GNU Linux-libre 4.9.317-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
52
53 struct tid_group {
54         struct list_head list;
55         unsigned base;
56         u8 size;
57         u8 used;
58         u8 map;
59 };
60
61 struct tid_rb_node {
62         struct mmu_rb_node mmu;
63         unsigned long phys;
64         struct tid_group *grp;
65         u32 rcventry;
66         dma_addr_t dma_addr;
67         bool freed;
68         unsigned npages;
69         struct page *pages[0];
70 };
71
72 struct tid_pageset {
73         u16 idx;
74         u16 count;
75 };
76
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78
79 #define num_user_pages(vaddr, len)                                     \
80         (1 + (((((unsigned long)(vaddr) +                              \
81                  (unsigned long)(len) - 1) & PAGE_MASK) -              \
82                ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85                             struct hfi1_filedata *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88                               struct tid_group *, struct page **, unsigned);
89 static int tid_rb_insert(void *, struct mmu_rb_node *);
90 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
91                                     struct tid_rb_node *tnode);
92 static void tid_rb_remove(void *, struct mmu_rb_node *);
93 static int tid_rb_invalidate(void *, struct mmu_rb_node *);
94 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
95                             struct tid_pageset *, unsigned, u16, struct page **,
96                             u32 *, unsigned *, unsigned *);
97 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
98 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
99
100 static struct mmu_rb_ops tid_rb_ops = {
101         .insert = tid_rb_insert,
102         .remove = tid_rb_remove,
103         .invalidate = tid_rb_invalidate
104 };
105
106 static inline u32 rcventry2tidinfo(u32 rcventry)
107 {
108         u32 pair = rcventry & ~0x1;
109
110         return EXP_TID_SET(IDX, pair >> 1) |
111                 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
112 }
113
114 static inline void exp_tid_group_init(struct exp_tid_set *set)
115 {
116         INIT_LIST_HEAD(&set->list);
117         set->count = 0;
118 }
119
120 static inline void tid_group_remove(struct tid_group *grp,
121                                     struct exp_tid_set *set)
122 {
123         list_del_init(&grp->list);
124         set->count--;
125 }
126
127 static inline void tid_group_add_tail(struct tid_group *grp,
128                                       struct exp_tid_set *set)
129 {
130         list_add_tail(&grp->list, &set->list);
131         set->count++;
132 }
133
134 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
135 {
136         struct tid_group *grp =
137                 list_first_entry(&set->list, struct tid_group, list);
138         list_del_init(&grp->list);
139         set->count--;
140         return grp;
141 }
142
143 static inline void tid_group_move(struct tid_group *group,
144                                   struct exp_tid_set *s1,
145                                   struct exp_tid_set *s2)
146 {
147         tid_group_remove(group, s1);
148         tid_group_add_tail(group, s2);
149 }
150
151 /*
152  * Initialize context and file private data needed for Expected
153  * receive caching. This needs to be done after the context has
154  * been configured with the eager/expected RcvEntry counts.
155  */
156 int hfi1_user_exp_rcv_init(struct file *fp)
157 {
158         struct hfi1_filedata *fd = fp->private_data;
159         struct hfi1_ctxtdata *uctxt = fd->uctxt;
160         struct hfi1_devdata *dd = uctxt->dd;
161         unsigned tidbase;
162         int i, ret = 0;
163
164         spin_lock_init(&fd->tid_lock);
165         spin_lock_init(&fd->invalid_lock);
166
167         if (!uctxt->subctxt_cnt || !fd->subctxt) {
168                 exp_tid_group_init(&uctxt->tid_group_list);
169                 exp_tid_group_init(&uctxt->tid_used_list);
170                 exp_tid_group_init(&uctxt->tid_full_list);
171
172                 tidbase = uctxt->expected_base;
173                 for (i = 0; i < uctxt->expected_count /
174                              dd->rcv_entries.group_size; i++) {
175                         struct tid_group *grp;
176
177                         grp = kzalloc(sizeof(*grp), GFP_KERNEL);
178                         if (!grp) {
179                                 /*
180                                  * If we fail here, the groups already
181                                  * allocated will be freed by the close
182                                  * call.
