GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67
68 static unsigned int hfi1_lkey_table_size = 16;
69 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
70                    S_IRUGO);
71 MODULE_PARM_DESC(lkey_table_size,
72                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
73
74 static unsigned int hfi1_max_pds = 0xFFFF;
75 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
76 MODULE_PARM_DESC(max_pds,
77                  "Maximum number of protection domains to support");
78
79 static unsigned int hfi1_max_ahs = 0xFFFF;
80 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
82
83 unsigned int hfi1_max_cqes = 0x2FFFFF;
84 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
85 MODULE_PARM_DESC(max_cqes,
86                  "Maximum number of completion queue entries to support");
87
88 unsigned int hfi1_max_cqs = 0x1FFFF;
89 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
91
92 unsigned int hfi1_max_qp_wrs = 0x3FFF;
93 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
95
96 unsigned int hfi1_max_qps = 32768;
97 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
99
100 unsigned int hfi1_max_sges = 0x60;
101 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
103
104 unsigned int hfi1_max_mcast_grps = 16384;
105 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
106 MODULE_PARM_DESC(max_mcast_grps,
107                  "Maximum number of multicast groups to support");
108
109 unsigned int hfi1_max_mcast_qp_attached = 16;
110 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
111                    uint, S_IRUGO);
112 MODULE_PARM_DESC(max_mcast_qp_attached,
113                  "Maximum number of attached QPs to support");
114
115 unsigned int hfi1_max_srqs = 1024;
116 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
118
119 unsigned int hfi1_max_srq_sges = 128;
120 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
122
123 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
124 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
125 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
126
127 unsigned short piothreshold = 256;
128 module_param(piothreshold, ushort, S_IRUGO);
129 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
130
131 #define COPY_CACHELESS 1
132 #define COPY_ADAPTIVE  2
133 static unsigned int sge_copy_mode;
134 module_param(sge_copy_mode, uint, S_IRUGO);
135 MODULE_PARM_DESC(sge_copy_mode,
136                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
137
138 static void verbs_sdma_complete(
139         struct sdma_txreq *cookie,
140         int status);
141
142 static int pio_wait(struct rvt_qp *qp,
143                     struct send_context *sc,
144                     struct hfi1_pkt_state *ps,
145                     u32 flag);
146
147 /* Length of buffer to create verbs txreq cache name */
148 #define TXREQ_NAME_LEN 24
149
150 static uint wss_threshold;
151 module_param(wss_threshold, uint, S_IRUGO);
152 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
153 static uint wss_clean_period = 256;
154 module_param(wss_clean_period, uint, S_IRUGO);
155 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
156
157 /* memory working set size */
158 struct hfi1_wss {
159         unsigned long *entries;
160         atomic_t total_count;
161         atomic_t clean_counter;
162         atomic_t clean_entry;
163
164         int threshold;
165         int num_entries;
166         long pages_mask;
167 };
168
169 static struct hfi1_wss wss;
170
171 int hfi1_wss_init(void)
172 {
173         long llc_size;
174         long llc_bits;
175         long table_size;
176         long table_bits;
177
178         /* check for a valid percent range - default to 80 if none or invalid */
179         if (wss_threshold < 1 || wss_threshold > 100)
180                 wss_threshold = 80;
181         /* reject a wildly large period */
182         if (wss_clean_period > 1000000)
183                 wss_clean_period = 256;
184         /* reject a zero period */
185         if (wss_clean_period == 0)
186                 wss_clean_period = 1;
187
188         /*
189          * Calculate the table size - the next power of 2 larger than the
190          * LLC size.  LLC size is in KiB.
191          */
192         llc_size = wss_llc_size() * 1024;
193         table_size = roundup_pow_of_two(llc_size);
194
195         /* one bit per page in rounded up table */
196         llc_bits = llc_size / PAGE_SIZE;
197         table_bits = table_size / PAGE_SIZE;
198         wss.pages_mask = table_bits - 1;
199         wss.num_entries = table_bits / BITS_PER_LONG;
200
201         wss.threshold = (llc_bits * wss_threshold) / 100;
202         if (wss.threshold == 0)
203                 wss.threshold = 1;
204
205         atomic_set(&wss.clean_counter, wss_clean_period);
206
207         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
208                               GFP_KERNEL);
209         if (!wss.entries) {
210                 hfi1_wss_exit();
211                 return -ENOMEM;
212         }
213
214         return 0;
215 }
216
217 void hfi1_wss_exit(void)
218 {
219         /* coded to handle partially initialized and repeat callers */
220         kfree(wss.entries);
221         wss.entries = NULL;
222 }
223
224 /*
225  * Advance the clean counter.  When the clean period has expired,
226  * clean an entry.
227  *
228  * This is implemented in atomics to avoid locking.  Because multiple
229  * variables are involved, it can be racy which can lead to slightly
230  * inaccurate information.  Since this is only a heuristic, this is
231  * OK.  Any innaccuracies will clean themselves out as the counter
232  * advances.  That said, it is unlikely the entry clean operation will
233  * race - the next possible racer will not start until the next clean
234  * period.
235  *
236  * The clean counter is implemented as a decrement to zero.  When zero
237  * is reached an entry is cleaned.
238  */
239 static void wss_advance_clean_counter(void)
240 {
241         int entry;
242         int weight;
243         unsigned long bits;
244
245         /* become the cleaner if we decrement the counter to zero */
246         if (atomic_dec_and_test(&wss.clean_counter)) {
247                 /*
248                  * Set, not add, the clean period.  This avoids an issue
249                  * where the counter could decrement below the clean period.
250                  * Doing a set can result in lost decrements, slowing the
251                  * clean advance.  Since this a heuristic, this possible
252                  * slowdown is OK.
253                  *
254                  * An alternative is to loop, advancing the counter by a
255                  * clean period until the result is > 0. However, this could
256                  * lead to several threads keeping another in the clean loop.
257                  * This could be mitigated by limiting the number of times
258                  * we stay in the loop.
259                  */
260                 atomic_set(&wss.clean_counter, wss_clean_period);
261
262                 /*
263                  * Uniquely grab the entry to clean and move to next.
264                  * The current entry is always the lower bits of
265                  * wss.clean_entry.  The table size, wss.num_entries,
266                  * is always a power-of-2.
267                  */
268                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
269                         & (wss.num_entries - 1);
270
271                 /* clear the entry and count the bits */
272                 bits = xchg(&wss.entries[entry], 0);
273                 weight = hweight64((u64)bits);
274                 /* only adjust the contended total count if needed */
275                 if (weight)
276                         atomic_sub(weight, &wss.total_count);
277         }
278 }
279
280 /*
281  * Insert the given address into the working set array.
282  */
283 static void wss_insert(void *address)
284 {
285         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
286         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
287         u32 nr = page & (BITS_PER_LONG - 1);
288
289         if (!test_and_set_bit(nr, &wss.entries[entry]))
290                 atomic_inc(&wss.total_count);
291
292         wss_advance_clean_counter();
293 }
294
295 /*
296  * Is the working set larger than the threshold?
297  */
298 static inline bool wss_exceeds_threshold(void)
299 {
300         return atomic_read(&wss.total_count) >= wss.threshold;
301 }
302
303 /*
304  * Translate ib_wr_opcode into ib_wc_opcode.
