2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <rdma/rdma_vt.h>
70 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
73 * min buffers we want to have per context, after driver
75 #define HFI1_MIN_USER_CTXT_BUFCNT 7
77 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
78 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
79 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
80 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
83 * Number of user receive contexts we are configured to use (to allow for more
84 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
86 int num_user_contexts = -1;
87 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
89 num_user_contexts, "Set max number of user contexts to use");
91 uint krcvqs[RXE_NUM_DATA_VL];
93 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
94 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
96 /* computed based on above array */
97 unsigned long n_krcvqs;
99 static unsigned hfi1_rcvarr_split = 25;
100 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
101 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
103 static uint eager_buffer_size = (2 << 20); /* 2MB */
104 module_param(eager_buffer_size, uint, S_IRUGO);
105 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
107 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
108 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
109 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
111 static uint hfi1_hdrq_entsize = 32;
112 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
113 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
115 unsigned int user_credit_return_threshold = 33; /* default is 33% */
116 module_param(user_credit_return_threshold, uint, S_IRUGO);
117 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
119 static inline u64 encode_rcv_header_entry_size(u16);
121 static struct idr hfi1_unit_table;
122 u32 hfi1_cpulist_count;
123 unsigned long *hfi1_cpulist;
126 * Common code for creating the receive context array.
128 int hfi1_create_ctxts(struct hfi1_devdata *dd)
133 /* Control context has to be always 0 */
134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
136 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
137 GFP_KERNEL, dd->node);
141 /* create one or more kernel contexts */
142 for (i = 0; i < dd->first_user_ctxt; ++i) {
143 struct hfi1_pportdata *ppd;
144 struct hfi1_ctxtdata *rcd;
146 ppd = dd->pport + (i % dd->num_pports);
148 /* dd->rcd[i] gets assigned inside the callee */
149 rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
152 "Unable to allocate kernel receive context, failing\n");
156 * Set up the kernel context flags here and now because they
157 * use default values for all receive side memories. User
158 * contexts will be handled as they are created.
160 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
161 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
162 HFI1_CAP_KGET(NODROP_EGR_FULL) |
163 HFI1_CAP_KGET(DMA_RTAIL);
165 /* Control context must use DMA_RTAIL */
166 if (rcd->ctxt == HFI1_CTRL_CTXT)
167 rcd->flags |= HFI1_CAP_DMA_RTAIL;
170 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
173 "Unable to allocate kernel send context, failing\n");
177 ret = hfi1_init_ctxt(rcd->sc);
180 "Failed to setup kernel receive context, failing\n");
187 * Initialize aspm, to be done after gen3 transition and setting up
188 * contexts and before enabling interrupts
197 for (i = 0; i < dd->num_rcv_contexts; ++i)
198 hfi1_free_ctxtdata(dd, dd->rcd[i]);
206 * Common code for user and kernel context setup.
208 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
211 struct hfi1_devdata *dd = ppd->dd;
212 struct hfi1_ctxtdata *rcd;
213 unsigned kctxt_ngroups = 0;
216 if (dd->rcv_entries.nctxt_extra >
217 dd->num_rcv_contexts - dd->first_user_ctxt)
218 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
219 (dd->num_rcv_contexts - dd->first_user_ctxt));
220 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
222 u32 rcvtids, max_entries;
224 hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
226 INIT_LIST_HEAD(&rcd->qp_wait_list);
233 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
235 mutex_init(&rcd->exp_lock);
238 * Calculate the context's RcvArray entry starting point.
239 * We do this here because we have to take into account all
240 * the RcvArray entries that previous context would have
241 * taken and we have to account for any extra groups
242 * assigned to the kernel or user contexts.
244 if (ctxt < dd->first_user_ctxt) {
245 if (ctxt < kctxt_ngroups) {
246 base = ctxt * (dd->rcv_entries.ngroups + 1);
247 rcd->rcv_array_groups++;
249 base = kctxt_ngroups +
250 (ctxt * dd->rcv_entries.ngroups);
252 u16 ct = ctxt - dd->first_user_ctxt;
254 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
256 if (ct < dd->rcv_entries.nctxt_extra) {
257 base += ct * (dd->rcv_entries.ngroups + 1);
258 rcd->rcv_array_groups++;
260 base += dd->rcv_entries.nctxt_extra +
261 (ct * dd->rcv_entries.ngroups);
263 rcd->eager_base = base * dd->rcv_entries.group_size;
265 rcd->rcvhdrq_cnt = rcvhdrcnt;
266 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
268 * Simple Eager buffer allocation: we have already pre-allocated
269 * the number of RcvArray entry groups. Each ctxtdata structure
270 * holds the number of groups for that context.
272 * To follow CSR requirements and maintain cacheline alignment,
273 * make sure all sizes and bases are multiples of group_size.
275 * The expected entry count is what is left after assigning
278 max_entries = rcd->rcv_array_groups *
279 dd->rcv_entries.group_size;
280 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
281 rcd->egrbufs.count = round_down(rcvtids,
282 dd->rcv_entries.group_size);
283 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
284 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
286 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
289 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
290 rcd->ctxt, rcd->egrbufs.count);
293 * Allocate array that will hold the eager buffer accounting
295 * This will allocate the maximum possible buffer count based
296 * on the value of the RcvArray split parameter.
