GNU Linux-libre 4.14.254-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / file_ops.c
1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51 #include <linux/sched/mm.h>
52 #include <linux/bitmap.h>
53
54 #include <rdma/ib.h>
55
56 #include "hfi.h"
57 #include "pio.h"
58 #include "device.h"
59 #include "common.h"
60 #include "trace.h"
61 #include "mmu_rb.h"
62 #include "user_sdma.h"
63 #include "user_exp_rcv.h"
64 #include "aspm.h"
65
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68
69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
70
71 /*
72  * File operation functions
73  */
74 static int hfi1_file_open(struct inode *inode, struct file *fp);
75 static int hfi1_file_close(struct inode *inode, struct file *fp);
76 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
77 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt);
78 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
79
80 static u64 kvirt_to_phys(void *addr);
81 static int assign_ctxt(struct hfi1_filedata *fd, struct hfi1_user_info *uinfo);
82 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
83                           const struct hfi1_user_info *uinfo);
84 static int init_user_ctxt(struct hfi1_filedata *fd,
85                           struct hfi1_ctxtdata *uctxt);
86 static void user_init(struct hfi1_ctxtdata *uctxt);
87 static int get_ctxt_info(struct hfi1_filedata *fd, void __user *ubase,
88                          __u32 len);
89 static int get_base_info(struct hfi1_filedata *fd, void __user *ubase,
90                          __u32 len);
91 static int setup_base_ctxt(struct hfi1_filedata *fd,
92                            struct hfi1_ctxtdata *uctxt);
93 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
94
95 static int find_sub_ctxt(struct hfi1_filedata *fd,
96                          const struct hfi1_user_info *uinfo);
97 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
98                          struct hfi1_user_info *uinfo,
99                          struct hfi1_ctxtdata **cd);
100 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
101 static unsigned int poll_urgent(struct file *fp, struct poll_table_struct *pt);
102 static unsigned int poll_next(struct file *fp, struct poll_table_struct *pt);
103 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
104                           unsigned long events);
105 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, u16 subctxt, u16 pkey);
106 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
107                        int start_stop);
108 static int vma_fault(struct vm_fault *vmf);
109 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
110                             unsigned long arg);
111
112 static const struct file_operations hfi1_file_ops = {
113         .owner = THIS_MODULE,
114         .write_iter = hfi1_write_iter,
115         .open = hfi1_file_open,
116         .release = hfi1_file_close,
117         .unlocked_ioctl = hfi1_file_ioctl,
118         .poll = hfi1_poll,
119         .mmap = hfi1_file_mmap,
120         .llseek = noop_llseek,
121 };
122
123 static const struct vm_operations_struct vm_ops = {
124         .fault = vma_fault,
125 };
126
127 /*
128  * Types of memories mapped into user processes' space
129  */
130 enum mmap_types {
131         PIO_BUFS = 1,
132         PIO_BUFS_SOP,
133         PIO_CRED,
134         RCV_HDRQ,
135         RCV_EGRBUF,
136         UREGS,
137         EVENTS,
138         STATUS,
139         RTAIL,
140         SUBCTXT_UREGS,
141         SUBCTXT_RCV_HDRQ,
142         SUBCTXT_EGRBUF,
143         SDMA_COMP
144 };
145
146 /*
147  * Masks and offsets defining the mmap tokens
148  */
149 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
150 #define HFI1_MMAP_OFFSET_SHIFT  0
151 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
152 #define HFI1_MMAP_SUBCTXT_SHIFT 12
153 #define HFI1_MMAP_CTXT_MASK     0xffULL
154 #define HFI1_MMAP_CTXT_SHIFT    16
155 #define HFI1_MMAP_TYPE_MASK     0xfULL
156 #define HFI1_MMAP_TYPE_SHIFT    24
157 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
158 #define HFI1_MMAP_MAGIC_SHIFT   32
159
160 #define HFI1_MMAP_MAGIC         0xdabbad00
161
162 #define HFI1_MMAP_TOKEN_SET(field, val) \
163         (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
164 #define HFI1_MMAP_TOKEN_GET(field, token) \
165         (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
166 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
167         (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
168         HFI1_MMAP_TOKEN_SET(TYPE, type) | \
169         HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
170         HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
171         HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
172
173 #define dbg(fmt, ...)                           \
174         pr_info(fmt, ##__VA_ARGS__)
175
176 static inline int is_valid_mmap(u64 token)
177 {
178         return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
179 }
180
181 static int hfi1_file_open(struct inode *inode, struct file *fp)
182 {
183         struct hfi1_filedata *fd;
184         struct hfi1_devdata *dd = container_of(inode->i_cdev,
185                                                struct hfi1_devdata,
186                                                user_cdev);
187
188         if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
189                 return -EINVAL;
190
191         if (!atomic_inc_not_zero(&dd->user_refcount))
192                 return -ENXIO;
193
194         /* The real work is performed later in assign_ctxt() */
195
196         fd = kzalloc(sizeof(*fd), GFP_KERNEL);
197
198         if (!fd || init_srcu_struct(&fd->pq_srcu))
199                 goto nomem;
200         spin_lock_init(&fd->pq_rcu_lock);
201         spin_lock_init(&fd->tid_lock);
202         spin_lock_init(&fd->invalid_lock);
203         fd->rec_cpu_num = -1; /* no cpu affinity by default */
204         fd->mm = current->mm;
205         mmgrab(fd->mm);
206         fd->dd = dd;
207         kobject_get(&fd->dd->kobj);
208         fp->private_data = fd;
209         return 0;
210 nomem:
211         kfree(fd);
212         fp->private_data = NULL;
213         if (atomic_dec_and_test(&dd->user_refcount))
214                 complete(&dd->user_comp);
215         return -ENOMEM;
216 }
217
218 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
219                             unsigned long arg)
220 {
221         struct hfi1_filedata *fd = fp->private_data;
222         struct hfi1_ctxtdata *uctxt = fd->uctxt;
223         struct hfi1_user_info uinfo;
224         struct hfi1_tid_info tinfo;
225         int ret = 0;
226         unsigned long addr;
227         int uval = 0;
228         unsigned long ul_uval = 0;
229         u16 uval16 = 0;
230
231         hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
232         if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
233             cmd != HFI1_IOCTL_GET_VERS &&
234             !uctxt)
235                 return -EINVAL;
236
237         switch (cmd) {
238         case HFI1_IOCTL_ASSIGN_CTXT:
239                 if (uctxt)
240                         return -EINVAL;
241
242                 if (copy_from_user(&uinfo,
243                                    (struct hfi1_user_info __user *)arg,
244                                    sizeof(uinfo)))
245                         return -EFAULT;
246
247                 ret = assign_ctxt(fd, &uinfo);
248                 break;
249         case HFI1_IOCTL_CTXT_INFO:
250                 ret = get_ctxt_info(fd, (void __user *)(unsigned long)arg,
251                                     sizeof(struct hfi1_ctxt_info));
252                 break;
253         case HFI1_IOCTL_USER_INFO:
254                 ret = get_base_info(fd, (void __user *)(unsigned long)arg,
255                                     sizeof(struct hfi1_base_info));
256                 break;
257         case HFI1_IOCTL_CREDIT_UPD:
258                 if (uctxt)
259                         sc_return_credits(uctxt->sc);
260                 break;
261
262         case HFI1_IOCTL_TID_UPDATE:
263                 if (copy_from_user(&tinfo,
264                                    (struct hfi11_tid_info __user *)arg,
265                                    sizeof(tinfo)))
266                         return -EFAULT;
267
268                 ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
269                 if (!ret) {
270                         /*
271                          * Copy the number of tidlist entries we used
272                          * and the length of the buffer we registered.