305  */
306 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
307         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
308         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
309         [IB_WR_SEND] = IB_WC_SEND,
310         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
311         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
312         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
313         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
314         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
315         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
316         [IB_WR_REG_MR] = IB_WC_REG_MR
317 };
318
319 /*
320  * Length of header by opcode, 0 --> not supported
321  */
322 const u8 hdr_len_by_opcode[256] = {
323         /* RC */
324         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
325         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
326         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
327         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
328         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
329         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
330         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
331         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
332         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
333         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
334         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
335         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
336         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
337         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
338         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
339         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
340         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
341         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
342         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
343         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
344         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
345         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
346         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
347         /* UC */
348         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
349         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
350         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
351         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
352         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
353         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
354         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
355         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
356         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
357         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
358         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
359         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
360         /* UD */
361         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
362         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
363 };
364
365 static const opcode_handler opcode_handler_tbl[256] = {
366         /* RC */
367         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
368         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
369         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
370         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
371         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
372         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
373         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
374         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
375         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
376         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
377         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
378         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
379         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
380         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
381         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
382         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
383         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
384         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
385         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
386         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
387         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
388         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
389         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
390         /* UC */
391         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
392         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
393         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
394         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
395         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
396         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
397         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
398         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
399         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
400         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
401         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
402         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
403         /* UD */
404         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
405         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
406         /* CNP */
407         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
408 };
409
410 #define OPMASK 0x1f
411
412 static const u32 pio_opmask[BIT(3)] = {
413         /* RC */
414         [IB_OPCODE_RC >> 5] =
415                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
416                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
417                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
418                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
419                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
420                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
421                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
422                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
423                 BIT(RC_OP(FETCH_ADD) & OPMASK),
424         /* UC */
425         [IB_OPCODE_UC >> 5] =
426                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
427                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
428                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
429                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
430 };
431
432 /*
433  * System image GUID.
434  */
435 __be64 ib_hfi1_sys_image_guid;
436
437 /**
438  * hfi1_copy_sge - copy data to SGE memory
439  * @ss: the SGE state
440  * @data: the data to copy
441  * @length: the length of the data
442  * @release: boolean to release MR
443  * @copy_last: do a separate copy of the last 8 bytes
444  */
445 void hfi1_copy_sge(
446         struct rvt_sge_state *ss,
447         void *data, u32 length,
448         bool release,
449         bool copy_last)
450 {
451         struct rvt_sge *sge = &ss->sge;
452         int i;
453         bool in_last = false;
454         bool cacheless_copy = false;
455
456         if (sge_copy_mode == COPY_CACHELESS) {
457                 cacheless_copy = length >= PAGE_SIZE;
458         } else if (sge_copy_mode == COPY_ADAPTIVE) {
459                 if (length >= PAGE_SIZE) {
460                         /*
461                          * NOTE: this *assumes*:
462                          * o The first vaddr is the dest.
463                          * o If multiple pages, then vaddr is sequential.
464                          */
465                         wss_insert(sge->vaddr);
466                         if (length >= (2 * PAGE_SIZE))
467                                 wss_insert(sge->vaddr + PAGE_SIZE);
468
469                         cacheless_copy = wss_exceeds_threshold();
470                 } else {
471                         wss_advance_clean_counter();
472                 }
473         }
474         if (copy_last) {
475                 if (length > 8) {
476                         length -= 8;
477                 } else {
478                         copy_last = false;
479                         in_last = true;
480                 }
481         }
482
483 again:
484         while (length) {
485                 u32 len = rvt_get_sge_length(sge, length);
486
487                 WARN_ON_ONCE(len == 0);
488                 if (unlikely(in_last)) {
489                         /* enforce byte transfer ordering */
490                         for (i = 0; i < len; i++)
491                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
492                 } else if (cacheless_copy) {
493                         cacheless_memcpy(sge->vaddr, data, len);
494                 } else {
495                         memcpy(sge->vaddr, data, len);
496                 }
497                 rvt_update_sge(ss, len, release);
498                 data += len;
499                 length -= len;
500         }
501
502         if (copy_last) {
503                 copy_last = false;
504                 in_last = true;
505                 length = 8;
506                 goto again;
507         }
508 }
509
510 /*
511  * Make sure the QP is ready and able to accept the given opcode.
512  */
513 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
514 {
515         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
516                 return NULL;
517         if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
518              packet->qp->allowed_ops) ||
519             (packet->opcode == IB_OPCODE_CNP))
520                 return opcode_handler_tbl[packet->opcode];
521
522         return NULL;
523 }
524
525 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
526 {
527 #ifdef CONFIG_FAULT_INJECTION
528         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
529                 /*
530                  * In order to drop non-IB traffic we
531                  * set PbcInsertHrc to NONE (0x2).
532                  * The packet will still be delivered
533                  * to the receiving node but a
534                  * KHdrHCRCErr (KDETH packet with a bad
535                  * HCRC) will be triggered and the
536                  * packet will not be delivered to the
537                  * correct context.
538                  */
539                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
540         else
541                 /*
542                  * In order to drop regular verbs
543                  * traffic we set the PbcTestEbp
544                  * flag. The packet will still be
545                  * delivered to the receiving node but
546                  * a 'late ebp error' will be
547                  * triggered and will be dropped.
548                  */
549                 pbc |= PBC_TEST_EBP;
550 #endif
551         return pbc;
552 }
553
554 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
555 {
556         struct hfi1_ctxtdata *rcd = packet->rcd;
557         struct hfi1_pportdata *ppd = rcd->ppd;
558         struct hfi1_16b_header *hdr = packet->hdr;
559         u16 pkey;
560
561         /* Pkey check needed only for bypass packets */
562         if (packet->etype != RHF_RCV_TYPE_BYPASS)
563                 return 0;
564
565         /* Perform pkey check */
566         pkey = hfi1_16B_get_pkey(hdr);
567         return ingress_pkey_check(ppd, pkey, packet->sc,
568                                   packet->qp->s_pkey_index,
569                                   packet->slid, true);
570 }
571
572 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
573                                       bool is_mcast)
574 {
575         u32 qp_num;
576         struct hfi1_ctxtdata *rcd = packet->rcd;
577         struct hfi1_pportdata *ppd = rcd->ppd;
578         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
579         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
580         opcode_handler packet_handler;
581         unsigned long flags;
582
583         inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
584
585         if (unlikely(is_mcast)) {
586                 struct rvt_mcast *mcast;
587                 struct rvt_mcast_qp *p;
588
589                 if (!packet->grh)
590                         goto drop;
591                 mcast = rvt_mcast_find(&ibp->rvp,
592                                        &packet->grh->dgid,
593                                        opa_get_lid(packet->dlid, 9B));
594                 if (!mcast)
595                         goto drop;
596                 rcu_read_lock();
597                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
598                         packet->qp = p->qp;
599                         if (hfi1_do_pkey_check(packet))
600                                 goto unlock_drop;
601                         spin_lock_irqsave(&packet->qp->r_lock, flags);
602                         packet_handler = qp_ok(packet);
603                         if (likely(packet_handler))
604                                 packet_handler(packet);
605                         else
606                                 ibp->rvp.n_pkt_drops++;
607                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
608                 }
609                 rcu_read_unlock();
610                 /*
611                  * Notify rvt_multicast_detach() if it is waiting for us
612                  * to finish.
