2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
64 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67 * The size has to be longer than this string, so we can append
68 * board/chip information to it in the initialization code.
70 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
72 DEFINE_SPINLOCK(hfi1_devs_lock);
73 LIST_HEAD(hfi1_dev_list);
74 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
76 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
77 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
79 HFI1_DEFAULT_MAX_MTU));
81 unsigned int hfi1_cu = 1;
82 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
83 MODULE_PARM_DESC(cu, "Credit return units");
85 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
86 static int hfi1_caps_set(const char *, const struct kernel_param *);
87 static int hfi1_caps_get(char *, const struct kernel_param *);
88 static const struct kernel_param_ops cap_ops = {
92 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
93 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
95 MODULE_LICENSE("Dual BSD/GPL");
96 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
97 MODULE_VERSION(HFI1_DRIVER_VERSION);
100 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102 #define MAX_PKT_RECV 64
103 #define EGR_HEAD_UPDATE_THRESHOLD 16
105 struct hfi1_ib_stats hfi1_stats;
107 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
110 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
111 cap_mask = *cap_mask_ptr, value, diff,
112 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
113 HFI1_CAP_WRITABLE_MASK);
115 ret = kstrtoul(val, 0, &value);
117 pr_warn("Invalid module parameter value for 'cap_mask'\n");
120 /* Get the changed bits (except the locked bit) */
121 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
123 /* Remove any bits that are not allowed to change after driver load */
124 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
125 pr_warn("Ignoring non-writable capability bits %#lx\n",
130 /* Mask off any reserved bits */
131 diff &= ~HFI1_CAP_RESERVED_MASK;
132 /* Clear any previously set and changing bits */
134 /* Update the bits with the new capability */
135 cap_mask |= (value & diff);
136 /* Check for any kernel/user restrictions */
137 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
138 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
140 /* Set the bitmask to the final set */
141 *cap_mask_ptr = cap_mask;
146 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
148 unsigned long cap_mask = *(unsigned long *)kp->arg;
150 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
151 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
153 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
156 const char *get_unit_name(int unit)
158 static char iname[16];
160 snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
164 const char *get_card_name(struct rvt_dev_info *rdi)
166 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
167 struct hfi1_devdata *dd = container_of(ibdev,
168 struct hfi1_devdata, verbs_dev);
169 return get_unit_name(dd->unit);
172 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
174 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
175 struct hfi1_devdata *dd = container_of(ibdev,
176 struct hfi1_devdata, verbs_dev);
181 * Return count of units with at least one port ACTIVE.
183 int hfi1_count_active_units(void)
185 struct hfi1_devdata *dd;
186 struct hfi1_pportdata *ppd;
188 int pidx, nunits_active = 0;
190 spin_lock_irqsave(&hfi1_devs_lock, flags);
191 list_for_each_entry(dd, &hfi1_dev_list, list) {
192 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
194 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
195 ppd = dd->pport + pidx;
196 if (ppd->lid && ppd->linkup) {
202 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
203 return nunits_active;
207 * Return count of all units, optionally return in arguments
208 * the number of usable (present) units, and the number of
211 int hfi1_count_units(int *npresentp, int *nupp)
213 int nunits = 0, npresent = 0, nup = 0;
214 struct hfi1_devdata *dd;
217 struct hfi1_pportdata *ppd;
219 spin_lock_irqsave(&hfi1_devs_lock, flags);
221 list_for_each_entry(dd, &hfi1_dev_list, list) {
223 if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
225 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
226 ppd = dd->pport + pidx;
227 if (ppd->lid && ppd->linkup)
232 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
235 *npresentp = npresent;
243 * Get address of eager buffer from it's index (allocated in chunks, not
246 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
249 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
251 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
252 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
253 (offset * RCV_BUF_BLOCK_SIZE));
257 * Validate and encode the a given RcvArray Buffer size.
