GNU Linux-libre 4.19.207-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
1 /*
2  * Copyright(c) 2015-2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48 #include <linux/string.h>
49
50 #include "mmu_rb.h"
51 #include "user_exp_rcv.h"
52 #include "trace.h"
53
54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
55                             struct exp_tid_set *set,
56                             struct hfi1_filedata *fd);
57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
58 static int set_rcvarray_entry(struct hfi1_filedata *fd,
59                               struct tid_user_buf *tbuf,
60                               u32 rcventry, struct tid_group *grp,
61                               u16 pageidx, unsigned int npages);
62 static int tid_rb_insert(void *arg, struct mmu_rb_node *node);
63 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
64                                     struct tid_rb_node *tnode);
65 static void tid_rb_remove(void *arg, struct mmu_rb_node *node);
66 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode);
67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
68                             struct tid_group *grp,
69                             unsigned int start, u16 count,
70                             u32 *tidlist, unsigned int *tididx,
71                             unsigned int *pmapped);
72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
73                               struct tid_group **grp);
74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
75
76 static struct mmu_rb_ops tid_rb_ops = {
77         .insert = tid_rb_insert,
78         .remove = tid_rb_remove,
79         .invalidate = tid_rb_invalidate
80 };
81
82 /*
83  * Initialize context and file private data needed for Expected
84  * receive caching. This needs to be done after the context has
85  * been configured with the eager/expected RcvEntry counts.
86  */
87 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
88                            struct hfi1_ctxtdata *uctxt)
89 {
90         struct hfi1_devdata *dd = uctxt->dd;
91         int ret = 0;
92
93         fd->entry_to_rb = kcalloc(uctxt->expected_count,
94                                   sizeof(struct rb_node *),
95                                   GFP_KERNEL);
96         if (!fd->entry_to_rb)
97                 return -ENOMEM;
98
99         if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
100                 fd->invalid_tid_idx = 0;
101                 fd->invalid_tids = kcalloc(uctxt->expected_count,
102                                            sizeof(*fd->invalid_tids),
103                                            GFP_KERNEL);
104                 if (!fd->invalid_tids) {
105                         kfree(fd->entry_to_rb);
106                         fd->entry_to_rb = NULL;
107                         return -ENOMEM;
108                 }
109
110                 /*
111                  * Register MMU notifier callbacks. If the registration
112                  * fails, continue without TID caching for this context.
113                  */
114                 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
115                                            dd->pport->hfi1_wq,
116                                            &fd->handler);
117                 if (ret) {
118                         dd_dev_info(dd,
119                                     "Failed MMU notifier registration %d\n",
120                                     ret);
121                         ret = 0;
122                 }
123         }
124
125         /*
126          * PSM does not have a good way to separate, count, and
127          * effectively enforce a limit on RcvArray entries used by
128          * subctxts (when context sharing is used) when TID caching
129          * is enabled. To help with that, we calculate a per-process
130          * RcvArray entry share and enforce that.
131          * If TID caching is not in use, PSM deals with usage on its
132          * own. In that case, we allow any subctxt to take all of the
133          * entries.
134          *
135          * Make sure that we set the tid counts only after successful
136          * init.
137          */
138         spin_lock(&fd->tid_lock);
139         if (uctxt->subctxt_cnt && fd->handler) {
140                 u16 remainder;
141
142                 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
143                 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
144                 if (remainder && fd->subctxt < remainder)
145                         fd->tid_limit++;
146         } else {
147                 fd->tid_limit = uctxt->expected_count;
148         }
149         spin_unlock(&fd->tid_lock);
150
151         return ret;
152 }
153
154 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
155 {
156         struct hfi1_ctxtdata *uctxt = fd->uctxt;
157
158         /*
159          * The notifier would have been removed when the process'es mm
160          * was freed.
