GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67 #include "fault.h"
68 #include "affinity.h"
69 #include "ipoib.h"
70
71 static unsigned int hfi1_lkey_table_size = 16;
72 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
73                    S_IRUGO);
74 MODULE_PARM_DESC(lkey_table_size,
75                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
76
77 static unsigned int hfi1_max_pds = 0xFFFF;
78 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
79 MODULE_PARM_DESC(max_pds,
80                  "Maximum number of protection domains to support");
81
82 static unsigned int hfi1_max_ahs = 0xFFFF;
83 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
84 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
85
86 unsigned int hfi1_max_cqes = 0x2FFFFF;
87 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
88 MODULE_PARM_DESC(max_cqes,
89                  "Maximum number of completion queue entries to support");
90
91 unsigned int hfi1_max_cqs = 0x1FFFF;
92 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
93 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
94
95 unsigned int hfi1_max_qp_wrs = 0x3FFF;
96 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
97 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
98
99 unsigned int hfi1_max_qps = 32768;
100 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
101 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
102
103 unsigned int hfi1_max_sges = 0x60;
104 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
105 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
106
107 unsigned int hfi1_max_mcast_grps = 16384;
108 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
109 MODULE_PARM_DESC(max_mcast_grps,
110                  "Maximum number of multicast groups to support");
111
112 unsigned int hfi1_max_mcast_qp_attached = 16;
113 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
114                    uint, S_IRUGO);
115 MODULE_PARM_DESC(max_mcast_qp_attached,
116                  "Maximum number of attached QPs to support");
117
118 unsigned int hfi1_max_srqs = 1024;
119 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
120 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
121
122 unsigned int hfi1_max_srq_sges = 128;
123 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
124 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
125
126 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
127 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
128 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
129
130 unsigned short piothreshold = 256;
131 module_param(piothreshold, ushort, S_IRUGO);
132 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
133
134 static unsigned int sge_copy_mode;
135 module_param(sge_copy_mode, uint, S_IRUGO);
136 MODULE_PARM_DESC(sge_copy_mode,
137                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
138
139 static void verbs_sdma_complete(
140         struct sdma_txreq *cookie,
141         int status);
142
143 static int pio_wait(struct rvt_qp *qp,
144                     struct send_context *sc,
145                     struct hfi1_pkt_state *ps,
146                     u32 flag);
147
148 /* Length of buffer to create verbs txreq cache name */
149 #define TXREQ_NAME_LEN 24
150
151 static uint wss_threshold = 80;
152 module_param(wss_threshold, uint, S_IRUGO);
153 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
154 static uint wss_clean_period = 256;
155 module_param(wss_clean_period, uint, S_IRUGO);
156 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
157
158 /*
159  * Translate ib_wr_opcode into ib_wc_opcode.
160  */
161 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
162         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
163         [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
164         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
165         [IB_WR_SEND] = IB_WC_SEND,
166         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
167         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
168         [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
169         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
170         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
171         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
172         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
173         [IB_WR_REG_MR] = IB_WC_REG_MR
174 };
175
176 /*
177  * Length of header by opcode, 0 --> not supported
178  */
179 const u8 hdr_len_by_opcode[256] = {
180         /* RC */
181         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
182         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
183         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
184         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
185         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
186         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
187         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
188         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
189         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
190         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
191         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
192         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
193         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
194         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
195         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
196         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
197         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
198         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
199         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
200         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
201         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
202         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
203         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
204         [IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
205         [IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
206         [IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
207         [IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
208         [IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
209         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
210         [IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
211         [IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
212         /* UC */
213         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
214         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
215         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
216         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
217         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
218         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
219         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
220         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
221         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
222         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
223         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
224         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
225         /* UD */
226         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
227         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
228 };
229
230 static const opcode_handler opcode_handler_tbl[256] = {
231         /* RC */
232         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
233         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
234         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
235         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
236         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
237         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
238         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
239         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
240         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
241         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
242         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
243         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
244         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
245         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
246         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
247         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
248         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
249         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
250         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
251         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
252         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
253         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
254         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
255
256         /* TID RDMA has separate handlers for different opcodes.*/
257         [IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
258         [IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
259         [IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
260         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
261         [IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
262         [IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
263         [IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
264         [IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
265
266         /* UC */
267         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
268         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
269         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
270         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
271         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
272         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
273         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
274         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
275         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
276         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
277         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
278         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
279         /* UD */
280         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
281         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
282         /* CNP */
283         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
284 };
285
286 #define OPMASK 0x1f
287
288 static const u32 pio_opmask[BIT(3)] = {
289         /* RC */
290         [IB_OPCODE_RC >> 5] =
291                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
292                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
293                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
294                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
295                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
296                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
297                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
298                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
299                 BIT(RC_OP(FETCH_ADD) & OPMASK),
300         /* UC */
301         [IB_OPCODE_UC >> 5] =
302                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
303                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
304                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
305                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
306 };
307
308 /*
309  * System image GUID.
310  */
311 __be64 ib_hfi1_sys_image_guid;
312
313 /*
314  * Make sure the QP is ready and able to accept the given opcode.
315  */
316 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
317 {
318         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
319                 return NULL;
320         if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
321              packet->qp->allowed_ops) ||
322             (packet->opcode == IB_OPCODE_CNP))
323                 return opcode_handler_tbl[packet->opcode];
324
325         return NULL;
326 }
327
328 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
329 {
330 #ifdef CONFIG_FAULT_INJECTION
331         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
332                 /*
333                  * In order to drop non-IB traffic we
334                  * set PbcInsertHrc to NONE (0x2).
335                  * The packet will still be delivered
336                  * to the receiving node but a
337                  * KHdrHCRCErr (KDETH packet with a bad
338                  * HCRC) will be triggered and the
339                  * packet will not be delivered to the
340                  * correct context.
341                  */
342                 pbc &= ~PBC_INSERT_HCRC_SMASK;
343                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
344         } else {
345                 /*
346                  * In order to drop regular verbs
347                  * traffic we set the PbcTestEbp
348                  * flag. The packet will still be
349                  * delivered to the receiving node but
350                  * a 'late ebp error' will be
351                  * triggered and will be dropped.
