2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
123 static const char * const sdma_state_names[] = {
124 [sdma_state_s00_hw_down] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
134 [sdma_state_s99_running] = "s99_Running",
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted] = "e60_HwHalted",
147 [sdma_event_e70_go_idle] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted] = "e90_SwHalted",
156 static const struct sdma_set_state_action sdma_action_table[] = {
157 [sdma_state_s00_hw_down] = {
158 .go_s99_running_tofalse = 1,
164 [sdma_state_s10_hw_start_up_halt_wait] = {
170 [sdma_state_s15_hw_start_up_clean_wait] = {
176 [sdma_state_s20_idle] = {
182 [sdma_state_s30_sw_clean_up_wait] = {
188 [sdma_state_s40_hw_clean_up_wait] = {
194 [sdma_state_s50_hw_halt_wait] = {
200 [sdma_state_s60_idle_halt_wait] = {
201 .go_s99_running_tofalse = 1,
207 [sdma_state_s80_hw_freeze] = {
213 [sdma_state_s82_freeze_sw_clean] = {
219 [sdma_state_s99_running] = {
224 .go_s99_running_totrue = 1,
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242 struct sdma_engine *sde,
243 enum sdma_events event);
244 static void __sdma_process_event(
245 struct sdma_engine *sde,
246 enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
253 * sdma_state_name() - return state string from enum
256 static const char *sdma_state_name(enum sdma_states state)
258 return sdma_state_names[state];
261 static void sdma_get(struct sdma_state *ss)
266 static void sdma_complete(struct kref *kref)
268 struct sdma_state *ss =
269 container_of(kref, struct sdma_state, kref);
274 static void sdma_put(struct sdma_state *ss)
276 kref_put(&ss->kref, sdma_complete);
279 static void sdma_finalput(struct sdma_state *ss)
282 wait_for_completion(&ss->comp);
285 static inline void write_sde_csr(
286 struct sdma_engine *sde,
290 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
293 static inline u64 read_sde_csr(
294 struct sdma_engine *sde,
297 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
307 u64 off = 8 * sde->this_idx;
308 struct hfi1_devdata *dd = sde->dd;
315 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
317 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
321 /* counter is reest if accupancy count changes */
325 /* timed out - bounce the link */
326 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327 __func__, sde->this_idx, (u32)reg);
328 queue_work(dd->pport->hfi1_wq,
329 &dd->pport->link_bounce_work);
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
340 void sdma_wait(struct hfi1_devdata *dd)
344 for (i = 0; i < dd->num_sdma; i++) {
345 struct sdma_engine *sde = &dd->per_sdma[i];
347 sdma_wait_for_packet_egress(sde, 0);
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
355 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
358 reg &= SD(DESC_CNT_CNT_MASK);
359 reg <<= SD(DESC_CNT_CNT_SHIFT);
360 write_sde_csr(sde, SD(DESC_CNT), reg);
363 static inline void complete_tx(struct sdma_engine *sde,
364 struct sdma_txreq *tx,
367 /* protect against complete modifying */
368 struct iowait *wait = tx->wait;
369 callback_t complete = tx->complete;
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372 trace_hfi1_sdma_out_sn(sde, tx->sn);
373 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375 sde->head_sn, tx->sn);
378 sdma_txclean(sde->dd, tx);
380 (*complete)(tx, res);
381 if (wait && iowait_sdma_dec(wait))
382 iowait_drain_wakeup(wait);
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
400 * Must be called with head_lock held
403 static void sdma_flush(struct sdma_engine *sde)
405 struct sdma_txreq *txp, *txp_next;
406 LIST_HEAD(flushlist);
409 /* flush from head to tail */
410 sdma_flush_descq(sde);
411 spin_lock_irqsave(&sde->flushlist_lock, flags);
412 /* copy flush list */
413 list_splice_init(&sde->flushlist, &flushlist);
414 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
415 /* flush from flush list */
416 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
417 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 * Fields a work request for flushing the descq ring
424 * If the engine has been brought to running during
425 * the scheduling delay, the flush is ignored, assuming
426 * that the process of bringing the engine to running
427 * would have done this flush prior to going to running.
430 static void sdma_field_flush(struct work_struct *work)
433 struct sdma_engine *sde =
434 container_of(work, struct sdma_engine, flush_worker);
436 write_seqlock_irqsave(&sde->head_lock, flags);
437 if (!__sdma_running(sde))
439 write_sequnlock_irqrestore(&sde->head_lock, flags);
442 static void sdma_err_halt_wait(struct work_struct *work)
444 struct sdma_engine *sde = container_of(work, struct sdma_engine,
447 unsigned long timeout;
449 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
451 statuscsr = read_sde_csr(sde, SD(STATUS));
452 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
455 if (time_after(jiffies, timeout)) {
457 "SDMA engine %d - timeout waiting for engine to halt\n",
460 * Continue anyway. This could happen if there was
461 * an uncorrectable error in the wrong spot.
465 usleep_range(80, 120);
468 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
471 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
473 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
475 struct hfi1_devdata *dd = sde->dd;
477 for (index = 0; index < dd->num_sdma; index++) {
478 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
480 if (curr_sdma != sde)
481 curr_sdma->progress_check_head =
482 curr_sdma->descq_head;
485 "SDMA engine %d - check scheduled\n",
487 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491 static void sdma_err_progress_check(unsigned long data)
494 struct sdma_engine *sde = (struct sdma_engine *)data;
496 dd_dev_err(sde->dd, "SDE progress check event\n");
497 for (index = 0; index < sde->dd->num_sdma; index++) {
498 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
501 /* check progress on each engine except the current one */
505 * We must lock interrupts when acquiring sde->lock,
506 * to avoid a deadlock if interrupt triggers and spins on
507 * the same lock on same CPU
509 spin_lock_irqsave(&curr_sde->tail_lock, flags);
510 write_seqlock(&curr_sde->head_lock);
512 /* skip non-running queues */
513 if (curr_sde->state.current_state != sdma_state_s99_running) {
514 write_sequnlock(&curr_sde->head_lock);
515 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
520 (curr_sde->descq_head ==
521 curr_sde->progress_check_head))
522 __sdma_process_event(curr_sde,
523 sdma_event_e90_sw_halted);
524 write_sequnlock(&curr_sde->head_lock);
525 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
527 schedule_work(&sde->err_halt_worker);
530 static void sdma_hw_clean_up_task(unsigned long opaque)
532 struct sdma_engine *sde = (struct sdma_engine *)opaque;
536 #ifdef CONFIG_SDMA_VERBOSITY
537 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
538 sde->this_idx, slashstrip(__FILE__), __LINE__,
541 statuscsr = read_sde_csr(sde, SD(STATUS));
542 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
548 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
551 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
553 smp_read_barrier_depends(); /* see sdma_update_tail() */
554 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
558 * flush ring for recovery
560 static void sdma_flush_descq(struct sdma_engine *sde)
564 struct sdma_txreq *txp = get_txhead(sde);
566 /* The reason for some of the complexity of this code is that
567 * not all descriptors have corresponding txps. So, we have to
568 * be able to skip over descs until we wander into the range of
569 * the next txp on the list.
571 head = sde->descq_head & sde->sdma_mask;
572 tail = sde->descq_tail & sde->sdma_mask;
573 while (head != tail) {
574 /* advance head, wrap if needed */
575 head = ++sde->descq_head & sde->sdma_mask;
576 /* if now past this txp's descs, do the callback */
577 if (txp && txp->next_descq_idx == head) {
578 /* remove from list */
579 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
580 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
581 trace_hfi1_sdma_progress(sde, head, tail, txp);
582 txp = get_txhead(sde);
587 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
590 static void sdma_sw_clean_up_task(unsigned long opaque)
592 struct sdma_engine *sde = (struct sdma_engine *)opaque;
595 spin_lock_irqsave(&sde->tail_lock, flags);
596 write_seqlock(&sde->head_lock);
599 * At this point, the following should always be true:
600 * - We are halted, so no more descriptors are getting retired.
601 * - We are not running, so no one is submitting new work.
602 * - Only we can send the e40_sw_cleaned, so we can't start
603 * running again until we say so. So, the active list and
604 * descq are ours to play with.
608 * In the error clean up sequence, software clean must be called
609 * before the hardware clean so we can use the hardware head in
610 * the progress routine. A hardware clean or SPC unfreeze will
611 * reset the hardware head.
613 * Process all retired requests. The progress routine will use the
614 * latest physical hardware head - we are not running so speed does
617 sdma_make_progress(sde, 0);
622 * Reset our notion of head and tail.