297 * The resulting value will be rounded down to the closest
298 * multiple of dd->rcv_entries.group_size.
300 rcd->egrbufs.buffers = kzalloc_node(
301 rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers),
303 if (!rcd->egrbufs.buffers)
305 rcd->egrbufs.rcvtids = kzalloc_node(
307 sizeof(*rcd->egrbufs.rcvtids),
309 if (!rcd->egrbufs.rcvtids)
311 rcd->egrbufs.size = eager_buffer_size;
313 * The size of the buffers programmed into the RcvArray
314 * entries needs to be big enough to handle the highest
317 if (rcd->egrbufs.size < hfi1_max_mtu) {
318 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
320 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
321 rcd->ctxt, rcd->egrbufs.size);
323 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
325 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
326 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
334 dd->rcd[ctxt] = NULL;
335 kfree(rcd->egrbufs.rcvtids);
336 kfree(rcd->egrbufs.buffers);
342 * Convert a receive header entry size that to the encoding used in the CSR.
344 * Return a zero if the given size is invalid.
346 static inline u64 encode_rcv_header_entry_size(u16 size)
348 /* there are only 3 valid receive header entry sizes */
355 return 0; /* invalid */
359 * Select the largest ccti value over all SLs to determine the intra-
360 * packet gap for the link.
362 * called with cca_timer_lock held (to protect access to cca_timer
363 * array), and rcu_read_lock() (to protect access to cc_state).
365 void set_link_ipg(struct hfi1_pportdata *ppd)
367 struct hfi1_devdata *dd = ppd->dd;
368 struct cc_state *cc_state;
370 u16 cce, ccti_limit, max_ccti = 0;
373 u32 current_egress_rate; /* Mbits /sec */
376 * max_pkt_time is the maximum packet egress time in units
377 * of the fabric clock period 1/(805 MHz).
380 cc_state = get_cc_state(ppd);
384 * This should _never_ happen - rcu_read_lock() is held,
385 * and set_link_ipg() should not be called if cc_state
390 for (i = 0; i < OPA_MAX_SLS; i++) {
391 u16 ccti = ppd->cca_timer[i].ccti;
397 ccti_limit = cc_state->cct.ccti_limit;
398 if (max_ccti > ccti_limit)
399 max_ccti = ccti_limit;
401 cce = cc_state->cct.entries[max_ccti].entry;
402 shift = (cce & 0xc000) >> 14;
403 mult = (cce & 0x3fff);
405 current_egress_rate = active_egress_rate(ppd);
407 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
409 src = (max_pkt_time >> shift) * mult;
411 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
412 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
414 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
417 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
419 struct cca_timer *cca_timer;
420 struct hfi1_pportdata *ppd;
422 u16 ccti_timer, ccti_min;
423 struct cc_state *cc_state;
425 enum hrtimer_restart ret = HRTIMER_NORESTART;
427 cca_timer = container_of(t, struct cca_timer, hrtimer);
428 ppd = cca_timer->ppd;
433 cc_state = get_cc_state(ppd);
437 return HRTIMER_NORESTART;
441 * 1) decrement ccti for SL
442 * 2) calculate IPG for link (set_link_ipg())
443 * 3) restart timer, unless ccti is at min value
446 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
447 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
449 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
451 if (cca_timer->ccti > ccti_min) {
456 if (cca_timer->ccti > ccti_min) {
457 unsigned long nsec = 1024 * ccti_timer;
458 /* ccti_timer is in units of 1.024 usec */
459 hrtimer_forward_now(t, ns_to_ktime(nsec));
460 ret = HRTIMER_RESTART;
463 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
469 * Common code for initializing the physical port structure.
471 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
472 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
475 uint default_pkey_idx;
476 struct cc_state *cc_state;
479 ppd->hw_pidx = hw_pidx;
480 ppd->port = port; /* IB port number, not index */
482 default_pkey_idx = 1;
484 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
486 hfi1_early_err(&pdev->dev,
487 "Faking data partition 0x8001 in idx %u\n",
489 ppd->pkeys[!default_pkey_idx] = 0x8001;
492 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
493 INIT_WORK(&ppd->link_up_work, handle_link_up);
494 INIT_WORK(&ppd->link_down_work, handle_link_down);
495 INIT_WORK(&ppd->freeze_work, handle_freeze);
496 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
497 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
498 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
499 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
500 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
501 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
503 mutex_init(&ppd->hls_lock);
504 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
506 ppd->qsfp_info.ppd = ppd;
507 ppd->sm_trap_qp = 0x0;
512 spin_lock_init(&ppd->cca_timer_lock);
514 for (i = 0; i < OPA_MAX_SLS; i++) {
515 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
517 ppd->cca_timer[i].ppd = ppd;
518 ppd->cca_timer[i].sl = i;
519 ppd->cca_timer[i].ccti = 0;
520 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
523 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
525 spin_lock_init(&ppd->cc_state_lock);
526 spin_lock_init(&ppd->cc_log_lock);
527 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
528 RCU_INIT_POINTER(ppd->cc_state, cc_state);
535 hfi1_early_err(&pdev->dev,
536 "Congestion Control Agent disabled for port %d\n", port);
540 * Do initialization for device that is only needed on
541 * first detect, not on resets.