258 * The function will check whether the given size falls within
259 * allowed size ranges for the respective type and, optionally,
260 * return the proper encoding.
262 inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
264 if (unlikely(!PAGE_ALIGNED(size)))
266 if (unlikely(size < MIN_EAGER_BUFFER))
269 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
272 *encoded = ilog2(size / PAGE_SIZE) + 1;
276 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
277 struct hfi1_packet *packet)
279 struct ib_header *rhdr = packet->hdr;
280 u32 rte = rhf_rcv_type_err(packet->rhf);
281 int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
282 struct hfi1_ibport *ibp = &ppd->ibport_data;
283 struct hfi1_devdata *dd = ppd->dd;
284 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
286 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
289 if (packet->rhf & RHF_TID_ERR) {
290 /* For TIDERR and RC QPs preemptively schedule a NAK */
291 struct ib_other_headers *ohdr = NULL;
292 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
293 u16 lid = be16_to_cpu(rhdr->lrh[1]);
297 /* Sanity check packet */
302 if (lnh == HFI1_LRH_BTH) {
304 } else if (lnh == HFI1_LRH_GRH) {
307 ohdr = &rhdr->u.l.oth;
308 if (rhdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
310 vtf = be32_to_cpu(rhdr->u.l.grh.version_tclass_flow);
311 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
313 rcv_flags |= HFI1_HAS_GRH;
317 /* Get the destination QP number. */
318 qp_num = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
319 if (lid < be16_to_cpu(IB_MULTICAST_LID_BASE)) {
324 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
331 * Handle only RC QPs - for other QP types drop error
334 spin_lock_irqsave(&qp->r_lock, flags);
336 /* Check for valid receive state. */
337 if (!(ib_rvt_state_ops[qp->state] &
338 RVT_PROCESS_RECV_OK)) {
339 ibp->rvp.n_pkt_drops++;
342 switch (qp->ibqp.qp_type) {
351 /* For now don't handle any other QP types */
355 spin_unlock_irqrestore(&qp->r_lock, flags);
358 } /* Valid packet with TIDErr */
360 /* handle "RcvTypeErr" flags */
362 case RHF_RTE_ERROR_OP_CODE_ERR:
368 if (rhf_use_egr_bfr(packet->rhf))
372 goto drop; /* this should never happen */
374 if (lnh == HFI1_LRH_BTH)
375 bth = (__be32 *)ebuf;
376 else if (lnh == HFI1_LRH_GRH)
377 bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
381 opcode = be32_to_cpu(bth[0]) >> 24;
384 if (opcode == IB_OPCODE_CNP) {
386 * Only in pre-B0 h/w is the CNP_OPCODE handled
387 * via this code path.
389 struct rvt_qp *qp = NULL;
392 u8 svc_type, sl, sc5;
394 sc5 = hdr2sc(rhdr, packet->rhf);
395 sl = ibp->sc_to_sl[sc5];
397 lqpn = be32_to_cpu(bth[1]) & RVT_QPN_MASK;
399 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
405 switch (qp->ibqp.qp_type) {
409 svc_type = IB_CC_SVCTYPE_UD;
412 rlid = be16_to_cpu(rhdr->lrh[3]);
413 rqpn = qp->remote_qpn;
414 svc_type = IB_CC_SVCTYPE_UC;
420 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
424 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
435 static inline void init_packet(struct hfi1_ctxtdata *rcd,
436 struct hfi1_packet *packet)
438 packet->rsize = rcd->rcvhdrqentsize; /* words */
439 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