623 * Note that the HW registers have been reset via an earlier
628 sde->desc_avail = sdma_descq_freecnt(sde);
631 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
633 write_sequnlock(&sde->head_lock);
634 spin_unlock_irqrestore(&sde->tail_lock, flags);
637 static void sdma_sw_tear_down(struct sdma_engine *sde)
639 struct sdma_state *ss = &sde->state;
641 /* Releasing this reference means the state machine has stopped. */
644 /* stop waiting for all unfreeze events to complete */
645 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
646 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
649 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
651 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
654 static void sdma_set_state(struct sdma_engine *sde,
655 enum sdma_states next_state)
657 struct sdma_state *ss = &sde->state;
658 const struct sdma_set_state_action *action = sdma_action_table;
661 trace_hfi1_sdma_state(
663 sdma_state_names[ss->current_state],
664 sdma_state_names[next_state]);
666 /* debugging bookkeeping */
667 ss->previous_state = ss->current_state;
668 ss->previous_op = ss->current_op;
669 ss->current_state = next_state;
671 if (ss->previous_state != sdma_state_s99_running &&
672 next_state == sdma_state_s99_running)
675 if (action[next_state].op_enable)
676 op |= SDMA_SENDCTRL_OP_ENABLE;
678 if (action[next_state].op_intenable)
679 op |= SDMA_SENDCTRL_OP_INTENABLE;
681 if (action[next_state].op_halt)
682 op |= SDMA_SENDCTRL_OP_HALT;
684 if (action[next_state].op_cleanup)
685 op |= SDMA_SENDCTRL_OP_CLEANUP;
687 if (action[next_state].go_s99_running_tofalse)
688 ss->go_s99_running = 0;
690 if (action[next_state].go_s99_running_totrue)
691 ss->go_s99_running = 1;
694 sdma_sendctrl(sde, ss->current_op);
698 * sdma_get_descq_cnt() - called when device probed
700 * Return a validated descq count.
702 * This is currently only used in the verbs initialization to build the tx
705 * This will probably be deleted in favor of a more scalable approach to
709 u16 sdma_get_descq_cnt(void)
711 u16 count = sdma_descq_cnt;
714 return SDMA_DESCQ_CNT;
715 /* count must be a power of 2 greater than 64 and less than
716 * 32768. Otherwise return default.
718 if (!is_power_of_2(count))
719 return SDMA_DESCQ_CNT;
720 if (count < 64 || count > 32768)
721 return SDMA_DESCQ_CNT;
726 * sdma_engine_get_vl() - return vl for a given sdma engine
729 * This function returns the vl mapped to a given engine, or an error if
730 * the mapping can't be found. The mapping fields are protected by RCU.
732 int sdma_engine_get_vl(struct sdma_engine *sde)
734 struct hfi1_devdata *dd = sde->dd;
735 struct sdma_vl_map *m;
738 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
742 m = rcu_dereference(dd->sdma_map);
747 vl = m->engine_to_vl[sde->this_idx];
754 * sdma_select_engine_vl() - select sdma engine
756 * @selector: a spreading factor
760 * This function returns an engine based on the selector and a vl. The
761 * mapping fields are protected by RCU.
763 struct sdma_engine *sdma_select_engine_vl(
764 struct hfi1_devdata *dd,
768 struct sdma_vl_map *m;
769 struct sdma_map_elem *e;
770 struct sdma_engine *rval;
772 /* NOTE This should only happen if SC->VL changed after the initial
773 * checks on the QP/AH
774 * Default will return engine 0 below
782 m = rcu_dereference(dd->sdma_map);
785 return &dd->per_sdma[0];
787 e = m->map[vl & m->mask];
788 rval = e->sde[selector & e->mask];
792 rval = !rval ? &dd->per_sdma[0] : rval;
793 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
798 * sdma_select_engine_sc() - select sdma engine
800 * @selector: a spreading factor
804 * This function returns an engine based on the selector and an sc.
806 struct sdma_engine *sdma_select_engine_sc(
807 struct hfi1_devdata *dd,
811 u8 vl = sc_to_vlt(dd, sc5);
813 return sdma_select_engine_vl(dd, selector, vl);
816 struct sdma_rht_map_elem {
819 struct sdma_engine *sde[0];
822 struct sdma_rht_node {
823 unsigned long cpu_id;
824 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
825 struct rhash_head node;
828 #define NR_CPUS_HINT 192
830 static const struct rhashtable_params sdma_rht_params = {
831 .nelem_hint = NR_CPUS_HINT,
832 .head_offset = offsetof(struct sdma_rht_node, node),
833 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
834 .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837 .automatic_shrinking = true,
841 * sdma_select_user_engine() - select sdma engine based on user setup
843 * @selector: a spreading factor
846 * This function returns an sdma engine for a user sdma request.
847 * User defined sdma engine affinity setting is honored when applicable,
848 * otherwise system default sdma engine mapping is used. To ensure correct
849 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
851 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854 struct sdma_rht_node *rht_node;
855 struct sdma_engine *sde = NULL;
856 const struct cpumask *current_mask = tsk_cpus_allowed(current);
857 unsigned long cpu_id;
860 * To ensure that always the same sdma engine(s) will be
861 * selected make sure the process is pinned to this CPU only.
863 if (cpumask_weight(current_mask) != 1)
866 cpu_id = smp_processor_id();
868 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu_id,
871 if (rht_node && rht_node->map[vl]) {
872 struct sdma_rht_map_elem *map = rht_node->map[vl];
874 sde = map->sde[selector & map->mask];
882 return sdma_select_engine_vl(dd, selector, vl);
885 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
889 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
890 map->sde[map->ctr + i] = map->sde[i];
893 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
894 struct sdma_engine *sde)
898 /* only need to check the first ctr entries for a match */
899 for (i = 0; i < map->ctr; i++) {
900 if (map->sde[i] == sde) {
901 memmove(&map->sde[i], &map->sde[i + 1],
902 (map->ctr - i - 1) * sizeof(map->sde[0]));
904 pow = roundup_pow_of_two(map->ctr ? : 1);
906 sdma_populate_sde_map(map);
913 * Prevents concurrent reads and writes of the sdma engine cpu_mask
915 static DEFINE_MUTEX(process_to_sde_mutex);
917 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920 struct hfi1_devdata *dd = sde->dd;
921 cpumask_var_t mask, new_mask;
925 vl = sdma_engine_get_vl(sde);
926 if (unlikely(vl < 0))
929 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
935 free_cpumask_var(mask);
938 ret = cpulist_parse(buf, mask);
942 if (!cpumask_subset(mask, cpu_online_mask)) {
943 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
948 sz = sizeof(struct sdma_rht_map_elem) +
949 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
951 mutex_lock(&process_to_sde_mutex);
953 for_each_cpu(cpu, mask) {
954 struct sdma_rht_node *rht_node;
956 /* Check if we have this already mapped */
957 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
958 cpumask_set_cpu(cpu, new_mask);
962 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu,
965 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
971 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
972 if (!rht_node->map[vl]) {
977 rht_node->cpu_id = cpu;
978 rht_node->map[vl]->mask = 0;
979 rht_node->map[vl]->ctr = 1;
980 rht_node->map[vl]->sde[0] = sde;
982 ret = rhashtable_insert_fast(&dd->sdma_rht,
986 kfree(rht_node->map[vl]);
988 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
996 /* Add new user mappings */
997 if (!rht_node->map[vl])
998 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1000 if (!rht_node->map[vl]) {
1005 rht_node->map[vl]->ctr++;
1006 ctr = rht_node->map[vl]->ctr;
1007 rht_node->map[vl]->sde[ctr - 1] = sde;
1008 pow = roundup_pow_of_two(ctr);
1009 rht_node->map[vl]->mask = pow - 1;
1011 /* Populate the sde map table */
1012 sdma_populate_sde_map(rht_node->map[vl]);
1014 cpumask_set_cpu(cpu, new_mask);
1017 /* Clean up old mappings */
1018 for_each_cpu(cpu, cpu_online_mask) {
1019 struct sdma_rht_node *rht_node;
1021 /* Don't cleanup sdes that are set in the new mask */
1022 if (cpumask_test_cpu(cpu, mask))
1025 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu,
1031 /* Remove mappings for old sde */
1032 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1033 if (rht_node->map[i])
1034 sdma_cleanup_sde_map(rht_node->map[i],
1037 /* Free empty hash table entries */
1038 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1039 if (!rht_node->map[i])
1042 if (rht_node->map[i]->ctr) {
1049 ret = rhashtable_remove_fast(&dd->sdma_rht,
1054 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1055 kfree(rht_node->map[i]);
1062 cpumask_copy(&sde->cpu_mask, new_mask);
1064 mutex_unlock(&process_to_sde_mutex);
1066 free_cpumask_var(mask);
1067 free_cpumask_var(new_mask);
1068 return ret ? : strnlen(buf, PAGE_SIZE);
1071 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1073 mutex_lock(&process_to_sde_mutex);
1074 if (cpumask_empty(&sde->cpu_mask))
1075 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1077 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1078 mutex_unlock(&process_to_sde_mutex);
1079 return strnlen(buf, PAGE_SIZE);
1082 static void sdma_rht_free(void *ptr, void *arg)
1084 struct sdma_rht_node *rht_node = ptr;
1087 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1088 kfree(rht_node->map[i]);
1094 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1099 * This routine dumps the process to sde mappings per cpu
1101 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1102 struct hfi1_devdata *dd,
1103 unsigned long cpuid)
1105 struct sdma_rht_node *rht_node;
1108 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpuid,
1113 seq_printf(s, "cpu%3lu: ", cpuid);
1114 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1115 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1118 seq_printf(s, " vl%d: [", i);
1120 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1121 if (!rht_node->map[i]->sde[j])
1127 seq_printf(s, " sdma%2d",
1128 rht_node->map[i]->sde[j]->this_idx);
1137 * Free the indicated map struct
1139 static void sdma_map_free(struct sdma_vl_map *m)
1143 for (i = 0; m && i < m->actual_vls; i++)
1149 * Handle RCU callback
1151 static void sdma_map_rcu_callback(struct rcu_head *list)
1153 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1159 * sdma_map_init - called when # vls change
1161 * @port: port number
1162 * @num_vls: number of vls
1163 * @vl_engines: per vl engine mapping (optional)
1165 * This routine changes the mapping based on the number of vls.