183                                  */
184                                 ret = -ENOMEM;
185                                 goto done;
186                         }
187                         grp->size = dd->rcv_entries.group_size;
188                         grp->base = tidbase;
189                         tid_group_add_tail(grp, &uctxt->tid_group_list);
190                         tidbase += dd->rcv_entries.group_size;
191                 }
192         }
193
194         fd->entry_to_rb = kcalloc(uctxt->expected_count,
195                                      sizeof(struct rb_node *),
196                                      GFP_KERNEL);
197         if (!fd->entry_to_rb)
198                 return -ENOMEM;
199
200         if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
201                 fd->invalid_tid_idx = 0;
202                 fd->invalid_tids = kzalloc(uctxt->expected_count *
203                                            sizeof(u32), GFP_KERNEL);
204                 if (!fd->invalid_tids) {
205                         ret = -ENOMEM;
206                         goto done;
207                 }
208
209                 /*
210                  * Register MMU notifier callbacks. If the registration
211                  * fails, continue without TID caching for this context.
212                  */
213                 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
214                                            dd->pport->hfi1_wq,
215                                            &fd->handler);
216                 if (ret) {
217                         dd_dev_info(dd,
218                                     "Failed MMU notifier registration %d\n",
219                                     ret);
220                         ret = 0;
221                 }
222         }
223
224         /*
225          * PSM does not have a good way to separate, count, and
226          * effectively enforce a limit on RcvArray entries used by
227          * subctxts (when context sharing is used) when TID caching
228          * is enabled. To help with that, we calculate a per-process
229          * RcvArray entry share and enforce that.
230          * If TID caching is not in use, PSM deals with usage on its
231          * own. In that case, we allow any subctxt to take all of the
232          * entries.
233          *
234          * Make sure that we set the tid counts only after successful
235          * init.
236          */
237         spin_lock(&fd->tid_lock);
238         if (uctxt->subctxt_cnt && fd->handler) {
239                 u16 remainder;
240
241                 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
242                 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
243                 if (remainder && fd->subctxt < remainder)
244                         fd->tid_limit++;
245         } else {
246                 fd->tid_limit = uctxt->expected_count;
247         }
248         spin_unlock(&fd->tid_lock);
249 done:
250         return ret;
251 }
252
253 void hfi1_user_exp_rcv_grp_free(struct hfi1_ctxtdata *uctxt)
254 {
255         struct tid_group *grp, *gptr;
256
257         list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
258                                  list) {
259                 list_del_init(&grp->list);
260                 kfree(grp);
261         }
262         hfi1_clear_tids(uctxt);
263 }
264
265 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
266 {
267         struct hfi1_ctxtdata *uctxt = fd->uctxt;
268
269         /*
270          * The notifier would have been removed when the process'es mm
271          * was freed.
272          */
273         if (fd->handler) {
274                 hfi1_mmu_rb_unregister(fd->handler);
275         } else {
276                 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
277                         unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
278                 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
279                         unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
280         }
281
282         kfree(fd->invalid_tids);
283         fd->invalid_tids = NULL;
284
285         kfree(fd->entry_to_rb);
286         fd->entry_to_rb = NULL;
287         return 0;
288 }
289
290 /*
291  * Write an "empty" RcvArray entry.
292  * This function exists so the TID registaration code can use it
293  * to write to unused/unneeded entries and still take advantage
294  * of the WC performance improvements. The HFI will ignore this
295  * write to the RcvArray entry.
296  */
297 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
298 {
299         /*
300          * Doing the WC fill writes only makes sense if the device is
301          * present and the RcvArray has been mapped as WC memory.
302          */
303         if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
304                 writeq(0, dd->rcvarray_wc + (index * 8));
305 }
306
307 /*
308  * RcvArray entry allocation for Expected Receives is done by the
309  * following algorithm:
310  *
311  * The context keeps 3 lists of groups of RcvArray entries:
312  *   1. List of empty groups - tid_group_list
313  *      This list is created during user context creation and
314  *      contains elements which describe sets (of 8) of empty
315  *      RcvArray entries.