613                  */
614                 if (atomic_dec_return(&mcast->refcount) <= 1)
615                         wake_up(&mcast->wait);
616         } else {
617                 /* Get the destination QP number. */
618                 qp_num = ib_bth_get_qpn(packet->ohdr);
619                 rcu_read_lock();
620                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
621                 if (!packet->qp)
622                         goto unlock_drop;
623
624                 if (hfi1_do_pkey_check(packet))
625                         goto unlock_drop;
626
627                 if (unlikely(hfi1_dbg_fault_opcode(packet->qp, packet->opcode,
628                                                    true)))
629                         goto unlock_drop;
630
631                 spin_lock_irqsave(&packet->qp->r_lock, flags);
632                 packet_handler = qp_ok(packet);
633                 if (likely(packet_handler))
634                         packet_handler(packet);
635                 else
636                         ibp->rvp.n_pkt_drops++;
637                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
638                 rcu_read_unlock();
639         }
640         return;
641 unlock_drop:
642         rcu_read_unlock();
643 drop:
644         ibp->rvp.n_pkt_drops++;
645 }
646
647 /**
648  * hfi1_ib_rcv - process an incoming packet
649  * @packet: data packet information
650  *
651  * This is called to process an incoming packet at interrupt level.
652  */
653 void hfi1_ib_rcv(struct hfi1_packet *packet)
654 {
655         struct hfi1_ctxtdata *rcd = packet->rcd;
656
657         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
658         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
659 }
660
661 void hfi1_16B_rcv(struct hfi1_packet *packet)
662 {
663         struct hfi1_ctxtdata *rcd = packet->rcd;
664
665         trace_input_ibhdr(rcd->dd, packet, false);
666         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
667 }
668
669 /*
670  * This is called from a timer to check for QPs
671  * which need kernel memory in order to send a packet.
672  */
673 static void mem_timer(unsigned long data)
674 {
675         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
676         struct list_head *list = &dev->memwait;
677         struct rvt_qp *qp = NULL;
678         struct iowait *wait;
679         unsigned long flags;
680         struct hfi1_qp_priv *priv;
681
682         write_seqlock_irqsave(&dev->iowait_lock, flags);
683         if (!list_empty(list)) {
684                 wait = list_first_entry(list, struct iowait, list);
685                 qp = iowait_to_qp(wait);
686                 priv = qp->priv;
687                 list_del_init(&priv->s_iowait.list);
688                 priv->s_iowait.lock = NULL;
689                 /* refcount held until actual wake up */
690                 if (!list_empty(list))
691                         mod_timer(&dev->mem_timer, jiffies + 1);
692         }
693         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
694
695         if (qp)
696                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
697 }
698
699 /*
700  * This is called with progress side lock held.
701  */
702 /* New API */
703 static void verbs_sdma_complete(
704         struct sdma_txreq *cookie,
705         int status)
706 {
707         struct verbs_txreq *tx =
708                 container_of(cookie, struct verbs_txreq, txreq);
709         struct rvt_qp *qp = tx->qp;
710
711         spin_lock(&qp->s_lock);
712         if (tx->wqe) {
713                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
714         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
715                 struct hfi1_opa_header *hdr;
716
717                 hdr = &tx->phdr.hdr;
718                 hfi1_rc_send_complete(qp, hdr);
719         }
720         spin_unlock(&qp->s_lock);
721
722         hfi1_put_txreq(tx);
723 }
724
725 static int wait_kmem(struct hfi1_ibdev *dev,
726                      struct rvt_qp *qp,
727                      struct hfi1_pkt_state *ps)
728 {
729         struct hfi1_qp_priv *priv = qp->priv;
730         unsigned long flags;
731         int ret = 0;
732
733         spin_lock_irqsave(&qp->s_lock, flags);
734         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
735                 write_seqlock(&dev->iowait_lock);
736                 list_add_tail(&ps->s_txreq->txreq.list,
737                               &priv->s_iowait.tx_head);
738                 if (list_empty(&priv->s_iowait.list)) {
739                         if (list_empty(&dev->memwait))
740                                 mod_timer(&dev->mem_timer, jiffies + 1);
741                         qp->s_flags |= RVT_S_WAIT_KMEM;
742                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
743                         priv->s_iowait.lock = &dev->iowait_lock;
744                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
745                         rvt_get_qp(qp);
746                 }
747                 write_sequnlock(&dev->iowait_lock);
748                 qp->s_flags &= ~RVT_S_BUSY;
749                 ret = -EBUSY;
750         }
751         spin_unlock_irqrestore(&qp->s_lock, flags);
752
753         return ret;
754 }
755
756 /*
757  * This routine calls txadds for each sg entry.
758  *
759  * Add failures will revert the sge cursor
760  */
761 static noinline int build_verbs_ulp_payload(
762         struct sdma_engine *sde,
763         u32 length,
764         struct verbs_txreq *tx)
765 {
766         struct rvt_sge_state *ss = tx->ss;
767         struct rvt_sge *sg_list = ss->sg_list;
768         struct rvt_sge sge = ss->sge;
769         u8 num_sge = ss->num_sge;
770         u32 len;
771         int ret = 0;
772
773         while (length) {
774                 len = ss->sge.length;
775                 if (len > length)
776                         len = length;
777                 if (len > ss->sge.sge_length)
778                         len = ss->sge.sge_length;
779                 WARN_ON_ONCE(len == 0);
780                 ret = sdma_txadd_kvaddr(
781                         sde->dd,
782                         &tx->txreq,
783                         ss->sge.vaddr,
784                         len);
785                 if (ret)
786                         goto bail_txadd;
787                 rvt_update_sge(ss, len, false);
788                 length -= len;
789         }
790         return ret;
791 bail_txadd:
792         /* unwind cursor */
793         ss->sge = sge;
794         ss->num_sge = num_sge;
795         ss->sg_list = sg_list;
796         return ret;
797 }
798
799 /*
800  * Build the number of DMA descriptors needed to send length bytes of data.
801  *
802  * NOTE: DMA mapping is held in the tx until completed in the ring or
803  *       the tx desc is freed without having been submitted to the ring
804  *
805  * This routine ensures all the helper routine calls succeed.
806  */
807 /* New API */
808 static int build_verbs_tx_desc(
809         struct sdma_engine *sde,
810         u32 length,
811         struct verbs_txreq *tx,
812         struct hfi1_ahg_info *ahg_info,
813         u64 pbc)
814 {
815         int ret = 0;
816         struct hfi1_sdma_header *phdr = &tx->phdr;
817         u16 hdrbytes = tx->hdr_dwords << 2;
818         u32 *hdr;
819         u8 extra_bytes = 0;
820         static char trail_buf[12]; /* CRC = 4, LT = 1, Pad = 0 to 7 bytes */
821
822         if (tx->phdr.hdr.hdr_type) {
823                 /*
824                  * hdrbytes accounts for PBC. Need to subtract 8 bytes
825                  * before calculating padding.