352                  */
353                 pbc |= PBC_TEST_EBP;
354         }
355 #endif
356         return pbc;
357 }
358
359 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
360 {
361         if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
362             !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
363                 return NULL;
364         if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
365                 return opcode_handler_tbl[opcode];
366         return NULL;
367 }
368
369 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
370 {
371         struct hfi1_ctxtdata *rcd = packet->rcd;
372         struct ib_header *hdr = packet->hdr;
373         u32 tlen = packet->tlen;
374         struct hfi1_pportdata *ppd = rcd->ppd;
375         struct hfi1_ibport *ibp = &ppd->ibport_data;
376         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
377         opcode_handler opcode_handler;
378         unsigned long flags;
379         u32 qp_num;
380         int lnh;
381         u8 opcode;
382
383         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
384         if (unlikely(tlen < 15 * sizeof(u32)))
385                 goto drop;
386
387         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
388         if (lnh != HFI1_LRH_BTH)
389                 goto drop;
390
391         packet->ohdr = &hdr->u.oth;
392         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
393
394         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
395         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
396
397         /* verbs_qp can be picked up from any tid_rdma header struct */
398         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
399                 RVT_QPN_MASK;
400
401         rcu_read_lock();
402         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
403         if (!packet->qp)
404                 goto drop_rcu;
405         spin_lock_irqsave(&packet->qp->r_lock, flags);
406         opcode_handler = tid_qp_ok(opcode, packet);
407         if (likely(opcode_handler))
408                 opcode_handler(packet);
409         else
410                 goto drop_unlock;
411         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
412         rcu_read_unlock();
413
414         return;
415 drop_unlock:
416         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
417 drop_rcu:
418         rcu_read_unlock();
419 drop:
420         ibp->rvp.n_pkt_drops++;
421 }
422
423 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
424 {
425         struct hfi1_ctxtdata *rcd = packet->rcd;
426         struct ib_header *hdr = packet->hdr;
427         u32 tlen = packet->tlen;
428         struct hfi1_pportdata *ppd = rcd->ppd;
429         struct hfi1_ibport *ibp = &ppd->ibport_data;
430         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
431         opcode_handler opcode_handler;
432         unsigned long flags;
433         u32 qp_num;
434         int lnh;
435         u8 opcode;
436
437         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
438         if (unlikely(tlen < 15 * sizeof(u32)))
439                 goto drop;
440
441         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
442         if (lnh != HFI1_LRH_BTH)
443                 goto drop;
444
445         packet->ohdr = &hdr->u.oth;
446         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
447
448         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
449         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
450
451         /* verbs_qp can be picked up from any tid_rdma header struct */
452         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
453                 RVT_QPN_MASK;
454
455         rcu_read_lock();
456         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
457         if (!packet->qp)
458                 goto drop_rcu;
459         spin_lock_irqsave(&packet->qp->r_lock, flags);
460         opcode_handler = tid_qp_ok(opcode, packet);
461         if (likely(opcode_handler))
462                 opcode_handler(packet);
463         else
464                 goto drop_unlock;
465         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
466         rcu_read_unlock();
467
468         return;
469 drop_unlock:
470         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
471 drop_rcu:
472         rcu_read_unlock();
473 drop:
474         ibp->rvp.n_pkt_drops++;
475 }
476
477 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
478 {
479         struct hfi1_ctxtdata *rcd = packet->rcd;
480         struct hfi1_pportdata *ppd = rcd->ppd;
481         struct hfi1_16b_header *hdr = packet->hdr;
482         u16 pkey;
483
484         /* Pkey check needed only for bypass packets */
485         if (packet->etype != RHF_RCV_TYPE_BYPASS)
486                 return 0;
487
488         /* Perform pkey check */
489         pkey = hfi1_16B_get_pkey(hdr);
490         return ingress_pkey_check(ppd, pkey, packet->sc,
491                                   packet->qp->s_pkey_index,
492                                   packet->slid, true);
493 }
494
495 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
496                                       bool is_mcast)
497 {
498         u32 qp_num;
499         struct hfi1_ctxtdata *rcd = packet->rcd;
500         struct hfi1_pportdata *ppd = rcd->ppd;
501         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
502         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
503         opcode_handler packet_handler;
504         unsigned long flags;
505
506         inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
507
508         if (unlikely(is_mcast)) {
509                 struct rvt_mcast *mcast;
510                 struct rvt_mcast_qp *p;
511
512                 if (!packet->grh)
513                         goto drop;
514                 mcast = rvt_mcast_find(&ibp->rvp,
515                                        &packet->grh->dgid,
516                                        opa_get_lid(packet->dlid, 9B));
517                 if (!mcast)
518                         goto drop;
519                 rcu_read_lock();
520                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
521                         packet->qp = p->qp;
522                         if (hfi1_do_pkey_check(packet))
523                                 goto unlock_drop;
524                         spin_lock_irqsave(&packet->qp->r_lock, flags);
525                         packet_handler = qp_ok(packet);
526                         if (likely(packet_handler))
527                                 packet_handler(packet);
528                         else
529                                 ibp->rvp.n_pkt_drops++;
530                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
531                 }
532                 rcu_read_unlock();
533                 /*
534                  * Notify rvt_multicast_detach() if it is waiting for us
535                  * to finish.
536                  */
537                 if (atomic_dec_return(&mcast->refcount) <= 1)
538                         wake_up(&mcast->wait);
539         } else {
540                 /* Get the destination QP number. */
541                 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
542                     hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
543                         qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
544                 else
545                         qp_num = ib_bth_get_qpn(packet->ohdr);
546
547                 rcu_read_lock();
548                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
549                 if (!packet->qp)
550                         goto unlock_drop;
551
552                 if (hfi1_do_pkey_check(packet))
553                         goto unlock_drop;
554
555                 spin_lock_irqsave(&packet->qp->r_lock, flags);
556                 packet_handler = qp_ok(packet);
557                 if (likely(packet_handler))
558                         packet_handler(packet);
559                 else
560                         ibp->rvp.n_pkt_drops++;
561                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
562                 rcu_read_unlock();
563         }
564         return;
565 unlock_drop:
566         rcu_read_unlock();
567 drop:
568         ibp->rvp.n_pkt_drops++;
569 }
570
571 /**
572  * hfi1_ib_rcv - process an incoming packet
573  * @packet: data packet information
574  *
575  * This is called to process an incoming packet at interrupt level.
576  */
577 void hfi1_ib_rcv(struct hfi1_packet *packet)
578 {
579         struct hfi1_ctxtdata *rcd = packet->rcd;
580
581         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
582         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
583 }
584
585 void hfi1_16B_rcv(struct hfi1_packet *packet)
586 {
587         struct hfi1_ctxtdata *rcd = packet->rcd;
588
589         trace_input_ibhdr(rcd->dd, packet, false);
590         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
591 }
592
593 /*
594  * This is called from a timer to check for QPs
595  * which need kernel memory in order to send a packet.
596  */
597 static void mem_timer(struct timer_list *t)
598 {
599         struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
600         struct list_head *list = &dev->memwait;
601         struct rvt_qp *qp = NULL;
602         struct iowait *wait;
603         unsigned long flags;
604         struct hfi1_qp_priv *priv;
605
606         write_seqlock_irqsave(&dev->iowait_lock, flags);
607         if (!list_empty(list)) {
608                 wait = list_first_entry(list, struct iowait, list);
609                 qp = iowait_to_qp(wait);
610                 priv = qp->priv;
611                 list_del_init(&priv->s_iowait.list);
612                 priv->s_iowait.lock = NULL;
613                 /* refcount held until actual wake up */
614                 if (!list_empty(list))
615                         mod_timer(&dev->mem_timer, jiffies + 1);
616         }
617         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
618
619         if (qp)
620                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
621 }
622
623 /*
624  * This is called with progress side lock held.