316  *   2. List of partially used groups - tid_used_list
317  *      This list contains sets of RcvArray entries which are
318  *      not completely used up. Another mapping request could
319  *      use some of all of the remaining entries.
320  *   3. List of full groups - tid_full_list
321  *      This is the list where sets that are completely used
322  *      up go.
323  *
324  * An attempt to optimize the usage of RcvArray entries is
325  * made by finding all sets of physically contiguous pages in a
326  * user's buffer.
327  * These physically contiguous sets are further split into
328  * sizes supported by the receive engine of the HFI. The
329  * resulting sets of pages are stored in struct tid_pageset,
330  * which describes the sets as:
331  *    * .count - number of pages in this set
332  *    * .idx - starting index into struct page ** array
333  *                    of this set
334  *
335  * From this point on, the algorithm deals with the page sets
336  * described above. The number of pagesets is divided by the
337  * RcvArray group size to produce the number of full groups
338  * needed.
339  *
340  * Groups from the 3 lists are manipulated using the following
341  * rules:
342  *   1. For each set of 8 pagesets, a complete group from
343  *      tid_group_list is taken, programmed, and moved to
344  *      the tid_full_list list.
345  *   2. For all remaining pagesets:
346  *      2.1 If the tid_used_list is empty and the tid_group_list
347  *          is empty, stop processing pageset and return only
348  *          what has been programmed up to this point.
349  *      2.2 If the tid_used_list is empty and the tid_group_list
350  *          is not empty, move a group from tid_group_list to
351  *          tid_used_list.
352  *      2.3 For each group is tid_used_group, program as much as
353  *          can fit into the group. If the group becomes fully
354  *          used, move it to tid_full_list.
355  */
356 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
357 {
358         int ret = 0, need_group = 0, pinned;
359         struct hfi1_filedata *fd = fp->private_data;
360         struct hfi1_ctxtdata *uctxt = fd->uctxt;
361         struct hfi1_devdata *dd = uctxt->dd;
362         unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
363                 tididx = 0, mapped, mapped_pages = 0;
364         unsigned long vaddr = tinfo->vaddr;
365         struct page **pages = NULL;
366         u32 *tidlist = NULL;
367         struct tid_pageset *pagesets = NULL;
368
369         /* Get the number of pages the user buffer spans */
370         npages = num_user_pages(vaddr, tinfo->length);
371         if (!npages)
372                 return -EINVAL;
373
374         if (npages > uctxt->expected_count) {
375                 dd_dev_err(dd, "Expected buffer too big\n");
376                 return -EINVAL;
377         }
378
379         /* Verify that access is OK for the user buffer */
380         if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
381                        npages * PAGE_SIZE)) {
382                 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
383                            (void *)vaddr, npages);
384                 return -EFAULT;
385         }
386
387         pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
388                            GFP_KERNEL);
389         if (!pagesets)
390                 return -ENOMEM;
391
392         /* Allocate the array of struct page pointers needed for pinning */
393         pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
394         if (!pages) {
395                 ret = -ENOMEM;
396                 goto bail;
397         }
398
399         /*
400          * Pin all the pages of the user buffer. If we can't pin all the
401          * pages, accept the amount pinned so far and program only that.
402          * User space knows how to deal with partially programmed buffers.
403          */
404         if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
405                 ret = -ENOMEM;
406                 goto bail;
407         }
408
409         pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
410         if (pinned <= 0) {
411                 ret = pinned;
412                 goto bail;
413         }
414         fd->tid_n_pinned += npages;
415
416         /* Find sets of physically contiguous pages */
417         npagesets = find_phys_blocks(pages, pinned, pagesets);
418
419         /*
420          * We don't need to access this under a lock since tid_used is per
421          * process and the same process cannot be in hfi1_user_exp_rcv_clear()
422          * and hfi1_user_exp_rcv_setup() at the same time.
423          */
424         spin_lock(&fd->tid_lock);
425         if (fd->tid_used + npagesets > fd->tid_limit)
426                 pageset_count = fd->tid_limit - fd->tid_used;
427         else
428                 pageset_count = npagesets;
429         spin_unlock(&fd->tid_lock);
430
431         if (!pageset_count)
432                 goto bail;
433
434         ngroups = pageset_count / dd->rcv_entries.group_size;
435         tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
436         if (!tidlist) {
437                 ret = -ENOMEM;
438                 goto nomem;
439         }
440
441         tididx = 0;
442
443         /*
444          * From this point on, we are going to be using shared (between master
445          * and subcontexts) context resources. We need to take the lock.