273                          */
274                         addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
275                         if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
276                                          sizeof(tinfo.tidcnt)))
277                                 return -EFAULT;
278
279                         addr = arg + offsetof(struct hfi1_tid_info, length);
280                         if (copy_to_user((void __user *)addr, &tinfo.length,
281                                          sizeof(tinfo.length)))
282                                 ret = -EFAULT;
283                 }
284                 break;
285
286         case HFI1_IOCTL_TID_FREE:
287                 if (copy_from_user(&tinfo,
288                                    (struct hfi11_tid_info __user *)arg,
289                                    sizeof(tinfo)))
290                         return -EFAULT;
291
292                 ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
293                 if (ret)
294                         break;
295                 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
296                 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
297                                  sizeof(tinfo.tidcnt)))
298                         ret = -EFAULT;
299                 break;
300
301         case HFI1_IOCTL_TID_INVAL_READ:
302                 if (copy_from_user(&tinfo,
303                                    (struct hfi11_tid_info __user *)arg,
304                                    sizeof(tinfo)))
305                         return -EFAULT;
306
307                 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
308                 if (ret)
309                         break;
310                 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
311                 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
312                                  sizeof(tinfo.tidcnt)))
313                         ret = -EFAULT;
314                 break;
315
316         case HFI1_IOCTL_RECV_CTRL:
317                 ret = get_user(uval, (int __user *)arg);
318                 if (ret != 0)
319                         return -EFAULT;
320                 ret = manage_rcvq(uctxt, fd->subctxt, uval);
321                 break;
322
323         case HFI1_IOCTL_POLL_TYPE:
324                 ret = get_user(uval, (int __user *)arg);
325                 if (ret != 0)
326                         return -EFAULT;
327                 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
328                 break;
329
330         case HFI1_IOCTL_ACK_EVENT:
331                 ret = get_user(ul_uval, (unsigned long __user *)arg);
332                 if (ret != 0)
333                         return -EFAULT;
334                 ret = user_event_ack(uctxt, fd->subctxt, ul_uval);
335                 break;
336
337         case HFI1_IOCTL_SET_PKEY:
338                 ret = get_user(uval16, (u16 __user *)arg);
339                 if (ret != 0)
340                         return -EFAULT;
341                 if (HFI1_CAP_IS_USET(PKEY_CHECK))
342                         ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16);
343                 else
344                         return -EPERM;
345                 break;
346
347         case HFI1_IOCTL_CTXT_RESET: {
348                 struct send_context *sc;
349                 struct hfi1_devdata *dd;
350
351                 if (!uctxt || !uctxt->dd || !uctxt->sc)
352                         return -EINVAL;
353
354                 /*
355                  * There is no protection here. User level has to
356                  * guarantee that no one will be writing to the send
357                  * context while it is being re-initialized.
358                  * If user level breaks that guarantee, it will break
359                  * it's own context and no one else's.
360                  */
361                 dd = uctxt->dd;
362                 sc = uctxt->sc;
363                 /*
364                  * Wait until the interrupt handler has marked the
365                  * context as halted or frozen. Report error if we time
366                  * out.
367                  */
368                 wait_event_interruptible_timeout(
369                         sc->halt_wait, (sc->flags & SCF_HALTED),
370                         msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
371                 if (!(sc->flags & SCF_HALTED))
372                         return -ENOLCK;
373
374                 /*
375                  * If the send context was halted due to a Freeze,
376                  * wait until the device has been "unfrozen" before
377                  * resetting the context.