161          */
162         if (fd->handler) {
163                 hfi1_mmu_rb_unregister(fd->handler);
164         } else {
165                 mutex_lock(&uctxt->exp_mutex);
166                 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
167                         unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
168                 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
169                         unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
170                 mutex_unlock(&uctxt->exp_mutex);
171         }
172
173         kfree(fd->invalid_tids);
174         fd->invalid_tids = NULL;
175
176         kfree(fd->entry_to_rb);
177         fd->entry_to_rb = NULL;
178 }
179
180 /**
181  * Release pinned receive buffer pages.
182  *
183  * @mapped - true if the pages have been DMA mapped. false otherwise.
184  * @idx - Index of the first page to unpin.
185  * @npages - No of pages to unpin.
186  *
187  * If the pages have been DMA mapped (indicated by mapped parameter), their
188  * info will be passed via a struct tid_rb_node. If they haven't been mapped,
189  * their info will be passed via a struct tid_user_buf.
190  */
191 static void unpin_rcv_pages(struct hfi1_filedata *fd,
192                             struct tid_user_buf *tidbuf,
193                             struct tid_rb_node *node,
194                             unsigned int idx,
195                             unsigned int npages,
196                             bool mapped)
197 {
198         struct page **pages;
199         struct hfi1_devdata *dd = fd->uctxt->dd;
200
201         if (mapped) {
202                 pci_unmap_single(dd->pcidev, node->dma_addr,
203                                  node->mmu.len, PCI_DMA_FROMDEVICE);
204                 pages = &node->pages[idx];
205         } else {
206                 pages = &tidbuf->pages[idx];
207         }
208         hfi1_release_user_pages(fd->mm, pages, npages, mapped);
209         fd->tid_n_pinned -= npages;
210 }
211
212 /**
213  * Pin receive buffer pages.
214  */
215 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
216 {
217         int pinned;
218         unsigned int npages;
219         unsigned long vaddr = tidbuf->vaddr;
220         struct page **pages = NULL;
221         struct hfi1_devdata *dd = fd->uctxt->dd;
222
223         /* Get the number of pages the user buffer spans */
224         npages = num_user_pages(vaddr, tidbuf->length);
225         if (!npages)
226                 return -EINVAL;
227
228         if (npages > fd->uctxt->expected_count) {
229                 dd_dev_err(dd, "Expected buffer too big\n");
230                 return -EINVAL;
231         }
232
233         /* Verify that access is OK for the user buffer */
234         if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
235                        npages * PAGE_SIZE)) {
236                 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
237                            (void *)vaddr, npages);
238                 return -EFAULT;
239         }
240         /* Allocate the array of struct page pointers needed for pinning */
241         pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
242         if (!pages)
243                 return -ENOMEM;
244
245         /*
246          * Pin all the pages of the user buffer. If we can't pin all the
247          * pages, accept the amount pinned so far and program only that.
248          * User space knows how to deal with partially programmed buffers.
249          */
250         if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
251                 kfree(pages);
252                 return -ENOMEM;
253         }
254
255         pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
256         if (pinned <= 0) {
257                 kfree(pages);
258                 return pinned;
259         }
260         tidbuf->pages = pages;
261         tidbuf->npages = npages;
262         fd->tid_n_pinned += pinned;
263         return pinned;
264 }
265
266 /*
267  * RcvArray entry allocation for Expected Receives is done by the
268  * following algorithm:
269  *
270  * The context keeps 3 lists of groups of RcvArray entries:
271  *   1. List of empty groups - tid_group_list
272  *      This list is created during user context creation and
273  *      contains elements which describe sets (of 8) of empty
274  *      RcvArray entries.
275  *   2. List of partially used groups - tid_used_list
276  *      This list contains sets of RcvArray entries which are
277  *      not completely used up. Another mapping request could
278  *      use some of all of the remaining entries.
279  *   3. List of full groups - tid_full_list
280  *      This is the list where sets that are completely used
281  *      up go.