446          */
447         mutex_lock(&uctxt->exp_lock);
448         /*
449          * The first step is to program the RcvArray entries which are complete
450          * groups.
451          */
452         while (ngroups && uctxt->tid_group_list.count) {
453                 struct tid_group *grp =
454                         tid_group_pop(&uctxt->tid_group_list);
455
456                 ret = program_rcvarray(fp, vaddr, grp, pagesets,
457                                        pageidx, dd->rcv_entries.group_size,
458                                        pages, tidlist, &tididx, &mapped);
459                 /*
460                  * If there was a failure to program the RcvArray
461                  * entries for the entire group, reset the grp fields
462                  * and add the grp back to the free group list.
463                  */
464                 if (ret <= 0) {
465                         tid_group_add_tail(grp, &uctxt->tid_group_list);
466                         hfi1_cdbg(TID,
467                                   "Failed to program RcvArray group %d", ret);
468                         goto unlock;
469                 }
470
471                 tid_group_add_tail(grp, &uctxt->tid_full_list);
472                 ngroups--;
473                 pageidx += ret;
474                 mapped_pages += mapped;
475         }
476
477         while (pageidx < pageset_count) {
478                 struct tid_group *grp, *ptr;
479                 /*
480                  * If we don't have any partially used tid groups, check
481                  * if we have empty groups. If so, take one from there and
482                  * put in the partially used list.
483                  */
484                 if (!uctxt->tid_used_list.count || need_group) {
485                         if (!uctxt->tid_group_list.count)
486                                 goto unlock;
487
488                         grp = tid_group_pop(&uctxt->tid_group_list);
489                         tid_group_add_tail(grp, &uctxt->tid_used_list);
490                         need_group = 0;
491                 }
492                 /*
493                  * There is an optimization opportunity here - instead of
494                  * fitting as many page sets as we can, check for a group
495                  * later on in the list that could fit all of them.
496                  */
497                 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
498                                          list) {
499                         unsigned use = min_t(unsigned, pageset_count - pageidx,
500                                              grp->size - grp->used);
501
502                         ret = program_rcvarray(fp, vaddr, grp, pagesets,
503                                                pageidx, use, pages, tidlist,
504                                                &tididx, &mapped);
505                         if (ret < 0) {
506                                 hfi1_cdbg(TID,
507                                           "Failed to program RcvArray entries %d",
508                                           ret);
509                                 ret = -EFAULT;
510                                 goto unlock;
511                         } else if (ret > 0) {
512                                 if (grp->used == grp->size)
513                                         tid_group_move(grp,
514                                                        &uctxt->tid_used_list,
515                                                        &uctxt->tid_full_list);
516                                 pageidx += ret;
517                                 mapped_pages += mapped;
518                                 need_group = 0;
519                                 /* Check if we are done so we break out early */
520                                 if (pageidx >= pageset_count)
521                                         break;
522                         } else if (WARN_ON(ret == 0)) {
523                                 /*
524                                  * If ret is 0, we did not program any entries
525                                  * into this group, which can only happen if
526                                  * we've screwed up the accounting somewhere.
527                                  * Warn and try to continue.
528                                  */
529                                 need_group = 1;
530                         }
531                 }
532         }
533 unlock:
534         mutex_unlock(&uctxt->exp_lock);
535 nomem:
536         hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
537                   mapped_pages, ret);
538         if (tididx) {
539                 spin_lock(&fd->tid_lock);
540                 fd->tid_used += tididx;
541                 spin_unlock(&fd->tid_lock);
542                 tinfo->tidcnt = tididx;
543                 tinfo->length = mapped_pages * PAGE_SIZE;
544
545                 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
546                                  tidlist, sizeof(tidlist[0]) * tididx)) {
547                         /*
548                          * On failure to copy to the user level, we need to undo
549                          * everything done so far so we don't leak resources.
