GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 #include "qp.h"
40
41 #include <linux/mlx5/eq.h>
42
43 /* Contains the details of a pagefault. */
44 struct mlx5_pagefault {
45         u32                     bytes_committed;
46         u32                     token;
47         u8                      event_subtype;
48         u8                      type;
49         union {
50                 /* Initiator or send message responder pagefault details. */
51                 struct {
52                         /* Received packet size, only valid for responders. */
53                         u32     packet_size;
54                         /*
55                          * Number of resource holding WQE, depends on type.
56                          */
57                         u32     wq_num;
58                         /*
59                          * WQE index. Refers to either the send queue or
60                          * receive queue, according to event_subtype.
61                          */
62                         u16     wqe_index;
63                 } wqe;
64                 /* RDMA responder pagefault details */
65                 struct {
66                         u32     r_key;
67                         /*
68                          * Received packet size, minimal size page fault
69                          * resolution required for forward progress.
70                          */
71                         u32     packet_size;
72                         u32     rdma_op_len;
73                         u64     rdma_va;
74                 } rdma;
75         };
76
77         struct mlx5_ib_pf_eq    *eq;
78         struct work_struct      work;
79 };
80
81 #define MAX_PREFETCH_LEN (4*1024*1024U)
82
83 /* Timeout in ms to wait for an active mmu notifier to complete when handling
84  * a pagefault. */
85 #define MMU_NOTIFIER_TIMEOUT 1000
86
87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
92
93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
94
95 static u64 mlx5_imr_ksm_entries;
96
97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
98                         struct mlx5_ib_mr *imr, int flags)
99 {
100         struct mlx5_klm *end = pklm + nentries;
101
102         if (flags & MLX5_IB_UPD_XLT_ZAP) {
103                 for (; pklm != end; pklm++, idx++) {
104                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
105                         pklm->key = cpu_to_be32(imr->dev->null_mkey);
106                         pklm->va = 0;
107                 }
108                 return;
109         }
110
111         /*
112          * The locking here is pretty subtle. Ideally the implicit_children
113          * xarray would be protected by the umem_mutex, however that is not
114          * possible. Instead this uses a weaker update-then-lock pattern:
115          *
116          *  srcu_read_lock()
117          *    xa_store()
118          *    mutex_lock(umem_mutex)
119          *     mlx5_ib_update_xlt()
120          *    mutex_unlock(umem_mutex)
121          *    destroy lkey
122          *
123          * ie any change the xarray must be followed by the locked update_xlt
124          * before destroying.
125          *
126          * The umem_mutex provides the acquire/release semantic needed to make
127          * the xa_store() visible to a racing thread. While SRCU is not
128          * technically required, using it gives consistent use of the SRCU
129          * locking around the xarray.
130          */
131         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
132         lockdep_assert_held(&imr->dev->odp_srcu);
133
134         for (; pklm != end; pklm++, idx++) {
135                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
136
137                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138                 if (mtt) {
139                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
140                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
141                 } else {
142                         pklm->key = cpu_to_be32(imr->dev->null_mkey);
143                         pklm->va = 0;
144                 }
145         }
146 }
147
148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
149 {
150         u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
151
152         if (umem_dma & ODP_READ_ALLOWED_BIT)
153                 mtt_entry |= MLX5_IB_MTT_READ;
154         if (umem_dma & ODP_WRITE_ALLOWED_BIT)
155                 mtt_entry |= MLX5_IB_MTT_WRITE;
156
157         return mtt_entry;
158 }
159
160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
161                          struct mlx5_ib_mr *mr, int flags)
162 {
163         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
164         dma_addr_t pa;
165         size_t i;
166
167         if (flags & MLX5_IB_UPD_XLT_ZAP)
168                 return;
169
170         for (i = 0; i < nentries; i++) {
171                 pa = odp->dma_list[idx + i];
172                 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
173         }
174 }
175
176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
177                            struct mlx5_ib_mr *mr, int flags)
178 {
179         if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
180                 populate_klm(xlt, idx, nentries, mr, flags);
181         } else {
182                 populate_mtt(xlt, idx, nentries, mr, flags);
183         }
184 }
185
186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
187 {
188         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
189
190         /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
191         mutex_lock(&odp->umem_mutex);
192         if (odp->npages) {
193                 mlx5_mr_cache_invalidate(mr);
194                 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
195                                             ib_umem_end(odp));
196                 WARN_ON(odp->npages);
197         }
198         odp->private = NULL;
199         mutex_unlock(&odp->umem_mutex);
200
201         if (!mr->cache_ent) {
202                 mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
203                 WARN_ON(mr->descs);
204         }
205 }
206
207 /*
208  * This must be called after the mr has been removed from implicit_children
209  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
210  * empty here, parallel page faults could have raced with the free process and
211  * added pages to it.
212  */
213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
214 {
215         struct mlx5_ib_mr *imr = mr->parent;
216         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
217         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
218         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
219         int srcu_key;
220
221         /* implicit_child_mr's are not allowed to have deferred work */
222         WARN_ON(atomic_read(&mr->num_deferred_work));
223
224         if (need_imr_xlt) {
225                 srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
226                 mutex_lock(&odp_imr->umem_mutex);
227                 mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
228                                    MLX5_IB_UPD_XLT_INDIRECT |
229                                    MLX5_IB_UPD_XLT_ATOMIC);
230                 mutex_unlock(&odp_imr->umem_mutex);
231                 srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
232         }
233
234         dma_fence_odp_mr(mr);
235
236         mr->parent = NULL;
237         mlx5_mr_cache_free(mr->dev, mr);
238         ib_umem_odp_release(odp);
239         if (atomic_dec_and_test(&imr->num_deferred_work))
240                 wake_up(&imr->q_deferred_work);
241 }
242
243 static void free_implicit_child_mr_work(struct work_struct *work)
244 {
245         struct mlx5_ib_mr *mr =
246                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
247
248         free_implicit_child_mr(mr, true);
249 }
250
251 static void free_implicit_child_mr_rcu(struct rcu_head *head)
252 {
253         struct mlx5_ib_mr *mr =
254                 container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
255
256         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
257         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
258         queue_work(system_unbound_wq, &mr->odp_destroy.work);
259 }
260
261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
262 {
263         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
264         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
265         struct mlx5_ib_mr *imr = mr->parent;
266
267         xa_lock(&imr->implicit_children);
268         /*
269          * This can race with mlx5_ib_free_implicit_mr(), the first one to
270          * reach the xa lock wins the race and destroys the MR.