543 static int loadtime_init(struct hfi1_devdata *dd)
549 * init_after_reset - re-initialize after a reset
550 * @dd: the hfi1_ib device
552 * sanity check at least some of the values after reset, and
553 * ensure no receive or transmit (explicitly, in case reset
556 static int init_after_reset(struct hfi1_devdata *dd)
561 * Ensure chip does no sends or receives, tail updates, or
562 * pioavail updates while we re-initialize. This is mostly
563 * for the driver data structures, not chip registers.
565 for (i = 0; i < dd->num_rcv_contexts; i++)
566 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
567 HFI1_RCVCTRL_INTRAVAIL_DIS |
568 HFI1_RCVCTRL_TAILUPD_DIS, i);
569 pio_send_control(dd, PSC_GLOBAL_DISABLE);
570 for (i = 0; i < dd->num_send_contexts; i++)
571 sc_disable(dd->send_contexts[i].sc);
576 static void enable_chip(struct hfi1_devdata *dd)
581 /* enable PIO send */
582 pio_send_control(dd, PSC_GLOBAL_ENABLE);
585 * Enable kernel ctxts' receive and receive interrupt.
586 * Other ctxts done as user opens and initializes them.
588 for (i = 0; i < dd->first_user_ctxt; ++i) {
589 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
590 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
591 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
592 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
593 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
594 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
595 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
596 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
597 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
598 hfi1_rcvctrl(dd, rcvmask, i);
599 sc_enable(dd->rcd[i]->sc);
604 * create_workqueues - create per port workqueues
605 * @dd: the hfi1_ib device
607 static int create_workqueues(struct hfi1_devdata *dd)
610 struct hfi1_pportdata *ppd;
612 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
613 ppd = dd->pport + pidx;
618 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
627 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
628 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
629 ppd = dd->pport + pidx;
631 destroy_workqueue(ppd->hfi1_wq);
639 * hfi1_init - do the actual initialization sequence on the chip
640 * @dd: the hfi1_ib device
641 * @reinit: re-initializing, so don't allocate new memory
643 * Do the actual initialization sequence on the chip. This is done
644 * both from the init routine called from the PCI infrastructure, and
645 * when we reset the chip, or detect that it was reset internally,
646 * or it's administratively re-enabled.
648 * Memory allocation here and in called routines is only done in
649 * the first case (reinit == 0). We have to be careful, because even
650 * without memory allocation, we need to re-write all the chip registers
651 * TIDs, etc. after the reset or enable has completed.
653 int hfi1_init(struct hfi1_devdata *dd, int reinit)
655 int ret = 0, pidx, lastfail = 0;
657 struct hfi1_ctxtdata *rcd;
658 struct hfi1_pportdata *ppd;
660 /* Set up recv low level handlers */
661 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
662 kdeth_process_expected;
663 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
665 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
666 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
667 process_receive_error;
668 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
669 process_receive_bypass;
670 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
671 process_receive_invalid;
672 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
673 process_receive_invalid;
674 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
675 process_receive_invalid;
676 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
678 /* Set up send low level handlers */
679 dd->process_pio_send = hfi1_verbs_send_pio;
680 dd->process_dma_send = hfi1_verbs_send_dma;
681 dd->pio_inline_send = pio_copy;
684 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
687 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
691 /* make sure the link is not "up" */
692 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
693 ppd = dd->pport + pidx;
698 ret = init_after_reset(dd);
700 ret = loadtime_init(dd);
704 /* allocate dummy tail memory for all receive contexts */
705 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
706 &dd->pcidev->dev, sizeof(u64),
707 &dd->rcvhdrtail_dummy_dma,
710 if (!dd->rcvhdrtail_dummy_kvaddr) {
711 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
716 /* dd->rcd can be NULL if early initialization failed */
717 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
719 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
720 * re-init, the simplest way to handle this is to free
721 * existing, and re-allocate.
722 * Need to re-create rest of ctxt 0 ctxtdata as well.
728 rcd->do_interrupt = &handle_receive_interrupt;
730 lastfail = hfi1_create_rcvhdrq(dd, rcd);
732 lastfail = hfi1_setup_eagerbufs(rcd);
735 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
740 /* Allocate enough memory for user event notification. */
741 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
742 sizeof(*dd->events));
743 dd->events = vmalloc_user(len);
745 dd_dev_err(dd, "Failed to allocate user events page\n");
747 * Allocate a page for device and port status.
748 * Page will be shared amongst all user processes.
750 dd->status = vmalloc_user(PAGE_SIZE);
752 dd_dev_err(dd, "Failed to allocate dev status page\n");
754 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
755 sizeof(dd->status->freezemsg));
756 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
757 ppd = dd->pport + pidx;
759 /* Currently, we only have one port */
760 ppd->statusp = &dd->status->port;
765 /* enable chip even if we have an error, so we can debug cause */
770 * Set status even if port serdes is not initialized
771 * so that diags will work.
