq, &sdev->qp_list);
481         spin_unlock_irqrestore(&sdev->lock, flags);
482
483         return 0;
484
485 err_out_xa:
486         xa_erase(&sdev->qp_xa, qp_id(qp));
487         if (uctx) {
488                 rdma_user_mmap_entry_remove(qp->sq_entry);
489                 rdma_user_mmap_entry_remove(qp->rq_entry);
490         }
491         vfree(qp->sendq);
492         vfree(qp->recvq);
493
494 err_atomic:
495         atomic_dec(&sdev->num_qp);
496         return rv;
497 }
498
499 /*
500  * Minimum siw_query_qp() verb interface.
501  *
502  * @qp_attr_mask is not used but all available information is provided
503  */
504 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr,
505                  int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
506 {
507         struct siw_qp *qp;
508         struct siw_device *sdev;
509
510         if (base_qp && qp_attr && qp_init_attr) {
511                 qp = to_siw_qp(base_qp);
512                 sdev = to_siw_dev(base_qp->device);
513         } else {
514                 return -EINVAL;
515         }
516         qp_attr->cap.max_inline_data = SIW_MAX_INLINE;
517         qp_attr->cap.max_send_wr = qp->attrs.sq_size;
518         qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges;
519         qp_attr->cap.max_recv_wr = qp->attrs.rq_size;
520         qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges;
521         qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
522         qp_attr->max_rd_atomic = qp->attrs.irq_size;
523         qp_attr->max_dest_rd_atomic = qp->attrs.orq_size;
524
525         qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE |
526                                    IB_ACCESS_REMOTE_WRITE |
527                                    IB_ACCESS_REMOTE_READ;
528
529         qp_init_attr->qp_type = base_qp->qp_type;
530         qp_init_attr->send_cq = base_qp->send_cq;
531         qp_init_attr->recv_cq = base_qp->recv_cq;
532         qp_init_attr->srq = base_qp->srq;
533
534         qp_init_attr->cap = qp_attr->cap;
535
536         return 0;
537 }
538
539 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr,
540                         int attr_mask, struct ib_udata *udata)
541 {
542         struct siw_qp_attrs new_attrs;
543         enum siw_qp_attr_mask siw_attr_mask = 0;
544         struct siw_qp *qp = to_siw_qp(base_qp);
545         int rv = 0;
546
547         if (!attr_mask)
548                 return 0;
549
550         if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
551                 return -EOPNOTSUPP;
552
553         memset(&new_attrs, 0, sizeof(new_attrs));
554
555         if (attr_mask & IB_QP_ACCESS_FLAGS) {
556                 siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS;
557
558                 if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ)
559                         new_attrs.flags |= SIW_RDMA_READ_ENABLED;
560                 if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE)
561                         new_attrs.flags |= SIW_RDMA_WRITE_ENABLED;
562                 if (attr->qp_access_flags & IB_ACCESS_MW_BIND)
563                         new_attrs.flags |= SIW_RDMA_BIND_ENABLED;
564         }
565         if (attr_mask & IB_QP_STATE) {
566                 siw_dbg_qp(qp, "desired IB QP state: %s\n",
567                            ib_qp_state_to_string[attr->qp_state]);
568
569                 new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state];
570
571                 if (new_attrs.state > SIW_QP_STATE_RTS)
572                         qp->tx_ctx.tx_suspend = 1;
573
574                 siw_attr_mask |= SIW_QP_ATTR_STATE;
575         }
576         if (!siw_attr_mask)
577                 goto out;
578
579         down_write(&qp->state_lock);
580
581         rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask);
582
583         up_write(&qp->state_lock);
584 out:
585         return rv;
586 }
587
588 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata)
589 {
590         struct siw_qp *qp = to_siw_qp(base_qp);
591         struct siw_ucontext *uctx =
592                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
593                                           base_ucontext);
594         struct siw_qp_attrs qp_attrs;
595
596         siw_dbg_qp(qp, "state %d\n", qp->attrs.state);
597
598         /*
599          * Mark QP as in process of destruction to prevent from
600          * any async callbacks to RDMA core
601          */
602         qp->attrs.flags |= SIW_QP_IN_DESTROY;
603         qp->rx_stream.rx_suspend = 1;
604
605         if (uctx) {
606                 rdma_user_mmap_entry_remove(qp->sq_entry);
607                 rdma_user_mmap_entry_remove(qp->rq_entry);
608         }
609
610         down_write(&qp->state_lock);
611
612         qp_attrs.state = SIW_QP_STATE_ERROR;
613         siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE);
614
615         if (qp->cep) {
616                 siw_cep_put(qp->cep);
617                 qp->cep = NULL;
618         }
619         up_write(&qp->state_lock);
620
621         kfree(qp->tx_ctx.mpa_crc_hd);
622         kfree(qp->rx_stream.mpa_crc_hd);
623
624         qp->scq = qp->rcq = NULL;
625
626         siw_qp_put(qp);
627
628         return 0;
629 }
630
631 /*
632  * siw_copy_inline_sgl()
633  *
634  * Prepare sgl of inlined data for sending. For userland callers
635  * function checks if given buffer addresses and len's are within
636  * process context bounds.
637  * Data from all provided sge's are copied together into the wqe,
638  * referenced by a single sge.