271          */
272         if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
273             mr)
274                 goto out_unlock;
275
276         atomic_inc(&imr->num_deferred_work);
277         call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
278                   free_implicit_child_mr_rcu);
279
280 out_unlock:
281         xa_unlock(&imr->implicit_children);
282 }
283
284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
285                                      const struct mmu_notifier_range *range,
286                                      unsigned long cur_seq)
287 {
288         struct ib_umem_odp *umem_odp =
289                 container_of(mni, struct ib_umem_odp, notifier);
290         struct mlx5_ib_mr *mr;
291         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
292                                     sizeof(struct mlx5_mtt)) - 1;
293         u64 idx = 0, blk_start_idx = 0;
294         u64 invalidations = 0;
295         unsigned long start;
296         unsigned long end;
297         int in_block = 0;
298         u64 addr;
299
300         if (!mmu_notifier_range_blockable(range))
301                 return false;
302
303         mutex_lock(&umem_odp->umem_mutex);
304         mmu_interval_set_seq(mni, cur_seq);
305         /*
306          * If npages is zero then umem_odp->private may not be setup yet. This
307          * does not complete until after the first page is mapped for DMA.
308          */
309         if (!umem_odp->npages)
310                 goto out;
311         mr = umem_odp->private;
312
313         start = max_t(u64, ib_umem_start(umem_odp), range->start);
314         end = min_t(u64, ib_umem_end(umem_odp), range->end);
315
316         /*
317          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
318          * while we are doing the invalidation, no page fault will attempt to
319          * overwrite the same MTTs.  Concurent invalidations might race us,
320          * but they will write 0s as well, so no difference in the end result.
321          */
322         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
323                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
324                 /*
325                  * Strive to write the MTTs in chunks, but avoid overwriting
326                  * non-existing MTTs. The huristic here can be improved to
327                  * estimate the cost of another UMR vs. the cost of bigger
328                  * UMR.
329                  */
330                 if (umem_odp->dma_list[idx] &
331                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
332                         if (!in_block) {
333                                 blk_start_idx = idx;
334                                 in_block = 1;
335                         }
336
337                         /* Count page invalidations */
338                         invalidations += idx - blk_start_idx + 1;
339                 } else {
340                         u64 umr_offset = idx & umr_block_mask;
341
342                         if (in_block && umr_offset == 0) {
343                                 mlx5_ib_update_xlt(mr, blk_start_idx,
344                                                    idx - blk_start_idx, 0,
345                                                    MLX5_IB_UPD_XLT_ZAP |
346                                                    MLX5_IB_UPD_XLT_ATOMIC);
347                                 in_block = 0;
348                         }
349                 }
350         }
351         if (in_block)
352                 mlx5_ib_update_xlt(mr, blk_start_idx,
353                                    idx - blk_start_idx + 1, 0,
354                                    MLX5_IB_UPD_XLT_ZAP |
355                                    MLX5_IB_UPD_XLT_ATOMIC);
356
357         mlx5_update_odp_stats(mr, invalidations, invalidations);
358
359         /*
360          * We are now sure that the device will not access the
361          * memory. We can safely unmap it, and mark it as dirty if
362          * needed.
363          */
364
365         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
366
367         if (unlikely(!umem_odp->npages && mr->parent))
368                 destroy_unused_implicit_child_mr(mr);
369 out:
370         mutex_unlock(&umem_odp->umem_mutex);
371         return true;
372 }
373
374 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
375         .invalidate = mlx5_ib_invalidate_range,
376 };
377
378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
379 {
380         struct ib_odp_caps *caps = &dev->odp_caps;
381
382         memset(caps, 0, sizeof(*caps));
383
384         if (!MLX5_CAP_GEN(dev->mdev, pg) ||
385             !mlx5_ib_can_load_pas_with_umr(dev, 0))
386                 return;
387
388         caps->general_caps = IB_ODP_SUPPORT;
389
390         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
391                 dev->odp_max_size = U64_MAX;
392         else
393                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
394
395         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
396                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
397
398         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
399                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400
401         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
402                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
403
404         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
405                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
406
407         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
408                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409
410         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
411                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
412
413         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
414                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415
416         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
417                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418
419         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
420                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
421
422         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
423                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
424
425         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
426                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
427
428         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
429                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
430
431         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
432                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
433
434         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
435                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
436
437         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
438             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
439             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
440             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
441                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
442 }
443
444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
445                                       struct mlx5_pagefault *pfault,
446                                       int error)
447 {
448         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
449                      pfault->wqe.wq_num : pfault->token;
450         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
451         int err;
452
453         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
454         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
455         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
456         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
457         MLX5_SET(page_fault_resume_in, in, error, !!error);
458
459         err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
460         if (err)
461                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
462                             wq_num, err);
463 }
464
465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
466                                                 unsigned long idx)
467 {
468         struct ib_umem_odp *odp;
469         struct mlx5_ib_mr *mr;
470         struct mlx5_ib_mr *ret;
471         int err;
472
473         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
474                                       idx * MLX5_IMR_MTT_SIZE,
475                                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
476         if (IS_ERR(odp))
477                 return ERR_CAST(odp);
478
479         ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY,
480                                        imr->access_flags);
481         if (IS_ERR(mr))
482                 goto out_umem;
483
484         mr->ibmr.pd = imr->ibmr.pd;
485         mr->umem = &odp->umem;
486         mr->ibmr.lkey = mr->mmkey.key;
487         mr->ibmr.rkey = mr->mmkey.key;
488         mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
489         mr->parent = imr;
490         odp->private = mr;
491
492         err = mlx5_ib_update_xlt(mr, 0,
493                                  MLX5_IMR_MTT_ENTRIES,
494                                  PAGE_SHIFT,
495                                  MLX5_IB_UPD_XLT_ZAP |
496                                  MLX5_IB_UPD_XLT_ENABLE);
497         if (err) {
498                 ret = ERR_PTR(err);
499                 goto out_mr;
500         }
501
502         /*
503          * Once the store to either xarray completes any error unwind has to
504          * use synchronize_srcu(). Avoid this with xa_reserve()
505          */
506         ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
507                          GFP_KERNEL);
508         if (unlikely(ret)) {
509                 if (xa_is_err(ret)) {
510                         ret = ERR_PTR(xa_err(ret));
511                         goto out_mr;
512                 }
513                 /*
514                  * Another thread beat us to creating the child mr, use
515                  * theirs.