774 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
777 /* enable all interrupts from the chip */
778 set_intr_state(dd, 1);
780 /* chip is OK for user apps; mark it as initialized */
781 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
782 ppd = dd->pport + pidx;
785 * start the serdes - must be after interrupts are
786 * enabled so we are notified when the link goes up
788 lastfail = bringup_serdes(ppd);
791 "Failed to bring up port %u\n",
795 * Set status even if port serdes is not initialized
796 * so that diags will work.
799 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
801 if (!ppd->link_speed_enabled)
806 /* if ret is non-zero, we probably should do some cleanup here... */
810 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
812 return idr_find(&hfi1_unit_table, unit);
815 struct hfi1_devdata *hfi1_lookup(int unit)
817 struct hfi1_devdata *dd;
820 spin_lock_irqsave(&hfi1_devs_lock, flags);
821 dd = __hfi1_lookup(unit);
822 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
828 * Stop the timers during unit shutdown, or after an error late
831 static void stop_timers(struct hfi1_devdata *dd)
833 struct hfi1_pportdata *ppd;
836 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
837 ppd = dd->pport + pidx;
838 if (ppd->led_override_timer.data) {
839 del_timer_sync(&ppd->led_override_timer);
840 atomic_set(&ppd->led_override_timer_active, 0);
846 * shutdown_device - shut down a device
847 * @dd: the hfi1_ib device
849 * This is called to make the device quiet when we are about to
850 * unload the driver, and also when the device is administratively
851 * disabled. It does not free any data structures.
852 * Everything it does has to be setup again by hfi1_init(dd, 1)
854 static void shutdown_device(struct hfi1_devdata *dd)
856 struct hfi1_pportdata *ppd;
860 if (dd->flags & HFI1_SHUTDOWN)
862 dd->flags |= HFI1_SHUTDOWN;
864 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
865 ppd = dd->pport + pidx;
869 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
870 HFI1_STATUS_IB_READY);
872 dd->flags &= ~HFI1_INITTED;
874 /* mask interrupts, but not errors */
875 set_intr_state(dd, 0);
877 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
878 ppd = dd->pport + pidx;
879 for (i = 0; i < dd->num_rcv_contexts; i++)
880 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
881 HFI1_RCVCTRL_CTXT_DIS |
882 HFI1_RCVCTRL_INTRAVAIL_DIS |
883 HFI1_RCVCTRL_PKEY_DIS |
884 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
886 * Gracefully stop all sends allowing any in progress to
889 for (i = 0; i < dd->num_send_contexts; i++)
890 sc_flush(dd->send_contexts[i].sc);
894 * Enough for anything that's going to trickle out to have actually
899 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
900 ppd = dd->pport + pidx;
902 /* disable all contexts */
903 for (i = 0; i < dd->num_send_contexts; i++)
904 sc_disable(dd->send_contexts[i].sc);
905 /* disable the send device */
906 pio_send_control(dd, PSC_GLOBAL_DISABLE);
908 shutdown_led_override(ppd);
911 * Clear SerdesEnable.
912 * We can't count on interrupts since we are stopping.
914 hfi1_quiet_serdes(ppd);
917 destroy_workqueue(ppd->hfi1_wq);
925 * hfi1_free_ctxtdata - free a context's allocated data
926 * @dd: the hfi1_ib device
927 * @rcd: the ctxtdata structure
929 * free up any allocated data for a context
930 * This should not touch anything that would affect a simultaneous
931 * re-allocation of context data, because it is called after hfi1_mutex
932 * is released (and can be called from reinit as well).
933 * It should never change any chip state, or global driver state.
935 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
943 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
944 rcd->rcvhdrq, rcd->rcvhdrq_dma);
946 if (rcd->rcvhdrtail_kvaddr) {
947 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
948 (void *)rcd->rcvhdrtail_kvaddr,
949 rcd->rcvhdrqtailaddr_dma);
950 rcd->rcvhdrtail_kvaddr = NULL;
954 /* all the RcvArray entries should have been cleared by now */
955 kfree(rcd->egrbufs.rcvtids);
957 for (e = 0; e < rcd->egrbufs.alloced; e++) {
958 if (rcd->egrbufs.buffers[e].dma)
959 dma_free_coherent(&dd->pcidev->dev,
960 rcd->egrbufs.buffers[e].len,
961 rcd->egrbufs.buffers[e].addr,
962 rcd->egrbufs.buffers[e].dma);
964 kfree(rcd->egrbufs.buffers);
967 vfree(rcd->user_event_mask);
968 vfree(rcd->subctxt_uregbase);
969 vfree(rcd->subctxt_rcvegrbuf);
970 vfree(rcd->subctxt_rcvhdr_base);
976 * Release our hold on the shared asic data. If we are the last one,
977 * return the structure to be finalized outside the lock. Must be
978 * holding hfi1_devs_lock.