443 packet->rhf_addr = get_rhf_addr(rcd);
444 packet->rhf = rhf_to_cpu(packet->rhf_addr);
445 packet->rhqoff = rcd->head;
447 packet->rcv_flags = 0;
450 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
453 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
454 struct ib_header *hdr = pkt->hdr;
455 struct ib_other_headers *ohdr = pkt->ohdr;
456 struct ib_grh *grh = NULL;
458 u16 rlid, dlid = be16_to_cpu(hdr->lrh[1]);
460 bool is_mcast = false;
462 if (pkt->rcv_flags & HFI1_HAS_GRH)
465 switch (qp->ibqp.qp_type) {
469 rlid = be16_to_cpu(hdr->lrh[3]);
470 rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK;
471 svc_type = IB_CC_SVCTYPE_UD;
472 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
473 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
476 rlid = qp->remote_ah_attr.dlid;
477 rqpn = qp->remote_qpn;
478 svc_type = IB_CC_SVCTYPE_UC;
481 rlid = qp->remote_ah_attr.dlid;
482 rqpn = qp->remote_qpn;
483 svc_type = IB_CC_SVCTYPE_RC;
489 sc = hdr2sc(hdr, pkt->rhf);
491 bth1 = be32_to_cpu(ohdr->bth[1]);
492 if (do_cnp && (bth1 & HFI1_FECN_SMASK)) {
493 u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
495 return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc, grh);
498 if (!is_mcast && (bth1 & HFI1_BECN_SMASK)) {
499 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
500 u32 lqpn = bth1 & RVT_QPN_MASK;
501 u8 sl = ibp->sc_to_sl[sc];
503 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
509 struct hfi1_ctxtdata *rcd;
517 static inline void init_ps_mdata(struct ps_mdata *mdata,
518 struct hfi1_packet *packet)
520 struct hfi1_ctxtdata *rcd = packet->rcd;
523 mdata->rsize = packet->rsize;
524 mdata->maxcnt = packet->maxcnt;
525 mdata->ps_head = packet->rhqoff;
527 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
528 mdata->ps_tail = get_rcvhdrtail(rcd);
529 if (rcd->ctxt == HFI1_CTRL_CTXT)
530 mdata->ps_seq = rcd->seq_cnt;
532 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
534 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
535 mdata->ps_seq = rcd->seq_cnt;
539 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
540 struct hfi1_ctxtdata *rcd)
542 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
543 return mdata->ps_head == mdata->ps_tail;
544 return mdata->ps_seq != rhf_rcv_seq(rhf);
547 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
548 struct hfi1_ctxtdata *rcd)
551 * Control context can potentially receive an invalid rhf.
554 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
555 return mdata->ps_seq != rhf_rcv_seq(rhf);
560 static inline void update_ps_mdata(struct ps_mdata *mdata,
561 struct hfi1_ctxtdata *rcd)
563 mdata->ps_head += mdata->rsize;
564 if (mdata->ps_head >= mdata->maxcnt)
567 /* Control context must do seq counting */
568 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
569 (rcd->ctxt == HFI1_CTRL_CTXT)) {
570 if (++mdata->ps_seq > 13)
576 * prescan_rxq - search through the receive queue looking for packets
577 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
578 * When an ECN is found, process the Congestion Notification, and toggle
580 * This is declared as a macro to allow quick checking of the port to avoid
581 * the overhead of a function call if not enabled.