282  *
283  * An attempt to optimize the usage of RcvArray entries is
284  * made by finding all sets of physically contiguous pages in a
285  * user's buffer.
286  * These physically contiguous sets are further split into
287  * sizes supported by the receive engine of the HFI. The
288  * resulting sets of pages are stored in struct tid_pageset,
289  * which describes the sets as:
290  *    * .count - number of pages in this set
291  *    * .idx - starting index into struct page ** array
292  *                    of this set
293  *
294  * From this point on, the algorithm deals with the page sets
295  * described above. The number of pagesets is divided by the
296  * RcvArray group size to produce the number of full groups
297  * needed.
298  *
299  * Groups from the 3 lists are manipulated using the following
300  * rules:
301  *   1. For each set of 8 pagesets, a complete group from
302  *      tid_group_list is taken, programmed, and moved to
303  *      the tid_full_list list.
304  *   2. For all remaining pagesets:
305  *      2.1 If the tid_used_list is empty and the tid_group_list
306  *          is empty, stop processing pageset and return only
307  *          what has been programmed up to this point.
308  *      2.2 If the tid_used_list is empty and the tid_group_list
309  *          is not empty, move a group from tid_group_list to
310  *          tid_used_list.
311  *      2.3 For each group is tid_used_group, program as much as
312  *          can fit into the group. If the group becomes fully
313  *          used, move it to tid_full_list.
314  */
315 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
316                             struct hfi1_tid_info *tinfo)
317 {
318         int ret = 0, need_group = 0, pinned;
319         struct hfi1_ctxtdata *uctxt = fd->uctxt;
320         struct hfi1_devdata *dd = uctxt->dd;
321         unsigned int ngroups, pageidx = 0, pageset_count,
322                 tididx = 0, mapped, mapped_pages = 0;
323         u32 *tidlist = NULL;
324         struct tid_user_buf *tidbuf;
325
326         if (!PAGE_ALIGNED(tinfo->vaddr))
327                 return -EINVAL;
328
329         tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
330         if (!tidbuf)
331                 return -ENOMEM;
332
333         tidbuf->vaddr = tinfo->vaddr;
334         tidbuf->length = tinfo->length;
335         tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
336                                 GFP_KERNEL);
337         if (!tidbuf->psets) {
338                 kfree(tidbuf);
339                 return -ENOMEM;
340         }
341
342         pinned = pin_rcv_pages(fd, tidbuf);
343         if (pinned <= 0) {
344                 kfree(tidbuf->psets);
345                 kfree(tidbuf);
346                 return pinned;
347         }
348
349         /* Find sets of physically contiguous pages */
350         tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
351
352         /*
353          * We don't need to access this under a lock since tid_used is per
354          * process and the same process cannot be in hfi1_user_exp_rcv_clear()
355          * and hfi1_user_exp_rcv_setup() at the same time.
356          */
357         spin_lock(&fd->tid_lock);
358         if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
359                 pageset_count = fd->tid_limit - fd->tid_used;
360         else
361                 pageset_count = tidbuf->n_psets;
362         spin_unlock(&fd->tid_lock);
363
364         if (!pageset_count)
365                 goto bail;
366
367         ngroups = pageset_count / dd->rcv_entries.group_size;
368         tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
369         if (!tidlist) {
370                 ret = -ENOMEM;
371                 goto nomem;
372         }
373
374         tididx = 0;
375
376         /*
377          * From this point on, we are going to be using shared (between master
378          * and subcontexts) context resources. We need to take the lock.
379          */
380         mutex_lock(&uctxt->exp_mutex);
381         /*
382          * The first step is to program the RcvArray entries which are complete
383          * groups.
384          */
385         while (ngroups && uctxt->tid_group_list.count) {
386                 struct tid_group *grp =
387                         tid_group_pop(&uctxt->tid_group_list);
388
389                 ret = program_rcvarray(fd, tidbuf, grp,
390                                        pageidx, dd->rcv_entries.group_size,
391                                        tidlist, &tididx, &mapped);
392                 /*
393                  * If there was a failure to program the RcvArray
394                  * entries for the entire group, reset the grp fields
395                  * and add the grp back to the free group list.