980 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
982 struct hfi1_asic_data *ad;
987 dd->asic_data->dds[dd->hfi1_id] = NULL;
988 other = dd->hfi1_id ? 0 : 1;
990 dd->asic_data = NULL;
991 /* return NULL if the other dd still has a link */
992 return ad->dds[other] ? NULL : ad;
995 static void finalize_asic_data(struct hfi1_devdata *dd,
996 struct hfi1_asic_data *ad)
998 clean_up_i2c(dd, ad);
1002 static void __hfi1_free_devdata(struct kobject *kobj)
1004 struct hfi1_devdata *dd =
1005 container_of(kobj, struct hfi1_devdata, kobj);
1006 struct hfi1_asic_data *ad;
1007 unsigned long flags;
1009 spin_lock_irqsave(&hfi1_devs_lock, flags);
1010 idr_remove(&hfi1_unit_table, dd->unit);
1011 list_del(&dd->list);
1012 ad = release_asic_data(dd);
1013 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1015 finalize_asic_data(dd, ad);
1016 free_platform_config(dd);
1017 rcu_barrier(); /* wait for rcu callbacks to complete */
1018 free_percpu(dd->int_counter);
1019 free_percpu(dd->rcv_limit);
1020 free_percpu(dd->send_schedule);
1021 rvt_dealloc_device(&dd->verbs_dev.rdi);
1024 static struct kobj_type hfi1_devdata_type = {
1025 .release = __hfi1_free_devdata,
1028 void hfi1_free_devdata(struct hfi1_devdata *dd)
1030 kobject_put(&dd->kobj);
1034 * Allocate our primary per-unit data structure. Must be done via verbs
1035 * allocator, because the verbs cleanup process both does cleanup and
1036 * free of the data structure.
1037 * "extra" is for chip-specific data.
1039 * Use the idr mechanism to get a unit number for this unit.
1041 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1043 unsigned long flags;
1044 struct hfi1_devdata *dd;
1047 /* extra is * number of ports */
1048 nports = extra / sizeof(struct hfi1_pportdata);
1050 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1053 return ERR_PTR(-ENOMEM);
1054 dd->num_pports = nports;
1055 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1057 pci_set_drvdata(pdev, dd);
1059 INIT_LIST_HEAD(&dd->list);
1060 idr_preload(GFP_KERNEL);
1061 spin_lock_irqsave(&hfi1_devs_lock, flags);
1063 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1066 list_add(&dd->list, &hfi1_dev_list);
1069 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1073 hfi1_early_err(&pdev->dev,
1074 "Could not allocate unit ID: error %d\n", -ret);
1078 * Initialize all locks for the device. This needs to be as early as
1079 * possible so locks are usable.
1081 spin_lock_init(&dd->sc_lock);
1082 spin_lock_init(&dd->sendctrl_lock);
1083 spin_lock_init(&dd->rcvctrl_lock);
1084 spin_lock_init(&dd->uctxt_lock);
1085 spin_lock_init(&dd->hfi1_diag_trans_lock);
1086 spin_lock_init(&dd->sc_init_lock);
1087 spin_lock_init(&dd->dc8051_memlock);
1088 seqlock_init(&dd->sc2vl_lock);
1089 spin_lock_init(&dd->sde_map_lock);
1090 spin_lock_init(&dd->pio_map_lock);
1091 mutex_init(&dd->dc8051_lock);
1092 init_waitqueue_head(&dd->event_queue);
1094 dd->int_counter = alloc_percpu(u64);
1095 if (!dd->int_counter) {
1097 hfi1_early_err(&pdev->dev,
1098 "Could not allocate per-cpu int_counter\n");
1102 dd->rcv_limit = alloc_percpu(u64);
1103 if (!dd->rcv_limit) {
1105 hfi1_early_err(&pdev->dev,
1106 "Could not allocate per-cpu rcv_limit\n");
1110 dd->send_schedule = alloc_percpu(u64);
1111 if (!dd->send_schedule) {
1113 hfi1_early_err(&pdev->dev,
1114 "Could not allocate per-cpu int_counter\n");
1118 if (!hfi1_cpulist_count) {
1119 u32 count = num_online_cpus();
1121 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1124 hfi1_cpulist_count = count;
1128 "Could not alloc cpulist info, cpu affinity might be wrong\n");
1130 kobject_init(&dd->kobj, &hfi1_devdata_type);
1134 if (!list_empty(&dd->list))
1135 list_del_init(&dd->list);
1136 rvt_dealloc_device(&dd->verbs_dev.rdi);
1137 return ERR_PTR(ret);
1141 * Called from freeze mode handlers, and from PCI error
1142 * reporting code. Should be paranoid about state of
1143 * system and data structures.
1145 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1147 if (dd->flags & HFI1_INITTED) {
1150 dd->flags &= ~HFI1_INITTED;
1152 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1153 struct hfi1_pportdata *ppd;
1155 ppd = dd->pport + pidx;
1156 if (dd->flags & HFI1_PRESENT)
1157 set_link_state(ppd, HLS_DN_DISABLE);
1160 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1165 * Mark as having had an error for driver, and also
1166 * for /sys and status word mapped to user programs.
1167 * This marks unit as not usable, until reset.