826                  */
827                 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
828                               (SIZE_OF_CRC << 2) + SIZE_OF_LT;
829                 hdr = (u32 *)&phdr->hdr.opah;
830         } else {
831                 hdr = (u32 *)&phdr->hdr.ibh;
832         }
833         if (!ahg_info->ahgcount) {
834                 ret = sdma_txinit_ahg(
835                         &tx->txreq,
836                         ahg_info->tx_flags,
837                         hdrbytes + length +
838                         extra_bytes,
839                         ahg_info->ahgidx,
840                         0,
841                         NULL,
842                         0,
843                         verbs_sdma_complete);
844                 if (ret)
845                         goto bail_txadd;
846                 phdr->pbc = cpu_to_le64(pbc);
847                 ret = sdma_txadd_kvaddr(
848                         sde->dd,
849                         &tx->txreq,
850                         phdr,
851                         hdrbytes);
852                 if (ret)
853                         goto bail_txadd;
854         } else {
855                 ret = sdma_txinit_ahg(
856                         &tx->txreq,
857                         ahg_info->tx_flags,
858                         length,
859                         ahg_info->ahgidx,
860                         ahg_info->ahgcount,
861                         ahg_info->ahgdesc,
862                         hdrbytes,
863                         verbs_sdma_complete);
864                 if (ret)
865                         goto bail_txadd;
866         }
867         /* add the ulp payload - if any. tx->ss can be NULL for acks */
868         if (tx->ss) {
869                 ret = build_verbs_ulp_payload(sde, length, tx);
870                 if (ret)
871                         goto bail_txadd;
872         }
873
874         /* add icrc, lt byte, and padding to flit */
875         if (extra_bytes != 0)
876                 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
877                                         trail_buf, extra_bytes);
878
879 bail_txadd:
880         return ret;
881 }
882
883 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
884                         u64 pbc)
885 {
886         struct hfi1_qp_priv *priv = qp->priv;
887         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
888         u32 hdrwords = qp->s_hdrwords;
889         u32 len = ps->s_txreq->s_cur_size;
890         u32 plen;
891         struct hfi1_ibdev *dev = ps->dev;
892         struct hfi1_pportdata *ppd = ps->ppd;
893         struct verbs_txreq *tx;
894         u8 sc5 = priv->s_sc;
895         int ret;
896         u32 dwords;
897         bool bypass = false;
898
899         if (ps->s_txreq->phdr.hdr.hdr_type) {
900                 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
901
902                 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
903                           SIZE_OF_LT) >> 2;
904                 bypass = true;
905         } else {
906                 dwords = (len + 3) >> 2;
907         }
908         plen = hdrwords + dwords + 2;
909
910         tx = ps->s_txreq;
911         if (!sdma_txreq_built(&tx->txreq)) {
912                 if (likely(pbc == 0)) {
913                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
914
915                         /* No vl15 here */
916                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
917                         if (ps->s_txreq->phdr.hdr.hdr_type)
918                                 pbc |= PBC_PACKET_BYPASS |
919                                        PBC_INSERT_BYPASS_ICRC;
920                         else
921                                 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
922
923                         if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode,
924                                                            false)))
925                                 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
926                         pbc = create_pbc(ppd,
927                                          pbc,
928                                          qp->srate_mbps,
929                                          vl,
930                                          plen);
931                 }
932                 tx->wqe = qp->s_wqe;
933                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
934                 if (unlikely(ret))
935                         goto bail_build;
936         }
937         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq,
938                                ps->pkts_sent);
939         if (unlikely(ret < 0)) {
940                 if (ret == -ECOMM)
941                         goto bail_ecomm;
942                 return ret;
943         }
944         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
945                                 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
946         return ret;
947
948 bail_ecomm:
949         /* The current one got "sent" */
950         return 0;
951 bail_build:
952         ret = wait_kmem(dev, qp, ps);
953         if (!ret) {
954                 /* free txreq - bad state */
955                 hfi1_put_txreq(ps->s_txreq);
956                 ps->s_txreq = NULL;
957         }
958         return ret;
959 }
960
961 /*
962  * If we are now in the error state, return zero to flush the
963  * send work request.
964  */
965 static int pio_wait(struct rvt_qp *qp,
966                     struct send_context *sc,
967                     struct hfi1_pkt_state *ps,
968                     u32 flag)
969 {
970         struct hfi1_qp_priv *priv = qp->priv;
971         struct hfi1_devdata *dd = sc->dd;
972         struct hfi1_ibdev *dev = &dd->verbs_dev;
973         unsigned long flags;
974         int ret = 0;
975
976         /*
977          * Note that as soon as want_buffer() is called and
978          * possibly before it returns, sc_piobufavail()
979          * could be called. Therefore, put QP on the I/O wait list before
980          * enabling the PIO avail interrupt.
981          */
982         spin_lock_irqsave(&qp->s_lock, flags);
983         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
984                 write_seqlock(&dev->iowait_lock);
985                 list_add_tail(&ps->s_txreq->txreq.list,
986                               &priv->s_iowait.tx_head);
987                 if (list_empty(&priv->s_iowait.list)) {
988                         struct hfi1_ibdev *dev = &dd->verbs_dev;
989                         int was_empty;
990
991                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
992                         dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
993                         qp->s_flags |= flag;
994                         was_empty = list_empty(&sc->piowait);
995                         iowait_queue(ps->pkts_sent, &priv->s_iowait,
996                                      &sc->piowait);
997                         priv->s_iowait.lock = &dev->iowait_lock;
998                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
999                         rvt_get_qp(qp);
1000                         /* counting: only call wantpiobuf_intr if first user */
1001                         if (was_empty)
1002                                 hfi1_sc_wantpiobuf_intr(sc, 1);
1003                 }
1004                 write_sequnlock(&dev->iowait_lock);
1005                 qp->s_flags &= ~RVT_S_BUSY;
1006                 ret = -EBUSY;
1007         }
1008         spin_unlock_irqrestore(&qp->s_lock, flags);
1009         return ret;
1010 }
1011
1012 static void verbs_pio_complete(void *arg, int code)
1013 {
1014         struct rvt_qp *qp = (struct rvt_qp *)arg;
1015         struct hfi1_qp_priv *priv = qp->priv;
1016
1017         if (iowait_pio_dec(&priv->s_iowait))
1018                 iowait_drain_wakeup(&priv->s_iowait);
1019 }
1020
1021 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
1022                         u64 pbc)
1023 {
1024         struct hfi1_qp_priv *priv = qp->priv;
1025         u32 hdrwords = qp->s_hdrwords;
1026         struct rvt_sge_state *ss = ps->s_txreq->ss;
1027         u32 len = ps->s_txreq->s_cur_size;
1028         u32 dwords;
1029         u32 plen;
1030         struct hfi1_pportdata *ppd = ps->ppd;
1031         u32 *hdr;
1032         u8 sc5;
1033         unsigned long flags = 0;
1034         struct send_context *sc;
1035         struct pio_buf *pbuf;
1036         int wc_status = IB_WC_SUCCESS;
1037         int ret = 0;
1038         pio_release_cb cb = NULL;
1039         u32 lrh0_16b;
1040         bool bypass = false;
1041         u8 extra_bytes = 0;
1042
1043         if (ps->s_txreq->phdr.hdr.hdr_type) {
1044                 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1045
1046                 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1047                 dwords = (len + extra_bytes) >> 2;
1048                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1049                 lrh0_16b = ps->s_txreq->phdr.hdr.opah.lrh[0];
1050                 bypass = true;
1051         } else {
1052                 dwords = (len + 3) >> 2;
1053                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1054         }
1055         plen = hdrwords + dwords + 2;
1056
1057         /* only RC/UC use complete */
1058         switch (qp->ibqp.qp_type) {
1059         case IB_QPT_RC:
1060         case IB_QPT_UC:
1061                 cb = verbs_pio_complete;
1062                 break;
1063         default:
1064                 break;
1065         }
1066
1067         /* vl15 special case taken care of in ud.c */
1068         sc5 = priv->s_sc;
1069         sc = ps->s_txreq->psc;
1070
1071         if (likely(pbc == 0)) {
1072                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1073
1074                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1075                 if (ps->s_txreq->phdr.hdr.hdr_type)
1076                         pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1077                 else
1078                         pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1079                 if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode, false)))
1080                         pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1081                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1082         }
1083         if (cb)
1084                 iowait_pio_inc(&priv->s_iowait);
1085         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1086         if (unlikely(!pbuf)) {
1087                 if (cb)
1088                         verbs_pio_complete(qp, 0);
1089                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1090                         /*
1091                          * If we have filled the PIO buffers to capacity and are
1092                          * not in an active state this request is not going to
1093                          * go out to so just complete it with an error or else a
1094                          * ULP or the core may be stuck waiting.