396                  */
397                 if (ret <= 0) {
398                         tid_group_add_tail(grp, &uctxt->tid_group_list);
399                         hfi1_cdbg(TID,
400                                   "Failed to program RcvArray group %d", ret);
401                         goto unlock;
402                 }
403
404                 tid_group_add_tail(grp, &uctxt->tid_full_list);
405                 ngroups--;
406                 pageidx += ret;
407                 mapped_pages += mapped;
408         }
409
410         while (pageidx < pageset_count) {
411                 struct tid_group *grp, *ptr;
412                 /*
413                  * If we don't have any partially used tid groups, check
414                  * if we have empty groups. If so, take one from there and
415                  * put in the partially used list.
416                  */
417                 if (!uctxt->tid_used_list.count || need_group) {
418                         if (!uctxt->tid_group_list.count)
419                                 goto unlock;
420
421                         grp = tid_group_pop(&uctxt->tid_group_list);
422                         tid_group_add_tail(grp, &uctxt->tid_used_list);
423                         need_group = 0;
424                 }
425                 /*
426                  * There is an optimization opportunity here - instead of
427                  * fitting as many page sets as we can, check for a group
428                  * later on in the list that could fit all of them.
429                  */
430                 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
431                                          list) {
432                         unsigned use = min_t(unsigned, pageset_count - pageidx,
433                                              grp->size - grp->used);
434
435                         ret = program_rcvarray(fd, tidbuf, grp,
436                                                pageidx, use, tidlist,
437                                                &tididx, &mapped);
438                         if (ret < 0) {
439                                 hfi1_cdbg(TID,
440                                           "Failed to program RcvArray entries %d",
441                                           ret);
442                                 goto unlock;
443                         } else if (ret > 0) {
444                                 if (grp->used == grp->size)
445                                         tid_group_move(grp,
446                                                        &uctxt->tid_used_list,
447                                                        &uctxt->tid_full_list);
448                                 pageidx += ret;
449                                 mapped_pages += mapped;
450                                 need_group = 0;
451                                 /* Check if we are done so we break out early */
452                                 if (pageidx >= pageset_count)
453                                         break;
454                         } else if (WARN_ON(ret == 0)) {
455                                 /*
456                                  * If ret is 0, we did not program any entries
457                                  * into this group, which can only happen if
458                                  * we've screwed up the accounting somewhere.
459                                  * Warn and try to continue.
460                                  */
461                                 need_group = 1;
462                         }
463                 }
464         }
465 unlock:
466         mutex_unlock(&uctxt->exp_mutex);
467 nomem:
468         hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
469                   mapped_pages, ret);
470         if (tididx) {
471                 spin_lock(&fd->tid_lock);
472                 fd->tid_used += tididx;
473                 spin_unlock(&fd->tid_lock);
474                 tinfo->tidcnt = tididx;
475                 tinfo->length = mapped_pages * PAGE_SIZE;
476
477                 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
478                                  tidlist, sizeof(tidlist[0]) * tididx)) {
479                         /*
480                          * On failure to copy to the user level, we need to undo
481                          * everything done so far so we don't leak resources.
482                          */
483                         tinfo->tidlist = (unsigned long)&tidlist;
484                         hfi1_user_exp_rcv_clear(fd, tinfo);
485                         tinfo->tidlist = 0;
486                         ret = -EFAULT;
487                         goto bail;
488                 }
489         }
490
491         /*
492          * If not everything was mapped (due to insufficient RcvArray entries,
493          * for example), unpin all unmapped pages so we can pin them nex time.