378                  */
379                 if (sc->flags & SCF_FROZEN) {
380                         wait_event_interruptible_timeout(
381                                 dd->event_queue,
382                                 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN),
383                                 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
384                         if (dd->flags & HFI1_FROZEN)
385                                 return -ENOLCK;
386
387                         if (dd->flags & HFI1_FORCED_FREEZE)
388                                 /*
389                                  * Don't allow context reset if we are into
390                                  * forced freeze
391                                  */
392                                 return -ENODEV;
393
394                         sc_disable(sc);
395                         ret = sc_enable(sc);
396                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
397                 } else {
398                         ret = sc_restart(sc);
399                 }
400                 if (!ret)
401                         sc_return_credits(sc);
402                 break;
403         }
404
405         case HFI1_IOCTL_GET_VERS:
406                 uval = HFI1_USER_SWVERSION;
407                 if (put_user(uval, (int __user *)arg))
408                         return -EFAULT;
409                 break;
410
411         default:
412                 return -EINVAL;
413         }
414
415         return ret;
416 }
417
418 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
419 {
420         struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
421         struct hfi1_user_sdma_pkt_q *pq;
422         struct hfi1_user_sdma_comp_q *cq = fd->cq;
423         int done = 0, reqs = 0;
424         unsigned long dim = from->nr_segs;
425         int idx;
426
427         idx = srcu_read_lock(&fd->pq_srcu);
428         pq = srcu_dereference(fd->pq, &fd->pq_srcu);
429         if (!cq || !pq) {
430                 srcu_read_unlock(&fd->pq_srcu, idx);
431                 return -EIO;
432         }
433
434         if (!iter_is_iovec(from) || !dim) {
435                 srcu_read_unlock(&fd->pq_srcu, idx);
436                 return -EINVAL;
437         }
438
439         trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
440
441         if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
442                 srcu_read_unlock(&fd->pq_srcu, idx);
443                 return -ENOSPC;
444         }
445
446         while (dim) {
447                 int ret;
448                 unsigned long count = 0;
449
450                 ret = hfi1_user_sdma_process_request(
451                         fd, (struct iovec *)(from->iov + done),
452                         dim, &count);
453                 if (ret) {
454                         reqs = ret;
455                         break;
456                 }
457                 dim -= count;
458                 done += count;
459                 reqs++;
460         }
461
462         srcu_read_unlock(&fd->pq_srcu, idx);
463         return reqs;
464 }
465
466 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
467 {
468         struct hfi1_filedata *fd = fp->private_data;
469         struct hfi1_ctxtdata *uctxt = fd->uctxt;
470         struct hfi1_devdata *dd;
471         unsigned long flags;
472         u64 token = vma->vm_pgoff << PAGE_SHIFT,
473                 memaddr = 0;
474         void *memvirt = NULL;
475         u8 subctxt, mapio = 0, vmf = 0, type;
476         ssize_t memlen = 0;
477         int ret = 0;
478         u16 ctxt;
479
480         if (!is_valid_mmap(token) || !uctxt ||
481             !(vma->vm_flags & VM_SHARED)) {
482                 ret = -EINVAL;
483                 goto done;
484         }
485         dd = uctxt->dd;
486         ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
487         subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
488         type = HFI1_MMAP_TOKEN_GET(TYPE, token);
489         if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
490                 ret = -EINVAL;
491                 goto done;
492         }
493
494         flags = vma->vm_flags;
495
496         switch (type) {
497         case PIO_BUFS:
498         case PIO_BUFS_SOP:
499                 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
500                                 /* chip pio base */
501                            (uctxt->sc->hw_context * BIT(16))) +
502                                 /* 64K PIO space / ctxt */
503                         (type == PIO_BUFS_SOP ?
504                                 (TXE_PIO_SIZE / 2) : 0); /* sop? */
505                 /*
506                  * Map only the amount allocated to the context, not the
507                  * entire available context's PIO space.
508                  */
509                 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
510                 flags &= ~VM_MAYREAD;
511                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
512                 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
513                 mapio = 1;
514                 break;
515         case PIO_CRED:
516                 if (flags & VM_WRITE) {
517                         ret = -EPERM;
518                         goto done;
519                 }
520                 /*
521                  * The credit return location for this context could be on the
522                  * second or third page allocated for credit returns (if number
523                  * of enabled contexts > 64 and 128 respectively).
524                  */
525                 memvirt = dd->cr_base[uctxt->numa_id].va;
526                 memaddr = virt_to_phys(memvirt) +
527                         (((u64)uctxt->sc->hw_free -
528                           (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
529                 memlen = PAGE_SIZE;
530                 flags &= ~VM_MAYWRITE;
531                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
532                 /*
533                  * The driver has already allocated memory for credit
534                  * returns and programmed it into the chip. Has that
535                  * memory been flagged as non-cached?
536                  */
537                 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
538                 mapio = 1;
539                 break;
540         case RCV_HDRQ:
541                 memlen = uctxt->rcvhdrq_size;
542                 memvirt = uctxt->rcvhdrq;
543                 break;
544         case RCV_EGRBUF: {
545                 unsigned long addr;
546                 int i;
547                 /*
548                  * The RcvEgr buffer need to be handled differently
549                  * as multiple non-contiguous pages need to be mapped
550                  * into the user process.
551                  */
552                 memlen = uctxt->egrbufs.size;
553                 if ((vma->vm_end - vma->vm_start) != memlen) {
554                         dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
555                                    (vma->vm_end - vma->vm_start), memlen);
556                         ret = -EINVAL;
557                         goto done;
558                 }
559                 if (vma->vm_flags & VM_WRITE) {
560                         ret = -EPERM;
561                         goto done;
562                 }
563                 vma->vm_flags &= ~VM_MAYWRITE;
564                 addr = vma->vm_start;
565                 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
566                         memlen = uctxt->egrbufs.buffers[i].len;
567                         memvirt = uctxt->egrbufs.buffers[i].addr;
568                         ret = remap_pfn_range(
569                                 vma, addr,
570                                 /*
571                                  * virt_to_pfn() does the same, but
572                                  * it's not available on x86_64
573                                  * when CONFIG_MMU is enabled.
574                                  */
575                                 PFN_DOWN(__pa(memvirt)),
576                                 memlen,
577                                 vma->vm_page_prot);
578                         if (ret < 0)
579                                 goto done;
580                         addr += memlen;
581                 }
582                 ret = 0;
583                 goto done;
584         }
585         case UREGS:
586                 /*
587                  * Map only the page that contains this context's user
588                  * registers.
589                  */
590                 memaddr = (unsigned long)
591                         (dd->physaddr + RXE_PER_CONTEXT_USER)
592                         + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
593                 /*
594                  * TidFlow table is on the same page as the rest of the
595                  * user registers.
596                  */
597                 memlen = PAGE_SIZE;
598                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
599                 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
600                 mapio = 1;
601                 break;
602         case EVENTS:
603                 /*
604                  * Use the page where this context's flags are. User level
605                  * knows where it's own bitmap is within the page.
606                  */
607                 memaddr = (unsigned long)(dd->events +
608                                   ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) *
609                                    HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK;
610                 memlen = PAGE_SIZE;
611                 /*
612                  * v3.7 removes VM_RESERVED but the effect is kept by
613                  * using VM_IO.