639  */
640 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr,
641                                struct siw_sqe *sqe)
642 {
643         struct ib_sge *core_sge = core_wr->sg_list;
644         void *kbuf = &sqe->sge[1];
645         int num_sge = core_wr->num_sge, bytes = 0;
646
647         sqe->sge[0].laddr = (uintptr_t)kbuf;
648         sqe->sge[0].lkey = 0;
649
650         while (num_sge--) {
651                 if (!core_sge->length) {
652                         core_sge++;
653                         continue;
654                 }
655                 bytes += core_sge->length;
656                 if (bytes > SIW_MAX_INLINE) {
657                         bytes = -EINVAL;
658                         break;
659                 }
660                 memcpy(kbuf, (void *)(uintptr_t)core_sge->addr,
661                        core_sge->length);
662
663                 kbuf += core_sge->length;
664                 core_sge++;
665         }
666         sqe->sge[0].length = max(bytes, 0);
667         sqe->num_sge = bytes > 0 ? 1 : 0;
668
669         return bytes;
670 }
671
672 /* Complete SQ WR's without processing */
673 static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr,
674                            const struct ib_send_wr **bad_wr)
675 {
676         struct siw_sqe sqe = {};
677         int rv = 0;
678
679         while (wr) {
680                 sqe.id = wr->wr_id;
681                 sqe.opcode = wr->opcode;
682                 rv = siw_sqe_complete(qp, &sqe, 0, SIW_WC_WR_FLUSH_ERR);
683                 if (rv) {
684                         if (bad_wr)
685                                 *bad_wr = wr;
686                         break;
687                 }
688                 wr = wr->next;
689         }
690         return rv;
691 }
692
693 /* Complete RQ WR's without processing */
694 static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr,
695                            const struct ib_recv_wr **bad_wr)
696 {
697         struct siw_rqe rqe = {};
698         int rv = 0;
699
700         while (wr) {
701                 rqe.id = wr->wr_id;
702                 rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR);
703                 if (rv) {
704                         if (bad_wr)
705                                 *bad_wr = wr;
706                         break;
707                 }
708                 wr = wr->next;
709         }
710         return rv;
711 }
712
713 /*
714  * siw_post_send()
715  *
716  * Post a list of S-WR's to a SQ.
717  *
718  * @base_qp:    Base QP contained in siw QP
719  * @wr:         Null terminated list of user WR's
720  * @bad_wr:     Points to failing WR in case of synchronous failure.
721  */
722 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr,
723                   const struct ib_send_wr **bad_wr)
724 {
725         struct siw_qp *qp = to_siw_qp(base_qp);
726         struct siw_wqe *wqe = tx_wqe(qp);
727
728         unsigned long flags;
729         int rv = 0;
730
731         if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) {
732                 siw_dbg_qp(qp, "wr must be empty for user mapped sq\n");
733                 *bad_wr = wr;
734                 return -EINVAL;
735         }
736
737         /*
738          * Try to acquire QP state lock. Must be non-blocking
739          * to accommodate kernel clients needs.
740          */
741         if (!down_read_trylock(&qp->state_lock)) {
742                 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
743                         /*
744                          * ERROR state is final, so we can be sure
745                          * this state will not change as long as the QP
746                          * exists.
747                          *
748                          * This handles an ib_drain_sq() call with
749                          * a concurrent request to set the QP state
750                          * to ERROR.
751                          */
752                         rv = siw_sq_flush_wr(qp, wr, bad_wr);
753                 } else {
754                         siw_dbg_qp(qp, "QP locked, state %d\n",
755                                    qp->attrs.state);
756                         *bad_wr = wr;
757                         rv = -ENOTCONN;
758                 }
759                 return rv;
760         }
761         if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) {
762                 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
763                         /*
764                          * Immediately flush this WR to CQ, if QP
765                          * is in ERROR state. SQ is guaranteed to
766                          * be empty, so WR complets in-order.
767                          *
768                          * Typically triggered by ib_drain_sq().
769                          */
770                         rv = siw_sq_flush_wr(qp, wr, bad_wr);
771                 } else {
772                         siw_dbg_qp(qp, "QP out of state %d\n",
773                                    qp->attrs.state);
774                         *bad_wr = wr;
775                         rv = -ENOTCONN;
776                 }
777                 up_read(&qp->state_lock);
778                 return rv;
779         }
780         spin_lock_irqsave(&qp->sq_lock, flags);
781
782         while (wr) {
783                 u32 idx = qp->sq_put % qp->attrs.sq_size;
784                 struct siw_sqe *sqe = &qp->sendq[idx];
785
786                 if (sqe->flags) {
787                         siw_dbg_qp(qp, "sq full\n");
788                         rv = -ENOMEM;
789                         break;
790                 }
791                 if (wr->num_sge > qp->attrs.sq_max_sges) {
792                         siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
793                         rv = -EINVAL;
794                         break;
795                 }
796                 sqe->id = wr->wr_id;
797
798                 if ((wr->send_flags & IB_SEND_SIGNALED) ||
799                     (qp->attrs.flags & SIW_SIGNAL_ALL_WR))
800                         sqe->flags |= SIW_WQE_SIGNALLED;
801
802                 if (wr->send_flags & IB_SEND_FENCE)
803                         sqe->flags |= SIW_WQE_READ_FENCE;
804
805                 switch (wr->opcode) {
806                 case IB_WR_SEND:
807                 case IB_WR_SEND_WITH_INV:
808                         if (wr->send_flags & IB_SEND_SOLICITED)
809                                 sqe->flags |= SIW_WQE_SOLICITED;
810
811                         if (!(wr->send_flags & IB_SEND_INLINE)) {
812                                 siw_copy_sgl(wr->sg_list, sqe->sge,
813                                              wr->num_sge);
814                                 sqe->num_sge = wr->num_sge;
815                         } else {
816                                 rv = siw_copy_inline_sgl(wr, sqe);
817                                 if (rv <= 0) {
818                                         rv = -EINVAL;
819                                         break;
820                                 }
821                                 sqe->flags |= SIW_WQE_INLINE;
822                                 sqe->num_sge = 1;
823                         }
824                         if (wr->opcode == IB_WR_SEND)
825                                 sqe->opcode = SIW_OP_SEND;
826                         else {
827                                 sqe->opcode = SIW_OP_SEND_REMOTE_INV;
828                                 sqe->rkey = wr->ex.invalidate_rkey;
829                         }
830                         break;
831
832                 case IB_WR_RDMA_READ_WITH_INV:
833                 case IB_WR_RDMA_READ:
834                         /*
835                          * iWarp restricts RREAD sink to SGL containing
836                          * 1 SGE only. we could relax to SGL with multiple
837                          * elements referring the SAME ltag or even sending
838                          * a private per-rreq tag referring to a checked
839                          * local sgl with MULTIPLE ltag's.