494          */
495         if (mapped_pages != pinned)
496                 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
497                                 (pinned - mapped_pages), false);
498 bail:
499         kfree(tidbuf->psets);
500         kfree(tidlist);
501         kfree(tidbuf->pages);
502         kfree(tidbuf);
503         return ret > 0 ? 0 : ret;
504 }
505
506 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
507                             struct hfi1_tid_info *tinfo)
508 {
509         int ret = 0;
510         struct hfi1_ctxtdata *uctxt = fd->uctxt;
511         u32 *tidinfo;
512         unsigned tididx;
513
514         if (unlikely(tinfo->tidcnt > fd->tid_used))
515                 return -EINVAL;
516
517         tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
518                               sizeof(tidinfo[0]) * tinfo->tidcnt);
519         if (IS_ERR(tidinfo))
520                 return PTR_ERR(tidinfo);
521
522         mutex_lock(&uctxt->exp_mutex);
523         for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
524                 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
525                 if (ret) {
526                         hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
527                                   ret);
528                         break;
529                 }
530         }
531         spin_lock(&fd->tid_lock);
532         fd->tid_used -= tididx;
533         spin_unlock(&fd->tid_lock);
534         tinfo->tidcnt = tididx;
535         mutex_unlock(&uctxt->exp_mutex);
536
537         kfree(tidinfo);
538         return ret;
539 }
540
541 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
542                               struct hfi1_tid_info *tinfo)
543 {
544         struct hfi1_ctxtdata *uctxt = fd->uctxt;
545         unsigned long *ev = uctxt->dd->events +
546                 (uctxt_offset(uctxt) + fd->subctxt);
547         u32 *array;
548         int ret = 0;
549
550         /*
551          * copy_to_user() can sleep, which will leave the invalid_lock
552          * locked and cause the MMU notifier to be blocked on the lock
553          * for a long time.
554          * Copy the data to a local buffer so we can release the lock.
555          */
556         array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
557         if (!array)
558                 return -EFAULT;
559
560         spin_lock(&fd->invalid_lock);
561         if (fd->invalid_tid_idx) {
562                 memcpy(array, fd->invalid_tids, sizeof(*array) *
563                        fd->invalid_tid_idx);
564                 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
565                        fd->invalid_tid_idx);
566                 tinfo->tidcnt = fd->invalid_tid_idx;
567                 fd->invalid_tid_idx = 0;
568                 /*
569                  * Reset the user flag while still holding the lock.
570                  * Otherwise, PSM can miss events.
571                  */
572                 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
573         } else {
574                 tinfo->tidcnt = 0;
575         }
576         spin_unlock(&fd->invalid_lock);
577
578         if (tinfo->tidcnt) {
579                 if (copy_to_user((void __user *)tinfo->tidlist,
580                                  array, sizeof(*array) * tinfo->tidcnt))
581                         ret = -EFAULT;
582         }
583         kfree(array);
584
585         return ret;
586 }
587
588 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
589 {
590         unsigned pagecount, pageidx, setcount = 0, i;
591         unsigned long pfn, this_pfn;
592         struct page **pages = tidbuf->pages;
593         struct tid_pageset *list = tidbuf->psets;
594
595         if (!npages)
596                 return 0;
597
598         /*
599          * Look for sets of physically contiguous pages in the user buffer.
600          * This will allow us to optimize Expected RcvArray entry usage by
601          * using the bigger supported sizes.
602          */
603         pfn = page_to_pfn(pages[0]);
604         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
605                 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
606
607                 /*
608                  * If the pfn's are not sequential, pages are not physically
609                  * contiguous.
610                  */
611                 if (this_pfn != ++pfn) {
612                         /*
613                          * At this point we have to loop over the set of
614                          * physically contiguous pages and break them down it
615                          * sizes supported by the HW.
616                          * There are two main constraints:
617                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
618                          *        If the total set size is bigger than that
619                          *        program only a MAX_EXPECTED_BUFFER chunk.