550                          */
551                         tinfo->tidlist = (unsigned long)&tidlist;
552                         hfi1_user_exp_rcv_clear(fp, tinfo);
553                         tinfo->tidlist = 0;
554                         ret = -EFAULT;
555                         goto bail;
556                 }
557         }
558
559         /*
560          * If not everything was mapped (due to insufficient RcvArray entries,
561          * for example), unpin all unmapped pages so we can pin them nex time.
562          */
563         if (mapped_pages != pinned) {
564                 hfi1_release_user_pages(fd->mm, &pages[mapped_pages],
565                                         pinned - mapped_pages,
566                                         false);
567                 fd->tid_n_pinned -= pinned - mapped_pages;
568         }
569 bail:
570         kfree(pagesets);
571         kfree(pages);
572         kfree(tidlist);
573         return ret > 0 ? 0 : ret;
574 }
575
576 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
577 {
578         int ret = 0;
579         struct hfi1_filedata *fd = fp->private_data;
580         struct hfi1_ctxtdata *uctxt = fd->uctxt;
581         u32 *tidinfo;
582         unsigned tididx;
583
584         tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
585         if (!tidinfo)
586                 return -ENOMEM;
587
588         if (copy_from_user(tidinfo, (void __user *)(unsigned long)
589                            tinfo->tidlist, sizeof(tidinfo[0]) *
590                            tinfo->tidcnt)) {
591                 ret = -EFAULT;
592                 goto done;
593         }
594
595         mutex_lock(&uctxt->exp_lock);
596         for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
597                 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
598                 if (ret) {
599                         hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
600                                   ret);
601                         break;
602                 }
603         }
604         spin_lock(&fd->tid_lock);
605         fd->tid_used -= tididx;
606         spin_unlock(&fd->tid_lock);
607         tinfo->tidcnt = tididx;
608         mutex_unlock(&uctxt->exp_lock);
609 done:
610         kfree(tidinfo);
611         return ret;
612 }
613
614 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
615 {
616         struct hfi1_filedata *fd = fp->private_data;
617         struct hfi1_ctxtdata *uctxt = fd->uctxt;
618         unsigned long *ev = uctxt->dd->events +
619                 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
620                   HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
621         u32 *array;
622         int ret = 0;
623
624         if (!fd->invalid_tids)
625                 return -EINVAL;
626
627         /*
628          * copy_to_user() can sleep, which will leave the invalid_lock
629          * locked and cause the MMU notifier to be blocked on the lock
630          * for a long time.
631          * Copy the data to a local buffer so we can release the lock.
632          */
633         array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
634         if (!array)
635                 return -EFAULT;
636
637         spin_lock(&fd->invalid_lock);
638         if (fd->invalid_tid_idx) {
639                 memcpy(array, fd->invalid_tids, sizeof(*array) *
640                        fd->invalid_tid_idx);
641                 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
642                        fd->invalid_tid_idx);
643                 tinfo->tidcnt = fd->invalid_tid_idx;
644                 fd->invalid_tid_idx = 0;
645                 /*
646                  * Reset the user flag while still holding the lock.
647                  * Otherwise, PSM can miss events.
648                  */
649                 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
650         } else {
651                 tinfo->tidcnt = 0;
652         }
653         spin_unlock(&fd->invalid_lock);
654
655         if (tinfo->tidcnt) {
656                 if (copy_to_user((void __user *)tinfo->tidlist,
657                                  array, sizeof(*array) * tinfo->tidcnt))
658                         ret = -EFAULT;
659         }
660         kfree(array);
661
662         return ret;
663 }
664
665 static u32 find_phys_blocks(struct page **pages, unsigned npages,
666                             struct tid_pageset *list)
667 {
668         unsigned pagecount, pageidx, setcount = 0, i;
669         unsigned long pfn, this_pfn;
670
671         if (!npages)
672                 return 0;
673
674         /*
675          * Look for sets of physically contiguous pages in the user buffer.
676          * This will allow us to optimize Expected RcvArray entry usage by
677          * using the bigger supported sizes.