583 #define prescan_rxq(rcd, packet) \
585 if (rcd->ppd->cc_prescan) \
586 __prescan_rxq(packet); \
588 static void __prescan_rxq(struct hfi1_packet *packet)
590 struct hfi1_ctxtdata *rcd = packet->rcd;
591 struct ps_mdata mdata;
593 init_ps_mdata(&mdata, packet);
596 struct hfi1_devdata *dd = rcd->dd;
597 struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
598 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
601 struct ib_header *hdr;
602 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
603 u64 rhf = rhf_to_cpu(rhf_addr);
604 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
608 if (ps_done(&mdata, rhf, rcd))
611 if (ps_skip(&mdata, rhf, rcd))
614 if (etype != RHF_RCV_TYPE_IB)
617 packet->hdr = hfi1_get_msgheader(dd, rhf_addr);
620 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
622 if (lnh == HFI1_LRH_BTH) {
623 packet->ohdr = &hdr->u.oth;
624 } else if (lnh == HFI1_LRH_GRH) {
625 packet->ohdr = &hdr->u.l.oth;
626 packet->rcv_flags |= HFI1_HAS_GRH;
628 goto next; /* just in case */
631 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
632 is_ecn = !!(bth1 & (HFI1_FECN_SMASK | HFI1_BECN_SMASK));
637 qpn = bth1 & RVT_QPN_MASK;
639 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
646 process_ecn(qp, packet, true);
649 /* turn off BECN, FECN */
650 bth1 &= ~(HFI1_FECN_SMASK | HFI1_BECN_SMASK);
651 packet->ohdr->bth[1] = cpu_to_be32(bth1);
653 update_ps_mdata(&mdata, rcd);
657 static inline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
659 int ret = RCV_PKT_OK;
661 /* Set up for the next packet */
662 packet->rhqoff += packet->rsize;
663 if (packet->rhqoff >= packet->maxcnt)
667 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
672 this_cpu_inc(*packet->rcd->dd->rcv_limit);
676 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
677 packet->rcd->dd->rhf_offset;
678 packet->rhf = rhf_to_cpu(packet->rhf_addr);
683 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
685 int ret = RCV_PKT_OK;
687 packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
689 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
690 packet->etype = rhf_rcv_type(packet->rhf);
692 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
693 /* retrieve eager buffer details */
695 if (rhf_use_egr_bfr(packet->rhf)) {
696 packet->etail = rhf_egr_index(packet->rhf);
697 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
700 * Prefetch the contents of the eager buffer. It is
701 * OK to send a negative length to prefetch_range().
702 * The +2 is the size of the RHF.
704 prefetch_range(packet->ebuf,
705 packet->tlen - ((packet->rcd->rcvhdrqentsize -
706 (rhf_hdrq_offset(packet->rhf)
711 * Call a type specific handler for the packet. We
712 * should be able to trust that etype won't be beyond
713 * the range of valid indexes. If so something is really
714 * wrong and we can probably just let things come
715 * crashing down. There is no need to eat another
716 * comparison in this performance critical code.
718 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
721 /* Set up for the next packet */
722 packet->rhqoff += packet->rsize;
723 if (packet->rhqoff >= packet->maxcnt)
726 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
731 this_cpu_inc(*packet->rcd->dd->rcv_limit);
735 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
736 packet->rcd->dd->rhf_offset;
737 packet->rhf = rhf_to_cpu(packet->rhf_addr);
742 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
745 * Update head regs etc., every 16 packets, if not last pkt,
746 * to help prevent rcvhdrq overflows, when many packets
747 * are processed and queue is nearly full.
748 * Don't request an interrupt for intermediate updates.
750 if (!last && !(packet->numpkt & 0xf)) {
751 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
752 packet->etail, 0, 0);
755 packet->rcv_flags = 0;
758 static inline void finish_packet(struct hfi1_packet *packet)
761 * Nothing we need to free for the packet.
763 * The only thing we need to do is a final update and call for an
766 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
767 packet->etail, rcv_intr_dynamic, packet->numpkt);
770 static inline void process_rcv_qp_work(struct hfi1_packet *packet)
772 struct hfi1_ctxtdata *rcd;
773 struct rvt_qp *qp, *nqp;
776 rcd->head = packet->rhqoff;
779 * Iterate over all QPs waiting to respond.
780 * The list won't change since the IRQ is only run on one CPU.