614                  */
615                 flags |= VM_IO | VM_DONTEXPAND;
616                 vmf = 1;
617                 break;
618         case STATUS:
619                 if (flags & VM_WRITE) {
620                         ret = -EPERM;
621                         goto done;
622                 }
623                 memaddr = kvirt_to_phys((void *)dd->status);
624                 memlen = PAGE_SIZE;
625                 flags |= VM_IO | VM_DONTEXPAND;
626                 break;
627         case RTAIL:
628                 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
629                         /*
630                          * If the memory allocation failed, the context alloc
631                          * also would have failed, so we would never get here
632                          */
633                         ret = -EINVAL;
634                         goto done;
635                 }
636                 if ((flags & VM_WRITE) || !uctxt->rcvhdrtail_kvaddr) {
637                         ret = -EPERM;
638                         goto done;
639                 }
640                 memlen = PAGE_SIZE;
641                 memvirt = (void *)uctxt->rcvhdrtail_kvaddr;
642                 flags &= ~VM_MAYWRITE;
643                 break;
644         case SUBCTXT_UREGS:
645                 memaddr = (u64)uctxt->subctxt_uregbase;
646                 memlen = PAGE_SIZE;
647                 flags |= VM_IO | VM_DONTEXPAND;
648                 vmf = 1;
649                 break;
650         case SUBCTXT_RCV_HDRQ:
651                 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
652                 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt;
653                 flags |= VM_IO | VM_DONTEXPAND;
654                 vmf = 1;
655                 break;
656         case SUBCTXT_EGRBUF:
657                 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
658                 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
659                 flags |= VM_IO | VM_DONTEXPAND;
660                 flags &= ~VM_MAYWRITE;
661                 vmf = 1;
662                 break;
663         case SDMA_COMP: {
664                 struct hfi1_user_sdma_comp_q *cq = fd->cq;
665
666                 if (!cq) {
667                         ret = -EFAULT;
668                         goto done;
669                 }
670                 memaddr = (u64)cq->comps;
671                 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
672                 flags |= VM_IO | VM_DONTEXPAND;
673                 vmf = 1;
674                 break;
675         }
676         default:
677                 ret = -EINVAL;
678                 break;
679         }
680
681         if ((vma->vm_end - vma->vm_start) != memlen) {
682                 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
683                           uctxt->ctxt, fd->subctxt,
684                           (vma->vm_end - vma->vm_start), memlen);
685                 ret = -EINVAL;
686                 goto done;
687         }
688
689         vma->vm_flags = flags;
690         hfi1_cdbg(PROC,
691                   "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
692                     ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
693                     vma->vm_end - vma->vm_start, vma->vm_flags);
694         if (vmf) {
695                 vma->vm_pgoff = PFN_DOWN(memaddr);
696                 vma->vm_ops = &vm_ops;
697                 ret = 0;
698         } else if (mapio) {
699                 ret = io_remap_pfn_range(vma, vma->vm_start,
700                                          PFN_DOWN(memaddr),
701                                          memlen,
702                                          vma->vm_page_prot);
703         } else if (memvirt) {
704                 ret = remap_pfn_range(vma, vma->vm_start,
705                                       PFN_DOWN(__pa(memvirt)),
706                                       memlen,
707                                       vma->vm_page_prot);
708         } else {
709                 ret = remap_pfn_range(vma, vma->vm_start,
710                                       PFN_DOWN(memaddr),
711                                       memlen,
712                                       vma->vm_page_prot);
713         }
714 done:
715         return ret;
716 }
717
718 /*
719  * Local (non-chip) user memory is not mapped right away but as it is
720  * accessed by the user-level code.
721  */
722 static int vma_fault(struct vm_fault *vmf)
723 {
724         struct page *page;
725
726         page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
727         if (!page)
728                 return VM_FAULT_SIGBUS;
729
730         get_page(page);
731         vmf->page = page;
732
733         return 0;
734 }
735
736 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt)
737 {
738         struct hfi1_ctxtdata *uctxt;
739         unsigned pollflag;
740
741         uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
742         if (!uctxt)
743                 pollflag = POLLERR;
744         else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
745                 pollflag = poll_urgent(fp, pt);
746         else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
747                 pollflag = poll_next(fp, pt);
748         else /* invalid */
749                 pollflag = POLLERR;
750
751         return pollflag;
752 }
753
754 static int hfi1_file_close(struct inode *inode, struct file *fp)
755 {
756         struct hfi1_filedata *fdata = fp->private_data;
757         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
758         struct hfi1_devdata *dd = container_of(inode->i_cdev,
759                                                struct hfi1_devdata,
760                                                user_cdev);
761         unsigned long flags, *ev;
762
763         fp->private_data = NULL;
764
765         if (!uctxt)
766                 goto done;
767
768         hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
769
770         flush_wc();
771         /* drain user sdma queue */
772         hfi1_user_sdma_free_queues(fdata, uctxt);
773
774         /* release the cpu */
775         hfi1_put_proc_affinity(fdata->rec_cpu_num);
776
777         /* clean up rcv side */
778         hfi1_user_exp_rcv_free(fdata);
779
780         /*
781          * fdata->uctxt is used in the above cleanup.  It is not ready to be
782          * removed until here.
783          */
784         fdata->uctxt = NULL;
785         hfi1_rcd_put(uctxt);
786
787         /*
788          * Clear any left over, unhandled events so the next process that
789          * gets this context doesn't get confused.
790          */
791         ev = dd->events + ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) *
792                            HFI1_MAX_SHARED_CTXTS) + fdata->subctxt;
793         *ev = 0;
794
795         spin_lock_irqsave(&dd->uctxt_lock, flags);
796         __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
797         if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
798                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
799                 goto done;
800         }
801         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
802
803         /*
804          * Disable receive context and interrupt available, reset all
805          * RcvCtxtCtrl bits to default values.
806          */
807         hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
808                      HFI1_RCVCTRL_TIDFLOW_DIS |
809                      HFI1_RCVCTRL_INTRAVAIL_DIS |
810                      HFI1_RCVCTRL_TAILUPD_DIS |
811                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
812                      HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
813                      HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt);
814         /* Clear the context's J_KEY */
815         hfi1_clear_ctxt_jkey(dd, uctxt);
816         /*
817          * If a send context is allocated, reset context integrity
818          * checks to default and disable the send context.