516                  */
517                 goto out_mr;
518         }
519
520         mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
521         return mr;
522
523 out_mr:
524         mlx5_mr_cache_free(imr->dev, mr);
525 out_umem:
526         ib_umem_odp_release(odp);
527         return ret;
528 }
529
530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
531                                              struct ib_udata *udata,
532                                              int access_flags)
533 {
534         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
535         struct ib_umem_odp *umem_odp;
536         struct mlx5_ib_mr *imr;
537         int err;
538
539         umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
540         if (IS_ERR(umem_odp))
541                 return ERR_CAST(umem_odp);
542
543         imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags);
544         if (IS_ERR(imr)) {
545                 err = PTR_ERR(imr);
546                 goto out_umem;
547         }
548
549         imr->ibmr.pd = &pd->ibpd;
550         imr->mmkey.iova = 0;
551         imr->umem = &umem_odp->umem;
552         imr->ibmr.lkey = imr->mmkey.key;
553         imr->ibmr.rkey = imr->mmkey.key;
554         imr->umem = &umem_odp->umem;
555         imr->is_odp_implicit = true;
556         atomic_set(&imr->num_deferred_work, 0);
557         init_waitqueue_head(&imr->q_deferred_work);
558         xa_init(&imr->implicit_children);
559
560         err = mlx5_ib_update_xlt(imr, 0,
561                                  mlx5_imr_ksm_entries,
562                                  MLX5_KSM_PAGE_SHIFT,
563                                  MLX5_IB_UPD_XLT_INDIRECT |
564                                  MLX5_IB_UPD_XLT_ZAP |
565                                  MLX5_IB_UPD_XLT_ENABLE);
566         if (err)
567                 goto out_mr;
568
569         err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
570                               &imr->mmkey, GFP_KERNEL));
571         if (err)
572                 goto out_mr;
573
574         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
575         return imr;
576 out_mr:
577         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
578         mlx5_mr_cache_free(dev, imr);
579 out_umem:
580         ib_umem_odp_release(umem_odp);
581         return ERR_PTR(err);
582 }
583
584 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
585 {
586         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
587         struct mlx5_ib_dev *dev = imr->dev;
588         struct list_head destroy_list;
589         struct mlx5_ib_mr *mtt;
590         struct mlx5_ib_mr *tmp;
591         unsigned long idx;
592
593         INIT_LIST_HEAD(&destroy_list);
594
595         xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
596         /*
597          * This stops the SRCU protected page fault path from touching either
598          * the imr or any children. The page fault path can only reach the
599          * children xarray via the imr.
600          */
601         synchronize_srcu(&dev->odp_srcu);
602
603         /*
604          * All work on the prefetch list must be completed, xa_erase() prevented
605          * new work from being created.
606          */
607         wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
608
609         /*
610          * At this point it is forbidden for any other thread to enter
611          * pagefault_mr() on this imr. It is already forbidden to call
612          * pagefault_mr() on an implicit child. Due to this additions to
613          * implicit_children are prevented.
614          */
615
616         /*
617          * Block destroy_unused_implicit_child_mr() from incrementing
618          * num_deferred_work.
619          */
620         xa_lock(&imr->implicit_children);
621         xa_for_each (&imr->implicit_children, idx, mtt) {
622                 __xa_erase(&imr->implicit_children, idx);
623                 list_add(&mtt->odp_destroy.elm, &destroy_list);
624         }
625         xa_unlock(&imr->implicit_children);
626
627         /*
628          * Wait for any concurrent destroy_unused_implicit_child_mr() to
629          * complete.
630          */
631         wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
632
633         /*
634          * Fence the imr before we destroy the children. This allows us to
635          * skip updating the XLT of the imr during destroy of the child mkey
636          * the imr points to.
637          */
638         mlx5_mr_cache_invalidate(imr);
639
640         list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
641                 free_implicit_child_mr(mtt, false);
642
643         mlx5_mr_cache_free(dev, imr);
644         ib_umem_odp_release(odp_imr);
645 }
646
647 /**
648  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
649  * @mr: to fence
650  *
651  * On return no parallel threads will be touching this MR and no DMA will be
652  * active.
653  */
654 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
655 {
656         /* Prevent new page faults and prefetch requests from succeeding */
657         xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
658
659         /* Wait for all running page-fault handlers to finish. */
660         synchronize_srcu(&mr->dev->odp_srcu);
661
662         wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
663
664         dma_fence_odp_mr(mr);
665 }
666
667 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
668 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
669 #define MLX5_PF_FLAGS_ENABLE BIT(3)
670 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
671                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
672                              u32 flags)
673 {
674         int page_shift, ret, np;
675         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
676         u64 access_mask;
677         u64 start_idx;
678         bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
679         u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
680
681         if (flags & MLX5_PF_FLAGS_ENABLE)
682                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
683
684         page_shift = odp->page_shift;
685         start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
686         access_mask = ODP_READ_ALLOWED_BIT;
687
688         if (odp->umem.writable && !downgrade)
689                 access_mask |= ODP_WRITE_ALLOWED_BIT;
690
691         np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
692         if (np < 0)
693                 return np;
694
695         /*
696          * No need to check whether the MTTs really belong to this MR, since
697          * ib_umem_odp_map_dma_and_lock already checks this.
698          */
699         ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
700         mutex_unlock(&odp->umem_mutex);
701
702         if (ret < 0) {
703                 if (ret != -EAGAIN)
704                         mlx5_ib_err(mr->dev,
705                                     "Failed to update mkey page tables\n");
706                 goto out;
707         }
708
709         if (bytes_mapped) {
710                 u32 new_mappings = (np << page_shift) -
711                         (user_va - round_down(user_va, 1 << page_shift));
712
713                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
714         }
715
716         return np << (page_shift - PAGE_SHIFT);
717
718 out:
719         return ret;
720 }
721
722 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
723                                  struct ib_umem_odp *odp_imr, u64 user_va,
724                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
725 {
726         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
727         unsigned long upd_start_idx = end_idx + 1;
728         unsigned long upd_len = 0;
729         unsigned long npages = 0;
730         int err;
731         int ret;
732
733         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
734                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
735                 return -EFAULT;
736
737         /* Fault each child mr that intersects with our interval. */
738         while (bcnt) {
739                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
740                 struct ib_umem_odp *umem_odp;
741                 struct mlx5_ib_mr *mtt;
742                 u64 len;
743
744                 mtt = xa_load(&imr->implicit_children, idx);
745                 if (unlikely(!mtt)) {
746                         mtt = implicit_get_child_mr(imr, idx);
747                         if (IS_ERR(mtt)) {
748                                 ret = PTR_ERR(mtt);
749                                 goto out;
750                         }
751                         upd_start_idx = min(upd_start_idx, idx);
752                         upd_len = idx - upd_start_idx + 1;
753                 }
754
755                 umem_odp = to_ib_umem_odp(mtt->umem);
756                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
757                       user_va;
758
759                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
760                                         bytes_mapped, flags);
761                 if (ret < 0)
762                         goto out;
763                 user_va += len;
764                 bcnt -= len;
765                 npages += ret;
766         }
767
768         ret = npages;
769
770         /*
771          * Any time the implicit_children are changed we must perform an
772          * update of the xlt before exiting to ensure the HW and the
773          * implicit_children remains synchronized.