782 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
783 list_del_init(&qp->rspwait);
784 if (qp->r_flags & RVT_R_RSP_NAK) {
785 qp->r_flags &= ~RVT_R_RSP_NAK;
786 hfi1_send_rc_ack(rcd, qp, 0);
788 if (qp->r_flags & RVT_R_RSP_SEND) {
791 qp->r_flags &= ~RVT_R_RSP_SEND;
792 spin_lock_irqsave(&qp->s_lock, flags);
793 if (ib_rvt_state_ops[qp->state] &
794 RVT_PROCESS_OR_FLUSH_SEND)
795 hfi1_schedule_send(qp);
796 spin_unlock_irqrestore(&qp->s_lock, flags);
798 if (atomic_dec_and_test(&qp->refcount))
804 * Handle receive interrupts when using the no dma rtail option.
806 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
809 int last = RCV_PKT_OK;
810 struct hfi1_packet packet;
812 init_packet(rcd, &packet);
813 seq = rhf_rcv_seq(packet.rhf);
814 if (seq != rcd->seq_cnt) {
819 prescan_rxq(rcd, &packet);
821 while (last == RCV_PKT_OK) {
822 last = process_rcv_packet(&packet, thread);
823 seq = rhf_rcv_seq(packet.rhf);
824 if (++rcd->seq_cnt > 13)
826 if (seq != rcd->seq_cnt)
828 process_rcv_update(last, &packet);
830 process_rcv_qp_work(&packet);
832 finish_packet(&packet);
836 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
839 int last = RCV_PKT_OK;
840 struct hfi1_packet packet;
842 init_packet(rcd, &packet);
843 hdrqtail = get_rcvhdrtail(rcd);
844 if (packet.rhqoff == hdrqtail) {
848 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
850 prescan_rxq(rcd, &packet);
852 while (last == RCV_PKT_OK) {
853 last = process_rcv_packet(&packet, thread);
854 if (packet.rhqoff == hdrqtail)
856 process_rcv_update(last, &packet);
858 process_rcv_qp_work(&packet);
860 finish_packet(&packet);
864 static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
868 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
869 dd->rcd[i]->do_interrupt =
870 &handle_receive_interrupt_nodma_rtail;
873 static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
877 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
878 dd->rcd[i]->do_interrupt =
879 &handle_receive_interrupt_dma_rtail;
882 void set_all_slowpath(struct hfi1_devdata *dd)
886 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
887 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
888 dd->rcd[i]->do_interrupt = &handle_receive_interrupt;
891 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
892 struct hfi1_packet *packet,
893 struct hfi1_devdata *dd)
895 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
896 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
898 u8 etype = rhf_rcv_type(packet->rhf);
900 if (etype == RHF_RCV_TYPE_IB && hdr2sc(hdr, packet->rhf) != 0xf) {
901 int hwstate = read_logical_state(dd);
903 if (hwstate != LSTATE_ACTIVE) {
904 dd_dev_info(dd, "Unexpected link state %d\n", hwstate);
908 queue_work(rcd->ppd->hfi1_wq, lsaw);
915 * handle_receive_interrupt - receive a packet
918 * Called from interrupt handler for errors or receive interrupt.
919 * This is the slow path interrupt handler.
921 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
923 struct hfi1_devdata *dd = rcd->dd;
925 int needset, last = RCV_PKT_OK;
926 struct hfi1_packet packet;
929 /* Control context will always use the slow path interrupt handler */
930 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
932 init_packet(rcd, &packet);
934 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
935 u32 seq = rhf_rcv_seq(packet.rhf);
937 if (seq != rcd->seq_cnt) {
943 hdrqtail = get_rcvhdrtail(rcd);
944 if (packet.rhqoff == hdrqtail) {
948 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
951 * Control context can potentially receive an invalid
952 * rhf. Drop such packets.