1167 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1168 * implies auto computing the loading and giving each VLs a uniform
1169 * distribution of engines per VL.
1171 * The auto algorithm computes the sde_per_vl and the number of extra
1172 * engines. Any extra engines are added from the last VL on down.
1174 * rcu locking is used here to control access to the mapping fields.
1176 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1177 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1178 * up to the next highest power of 2 and the first entry is reused
1179 * in a round robin fashion.
1181 * If an error occurs the map change is not done and the mapping is
1185 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1188 int extra, sde_per_vl;
1190 u8 lvl_engines[OPA_MAX_VLS];
1191 struct sdma_vl_map *oldmap, *newmap;
1193 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1197 /* truncate divide */
1198 sde_per_vl = dd->num_sdma / num_vls;
1200 extra = dd->num_sdma % num_vls;
1201 vl_engines = lvl_engines;
1202 /* add extras from last vl down */
1203 for (i = num_vls - 1; i >= 0; i--, extra--)
1204 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1208 sizeof(struct sdma_vl_map) +
1209 roundup_pow_of_two(num_vls) *
1210 sizeof(struct sdma_map_elem *),
1214 newmap->actual_vls = num_vls;
1215 newmap->vls = roundup_pow_of_two(num_vls);
1216 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1217 /* initialize back-map */
1218 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1219 newmap->engine_to_vl[i] = -1;
1220 for (i = 0; i < newmap->vls; i++) {
1221 /* save for wrap around */
1222 int first_engine = engine;
1224 if (i < newmap->actual_vls) {
1225 int sz = roundup_pow_of_two(vl_engines[i]);
1227 /* only allocate once */
1228 newmap->map[i] = kzalloc(
1229 sizeof(struct sdma_map_elem) +
1230 sz * sizeof(struct sdma_engine *),
1232 if (!newmap->map[i])
1234 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1235 /* assign engines */
1236 for (j = 0; j < sz; j++) {
1237 newmap->map[i]->sde[j] =
1238 &dd->per_sdma[engine];
1239 if (++engine >= first_engine + vl_engines[i])
1240 /* wrap back to first engine */
1241 engine = first_engine;
1243 /* assign back-map */
1244 for (j = 0; j < vl_engines[i]; j++)
1245 newmap->engine_to_vl[first_engine + j] = i;
1247 /* just re-use entry without allocating */
1248 newmap->map[i] = newmap->map[i % num_vls];
1250 engine = first_engine + vl_engines[i];
1252 /* newmap in hand, save old map */
1253 spin_lock_irq(&dd->sde_map_lock);
1254 oldmap = rcu_dereference_protected(dd->sdma_map,
1255 lockdep_is_held(&dd->sde_map_lock));
1257 /* publish newmap */
1258 rcu_assign_pointer(dd->sdma_map, newmap);
1260 spin_unlock_irq(&dd->sde_map_lock);
1261 /* success, free any old map after grace period */
1263 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1266 /* free any partial allocation */
1267 sdma_map_free(newmap);
1272 * Clean up allocated memory.
1274 * This routine is can be called regardless of the success of sdma_init()
1277 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1280 struct sdma_engine *sde;
1282 if (dd->sdma_pad_dma) {
1283 dma_free_coherent(&dd->pcidev->dev, 4,
1284 (void *)dd->sdma_pad_dma,
1286 dd->sdma_pad_dma = NULL;
1287 dd->sdma_pad_phys = 0;
1289 if (dd->sdma_heads_dma) {
1290 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1291 (void *)dd->sdma_heads_dma,
1292 dd->sdma_heads_phys);
1293 dd->sdma_heads_dma = NULL;
1294 dd->sdma_heads_phys = 0;
1296 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1297 sde = &dd->per_sdma[i];
1299 sde->head_dma = NULL;
1305 sde->descq_cnt * sizeof(u64[2]),
1310 sde->descq_phys = 0;
1312 kvfree(sde->tx_ring);
1313 sde->tx_ring = NULL;
1315 spin_lock_irq(&dd->sde_map_lock);
1316 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1317 RCU_INIT_POINTER(dd->sdma_map, NULL);
1318 spin_unlock_irq(&dd->sde_map_lock);
1320 kfree(dd->per_sdma);
1321 dd->per_sdma = NULL;
1325 * sdma_init() - called when device probed
1327 * @port: port number (currently only zero)
1329 * sdma_init initializes the specified number of engines.
1331 * The code initializes each sde, its csrs. Interrupts
1332 * are not required to be enabled.
1335 * 0 - success, -errno on failure
1337 int sdma_init(struct hfi1_devdata *dd, u8 port)
1340 struct sdma_engine *sde;
1343 struct hfi1_pportdata *ppd = dd->pport + port;
1344 u32 per_sdma_credits;
1345 uint idle_cnt = sdma_idle_cnt;
1346 size_t num_engines = dd->chip_sdma_engines;
1348 if (!HFI1_CAP_IS_KSET(SDMA)) {
1349 HFI1_CAP_CLEAR(SDMA_AHG);
1353 /* can't exceed chip support */
1354 mod_num_sdma <= dd->chip_sdma_engines &&
1355 /* count must be >= vls */
1356 mod_num_sdma >= num_vls)
1357 num_engines = mod_num_sdma;
1359 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1360 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1361 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1362 dd->chip_sdma_mem_size);
1365 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1367 /* set up freeze waitqueue */
1368 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1369 atomic_set(&dd->sdma_unfreeze_count, 0);
1371 descq_cnt = sdma_get_descq_cnt();
1372 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1373 num_engines, descq_cnt);
1375 /* alloc memory for array of send engines */
1376 dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1380 idle_cnt = ns_to_cclock(dd, idle_cnt);
1381 if (!sdma_desct_intr)
1382 sdma_desct_intr = SDMA_DESC_INTR;
1384 /* Allocate memory for SendDMA descriptor FIFOs */
1385 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1386 sde = &dd->per_sdma[this_idx];
1389 sde->this_idx = this_idx;
1390 sde->descq_cnt = descq_cnt;
1391 sde->desc_avail = sdma_descq_freecnt(sde);
1392 sde->sdma_shift = ilog2(descq_cnt);
1393 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1395 /* Create a mask specifically for each interrupt source */
1396 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1398 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1400 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1402 /* Create a combined mask to cover all 3 interrupt sources */
1403 sde->imask = sde->int_mask | sde->progress_mask |
1406 spin_lock_init(&sde->tail_lock);
1407 seqlock_init(&sde->head_lock);
1408 spin_lock_init(&sde->senddmactrl_lock);
1409 spin_lock_init(&sde->flushlist_lock);
1410 /* insure there is always a zero bit */
1411 sde->ahg_bits = 0xfffffffe00000000ULL;
1413 sdma_set_state(sde, sdma_state_s00_hw_down);
1415 /* set up reference counting */
1416 kref_init(&sde->state.kref);
1417 init_completion(&sde->state.comp);
1419 INIT_LIST_HEAD(&sde->flushlist);
1420 INIT_LIST_HEAD(&sde->dmawait);
1423 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1427 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1430 SDMA_DESC1_INT_REQ_FLAG;
1432 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1433 (unsigned long)sde);
1435 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1436 (unsigned long)sde);
1437 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1438 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1440 sde->progress_check_head = 0;
1442 setup_timer(&sde->err_progress_check_timer,
1443 sdma_err_progress_check, (unsigned long)sde);
1445 sde->descq = dma_zalloc_coherent(
1447 descq_cnt * sizeof(u64[2]),
1454 kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1459 sizeof(struct sdma_txreq *) *
1465 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1466 /* Allocate memory for DMA of head registers to memory */
1467 dd->sdma_heads_dma = dma_zalloc_coherent(
1469 dd->sdma_heads_size,
1470 &dd->sdma_heads_phys,
1473 if (!dd->sdma_heads_dma) {
1474 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1478 /* Allocate memory for pad */
1479 dd->sdma_pad_dma = dma_zalloc_coherent(
1485 if (!dd->sdma_pad_dma) {
1486 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1490 /* assign each engine to different cacheline and init registers */
1491 curr_head = (void *)dd->sdma_heads_dma;
1492 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1493 unsigned long phys_offset;
1495 sde = &dd->per_sdma[this_idx];
1497 sde->head_dma = curr_head;
1498 curr_head += L1_CACHE_BYTES;
1499 phys_offset = (unsigned long)sde->head_dma -
1500 (unsigned long)dd->sdma_heads_dma;
1501 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1502 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1504 dd->flags |= HFI1_HAS_SEND_DMA;
1505 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1506 dd->num_sdma = num_engines;
1507 if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1510 if (rhashtable_init(&dd->sdma_rht, &sdma_rht_params))
1513 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1517 sdma_clean(dd, num_engines);
1522 * sdma_all_running() - called when the link goes up
1525 * This routine moves all engines to the running state.