620                          *     2. The buffer size has to be a power of two. If
621                          *        it is not, round down to the closes power of
622                          *        2 and program that size.
623                          */
624                         while (pagecount) {
625                                 int maxpages = pagecount;
626                                 u32 bufsize = pagecount * PAGE_SIZE;
627
628                                 if (bufsize > MAX_EXPECTED_BUFFER)
629                                         maxpages =
630                                                 MAX_EXPECTED_BUFFER >>
631                                                 PAGE_SHIFT;
632                                 else if (!is_power_of_2(bufsize))
633                                         maxpages =
634                                                 rounddown_pow_of_two(bufsize) >>
635                                                 PAGE_SHIFT;
636
637                                 list[setcount].idx = pageidx;
638                                 list[setcount].count = maxpages;
639                                 pagecount -= maxpages;
640                                 pageidx += maxpages;
641                                 setcount++;
642                         }
643                         pageidx = i;
644                         pagecount = 1;
645                         pfn = this_pfn;
646                 } else {
647                         pagecount++;
648                 }
649         }
650         return setcount;
651 }
652
653 /**
654  * program_rcvarray() - program an RcvArray group with receive buffers
655  * @fd: filedata pointer
656  * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
657  *        virtual address, buffer length, page pointers, pagesets (array of
658  *        struct tid_pageset holding information on physically contiguous
659  *        chunks from the user buffer), and other fields.
660  * @grp: RcvArray group
661  * @start: starting index into sets array
662  * @count: number of struct tid_pageset's to program
663  * @tidlist: the array of u32 elements when the information about the
664  *           programmed RcvArray entries is to be encoded.
665  * @tididx: starting offset into tidlist
666  * @pmapped: (output parameter) number of pages programmed into the RcvArray
667  *           entries.
668  *
669  * This function will program up to 'count' number of RcvArray entries from the
670  * group 'grp'. To make best use of write-combining writes, the function will
671  * perform writes to the unused RcvArray entries which will be ignored by the
672  * HW. Each RcvArray entry will be programmed with a physically contiguous
673  * buffer chunk from the user's virtual buffer.
674  *
675  * Return:
676  * -EINVAL if the requested count is larger than the size of the group,
677  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
678  * number of RcvArray entries programmed.
679  */
680 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
681                             struct tid_group *grp,
682                             unsigned int start, u16 count,
683                             u32 *tidlist, unsigned int *tididx,
684                             unsigned int *pmapped)
685 {
686         struct hfi1_ctxtdata *uctxt = fd->uctxt;
687         struct hfi1_devdata *dd = uctxt->dd;
688         u16 idx;
689         u32 tidinfo = 0, rcventry, useidx = 0;
690         int mapped = 0;
691
692         /* Count should never be larger than the group size */
693         if (count > grp->size)
694                 return -EINVAL;
695
696         /* Find the first unused entry in the group */
697         for (idx = 0; idx < grp->size; idx++) {
698                 if (!(grp->map & (1 << idx))) {
699                         useidx = idx;
700                         break;
701                 }
702                 rcv_array_wc_fill(dd, grp->base + idx);
703         }
704
705         idx = 0;
706         while (idx < count) {
707                 u16 npages, pageidx, setidx = start + idx;
708                 int ret = 0;
709
710                 /*
711                  * If this entry in the group is used, move to the next one.
712                  * If we go past the end of the group, exit the loop.