678          */
679         pfn = page_to_pfn(pages[0]);
680         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
681                 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
682
683                 /*
684                  * If the pfn's are not sequential, pages are not physically
685                  * contiguous.
686                  */
687                 if (this_pfn != ++pfn) {
688                         /*
689                          * At this point we have to loop over the set of
690                          * physically contiguous pages and break them down it
691                          * sizes supported by the HW.
692                          * There are two main constraints:
693                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
694                          *        If the total set size is bigger than that
695                          *        program only a MAX_EXPECTED_BUFFER chunk.
696                          *     2. The buffer size has to be a power of two. If
697                          *        it is not, round down to the closes power of
698                          *        2 and program that size.
699                          */
700                         while (pagecount) {
701                                 int maxpages = pagecount;
702                                 u32 bufsize = pagecount * PAGE_SIZE;
703
704                                 if (bufsize > MAX_EXPECTED_BUFFER)
705                                         maxpages =
706                                                 MAX_EXPECTED_BUFFER >>
707                                                 PAGE_SHIFT;
708                                 else if (!is_power_of_2(bufsize))
709                                         maxpages =
710                                                 rounddown_pow_of_two(bufsize) >>
711                                                 PAGE_SHIFT;
712
713                                 list[setcount].idx = pageidx;
714                                 list[setcount].count = maxpages;
715                                 pagecount -= maxpages;
716                                 pageidx += maxpages;
717                                 setcount++;
718                         }
719                         pageidx = i;
720                         pagecount = 1;
721                         pfn = this_pfn;
722                 } else {
723                         pagecount++;
724                 }
725         }
726         return setcount;
727 }
728
729 /**
730  * program_rcvarray() - program an RcvArray group with receive buffers
731  * @fp: file pointer
732  * @vaddr: starting user virtual address
733  * @grp: RcvArray group
734  * @sets: array of struct tid_pageset holding information on physically
735  *        contiguous chunks from the user buffer
736  * @start: starting index into sets array
737  * @count: number of struct tid_pageset's to program
738  * @pages: an array of struct page * for the user buffer
739  * @tidlist: the array of u32 elements when the information about the
740  *           programmed RcvArray entries is to be encoded.
741  * @tididx: starting offset into tidlist
742  * @pmapped: (output parameter) number of pages programmed into the RcvArray
743  *           entries.
744  *
745  * This function will program up to 'count' number of RcvArray entries from the
746  * group 'grp'. To make best use of write-combining writes, the function will
747  * perform writes to the unused RcvArray entries which will be ignored by the
748  * HW. Each RcvArray entry will be programmed with a physically contiguous
749  * buffer chunk from the user's virtual buffer.
750  *
751  * Return:
752  * -EINVAL if the requested count is larger than the size of the group,
753  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
754  * number of RcvArray entries programmed.
755  */
756 static int program_rcvarray(struct file *fp, unsigned long vaddr,
757                             struct tid_group *grp,
758                             struct tid_pageset *sets,
759                             unsigned start, u16 count, struct page **pages,
760                             u32 *tidlist, unsigned *tididx, unsigned *pmapped)
761 {
762         struct hfi1_filedata *fd = fp->private_data;
763         struct hfi1_ctxtdata *uctxt = fd->uctxt;
764         struct hfi1_devdata *dd = uctxt->dd;
765         u16 idx;
766         u32 tidinfo = 0, rcventry, useidx = 0;
767         int mapped = 0;
768
769         /* Count should never be larger than the group size */
770         if (count > grp->size)
771                 return -EINVAL;
772
773         /* Find the first unused entry in the group */
774         for (idx = 0; idx < grp->size; idx++) {
775                 if (!(grp->map & (1 << idx))) {
776                         useidx = idx;
777                         break;
778                 }
779                 rcv_array_wc_fill(dd, grp->base + idx);
780         }
781
782         idx = 0;
783         while (idx < count) {
784                 u16 npages, pageidx, setidx = start + idx;
785                 int ret = 0;
786
787                 /*
788                  * If this entry in the group is used, move to the next one.
789                  * If we go past the end of the group, exit the loop.