954 if (rcd->ctxt == HFI1_CTRL_CTXT) {
955 u32 seq = rhf_rcv_seq(packet.rhf);
957 if (seq != rcd->seq_cnt)
962 prescan_rxq(rcd, &packet);
964 while (last == RCV_PKT_OK) {
965 if (unlikely(dd->do_drop &&
966 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
970 /* On to the next packet */
971 packet.rhqoff += packet.rsize;
972 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
975 packet.rhf = rhf_to_cpu(packet.rhf_addr);
977 } else if (skip_pkt) {
978 last = skip_rcv_packet(&packet, thread);
981 /* Auto activate link on non-SC15 packet receive */
982 if (unlikely(rcd->ppd->host_link_state ==
984 set_armed_to_active(rcd, &packet, dd))
986 last = process_rcv_packet(&packet, thread);
989 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
990 u32 seq = rhf_rcv_seq(packet.rhf);
992 if (++rcd->seq_cnt > 13)
994 if (seq != rcd->seq_cnt)
997 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
998 set_all_nodma_rtail(dd);
1002 if (packet.rhqoff == hdrqtail)
1003 last = RCV_PKT_DONE;
1005 * Control context can potentially receive an invalid
1006 * rhf. Drop such packets.
1008 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1009 u32 seq = rhf_rcv_seq(packet.rhf);
1011 if (++rcd->seq_cnt > 13)
1013 if (!last && (seq != rcd->seq_cnt))
1019 "Switching to DMA_RTAIL\n");
1020 set_all_dma_rtail(dd);
1025 process_rcv_update(last, &packet);
1028 process_rcv_qp_work(&packet);
1032 * Always write head at end, and setup rcv interrupt, even
1033 * if no packets were processed.
1035 finish_packet(&packet);
1040 * We may discover in the interrupt that the hardware link state has
1041 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1042 * and we need to update the driver's notion of the link state. We cannot
1043 * run set_link_state from interrupt context, so we queue this function on
1046 * We delay the regular interrupt processing until after the state changes
1047 * so that the link will be in the correct state by the time any application
1048 * we wake up attempts to send a reply to any message it received.
1049 * (Subsequent receive interrupts may possibly force the wakeup before we
1050 * update the link state.)
1052 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1053 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1054 * so we're safe from use-after-free of the rcd.
1056 void receive_interrupt_work(struct work_struct *work)
1058 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1059 linkstate_active_work);
1060 struct hfi1_devdata *dd = ppd->dd;
1063 /* Received non-SC15 packet implies neighbor_normal */
1064 ppd->neighbor_normal = 1;
1065 set_link_state(ppd, HLS_UP_ACTIVE);
1068 * Interrupt all kernel contexts that could have had an
1069 * interrupt during auto activation.
1071 for (i = HFI1_CTRL_CTXT; i < dd->first_user_ctxt; i++)
1072 force_recv_intr(dd->rcd[i]);
1076 * Convert a given MTU size to the on-wire MAD packet enumeration.
1077 * Return -1 if the size is invalid.
1079 int mtu_to_enum(u32 mtu, int default_if_bad)
1082 case 0: return OPA_MTU_0;
1083 case 256: return OPA_MTU_256;
1084 case 512: return OPA_MTU_512;
1085 case 1024: return OPA_MTU_1024;
1086 case 2048: return OPA_MTU_2048;
1087 case 4096: return OPA_MTU_4096;
1088 case 8192: return OPA_MTU_8192;
1089 case 10240: return OPA_MTU_10240;
1091 return default_if_bad;
1094 u16 enum_to_mtu(int mtu)
1097 case OPA_MTU_0: return 0;
1098 case OPA_MTU_256: return 256;
1099 case OPA_MTU_512: return 512;
1100 case OPA_MTU_1024: return 1024;
1101 case OPA_MTU_2048: return 2048;
1102 case OPA_MTU_4096: return 4096;
1103 case OPA_MTU_8192: return 8192;
1104 case OPA_MTU_10240: return 10240;
1105 default: return 0xffff;
1110 * set_mtu - set the MTU
1111 * @ppd: the per port data
1113 * We can handle "any" incoming size, the issue here is whether we
1114 * need to restrict our outgoing size. We do not deal with what happens
1115 * to programs that are already running when the size changes.