1527 void sdma_all_running(struct hfi1_devdata *dd)
1529 struct sdma_engine *sde;
1532 /* move all engines to running */
1533 for (i = 0; i < dd->num_sdma; ++i) {
1534 sde = &dd->per_sdma[i];
1535 sdma_process_event(sde, sdma_event_e30_go_running);
1540 * sdma_all_idle() - called when the link goes down
1543 * This routine moves all engines to the idle state.
1545 void sdma_all_idle(struct hfi1_devdata *dd)
1547 struct sdma_engine *sde;
1550 /* idle all engines */
1551 for (i = 0; i < dd->num_sdma; ++i) {
1552 sde = &dd->per_sdma[i];
1553 sdma_process_event(sde, sdma_event_e70_go_idle);
1558 * sdma_start() - called to kick off state processing for all engines
1561 * This routine is for kicking off the state processing for all required
1562 * sdma engines. Interrupts need to be working at this point.
1565 void sdma_start(struct hfi1_devdata *dd)
1568 struct sdma_engine *sde;
1570 /* kick off the engines state processing */
1571 for (i = 0; i < dd->num_sdma; ++i) {
1572 sde = &dd->per_sdma[i];
1573 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1578 * sdma_exit() - used when module is removed
1581 void sdma_exit(struct hfi1_devdata *dd)
1584 struct sdma_engine *sde;
1586 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1588 sde = &dd->per_sdma[this_idx];
1589 if (!list_empty(&sde->dmawait))
1590 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1592 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1594 del_timer_sync(&sde->err_progress_check_timer);
1597 * This waits for the state machine to exit so it is not
1598 * necessary to kill the sdma_sw_clean_up_task to make sure
1599 * it is not running.
1601 sdma_finalput(&sde->state);
1603 sdma_clean(dd, dd->num_sdma);
1604 rhashtable_free_and_destroy(&dd->sdma_rht, sdma_rht_free, NULL);
1608 * unmap the indicated descriptor
1610 static inline void sdma_unmap_desc(
1611 struct hfi1_devdata *dd,
1612 struct sdma_desc *descp)
1614 switch (sdma_mapping_type(descp)) {
1615 case SDMA_MAP_SINGLE:
1618 sdma_mapping_addr(descp),
1619 sdma_mapping_len(descp),
1625 sdma_mapping_addr(descp),
1626 sdma_mapping_len(descp),
1633 * return the mode as indicated by the first
1634 * descriptor in the tx.
1636 static inline u8 ahg_mode(struct sdma_txreq *tx)
1638 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1639 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1643 * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1644 * @dd: hfi1_devdata for unmapping
1645 * @tx: tx request to clean
1647 * This is used in the progress routine to clean the tx or
1648 * by the ULP to toss an in-process tx build.
1650 * The code can be called multiple times without issue.
1654 struct hfi1_devdata *dd,
1655 struct sdma_txreq *tx)
1660 u8 skip = 0, mode = ahg_mode(tx);
1663 sdma_unmap_desc(dd, &tx->descp[0]);
1664 /* determine number of AHG descriptors to skip */
1665 if (mode > SDMA_AHG_APPLY_UPDATE1)
1667 for (i = 1 + skip; i < tx->num_desc; i++)
1668 sdma_unmap_desc(dd, &tx->descp[i]);
1671 kfree(tx->coalesce_buf);
1672 tx->coalesce_buf = NULL;
1673 /* kmalloc'ed descp */
1674 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1675 tx->desc_limit = ARRAY_SIZE(tx->descs);
1680 static inline u16 sdma_gethead(struct sdma_engine *sde)
1682 struct hfi1_devdata *dd = sde->dd;
1686 #ifdef CONFIG_SDMA_VERBOSITY
1687 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1688 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1692 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1693 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1694 hwhead = use_dmahead ?
1695 (u16)le64_to_cpu(*sde->head_dma) :
1696 (u16)read_sde_csr(sde, SD(HEAD));
1698 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1704 swhead = sde->descq_head & sde->sdma_mask;
1705 /* this code is really bad for cache line trading */
1706 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1707 cnt = sde->descq_cnt;
1709 if (swhead < swtail)
1711 sane = (hwhead >= swhead) & (hwhead <= swtail);
1712 else if (swhead > swtail)
1713 /* wrapped around */
1714 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1718 sane = (hwhead == swhead);
1720 if (unlikely(!sane)) {
1721 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1723 use_dmahead ? "dma" : "kreg",
1724 hwhead, swhead, swtail, cnt);
1726 /* try one more time, using csr */
1730 /* proceed as if no progress */
1738 * This is called when there are send DMA descriptors that might be
1741 * This is called with head_lock held.
1743 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1745 struct iowait *wait, *nw;
1746 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1747 unsigned i, n = 0, seq;
1748 struct sdma_txreq *stx;
1749 struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1751 #ifdef CONFIG_SDMA_VERBOSITY
1752 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1753 slashstrip(__FILE__), __LINE__, __func__);
1754 dd_dev_err(sde->dd, "avail: %u\n", avail);
1758 seq = read_seqbegin(&dev->iowait_lock);
1759 if (!list_empty(&sde->dmawait)) {
1760 /* at least one item */
1761 write_seqlock(&dev->iowait_lock);
1762 /* Harvest waiters wanting DMA descriptors */
1763 list_for_each_entry_safe(
1772 if (n == ARRAY_SIZE(waits))
1774 if (!list_empty(&wait->tx_head)) {
1775 stx = list_first_entry(
1779 num_desc = stx->num_desc;
1781 if (num_desc > avail)
1784 list_del_init(&wait->list);
1787 write_sequnlock(&dev->iowait_lock);
1790 } while (read_seqretry(&dev->iowait_lock, seq));
1792 for (i = 0; i < n; i++)
1793 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1796 /* head_lock must be held */
1797 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1799 struct sdma_txreq *txp = NULL;
1802 int idle_check_done = 0;
1804 hwhead = sdma_gethead(sde);
1806 /* The reason for some of the complexity of this code is that
1807 * not all descriptors have corresponding txps. So, we have to
1808 * be able to skip over descs until we wander into the range of
1809 * the next txp on the list.
1813 txp = get_txhead(sde);
1814 swhead = sde->descq_head & sde->sdma_mask;
1815 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1816 while (swhead != hwhead) {
1817 /* advance head, wrap if needed */
1818 swhead = ++sde->descq_head & sde->sdma_mask;
1820 /* if now past this txp's descs, do the callback */
1821 if (txp && txp->next_descq_idx == swhead) {
1822 /* remove from list */
1823 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1824 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1825 /* see if there is another txp */
1826 txp = get_txhead(sde);
1828 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1833 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1834 * to updates to the the dma_head location in host memory. The head
1835 * value read might not be fully up to date. If there are pending
1836 * descriptors and the SDMA idle interrupt fired then read from the
1837 * CSR SDMA head instead to get the latest value from the hardware.
1838 * The hardware SDMA head should be read at most once in this invocation
1839 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1841 if ((status & sde->idle_mask) && !idle_check_done) {
1844 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1845 if (swtail != hwhead) {
1846 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1847 idle_check_done = 1;
1852 sde->last_status = status;
1854 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1858 * sdma_engine_interrupt() - interrupt handler for engine
1860 * @status: sdma interrupt reason
1862 * Status is a mask of the 3 possible interrupts for this engine. It will
1863 * contain bits _only_ for this SDMA engine. It will contain at least one
1864 * bit, it may contain more.