819          */
820         if (uctxt->sc) {
821                 sc_disable(uctxt->sc);
822                 set_pio_integrity(uctxt->sc);
823         }
824
825         hfi1_free_ctxt_rcv_groups(uctxt);
826         hfi1_clear_ctxt_pkey(dd, uctxt);
827
828         uctxt->event_flags = 0;
829
830         deallocate_ctxt(uctxt);
831 done:
832         mmdrop(fdata->mm);
833         kobject_put(&dd->kobj);
834
835         if (atomic_dec_and_test(&dd->user_refcount))
836                 complete(&dd->user_comp);
837
838         cleanup_srcu_struct(&fdata->pq_srcu);
839         kfree(fdata);
840         return 0;
841 }
842
843 /*
844  * Convert kernel *virtual* addresses to physical addresses.
845  * This is used to vmalloc'ed addresses.
846  */
847 static u64 kvirt_to_phys(void *addr)
848 {
849         struct page *page;
850         u64 paddr = 0;
851
852         page = vmalloc_to_page(addr);
853         if (page)
854                 paddr = page_to_pfn(page) << PAGE_SHIFT;
855
856         return paddr;
857 }
858
859 /**
860  * complete_subctxt
861  * @fd: valid filedata pointer
862  *
863  * Sub-context info can only be set up after the base context
864  * has been completed.  This is indicated by the clearing of the
865  * HFI1_CTXT_BASE_UINIT bit.
866  *
867  * Wait for the bit to be cleared, and then complete the subcontext
868  * initialization.
869  *
870  */
871 static int complete_subctxt(struct hfi1_filedata *fd)
872 {
873         int ret;
874         unsigned long flags;
875
876         /*
877          * sub-context info can only be set up after the base context
878          * has been completed.
879          */
880         ret = wait_event_interruptible(
881                 fd->uctxt->wait,
882                 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
883
884         if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
885                 ret = -ENOMEM;
886
887         /* Finish the sub-context init */
888         if (!ret) {
889                 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
890                 ret = init_user_ctxt(fd, fd->uctxt);
891         }
892
893         if (ret) {
894                 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
895                 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
896                 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
897                 hfi1_rcd_put(fd->uctxt);
898                 fd->uctxt = NULL;
899         }
900
901         return ret;
902 }
903
904 static int assign_ctxt(struct hfi1_filedata *fd, struct hfi1_user_info *uinfo)
905 {
906         int ret;
907         unsigned int swmajor, swminor;
908         struct hfi1_ctxtdata *uctxt = NULL;
909
910         swmajor = uinfo->userversion >> 16;
911         if (swmajor != HFI1_USER_SWMAJOR)
912                 return -ENODEV;
913
914         if (uinfo->subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
915                 return -EINVAL;
916
917         swminor = uinfo->userversion & 0xffff;
918
919         /*
920          * Acquire the mutex to protect against multiple creations of what
921          * could be a shared base context.
922          */
923         mutex_lock(&hfi1_mutex);
924         /*
925          * Get a sub context if available  (fd->uctxt will be set).
926          * ret < 0 error, 0 no context, 1 sub-context found
927          */
928         ret = find_sub_ctxt(fd, uinfo);
929
930         /*
931          * Allocate a base context if context sharing is not required or a
932          * sub context wasn't found.
933          */
934         if (!ret)
935                 ret = allocate_ctxt(fd, fd->dd, uinfo, &uctxt);
936
937         mutex_unlock(&hfi1_mutex);
938
939         /* Depending on the context type, finish the appropriate init */
940         switch (ret) {
941         case 0:
942                 ret = setup_base_ctxt(fd, uctxt);
943                 if (ret)
944                         deallocate_ctxt(uctxt);
945                 break;
946         case 1:
947                 ret = complete_subctxt(fd);
948                 break;
949         default:
950                 break;
951         }
952
953         return ret;
954 }
955
956 /**
957  * match_ctxt
958  * @fd: valid filedata pointer
959  * @uinfo: user info to compare base context with
960  * @uctxt: context to compare uinfo to.
961  *
962  * Compare the given context with the given information to see if it
963  * can be used for a sub context.
964  */
965 static int match_ctxt(struct hfi1_filedata *fd,
966                       const struct hfi1_user_info *uinfo,
967                       struct hfi1_ctxtdata *uctxt)
968 {
969         struct hfi1_devdata *dd = fd->dd;
970         unsigned long flags;
971         u16 subctxt;
972
973         /* Skip dynamically allocated kernel contexts */
974         if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
975                 return 0;
976
977         /* Skip ctxt if it doesn't match the requested one */
978         if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
979             uctxt->jkey != generate_jkey(current_uid()) ||
980             uctxt->subctxt_id != uinfo->subctxt_id ||
981             uctxt->subctxt_cnt != uinfo->subctxt_cnt)
982                 return 0;
983
984         /* Verify the sharing process matches the base */
985         if (uctxt->userversion != uinfo->userversion)
986                 return -EINVAL;
987
988         /* Find an unused sub context */
989         spin_lock_irqsave(&dd->uctxt_lock, flags);
990         if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
991                 /* context is being closed, do not use */
992                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
993                 return 0;
994         }
995
996         subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
997                                       HFI1_MAX_SHARED_CTXTS);
998         if (subctxt >= uctxt->subctxt_cnt) {
999                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1000                 return -EBUSY;
1001         }
1002
1003         fd->subctxt = subctxt;
1004         __set_bit(fd->subctxt, uctxt->in_use_ctxts);
1005         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1006
1007         fd->uctxt = uctxt;
1008         hfi1_rcd_get(uctxt);
1009
1010         return 1;
1011 }
1012
1013 /**
1014  * find_sub_ctxt
1015  * @fd: valid filedata pointer
1016  * @uinfo: matching info to use to find a possible context to share.
1017  *
1018  * The hfi1_mutex must be held when this function is called.  It is
1019  * necessary to ensure serialized creation of shared contexts.