840                          */
841                         if (unlikely(wr->num_sge != 1)) {
842                                 rv = -EINVAL;
843                                 break;
844                         }
845                         siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1);
846                         /*
847                          * NOTE: zero length RREAD is allowed!
848                          */
849                         sqe->raddr = rdma_wr(wr)->remote_addr;
850                         sqe->rkey = rdma_wr(wr)->rkey;
851                         sqe->num_sge = 1;
852
853                         if (wr->opcode == IB_WR_RDMA_READ)
854                                 sqe->opcode = SIW_OP_READ;
855                         else
856                                 sqe->opcode = SIW_OP_READ_LOCAL_INV;
857                         break;
858
859                 case IB_WR_RDMA_WRITE:
860                         if (!(wr->send_flags & IB_SEND_INLINE)) {
861                                 siw_copy_sgl(wr->sg_list, &sqe->sge[0],
862                                              wr->num_sge);
863                                 sqe->num_sge = wr->num_sge;
864                         } else {
865                                 rv = siw_copy_inline_sgl(wr, sqe);
866                                 if (unlikely(rv < 0)) {
867                                         rv = -EINVAL;
868                                         break;
869                                 }
870                                 sqe->flags |= SIW_WQE_INLINE;
871                                 sqe->num_sge = 1;
872                         }
873                         sqe->raddr = rdma_wr(wr)->remote_addr;
874                         sqe->rkey = rdma_wr(wr)->rkey;
875                         sqe->opcode = SIW_OP_WRITE;
876                         break;
877
878                 case IB_WR_REG_MR:
879                         sqe->base_mr = (uintptr_t)reg_wr(wr)->mr;
880                         sqe->rkey = reg_wr(wr)->key;
881                         sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK;
882                         sqe->opcode = SIW_OP_REG_MR;
883                         break;
884
885                 case IB_WR_LOCAL_INV:
886                         sqe->rkey = wr->ex.invalidate_rkey;
887                         sqe->opcode = SIW_OP_INVAL_STAG;
888                         break;
889
890                 default:
891                         siw_dbg_qp(qp, "ib wr type %d unsupported\n",
892                                    wr->opcode);
893                         rv = -EINVAL;
894                         break;
895                 }
896                 siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n",
897                            sqe->opcode, sqe->flags,
898                            (void *)(uintptr_t)sqe->id);
899
900                 if (unlikely(rv < 0))
901                         break;
902
903                 /* make SQE only valid after completely written */
904                 smp_wmb();
905                 sqe->flags |= SIW_WQE_VALID;
906
907                 qp->sq_put++;
908                 wr = wr->next;
909         }
910
911         /*
912          * Send directly if SQ processing is not in progress.
913          * Eventual immediate errors (rv < 0) do not affect the involved
914          * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ
915          * processing, if new work is already pending. But rv must be passed
916          * to caller.
917          */
918         if (wqe->wr_status != SIW_WR_IDLE) {
919                 spin_unlock_irqrestore(&qp->sq_lock, flags);
920                 goto skip_direct_sending;
921         }
922         rv = siw_activate_tx(qp);
923         spin_unlock_irqrestore(&qp->sq_lock, flags);
924
925         if (rv <= 0)
926                 goto skip_direct_sending;
927
928         if (rdma_is_kernel_res(&qp->base_qp.res)) {
929                 rv = siw_sq_start(qp);
930         } else {
931                 qp->tx_ctx.in_syscall = 1;
932
933                 if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend))
934                         siw_qp_cm_drop(qp, 0);
935
936                 qp->tx_ctx.in_syscall = 0;
937         }
938 skip_direct_sending:
939
940         up_read(&qp->state_lock);
941
942         if (rv >= 0)
943                 return 0;
944         /*
945          * Immediate error
946          */
947         siw_dbg_qp(qp, "error %d\n", rv);
948
949         *bad_wr = wr;
950         return rv;
951 }
952
953 /*
954  * siw_post_receive()
955  *
956  * Post a list of R-WR's to a RQ.
957  *
958  * @base_qp:    Base QP contained in siw QP
959  * @wr:         Null terminated list of user WR's
960  * @bad_wr:     Points to failing WR in case of synchronous failure.
961  */
962 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr,
963                      const struct ib_recv_wr **bad_wr)
964 {
965         struct siw_qp *qp = to_siw_qp(base_qp);
966         unsigned long flags;
967         int rv = 0;
968
969         if (qp->srq || qp->attrs.rq_size == 0) {
970                 *bad_wr = wr;
971                 return -EINVAL;
972         }
973         if (!rdma_is_kernel_res(&qp->base_qp.res)) {
974                 siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n");
975                 *bad_wr = wr;
976                 return -EINVAL;
977         }
978
979         /*
980          * Try to acquire QP state lock. Must be non-blocking
981          * to accommodate kernel clients needs.
982          */
983         if (!down_read_trylock(&qp->state_lock)) {
984                 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
985                         /*
986                          * ERROR state is final, so we can be sure
987                          * this state will not change as long as the QP
988                          * exists.