774          */
775 out:
776         if (likely(!upd_len))
777                 return ret;
778
779         /*
780          * Notice this is not strictly ordered right, the KSM is updated after
781          * the implicit_children is updated, so a parallel page fault could
782          * see a MR that is not yet visible in the KSM.  This is similar to a
783          * parallel page fault seeing a MR that is being concurrently removed
784          * from the KSM. Both of these improbable situations are resolved
785          * safely by resuming the HW and then taking another page fault. The
786          * next pagefault handler will see the new information.
787          */
788         mutex_lock(&odp_imr->umem_mutex);
789         err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
790                                  MLX5_IB_UPD_XLT_INDIRECT |
791                                          MLX5_IB_UPD_XLT_ATOMIC);
792         mutex_unlock(&odp_imr->umem_mutex);
793         if (err) {
794                 mlx5_ib_err(imr->dev, "Failed to update PAS\n");
795                 return err;
796         }
797         return ret;
798 }
799
800 /*
801  * Returns:
802  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
803  *           not accessible, or the MR is no longer valid.
804  *  -EAGAIN/-ENOMEM: The operation should be retried
805  *
806  *  -EINVAL/others: General internal malfunction
807  *  >0: Number of pages mapped
808  */
809 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
810                         u32 *bytes_mapped, u32 flags)
811 {
812         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
813
814         lockdep_assert_held(&mr->dev->odp_srcu);
815         if (unlikely(io_virt < mr->mmkey.iova))
816                 return -EFAULT;
817
818         if (!odp->is_implicit_odp) {
819                 u64 user_va;
820
821                 if (check_add_overflow(io_virt - mr->mmkey.iova,
822                                        (u64)odp->umem.address, &user_va))
823                         return -EFAULT;
824                 if (unlikely(user_va >= ib_umem_end(odp) ||
825                              ib_umem_end(odp) - user_va < bcnt))
826                         return -EFAULT;
827                 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
828                                          flags);
829         }
830         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
831                                      flags);
832 }
833
834 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr, bool enable)
835 {
836         u32 flags = MLX5_PF_FLAGS_SNAPSHOT;
837         int ret;
838
839         if (enable)
840                 flags |= MLX5_PF_FLAGS_ENABLE;
841
842         ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem),
843                                 mr->umem->address, mr->umem->length, NULL,
844                                 flags);
845         return ret >= 0 ? 0 : ret;
846 }
847
848 struct pf_frame {
849         struct pf_frame *next;
850         u32 key;
851         u64 io_virt;
852         size_t bcnt;
853         int depth;
854 };
855
856 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
857 {
858         if (!mmkey)
859                 return false;
860         if (mmkey->type == MLX5_MKEY_MW)
861                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
862         return mmkey->key == key;
863 }
864
865 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
866 {
867         struct mlx5_ib_mw *mw;
868         struct mlx5_ib_devx_mr *devx_mr;
869
870         if (mmkey->type == MLX5_MKEY_MW) {
871                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
872                 return mw->ndescs;
873         }
874
875         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
876                                mmkey);
877         return devx_mr->ndescs;
878 }
879
880 /*
881  * Handle a single data segment in a page-fault WQE or RDMA region.
882  *
883  * Returns number of OS pages retrieved on success. The caller may continue to
884  * the next data segment.
885  * Can return the following error codes:
886  * -EAGAIN to designate a temporary error. The caller will abort handling the
887  *  page fault and resolve it.
888  * -EFAULT when there's an error mapping the requested pages. The caller will
889  *  abort the page fault handling.
890  */
891 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
892                                          struct ib_pd *pd, u32 key,
893                                          u64 io_virt, size_t bcnt,
894                                          u32 *bytes_committed,
895                                          u32 *bytes_mapped)
896 {
897         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
898         struct pf_frame *head = NULL, *frame;
899         struct mlx5_core_mkey *mmkey;
900         struct mlx5_ib_mr *mr;
901         struct mlx5_klm *pklm;
902         u32 *out = NULL;
903         size_t offset;
904         int ndescs;
905
906         srcu_key = srcu_read_lock(&dev->odp_srcu);
907
908         io_virt += *bytes_committed;
909         bcnt -= *bytes_committed;
910
911 next_mr:
912         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
913         if (!mmkey) {
914                 mlx5_ib_dbg(
915                         dev,
916                         "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
917                         key);
918                 if (bytes_mapped)
919                         *bytes_mapped += bcnt;
920                 /*
921                  * The user could specify a SGL with multiple lkeys and only
922                  * some of them are ODP. Treat the non-ODP ones as fully
923                  * faulted.