1020  *
1021  * Return:
1022  *    0      No sub-context found
1023  *    1      Subcontext found and allocated
1024  *    errno  EINVAL (incorrect parameters)
1025  *           EBUSY (all sub contexts in use)
1026  */
1027 static int find_sub_ctxt(struct hfi1_filedata *fd,
1028                          const struct hfi1_user_info *uinfo)
1029 {
1030         struct hfi1_ctxtdata *uctxt;
1031         struct hfi1_devdata *dd = fd->dd;
1032         u16 i;
1033         int ret;
1034
1035         if (!uinfo->subctxt_cnt)
1036                 return 0;
1037
1038         for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
1039                 uctxt = hfi1_rcd_get_by_index(dd, i);
1040                 if (uctxt) {
1041                         ret = match_ctxt(fd, uinfo, uctxt);
1042                         hfi1_rcd_put(uctxt);
1043                         /* value of != 0 will return */
1044                         if (ret)
1045                                 return ret;
1046                 }
1047         }
1048
1049         return 0;
1050 }
1051
1052 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
1053                          struct hfi1_user_info *uinfo,
1054                          struct hfi1_ctxtdata **rcd)
1055 {
1056         struct hfi1_ctxtdata *uctxt;
1057         int ret, numa;
1058
1059         if (dd->flags & HFI1_FROZEN) {
1060                 /*
1061                  * Pick an error that is unique from all other errors
1062                  * that are returned so the user process knows that
1063                  * it tried to allocate while the SPC was frozen.  It
1064                  * it should be able to retry with success in a short
1065                  * while.
1066                  */
1067                 return -EIO;
1068         }
1069
1070         if (!dd->freectxts)
1071                 return -EBUSY;
1072
1073         /*
1074          * If we don't have a NUMA node requested, preference is towards
1075          * device NUMA node.
1076          */
1077         fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
1078         if (fd->rec_cpu_num != -1)
1079                 numa = cpu_to_node(fd->rec_cpu_num);
1080         else
1081                 numa = numa_node_id();
1082         ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
1083         if (ret < 0) {
1084                 dd_dev_err(dd, "user ctxtdata allocation failed\n");
1085                 return ret;
1086         }
1087         hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
1088                   uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
1089                   uctxt->numa_id);
1090
1091         /*
1092          * Allocate and enable a PIO send context.
1093          */
1094         uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
1095         if (!uctxt->sc) {
1096                 ret = -ENOMEM;
1097                 goto ctxdata_free;
1098         }
1099         hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
1100                   uctxt->sc->hw_context);
1101         ret = sc_enable(uctxt->sc);
1102         if (ret)
1103                 goto ctxdata_free;
1104
1105         /*
1106          * Setup sub context information if the user-level has requested
1107          * sub contexts.
1108          * This has to be done here so the rest of the sub-contexts find the
1109          * proper base context.
1110          */
1111         if (uinfo->subctxt_cnt)
1112                 init_subctxts(uctxt, uinfo);
1113         uctxt->userversion = uinfo->userversion;
1114         uctxt->flags = hfi1_cap_mask; /* save current flag state */
1115         init_waitqueue_head(&uctxt->wait);
1116         strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1117         memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1118         uctxt->jkey = generate_jkey(current_uid());
1119         hfi1_stats.sps_ctxts++;
1120         /*
1121          * Disable ASPM when there are open user/PSM contexts to avoid
1122          * issues with ASPM L1 exit latency
1123          */
1124         if (dd->freectxts-- == dd->num_user_contexts)
1125                 aspm_disable_all(dd);
1126
1127         *rcd = uctxt;
1128
1129         return 0;
1130
1131 ctxdata_free:
1132         hfi1_free_ctxt(uctxt);
1133         return ret;
1134 }
1135
1136 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1137 {
1138         mutex_lock(&hfi1_mutex);
1139         hfi1_stats.sps_ctxts--;
1140         if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1141                 aspm_enable_all(uctxt->dd);
1142         mutex_unlock(&hfi1_mutex);
1143
1144         hfi1_free_ctxt(uctxt);
1145 }
1146
1147 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1148                           const struct hfi1_user_info *uinfo)
1149 {
1150         uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1151         uctxt->subctxt_id = uinfo->subctxt_id;
1152         set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1153 }
1154
1155 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1156 {
1157         int ret = 0;
1158         u16 num_subctxts = uctxt->subctxt_cnt;
1159
1160         uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1161         if (!uctxt->subctxt_uregbase)
1162                 return -ENOMEM;
1163
1164         /* We can take the size of the RcvHdr Queue from the master */
1165         uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size *
1166                                                   num_subctxts);
1167         if (!uctxt->subctxt_rcvhdr_base) {
1168                 ret = -ENOMEM;
1169                 goto bail_ureg;
1170         }
1171
1172         uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1173                                                 num_subctxts);
1174         if (!uctxt->subctxt_rcvegrbuf) {
1175                 ret = -ENOMEM;
1176                 goto bail_rhdr;
1177         }
1178
1179         return 0;
1180
1181 bail_rhdr:
1182         vfree(uctxt->subctxt_rcvhdr_base);
1183         uctxt->subctxt_rcvhdr_base = NULL;
1184 bail_ureg:
1185         vfree(uctxt->subctxt_uregbase);
1186         uctxt->subctxt_uregbase = NULL;
1187
1188         return ret;
1189 }
1190
1191 static void user_init(struct hfi1_ctxtdata *uctxt)
1192 {
1193         unsigned int rcvctrl_ops = 0;
1194
1195         /* initialize poll variables... */
1196         uctxt->urgent = 0;
1197         uctxt->urgent_poll = 0;
1198
1199         /*
1200          * Now enable the ctxt for receive.
1201          * For chips that are set to DMA the tail register to memory
1202          * when they change (and when the update bit transitions from
1203          * 0 to 1.  So for those chips, we turn it off and then back on.
1204          * This will (very briefly) affect any other open ctxts, but the
1205          * duration is very short, and therefore isn't an issue.  We
1206          * explicitly set the in-memory tail copy to 0 beforehand, so we
1207          * don't have to wait to be sure the DMA update has happened
1208          * (chip resets head/tail to 0 on transition to enable).
1209          */
1210         if (uctxt->rcvhdrtail_kvaddr)
1211                 clear_rcvhdrtail(uctxt);
1212
1213         /* Setup J_KEY before enabling the context */
1214         hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1215
1216         rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1217         if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1218                 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1219         /*
1220          * Ignore the bit in the flags for now until proper
1221          * support for multiple packet per rcv array entry is
1222          * added.
1223          */
1224         if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1225                 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1226         if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1227                 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1228         if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1229                 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1230         /*
1231          * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1232          * We can't rely on the correct value to be set from prior
1233          * uses of the chip or ctxt. Therefore, add the rcvctrl op
1234          * for both cases.