1866 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1868 trace_hfi1_sdma_engine_interrupt(sde, status);
1869 write_seqlock(&sde->head_lock);
1870 sdma_set_desc_cnt(sde, sdma_desct_intr);
1871 if (status & sde->idle_mask)
1872 sde->idle_int_cnt++;
1873 else if (status & sde->progress_mask)
1874 sde->progress_int_cnt++;
1875 else if (status & sde->int_mask)
1876 sde->sdma_int_cnt++;
1877 sdma_make_progress(sde, status);
1878 write_sequnlock(&sde->head_lock);
1882 * sdma_engine_error() - error handler for engine
1884 * @status: sdma interrupt reason
1886 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1888 unsigned long flags;
1890 #ifdef CONFIG_SDMA_VERBOSITY
1891 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1893 (unsigned long long)status,
1894 sdma_state_names[sde->state.current_state]);
1896 spin_lock_irqsave(&sde->tail_lock, flags);
1897 write_seqlock(&sde->head_lock);
1898 if (status & ALL_SDMA_ENG_HALT_ERRS)
1899 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1900 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1902 "SDMA (%u) engine error: 0x%llx state %s\n",
1904 (unsigned long long)status,
1905 sdma_state_names[sde->state.current_state]);
1906 dump_sdma_state(sde);
1908 write_sequnlock(&sde->head_lock);
1909 spin_unlock_irqrestore(&sde->tail_lock, flags);
1912 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1914 u64 set_senddmactrl = 0;
1915 u64 clr_senddmactrl = 0;
1916 unsigned long flags;
1918 #ifdef CONFIG_SDMA_VERBOSITY
1919 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1921 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1922 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1923 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1924 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1927 if (op & SDMA_SENDCTRL_OP_ENABLE)
1928 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1930 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1932 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1933 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1935 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1937 if (op & SDMA_SENDCTRL_OP_HALT)
1938 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1940 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1942 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1944 sde->p_senddmactrl |= set_senddmactrl;
1945 sde->p_senddmactrl &= ~clr_senddmactrl;
1947 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1948 write_sde_csr(sde, SD(CTRL),
1949 sde->p_senddmactrl |
1950 SD(CTRL_SDMA_CLEANUP_SMASK));
1952 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1954 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1956 #ifdef CONFIG_SDMA_VERBOSITY
1957 sdma_dumpstate(sde);
1961 static void sdma_setlengen(struct sdma_engine *sde)
1963 #ifdef CONFIG_SDMA_VERBOSITY
1964 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1965 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1969 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1970 * count to enable generation checking and load the internal
1971 * generation counter.
1973 write_sde_csr(sde, SD(LEN_GEN),
1974 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1975 write_sde_csr(sde, SD(LEN_GEN),
1976 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1977 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1980 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1982 /* Commit writes to memory and advance the tail on the chip */
1983 smp_wmb(); /* see get_txhead() */
1984 writeq(tail, sde->tail_csr);
1988 * This is called when changing to state s10_hw_start_up_halt_wait as
1989 * a result of send buffer errors or send DMA descriptor errors.
1991 static void sdma_hw_start_up(struct sdma_engine *sde)
1995 #ifdef CONFIG_SDMA_VERBOSITY
1996 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1997 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2000 sdma_setlengen(sde);
2001 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2004 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2005 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2006 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2010 * set_sdma_integrity
2012 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2014 static void set_sdma_integrity(struct sdma_engine *sde)
2016 struct hfi1_devdata *dd = sde->dd;
2018 write_sde_csr(sde, SD(CHECK_ENABLE),
2019 hfi1_pkt_base_sdma_integrity(dd));
2022 static void init_sdma_regs(
2023 struct sdma_engine *sde,
2028 #ifdef CONFIG_SDMA_VERBOSITY
2029 struct hfi1_devdata *dd = sde->dd;
2031 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2032 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2035 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2036 sdma_setlengen(sde);
2037 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2038 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2039 write_sde_csr(sde, SD(DESC_CNT), 0);
2040 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2041 write_sde_csr(sde, SD(MEMORY),
2042 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2043 ((u64)(credits * sde->this_idx) <<
2044 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2045 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2046 set_sdma_integrity(sde);
2047 opmask = OPCODE_CHECK_MASK_DISABLED;
2048 opval = OPCODE_CHECK_VAL_DISABLED;
2049 write_sde_csr(sde, SD(CHECK_OPCODE),
2050 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2051 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2054 #ifdef CONFIG_SDMA_VERBOSITY
2056 #define sdma_dumpstate_helper0(reg) do { \
2057 csr = read_csr(sde->dd, reg); \
2058 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2061 #define sdma_dumpstate_helper(reg) do { \
2062 csr = read_sde_csr(sde, reg); \
2063 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2064 #reg, sde->this_idx, csr); \
2067 #define sdma_dumpstate_helper2(reg) do { \
2068 csr = read_csr(sde->dd, reg + (8 * i)); \
2069 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2073 void sdma_dumpstate(struct sdma_engine *sde)
2078 sdma_dumpstate_helper(SD(CTRL));
2079 sdma_dumpstate_helper(SD(STATUS));
2080 sdma_dumpstate_helper0(SD(ERR_STATUS));
2081 sdma_dumpstate_helper0(SD(ERR_MASK));
2082 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2083 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2085 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2086 sdma_dumpstate_helper2(CCE_INT_STATUS);
2087 sdma_dumpstate_helper2(CCE_INT_MASK);
2088 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2091 sdma_dumpstate_helper(SD(TAIL));
2092 sdma_dumpstate_helper(SD(HEAD));
2093 sdma_dumpstate_helper(SD(PRIORITY_THLD));
2094 sdma_dumpstate_helper(SD(IDLE_CNT));
2095 sdma_dumpstate_helper(SD(RELOAD_CNT));
2096 sdma_dumpstate_helper(SD(DESC_CNT));
2097 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2098 sdma_dumpstate_helper(SD(MEMORY));
2099 sdma_dumpstate_helper0(SD(ENGINES));
2100 sdma_dumpstate_helper0(SD(MEM_SIZE));
2101 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2102 sdma_dumpstate_helper(SD(BASE_ADDR));
2103 sdma_dumpstate_helper(SD(LEN_GEN));
2104 sdma_dumpstate_helper(SD(HEAD_ADDR));
2105 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2106 sdma_dumpstate_helper(SD(CHECK_VL));
2107 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2108 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2109 sdma_dumpstate_helper(SD(CHECK_SLID));
2110 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2114 static void dump_sdma_state(struct sdma_engine *sde)
2116 struct hw_sdma_desc *descq;
2117 struct hw_sdma_desc *descqp;
2122 u16 head, tail, cnt;
2124 head = sde->descq_head & sde->sdma_mask;
2125 tail = sde->descq_tail & sde->sdma_mask;
2126 cnt = sdma_descq_freecnt(sde);
2130 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2131 sde->this_idx, head, tail, cnt,
2132 !list_empty(&sde->flushlist));
2134 /* print info for each entry in the descriptor queue */
2135 while (head != tail) {
2136 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2138 descqp = &sde->descq[head];
2139 desc[0] = le64_to_cpu(descqp->qw[0]);
2140 desc[1] = le64_to_cpu(descqp->qw[1]);
2141 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2142 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2144 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2145 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2146 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2147 & SDMA_DESC0_PHY_ADDR_MASK;
2148 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2149 & SDMA_DESC1_GENERATION_MASK;
2150 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2151 & SDMA_DESC0_BYTE_COUNT_MASK;
2153 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2154 head, flags, addr, gen, len);
2156 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2158 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2160 "\taidx: %u amode: %u alen: %u\n",
2162 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2163 SDMA_DESC1_HEADER_INDEX_SHIFT),
2165 SDMA_DESC1_HEADER_MODE_SMASK) >>
2166 SDMA_DESC1_HEADER_MODE_SHIFT),
2168 SDMA_DESC1_HEADER_DWS_SMASK) >>
2169 SDMA_DESC1_HEADER_DWS_SHIFT));
2171 head &= sde->sdma_mask;
2176 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2178 * sdma_seqfile_dump_sde() - debugfs dump of sde
2180 * @sde: send dma engine to dump
2182 * This routine dumps the sde to the indicated seq file.
2184 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2187 struct hw_sdma_desc *descqp;
2193 head = sde->descq_head & sde->sdma_mask;
2194 tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
2195 seq_printf(s, SDE_FMT, sde->this_idx,
2197 sdma_state_name(sde->state.current_state),
2198 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2199 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2200 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2201 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2202 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2203 (unsigned long long)le64_to_cpu(*sde->head_dma),
2204 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2205 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2206 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2207 (unsigned long long)sde->last_status,
2208 (unsigned long long)sde->ahg_bits,
2213 !list_empty(&sde->flushlist),
2214 sde->descq_full_count,
2215 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2217 /* print info for each entry in the descriptor queue */
2218 while (head != tail) {
2219 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2221 descqp = &sde->descq[head];
2222 desc[0] = le64_to_cpu(descqp->qw[0]);
2223 desc[1] = le64_to_cpu(descqp->qw[1]);
2224 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2225 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2227 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2228 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2229 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2230 & SDMA_DESC0_PHY_ADDR_MASK;
2231 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2232 & SDMA_DESC1_GENERATION_MASK;
2233 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2234 & SDMA_DESC0_BYTE_COUNT_MASK;
2236 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2237 head, flags, addr, gen, len);
2238 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2239 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2241 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2242 SDMA_DESC1_HEADER_INDEX_SHIFT),
2244 SDMA_DESC1_HEADER_MODE_SMASK) >>
2245 SDMA_DESC1_HEADER_MODE_SHIFT));
2246 head = (head + 1) & sde->sdma_mask;
2251 * add the generation number into
2252 * the qw1 and return
2254 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2256 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2258 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2259 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2260 << SDMA_DESC1_GENERATION_SHIFT;
2265 * This routine submits the indicated tx
2267 * Space has already been guaranteed and
2268 * tail side of ring is locked.
2270 * The hardware tail update is done
2271 * in the caller and that is facilitated
2272 * by returning the new tail.