924                  */
925                 ret = 0;
926                 goto srcu_unlock;
927         }
928         if (!mkey_is_eq(mmkey, key)) {
929                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
930                 ret = -EFAULT;
931                 goto srcu_unlock;
932         }
933
934         switch (mmkey->type) {
935         case MLX5_MKEY_MR:
936                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
937
938                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
939                 if (ret < 0)
940                         goto srcu_unlock;
941
942                 mlx5_update_odp_stats(mr, faults, ret);
943
944                 npages += ret;
945                 ret = 0;
946                 break;
947
948         case MLX5_MKEY_MW:
949         case MLX5_MKEY_INDIRECT_DEVX:
950                 ndescs = get_indirect_num_descs(mmkey);
951
952                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
953                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
954                         ret = -EFAULT;
955                         goto srcu_unlock;
956                 }
957
958                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
959                         sizeof(*pklm) * (ndescs - 2);
960
961                 if (outlen > cur_outlen) {
962                         kfree(out);
963                         out = kzalloc(outlen, GFP_KERNEL);
964                         if (!out) {
965                                 ret = -ENOMEM;
966                                 goto srcu_unlock;
967                         }
968                         cur_outlen = outlen;
969                 }
970
971                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
972                                                        bsf0_klm0_pas_mtt0_1);
973
974                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
975                 if (ret)
976                         goto srcu_unlock;
977
978                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
979                                               memory_key_mkey_entry.start_addr);
980
981                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
982                         if (offset >= be32_to_cpu(pklm->bcount)) {
983                                 offset -= be32_to_cpu(pklm->bcount);
984                                 continue;
985                         }
986
987                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
988                         if (!frame) {
989                                 ret = -ENOMEM;
990                                 goto srcu_unlock;
991                         }
992
993                         frame->key = be32_to_cpu(pklm->key);
994                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
995                         frame->bcnt = min_t(size_t, bcnt,
996                                             be32_to_cpu(pklm->bcount) - offset);
997                         frame->depth = depth + 1;
998                         frame->next = head;
999                         head = frame;
1000
1001                         bcnt -= frame->bcnt;
1002                         offset = 0;
1003                 }
1004                 break;
1005
1006         default:
1007                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1008                 ret = -EFAULT;
1009                 goto srcu_unlock;
1010         }
1011
1012         if (head) {
1013                 frame = head;
1014                 head = frame->next;
1015
1016                 key = frame->key;
1017                 io_virt = frame->io_virt;
1018                 bcnt = frame->bcnt;
1019                 depth = frame->depth;
1020                 kfree(frame);
1021
1022                 goto next_mr;
1023         }
1024
1025 srcu_unlock:
1026         while (head) {
1027                 frame = head;
1028                 head = frame->next;
1029                 kfree(frame);
1030         }
1031         kfree(out);
1032
1033         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1034         *bytes_committed = 0;
1035         return ret ? ret : npages;
1036 }
1037
1038 /**
1039  * Parse a series of data segments for page fault handling.
1040  *
1041  * @pfault contains page fault information.
1042  * @wqe points at the first data segment in the WQE.
1043  * @wqe_end points after the end of the WQE.
1044  * @bytes_mapped receives the number of bytes that the function was able to
1045  *               map. This allows the caller to decide intelligently whether
1046  *               enough memory was mapped to resolve the page fault
1047  *               successfully (e.g. enough for the next MTU, or the entire
1048  *               WQE).
1049  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1050  *                  the committed bytes).
1051  *
1052  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1053  * negative error code.
1054  */
1055 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1056                                    struct mlx5_pagefault *pfault,
1057                                    void *wqe,
1058                                    void *wqe_end, u32 *bytes_mapped,
1059                                    u32 *total_wqe_bytes, bool receive_queue)
1060 {
1061         int ret = 0, npages = 0;
1062         u64 io_virt;
1063         u32 key;
1064         u32 byte_count;
1065         size_t bcnt;
1066         int inline_segment;
1067
1068         if (bytes_mapped)
1069                 *bytes_mapped = 0;
1070         if (total_wqe_bytes)
1071                 *total_wqe_bytes = 0;
1072
1073         while (wqe < wqe_end) {
1074                 struct mlx5_wqe_data_seg *dseg = wqe;
1075
1076                 io_virt = be64_to_cpu(dseg->addr);
1077                 key = be32_to_cpu(dseg->lkey);
1078                 byte_count = be32_to_cpu(dseg->byte_count);
1079                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1080                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
1081
1082                 if (inline_segment) {
1083                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1084                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1085                                      16);
1086                 } else {
1087                         wqe += sizeof(*dseg);
1088                 }
1089
1090                 /* receive WQE end of sg list. */
1091                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1092                     io_virt == 0)
1093                         break;
1094
1095                 if (!inline_segment && total_wqe_bytes) {
1096                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1097                                         pfault->bytes_committed);
1098                 }
1099
1100                 /* A zero length data segment designates a length of 2GB. */
1101                 if (bcnt == 0)
1102                         bcnt = 1U << 31;
1103
1104                 if (inline_segment || bcnt <= pfault->bytes_committed) {
1105                         pfault->bytes_committed -=
1106                                 min_t(size_t, bcnt,
1107                                       pfault->bytes_committed);
1108                         continue;
1109                 }
1110
1111                 ret = pagefault_single_data_segment(dev, NULL, key,
1112                                                     io_virt, bcnt,
1113                                                     &pfault->bytes_committed,
1114                                                     bytes_mapped);
1115                 if (ret < 0)
1116                         break;
1117                 npages += ret;
1118         }
1119
1120         return ret < 0 ? ret : npages;
1121 }
1122
1123 /*
1124  * Parse initiator WQE. Advances the wqe pointer to point at the
1125  * scatter-gather list, and set wqe_end to the end of the WQE.
1126  */
1127 static int mlx5_ib_mr_initiator_pfault_handler(
1128         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1129         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1130 {
1131         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1132         u16 wqe_index = pfault->wqe.wqe_index;
1133         struct mlx5_base_av *av;
1134         unsigned ds, opcode;
1135         u32 qpn = qp->trans_qp.base.mqp.qpn;
1136
1137         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1138         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1139                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1140                             ds, wqe_length);
1141                 return -EFAULT;
1142         }
1143
1144         if (ds == 0) {
1145                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1146                             wqe_index, qpn);
1147                 return -EFAULT;
1148         }
1149
1150         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1151         *wqe += sizeof(*ctrl);
1152
1153         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1154                  MLX5_WQE_CTRL_OPCODE_MASK;
1155
1156         if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1157                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1158
1159         if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1160                 av = *wqe;
1161                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1162                         *wqe += sizeof(struct mlx5_av);
1163                 else
1164                         *wqe += sizeof(struct mlx5_base_av);
1165         }
1166
1167         switch (opcode) {
1168         case MLX5_OPCODE_RDMA_WRITE:
1169         case MLX5_OPCODE_RDMA_WRITE_IMM:
1170         case MLX5_OPCODE_RDMA_READ:
1171                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1172                 break;
1173         case MLX5_OPCODE_ATOMIC_CS:
1174         case MLX5_OPCODE_ATOMIC_FA:
1175                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1176                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1177                 break;
1178         }
1179
1180         return 0;
1181 }
1182
1183 /*
1184  * Parse responder WQE and set wqe_end to the end of the WQE.