1117 int set_mtu(struct hfi1_pportdata *ppd)
1119 struct hfi1_devdata *dd = ppd->dd;
1120 int i, drain, ret = 0, is_up = 0;
1123 for (i = 0; i < ppd->vls_supported; i++)
1124 if (ppd->ibmtu < dd->vld[i].mtu)
1125 ppd->ibmtu = dd->vld[i].mtu;
1126 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1128 mutex_lock(&ppd->hls_lock);
1129 if (ppd->host_link_state == HLS_UP_INIT ||
1130 ppd->host_link_state == HLS_UP_ARMED ||
1131 ppd->host_link_state == HLS_UP_ACTIVE)
1134 drain = !is_ax(dd) && is_up;
1138 * MTU is specified per-VL. To ensure that no packet gets
1139 * stuck (due, e.g., to the MTU for the packet's VL being
1140 * reduced), empty the per-VL FIFOs before adjusting MTU.
1142 ret = stop_drain_data_vls(dd);
1145 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1150 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1153 open_fill_data_vls(dd); /* reopen all VLs */
1156 mutex_unlock(&ppd->hls_lock);
1161 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1163 struct hfi1_devdata *dd = ppd->dd;
1167 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1169 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1174 void shutdown_led_override(struct hfi1_pportdata *ppd)
1176 struct hfi1_devdata *dd = ppd->dd;
1179 * This pairs with the memory barrier in hfi1_start_led_override to
1180 * ensure that we read the correct state of LED beaconing represented
1181 * by led_override_timer_active
1184 if (atomic_read(&ppd->led_override_timer_active)) {
1185 del_timer_sync(&ppd->led_override_timer);
1186 atomic_set(&ppd->led_override_timer_active, 0);
1187 /* Ensure the atomic_set is visible to all CPUs */
1191 /* Hand control of the LED to the DC for normal operation */
1192 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1195 static void run_led_override(unsigned long opaque)
1197 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1198 struct hfi1_devdata *dd = ppd->dd;
1199 unsigned long timeout;
1202 if (!(dd->flags & HFI1_INITTED))
1205 phase_idx = ppd->led_override_phase & 1;
1207 setextled(dd, phase_idx);
1209 timeout = ppd->led_override_vals[phase_idx];
1211 /* Set up for next phase */
1212 ppd->led_override_phase = !ppd->led_override_phase;
1214 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1218 * To have the LED blink in a particular pattern, provide timeon and timeoff
1220 * To turn off custom blinking and return to normal operation, use
1221 * shutdown_led_override()
1223 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1224 unsigned int timeoff)
1226 if (!(ppd->dd->flags & HFI1_INITTED))
1229 /* Convert to jiffies for direct use in timer */
1230 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1231 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1233 /* Arbitrarily start from LED on phase */
1234 ppd->led_override_phase = 1;
1237 * If the timer has not already been started, do so. Use a "quick"
1238 * timeout so the handler will be called soon to look at our request.