1095                          */
1096                         hfi1_cdbg(
1097                                 PIO,
1098                                 "alloc failed. state not active, completing");
1099                         wc_status = IB_WC_GENERAL_ERR;
1100                         goto pio_bail;
1101                 } else {
1102                         /*
1103                          * This is a normal occurrence. The PIO buffs are full
1104                          * up but we are still happily sending, well we could be
1105                          * so lets continue to queue the request.
1106                          */
1107                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1108                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1109                         if (!ret)
1110                                 /* txreq not queued - free */
1111                                 goto bail;
1112                         /* tx consumed in wait */
1113                         return ret;
1114                 }
1115         }
1116
1117         if (dwords == 0) {
1118                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1119         } else {
1120                 seg_pio_copy_start(pbuf, pbc,
1121                                    hdr, hdrwords * 4);
1122                 if (ss) {
1123                         while (len) {
1124                                 void *addr = ss->sge.vaddr;
1125                                 u32 slen = ss->sge.length;
1126
1127                                 if (slen > len)
1128                                         slen = len;
1129                                 if (slen > ss->sge.sge_length)
1130                                         slen = ss->sge.sge_length;
1131                                 rvt_update_sge(ss, slen, false);
1132                                 seg_pio_copy_mid(pbuf, addr, slen);
1133                                 len -= slen;
1134                         }
1135                 }
1136                 /*
1137                  * Bypass packet will need to copy additional
1138                  * bytes to accommodate for CRC and LT bytes
1139                  */
1140                 if (extra_bytes) {
1141                         u8 *empty_buf;
1142
1143                         empty_buf = kcalloc(extra_bytes, sizeof(u8),
1144                                             GFP_KERNEL);
1145                         seg_pio_copy_mid(pbuf, empty_buf, extra_bytes);
1146                         kfree(empty_buf);
1147                 }
1148                 seg_pio_copy_end(pbuf);
1149         }
1150
1151         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1152                                &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1153
1154 pio_bail:
1155         if (qp->s_wqe) {
1156                 spin_lock_irqsave(&qp->s_lock, flags);
1157                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1158                 spin_unlock_irqrestore(&qp->s_lock, flags);
1159         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1160                 spin_lock_irqsave(&qp->s_lock, flags);
1161                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1162                 spin_unlock_irqrestore(&qp->s_lock, flags);
1163         }
1164
1165         ret = 0;
1166
1167 bail:
1168         hfi1_put_txreq(ps->s_txreq);
1169         return ret;
1170 }
1171
1172 /*
1173  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1174  * being an entry from the partition key table), return 0
1175  * otherwise. Use the matching criteria for egress partition keys
1176  * specified in the OPAv1 spec., section 9.1l.7.
1177  */
1178 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1179 {
1180         u16 mkey = pkey & PKEY_LOW_15_MASK;
1181         u16 mentry = ent & PKEY_LOW_15_MASK;
1182
1183         if (mkey == mentry) {
1184                 /*
1185                  * If pkey[15] is set (full partition member),
1186                  * is bit 15 in the corresponding table element
1187                  * clear (limited member)?
1188                  */
1189                 if (pkey & PKEY_MEMBER_MASK)
1190                         return !!(ent & PKEY_MEMBER_MASK);
1191                 return 1;
1192         }
1193         return 0;
1194 }
1195
1196 /**
1197  * egress_pkey_check - check P_KEY of a packet
1198  * @ppd:  Physical IB port data
1199  * @slid: SLID for packet
1200  * @bkey: PKEY for header
1201  * @sc5:  SC for packet
1202  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1203  * only. If it is negative value, then it means user contexts is calling this
1204  * function.
1205  *
1206  * It checks if hdr's pkey is valid.
1207  *
1208  * Return: 0 on success, otherwise, 1
1209  */
1210 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1211                       u8 sc5, int8_t s_pkey_index)
1212 {
1213         struct hfi1_devdata *dd;
1214         int i;
1215         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1216
1217         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1218                 return 0;
1219
1220         /* If SC15, pkey[0:14] must be 0x7fff */
1221         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1222                 goto bad;
1223
1224         /* Is the pkey = 0x0, or 0x8000? */
1225         if ((pkey & PKEY_LOW_15_MASK) == 0)
1226                 goto bad;
1227
1228         /*
1229          * For the kernel contexts only, if a qp is passed into the function,
1230          * the most likely matching pkey has index qp->s_pkey_index
1231          */
1232         if (!is_user_ctxt_mechanism &&
1233             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1234                 return 0;
1235         }
1236
1237         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1238                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1239                         return 0;
1240         }
1241 bad:
1242         /*
1243          * For the user-context mechanism, the P_KEY check would only happen
1244          * once per SDMA request, not once per packet.  Therefore, there's no
1245          * need to increment the counter for the user-context mechanism.
1246          */
1247         if (!is_user_ctxt_mechanism) {
1248                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1249                 dd = ppd->dd;
1250                 if (!(dd->err_info_xmit_constraint.status &
1251                       OPA_EI_STATUS_SMASK)) {
1252                         dd->err_info_xmit_constraint.status |=
1253                                 OPA_EI_STATUS_SMASK;
1254                         dd->err_info_xmit_constraint.slid = slid;
1255                         dd->err_info_xmit_constraint.pkey = pkey;
1256                 }
1257         }
1258         return 1;
1259 }
1260
1261 /**
1262  * get_send_routine - choose an egress routine
1263  *
1264  * Choose an egress routine based on QP type
1265  * and size
1266  */
1267 static inline send_routine get_send_routine(struct rvt_qp *qp,
1268                                             struct hfi1_pkt_state *ps)
1269 {
1270         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1271         struct hfi1_qp_priv *priv = qp->priv;
1272         struct verbs_txreq *tx = ps->s_txreq;
1273
1274         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1275                 return dd->process_pio_send;
1276         switch (qp->ibqp.qp_type) {
1277         case IB_QPT_SMI:
1278                 return dd->process_pio_send;
1279         case IB_QPT_GSI:
1280         case IB_QPT_UD:
1281                 break;
1282         case IB_QPT_UC:
1283         case IB_QPT_RC: {
1284                 if (piothreshold &&
1285                     tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1286                     (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1287                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1288                     !sdma_txreq_built(&tx->txreq))
1289                         return dd->process_pio_send;
1290                 break;
1291         }
1292         default:
1293                 break;
1294         }
1295         return dd->process_dma_send;
1296 }
1297
1298 /**
1299  * hfi1_verbs_send - send a packet
1300  * @qp: the QP to send on
1301  * @ps: the state of the packet to send
1302  *
1303  * Return zero if packet is sent or queued OK.