989                          *
990                          * This handles an ib_drain_rq() call with
991                          * a concurrent request to set the QP state
992                          * to ERROR.
993                          */
994                         rv = siw_rq_flush_wr(qp, wr, bad_wr);
995                 } else {
996                         siw_dbg_qp(qp, "QP locked, state %d\n",
997                                    qp->attrs.state);
998                         *bad_wr = wr;
999                         rv = -ENOTCONN;
1000                 }
1001                 return rv;
1002         }
1003         if (qp->attrs.state > SIW_QP_STATE_RTS) {
1004                 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1005                         /*
1006                          * Immediately flush this WR to CQ, if QP
1007                          * is in ERROR state. RQ is guaranteed to
1008                          * be empty, so WR complets in-order.
1009                          *
1010                          * Typically triggered by ib_drain_rq().
1011                          */
1012                         rv = siw_rq_flush_wr(qp, wr, bad_wr);
1013                 } else {
1014                         siw_dbg_qp(qp, "QP out of state %d\n",
1015                                    qp->attrs.state);
1016                         *bad_wr = wr;
1017                         rv = -ENOTCONN;
1018                 }
1019                 up_read(&qp->state_lock);
1020                 return rv;
1021         }
1022         /*
1023          * Serialize potentially multiple producers.
1024          * Not needed for single threaded consumer side.
1025          */
1026         spin_lock_irqsave(&qp->rq_lock, flags);
1027
1028         while (wr) {
1029                 u32 idx = qp->rq_put % qp->attrs.rq_size;
1030                 struct siw_rqe *rqe = &qp->recvq[idx];
1031
1032                 if (rqe->flags) {
1033                         siw_dbg_qp(qp, "RQ full\n");
1034                         rv = -ENOMEM;
1035                         break;
1036                 }
1037                 if (wr->num_sge > qp->attrs.rq_max_sges) {
1038                         siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
1039                         rv = -EINVAL;
1040                         break;
1041                 }
1042                 rqe->id = wr->wr_id;
1043                 rqe->num_sge = wr->num_sge;
1044                 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1045
1046                 /* make sure RQE is completely written before valid */
1047                 smp_wmb();
1048
1049                 rqe->flags = SIW_WQE_VALID;
1050
1051                 qp->rq_put++;
1052                 wr = wr->next;
1053         }
1054         spin_unlock_irqrestore(&qp->rq_lock, flags);
1055
1056         up_read(&qp->state_lock);
1057
1058         if (rv < 0) {
1059                 siw_dbg_qp(qp, "error %d\n", rv);
1060                 *bad_wr = wr;
1061         }
1062         return rv > 0 ? 0 : rv;
1063 }
1064
1065 int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata)
1066 {
1067         struct siw_cq *cq = to_siw_cq(base_cq);
1068         struct siw_device *sdev = to_siw_dev(base_cq->device);
1069         struct siw_ucontext *ctx =
1070                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1071                                           base_ucontext);
1072
1073         siw_dbg_cq(cq, "free CQ resources\n");
1074
1075         siw_cq_flush(cq);
1076
1077         if (ctx)
1078                 rdma_user_mmap_entry_remove(cq->cq_entry);
1079
1080         atomic_dec(&sdev->num_cq);
1081
1082         vfree(cq->queue);
1083         return 0;
1084 }
1085
1086 /*
1087  * siw_create_cq()
1088  *
1089  * Populate CQ of requested size
1090  *
1091  * @base_cq: CQ as allocated by RDMA midlayer
1092  * @attr: Initial CQ attributes
1093  * @udata: relates to user context
1094  */
1095
1096 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr,
1097                   struct ib_udata *udata)
1098 {
1099         struct siw_device *sdev = to_siw_dev(base_cq->device);
1100         struct siw_cq *cq = to_siw_cq(base_cq);
1101         int rv, size = attr->cqe;
1102
1103         if (attr->flags)
1104                 return -EOPNOTSUPP;
1105
1106         if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) {
1107                 siw_dbg(base_cq->device, "too many CQ's\n");
1108                 rv = -ENOMEM;
1109                 goto err_out;
1110         }
1111         if (size < 1 || size > sdev->attrs.max_cqe) {
1112                 siw_dbg(base_cq->device, "CQ size error: %d\n", size);
1113                 rv = -EINVAL;
1114                 goto err_out;
1115         }
1116         size = roundup_pow_of_two(size);
1117         cq->base_cq.cqe = size;
1118         cq->num_cqe = size;
1119
1120         if (udata)
1121                 cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) +
1122                                          sizeof(struct siw_cq_ctrl));
1123         else
1124                 cq->queue = vzalloc(size * sizeof(struct siw_cqe) +
1125                                     sizeof(struct siw_cq_ctrl));
1126
1127         if (cq->queue == NULL) {
1128                 rv = -ENOMEM;
1129                 goto err_out;
1130         }
1131         get_random_bytes(&cq->id, 4);
1132         siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id);
1133
1134         spin_lock_init(&cq->lock);
1135
1136         cq->notify = (struct siw_cq_ctrl *)&cq->queue[size];
1137
1138         if (udata) {
1139                 struct siw_uresp_create_cq uresp = {};
1140                 struct siw_ucontext *ctx =
1141                         rdma_udata_to_drv_context(udata, struct siw_ucontext,
1142                                                   base_ucontext);
1143                 size_t length = size * sizeof(struct siw_cqe) +
1144                         sizeof(struct siw_cq_ctrl);
1145
1146                 cq->cq_entry =
1147                         siw_mmap_entry_insert(ctx, cq->queue,
1148                                               length, &uresp.cq_key);
1149                 if (!cq->cq_entry) {
1150                         rv = -ENOMEM;
1151                         goto err_out;
1152                 }
1153
1154                 uresp.cq_id = cq->id;
1155                 uresp.num_cqe = size;
1156
1157                 if (udata->outlen < sizeof(uresp)) {
1158                         rv = -EINVAL;
1159                         goto err_out;
1160                 }
1161                 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1162                 if (rv)
1163                         goto err_out;
1164         }
1165         return 0;
1166
1167 err_out:
1168         siw_dbg(base_cq->device, "CQ creation failed: %d", rv);
1169
1170         if (cq && cq->queue) {
1171                 struct siw_ucontext *ctx =
1172                         rdma_udata_to_drv_context(udata, struct siw_ucontext,
1173                                                   base_ucontext);
1174                 if (ctx)
1175                         rdma_user_mmap_entry_remove(cq->cq_entry);
1176                 vfree(cq->queue);
1177         }
1178         atomic_dec(&sdev->num_cq);
1179
1180         return rv;
1181 }
1182
1183 /*
1184  * siw_poll_cq()
1185  *
1186  * Reap CQ entries if available and copy work completion status into
1187  * array of WC's provided by caller. Returns number of reaped CQE's.