625  */
626 /* New API */
627 static void verbs_sdma_complete(
628         struct sdma_txreq *cookie,
629         int status)
630 {
631         struct verbs_txreq *tx =
632                 container_of(cookie, struct verbs_txreq, txreq);
633         struct rvt_qp *qp = tx->qp;
634
635         spin_lock(&qp->s_lock);
636         if (tx->wqe) {
637                 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
638         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
639                 struct hfi1_opa_header *hdr;
640
641                 hdr = &tx->phdr.hdr;
642                 if (unlikely(status == SDMA_TXREQ_S_ABORTED))
643                         hfi1_rc_verbs_aborted(qp, hdr);
644                 hfi1_rc_send_complete(qp, hdr);
645         }
646         spin_unlock(&qp->s_lock);
647
648         hfi1_put_txreq(tx);
649 }
650
651 void hfi1_wait_kmem(struct rvt_qp *qp)
652 {
653         struct hfi1_qp_priv *priv = qp->priv;
654         struct ib_qp *ibqp = &qp->ibqp;
655         struct ib_device *ibdev = ibqp->device;
656         struct hfi1_ibdev *dev = to_idev(ibdev);
657
658         if (list_empty(&priv->s_iowait.list)) {
659                 if (list_empty(&dev->memwait))
660                         mod_timer(&dev->mem_timer, jiffies + 1);
661                 qp->s_flags |= RVT_S_WAIT_KMEM;
662                 list_add_tail(&priv->s_iowait.list, &dev->memwait);
663                 priv->s_iowait.lock = &dev->iowait_lock;
664                 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
665                 rvt_get_qp(qp);
666         }
667 }
668
669 static int wait_kmem(struct hfi1_ibdev *dev,
670                      struct rvt_qp *qp,
671                      struct hfi1_pkt_state *ps)
672 {
673         unsigned long flags;
674         int ret = 0;
675
676         spin_lock_irqsave(&qp->s_lock, flags);
677         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
678                 write_seqlock(&dev->iowait_lock);
679                 list_add_tail(&ps->s_txreq->txreq.list,
680                               &ps->wait->tx_head);
681                 hfi1_wait_kmem(qp);
682                 write_sequnlock(&dev->iowait_lock);
683                 hfi1_qp_unbusy(qp, ps->wait);
684                 ret = -EBUSY;
685         }
686         spin_unlock_irqrestore(&qp->s_lock, flags);
687
688         return ret;
689 }
690
691 /*
692  * This routine calls txadds for each sg entry.
693  *
694  * Add failures will revert the sge cursor
695  */
696 static noinline int build_verbs_ulp_payload(
697         struct sdma_engine *sde,
698         u32 length,
699         struct verbs_txreq *tx)
700 {
701         struct rvt_sge_state *ss = tx->ss;
702         struct rvt_sge *sg_list = ss->sg_list;
703         struct rvt_sge sge = ss->sge;
704         u8 num_sge = ss->num_sge;
705         u32 len;
706         int ret = 0;
707
708         while (length) {
709                 len = rvt_get_sge_length(&ss->sge, length);
710                 WARN_ON_ONCE(len == 0);
711                 ret = sdma_txadd_kvaddr(
712                         sde->dd,
713                         &tx->txreq,
714                         ss->sge.vaddr,
715                         len);
716                 if (ret)
717                         goto bail_txadd;
718                 rvt_update_sge(ss, len, false);
719                 length -= len;
720         }
721         return ret;
722 bail_txadd:
723         /* unwind cursor */
724         ss->sge = sge;
725         ss->num_sge = num_sge;
726         ss->sg_list = sg_list;
727         return ret;
728 }
729
730 /**
731  * update_tx_opstats - record stats by opcode
732  * @qp; the qp
733  * @ps: transmit packet state
734  * @plen: the plen in dwords
735  *
736  * This is a routine to record the tx opstats after a
737  * packet has been presented to the egress mechanism.
738  */
739 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
740                               u32 plen)
741 {
742 #ifdef CONFIG_DEBUG_FS
743         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
744         struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
745
746         inc_opstats(plen * 4, &s->stats[ps->opcode]);
747         put_cpu_ptr(s);
748 #endif
749 }
750
751 /*
752  * Build the number of DMA descriptors needed to send length bytes of data.
753  *
754  * NOTE: DMA mapping is held in the tx until completed in the ring or
755  *       the tx desc is freed without having been submitted to the ring
756  *
757  * This routine ensures all the helper routine calls succeed.
758  */
759 /* New API */
760 static int build_verbs_tx_desc(
761         struct sdma_engine *sde,
762         u32 length,
763         struct verbs_txreq *tx,
764         struct hfi1_ahg_info *ahg_info,
765         u64 pbc)
766 {
767         int ret = 0;
768         struct hfi1_sdma_header *phdr = &tx->phdr;
769         u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
770         u8 extra_bytes = 0;
771
772         if (tx->phdr.hdr.hdr_type) {
773                 /*
774                  * hdrbytes accounts for PBC. Need to subtract 8 bytes
775                  * before calculating padding.
776                  */
777                 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
778                               (SIZE_OF_CRC << 2) + SIZE_OF_LT;
779         }
780         if (!ahg_info->ahgcount) {
781                 ret = sdma_txinit_ahg(
782                         &tx->txreq,
783                         ahg_info->tx_flags,
784                         hdrbytes + length +
785                         extra_bytes,
786                         ahg_info->ahgidx,
787                         0,
788                         NULL,
789                         0,
790                         verbs_sdma_complete);
791                 if (ret)
792                         goto bail_txadd;
793                 phdr->pbc = cpu_to_le64(pbc);
794                 ret = sdma_txadd_kvaddr(
795                         sde->dd,
796                         &tx->txreq,
797                         phdr,
798                         hdrbytes);
799                 if (ret)
800                         goto bail_txadd;
801         } else {
802                 ret = sdma_txinit_ahg(
803                         &tx->txreq,
804                         ahg_info->tx_flags,
805                         length,
806                         ahg_info->ahgidx,
807                         ahg_info->ahgcount,
808                         ahg_info->ahgdesc,
809                         hdrbytes,
810                         verbs_sdma_complete);
811                 if (ret)
812                         goto bail_txadd;
813         }
814         /* add the ulp payload - if any. tx->ss can be NULL for acks */
815         if (tx->ss) {
816                 ret = build_verbs_ulp_payload(sde, length, tx);
817                 if (ret)
818                         goto bail_txadd;
819         }
820
821         /* add icrc, lt byte, and padding to flit */
822         if (extra_bytes)
823                 ret = sdma_txadd_daddr(sde->dd, &tx->txreq, sde->dd->sdma_pad_phys,
824                                        extra_bytes);
825
826 bail_txadd:
827         return ret;
828 }
829
830 static u64 update_hcrc(u8 opcode, u64 pbc)
831 {
832         if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
833                 pbc &= ~PBC_INSERT_HCRC_SMASK;
834                 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
835         }
836         return pbc;
837 }
838
839 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
840                         u64 pbc)
841 {
842         struct hfi1_qp_priv *priv = qp->priv;
843         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
844         u32 hdrwords = ps->s_txreq->hdr_dwords;
845         u32 len = ps->s_txreq->s_cur_size;
846         u32 plen;
847         struct hfi1_ibdev *dev = ps->dev;
848         struct hfi1_pportdata *ppd = ps->ppd;
849         struct verbs_txreq *tx;
850         u8 sc5 = priv->s_sc;
851         int ret;
852         u32 dwords;
853
854         if (ps->s_txreq->phdr.hdr.hdr_type) {
855                 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
856
857                 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
858                           SIZE_OF_LT) >> 2;
859         } else {
860                 dwords = (len + 3) >> 2;
861         }
862         plen = hdrwords + dwords + sizeof(pbc) / 4;
863
864         tx = ps->s_txreq;
865         if (!sdma_txreq_built(&tx->txreq)) {
866                 if (likely(pbc == 0)) {
867                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
868
869                         /* No vl15 here */
870                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
871                         if (ps->s_txreq->phdr.hdr.hdr_type)
872                                 pbc |= PBC_PACKET_BYPASS |
873                                        PBC_INSERT_BYPASS_ICRC;
874                         else
875                                 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
876
877                         pbc = create_pbc(ppd,
878                                          pbc,
879                                          qp->srate_mbps,
880                                          vl,
881                                          plen);
882
883                         if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
884                                 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
885                         else
886                                 /* Update HCRC based on packet opcode */
887                                 pbc = update_hcrc(ps->opcode, pbc);
888                 }
889                 tx->wqe = qp->s_wqe;
890                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
891                 if (unlikely(ret))
892                         goto bail_build;
893         }
894         ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
895         if (unlikely(ret < 0)) {
896                 if (ret == -ECOMM)
897                         goto bail_ecomm;
898                 return ret;
899         }
900
901         update_tx_opstats(qp, ps, plen);
902         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
903                                 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
904         return ret;
905
906 bail_ecomm:
907         /* The current one got "sent" */
908         return 0;
909 bail_build:
910         ret = wait_kmem(dev, qp, ps);
911         if (!ret) {
912                 /* free txreq - bad state */
913                 hfi1_put_txreq(ps->s_txreq);
914                 ps->s_txreq = NULL;
915         }
916         return ret;
917 }
918
919 /*
920  * If we are now in the error state, return zero to flush the
921  * send work request.