790                  */
791                 if (useidx >= grp->size) {
792                         break;
793                 } else if (grp->map & (1 << useidx)) {
794                         rcv_array_wc_fill(dd, grp->base + useidx);
795                         useidx++;
796                         continue;
797                 }
798
799                 rcventry = grp->base + useidx;
800                 npages = sets[setidx].count;
801                 pageidx = sets[setidx].idx;
802
803                 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
804                                          rcventry, grp, pages + pageidx,
805                                          npages);
806                 if (ret)
807                         return ret;
808                 mapped += npages;
809
810                 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
811                         EXP_TID_SET(LEN, npages);
812                 tidlist[(*tididx)++] = tidinfo;
813                 grp->used++;
814                 grp->map |= 1 << useidx++;
815                 idx++;
816         }
817
818         /* Fill the rest of the group with "blank" writes */
819         for (; useidx < grp->size; useidx++)
820                 rcv_array_wc_fill(dd, grp->base + useidx);
821         *pmapped = mapped;
822         return idx;
823 }
824
825 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
826                               u32 rcventry, struct tid_group *grp,
827                               struct page **pages, unsigned npages)
828 {
829         int ret;
830         struct hfi1_filedata *fd = fp->private_data;
831         struct hfi1_ctxtdata *uctxt = fd->uctxt;
832         struct tid_rb_node *node;
833         struct hfi1_devdata *dd = uctxt->dd;
834         dma_addr_t phys;
835
836         /*
837          * Allocate the node first so we can handle a potential
838          * failure before we've programmed anything.
839          */
840         node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
841                        GFP_KERNEL);
842         if (!node)
843                 return -ENOMEM;
844
845         phys = pci_map_single(dd->pcidev,
846                               __va(page_to_phys(pages[0])),
847                               npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
848         if (dma_mapping_error(&dd->pcidev->dev, phys)) {
849                 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
850                            phys);
851                 kfree(node);
852                 return -EFAULT;
853         }
854
855         node->mmu.addr = vaddr;
856         node->mmu.len = npages * PAGE_SIZE;
857         node->phys = page_to_phys(pages[0]);
858         node->npages = npages;
859         node->rcventry = rcventry;
860         node->dma_addr = phys;
861         node->grp = grp;
862         node->freed = false;
863         memcpy(node->pages, pages, sizeof(struct page *) * npages);
864
865         if (!fd->handler)
866                 ret = tid_rb_insert(fd, &node->mmu);
867         else
868                 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
869
870         if (ret) {
871                 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
872                           node->rcventry, node->mmu.addr, node->phys, ret);
873                 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
874                                  PCI_DMA_FROMDEVICE);
875                 kfree(node);
876                 return -EFAULT;
877         }
878         hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
879         trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
880                                node->mmu.addr, node->phys, phys);
881         return 0;
882 }
883
884 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
885                               struct tid_group **grp)
886 {
887         struct hfi1_filedata *fd = fp->private_data;
888         struct hfi1_ctxtdata *uctxt = fd->uctxt;
889         struct hfi1_devdata *dd = uctxt->dd;
890         struct tid_rb_node *node;
891         u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
892         u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
893
894         if (tididx >= uctxt->expected_count) {
895                 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
896                            tididx, uctxt->ctxt);
897                 return -EINVAL;
898         }
899
900         if (tidctrl == 0x3)
901                 return -EINVAL;
902
903         rcventry = tididx + (tidctrl - 1);
904
905         node = fd->entry_to_rb[rcventry];
906         if (!node || node->rcventry != (uctxt->expected_base + rcventry))
907                 return -EBADF;
908
909         if (grp)
910                 *grp = node->grp;
911
912         if (!fd->handler)
913                 cacheless_tid_rb_remove(fd, node);
914         else
915                 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
916
917         return 0;
918 }
919
920 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
921 {
922         struct hfi1_ctxtdata *uctxt = fd->uctxt;
923         struct hfi1_devdata *dd = uctxt->dd;
924
925         trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
926                                  node->npages, node->mmu.addr, node->phys,
927                                  node->dma_addr);
928
929         hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
930         /*
931          * Make sure device has seen the write before we unpin the
932          * pages.