713                  */
714                 if (useidx >= grp->size) {
715                         break;
716                 } else if (grp->map & (1 << useidx)) {
717                         rcv_array_wc_fill(dd, grp->base + useidx);
718                         useidx++;
719                         continue;
720                 }
721
722                 rcventry = grp->base + useidx;
723                 npages = tbuf->psets[setidx].count;
724                 pageidx = tbuf->psets[setidx].idx;
725
726                 ret = set_rcvarray_entry(fd, tbuf,
727                                          rcventry, grp, pageidx,
728                                          npages);
729                 if (ret)
730                         return ret;
731                 mapped += npages;
732
733                 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
734                         EXP_TID_SET(LEN, npages);
735                 tidlist[(*tididx)++] = tidinfo;
736                 grp->used++;
737                 grp->map |= 1 << useidx++;
738                 idx++;
739         }
740
741         /* Fill the rest of the group with "blank" writes */
742         for (; useidx < grp->size; useidx++)
743                 rcv_array_wc_fill(dd, grp->base + useidx);
744         *pmapped = mapped;
745         return idx;
746 }
747
748 static int set_rcvarray_entry(struct hfi1_filedata *fd,
749                               struct tid_user_buf *tbuf,
750                               u32 rcventry, struct tid_group *grp,
751                               u16 pageidx, unsigned int npages)
752 {
753         int ret;
754         struct hfi1_ctxtdata *uctxt = fd->uctxt;
755         struct tid_rb_node *node;
756         struct hfi1_devdata *dd = uctxt->dd;
757         dma_addr_t phys;
758         struct page **pages = tbuf->pages + pageidx;
759
760         /*
761          * Allocate the node first so we can handle a potential
762          * failure before we've programmed anything.
763          */
764         node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
765                        GFP_KERNEL);
766         if (!node)
767                 return -ENOMEM;
768
769         phys = pci_map_single(dd->pcidev,
770                               __va(page_to_phys(pages[0])),
771                               npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
772         if (dma_mapping_error(&dd->pcidev->dev, phys)) {
773                 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
774                            phys);
775                 kfree(node);
776                 return -EFAULT;
777         }
778
779         node->mmu.addr = tbuf->vaddr + (pageidx * PAGE_SIZE);
780         node->mmu.len = npages * PAGE_SIZE;
781         node->phys = page_to_phys(pages[0]);
782         node->npages = npages;
783         node->rcventry = rcventry;
784         node->dma_addr = phys;
785         node->grp = grp;
786         node->freed = false;
787         memcpy(node->pages, pages, sizeof(struct page *) * npages);
788
789         if (!fd->handler)
790                 ret = tid_rb_insert(fd, &node->mmu);
791         else
792                 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
793
794         if (ret) {
795                 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
796                           node->rcventry, node->mmu.addr, node->phys, ret);
797                 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
798                                  PCI_DMA_FROMDEVICE);
799                 kfree(node);
800                 return -EFAULT;
801         }
802         hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
803         trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
804                                node->mmu.addr, node->phys, phys);
805         return 0;
806 }
807
808 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
809                               struct tid_group **grp)
810 {
811         struct hfi1_ctxtdata *uctxt = fd->uctxt;
812         struct hfi1_devdata *dd = uctxt->dd;
813         struct tid_rb_node *node;
814         u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
815         u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
816
817         if (tididx >= uctxt->expected_count) {
818                 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
819                            tididx, uctxt->ctxt);
820                 return -EINVAL;
821         }
822
823         if (tidctrl == 0x3)
824                 return -EINVAL;
825
826         rcventry = tididx + (tidctrl - 1);
827
828         node = fd->entry_to_rb[rcventry];
829         if (!node || node->rcventry != (uctxt->expected_base + rcventry))
830                 return -EBADF;
831
832         if (grp)
833                 *grp = node->grp;
834
835         if (!fd->handler)
836                 cacheless_tid_rb_remove(fd, node);
837         else
838                 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
839
840         return 0;
841 }
842
843 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
844 {
845         struct hfi1_ctxtdata *uctxt = fd->uctxt;
846         struct hfi1_devdata *dd = uctxt->dd;
847
848         trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
849                                  node->npages, node->mmu.addr, node->phys,
850                                  node->dma_addr);
851
852         /*
853          * Make sure device has seen the write before we unpin the
854          * pages.