1188  *
1189  * @base_cq:    Base CQ contained in siw CQ.
1190  * @num_cqe:    Maximum number of CQE's to reap.
1191  * @wc:         Array of work completions to be filled by siw.
1192  */
1193 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc)
1194 {
1195         struct siw_cq *cq = to_siw_cq(base_cq);
1196         int i;
1197
1198         for (i = 0; i < num_cqe; i++) {
1199                 if (!siw_reap_cqe(cq, wc))
1200                         break;
1201                 wc++;
1202         }
1203         return i;
1204 }
1205
1206 /*
1207  * siw_req_notify_cq()
1208  *
1209  * Request notification for new CQE's added to that CQ.
1210  * Defined flags:
1211  * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification
1212  *   event if a WQE with notification flag set enters the CQ
1213  * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification
1214  *   event if a WQE enters the CQ.
1215  * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the
1216  *   number of not reaped CQE's regardless of its notification
1217  *   type and current or new CQ notification settings.
1218  *
1219  * @base_cq:    Base CQ contained in siw CQ.
1220  * @flags:      Requested notification flags.
1221  */
1222 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags)
1223 {
1224         struct siw_cq *cq = to_siw_cq(base_cq);
1225
1226         siw_dbg_cq(cq, "flags: 0x%02x\n", flags);
1227
1228         if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
1229                 /*
1230                  * Enable CQ event for next solicited completion.
1231                  * and make it visible to all associated producers.
1232                  */
1233                 smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED);
1234         else
1235                 /*
1236                  * Enable CQ event for any signalled completion.
1237                  * and make it visible to all associated producers.
1238                  */
1239                 smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL);
1240
1241         if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1242                 return cq->cq_put - cq->cq_get;
1243
1244         return 0;
1245 }
1246
1247 /*
1248  * siw_dereg_mr()
1249  *
1250  * Release Memory Region.
1251  *
1252  * @base_mr: Base MR contained in siw MR.
1253  * @udata: points to user context, unused.
1254  */
1255 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata)
1256 {
1257         struct siw_mr *mr = to_siw_mr(base_mr);
1258         struct siw_device *sdev = to_siw_dev(base_mr->device);
1259
1260         siw_dbg_mem(mr->mem, "deregister MR\n");
1261
1262         atomic_dec(&sdev->num_mr);
1263
1264         siw_mr_drop_mem(mr);
1265         kfree_rcu(mr, rcu);
1266
1267         return 0;
1268 }
1269
1270 /*
1271  * siw_reg_user_mr()
1272  *
1273  * Register Memory Region.
1274  *
1275  * @pd:         Protection Domain
1276  * @start:      starting address of MR (virtual address)
1277  * @len:        len of MR
1278  * @rnic_va:    not used by siw
1279  * @rights:     MR access rights
1280  * @udata:      user buffer to communicate STag and Key.
1281  */
1282 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len,
1283                               u64 rnic_va, int rights, struct ib_udata *udata)
1284 {
1285         struct siw_mr *mr = NULL;
1286         struct siw_umem *umem = NULL;
1287         struct siw_ureq_reg_mr ureq;
1288         struct siw_device *sdev = to_siw_dev(pd->device);
1289
1290         unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK);
1291         int rv;
1292
1293         siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n",
1294                    (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va,
1295                    (unsigned long long)len);
1296
1297         if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1298                 siw_dbg_pd(pd, "too many mr's\n");
1299                 rv = -ENOMEM;
1300                 goto err_out;
1301         }
1302         if (!len) {
1303                 rv = -EINVAL;
1304                 goto err_out;
1305         }
1306         if (mem_limit != RLIM_INFINITY) {
1307                 unsigned long num_pages =
1308                         (PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT;
1309                 mem_limit >>= PAGE_SHIFT;
1310
1311                 if (num_pages > mem_limit - current->mm->locked_vm) {
1312                         siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n",
1313                                    num_pages, mem_limit,
1314                                    current->mm->locked_vm);
1315                         rv = -ENOMEM;
1316                         goto err_out;
1317                 }
1318         }
1319         umem = siw_umem_get(start, len, ib_access_writable(rights));
1320         if (IS_ERR(umem)) {
1321                 rv = PTR_ERR(umem);
1322                 siw_dbg_pd(pd, "getting user memory failed: %d\n", rv);
1323                 umem = NULL;
1324                 goto err_out;
1325         }
1326         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1327         if (!mr) {
1328                 rv = -ENOMEM;
1329                 goto err_out;
1330         }
1331         rv = siw_mr_add_mem(mr, pd, umem, start, len, rights);
1332         if (rv)
1333                 goto err_out;
1334
1335         if (udata) {
1336                 struct siw_uresp_reg_mr uresp = {};
1337                 struct siw_mem *mem = mr->mem;
1338
1339                 if (udata->inlen < sizeof(ureq)) {
1340                         rv = -EINVAL;
1341                         goto err_out;
1342                 }
1343                 rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq));
1344                 if (rv)
1345                         goto err_out;
1346
1347                 mr->base_mr.lkey |= ureq.stag_key;
1348                 mr->base_mr.rkey |= ureq.stag_key;