1304  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1305  */
1306 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1307 {
1308         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1309         struct hfi1_qp_priv *priv = qp->priv;
1310         struct ib_other_headers *ohdr;
1311         send_routine sr;
1312         int ret;
1313         u16 pkey;
1314         u32 slid;
1315
1316         /* locate the pkey within the headers */
1317         if (ps->s_txreq->phdr.hdr.hdr_type) {
1318                 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1319                 u8 l4 = hfi1_16B_get_l4(hdr);
1320
1321                 if (l4 == OPA_16B_L4_IB_GLOBAL)
1322                         ohdr = &hdr->u.l.oth;
1323                 else
1324                         ohdr = &hdr->u.oth;
1325                 slid = hfi1_16B_get_slid(hdr);
1326                 pkey = hfi1_16B_get_pkey(hdr);
1327         } else {
1328                 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1329                 u8 lnh = ib_get_lnh(hdr);
1330
1331                 if (lnh == HFI1_LRH_GRH)
1332                         ohdr = &hdr->u.l.oth;
1333                 else
1334                         ohdr = &hdr->u.oth;
1335                 slid = ib_get_slid(hdr);
1336                 pkey = ib_bth_get_pkey(ohdr);
1337         }
1338
1339         ps->opcode = ib_bth_get_opcode(ohdr);
1340         sr = get_send_routine(qp, ps);
1341         ret = egress_pkey_check(dd->pport, slid, pkey,
1342                                 priv->s_sc, qp->s_pkey_index);
1343         if (unlikely(ret)) {
1344                 /*
1345                  * The value we are returning here does not get propagated to
1346                  * the verbs caller. Thus we need to complete the request with
1347                  * error otherwise the caller could be sitting waiting on the
1348                  * completion event. Only do this for PIO. SDMA has its own
1349                  * mechanism for handling the errors. So for SDMA we can just
1350                  * return.
1351                  */
1352                 if (sr == dd->process_pio_send) {
1353                         unsigned long flags;
1354
1355                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1356                                   __func__);
1357                         spin_lock_irqsave(&qp->s_lock, flags);
1358                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1359                         spin_unlock_irqrestore(&qp->s_lock, flags);
1360                 }
1361                 return -EINVAL;
1362         }
1363         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1364                 return pio_wait(qp,
1365                                 ps->s_txreq->psc,
1366                                 ps,
1367                                 RVT_S_WAIT_PIO_DRAIN);
1368         return sr(qp, ps, 0);
1369 }
1370
1371 /**
1372  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1373  * @dd: the device data structure
1374  */
1375 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1376 {
1377         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1378         u32 ver = dd->dc8051_ver;
1379
1380         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1381
1382         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1383                 ((u64)(dc8051_ver_min(ver)) << 16) |
1384                 (u64)dc8051_ver_patch(ver);
1385
1386         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1387                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1388                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1389                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1390                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1391                         IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1392         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1393         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1394         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1395         rdi->dparms.props.hw_ver = dd->minrev;
1396         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1397         rdi->dparms.props.max_mr_size = U64_MAX;
1398         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1399         rdi->dparms.props.max_qp = hfi1_max_qps;
1400         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1401         rdi->dparms.props.max_sge = hfi1_max_sges;
1402         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1403         rdi->dparms.props.max_cq = hfi1_max_cqs;
1404         rdi->dparms.props.max_ah = hfi1_max_ahs;
1405         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1406         rdi->dparms.props.max_map_per_fmr = 32767;
1407         rdi->dparms.props.max_pd = hfi1_max_pds;
1408         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1409         rdi->dparms.props.max_qp_init_rd_atom = 255;
1410         rdi->dparms.props.max_srq = hfi1_max_srqs;
1411         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1412         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1413         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1414         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1415         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1416         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1417         rdi->dparms.props.max_total_mcast_qp_attach =
1418                                         rdi->dparms.props.max_mcast_qp_attach *
1419                                         rdi->dparms.props.max_mcast_grp;
1420 }
1421
1422 static inline u16 opa_speed_to_ib(u16 in)
1423 {
1424         u16 out = 0;
1425
1426         if (in & OPA_LINK_SPEED_25G)
1427                 out |= IB_SPEED_EDR;
1428         if (in & OPA_LINK_SPEED_12_5G)
1429                 out |= IB_SPEED_FDR;
1430
1431         return out;
1432 }
1433
1434 /*
1435  * Convert a single OPA link width (no multiple flags) to an IB value.
1436  * A zero OPA link width means link down, which means the IB width value
1437  * is a don't care.
1438  */
1439 static inline u16 opa_width_to_ib(u16 in)
1440 {
1441         switch (in) {
1442         case OPA_LINK_WIDTH_1X:
1443         /* map 2x and 3x to 1x as they don't exist in IB */
1444         case OPA_LINK_WIDTH_2X:
1445         case OPA_LINK_WIDTH_3X:
1446                 return IB_WIDTH_1X;
1447         default: /* link down or unknown, return our largest width */
1448         case OPA_LINK_WIDTH_4X:
1449                 return IB_WIDTH_4X;
1450         }
1451 }
1452
1453 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1454                       struct ib_port_attr *props)
1455 {
1456         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1457         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1458         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1459         u32 lid = ppd->lid;
1460
1461         /* props being zeroed by the caller, avoid zeroing it here */
1462         props->lid = lid ? lid : 0;
1463         props->lmc = ppd->lmc;
1464         /* OPA logical states match IB logical states */
1465         props->state = driver_lstate(ppd);
1466         props->phys_state = driver_pstate(ppd);
1467         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1468         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1469         /* see rate_show() in ib core/sysfs.c */
1470         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1471         props->max_vl_num = ppd->vls_supported;
1472
1473         /* Once we are a "first class" citizen and have added the OPA MTUs to
1474          * the core we can advertise the larger MTU enum to the ULPs, for now
1475          * advertise only 4K.
1476          *
1477          * Those applications which are either OPA aware or pass the MTU enum
1478          * from the Path Records to us will get the new 8k MTU.  Those that
1479          * attempt to process the MTU enum may fail in various ways.
1480          */
1481         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1482                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1483         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1484                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1485
1486         /*
1487          * sm_lid of 0xFFFF needs special handling so that it can
1488          * be differentiated from a permissve LID of 0xFFFF.