1235          */
1236         if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1237                 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1238         else
1239                 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1240         hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1241 }
1242
1243 static int get_ctxt_info(struct hfi1_filedata *fd, void __user *ubase,
1244                          __u32 len)
1245 {
1246         struct hfi1_ctxt_info cinfo;
1247         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1248         int ret = 0;
1249
1250         memset(&cinfo, 0, sizeof(cinfo));
1251         cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1252                                 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1253                         HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1254                         HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1255         /* adjust flag if this fd is not able to cache */
1256         if (!fd->handler)
1257                 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1258
1259         cinfo.num_active = hfi1_count_active_units();
1260         cinfo.unit = uctxt->dd->unit;
1261         cinfo.ctxt = uctxt->ctxt;
1262         cinfo.subctxt = fd->subctxt;
1263         cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1264                                 uctxt->dd->rcv_entries.group_size) +
1265                 uctxt->expected_count;
1266         cinfo.credits = uctxt->sc->credits;
1267         cinfo.numa_node = uctxt->numa_id;
1268         cinfo.rec_cpu = fd->rec_cpu_num;
1269         cinfo.send_ctxt = uctxt->sc->hw_context;
1270
1271         cinfo.egrtids = uctxt->egrbufs.alloced;
1272         cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
1273         cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
1274         cinfo.sdma_ring_size = fd->cq->nentries;
1275         cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1276
1277         trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo);
1278         if (copy_to_user(ubase, &cinfo, sizeof(cinfo)))
1279                 ret = -EFAULT;
1280
1281         return ret;
1282 }
1283
1284 static int init_user_ctxt(struct hfi1_filedata *fd,
1285                           struct hfi1_ctxtdata *uctxt)
1286 {
1287         int ret;
1288
1289         ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1290         if (ret)
1291                 return ret;
1292
1293         ret = hfi1_user_exp_rcv_init(fd, uctxt);
1294         if (ret)
1295                 hfi1_user_sdma_free_queues(fd, uctxt);
1296
1297         return ret;
1298 }
1299
1300 static int setup_base_ctxt(struct hfi1_filedata *fd,
1301                            struct hfi1_ctxtdata *uctxt)
1302 {
1303         struct hfi1_devdata *dd = uctxt->dd;
1304         int ret = 0;
1305
1306         hfi1_init_ctxt(uctxt->sc);
1307
1308         /* Now allocate the RcvHdr queue and eager buffers. */
1309         ret = hfi1_create_rcvhdrq(dd, uctxt);
1310         if (ret)
1311                 goto done;
1312
1313         ret = hfi1_setup_eagerbufs(uctxt);
1314         if (ret)
1315                 goto done;
1316
1317         /* If sub-contexts are enabled, do the appropriate setup */
1318         if (uctxt->subctxt_cnt)
1319                 ret = setup_subctxt(uctxt);
1320         if (ret)
1321                 goto done;
1322
1323         ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1324         if (ret)
1325                 goto done;
1326
1327         ret = init_user_ctxt(fd, uctxt);
1328         if (ret)
1329                 goto done;
1330
1331         user_init(uctxt);
1332
1333         /* Now that the context is set up, the fd can get a reference. */
1334         fd->uctxt = uctxt;
1335         hfi1_rcd_get(uctxt);
1336
1337 done:
1338         if (uctxt->subctxt_cnt) {
1339                 /*
1340                  * On error, set the failed bit so sub-contexts will clean up
1341                  * correctly.
1342                  */
1343                 if (ret)
1344                         set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1345
1346                 /*
1347                  * Base context is done (successfully or not), notify anybody
1348                  * using a sub-context that is waiting for this completion.
1349                  */
1350                 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1351                 wake_up(&uctxt->wait);
1352         }
1353
1354         return ret;
1355 }
1356
1357 static int get_base_info(struct hfi1_filedata *fd, void __user *ubase,
1358                          __u32 len)
1359 {
1360         struct hfi1_base_info binfo;
1361         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1362         struct hfi1_devdata *dd = uctxt->dd;
1363         ssize_t sz;
1364         unsigned offset;
1365         int ret = 0;
1366
1367         trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1368
1369         memset(&binfo, 0, sizeof(binfo));
1370         binfo.hw_version = dd->revision;
1371         binfo.sw_version = HFI1_KERN_SWVERSION;
1372         binfo.bthqp = kdeth_qp;
1373         binfo.jkey = uctxt->jkey;
1374         /*
1375          * If more than 64 contexts are enabled the allocated credit
1376          * return will span two or three contiguous pages. Since we only
1377          * map the page containing the context's credit return address,
1378          * we need to calculate the offset in the proper page.
1379          */
1380         offset = ((u64)uctxt->sc->hw_free -
1381                   (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1382         binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1383                                                 fd->subctxt, offset);
1384         binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1385                                             fd->subctxt,
1386                                             uctxt->sc->base_addr);
1387         binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1388                                                 uctxt->ctxt,
1389                                                 fd->subctxt,
1390                                                 uctxt->sc->base_addr);
1391         binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1392                                                fd->subctxt,
1393                                                uctxt->rcvhdrq);
1394         binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1395                                                fd->subctxt,
1396                                                uctxt->egrbufs.rcvtids[0].dma);
1397         binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1398                                                  fd->subctxt, 0);
1399         /*
1400          * user regs are at
1401          * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1402          */
1403         binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1404                                             fd->subctxt, 0);
1405         offset = offset_in_page((((uctxt->ctxt - dd->first_dyn_alloc_ctxt) *
1406                     HFI1_MAX_SHARED_CTXTS) + fd->subctxt) *
1407                   sizeof(*dd->events));
1408         binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1409                                               fd->subctxt,
1410                                               offset);
1411         binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1412                                               fd->subctxt,
1413                                               dd->status);
1414         if (HFI1_CAP_IS_USET(DMA_RTAIL))
1415                 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1416                                                        fd->subctxt, 0);
1417         if (uctxt->subctxt_cnt) {
1418                 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1419                                                         uctxt->ctxt,
1420                                                         fd->subctxt, 0);
1421                 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1422                                                          uctxt->ctxt,
1423                                                          fd->subctxt, 0);
1424                 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1425                                                          uctxt->ctxt,
1426                                                          fd->subctxt, 0);
1427         }
1428         sz = (len < sizeof(binfo)) ? len : sizeof(binfo);
1429         if (copy_to_user(ubase, &binfo, sz))
1430                 ret = -EFAULT;
1431         return ret;
1432 }
1433
1434 static unsigned int poll_urgent(struct file *fp,
1435                                 struct poll_table_struct *pt)
1436 {
1437         struct hfi1_filedata *fd = fp->private_data;
1438         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1439         struct hfi1_devdata *dd = uctxt->dd;
1440         unsigned pollflag;
1441
1442         poll_wait(fp, &uctxt->wait, pt);
1443
1444         spin_lock_irq(&dd->uctxt_lock);
1445         if (uctxt->urgent != uctxt->urgent_poll) {
1446                 pollflag = POLLIN | POLLRDNORM;
1447                 uctxt->urgent_poll = uctxt->urgent;
1448         } else {
1449                 pollflag = 0;
1450                 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1451         }
1452         spin_unlock_irq(&dd->uctxt_lock);
1453
1454         return pollflag;
1455 }
1456
1457 static unsigned int poll_next(struct file *fp,
1458                               struct poll_table_struct *pt)
1459 {
1460         struct hfi1_filedata *fd = fp->private_data;
1461         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1462         struct hfi1_devdata *dd = uctxt->dd;
1463         unsigned pollflag;
1464
1465         poll_wait(fp, &uctxt->wait, pt);
1466
1467         spin_lock_irq(&dd->uctxt_lock);
1468         if (hdrqempty(uctxt)) {
1469                 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1470                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1471                 pollflag = 0;
1472         } else {
1473                 pollflag = POLLIN | POLLRDNORM;
1474         }
1475         spin_unlock_irq(&dd->uctxt_lock);
1476
1477         return pollflag;
1478 }
1479
1480 /*
1481  * Find all user contexts in use, and set the specified bit in their
1482  * event mask.