1240 if (!timer_pending(&ppd->led_override_timer)) {
1241 setup_timer(&ppd->led_override_timer, run_led_override,
1242 (unsigned long)ppd);
1243 ppd->led_override_timer.expires = jiffies + 1;
1244 add_timer(&ppd->led_override_timer);
1245 atomic_set(&ppd->led_override_timer_active, 1);
1246 /* Ensure the atomic_set is visible to all CPUs */
1252 * hfi1_reset_device - reset the chip if possible
1253 * @unit: the device to reset
1255 * Whether or not reset is successful, we attempt to re-initialize the chip
1256 * (that is, much like a driver unload/reload). We clear the INITTED flag
1257 * so that the various entry points will fail until we reinitialize. For
1258 * now, we only allow this if no user contexts are open that use chip resources
1260 int hfi1_reset_device(int unit)
1263 struct hfi1_devdata *dd = hfi1_lookup(unit);
1264 struct hfi1_pportdata *ppd;
1265 unsigned long flags;
1273 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1275 if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1277 "Invalid unit number %u or not initialized or not present\n",
1283 spin_lock_irqsave(&dd->uctxt_lock, flags);
1285 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
1286 if (!dd->rcd[i] || !dd->rcd[i]->cnt)
1288 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1292 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1294 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1295 ppd = dd->pport + pidx;
1297 shutdown_led_override(ppd);
1299 if (dd->flags & HFI1_HAS_SEND_DMA)
1302 hfi1_reset_cpu_counters(dd);
1304 ret = hfi1_init(dd, 1);
1308 "Reinitialize unit %u after reset failed with %d\n",
1311 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1318 void handle_eflags(struct hfi1_packet *packet)
1320 struct hfi1_ctxtdata *rcd = packet->rcd;
1321 u32 rte = rhf_rcv_type_err(packet->rhf);
1323 rcv_hdrerr(rcd, rcd->ppd, packet);
1324 if (rhf_err_flags(packet->rhf))
1326 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1327 rcd->ctxt, packet->rhf,
1328 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1329 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1330 packet->rhf & RHF_DC_ERR ? "dc " : "",
1331 packet->rhf & RHF_TID_ERR ? "tid " : "",
1332 packet->rhf & RHF_LEN_ERR ? "len " : "",
1333 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1334 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1335 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1340 * The following functions are called by the interrupt handler. They are type
1341 * specific handlers for each packet type.
1343 int process_receive_ib(struct hfi1_packet *packet)
1345 trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1347 rhf_err_flags(packet->rhf),
1352 rhf_egr_index(packet->rhf));
1354 if (unlikely(rhf_err_flags(packet->rhf))) {
1355 handle_eflags(packet);
1356 return RHF_RCV_CONTINUE;
1359 hfi1_ib_rcv(packet);
1360 return RHF_RCV_CONTINUE;
1363 int process_receive_bypass(struct hfi1_packet *packet)
1365 struct hfi1_devdata *dd = packet->rcd->dd;
1367 if (unlikely(rhf_err_flags(packet->rhf)))
1368 handle_eflags(packet);
1371 "Bypass packets are not supported in normal operation. Dropping\n");
1372 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1373 if (!(dd->err_info_rcvport.status_and_code & OPA_EI_STATUS_SMASK)) {
1374 u64 *flits = packet->ebuf;
1376 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1377 dd->err_info_rcvport.packet_flit1 = flits[0];
1378 dd->err_info_rcvport.packet_flit2 =
1379 packet->tlen > sizeof(flits[0]) ? flits[1] : 0;
1381 dd->err_info_rcvport.status_and_code |=
1382 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1384 return RHF_RCV_CONTINUE;
1387 int process_receive_error(struct hfi1_packet *packet)
1389 handle_eflags(packet);
1391 if (unlikely(rhf_err_flags(packet->rhf)))
1392 dd_dev_err(packet->rcd->dd,
1393 "Unhandled error packet received. Dropping.\n");
1395 return RHF_RCV_CONTINUE;
1398 int kdeth_process_expected(struct hfi1_packet *packet)
1400 if (unlikely(rhf_err_flags(packet->rhf)))
1401 handle_eflags(packet);
1403 dd_dev_err(packet->rcd->dd,
1404 "Unhandled expected packet received. Dropping.\n");
1405 return RHF_RCV_CONTINUE;
1408 int kdeth_process_eager(struct hfi1_packet *packet)
1410 if (unlikely(rhf_err_flags(packet->rhf)))
1411 handle_eflags(packet);
1413 dd_dev_err(packet->rcd->dd,
1414 "Unhandled eager packet received. Dropping.\n");
1415 return RHF_RCV_CONTINUE;
1418 int process_receive_invalid(struct hfi1_packet *packet)
1420 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1421 rhf_rcv_type(packet->rhf));
1422 return RHF_RCV_CONTINUE;