1170 dd->status->dev |= HFI1_STATUS_HWERROR;
1173 static void remove_one(struct pci_dev *);
1174 static int init_one(struct pci_dev *, const struct pci_device_id *);
1175 static void shutdown_one(struct pci_dev *);
1177 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1178 #define PFX DRIVER_NAME ": "
1180 const struct pci_device_id hfi1_pci_tbl[] = {
1181 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1182 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1186 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1188 static struct pci_driver hfi1_pci_driver = {
1189 .name = DRIVER_NAME,
1191 .remove = remove_one,
1192 .shutdown = shutdown_one,
1193 .id_table = hfi1_pci_tbl,
1194 .err_handler = &hfi1_pci_err_handler,
1197 static void __init compute_krcvqs(void)
1201 for (i = 0; i < krcvqsset; i++)
1202 n_krcvqs += krcvqs[i];
1206 * Do all the generic driver unit- and chip-independent memory
1207 * allocation and initialization.
1209 static int __init hfi1_mod_init(void)
1217 ret = node_affinity_init();
1221 /* validate max MTU before any devices start */
1222 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1223 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1224 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1225 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1227 /* valid CUs run from 1-128 in powers of 2 */
1228 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1230 /* valid credit return threshold is 0-100, variable is unsigned */
1231 if (user_credit_return_threshold > 100)
1232 user_credit_return_threshold = 100;
1236 * sanitize receive interrupt count, time must wait until after
1237 * the hardware type is known
1239 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1240 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1241 /* reject invalid combinations */
1242 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1243 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1246 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1248 * Avoid indefinite packet delivery by requiring a timeout
1251 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1252 rcv_intr_timeout = 1;
1254 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1256 * The dynamic algorithm expects a non-zero timeout
1259 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1260 rcv_intr_dynamic = 0;
1263 /* sanitize link CRC options */
1264 link_crc_mask &= SUPPORTED_CRCS;
1267 * These must be called before the driver is registered with
1268 * the PCI subsystem.
1270 idr_init(&hfi1_unit_table);
1273 ret = hfi1_wss_init();
1276 ret = pci_register_driver(&hfi1_pci_driver);
1278 pr_err("Unable to register driver: error %d\n", -ret);
1281 goto bail; /* all OK */
1287 idr_destroy(&hfi1_unit_table);
1293 module_init(hfi1_mod_init);
1296 * Do the non-unit driver cleanup, memory free, etc. at unload.
1298 static void __exit hfi1_mod_cleanup(void)
1300 pci_unregister_driver(&hfi1_pci_driver);
1301 node_affinity_destroy();
1304 hfi1_cpulist_count = 0;
1305 kfree(hfi1_cpulist);
1307 idr_destroy(&hfi1_unit_table);
1308 dispose_firmware(); /* asymmetric with obtain_firmware() */
1312 module_exit(hfi1_mod_cleanup);
1314 /* this can only be called after a successful initialization */
1315 static void cleanup_device_data(struct hfi1_devdata *dd)
1319 struct hfi1_ctxtdata **tmp;
1320 unsigned long flags;
1322 /* users can't do anything more with chip */
1323 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1324 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1325 struct cc_state *cc_state;
1329 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1331 for (i = 0; i < OPA_MAX_SLS; i++)
1332 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1334 spin_lock(&ppd->cc_state_lock);
1335 cc_state = get_cc_state_protected(ppd);
1336 RCU_INIT_POINTER(ppd->cc_state, NULL);
1337 spin_unlock(&ppd->cc_state_lock);
1340 kfree_rcu(cc_state, rcu);
1343 free_credit_return(dd);
1346 * Free any resources still in use (usually just kernel contexts)
1347 * at unload; we do for ctxtcnt, because that's what we allocate.
1348 * We acquire lock to be really paranoid that rcd isn't being
1349 * accessed from some interrupt-related code (that should not happen,
1350 * but best to be sure).
1352 spin_lock_irqsave(&dd->uctxt_lock, flags);
1355 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1357 if (dd->rcvhdrtail_dummy_kvaddr) {
1358 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1359 (void *)dd->rcvhdrtail_dummy_kvaddr,
1360 dd->rcvhdrtail_dummy_dma);
1361 dd->rcvhdrtail_dummy_kvaddr = NULL;
1364 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1365 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1367 tmp[ctxt] = NULL; /* debugging paranoia */
1369 hfi1_clear_tids(rcd);
1370 hfi1_free_ctxtdata(dd, rcd);
1375 /* must follow rcv context free - need to remove rcv's hooks */
1376 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1377 sc_free(dd->send_contexts[ctxt].sc);
1378 dd->num_send_contexts = 0;
1379 kfree(dd->send_contexts);
1380 dd->send_contexts = NULL;
1381 kfree(dd->hw_to_sw);
1382 dd->hw_to_sw = NULL;
1383 kfree(dd->boardname);
1389 * Clean up on unit shutdown, or error during unit load after
1390 * successful initialization.