1185  */
1186 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1187                                                    struct mlx5_ib_srq *srq,
1188                                                    void **wqe, void **wqe_end,
1189                                                    int wqe_length)
1190 {
1191         int wqe_size = 1 << srq->msrq.wqe_shift;
1192
1193         if (wqe_size > wqe_length) {
1194                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1195                 return -EFAULT;
1196         }
1197
1198         *wqe_end = *wqe + wqe_size;
1199         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1200
1201         return 0;
1202 }
1203
1204 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1205                                                   struct mlx5_ib_qp *qp,
1206                                                   void *wqe, void **wqe_end,
1207                                                   int wqe_length)
1208 {
1209         struct mlx5_ib_wq *wq = &qp->rq;
1210         int wqe_size = 1 << wq->wqe_shift;
1211
1212         if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1213                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1214                 return -EFAULT;
1215         }
1216
1217         if (wqe_size > wqe_length) {
1218                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1219                 return -EFAULT;
1220         }
1221
1222         *wqe_end = wqe + wqe_size;
1223
1224         return 0;
1225 }
1226
1227 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1228                                                        u32 wq_num, int pf_type)
1229 {
1230         struct mlx5_core_rsc_common *common = NULL;
1231         struct mlx5_core_srq *srq;
1232
1233         switch (pf_type) {
1234         case MLX5_WQE_PF_TYPE_RMP:
1235                 srq = mlx5_cmd_get_srq(dev, wq_num);
1236                 if (srq)
1237                         common = &srq->common;
1238                 break;
1239         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1240         case MLX5_WQE_PF_TYPE_RESP:
1241         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1242                 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1243                 break;
1244         default:
1245                 break;
1246         }
1247
1248         return common;
1249 }
1250
1251 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1252 {
1253         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1254
1255         return to_mibqp(mqp);
1256 }
1257
1258 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1259 {
1260         struct mlx5_core_srq *msrq =
1261                 container_of(res, struct mlx5_core_srq, common);
1262
1263         return to_mibsrq(msrq);
1264 }
1265
1266 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1267                                           struct mlx5_pagefault *pfault)
1268 {
1269         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1270         u16 wqe_index = pfault->wqe.wqe_index;
1271         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1272         u32 bytes_mapped, total_wqe_bytes;
1273         struct mlx5_core_rsc_common *res;
1274         int resume_with_error = 1;
1275         struct mlx5_ib_qp *qp;
1276         size_t bytes_copied;
1277         int ret = 0;
1278
1279         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1280         if (!res) {
1281                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1282                 return;
1283         }
1284
1285         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1286             res->res != MLX5_RES_XSRQ) {
1287                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1288                             pfault->type);
1289                 goto resolve_page_fault;
1290         }
1291
1292         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1293         if (!wqe_start) {
1294                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1295                 goto resolve_page_fault;
1296         }
1297
1298         wqe = wqe_start;
1299         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1300         if (qp && sq) {
1301                 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1302                                           &bytes_copied);
1303                 if (ret)
1304                         goto read_user;
1305                 ret = mlx5_ib_mr_initiator_pfault_handler(
1306                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1307         } else if (qp && !sq) {
1308                 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1309                                           &bytes_copied);
1310                 if (ret)
1311                         goto read_user;
1312                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1313                         dev, qp, wqe, &wqe_end, bytes_copied);
1314         } else if (!qp) {
1315                 struct mlx5_ib_srq *srq = res_to_srq(res);
1316
1317                 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1318                                            &bytes_copied);
1319                 if (ret)
1320                         goto read_user;
1321                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1322                         dev, srq, &wqe, &wqe_end, bytes_copied);
1323         }
1324
1325         if (ret < 0 || wqe >= wqe_end)
1326                 goto resolve_page_fault;
1327
1328         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1329                                       &total_wqe_bytes, !sq);
1330         if (ret == -EAGAIN)
1331                 goto out;
1332
1333         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1334                 goto resolve_page_fault;
1335
1336 out:
1337         ret = 0;
1338         resume_with_error = 0;
1339
1340 read_user:
1341         if (ret)
1342                 mlx5_ib_err(
1343                         dev,
1344                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1345                         ret, wqe_index, pfault->token);
1346
1347 resolve_page_fault:
1348         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1349         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1350                     pfault->wqe.wq_num, resume_with_error,
1351                     pfault->type);
1352         mlx5_core_res_put(res);
1353         free_page((unsigned long)wqe_start);
1354 }
1355
1356 static int pages_in_range(u64 address, u32 length)
1357 {
1358         return (ALIGN(address + length, PAGE_SIZE) -
1359                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1360 }
1361
1362 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1363                                            struct mlx5_pagefault *pfault)
1364 {
1365         u64 address;
1366         u32 length;
1367         u32 prefetch_len = pfault->bytes_committed;
1368         int prefetch_activated = 0;
1369         u32 rkey = pfault->rdma.r_key;
1370         int ret;
1371
1372         /* The RDMA responder handler handles the page fault in two parts.