922  */
923 static int pio_wait(struct rvt_qp *qp,
924                     struct send_context *sc,
925                     struct hfi1_pkt_state *ps,
926                     u32 flag)
927 {
928         struct hfi1_qp_priv *priv = qp->priv;
929         struct hfi1_devdata *dd = sc->dd;
930         unsigned long flags;
931         int ret = 0;
932
933         /*
934          * Note that as soon as want_buffer() is called and
935          * possibly before it returns, sc_piobufavail()
936          * could be called. Therefore, put QP on the I/O wait list before
937          * enabling the PIO avail interrupt.
938          */
939         spin_lock_irqsave(&qp->s_lock, flags);
940         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
941                 write_seqlock(&sc->waitlock);
942                 list_add_tail(&ps->s_txreq->txreq.list,
943                               &ps->wait->tx_head);
944                 if (list_empty(&priv->s_iowait.list)) {
945                         struct hfi1_ibdev *dev = &dd->verbs_dev;
946                         int was_empty;
947
948                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
949                         dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
950                         qp->s_flags |= flag;
951                         was_empty = list_empty(&sc->piowait);
952                         iowait_get_priority(&priv->s_iowait);
953                         iowait_queue(ps->pkts_sent, &priv->s_iowait,
954                                      &sc->piowait);
955                         priv->s_iowait.lock = &sc->waitlock;
956                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
957                         rvt_get_qp(qp);
958                         /* counting: only call wantpiobuf_intr if first user */
959                         if (was_empty)
960                                 hfi1_sc_wantpiobuf_intr(sc, 1);
961                 }
962                 write_sequnlock(&sc->waitlock);
963                 hfi1_qp_unbusy(qp, ps->wait);
964                 ret = -EBUSY;
965         }
966         spin_unlock_irqrestore(&qp->s_lock, flags);
967         return ret;
968 }
969
970 static void verbs_pio_complete(void *arg, int code)
971 {
972         struct rvt_qp *qp = (struct rvt_qp *)arg;
973         struct hfi1_qp_priv *priv = qp->priv;
974
975         if (iowait_pio_dec(&priv->s_iowait))
976                 iowait_drain_wakeup(&priv->s_iowait);
977 }
978
979 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
980                         u64 pbc)
981 {
982         struct hfi1_qp_priv *priv = qp->priv;
983         u32 hdrwords = ps->s_txreq->hdr_dwords;
984         struct rvt_sge_state *ss = ps->s_txreq->ss;
985         u32 len = ps->s_txreq->s_cur_size;
986         u32 dwords;
987         u32 plen;
988         struct hfi1_pportdata *ppd = ps->ppd;
989         u32 *hdr;
990         u8 sc5;
991         unsigned long flags = 0;
992         struct send_context *sc;
993         struct pio_buf *pbuf;
994         int wc_status = IB_WC_SUCCESS;
995         int ret = 0;
996         pio_release_cb cb = NULL;
997         u8 extra_bytes = 0;
998
999         if (ps->s_txreq->phdr.hdr.hdr_type) {
1000                 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1001
1002                 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1003                 dwords = (len + extra_bytes) >> 2;
1004                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1005         } else {
1006                 dwords = (len + 3) >> 2;
1007                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1008         }
1009         plen = hdrwords + dwords + sizeof(pbc) / 4;
1010
1011         /* only RC/UC use complete */
1012         switch (qp->ibqp.qp_type) {
1013         case IB_QPT_RC:
1014         case IB_QPT_UC:
1015                 cb = verbs_pio_complete;
1016                 break;
1017         default:
1018                 break;
1019         }
1020
1021         /* vl15 special case taken care of in ud.c */
1022         sc5 = priv->s_sc;
1023         sc = ps->s_txreq->psc;
1024
1025         if (likely(pbc == 0)) {
1026                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1027
1028                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1029                 if (ps->s_txreq->phdr.hdr.hdr_type)
1030                         pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1031                 else
1032                         pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1033
1034                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1035                 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1036                         pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1037                 else
1038                         /* Update HCRC based on packet opcode */
1039                         pbc = update_hcrc(ps->opcode, pbc);
1040         }
1041         if (cb)
1042                 iowait_pio_inc(&priv->s_iowait);
1043         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1044         if (IS_ERR_OR_NULL(pbuf)) {
1045                 if (cb)
1046                         verbs_pio_complete(qp, 0);
1047                 if (IS_ERR(pbuf)) {
1048                         /*
1049                          * If we have filled the PIO buffers to capacity and are
1050                          * not in an active state this request is not going to
1051                          * go out to so just complete it with an error or else a
1052                          * ULP or the core may be stuck waiting.
1053                          */
1054                         hfi1_cdbg(
1055                                 PIO,
1056                                 "alloc failed. state not active, completing");
1057                         wc_status = IB_WC_GENERAL_ERR;
1058                         goto pio_bail;
1059                 } else {
1060                         /*
1061                          * This is a normal occurrence. The PIO buffs are full
1062                          * up but we are still happily sending, well we could be
1063                          * so lets continue to queue the request.