1489          * We set the grh_required flag here so the SA can program
1490          * the DGID in the address handle appropriately
1491          */
1492         if (props->sm_lid == be16_to_cpu(IB_LID_PERMISSIVE))
1493                 props->grh_required = true;
1494
1495         return 0;
1496 }
1497
1498 static int modify_device(struct ib_device *device,
1499                          int device_modify_mask,
1500                          struct ib_device_modify *device_modify)
1501 {
1502         struct hfi1_devdata *dd = dd_from_ibdev(device);
1503         unsigned i;
1504         int ret;
1505
1506         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1507                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1508                 ret = -EOPNOTSUPP;
1509                 goto bail;
1510         }
1511
1512         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1513                 memcpy(device->node_desc, device_modify->node_desc,
1514                        IB_DEVICE_NODE_DESC_MAX);
1515                 for (i = 0; i < dd->num_pports; i++) {
1516                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1517
1518                         hfi1_node_desc_chg(ibp);
1519                 }
1520         }
1521
1522         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1523                 ib_hfi1_sys_image_guid =
1524                         cpu_to_be64(device_modify->sys_image_guid);
1525                 for (i = 0; i < dd->num_pports; i++) {
1526                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1527
1528                         hfi1_sys_guid_chg(ibp);
1529                 }
1530         }
1531
1532         ret = 0;
1533
1534 bail:
1535         return ret;
1536 }
1537
1538 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1539 {
1540         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1541         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1542         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1543         int ret;
1544
1545         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1546                              OPA_LINKDOWN_REASON_UNKNOWN);
1547         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1548         return ret;
1549 }
1550
1551 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1552                             int guid_index, __be64 *guid)
1553 {
1554         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1555
1556         if (guid_index >= HFI1_GUIDS_PER_PORT)
1557                 return -EINVAL;
1558
1559         *guid = get_sguid(ibp, guid_index);
1560         return 0;
1561 }
1562
1563 /*
1564  * convert ah port,sl to sc
1565  */
1566 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1567 {
1568         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1569
1570         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1571 }
1572
1573 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1574 {
1575         struct hfi1_ibport *ibp;
1576         struct hfi1_pportdata *ppd;
1577         struct hfi1_devdata *dd;
1578         u8 sc5;
1579         u8 sl;
1580
1581         if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1582             !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1583                 return -EINVAL;
1584
1585         /* test the mapping for validity */
1586         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1587         ppd = ppd_from_ibp(ibp);
1588         dd = dd_from_ppd(ppd);
1589
1590         sl = rdma_ah_get_sl(ah_attr);
1591         if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1592                 return -EINVAL;
1593         sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1594
1595         sc5 = ibp->sl_to_sc[sl];
1596         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1597                 return -EINVAL;
1598         return 0;
1599 }
1600
1601 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1602                                struct rdma_ah_attr *ah_attr,
1603                                struct rvt_ah *ah)
1604 {
1605         struct hfi1_ibport *ibp;
1606         struct hfi1_pportdata *ppd;
1607         struct hfi1_devdata *dd;
1608         u8 sc5;
1609         struct rdma_ah_attr *attr = &ah->attr;
1610
1611         /*
1612          * Do not trust reading anything from rvt_ah at this point as it is not
1613          * done being setup. We can however modify things which we need to set.
1614          */
1615
1616         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1617         ppd = ppd_from_ibp(ibp);
1618         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1619         hfi1_update_ah_attr(ibdev, attr);
1620         hfi1_make_opa_lid(attr);
1621         dd = dd_from_ppd(ppd);
1622         ah->vl = sc_to_vlt(dd, sc5);
1623         if (ah->vl < num_vls || ah->vl == 15)
1624                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1625 }
1626
1627 /**
1628  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1629  * @dd: the hfi1_ib device
1630  */
1631 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1632 {
1633         return ARRAY_SIZE(dd->pport[0].pkeys);
1634 }
1635
1636 static void init_ibport(struct hfi1_pportdata *ppd)
1637 {
1638         struct hfi1_ibport *ibp = &ppd->ibport_data;
1639         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1640         int i;
1641
1642         for (i = 0; i < sz; i++) {
1643                 ibp->sl_to_sc[i] = i;
1644                 ibp->sc_to_sl[i] = i;
1645         }
1646
1647         for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1648                 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1649         setup_timer(&ibp->rvp.trap_timer, hfi1_handle_trap_timer,
1650                     (unsigned long)ibp);
1651
1652         spin_lock_init(&ibp->rvp.lock);
1653         /* Set the prefix to the default value (see ch. 4.1.1) */
1654         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1655         ibp->rvp.sm_lid = 0;
1656         /*
1657          * Below should only set bits defined in OPA PortInfo.CapabilityMask
1658          * and PortInfo.CapabilityMask3
1659          */
1660         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1661                 IB_PORT_CAP_MASK_NOTICE_SUP;
1662         ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1663         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1664         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1665         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1666         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1667         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1668
1669         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1670         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1671 }
1672
1673 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1674 {
1675         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1676         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1677         u32 ver = dd_from_dev(dev)->dc8051_ver;
1678
1679         snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1680                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1681 }
1682
1683 static const char * const driver_cntr_names[] = {
1684         /* must be element 0*/
1685         "DRIVER_KernIntr",
1686         "DRIVER_ErrorIntr",
1687         "DRIVER_Tx_Errs",
1688         "DRIVER_Rcv_Errs",
1689         "DRIVER_HW_Errs",
1690         "DRIVER_NoPIOBufs",
1691         "DRIVER_CtxtsOpen",
1692         "DRIVER_RcvLen_Errs",
1693         "DRIVER_EgrBufFull",
1694         "DRIVER_EgrHdrFull"
1695 };
1696
1697 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1698 static const char **dev_cntr_names;
1699 static const char **port_cntr_names;
1700 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1701 static int num_dev_cntrs;
1702 static int num_port_cntrs;
1703 static int cntr_names_initialized;
1704
1705 /*
1706  * Convert a list of names separated by '\n' into an array of NULL terminated
1707  * strings. Optionally some entries can be reserved in the array to hold extra
1708  * external strings.
1709  */
1710 static int init_cntr_names(const char *names_in,
1711                            const size_t names_len,
1712                            int num_extra_names,
1713                            int *num_cntrs,
1714                            const char ***cntr_names)
1715 {
1716         char *names_out, *p, **q;
1717         int i, n;
1718
1719         n = 0;
1720         for (i = 0; i < names_len; i++)
1721                 if (names_in[i] == '\n')
1722                         n++;
1723
1724         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1725                             GFP_KERNEL);
1726         if (!names_out) {
1727                 *num_cntrs = 0;
1728                 *cntr_names = NULL;
1729                 return -ENOMEM;
1730         }
1731
1732         p = names_out + (n + num_extra_names) * sizeof(char *);
1733         memcpy(p, names_in, names_len);
1734
1735         q = (char **)names_out;
1736         for (i = 0; i < n; i++) {
1737                 q[i] = p;
1738                 p = strchr(p, '\n');
1739                 *p++ = '\0';
1740         }
1741
1742         *num_cntrs = n;
1743         *cntr_names = (const char **)names_out;
1744         return 0;
1745 }
1746
1747 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1748                                             u8 port_num)
1749 {
1750         int i, err;
1751
1752         mutex_lock(&cntr_names_lock);
1753         if (!cntr_names_initialized) {
1754                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1755
1756                 err = init_cntr_names(dd->cntrnames,
1757                                       dd->cntrnameslen,
1758                                       num_driver_cntrs,
1759                                       &num_dev_cntrs,
1760                                       &dev_cntr_names);
1761                 if (err) {
1762                         mutex_unlock(&cntr_names_lock);
1763                         return NULL;
1764                 }
1765
1766                 for (i = 0; i < num_driver_cntrs; i++)
1767                         dev_cntr_names[num_dev_cntrs + i] =
1768                                 driver_cntr_names[i];
1769
1770                 err = init_cntr_names(dd->portcntrnames,
1771                                       dd->portcntrnameslen,
1772                                       0,
1773                                       &num_port_cntrs,
1774                                       &port_cntr_names);
1775                 if (err) {
1776                         kfree(dev_cntr_names);
1777                         dev_cntr_names = NULL;
1778                         mutex_unlock(&cntr_names_lock);
1779                         return NULL;
1780                 }
1781                 cntr_names_initialized = 1;
1782         }
1783         mutex_unlock(&cntr_names_lock);
1784
1785         if (!port_num)
1786                 return rdma_alloc_hw_stats_struct(
1787                                 dev_cntr_names,
1788                                 num_dev_cntrs + num_driver_cntrs,
1789                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1790         else
1791                 return rdma_alloc_hw_stats_struct(
1792                                 port_cntr_names,
1793                                 num_port_cntrs,
1794                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1795 }
1796
1797 static u64 hfi1_sps_ints(void)
1798 {
1799         unsigned long flags;
1800         struct hfi1_devdata *dd;
1801         u64 sps_ints = 0;
1802
1803         spin_lock_irqsave(&hfi1_devs_lock, flags);
1804         list_for_each_entry(dd, &hfi1_dev_list, list) {
1805                 sps_ints += get_all_cpu_total(dd->int_counter);
1806         }
1807         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1808         return sps_ints;
1809 }
1810
1811 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1812                         u8 port, int index)
1813 {
1814         u64 *values;
1815         int count;
1816
1817         if (!port) {
1818                 u64 *stats = (u64 *)&hfi1_stats;
1819                 int i;
1820
1821                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1822                 values[num_dev_cntrs] = hfi1_sps_ints();
1823                 for (i = 1; i < num_driver_cntrs; i++)
1824                         values[num_dev_cntrs + i] = stats[i];
1825                 count = num_dev_cntrs + num_driver_cntrs;
1826         } else {
1827                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1828
1829                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1830                 count = num_port_cntrs;
1831         }
1832
1833         memcpy(stats->value, values, count * sizeof(u64));
1834         return count;
1835 }
1836
1837 /**
1838  * hfi1_register_ib_device - register our device with the infiniband core
1839  * @dd: the device data structure
1840  * Return 0 if successful, errno if unsuccessful.