1349                 mem->stag |= ureq.stag_key;
1350                 uresp.stag = mem->stag;
1351
1352                 if (udata->outlen < sizeof(uresp)) {
1353                         rv = -EINVAL;
1354                         goto err_out;
1355                 }
1356                 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1357                 if (rv)
1358                         goto err_out;
1359         }
1360         mr->mem->stag_valid = 1;
1361
1362         return &mr->base_mr;
1363
1364 err_out:
1365         atomic_dec(&sdev->num_mr);
1366         if (mr) {
1367                 if (mr->mem)
1368                         siw_mr_drop_mem(mr);
1369                 kfree_rcu(mr, rcu);
1370         } else {
1371                 if (umem)
1372                         siw_umem_release(umem, false);
1373         }
1374         return ERR_PTR(rv);
1375 }
1376
1377 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1378                            u32 max_sge)
1379 {
1380         struct siw_device *sdev = to_siw_dev(pd->device);
1381         struct siw_mr *mr = NULL;
1382         struct siw_pbl *pbl = NULL;
1383         int rv;
1384
1385         if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1386                 siw_dbg_pd(pd, "too many mr's\n");
1387                 rv = -ENOMEM;
1388                 goto err_out;
1389         }
1390         if (mr_type != IB_MR_TYPE_MEM_REG) {
1391                 siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type);
1392                 rv = -EOPNOTSUPP;
1393                 goto err_out;
1394         }
1395         if (max_sge > SIW_MAX_SGE_PBL) {
1396                 siw_dbg_pd(pd, "too many sge's: %d\n", max_sge);
1397                 rv = -ENOMEM;
1398                 goto err_out;
1399         }
1400         pbl = siw_pbl_alloc(max_sge);
1401         if (IS_ERR(pbl)) {
1402                 rv = PTR_ERR(pbl);
1403                 siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv);
1404                 pbl = NULL;
1405                 goto err_out;
1406         }
1407         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1408         if (!mr) {
1409                 rv = -ENOMEM;
1410                 goto err_out;
1411         }
1412         rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0);
1413         if (rv)
1414                 goto err_out;
1415
1416         mr->mem->is_pbl = 1;
1417
1418         siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1419
1420         return &mr->base_mr;
1421
1422 err_out:
1423         atomic_dec(&sdev->num_mr);
1424
1425         if (!mr) {
1426                 kfree(pbl);
1427         } else {
1428                 if (mr->mem)
1429                         siw_mr_drop_mem(mr);
1430                 kfree_rcu(mr, rcu);
1431         }
1432         siw_dbg_pd(pd, "failed: %d\n", rv);
1433
1434         return ERR_PTR(rv);
1435 }
1436
1437 /* Just used to count number of pages being mapped */
1438 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr)
1439 {
1440         return 0;
1441 }
1442
1443 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle,
1444                   unsigned int *sg_off)
1445 {
1446         struct scatterlist *slp;
1447         struct siw_mr *mr = to_siw_mr(base_mr);
1448         struct siw_mem *mem = mr->mem;
1449         struct siw_pbl *pbl = mem->pbl;
1450         struct siw_pble *pble;
1451         unsigned long pbl_size;
1452         int i, rv;
1453
1454         if (!pbl) {
1455                 siw_dbg_mem(mem, "no PBL allocated\n");
1456                 return -EINVAL;
1457         }
1458         pble = pbl->pbe;
1459
1460         if (pbl->max_buf < num_sle) {
1461                 siw_dbg_mem(mem, "too many SGE's: %d > %d\n",
1462                             mem->pbl->max_buf, num_sle);
1463                 return -ENOMEM;
1464         }
1465         for_each_sg(sl, slp, num_sle, i) {
1466                 if (sg_dma_len(slp) == 0) {
1467                         siw_dbg_mem(mem, "empty SGE\n");
1468                         return -EINVAL;
1469                 }
1470                 if (i == 0) {
1471                         pble->addr = sg_dma_address(slp);
1472                         pble->size = sg_dma_len(slp);
1473                         pble->pbl_off = 0;
1474                         pbl_size = pble->size;
1475                         pbl->num_buf = 1;
1476                 } else {
1477                         /* Merge PBL entries if adjacent */
1478                         if (pble->addr + pble->size == sg_dma_address(slp)) {
1479                                 pble->size += sg_dma_len(slp);
1480                         } else {
1481                                 pble++;
1482                                 pbl->num_buf++;
1483                                 pble->addr = sg_dma_address(slp);
1484                                 pble->size = sg_dma_len(slp);
1485                                 pble->pbl_off = pbl_size;
1486                         }
1487                         pbl_size += sg_dma_len(slp);
1488                 }
1489                 siw_dbg_mem(mem,
1490                         "sge[%d], size %u, addr 0x%p, total %lu\n",
1491                         i, pble->size, (void *)(uintptr_t)pble->addr,
1492                         pbl_size);
1493         }
1494         rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page);
1495         if (rv > 0) {
1496                 mem->len = base_mr->length;
1497                 mem->va = base_mr->iova;
1498                 siw_dbg_mem(mem,
1499                         "%llu bytes, start 0x%pK, %u SLE to %u entries\n",
1500                         mem->len, (void *)(uintptr_t)mem->va, num_sle,
1501                         pbl->num_buf);
1502         }
1503         return rv;
1504 }
1505
1506 /*
1507  * siw_get_dma_mr()
1508  *
1509  * Create a (empty) DMA memory region, where no umem is attached.