1373          * First it brings the necessary pages for the current packet
1374          * (and uses the pfault context), and then (after resuming the QP)
1375          * prefetches more pages. The second operation cannot use the pfault
1376          * context and therefore uses the dummy_pfault context allocated on
1377          * the stack */
1378         pfault->rdma.rdma_va += pfault->bytes_committed;
1379         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1380                                          pfault->rdma.rdma_op_len);
1381         pfault->bytes_committed = 0;
1382
1383         address = pfault->rdma.rdma_va;
1384         length  = pfault->rdma.rdma_op_len;
1385
1386         /* For some operations, the hardware cannot tell the exact message
1387          * length, and in those cases it reports zero. Use prefetch
1388          * logic. */
1389         if (length == 0) {
1390                 prefetch_activated = 1;
1391                 length = pfault->rdma.packet_size;
1392                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1393         }
1394
1395         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1396                                             &pfault->bytes_committed, NULL);
1397         if (ret == -EAGAIN) {
1398                 /* We're racing with an invalidation, don't prefetch */
1399                 prefetch_activated = 0;
1400         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1401                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1402                 if (ret != -ENOENT)
1403                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1404                                     ret, pfault->token, pfault->type);
1405                 return;
1406         }
1407
1408         mlx5_ib_page_fault_resume(dev, pfault, 0);
1409         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1410                     pfault->token, pfault->type,
1411                     prefetch_activated);
1412
1413         /* At this point, there might be a new pagefault already arriving in
1414          * the eq, switch to the dummy pagefault for the rest of the
1415          * processing. We're still OK with the objects being alive as the
1416          * work-queue is being fenced. */
1417
1418         if (prefetch_activated) {
1419                 u32 bytes_committed = 0;
1420
1421                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1422                                                     prefetch_len,
1423                                                     &bytes_committed, NULL);
1424                 if (ret < 0 && ret != -EAGAIN) {
1425                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1426                                     ret, pfault->token, address, prefetch_len);
1427                 }
1428         }
1429 }
1430
1431 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1432 {
1433         u8 event_subtype = pfault->event_subtype;
1434
1435         switch (event_subtype) {
1436         case MLX5_PFAULT_SUBTYPE_WQE:
1437                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1438                 break;
1439         case MLX5_PFAULT_SUBTYPE_RDMA:
1440                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1441                 break;
1442         default:
1443                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1444                             event_subtype);
1445                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1446         }
1447 }
1448
1449 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1450 {
1451         struct mlx5_pagefault *pfault = container_of(work,
1452                                                      struct mlx5_pagefault,
1453                                                      work);
1454         struct mlx5_ib_pf_eq *eq = pfault->eq;
1455
1456         mlx5_ib_pfault(eq->dev, pfault);
1457         mempool_free(pfault, eq->pool);
1458 }
1459
1460 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1461 {
1462         struct mlx5_eqe_page_fault *pf_eqe;
1463         struct mlx5_pagefault *pfault;
1464         struct mlx5_eqe *eqe;
1465         int cc = 0;
1466
1467         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1468                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1469                 if (!pfault) {
1470                         schedule_work(&eq->work);
1471                         break;
1472                 }
1473
1474                 pf_eqe = &eqe->data.page_fault;
1475                 pfault->event_subtype = eqe->sub_type;
1476                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1477
1478                 mlx5_ib_dbg(eq->dev,
1479                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1480                             eqe->sub_type, pfault->bytes_committed);
1481
1482                 switch (eqe->sub_type) {
1483                 case MLX5_PFAULT_SUBTYPE_RDMA:
1484                         /* RDMA based event */
1485                         pfault->type =
1486                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1487                         pfault->token =
1488                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1489                                 MLX5_24BIT_MASK;
1490                         pfault->rdma.r_key =
1491                                 be32_to_cpu(pf_eqe->rdma.r_key);
1492                         pfault->rdma.packet_size =
1493                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1494                         pfault->rdma.rdma_op_len =
1495                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1496                         pfault->rdma.rdma_va =
1497                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1498                         mlx5_ib_dbg(eq->dev,
1499                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1500                                     pfault->type, pfault->token,
1501                                     pfault->rdma.r_key);
1502                         mlx5_ib_dbg(eq->dev,
1503                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1504                                     pfault->rdma.rdma_op_len,
1505                                     pfault->rdma.rdma_va);
1506                         break;
1507
1508                 case MLX5_PFAULT_SUBTYPE_WQE:
1509                         /* WQE based event */
1510                         pfault->type =
1511                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1512                         pfault->token =
1513                                 be32_to_cpu(pf_eqe->wqe.token);
1514                         pfault->wqe.wq_num =
1515                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1516                                 MLX5_24BIT_MASK;
1517                         pfault->wqe.wqe_index =
1518                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1519                         pfault->wqe.packet_size =
1520                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1521                         mlx5_ib_dbg(eq->dev,
1522                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1523                                     pfault->type, pfault->token,
1524                                     pfault->wqe.wq_num,
1525                                     pfault->wqe.wqe_index);
1526                         break;
1527
1528                 default:
1529                         mlx5_ib_warn(eq->dev,
1530                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1531                                      eqe->sub_type);
1532                         /* Unsupported page faults should still be
1533                          * resolved by the page fault handler
1534                          */
1535                 }
1536
1537                 pfault->eq = eq;
1538                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1539                 queue_work(eq->wq, &pfault->work);
1540
1541                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1542         }
1543
1544         mlx5_eq_update_ci(eq->core, cc, 1);
1545 }
1546
1547 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1548                              void *data)
1549 {
1550         struct mlx5_ib_pf_eq *eq =
1551                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1552         unsigned long flags;
1553
1554         if (spin_trylock_irqsave(&eq->lock, flags)) {
1555                 mlx5_ib_eq_pf_process(eq);
1556                 spin_unlock_irqrestore(&eq->lock, flags);
1557         } else {
1558                 schedule_work(&eq->work);
1559         }
1560
1561         return IRQ_HANDLED;
1562 }
1563
1564 /* mempool_refill() was proposed but unfortunately wasn't accepted
1565  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1566  * Cheap workaround.
1567  */
1568 static void mempool_refill(mempool_t *pool)
1569 {
1570         while (pool->curr_nr < pool->min_nr)
1571                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1572 }
1573
1574 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1575 {
1576         struct mlx5_ib_pf_eq *eq =
1577                 container_of(work, struct mlx5_ib_pf_eq, work);
1578
1579         mempool_refill(eq->pool);
1580
1581         spin_lock_irq(&eq->lock);
1582         mlx5_ib_eq_pf_process(eq);
1583         spin_unlock_irq(&eq->lock);
1584 }
1585
1586 enum {
1587         MLX5_IB_NUM_PF_EQE      = 0x1000,
1588         MLX5_IB_NUM_PF_DRAIN    = 64,
1589 };
1590
1591 static int
1592 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1593 {
1594         struct mlx5_eq_param param = {};
1595         int err;
1596
1597         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1598         spin_lock_init(&eq->lock);
1599         eq->dev = dev;
1600
1601         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1602                                                sizeof(struct mlx5_pagefault));
1603         if (!eq->pool)
1604                 return -ENOMEM;
1605
1606         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1607                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1608                                  MLX5_NUM_CMD_EQE);
1609         if (!eq->wq) {