1841  */
1842 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1843 {
1844         struct hfi1_ibdev *dev = &dd->verbs_dev;
1845         struct ib_device *ibdev = &dev->rdi.ibdev;
1846         struct hfi1_pportdata *ppd = dd->pport;
1847         struct hfi1_ibport *ibp = &ppd->ibport_data;
1848         unsigned i;
1849         int ret;
1850         size_t lcpysz = IB_DEVICE_NAME_MAX;
1851
1852         for (i = 0; i < dd->num_pports; i++)
1853                 init_ibport(ppd + i);
1854
1855         /* Only need to initialize non-zero fields. */
1856
1857         setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1858
1859         seqlock_init(&dev->iowait_lock);
1860         seqlock_init(&dev->txwait_lock);
1861         INIT_LIST_HEAD(&dev->txwait);
1862         INIT_LIST_HEAD(&dev->memwait);
1863
1864         ret = verbs_txreq_init(dev);
1865         if (ret)
1866                 goto err_verbs_txreq;
1867
1868         /* Use first-port GUID as node guid */
1869         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1870
1871         /*
1872          * The system image GUID is supposed to be the same for all
1873          * HFIs in a single system but since there can be other
1874          * device types in the system, we can't be sure this is unique.
1875          */
1876         if (!ib_hfi1_sys_image_guid)
1877                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1878         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1879         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1880         ibdev->owner = THIS_MODULE;
1881         ibdev->phys_port_cnt = dd->num_pports;
1882         ibdev->dev.parent = &dd->pcidev->dev;
1883         ibdev->modify_device = modify_device;
1884         ibdev->alloc_hw_stats = alloc_hw_stats;
1885         ibdev->get_hw_stats = get_hw_stats;
1886         ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn;
1887
1888         /* keep process mad in the driver */
1889         ibdev->process_mad = hfi1_process_mad;
1890         ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1891
1892         strncpy(ibdev->node_desc, init_utsname()->nodename,
1893                 sizeof(ibdev->node_desc));
1894
1895         /*
1896          * Fill in rvt info object.
1897          */
1898         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1899         dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1900         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1901         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1902         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1903         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1904         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1905         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1906         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1907         /*
1908          * Fill in rvt info device attributes.
1909          */
1910         hfi1_fill_device_attr(dd);
1911
1912         /* queue pair */
1913         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1914         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1915         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1916         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1917         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1918         dd->verbs_dev.rdi.dparms.qpn_res_end =
1919         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1920         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1921         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1922         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1923         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1924         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1925                                                 RDMA_CORE_CAP_OPA_AH;
1926         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1927
1928         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1929         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1930         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1931         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1932         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1933         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1934         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1935         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1936         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1937         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1938         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1939         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1940         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1941         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1942         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1943         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1944         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1945         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1946         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1947
1948         /* completeion queue */
1949         snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1950                  sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1951                  "hfi1_cq%d", dd->unit);
1952         dd->verbs_dev.rdi.dparms.node = dd->node;
1953
1954         /* misc settings */
1955         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1956         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1957         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1958         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1959
1960         /* post send table */
1961         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1962
1963         ppd = dd->pport;
1964         for (i = 0; i < dd->num_pports; i++, ppd++)
1965                 rvt_init_port(&dd->verbs_dev.rdi,
1966                               &ppd->ibport_data.rvp,
1967                               i,
1968                               ppd->pkeys);
1969
1970         ret = rvt_register_device(&dd->verbs_dev.rdi);
1971         if (ret)
1972                 goto err_verbs_txreq;
1973
1974         ret = hfi1_verbs_register_sysfs(dd);
1975         if (ret)
1976                 goto err_class;
1977
1978         return ret;
1979
1980 err_class:
1981         rvt_unregister_device(&dd->verbs_dev.rdi);
1982 err_verbs_txreq:
1983         verbs_txreq_exit(dev);
1984         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1985         return ret;
1986 }
1987
1988 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1989 {
1990         struct hfi1_ibdev *dev = &dd->verbs_dev;
1991
1992         hfi1_verbs_unregister_sysfs(dd);
1993
1994         rvt_unregister_device(&dd->verbs_dev.rdi);
1995
1996         if (!list_empty(&dev->txwait))
1997                 dd_dev_err(dd, "txwait list not empty!\n");
1998         if (!list_empty(&dev->memwait))
1999                 dd_dev_err(dd, "memwait list not empty!\n");
2000
2001         del_timer_sync(&dev->mem_timer);
2002         verbs_txreq_exit(dev);
2003
2004         mutex_lock(&cntr_names_lock);
2005         kfree(dev_cntr_names);
2006         kfree(port_cntr_names);
2007         dev_cntr_names = NULL;
2008         port_cntr_names = NULL;
2009         cntr_names_initialized = 0;
2010         mutex_unlock(&cntr_names_lock);
2011 }
2012
2013 void hfi1_cnp_rcv(struct hfi1_packet *packet)
2014 {
2015         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
2016         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2017         struct ib_header *hdr = packet->hdr;
2018         struct rvt_qp *qp = packet->qp;
2019         u32 lqpn, rqpn = 0;
2020         u16 rlid = 0;
2021         u8 sl, sc5, svc_type;
2022
2023         switch (packet->qp->ibqp.qp_type) {
2024         case IB_QPT_UC:
2025                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
2026                 rqpn = qp->remote_qpn;
2027                 svc_type = IB_CC_SVCTYPE_UC;
2028                 break;
2029         case IB_QPT_RC:
2030                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
2031                 rqpn = qp->remote_qpn;
2032                 svc_type = IB_CC_SVCTYPE_RC;
2033                 break;
2034         case IB_QPT_SMI:
2035         case IB_QPT_GSI:
2036         case IB_QPT_UD:
2037                 svc_type = IB_CC_SVCTYPE_UD;
2038                 break;
2039         default:
2040                 ibp->rvp.n_pkt_drops++;
2041                 return;
2042         }
2043
2044         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2045         sl = ibp->sc_to_sl[sc5];
2046         lqpn = qp->ibqp.qp_num;
2047
2048         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2049 }