1483  * See also find_ctxt() for a similar use, that is specific to send buffers.
1484  */
1485 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1486 {
1487         struct hfi1_ctxtdata *uctxt;
1488         struct hfi1_devdata *dd = ppd->dd;
1489         u16 ctxt;
1490
1491         if (!dd->events)
1492                 return -EINVAL;
1493
1494         for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1495              ctxt++) {
1496                 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1497                 if (uctxt) {
1498                         unsigned long *evs = dd->events +
1499                                 (uctxt->ctxt - dd->first_dyn_alloc_ctxt) *
1500                                 HFI1_MAX_SHARED_CTXTS;
1501                         int i;
1502                         /*
1503                          * subctxt_cnt is 0 if not shared, so do base
1504                          * separately, first, then remaining subctxt, if any
1505                          */
1506                         set_bit(evtbit, evs);
1507                         for (i = 1; i < uctxt->subctxt_cnt; i++)
1508                                 set_bit(evtbit, evs + i);
1509                         hfi1_rcd_put(uctxt);
1510                 }
1511         }
1512
1513         return 0;
1514 }
1515
1516 /**
1517  * manage_rcvq - manage a context's receive queue
1518  * @uctxt: the context
1519  * @subctxt: the sub-context
1520  * @start_stop: action to carry out
1521  *
1522  * start_stop == 0 disables receive on the context, for use in queue
1523  * overflow conditions.  start_stop==1 re-enables, to be used to
1524  * re-init the software copy of the head register
1525  */
1526 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1527                        int start_stop)
1528 {
1529         struct hfi1_devdata *dd = uctxt->dd;
1530         unsigned int rcvctrl_op;
1531
1532         if (subctxt)
1533                 goto bail;
1534         /* atomically clear receive enable ctxt. */
1535         if (start_stop) {
1536                 /*
1537                  * On enable, force in-memory copy of the tail register to
1538                  * 0, so that protocol code doesn't have to worry about
1539                  * whether or not the chip has yet updated the in-memory
1540                  * copy or not on return from the system call. The chip
1541                  * always resets it's tail register back to 0 on a
1542                  * transition from disabled to enabled.
1543                  */
1544                 if (uctxt->rcvhdrtail_kvaddr)
1545                         clear_rcvhdrtail(uctxt);
1546                 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1547         } else {
1548                 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1549         }
1550         hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1551         /* always; new head should be equal to new tail; see above */
1552 bail:
1553         return 0;
1554 }
1555
1556 /*
1557  * clear the event notifier events for this context.
1558  * User process then performs actions appropriate to bit having been
1559  * set, if desired, and checks again in future.
1560  */
1561 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1562                           unsigned long events)
1563 {
1564         int i;
1565         struct hfi1_devdata *dd = uctxt->dd;
1566         unsigned long *evs;
1567
1568         if (!dd->events)
1569                 return 0;
1570
1571         evs = dd->events + ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) *
1572                             HFI1_MAX_SHARED_CTXTS) + subctxt;
1573
1574         for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1575                 if (!test_bit(i, &events))
1576                         continue;
1577                 clear_bit(i, evs);
1578         }
1579         return 0;
1580 }
1581
1582 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, u16 subctxt, u16 pkey)
1583 {
1584         int ret = -ENOENT, i, intable = 0;
1585         struct hfi1_pportdata *ppd = uctxt->ppd;
1586         struct hfi1_devdata *dd = uctxt->dd;
1587
1588         if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) {
1589                 ret = -EINVAL;
1590                 goto done;
1591         }
1592
1593         for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1594                 if (pkey == ppd->pkeys[i]) {
1595                         intable = 1;
1596                         break;
1597                 }
1598
1599         if (intable)
1600                 ret = hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1601 done:
1602         return ret;
1603 }
1604
1605 static void user_remove(struct hfi1_devdata *dd)
1606 {
1607
1608         hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1609 }
1610
1611 static int user_add(struct hfi1_devdata *dd)
1612 {
1613         char name[10];
1614         int ret;
1615
1616         snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1617         ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1618                              &dd->user_cdev, &dd->user_device,
1619                              true, &dd->kobj);
1620         if (ret)
1621                 user_remove(dd);
1622
1623         return ret;
1624 }
1625
1626 /*
1627  * Create per-unit files in /dev
1628  */
1629 int hfi1_device_create(struct hfi1_devdata *dd)
1630 {
1631         return user_add(dd);
1632 }
1633
1634 /*
1635  * Remove per-unit files in /dev
1636  * void, core kernel returns no errors for this stuff
1637  */
1638 void hfi1_device_remove(struct hfi1_devdata *dd)
1639 {
1640         user_remove(dd);
1641 }