2274 * There is special case logic for ahg
2275 * to not add the generation number for
2276 * up to 2 descriptors that follow the
2280 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2284 struct sdma_desc *descp = tx->descp;
2285 u8 skip = 0, mode = ahg_mode(tx);
2287 tail = sde->descq_tail & sde->sdma_mask;
2288 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2289 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2290 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2291 tail, &sde->descq[tail]);
2292 tail = ++sde->descq_tail & sde->sdma_mask;
2294 if (mode > SDMA_AHG_APPLY_UPDATE1)
2296 for (i = 1; i < tx->num_desc; i++, descp++) {
2299 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2301 /* edits don't have generation */
2305 /* replace generation with real one for non-edits */
2306 qw1 = add_gen(sde, descp->qw[1]);
2308 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2309 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2310 tail, &sde->descq[tail]);
2311 tail = ++sde->descq_tail & sde->sdma_mask;
2313 tx->next_descq_idx = tail;
2314 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2315 tx->sn = sde->tail_sn++;
2316 trace_hfi1_sdma_in_sn(sde, tx->sn);
2317 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2319 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2320 sde->desc_avail -= tx->num_desc;
2325 * Check for progress
2327 static int sdma_check_progress(
2328 struct sdma_engine *sde,
2329 struct iowait *wait,
2330 struct sdma_txreq *tx)
2334 sde->desc_avail = sdma_descq_freecnt(sde);
2335 if (tx->num_desc <= sde->desc_avail)
2337 /* pulse the head_lock */
2338 if (wait && wait->sleep) {
2341 seq = raw_seqcount_begin(
2342 (const seqcount_t *)&sde->head_lock.seqcount);
2343 ret = wait->sleep(sde, wait, tx, seq);
2345 sde->desc_avail = sdma_descq_freecnt(sde);
2353 * sdma_send_txreq() - submit a tx req to ring
2354 * @sde: sdma engine to use
2355 * @wait: wait structure to use when full (may be NULL)
2356 * @tx: sdma_txreq to submit
2358 * The call submits the tx into the ring. If a iowait structure is non-NULL
2359 * the packet will be queued to the list in wait.
2362 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2363 * ring (wait == NULL)
2364 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2366 int sdma_send_txreq(struct sdma_engine *sde,
2367 struct iowait *wait,
2368 struct sdma_txreq *tx)
2372 unsigned long flags;
2374 /* user should have supplied entire packet */
2375 if (unlikely(tx->tlen))
2378 spin_lock_irqsave(&sde->tail_lock, flags);
2380 if (unlikely(!__sdma_running(sde)))
2382 if (unlikely(tx->num_desc > sde->desc_avail))
2384 tail = submit_tx(sde, tx);
2386 iowait_sdma_inc(wait);
2387 sdma_update_tail(sde, tail);
2389 spin_unlock_irqrestore(&sde->tail_lock, flags);
2393 iowait_sdma_inc(wait);
2394 tx->next_descq_idx = 0;
2395 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2396 tx->sn = sde->tail_sn++;
2397 trace_hfi1_sdma_in_sn(sde, tx->sn);
2399 spin_lock(&sde->flushlist_lock);
2400 list_add_tail(&tx->list, &sde->flushlist);
2401 spin_unlock(&sde->flushlist_lock);
2404 wait->count += tx->num_desc;
2406 queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2410 ret = sdma_check_progress(sde, wait, tx);
2411 if (ret == -EAGAIN) {
2415 sde->descq_full_count++;
2420 * sdma_send_txlist() - submit a list of tx req to ring
2421 * @sde: sdma engine to use
2422 * @wait: wait structure to use when full (may be NULL)
2423 * @tx_list: list of sdma_txreqs to submit
2424 * @count: pointer to a u32 which, after return will contain the total number of
2425 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2426 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2427 * which are added to SDMA engine flush list if the SDMA engine state is
2430 * The call submits the list into the ring.
2432 * If the iowait structure is non-NULL and not equal to the iowait list
2433 * the unprocessed part of the list will be appended to the list in wait.
2435 * In all cases, the tx_list will be updated so the head of the tx_list is
2436 * the list of descriptors that have yet to be transmitted.
2438 * The intent of this call is to provide a more efficient
2439 * way of submitting multiple packets to SDMA while holding the tail
2444 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2445 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2447 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2448 struct list_head *tx_list, u32 *count_out)
2450 struct sdma_txreq *tx, *tx_next;
2452 unsigned long flags;
2453 u16 tail = INVALID_TAIL;
2454 u32 submit_count = 0, flush_count = 0, total_count;
2456 spin_lock_irqsave(&sde->tail_lock, flags);
2458 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2460 if (unlikely(!__sdma_running(sde)))
2462 if (unlikely(tx->num_desc > sde->desc_avail))
2464 if (unlikely(tx->tlen)) {
2468 list_del_init(&tx->list);
2469 tail = submit_tx(sde, tx);
2471 if (tail != INVALID_TAIL &&
2472 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2473 sdma_update_tail(sde, tail);
2474 tail = INVALID_TAIL;
2478 total_count = submit_count + flush_count;
2480 iowait_sdma_add(wait, total_count);
2481 if (tail != INVALID_TAIL)
2482 sdma_update_tail(sde, tail);
2483 spin_unlock_irqrestore(&sde->tail_lock, flags);
2484 *count_out = total_count;
2487 spin_lock(&sde->flushlist_lock);
2488 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2490 list_del_init(&tx->list);
2491 tx->next_descq_idx = 0;
2492 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2493 tx->sn = sde->tail_sn++;
2494 trace_hfi1_sdma_in_sn(sde, tx->sn);
2496 list_add_tail(&tx->list, &sde->flushlist);
2500 wait->count += tx->num_desc;
2503 spin_unlock(&sde->flushlist_lock);
2504 queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2508 ret = sdma_check_progress(sde, wait, tx);
2509 if (ret == -EAGAIN) {
2513 sde->descq_full_count++;
2517 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2519 unsigned long flags;
2521 spin_lock_irqsave(&sde->tail_lock, flags);
2522 write_seqlock(&sde->head_lock);
2524 __sdma_process_event(sde, event);
2526 if (sde->state.current_state == sdma_state_s99_running)
2527 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2529 write_sequnlock(&sde->head_lock);
2530 spin_unlock_irqrestore(&sde->tail_lock, flags);
2533 static void __sdma_process_event(struct sdma_engine *sde,
2534 enum sdma_events event)
2536 struct sdma_state *ss = &sde->state;
2537 int need_progress = 0;
2539 /* CONFIG SDMA temporary */
2540 #ifdef CONFIG_SDMA_VERBOSITY
2541 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2542 sdma_state_names[ss->current_state],
2543 sdma_event_names[event]);
2546 switch (ss->current_state) {
2547 case sdma_state_s00_hw_down:
2549 case sdma_event_e00_go_hw_down:
2551 case sdma_event_e30_go_running:
2553 * If down, but running requested (usually result
2554 * of link up, then we need to start up.
2555 * This can happen when hw down is requested while
2556 * bringing the link up with traffic active on
2559 ss->go_s99_running = 1;
2560 /* fall through and start dma engine */
2561 case sdma_event_e10_go_hw_start:
2562 /* This reference means the state machine is started */
2563 sdma_get(&sde->state);
2565 sdma_state_s10_hw_start_up_halt_wait);
2567 case sdma_event_e15_hw_halt_done:
2569 case sdma_event_e25_hw_clean_up_done:
2571 case sdma_event_e40_sw_cleaned:
2572 sdma_sw_tear_down(sde);
2574 case sdma_event_e50_hw_cleaned:
2576 case sdma_event_e60_hw_halted:
2578 case sdma_event_e70_go_idle:
2580 case sdma_event_e80_hw_freeze:
2582 case sdma_event_e81_hw_frozen:
2584 case sdma_event_e82_hw_unfreeze:
2586 case sdma_event_e85_link_down:
2588 case sdma_event_e90_sw_halted:
2593 case sdma_state_s10_hw_start_up_halt_wait:
2595 case sdma_event_e00_go_hw_down:
2596 sdma_set_state(sde, sdma_state_s00_hw_down);
2597 sdma_sw_tear_down(sde);
2599 case sdma_event_e10_go_hw_start:
2601 case sdma_event_e15_hw_halt_done:
2603 sdma_state_s15_hw_start_up_clean_wait);
2604 sdma_start_hw_clean_up(sde);
2606 case sdma_event_e25_hw_clean_up_done:
2608 case sdma_event_e30_go_running:
2609 ss->go_s99_running = 1;
2611 case sdma_event_e40_sw_cleaned:
2613 case sdma_event_e50_hw_cleaned:
2615 case sdma_event_e60_hw_halted:
2616 schedule_work(&sde->err_halt_worker);
2618 case sdma_event_e70_go_idle:
2619 ss->go_s99_running = 0;
2621 case sdma_event_e80_hw_freeze:
2623 case sdma_event_e81_hw_frozen:
2625 case sdma_event_e82_hw_unfreeze:
2627 case sdma_event_e85_link_down:
2629 case sdma_event_e90_sw_halted:
2634 case sdma_state_s15_hw_start_up_clean_wait:
2636 case sdma_event_e00_go_hw_down:
2637 sdma_set_state(sde, sdma_state_s00_hw_down);
2638 sdma_sw_tear_down(sde);
2640 case sdma_event_e10_go_hw_start:
2642 case sdma_event_e15_hw_halt_done:
2644 case sdma_event_e25_hw_clean_up_done:
2645 sdma_hw_start_up(sde);
2646 sdma_set_state(sde, ss->go_s99_running ?