1064                          */
1065                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1066                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1067                         if (!ret)
1068                                 /* txreq not queued - free */
1069                                 goto bail;
1070                         /* tx consumed in wait */
1071                         return ret;
1072                 }
1073         }
1074
1075         if (dwords == 0) {
1076                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1077         } else {
1078                 seg_pio_copy_start(pbuf, pbc,
1079                                    hdr, hdrwords * 4);
1080                 if (ss) {
1081                         while (len) {
1082                                 void *addr = ss->sge.vaddr;
1083                                 u32 slen = rvt_get_sge_length(&ss->sge, len);
1084
1085                                 rvt_update_sge(ss, slen, false);
1086                                 seg_pio_copy_mid(pbuf, addr, slen);
1087                                 len -= slen;
1088                         }
1089                 }
1090                 /* add icrc, lt byte, and padding to flit */
1091                 if (extra_bytes)
1092                         seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1093                                          extra_bytes);
1094
1095                 seg_pio_copy_end(pbuf);
1096         }
1097
1098         update_tx_opstats(qp, ps, plen);
1099         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1100                                &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1101
1102 pio_bail:
1103         spin_lock_irqsave(&qp->s_lock, flags);
1104         if (qp->s_wqe) {
1105                 rvt_send_complete(qp, qp->s_wqe, wc_status);
1106         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1107                 if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1108                         hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1109                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1110         }
1111         spin_unlock_irqrestore(&qp->s_lock, flags);
1112
1113         ret = 0;
1114
1115 bail:
1116         hfi1_put_txreq(ps->s_txreq);
1117         return ret;
1118 }
1119
1120 /*
1121  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1122  * being an entry from the partition key table), return 0
1123  * otherwise. Use the matching criteria for egress partition keys
1124  * specified in the OPAv1 spec., section 9.1l.7.
1125  */
1126 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1127 {
1128         u16 mkey = pkey & PKEY_LOW_15_MASK;
1129         u16 mentry = ent & PKEY_LOW_15_MASK;
1130
1131         if (mkey == mentry) {
1132                 /*
1133                  * If pkey[15] is set (full partition member),
1134                  * is bit 15 in the corresponding table element
1135                  * clear (limited member)?
1136                  */
1137                 if (pkey & PKEY_MEMBER_MASK)
1138                         return !!(ent & PKEY_MEMBER_MASK);
1139                 return 1;
1140         }
1141         return 0;
1142 }
1143
1144 /**
1145  * egress_pkey_check - check P_KEY of a packet
1146  * @ppd:  Physical IB port data
1147  * @slid: SLID for packet
1148  * @bkey: PKEY for header
1149  * @sc5:  SC for packet
1150  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1151  * only. If it is negative value, then it means user contexts is calling this
1152  * function.
1153  *
1154  * It checks if hdr's pkey is valid.
1155  *
1156  * Return: 0 on success, otherwise, 1
1157  */
1158 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1159                       u8 sc5, int8_t s_pkey_index)
1160 {
1161         struct hfi1_devdata *dd;
1162         int i;
1163         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1164
1165         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1166                 return 0;
1167
1168         /* If SC15, pkey[0:14] must be 0x7fff */
1169         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1170                 goto bad;
1171
1172         /* Is the pkey = 0x0, or 0x8000? */
1173         if ((pkey & PKEY_LOW_15_MASK) == 0)
1174                 goto bad;
1175
1176         /*
1177          * For the kernel contexts only, if a qp is passed into the function,
1178          * the most likely matching pkey has index qp->s_pkey_index
1179          */
1180         if (!is_user_ctxt_mechanism &&
1181             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1182                 return 0;
1183         }
1184
1185         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1186                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1187                         return 0;
1188         }
1189 bad:
1190         /*
1191          * For the user-context mechanism, the P_KEY check would only happen
1192          * once per SDMA request, not once per packet.  Therefore, there's no
1193          * need to increment the counter for the user-context mechanism.
1194          */
1195         if (!is_user_ctxt_mechanism) {
1196                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1197                 dd = ppd->dd;
1198                 if (!(dd->err_info_xmit_constraint.status &
1199                       OPA_EI_STATUS_SMASK)) {
1200                         dd->err_info_xmit_constraint.status |=
1201                                 OPA_EI_STATUS_SMASK;
1202                         dd->err_info_xmit_constraint.slid = slid;
1203                         dd->err_info_xmit_constraint.pkey = pkey;
1204                 }
1205         }
1206         return 1;
1207 }
1208
1209 /**
1210  * get_send_routine - choose an egress routine
1211  *
1212  * Choose an egress routine based on QP type
1213  * and size
1214  */
1215 static inline send_routine get_send_routine(struct rvt_qp *qp,
1216                                             struct hfi1_pkt_state *ps)
1217 {
1218         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1219         struct hfi1_qp_priv *priv = qp->priv;
1220         struct verbs_txreq *tx = ps->s_txreq;
1221
1222         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1223                 return dd->process_pio_send;
1224         switch (qp->ibqp.qp_type) {
1225         case IB_QPT_SMI:
1226                 return dd->process_pio_send;
1227         case IB_QPT_GSI:
1228         case IB_QPT_UD:
1229                 break;
1230         case IB_QPT_UC:
1231         case IB_QPT_RC:
1232                 priv->s_running_pkt_size =
1233                         (tx->s_cur_size + priv->s_running_pkt_size) / 2;
1234                 if (piothreshold &&
1235                     priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1236                     (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1237                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1238                     !sdma_txreq_built(&tx->txreq))
1239                         return dd->process_pio_send;
1240                 break;
1241         default:
1242                 break;
1243         }
1244         return dd->process_dma_send;
1245 }
1246
1247 /**
1248  * hfi1_verbs_send - send a packet
1249  * @qp: the QP to send on
1250  * @ps: the state of the packet to send
1251  *
1252  * Return zero if packet is sent or queued OK.
1253  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1254  */
1255 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1256 {
1257         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1258         struct hfi1_qp_priv *priv = qp->priv;
1259         struct ib_other_headers *ohdr = NULL;
1260         send_routine sr;
1261         int ret;
1262         u16 pkey;
1263         u32 slid;
1264         u8 l4 = 0;
1265
1266         /* locate the pkey within the headers */
1267         if (ps->s_txreq->phdr.hdr.hdr_type) {
1268                 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1269
1270                 l4 = hfi1_16B_get_l4(hdr);
1271                 if (l4 == OPA_16B_L4_IB_LOCAL)
1272                         ohdr = &hdr->u.oth;
1273                 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1274                         ohdr = &hdr->u.l.oth;
1275
1276                 slid = hfi1_16B_get_slid(hdr);
1277                 pkey = hfi1_16B_get_pkey(hdr);
1278         } else {
1279                 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1280                 u8 lnh = ib_get_lnh(hdr);
1281
1282                 if (lnh == HFI1_LRH_GRH)
1283                         ohdr = &hdr->u.l.oth;
1284                 else
1285                         ohdr = &hdr->u.oth;
1286                 slid = ib_get_slid(hdr);
1287                 pkey = ib_bth_get_pkey(ohdr);
1288         }
1289
1290         if (likely(l4 != OPA_16B_L4_FM))
1291                 ps->opcode = ib_bth_get_opcode(ohdr);
1292         else
1293                 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1294
1295         sr = get_send_routine(qp, ps);
1296         ret = egress_pkey_check(dd->pport, slid, pkey,
1297                                 priv->s_sc, qp->s_pkey_index);
1298         if (unlikely(ret)) {
1299                 /*
1300                  * The value we are returning here does not get propagated to
1301                  * the verbs caller. Thus we need to complete the request with
1302                  * error otherwise the caller could be sitting waiting on the
1303                  * completion event. Only do this for PIO. SDMA has its own
1304                  * mechanism for handling the errors. So for SDMA we can just
1305                  * return.