933          */
934         flush_wc();
935
936         pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
937                          PCI_DMA_FROMDEVICE);
938         hfi1_release_user_pages(fd->mm, node->pages, node->npages, true);
939         fd->tid_n_pinned -= node->npages;
940
941         node->grp->used--;
942         node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
943
944         if (node->grp->used == node->grp->size - 1)
945                 tid_group_move(node->grp, &uctxt->tid_full_list,
946                                &uctxt->tid_used_list);
947         else if (!node->grp->used)
948                 tid_group_move(node->grp, &uctxt->tid_used_list,
949                                &uctxt->tid_group_list);
950         kfree(node);
951 }
952
953 /*
954  * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
955  * clearing nodes in the non-cached case.
956  */
957 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
958                             struct exp_tid_set *set,
959                             struct hfi1_filedata *fd)
960 {
961         struct tid_group *grp, *ptr;
962         int i;
963
964         list_for_each_entry_safe(grp, ptr, &set->list, list) {
965                 list_del_init(&grp->list);
966
967                 for (i = 0; i < grp->size; i++) {
968                         if (grp->map & (1 << i)) {
969                                 u16 rcventry = grp->base + i;
970                                 struct tid_rb_node *node;
971
972                                 node = fd->entry_to_rb[rcventry -
973                                                           uctxt->expected_base];
974                                 if (!node || node->rcventry != rcventry)
975                                         continue;
976
977                                 cacheless_tid_rb_remove(fd, node);
978                         }
979                 }
980         }
981 }
982
983 /*
984  * Always return 0 from this function.  A non-zero return indicates that the
985  * remove operation will be called and that memory should be unpinned.
986  * However, the driver cannot unpin out from under PSM.  Instead, retain the
987  * memory (by returning 0) and inform PSM that the memory is going away.  PSM
988  * will call back later when it has removed the memory from its list.
989  */
990 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
991 {
992         struct hfi1_filedata *fdata = arg;
993         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
994         struct tid_rb_node *node =
995                 container_of(mnode, struct tid_rb_node, mmu);
996
997         if (node->freed)
998                 return 0;
999
1000         trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
1001                                  node->rcventry, node->npages, node->dma_addr);
1002         node->freed = true;
1003
1004         spin_lock(&fdata->invalid_lock);
1005         if (fdata->invalid_tid_idx < uctxt->expected_count) {
1006                 fdata->invalid_tids[fdata->invalid_tid_idx] =
1007                         rcventry2tidinfo(node->rcventry - uctxt->expected_base);
1008                 fdata->invalid_tids[fdata->invalid_tid_idx] |=
1009                         EXP_TID_SET(LEN, node->npages);
1010                 if (!fdata->invalid_tid_idx) {
1011                         unsigned long *ev;
1012
1013                         /*
1014                          * hfi1_set_uevent_bits() sets a user event flag
1015                          * for all processes. Because calling into the
1016                          * driver to process TID cache invalidations is
1017                          * expensive and TID cache invalidations are
1018                          * handled on a per-process basis, we can
1019                          * optimize this to set the flag only for the
1020                          * process in question.
1021                          */
1022                         ev = uctxt->dd->events +
1023                                 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1024                                   HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1025                         set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1026                 }
1027                 fdata->invalid_tid_idx++;
1028         }
1029         spin_unlock(&fdata->invalid_lock);
1030         return 0;
1031 }
1032
1033 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
1034 {
1035         struct hfi1_filedata *fdata = arg;
1036         struct tid_rb_node *tnode =
1037                 container_of(node, struct tid_rb_node, mmu);
1038         u32 base = fdata->uctxt->expected_base;
1039
1040         fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1041         return 0;
1042 }
1043
1044 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
1045                                     struct tid_rb_node *tnode)
1046 {
1047         u32 base = fdata->uctxt->expected_base;
1048
1049         fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1050         clear_tid_node(fdata, tnode);
1051 }
1052
1053 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
1054 {
1055         struct hfi1_filedata *fdata = arg;
1056         struct tid_rb_node *tnode =
1057                 container_of(node, struct tid_rb_node, mmu);
1058
1059         cacheless_tid_rb_remove(fdata, tnode);
1060 }