2647 sdma_state_s99_running :
2648 sdma_state_s20_idle);
2650 case sdma_event_e30_go_running:
2651 ss->go_s99_running = 1;
2653 case sdma_event_e40_sw_cleaned:
2655 case sdma_event_e50_hw_cleaned:
2657 case sdma_event_e60_hw_halted:
2659 case sdma_event_e70_go_idle:
2660 ss->go_s99_running = 0;
2662 case sdma_event_e80_hw_freeze:
2664 case sdma_event_e81_hw_frozen:
2666 case sdma_event_e82_hw_unfreeze:
2668 case sdma_event_e85_link_down:
2670 case sdma_event_e90_sw_halted:
2675 case sdma_state_s20_idle:
2677 case sdma_event_e00_go_hw_down:
2678 sdma_set_state(sde, sdma_state_s00_hw_down);
2679 sdma_sw_tear_down(sde);
2681 case sdma_event_e10_go_hw_start:
2683 case sdma_event_e15_hw_halt_done:
2685 case sdma_event_e25_hw_clean_up_done:
2687 case sdma_event_e30_go_running:
2688 sdma_set_state(sde, sdma_state_s99_running);
2689 ss->go_s99_running = 1;
2691 case sdma_event_e40_sw_cleaned:
2693 case sdma_event_e50_hw_cleaned:
2695 case sdma_event_e60_hw_halted:
2696 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2697 schedule_work(&sde->err_halt_worker);
2699 case sdma_event_e70_go_idle:
2701 case sdma_event_e85_link_down:
2703 case sdma_event_e80_hw_freeze:
2704 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2705 atomic_dec(&sde->dd->sdma_unfreeze_count);
2706 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2708 case sdma_event_e81_hw_frozen:
2710 case sdma_event_e82_hw_unfreeze:
2712 case sdma_event_e90_sw_halted:
2717 case sdma_state_s30_sw_clean_up_wait:
2719 case sdma_event_e00_go_hw_down:
2720 sdma_set_state(sde, sdma_state_s00_hw_down);
2722 case sdma_event_e10_go_hw_start:
2724 case sdma_event_e15_hw_halt_done:
2726 case sdma_event_e25_hw_clean_up_done:
2728 case sdma_event_e30_go_running:
2729 ss->go_s99_running = 1;
2731 case sdma_event_e40_sw_cleaned:
2732 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2733 sdma_start_hw_clean_up(sde);
2735 case sdma_event_e50_hw_cleaned:
2737 case sdma_event_e60_hw_halted:
2739 case sdma_event_e70_go_idle:
2740 ss->go_s99_running = 0;
2742 case sdma_event_e80_hw_freeze:
2744 case sdma_event_e81_hw_frozen:
2746 case sdma_event_e82_hw_unfreeze:
2748 case sdma_event_e85_link_down:
2749 ss->go_s99_running = 0;
2751 case sdma_event_e90_sw_halted:
2756 case sdma_state_s40_hw_clean_up_wait:
2758 case sdma_event_e00_go_hw_down:
2759 sdma_set_state(sde, sdma_state_s00_hw_down);
2760 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2762 case sdma_event_e10_go_hw_start:
2764 case sdma_event_e15_hw_halt_done:
2766 case sdma_event_e25_hw_clean_up_done:
2767 sdma_hw_start_up(sde);
2768 sdma_set_state(sde, ss->go_s99_running ?
2769 sdma_state_s99_running :
2770 sdma_state_s20_idle);
2772 case sdma_event_e30_go_running:
2773 ss->go_s99_running = 1;
2775 case sdma_event_e40_sw_cleaned:
2777 case sdma_event_e50_hw_cleaned:
2779 case sdma_event_e60_hw_halted:
2781 case sdma_event_e70_go_idle:
2782 ss->go_s99_running = 0;
2784 case sdma_event_e80_hw_freeze:
2786 case sdma_event_e81_hw_frozen:
2788 case sdma_event_e82_hw_unfreeze:
2790 case sdma_event_e85_link_down:
2791 ss->go_s99_running = 0;
2793 case sdma_event_e90_sw_halted:
2798 case sdma_state_s50_hw_halt_wait:
2800 case sdma_event_e00_go_hw_down:
2801 sdma_set_state(sde, sdma_state_s00_hw_down);
2802 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2804 case sdma_event_e10_go_hw_start:
2806 case sdma_event_e15_hw_halt_done:
2807 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2808 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2810 case sdma_event_e25_hw_clean_up_done:
2812 case sdma_event_e30_go_running:
2813 ss->go_s99_running = 1;
2815 case sdma_event_e40_sw_cleaned:
2817 case sdma_event_e50_hw_cleaned:
2819 case sdma_event_e60_hw_halted:
2820 schedule_work(&sde->err_halt_worker);
2822 case sdma_event_e70_go_idle:
2823 ss->go_s99_running = 0;
2825 case sdma_event_e80_hw_freeze:
2827 case sdma_event_e81_hw_frozen:
2829 case sdma_event_e82_hw_unfreeze:
2831 case sdma_event_e85_link_down:
2832 ss->go_s99_running = 0;
2834 case sdma_event_e90_sw_halted:
2839 case sdma_state_s60_idle_halt_wait:
2841 case sdma_event_e00_go_hw_down:
2842 sdma_set_state(sde, sdma_state_s00_hw_down);
2843 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2845 case sdma_event_e10_go_hw_start:
2847 case sdma_event_e15_hw_halt_done:
2848 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2849 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2851 case sdma_event_e25_hw_clean_up_done:
2853 case sdma_event_e30_go_running:
2854 ss->go_s99_running = 1;
2856 case sdma_event_e40_sw_cleaned:
2858 case sdma_event_e50_hw_cleaned:
2860 case sdma_event_e60_hw_halted:
2861 schedule_work(&sde->err_halt_worker);
2863 case sdma_event_e70_go_idle:
2864 ss->go_s99_running = 0;
2866 case sdma_event_e80_hw_freeze:
2868 case sdma_event_e81_hw_frozen:
2870 case sdma_event_e82_hw_unfreeze:
2872 case sdma_event_e85_link_down:
2874 case sdma_event_e90_sw_halted:
2879 case sdma_state_s80_hw_freeze:
2881 case sdma_event_e00_go_hw_down:
2882 sdma_set_state(sde, sdma_state_s00_hw_down);
2883 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2885 case sdma_event_e10_go_hw_start:
2887 case sdma_event_e15_hw_halt_done:
2889 case sdma_event_e25_hw_clean_up_done:
2891 case sdma_event_e30_go_running:
2892 ss->go_s99_running = 1;
2894 case sdma_event_e40_sw_cleaned:
2896 case sdma_event_e50_hw_cleaned:
2898 case sdma_event_e60_hw_halted:
2900 case sdma_event_e70_go_idle:
2901 ss->go_s99_running = 0;
2903 case sdma_event_e80_hw_freeze:
2905 case sdma_event_e81_hw_frozen:
2906 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2907 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2909 case sdma_event_e82_hw_unfreeze:
2911 case sdma_event_e85_link_down:
2913 case sdma_event_e90_sw_halted:
2918 case sdma_state_s82_freeze_sw_clean:
2920 case sdma_event_e00_go_hw_down:
2921 sdma_set_state(sde, sdma_state_s00_hw_down);
2922 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2924 case sdma_event_e10_go_hw_start:
2926 case sdma_event_e15_hw_halt_done:
2928 case sdma_event_e25_hw_clean_up_done:
2930 case sdma_event_e30_go_running:
2931 ss->go_s99_running = 1;
2933 case sdma_event_e40_sw_cleaned:
2934 /* notify caller this engine is done cleaning */
2935 atomic_dec(&sde->dd->sdma_unfreeze_count);
2936 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2938 case sdma_event_e50_hw_cleaned:
2940 case sdma_event_e60_hw_halted:
2942 case sdma_event_e70_go_idle:
2943 ss->go_s99_running = 0;
2945 case sdma_event_e80_hw_freeze:
2947 case sdma_event_e81_hw_frozen:
2949 case sdma_event_e82_hw_unfreeze:
2950 sdma_hw_start_up(sde);
2951 sdma_set_state(sde, ss->go_s99_running ?