1510  */
1511 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights)
1512 {
1513         struct siw_device *sdev = to_siw_dev(pd->device);
1514         struct siw_mr *mr = NULL;
1515         int rv;
1516
1517         if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1518                 siw_dbg_pd(pd, "too many mr's\n");
1519                 rv = -ENOMEM;
1520                 goto err_out;
1521         }
1522         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1523         if (!mr) {
1524                 rv = -ENOMEM;
1525                 goto err_out;
1526         }
1527         rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights);
1528         if (rv)
1529                 goto err_out;
1530
1531         mr->mem->stag_valid = 1;
1532
1533         siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1534
1535         return &mr->base_mr;
1536
1537 err_out:
1538         if (rv)
1539                 kfree(mr);
1540
1541         atomic_dec(&sdev->num_mr);
1542
1543         return ERR_PTR(rv);
1544 }
1545
1546 /*
1547  * siw_create_srq()
1548  *
1549  * Create Shared Receive Queue of attributes @init_attrs
1550  * within protection domain given by @pd.
1551  *
1552  * @base_srq:   Base SRQ contained in siw SRQ.
1553  * @init_attrs: SRQ init attributes.
1554  * @udata:      points to user context
1555  */
1556 int siw_create_srq(struct ib_srq *base_srq,
1557                    struct ib_srq_init_attr *init_attrs, struct ib_udata *udata)
1558 {
1559         struct siw_srq *srq = to_siw_srq(base_srq);
1560         struct ib_srq_attr *attrs = &init_attrs->attr;
1561         struct siw_device *sdev = to_siw_dev(base_srq->device);
1562         struct siw_ucontext *ctx =
1563                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1564                                           base_ucontext);
1565         int rv;
1566
1567         if (init_attrs->srq_type != IB_SRQT_BASIC)
1568                 return -EOPNOTSUPP;
1569
1570         if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) {
1571                 siw_dbg_pd(base_srq->pd, "too many SRQ's\n");
1572                 rv = -ENOMEM;
1573                 goto err_out;
1574         }
1575         if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR ||
1576             attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) {
1577                 rv = -EINVAL;
1578                 goto err_out;
1579         }
1580         srq->max_sge = attrs->max_sge;
1581         srq->num_rqe = roundup_pow_of_two(attrs->max_wr);
1582         srq->limit = attrs->srq_limit;
1583         if (srq->limit)
1584                 srq->armed = true;
1585
1586         srq->is_kernel_res = !udata;
1587
1588         if (udata)
1589                 srq->recvq =
1590                         vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe));
1591         else
1592                 srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe));
1593
1594         if (srq->recvq == NULL) {
1595                 rv = -ENOMEM;
1596                 goto err_out;
1597         }
1598         if (udata) {
1599                 struct siw_uresp_create_srq uresp = {};
1600                 size_t length = srq->num_rqe * sizeof(struct siw_rqe);
1601
1602                 srq->srq_entry =
1603                         siw_mmap_entry_insert(ctx, srq->recvq,
1604                                               length, &uresp.srq_key);
1605                 if (!srq->srq_entry) {
1606                         rv = -ENOMEM;
1607                         goto err_out;
1608                 }
1609
1610                 uresp.num_rqe = srq->num_rqe;
1611
1612                 if (udata->outlen < sizeof(uresp)) {
1613                         rv = -EINVAL;
1614                         goto err_out;
1615                 }
1616                 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1617                 if (rv)
1618                         goto err_out;
1619         }
1620         spin_lock_init(&srq->lock);
1621
1622         siw_dbg_pd(base_srq->pd, "[SRQ]: success\n");
1623
1624         return 0;
1625
1626 err_out:
1627         if (srq->recvq) {
1628                 if (ctx)
1629                         rdma_user_mmap_entry_remove(srq->srq_entry);
1630                 vfree(srq->recvq);
1631         }
1632         atomic_dec(&sdev->num_srq);
1633
1634         return rv;
1635 }
1636
1637 /*
1638  * siw_modify_srq()
1639  *
1640  * Modify SRQ. The caller may resize SRQ and/or set/reset notification
1641  * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification.
1642  *
1643  * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE
1644  * parameter. siw_modify_srq() does not check the attrs->max_sge param.
1645  */
1646 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs,
1647                    enum ib_srq_attr_mask attr_mask, struct ib_udata *udata)
1648 {
1649         struct siw_srq *srq = to_siw_srq(base_srq);
1650         unsigned long flags;
1651         int rv = 0;
1652
1653         spin_lock_irqsave(&srq->lock, flags);
1654
1655         if (attr_mask & IB_SRQ_MAX_WR) {
1656                 /* resize request not yet supported */
1657                 rv = -EOPNOTSUPP;
1658                 goto out;
1659         }
1660         if (attr_mask & IB_SRQ_LIMIT) {
1661                 if (attrs->srq_limit) {
1662                         if (unlikely(attrs->srq_limit > srq->num_rqe)) {
1663                                 rv = -EINVAL;
1664                                 goto out;
1665                         }
1666                         srq->armed = true;
1667                 } else {
1668                         srq->armed = false;
1669                 }
1670                 srq->limit = attrs->srq_limit;
1671         }
1672 out:
1673         spin_unlock_irqrestore(&srq->lock, flags);
1674
1675         return rv;
1676 }
1677
1678 /*
1679  * siw_query_srq()
1680  *
1681  * Query SRQ attributes.