1306                  */
1307                 if (sr == dd->process_pio_send) {
1308                         unsigned long flags;
1309
1310                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1311                                   __func__);
1312                         spin_lock_irqsave(&qp->s_lock, flags);
1313                         rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1314                         spin_unlock_irqrestore(&qp->s_lock, flags);
1315                 }
1316                 return -EINVAL;
1317         }
1318         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1319                 return pio_wait(qp,
1320                                 ps->s_txreq->psc,
1321                                 ps,
1322                                 HFI1_S_WAIT_PIO_DRAIN);
1323         return sr(qp, ps, 0);
1324 }
1325
1326 /**
1327  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1328  * @dd: the device data structure
1329  */
1330 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1331 {
1332         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1333         u32 ver = dd->dc8051_ver;
1334
1335         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1336
1337         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1338                 ((u64)(dc8051_ver_min(ver)) << 16) |
1339                 (u64)dc8051_ver_patch(ver);
1340
1341         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1342                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1343                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1344                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1345                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1346                         IB_DEVICE_RDMA_NETDEV_OPA;
1347         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1348         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1349         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1350         rdi->dparms.props.hw_ver = dd->minrev;
1351         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1352         rdi->dparms.props.max_mr_size = U64_MAX;
1353         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1354         rdi->dparms.props.max_qp = hfi1_max_qps;
1355         rdi->dparms.props.max_qp_wr =
1356                 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1357                  HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1358         rdi->dparms.props.max_send_sge = hfi1_max_sges;
1359         rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1360         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1361         rdi->dparms.props.max_cq = hfi1_max_cqs;
1362         rdi->dparms.props.max_ah = hfi1_max_ahs;
1363         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1364         rdi->dparms.props.max_pd = hfi1_max_pds;
1365         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1366         rdi->dparms.props.max_qp_init_rd_atom = 255;
1367         rdi->dparms.props.max_srq = hfi1_max_srqs;
1368         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1369         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1370         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1371         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1372         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1373         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1374         rdi->dparms.props.max_total_mcast_qp_attach =
1375                                         rdi->dparms.props.max_mcast_qp_attach *
1376                                         rdi->dparms.props.max_mcast_grp;
1377 }
1378
1379 static inline u16 opa_speed_to_ib(u16 in)
1380 {
1381         u16 out = 0;
1382
1383         if (in & OPA_LINK_SPEED_25G)
1384                 out |= IB_SPEED_EDR;
1385         if (in & OPA_LINK_SPEED_12_5G)
1386                 out |= IB_SPEED_FDR;
1387
1388         return out;
1389 }
1390
1391 /*
1392  * Convert a single OPA link width (no multiple flags) to an IB value.
1393  * A zero OPA link width means link down, which means the IB width value
1394  * is a don't care.
1395  */
1396 static inline u16 opa_width_to_ib(u16 in)
1397 {
1398         switch (in) {
1399         case OPA_LINK_WIDTH_1X:
1400         /* map 2x and 3x to 1x as they don't exist in IB */
1401         case OPA_LINK_WIDTH_2X:
1402         case OPA_LINK_WIDTH_3X:
1403                 return IB_WIDTH_1X;
1404         default: /* link down or unknown, return our largest width */
1405         case OPA_LINK_WIDTH_4X:
1406                 return IB_WIDTH_4X;
1407         }
1408 }
1409
1410 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1411                       struct ib_port_attr *props)
1412 {
1413         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1414         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1415         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1416         u32 lid = ppd->lid;
1417
1418         /* props being zeroed by the caller, avoid zeroing it here */
1419         props->lid = lid ? lid : 0;
1420         props->lmc = ppd->lmc;
1421         /* OPA logical states match IB logical states */
1422         props->state = driver_lstate(ppd);
1423         props->phys_state = driver_pstate(ppd);
1424         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1425         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1426         /* see rate_show() in ib core/sysfs.c */
1427         props->active_speed = opa_speed_to_ib(ppd->link_speed_active);
1428         props->max_vl_num = ppd->vls_supported;
1429
1430         /* Once we are a "first class" citizen and have added the OPA MTUs to
1431          * the core we can advertise the larger MTU enum to the ULPs, for now
1432          * advertise only 4K.
1433          *
1434          * Those applications which are either OPA aware or pass the MTU enum
1435          * from the Path Records to us will get the new 8k MTU.  Those that
1436          * attempt to process the MTU enum may fail in various ways.
1437          */
1438         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1439                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1440         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1441                 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1442         props->phys_mtu = hfi1_max_mtu;
1443
1444         return 0;
1445 }
1446
1447 static int modify_device(struct ib_device *device,
1448                          int device_modify_mask,
1449                          struct ib_device_modify *device_modify)
1450 {
1451         struct hfi1_devdata *dd = dd_from_ibdev(device);
1452         unsigned i;
1453         int ret;
1454
1455         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1456                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1457                 ret = -EOPNOTSUPP;
1458                 goto bail;
1459         }
1460
1461         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1462                 memcpy(device->node_desc, device_modify->node_desc,
1463                        IB_DEVICE_NODE_DESC_MAX);
1464                 for (i = 0; i < dd->num_pports; i++) {
1465                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1466
1467                         hfi1_node_desc_chg(ibp);
1468                 }
1469         }
1470
1471         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1472                 ib_hfi1_sys_image_guid =
1473                         cpu_to_be64(device_modify->sys_image_guid);
1474                 for (i = 0; i < dd->num_pports; i++) {
1475                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1476
1477                         hfi1_sys_guid_chg(ibp);
1478                 }
1479         }
1480
1481         ret = 0;
1482
1483 bail:
1484         return ret;
1485 }
1486
1487 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1488 {
1489         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1490         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1491         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1492         int ret;
1493
1494         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1495                              OPA_LINKDOWN_REASON_UNKNOWN);
1496         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1497         return ret;
1498 }
1499
1500 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1501                             int guid_index, __be64 *guid)
1502 {
1503         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1504
1505         if (guid_index >= HFI1_GUIDS_PER_PORT)
1506                 return -EINVAL;
1507
1508         *guid = get_sguid(ibp, guid_index);
1509         return 0;
1510 }
1511
1512 /*
1513  * convert ah port,sl to sc
1514  */
1515 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1516 {
1517         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1518
1519         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1520 }
1521
1522 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1523 {
1524         struct hfi1_ibport *ibp;
1525         struct hfi1_pportdata *ppd;
1526         struct hfi1_devdata *dd;
1527         u8 sc5;
1528         u8 sl;
1529
1530         if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1531             !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1532                 return -EINVAL;
1533
1534         /* test the mapping for validity */
1535         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1536         ppd = ppd_from_ibp(ibp);
1537         dd = dd_from_ppd(ppd);
1538
1539         sl = rdma_ah_get_sl(ah_attr);
1540         if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1541                 return -EINVAL;
1542         sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1543
1544         sc5 = ibp->sl_to_sc[sl];
1545         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1546                 return -EINVAL;
1547         return 0;
1548 }
1549
1550 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1551                                struct rdma_ah_attr *ah_attr,
1552                                struct rvt_ah *ah)
1553 {
1554         struct hfi1_ibport *ibp;
1555         struct hfi1_pportdata *ppd;
1556         struct hfi1_devdata *dd;
1557         u8 sc5;
1558         struct rdma_ah_attr *attr = &ah->attr;
1559
1560         /*
1561          * Do not trust reading anything from rvt_ah at this point as it is not
1562          * done being setup. We can however modify things which we need to set.