1392 static void postinit_cleanup(struct hfi1_devdata *dd)
1394 hfi1_start_cleanup(dd);
1396 hfi1_pcie_ddcleanup(dd);
1397 hfi1_pcie_cleanup(dd->pcidev);
1399 cleanup_device_data(dd);
1401 hfi1_free_devdata(dd);
1404 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1406 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1407 hfi1_early_err(dev, "Receive header queue count too small\n");
1411 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1413 "Receive header queue count cannot be greater than %u\n",
1414 HFI1_MAX_HDRQ_EGRBUF_CNT);
1418 if (thecnt % HDRQ_INCREMENT) {
1419 hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1420 thecnt, HDRQ_INCREMENT);
1427 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1429 int ret = 0, j, pidx, initfail;
1430 struct hfi1_devdata *dd;
1431 struct hfi1_pportdata *ppd;
1433 /* First, lock the non-writable module parameters */
1436 /* Validate some global module parameters */
1437 ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1441 /* use the encoding function as a sanitization check */
1442 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1443 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1449 /* The receive eager buffer size must be set before the receive
1450 * contexts are created.
1452 * Set the eager buffer size. Validate that it falls in a range
1453 * allowed by the hardware - all powers of 2 between the min and
1454 * max. The maximum valid MTU is within the eager buffer range
1455 * so we do not need to cap the max_mtu by an eager buffer size
1458 if (eager_buffer_size) {
1459 if (!is_power_of_2(eager_buffer_size))
1461 roundup_pow_of_two(eager_buffer_size);
1463 clamp_val(eager_buffer_size,
1464 MIN_EAGER_BUFFER * 8,
1465 MAX_EAGER_BUFFER_TOTAL);
1466 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1469 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1474 /* restrict value of hfi1_rcvarr_split */
1475 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1477 ret = hfi1_pcie_init(pdev, ent);
1481 if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1482 ent->device == PCI_DEVICE_ID_INTEL1)) {
1483 hfi1_early_err(&pdev->dev,
1484 "Failing on unknown Intel deviceid 0x%x\n",
1491 * Do device-specific initialization, function table setup, dd
1494 dd = hfi1_init_dd(pdev, ent);
1498 goto clean_bail; /* error already printed */
1501 ret = create_workqueues(dd);
1505 /* do the generic initialization */
1506 initfail = hfi1_init(dd, 0);
1508 ret = hfi1_register_ib_device(dd);
1511 * Now ready for use. this should be cleared whenever we
1512 * detect a reset, or initiate one. If earlier failure,
1513 * we still create devices, so diags, etc. can be used
1514 * to determine cause of problem.
1516 if (!initfail && !ret) {
1517 dd->flags |= HFI1_INITTED;
1518 /* create debufs files after init and ib register */
1519 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1522 j = hfi1_device_create(dd);
1524 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1526 if (initfail || ret) {
1528 flush_workqueue(ib_wq);
1529 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1530 hfi1_quiet_serdes(dd->pport + pidx);
1531 ppd = dd->pport + pidx;
1533 destroy_workqueue(ppd->hfi1_wq);
1534 ppd->hfi1_wq = NULL;
1538 hfi1_device_remove(dd);
1540 hfi1_unregister_ib_device(dd);
1541 postinit_cleanup(dd);
1544 goto bail; /* everything already cleaned */
1552 hfi1_pcie_cleanup(pdev);
1557 static void wait_for_clients(struct hfi1_devdata *dd)
1560 * Remove the device init value and complete the device if there is
1561 * no clients or wait for active clients to finish.
1563 if (atomic_dec_and_test(&dd->user_refcount))
1564 complete(&dd->user_comp);
1566 wait_for_completion(&dd->user_comp);
1569 static void remove_one(struct pci_dev *pdev)
1571 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1573 /* close debugfs files before ib unregister */
1574 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1576 /* remove the /dev hfi1 interface */
1577 hfi1_device_remove(dd);
1579 /* wait for existing user space clients to finish */
1580 wait_for_clients(dd);
1582 /* unregister from IB core */
1583 hfi1_unregister_ib_device(dd);
1586 * Disable the IB link, disable interrupts on the device,
1587 * clear dma engines, etc.
1589 shutdown_device(dd);
1593 /* wait until all of our (qsfp) queue_work() calls complete */
1594 flush_workqueue(ib_wq);
1596 postinit_cleanup(dd);
1599 static void shutdown_one(struct pci_dev *pdev)
1601 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1603 shutdown_device(dd);
1607 * hfi1_create_rcvhdrq - create a receive header queue
1608 * @dd: the hfi1_ib device
1609 * @rcd: the context data
1611 * This must be contiguous memory (from an i/o perspective), and must be
1612 * DMA'able (which means for some systems, it will go through an IOMMU,
1613 * or be forced into a low address range).
1615 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1620 if (!rcd->rcvhdrq) {
1624 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1627 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1630 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1631 GFP_USER : GFP_KERNEL;
1632 rcd->rcvhdrq = dma_zalloc_coherent(
1633 &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1634 gfp_flags | __GFP_COMP);
1636 if (!rcd->rcvhdrq) {
1638 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1643 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1644 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1645 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1646 &dd->pcidev->dev, PAGE_SIZE,
1647 &rcd->rcvhdrqtailaddr_dma, gfp_flags);
1648 if (!rcd->rcvhdrtail_kvaddr)
1652 rcd->rcvhdrq_size = amt;
1655 * These values are per-context:
1660 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1661 & RCV_HDR_CNT_CNT_MASK)
1662 << RCV_HDR_CNT_CNT_SHIFT;
1663 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1664 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1665 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1666 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1667 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1668 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1669 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1670 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1673 * Program dummy tail address for every receive context
1674 * before enabling any receive context
1676 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1677 dd->rcvhdrtail_dummy_dma);
1683 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1685 vfree(rcd->user_event_mask);
1686 rcd->user_event_mask = NULL;
1687 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1689 rcd->rcvhdrq = NULL;
1695 * allocate eager buffers, both kernel and user contexts.