2952 sdma_state_s99_running :
2953 sdma_state_s20_idle);
2955 case sdma_event_e85_link_down:
2957 case sdma_event_e90_sw_halted:
2962 case sdma_state_s99_running:
2964 case sdma_event_e00_go_hw_down:
2965 sdma_set_state(sde, sdma_state_s00_hw_down);
2966 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2968 case sdma_event_e10_go_hw_start:
2970 case sdma_event_e15_hw_halt_done:
2972 case sdma_event_e25_hw_clean_up_done:
2974 case sdma_event_e30_go_running:
2976 case sdma_event_e40_sw_cleaned:
2978 case sdma_event_e50_hw_cleaned:
2980 case sdma_event_e60_hw_halted:
2982 sdma_err_progress_check_schedule(sde);
2983 case sdma_event_e90_sw_halted:
2985 * SW initiated halt does not perform engines
2988 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2989 schedule_work(&sde->err_halt_worker);
2991 case sdma_event_e70_go_idle:
2992 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2994 case sdma_event_e85_link_down:
2995 ss->go_s99_running = 0;
2997 case sdma_event_e80_hw_freeze:
2998 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2999 atomic_dec(&sde->dd->sdma_unfreeze_count);
3000 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3002 case sdma_event_e81_hw_frozen:
3004 case sdma_event_e82_hw_unfreeze:
3010 ss->last_event = event;
3012 sdma_make_progress(sde, 0);
3016 * _extend_sdma_tx_descs() - helper to extend txreq
3018 * This is called once the initial nominal allocation
3019 * of descriptors in the sdma_txreq is exhausted.
3021 * The code will bump the allocation up to the max
3022 * of MAX_DESC (64) descriptors. There doesn't seem
3023 * much point in an interim step. The last descriptor
3024 * is reserved for coalesce buffer in order to support
3025 * cases where input packet has >MAX_DESC iovecs.
3028 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3031 struct sdma_desc *descp;
3033 /* Handle last descriptor */
3034 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3035 /* if tlen is 0, it is for padding, release last descriptor */
3037 tx->desc_limit = MAX_DESC;
3038 } else if (!tx->coalesce_buf) {
3039 /* allocate coalesce buffer with space for padding */
3040 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3042 if (!tx->coalesce_buf)
3044 tx->coalesce_idx = 0;
3049 if (unlikely(tx->num_desc == MAX_DESC))
3052 descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3057 /* reserve last descriptor for coalescing */
3058 tx->desc_limit = MAX_DESC - 1;
3059 /* copy ones already built */
3060 for (i = 0; i < tx->num_desc; i++)
3061 tx->descp[i] = tx->descs[i];
3064 sdma_txclean(dd, tx);
3069 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3071 * This is called once the initial nominal allocation of descriptors
3072 * in the sdma_txreq is exhausted.
3074 * This function calls _extend_sdma_tx_descs to extend or allocate
3075 * coalesce buffer. If there is a allocated coalesce buffer, it will
3076 * copy the input packet data into the coalesce buffer. It also adds
3077 * coalesce buffer descriptor once when whole packet is received.
3081 * 0 - coalescing, don't populate descriptor
3082 * 1 - continue with populating descriptor
3084 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3085 int type, void *kvaddr, struct page *page,
3086 unsigned long offset, u16 len)
3091 rval = _extend_sdma_tx_descs(dd, tx);
3093 sdma_txclean(dd, tx);
3097 /* If coalesce buffer is allocated, copy data into it */
3098 if (tx->coalesce_buf) {
3099 if (type == SDMA_MAP_NONE) {
3100 sdma_txclean(dd, tx);
3104 if (type == SDMA_MAP_PAGE) {
3105 kvaddr = kmap(page);
3107 } else if (WARN_ON(!kvaddr)) {
3108 sdma_txclean(dd, tx);
3112 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3113 tx->coalesce_idx += len;
3114 if (type == SDMA_MAP_PAGE)
3117 /* If there is more data, return */
3118 if (tx->tlen - tx->coalesce_idx)
3121 /* Whole packet is received; add any padding */
3122 pad_len = tx->packet_len & (sizeof(u32) - 1);
3124 pad_len = sizeof(u32) - pad_len;
3125 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3126 /* padding is taken care of for coalescing case */
3127 tx->packet_len += pad_len;
3128 tx->tlen += pad_len;
3131 /* dma map the coalesce buffer */
3132 addr = dma_map_single(&dd->pcidev->dev,
3137 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3138 sdma_txclean(dd, tx);
3142 /* Add descriptor for coalesce buffer */
3143 tx->desc_limit = MAX_DESC;
3144 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3151 /* Update sdes when the lmc changes */
3152 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3154 struct sdma_engine *sde;
3158 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3159 SD(CHECK_SLID_MASK_SHIFT)) |
3160 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3161 SD(CHECK_SLID_VALUE_SHIFT));
3163 for (i = 0; i < dd->num_sdma; i++) {
3164 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3166 sde = &dd->per_sdma[i];
3167 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3171 /* tx not dword sized - pad */
3172 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3177 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3178 rval = _extend_sdma_tx_descs(dd, tx);
3180 sdma_txclean(dd, tx);
3184 /* finish the one just added */
3189 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3190 _sdma_close_tx(dd, tx);
3195 * Add ahg to the sdma_txreq
3197 * The logic will consume up to 3
3198 * descriptors at the beginning of
3201 void _sdma_txreq_ahgadd(
3202 struct sdma_txreq *tx,
3208 u32 i, shift = 0, desc = 0;
3211 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3214 mode = SDMA_AHG_APPLY_UPDATE1;
3215 else if (num_ahg <= 5)
3216 mode = SDMA_AHG_APPLY_UPDATE2;
3218 mode = SDMA_AHG_APPLY_UPDATE3;
3220 /* initialize to consumed descriptors to zero */
3222 case SDMA_AHG_APPLY_UPDATE3:
3224 tx->descs[2].qw[0] = 0;
3225 tx->descs[2].qw[1] = 0;
3227 case SDMA_AHG_APPLY_UPDATE2:
3229 tx->descs[1].qw[0] = 0;
3230 tx->descs[1].qw[1] = 0;
3234 tx->descs[0].qw[1] |=
3235 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3236 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3237 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3238 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3239 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3240 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3241 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3242 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3243 for (i = 0; i < (num_ahg - 1); i++) {
3244 if (!shift && !(i & 2))
3246 tx->descs[desc].qw[!!(i & 2)] |=
3249 shift = (shift + 32) & 63;
3254 * sdma_ahg_alloc - allocate an AHG entry
3255 * @sde: engine to allocate from
3258 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3259 * -ENOSPC if an entry is not available
3261 int sdma_ahg_alloc(struct sdma_engine *sde)
3267 trace_hfi1_ahg_allocate(sde, -EINVAL);
3271 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
3273 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3276 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3281 trace_hfi1_ahg_allocate(sde, nr);
3286 * sdma_ahg_free - free an AHG entry
3287 * @sde: engine to return AHG entry
3288 * @ahg_index: index to free
3290 * This routine frees the indicate AHG entry.
3292 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3296 trace_hfi1_ahg_deallocate(sde, ahg_index);
3297 if (ahg_index < 0 || ahg_index > 31)
3299 clear_bit(ahg_index, &sde->ahg_bits);
3303 * SPC freeze handling for SDMA engines. Called when the driver knows
3304 * the SPC is going into a freeze but before the freeze is fully
3305 * settled. Generally an error interrupt.
3307 * This event will pull the engine out of running so no more entries can be
3308 * added to the engine's queue.
3310 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3313 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3314 sdma_event_e80_hw_freeze;
3316 /* set up the wait but do not wait here */
3317 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3319 /* tell all engines to stop running and wait */
3320 for (i = 0; i < dd->num_sdma; i++)
3321 sdma_process_event(&dd->per_sdma[i], event);
3323 /* sdma_freeze() will wait for all engines to have stopped */
3327 * SPC freeze handling for SDMA engines. Called when the driver knows
3328 * the SPC is fully frozen.
3330 void sdma_freeze(struct hfi1_devdata *dd)
3336 * Make sure all engines have moved out of the running state before
3339 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3340 atomic_read(&dd->sdma_unfreeze_count) <=
3342 /* interrupted or count is negative, then unloading - just exit */
3343 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3346 /* set up the count for the next wait */
3347 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3349 /* tell all engines that the SPC is frozen, they can start cleaning */
3350 for (i = 0; i < dd->num_sdma; i++)
3351 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3354 * Wait for everyone to finish software clean before exiting. The
3355 * software clean will read engine CSRs, so must be completed before
3356 * the next step, which will clear the engine CSRs.
3358 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3359 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3360 /* no need to check results - done no matter what */
3364 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3366 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3367 * that is left is a software clean. We could do it after the SPC is fully
3368 * frozen, but then we'd have to add another state to wait for the unfreeze.
3369 * Instead, just defer the software clean until the unfreeze step.
3371 void sdma_unfreeze(struct hfi1_devdata *dd)
3375 /* tell all engines start freeze clean up */
3376 for (i = 0; i < dd->num_sdma; i++)
3377 sdma_process_event(&dd->per_sdma[i],
3378 sdma_event_e82_hw_unfreeze);
3382 * _sdma_engine_progress_schedule() - schedule progress on engine
3383 * @sde: sdma_engine to schedule progress
3386 void _sdma_engine_progress_schedule(
3387 struct sdma_engine *sde)
3389 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3390 /* assume we have selected a good cpu */
3392 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3393 sde->progress_mask);