1563          */
1564
1565         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1566         ppd = ppd_from_ibp(ibp);
1567         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1568         hfi1_update_ah_attr(ibdev, attr);
1569         hfi1_make_opa_lid(attr);
1570         dd = dd_from_ppd(ppd);
1571         ah->vl = sc_to_vlt(dd, sc5);
1572         if (ah->vl < num_vls || ah->vl == 15)
1573                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1574 }
1575
1576 /**
1577  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1578  * @dd: the hfi1_ib device
1579  */
1580 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1581 {
1582         return ARRAY_SIZE(dd->pport[0].pkeys);
1583 }
1584
1585 static void init_ibport(struct hfi1_pportdata *ppd)
1586 {
1587         struct hfi1_ibport *ibp = &ppd->ibport_data;
1588         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1589         int i;
1590
1591         for (i = 0; i < sz; i++) {
1592                 ibp->sl_to_sc[i] = i;
1593                 ibp->sc_to_sl[i] = i;
1594         }
1595
1596         for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1597                 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1598         timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1599
1600         spin_lock_init(&ibp->rvp.lock);
1601         /* Set the prefix to the default value (see ch. 4.1.1) */
1602         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1603         ibp->rvp.sm_lid = 0;
1604         /*
1605          * Below should only set bits defined in OPA PortInfo.CapabilityMask
1606          * and PortInfo.CapabilityMask3
1607          */
1608         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1609                 IB_PORT_CAP_MASK_NOTICE_SUP;
1610         ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1611         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1612         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1613         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1614         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1615         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1616
1617         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1618         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1619 }
1620
1621 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1622 {
1623         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1624         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1625         u32 ver = dd_from_dev(dev)->dc8051_ver;
1626
1627         snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1628                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1629 }
1630
1631 static const char * const driver_cntr_names[] = {
1632         /* must be element 0*/
1633         "DRIVER_KernIntr",
1634         "DRIVER_ErrorIntr",
1635         "DRIVER_Tx_Errs",
1636         "DRIVER_Rcv_Errs",
1637         "DRIVER_HW_Errs",
1638         "DRIVER_NoPIOBufs",
1639         "DRIVER_CtxtsOpen",
1640         "DRIVER_RcvLen_Errs",
1641         "DRIVER_EgrBufFull",
1642         "DRIVER_EgrHdrFull"
1643 };
1644
1645 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1646 static const char **dev_cntr_names;
1647 static const char **port_cntr_names;
1648 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1649 static int num_dev_cntrs;
1650 static int num_port_cntrs;
1651 static int cntr_names_initialized;
1652
1653 /*
1654  * Convert a list of names separated by '\n' into an array of NULL terminated
1655  * strings. Optionally some entries can be reserved in the array to hold extra
1656  * external strings.
1657  */
1658 static int init_cntr_names(const char *names_in,
1659                            const size_t names_len,
1660                            int num_extra_names,
1661                            int *num_cntrs,
1662                            const char ***cntr_names)
1663 {
1664         char *names_out, *p, **q;
1665         int i, n;
1666
1667         n = 0;
1668         for (i = 0; i < names_len; i++)
1669                 if (names_in[i] == '\n')
1670                         n++;
1671
1672         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1673                             GFP_KERNEL);
1674         if (!names_out) {
1675                 *num_cntrs = 0;
1676                 *cntr_names = NULL;
1677                 return -ENOMEM;
1678         }
1679
1680         p = names_out + (n + num_extra_names) * sizeof(char *);
1681         memcpy(p, names_in, names_len);
1682
1683         q = (char **)names_out;
1684         for (i = 0; i < n; i++) {
1685                 q[i] = p;
1686                 p = strchr(p, '\n');
1687                 *p++ = '\0';
1688         }
1689
1690         *num_cntrs = n;
1691         *cntr_names = (const char **)names_out;
1692         return 0;
1693 }
1694
1695 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1696                                             u8 port_num)
1697 {
1698         int i, err;
1699
1700         mutex_lock(&cntr_names_lock);
1701         if (!cntr_names_initialized) {
1702                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1703
1704                 err = init_cntr_names(dd->cntrnames,
1705                                       dd->cntrnameslen,
1706                                       num_driver_cntrs,
1707                                       &num_dev_cntrs,
1708                                       &dev_cntr_names);
1709                 if (err) {
1710                         mutex_unlock(&cntr_names_lock);
1711                         return NULL;
1712                 }
1713
1714                 for (i = 0; i < num_driver_cntrs; i++)
1715                         dev_cntr_names[num_dev_cntrs + i] =
1716                                 driver_cntr_names[i];
1717
1718                 err = init_cntr_names(dd->portcntrnames,
1719                                       dd->portcntrnameslen,
1720                                       0,
1721                                       &num_port_cntrs,
1722                                       &port_cntr_names);
1723                 if (err) {
1724                         kfree(dev_cntr_names);
1725                         dev_cntr_names = NULL;
1726                         mutex_unlock(&cntr_names_lock);
1727                         return NULL;
1728                 }
1729                 cntr_names_initialized = 1;
1730         }
1731         mutex_unlock(&cntr_names_lock);
1732
1733         if (!port_num)
1734                 return rdma_alloc_hw_stats_struct(
1735                                 dev_cntr_names,
1736                                 num_dev_cntrs + num_driver_cntrs,
1737                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1738         else
1739                 return rdma_alloc_hw_stats_struct(
1740                                 port_cntr_names,
1741                                 num_port_cntrs,
1742                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1743 }
1744
1745 static u64 hfi1_sps_ints(void)
1746 {
1747         unsigned long index, flags;
1748         struct hfi1_devdata *dd;
1749         u64 sps_ints = 0;
1750
1751         xa_lock_irqsave(&hfi1_dev_table, flags);
1752         xa_for_each(&hfi1_dev_table, index, dd) {
1753                 sps_ints += get_all_cpu_total(dd->int_counter);
1754         }
1755         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1756         return sps_ints;
1757 }
1758
1759 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1760                         u8 port, int index)
1761 {
1762         u64 *values;
1763         int count;
1764
1765         if (!port) {
1766                 u64 *stats = (u64 *)&hfi1_stats;
1767                 int i;
1768
1769                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1770                 values[num_dev_cntrs] = hfi1_sps_ints();
1771                 for (i = 1; i < num_driver_cntrs; i++)
1772                         values[num_dev_cntrs + i] = stats[i];
1773                 count = num_dev_cntrs + num_driver_cntrs;
1774         } else {
1775                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1776
1777                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1778                 count = num_port_cntrs;
1779         }
1780
1781         memcpy(stats->value, values, count * sizeof(u64));
1782         return count;
1783 }
1784
1785 static const struct ib_device_ops hfi1_dev_ops = {
1786         .owner = THIS_MODULE,
1787         .driver_id = RDMA_DRIVER_HFI1,
1788
1789         .alloc_hw_stats = alloc_hw_stats,
1790         .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1791         .get_dev_fw_str = hfi1_get_dev_fw_str,
1792         .get_hw_stats = get_hw_stats,
1793         .init_port = hfi1_create_port_files,
1794         .modify_device = modify_device,
1795         /* keep process mad in the driver */
1796         .process_mad = hfi1_process_mad,
1797         .rdma_netdev_get_params = hfi1_ipoib_rn_get_params,
1798 };
1799
1800 /**
1801  * hfi1_register_ib_device - register our device with the infiniband core
1802  * @dd: the device data structure
1803  * Return 0 if successful, errno if unsuccessful.