1696 * @rcd: the context we are setting up.
1698 * Allocate the eager TID buffers and program them into hip.
1699 * They are no longer completely contiguous, we do multiple allocation
1700 * calls. Otherwise we get the OOM code involved, by asking for too
1701 * much per call, with disastrous results on some kernels.
1703 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1705 struct hfi1_devdata *dd = rcd->dd;
1706 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1710 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1713 * GFP_USER, but without GFP_FS, so buffer cache can be
1714 * coalesced (we hope); otherwise, even at order 4,
1715 * heavy filesystem activity makes these fail, and we can
1716 * use compound pages.
1718 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1721 * The minimum size of the eager buffers is a groups of MTU-sized
1723 * The global eager_buffer_size parameter is checked against the
1724 * theoretical lower limit of the value. Here, we check against the
1727 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1728 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1730 * If using one-pkt-per-egr-buffer, lower the eager buffer
1731 * size to the max MTU (page-aligned).
1733 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1734 rcd->egrbufs.rcvtid_size = round_mtu;
1737 * Eager buffers sizes of 1MB or less require smaller TID sizes
1738 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1740 if (rcd->egrbufs.size <= (1 << 20))
1741 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1742 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1744 while (alloced_bytes < rcd->egrbufs.size &&
1745 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1746 rcd->egrbufs.buffers[idx].addr =
1747 dma_zalloc_coherent(&dd->pcidev->dev,
1748 rcd->egrbufs.rcvtid_size,
1749 &rcd->egrbufs.buffers[idx].dma,
1751 if (rcd->egrbufs.buffers[idx].addr) {
1752 rcd->egrbufs.buffers[idx].len =
1753 rcd->egrbufs.rcvtid_size;
1754 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1755 rcd->egrbufs.buffers[idx].addr;
1756 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1757 rcd->egrbufs.buffers[idx].dma;
1758 rcd->egrbufs.alloced++;
1759 alloced_bytes += rcd->egrbufs.rcvtid_size;
1766 * Fail the eager buffer allocation if:
1767 * - we are already using the lowest acceptable size
1768 * - we are using one-pkt-per-egr-buffer (this implies
1769 * that we are accepting only one size)
1771 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1772 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1773 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1776 goto bail_rcvegrbuf_phys;
1779 new_size = rcd->egrbufs.rcvtid_size / 2;
1782 * If the first attempt to allocate memory failed, don't
1783 * fail everything but continue with the next lower
1787 rcd->egrbufs.rcvtid_size = new_size;
1792 * Re-partition already allocated buffers to a smaller
1795 rcd->egrbufs.alloced = 0;
1796 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1797 if (i >= rcd->egrbufs.count)
1799 rcd->egrbufs.rcvtids[i].dma =
1800 rcd->egrbufs.buffers[j].dma + offset;
1801 rcd->egrbufs.rcvtids[i].addr =
1802 rcd->egrbufs.buffers[j].addr + offset;
1803 rcd->egrbufs.alloced++;
1804 if ((rcd->egrbufs.buffers[j].dma + offset +
1806 (rcd->egrbufs.buffers[j].dma +
1807 rcd->egrbufs.buffers[j].len)) {
1814 rcd->egrbufs.rcvtid_size = new_size;
1817 rcd->egrbufs.numbufs = idx;
1818 rcd->egrbufs.size = alloced_bytes;
1821 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1822 rcd->ctxt, rcd->egrbufs.alloced,
1823 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1826 * Set the contexts rcv array head update threshold to the closest
1827 * power of 2 (so we can use a mask instead of modulo) below half
1828 * the allocated entries.
1830 rcd->egrbufs.threshold =
1831 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1833 * Compute the expected RcvArray entry base. This is done after
1834 * allocating the eager buffers in order to maximize the
1835 * expected RcvArray entries for the context.
1837 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1838 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1839 rcd->expected_count = max_entries - egrtop;
1840 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1841 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1843 rcd->expected_base = rcd->eager_base + egrtop;
1844 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1845 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1846 rcd->eager_base, rcd->expected_base);
1848 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1850 "ctxt%u: current Eager buffer size is invalid %u\n",
1851 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1856 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1857 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1858 rcd->egrbufs.rcvtids[idx].dma, order);
1863 bail_rcvegrbuf_phys:
1864 for (idx = 0; idx < rcd->egrbufs.alloced &&
1865 rcd->egrbufs.buffers[idx].addr;
1867 dma_free_coherent(&dd->pcidev->dev,
1868 rcd->egrbufs.buffers[idx].len,
1869 rcd->egrbufs.buffers[idx].addr,
1870 rcd->egrbufs.buffers[idx].dma);
1871 rcd->egrbufs.buffers[idx].addr = NULL;
1872 rcd->egrbufs.buffers[idx].dma = 0;
1873 rcd->egrbufs.buffers[idx].len = 0;