855          */
856         hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
857
858         unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
859
860         node->grp->used--;
861         node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
862
863         if (node->grp->used == node->grp->size - 1)
864                 tid_group_move(node->grp, &uctxt->tid_full_list,
865                                &uctxt->tid_used_list);
866         else if (!node->grp->used)
867                 tid_group_move(node->grp, &uctxt->tid_used_list,
868                                &uctxt->tid_group_list);
869         kfree(node);
870 }
871
872 /*
873  * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
874  * clearing nodes in the non-cached case.
875  */
876 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
877                             struct exp_tid_set *set,
878                             struct hfi1_filedata *fd)
879 {
880         struct tid_group *grp, *ptr;
881         int i;
882
883         list_for_each_entry_safe(grp, ptr, &set->list, list) {
884                 list_del_init(&grp->list);
885
886                 for (i = 0; i < grp->size; i++) {
887                         if (grp->map & (1 << i)) {
888                                 u16 rcventry = grp->base + i;
889                                 struct tid_rb_node *node;
890
891                                 node = fd->entry_to_rb[rcventry -
892                                                           uctxt->expected_base];
893                                 if (!node || node->rcventry != rcventry)
894                                         continue;
895
896                                 cacheless_tid_rb_remove(fd, node);
897                         }
898                 }
899         }
900 }
901
902 /*
903  * Always return 0 from this function.  A non-zero return indicates that the
904  * remove operation will be called and that memory should be unpinned.
905  * However, the driver cannot unpin out from under PSM.  Instead, retain the
906  * memory (by returning 0) and inform PSM that the memory is going away.  PSM
907  * will call back later when it has removed the memory from its list.
908  */
909 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
910 {
911         struct hfi1_filedata *fdata = arg;
912         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
913         struct tid_rb_node *node =
914                 container_of(mnode, struct tid_rb_node, mmu);
915
916         if (node->freed)
917                 return 0;
918
919         trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
920                                  node->rcventry, node->npages, node->dma_addr);
921         node->freed = true;
922
923         spin_lock(&fdata->invalid_lock);
924         if (fdata->invalid_tid_idx < uctxt->expected_count) {
925                 fdata->invalid_tids[fdata->invalid_tid_idx] =
926                         rcventry2tidinfo(node->rcventry - uctxt->expected_base);
927                 fdata->invalid_tids[fdata->invalid_tid_idx] |=
928                         EXP_TID_SET(LEN, node->npages);
929                 if (!fdata->invalid_tid_idx) {
930                         unsigned long *ev;
931
932                         /*
933                          * hfi1_set_uevent_bits() sets a user event flag
934                          * for all processes. Because calling into the
935                          * driver to process TID cache invalidations is
936                          * expensive and TID cache invalidations are
937                          * handled on a per-process basis, we can
938                          * optimize this to set the flag only for the
939                          * process in question.
940                          */
941                         ev = uctxt->dd->events +
942                                 (uctxt_offset(uctxt) + fdata->subctxt);
943                         set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
944                 }
945                 fdata->invalid_tid_idx++;
946         }
947         spin_unlock(&fdata->invalid_lock);
948         return 0;
949 }
950
951 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
952 {
953         struct hfi1_filedata *fdata = arg;
954         struct tid_rb_node *tnode =
955                 container_of(node, struct tid_rb_node, mmu);
956         u32 base = fdata->uctxt->expected_base;
957
958         fdata->entry_to_rb[tnode->rcventry - base] = tnode;
959         return 0;
960 }
961
962 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
963                                     struct tid_rb_node *tnode)
964 {
965         u32 base = fdata->uctxt->expected_base;
966
967         fdata->entry_to_rb[tnode->rcventry - base] = NULL;
968         clear_tid_node(fdata, tnode);
969 }
970
971 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
972 {
973         struct hfi1_filedata *fdata = arg;
974         struct tid_rb_node *tnode =
975                 container_of(node, struct tid_rb_node, mmu);
976
977         cacheless_tid_rb_remove(fdata, tnode);
978 }