1804  */
1805 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1806 {
1807         struct hfi1_ibdev *dev = &dd->verbs_dev;
1808         struct ib_device *ibdev = &dev->rdi.ibdev;
1809         struct hfi1_pportdata *ppd = dd->pport;
1810         struct hfi1_ibport *ibp = &ppd->ibport_data;
1811         unsigned i;
1812         int ret;
1813
1814         for (i = 0; i < dd->num_pports; i++)
1815                 init_ibport(ppd + i);
1816
1817         /* Only need to initialize non-zero fields. */
1818
1819         timer_setup(&dev->mem_timer, mem_timer, 0);
1820
1821         seqlock_init(&dev->iowait_lock);
1822         seqlock_init(&dev->txwait_lock);
1823         INIT_LIST_HEAD(&dev->txwait);
1824         INIT_LIST_HEAD(&dev->memwait);
1825
1826         ret = verbs_txreq_init(dev);
1827         if (ret)
1828                 goto err_verbs_txreq;
1829
1830         /* Use first-port GUID as node guid */
1831         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1832
1833         /*
1834          * The system image GUID is supposed to be the same for all
1835          * HFIs in a single system but since there can be other
1836          * device types in the system, we can't be sure this is unique.
1837          */
1838         if (!ib_hfi1_sys_image_guid)
1839                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1840         ibdev->phys_port_cnt = dd->num_pports;
1841         ibdev->dev.parent = &dd->pcidev->dev;
1842
1843         ib_set_device_ops(ibdev, &hfi1_dev_ops);
1844
1845         strlcpy(ibdev->node_desc, init_utsname()->nodename,
1846                 sizeof(ibdev->node_desc));
1847
1848         /*
1849          * Fill in rvt info object.
1850          */
1851         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1852         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1853         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1854         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1855         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1856         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1857         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1858         /*
1859          * Fill in rvt info device attributes.
1860          */
1861         hfi1_fill_device_attr(dd);
1862
1863         /* queue pair */
1864         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1865         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1866         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1867         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1868         dd->verbs_dev.rdi.dparms.qpn_res_start = RVT_KDETH_QP_BASE;
1869         dd->verbs_dev.rdi.dparms.qpn_res_end = RVT_AIP_QP_MAX;
1870         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1871         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1872         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1873         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1874         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1875                                                 RDMA_CORE_CAP_OPA_AH;
1876         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1877
1878         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1879         dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1880         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1881         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1882         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1883         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1884         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1885         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1886         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1887         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1888         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1889         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1890         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1891         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1892         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1893         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1894         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1895         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1896         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1897         dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1898         dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1899                                                 hfi1_comp_vect_mappings_lookup;
1900
1901         /* completeion queue */
1902         dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1903         dd->verbs_dev.rdi.dparms.node = dd->node;
1904
1905         /* misc settings */
1906         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1907         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1908         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1909         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1910         dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1911         dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1912         dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1913         dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1914         dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1915
1916         /* post send table */
1917         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1918
1919         /* opcode translation table */
1920         dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1921
1922         ppd = dd->pport;
1923         for (i = 0; i < dd->num_pports; i++, ppd++)
1924                 rvt_init_port(&dd->verbs_dev.rdi,
1925                               &ppd->ibport_data.rvp,
1926                               i,
1927                               ppd->pkeys);
1928
1929         rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1930                                     &ib_hfi1_attr_group);
1931
1932         ret = rvt_register_device(&dd->verbs_dev.rdi);
1933         if (ret)
1934                 goto err_verbs_txreq;
1935
1936         ret = hfi1_verbs_register_sysfs(dd);
1937         if (ret)
1938                 goto err_class;
1939
1940         return ret;
1941
1942 err_class:
1943         rvt_unregister_device(&dd->verbs_dev.rdi);
1944 err_verbs_txreq:
1945         verbs_txreq_exit(dev);
1946         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1947         return ret;
1948 }
1949
1950 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1951 {
1952         struct hfi1_ibdev *dev = &dd->verbs_dev;
1953
1954         hfi1_verbs_unregister_sysfs(dd);
1955
1956         rvt_unregister_device(&dd->verbs_dev.rdi);
1957
1958         if (!list_empty(&dev->txwait))
1959                 dd_dev_err(dd, "txwait list not empty!\n");
1960         if (!list_empty(&dev->memwait))
1961                 dd_dev_err(dd, "memwait list not empty!\n");
1962
1963         del_timer_sync(&dev->mem_timer);
1964         verbs_txreq_exit(dev);
1965
1966         mutex_lock(&cntr_names_lock);
1967         kfree(dev_cntr_names);
1968         kfree(port_cntr_names);
1969         dev_cntr_names = NULL;
1970         port_cntr_names = NULL;
1971         cntr_names_initialized = 0;
1972         mutex_unlock(&cntr_names_lock);
1973 }
1974
1975 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1976 {
1977         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1978         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1979         struct ib_header *hdr = packet->hdr;
1980         struct rvt_qp *qp = packet->qp;
1981         u32 lqpn, rqpn = 0;
1982         u16 rlid = 0;
1983         u8 sl, sc5, svc_type;
1984
1985         switch (packet->qp->ibqp.qp_type) {
1986         case IB_QPT_UC:
1987                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1988                 rqpn = qp->remote_qpn;
1989                 svc_type = IB_CC_SVCTYPE_UC;
1990                 break;
1991         case IB_QPT_RC:
1992                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1993                 rqpn = qp->remote_qpn;
1994                 svc_type = IB_CC_SVCTYPE_RC;
1995                 break;
1996         case IB_QPT_SMI:
1997         case IB_QPT_GSI:
1998         case IB_QPT_UD:
1999                 svc_type = IB_CC_SVCTYPE_UD;
2000                 break;
2001         default:
2002                 ibp->rvp.n_pkt_drops++;
2003                 return;
2004         }
2005
2006         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2007         sl = ibp->sc_to_sl[sc5];
2008         lqpn = qp->ibqp.qp_num;
2009
2010         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2011 }