1610                 err = -ENOMEM;
1611                 goto err_mempool;
1612         }
1613
1614         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1615         param = (struct mlx5_eq_param) {
1616                 .irq_index = 0,
1617                 .nent = MLX5_IB_NUM_PF_EQE,
1618         };
1619         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1620         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1621         if (IS_ERR(eq->core)) {
1622                 err = PTR_ERR(eq->core);
1623                 goto err_wq;
1624         }
1625         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1626         if (err) {
1627                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1628                 goto err_eq;
1629         }
1630
1631         return 0;
1632 err_eq:
1633         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1634 err_wq:
1635         destroy_workqueue(eq->wq);
1636 err_mempool:
1637         mempool_destroy(eq->pool);
1638         return err;
1639 }
1640
1641 static int
1642 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1643 {
1644         int err;
1645
1646         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1647         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1648         cancel_work_sync(&eq->work);
1649         destroy_workqueue(eq->wq);
1650         mempool_destroy(eq->pool);
1651
1652         return err;
1653 }
1654
1655 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1656 {
1657         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1658                 return;
1659
1660         switch (ent->order - 2) {
1661         case MLX5_IMR_MTT_CACHE_ENTRY:
1662                 ent->page = PAGE_SHIFT;
1663                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1664                            sizeof(struct mlx5_mtt) /
1665                            MLX5_IB_UMR_OCTOWORD;
1666                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1667                 ent->limit = 0;
1668                 break;
1669
1670         case MLX5_IMR_KSM_CACHE_ENTRY:
1671                 ent->page = MLX5_KSM_PAGE_SHIFT;
1672                 ent->xlt = mlx5_imr_ksm_entries *
1673                            sizeof(struct mlx5_klm) /
1674                            MLX5_IB_UMR_OCTOWORD;
1675                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1676                 ent->limit = 0;
1677                 break;
1678         }
1679 }
1680
1681 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1682         .advise_mr = mlx5_ib_advise_mr,
1683 };
1684
1685 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1686 {
1687         int ret = 0;
1688
1689         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1690                 return ret;
1691
1692         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1693
1694         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1695                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1696                 if (ret) {
1697                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1698                         return ret;
1699                 }
1700         }
1701
1702         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1703
1704         return ret;
1705 }
1706
1707 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1708 {
1709         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1710                 return;
1711
1712         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1713 }
1714
1715 int mlx5_ib_odp_init(void)
1716 {
1717         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1718                                        MLX5_IMR_MTT_BITS);
1719
1720         return 0;
1721 }
1722
1723 struct prefetch_mr_work {
1724         struct work_struct work;
1725         u32 pf_flags;
1726         u32 num_sge;
1727         struct {
1728                 u64 io_virt;
1729                 struct mlx5_ib_mr *mr;
1730                 size_t length;
1731         } frags[];
1732 };
1733
1734 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1735 {
1736         u32 i;
1737
1738         for (i = 0; i < work->num_sge; ++i)
1739                 if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1740                         wake_up(&work->frags[i].mr->q_deferred_work);
1741         kvfree(work);
1742 }
1743
1744 static struct mlx5_ib_mr *
1745 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1746                     u32 lkey)
1747 {
1748         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1749         struct mlx5_core_mkey *mmkey;
1750         struct ib_umem_odp *odp;
1751         struct mlx5_ib_mr *mr;
1752
1753         lockdep_assert_held(&dev->odp_srcu);
1754
1755         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1756         if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1757                 return NULL;
1758
1759         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1760
1761         if (mr->ibmr.pd != pd)
1762                 return NULL;
1763
1764         odp = to_ib_umem_odp(mr->umem);
1765
1766         /* prefetch with write-access must be supported by the MR */
1767         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1768             !odp->umem.writable)
1769                 return NULL;
1770
1771         return mr;
1772 }
1773
1774 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1775 {
1776         struct prefetch_mr_work *work =
1777                 container_of(w, struct prefetch_mr_work, work);
1778         struct mlx5_ib_dev *dev;
1779         u32 bytes_mapped = 0;
1780         int srcu_key;
1781         int ret;
1782         u32 i;
1783
1784         /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1785         WARN_ON(!work->num_sge);
1786         dev = work->frags[0].mr->dev;
1787         /* SRCU should be held when calling to mlx5_odp_populate_xlt() */
1788         srcu_key = srcu_read_lock(&dev->odp_srcu);
1789         for (i = 0; i < work->num_sge; ++i) {
1790                 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1791                                    work->frags[i].length, &bytes_mapped,
1792                                    work->pf_flags);
1793                 if (ret <= 0)
1794                         continue;
1795                 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1796         }
1797         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1798
1799         destroy_prefetch_work(work);
1800 }
1801
1802 static bool init_prefetch_work(struct ib_pd *pd,
1803                                enum ib_uverbs_advise_mr_advice advice,
1804                                u32 pf_flags, struct prefetch_mr_work *work,
1805                                struct ib_sge *sg_list, u32 num_sge)
1806 {
1807         u32 i;
1808
1809         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1810         work->pf_flags = pf_flags;
1811
1812         for (i = 0; i < num_sge; ++i) {
1813                 work->frags[i].io_virt = sg_list[i].addr;
1814                 work->frags[i].length = sg_list[i].length;
1815                 work->frags[i].mr =
1816                         get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1817                 if (!work->frags[i].mr) {
1818                         work->num_sge = i;
1819                         return false;
1820                 }
1821
1822                 /* Keep the MR pointer will valid outside the SRCU */
1823                 atomic_inc(&work->frags[i].mr->num_deferred_work);
1824         }
1825         work->num_sge = num_sge;
1826         return true;
1827 }
1828
1829 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1830                                     enum ib_uverbs_advise_mr_advice advice,
1831                                     u32 pf_flags, struct ib_sge *sg_list,
1832                                     u32 num_sge)
1833 {
1834         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1835         u32 bytes_mapped = 0;
1836         int srcu_key;
1837         int ret = 0;
1838         u32 i;
1839
1840         srcu_key = srcu_read_lock(&dev->odp_srcu);
1841         for (i = 0; i < num_sge; ++i) {
1842                 struct mlx5_ib_mr *mr;
1843
1844                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1845                 if (!mr) {
1846                         ret = -ENOENT;
1847                         goto out;
1848                 }
1849                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1850                                    &bytes_mapped, pf_flags);
1851                 if (ret < 0)
1852                         goto out;
1853                 mlx5_update_odp_stats(mr, prefetch, ret);
1854         }
1855         ret = 0;
1856
1857 out:
1858         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1859         return ret;
1860 }
1861
1862 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1863                                enum ib_uverbs_advise_mr_advice advice,
1864                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1865 {
1866         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1867         u32 pf_flags = 0;
1868         struct prefetch_mr_work *work;
1869         int srcu_key;
1870
1871         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1872                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1873
1874         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1875                 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1876
1877         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1878                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1879                                                 num_sge);
1880
1881         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1882         if (!work)
1883                 return -ENOMEM;
1884
1885         srcu_key = srcu_read_lock(&dev->odp_srcu);
1886         if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1887                 srcu_read_unlock(&dev->odp_srcu, srcu_key);
1888                 destroy_prefetch_work(work);
1889                 return -EINVAL;
1890         }
1891         queue_work(system_unbound_wq, &work->work);
1892         srcu_read_unlock(&dev->odp_srcu, srcu_key);
1893         return 0;
1894 }