1682  */
1683 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs)
1684 {
1685         struct siw_srq *srq = to_siw_srq(base_srq);
1686         unsigned long flags;
1687
1688         spin_lock_irqsave(&srq->lock, flags);
1689
1690         attrs->max_wr = srq->num_rqe;
1691         attrs->max_sge = srq->max_sge;
1692         attrs->srq_limit = srq->limit;
1693
1694         spin_unlock_irqrestore(&srq->lock, flags);
1695
1696         return 0;
1697 }
1698
1699 /*
1700  * siw_destroy_srq()
1701  *
1702  * Destroy SRQ.
1703  * It is assumed that the SRQ is not referenced by any
1704  * QP anymore - the code trusts the RDMA core environment to keep track
1705  * of QP references.
1706  */
1707 int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata)
1708 {
1709         struct siw_srq *srq = to_siw_srq(base_srq);
1710         struct siw_device *sdev = to_siw_dev(base_srq->device);
1711         struct siw_ucontext *ctx =
1712                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1713                                           base_ucontext);
1714
1715         if (ctx)
1716                 rdma_user_mmap_entry_remove(srq->srq_entry);
1717         vfree(srq->recvq);
1718         atomic_dec(&sdev->num_srq);
1719         return 0;
1720 }
1721
1722 /*
1723  * siw_post_srq_recv()
1724  *
1725  * Post a list of receive queue elements to SRQ.
1726  * NOTE: The function does not check or lock a certain SRQ state
1727  *       during the post operation. The code simply trusts the
1728  *       RDMA core environment.
1729  *
1730  * @base_srq:   Base SRQ contained in siw SRQ
1731  * @wr:         List of R-WR's
1732  * @bad_wr:     Updated to failing WR if posting fails.
1733  */
1734 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr,
1735                       const struct ib_recv_wr **bad_wr)
1736 {
1737         struct siw_srq *srq = to_siw_srq(base_srq);
1738         unsigned long flags;
1739         int rv = 0;
1740
1741         if (unlikely(!srq->is_kernel_res)) {
1742                 siw_dbg_pd(base_srq->pd,
1743                            "[SRQ]: no kernel post_recv for mapped srq\n");
1744                 rv = -EINVAL;
1745                 goto out;
1746         }
1747         /*
1748          * Serialize potentially multiple producers.
1749          * Also needed to serialize potentially multiple
1750          * consumers.
1751          */
1752         spin_lock_irqsave(&srq->lock, flags);
1753
1754         while (wr) {
1755                 u32 idx = srq->rq_put % srq->num_rqe;
1756                 struct siw_rqe *rqe = &srq->recvq[idx];
1757
1758                 if (rqe->flags) {
1759                         siw_dbg_pd(base_srq->pd, "SRQ full\n");
1760                         rv = -ENOMEM;
1761                         break;
1762                 }
1763                 if (unlikely(wr->num_sge > srq->max_sge)) {
1764                         siw_dbg_pd(base_srq->pd,
1765                                    "[SRQ]: too many sge's: %d\n", wr->num_sge);
1766                         rv = -EINVAL;
1767                         break;
1768                 }
1769                 rqe->id = wr->wr_id;
1770                 rqe->num_sge = wr->num_sge;
1771                 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1772
1773                 /* Make sure S-RQE is completely written before valid */
1774                 smp_wmb();
1775
1776                 rqe->flags = SIW_WQE_VALID;
1777
1778                 srq->rq_put++;
1779                 wr = wr->next;
1780         }
1781         spin_unlock_irqrestore(&srq->lock, flags);
1782 out:
1783         if (unlikely(rv < 0)) {
1784                 siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv);
1785                 *bad_wr = wr;
1786         }
1787         return rv;
1788 }
1789
1790 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype)
1791 {
1792         struct ib_event event;
1793         struct ib_qp *base_qp = &qp->base_qp;
1794
1795         /*
1796          * Do not report asynchronous errors on QP which gets
1797          * destroyed via verbs interface (siw_destroy_qp())
1798          */
1799         if (qp->attrs.flags & SIW_QP_IN_DESTROY)
1800                 return;
1801
1802         event.event = etype;
1803         event.device = base_qp->device;
1804         event.element.qp = base_qp;
1805
1806         if (base_qp->event_handler) {
1807                 siw_dbg_qp(qp, "reporting event %d\n", etype);
1808                 base_qp->event_handler(&event, base_qp->qp_context);
1809         }
1810 }
1811
1812 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype)
1813 {
1814         struct ib_event event;
1815         struct ib_cq *base_cq = &cq->base_cq;
1816
1817         event.event = etype;
1818         event.device = base_cq->device;
1819         event.element.cq = base_cq;
1820
1821         if (base_cq->event_handler) {
1822                 siw_dbg_cq(cq, "reporting CQ event %d\n", etype);
1823                 base_cq->event_handler(&event, base_cq->cq_context);
1824         }
1825 }
1826
1827 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype)
1828 {
1829         struct ib_event event;
1830         struct ib_srq *base_srq = &srq->base_srq;
1831
1832         event.event = etype;
1833         event.device = base_srq->device;
1834         event.element.srq = base_srq;
1835
1836         if (base_srq->event_handler) {
1837                 siw_dbg_pd(srq->base_srq.pd,
1838                            "reporting SRQ event %d\n", etype);
1839                 base_srq->event_handler(&event, base_srq->srq_context);
1840         }
1841 }
1842
1843 void siw_port_event(struct siw_device *sdev, u32 port, enum ib_event_type etype)
1844 {
1845         struct ib_event event;
1846
1847         event.event = etype;
1848         event.device = &sdev->base_dev;
1849         event.element.port_num = port;
1850
1851         siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype);
1852
1853         ib_dispatch_event(&event);
1854 }