GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 #include "netdev.h"
70
71 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
72 module_param(num_vls, uint, S_IRUGO);
73 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
74
75 /*
76  * Default time to aggregate two 10K packets from the idle state
77  * (timer not running). The timer starts at the end of the first packet,
78  * so only the time for one 10K packet and header plus a bit extra is needed.
79  * 10 * 1024 + 64 header byte = 10304 byte
80  * 10304 byte / 12.5 GB/s = 824.32ns
81  */
82 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
83 module_param(rcv_intr_timeout, uint, S_IRUGO);
84 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
85
86 uint rcv_intr_count = 16; /* same as qib */
87 module_param(rcv_intr_count, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
89
90 ushort link_crc_mask = SUPPORTED_CRCS;
91 module_param(link_crc_mask, ushort, S_IRUGO);
92 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
93
94 uint loopback;
95 module_param_named(loopback, loopback, uint, S_IRUGO);
96 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
97
98 /* Other driver tunables */
99 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
100 static ushort crc_14b_sideband = 1;
101 static uint use_flr = 1;
102 uint quick_linkup; /* skip LNI */
103
104 struct flag_table {
105         u64 flag;       /* the flag */
106         char *str;      /* description string */
107         u16 extra;      /* extra information */
108         u16 unused0;
109         u32 unused1;
110 };
111
112 /* str must be a string constant */
113 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
114 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
115
116 /* Send Error Consequences */
117 #define SEC_WRITE_DROPPED       0x1
118 #define SEC_PACKET_DROPPED      0x2
119 #define SEC_SC_HALTED           0x4     /* per-context only */
120 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
121
122 #define DEFAULT_KRCVQS            2
123 #define MIN_KERNEL_KCTXTS         2
124 #define FIRST_KERNEL_KCTXT        1
125
126 /*
127  * RSM instance allocation
128  *   0 - User Fecn Handling
129  *   1 - Vnic
130  *   2 - AIP
131  *   3 - Verbs
132  */
133 #define RSM_INS_FECN              0
134 #define RSM_INS_VNIC              1
135 #define RSM_INS_AIP               2
136 #define RSM_INS_VERBS             3
137
138 /* Bit offset into the GUID which carries HFI id information */
139 #define GUID_HFI_INDEX_SHIFT     39
140
141 /* extract the emulation revision */
142 #define emulator_rev(dd) ((dd)->irev >> 8)
143 /* parallel and serial emulation versions are 3 and 4 respectively */
144 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
145 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
146
147 /* RSM fields for Verbs */
148 /* packet type */
149 #define IB_PACKET_TYPE         2ull
150 #define QW_SHIFT               6ull
151 /* QPN[7..1] */
152 #define QPN_WIDTH              7ull
153
154 /* LRH.BTH: QW 0, OFFSET 48 - for match */
155 #define LRH_BTH_QW             0ull
156 #define LRH_BTH_BIT_OFFSET     48ull
157 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
158 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
159 #define LRH_BTH_SELECT
160 #define LRH_BTH_MASK           3ull
161 #define LRH_BTH_VALUE          2ull
162
163 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
164 #define LRH_SC_QW              0ull
165 #define LRH_SC_BIT_OFFSET      56ull
166 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
167 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
168 #define LRH_SC_MASK            128ull
169 #define LRH_SC_VALUE           0ull
170
171 /* SC[n..0] QW 0, OFFSET 60 - for select */
172 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
173
174 /* QPN[m+n:1] QW 1, OFFSET 1 */
175 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
176
177 /* RSM fields for AIP */
178 /* LRH.BTH above is reused for this rule */
179
180 /* BTH.DESTQP: QW 1, OFFSET 16 for match */
181 #define BTH_DESTQP_QW           1ull
182 #define BTH_DESTQP_BIT_OFFSET   16ull
183 #define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
184 #define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
185 #define BTH_DESTQP_MASK         0xFFull
186 #define BTH_DESTQP_VALUE        0x81ull
187
188 /* DETH.SQPN: QW 1 Offset 56 for select */
189 /* We use 8 most significant Soure QPN bits as entropy fpr AIP */
190 #define DETH_AIP_SQPN_QW 3ull
191 #define DETH_AIP_SQPN_BIT_OFFSET 56ull
192 #define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
193 #define DETH_AIP_SQPN_SELECT_OFFSET \
194         DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
195
196 /* RSM fields for Vnic */
197 /* L2_TYPE: QW 0, OFFSET 61 - for match */
198 #define L2_TYPE_QW             0ull
199 #define L2_TYPE_BIT_OFFSET     61ull
200 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
201 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
202 #define L2_TYPE_MASK           3ull
203 #define L2_16B_VALUE           2ull
204
205 /* L4_TYPE QW 1, OFFSET 0 - for match */
206 #define L4_TYPE_QW              1ull
207 #define L4_TYPE_BIT_OFFSET      0ull
208 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
209 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
210 #define L4_16B_TYPE_MASK        0xFFull
211 #define L4_16B_ETH_VALUE        0x78ull
212
213 /* 16B VESWID - for select */
214 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
215 /* 16B ENTROPY - for select */
216 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
217
218 /* defines to build power on SC2VL table */
219 #define SC2VL_VAL( \
220         num, \
221         sc0, sc0val, \
222         sc1, sc1val, \
223         sc2, sc2val, \
224         sc3, sc3val, \
225         sc4, sc4val, \
226         sc5, sc5val, \
227         sc6, sc6val, \
228         sc7, sc7val) \
229 ( \
230         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
231         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
232         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
233         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
234         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
235         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
236         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
237         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
238 )
239
240 #define DC_SC_VL_VAL( \
241         range, \
242         e0, e0val, \
243         e1, e1val, \
244         e2, e2val, \
245         e3, e3val, \
246         e4, e4val, \
247         e5, e5val, \
248         e6, e6val, \
249         e7, e7val, \
250         e8, e8val, \
251         e9, e9val, \
252         e10, e10val, \
253         e11, e11val, \
254         e12, e12val, \
255         e13, e13val, \
256         e14, e14val, \
257         e15, e15val) \
258 ( \
259         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
260         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
261         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
262         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
263         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
264         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
265         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
266         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
267         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
268         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
269         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
270         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
271         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
272         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
273         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
274         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
275 )
276
277 /* all CceStatus sub-block freeze bits */
278 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
279                         | CCE_STATUS_RXE_FROZE_SMASK \
280                         | CCE_STATUS_TXE_FROZE_SMASK \
281                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
282 /* all CceStatus sub-block TXE pause bits */
283 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
284                         | CCE_STATUS_TXE_PAUSED_SMASK \
285                         | CCE_STATUS_SDMA_PAUSED_SMASK)
286 /* all CceStatus sub-block RXE pause bits */
287 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
288
289 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
290 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
291
292 /*
293  * CCE Error flags.
294  */
295 static struct flag_table cce_err_status_flags[] = {
296 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
297                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
298 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
299                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
300 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
301                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
302 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
303                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
304 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
305                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
306 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
307                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
308 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
309                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
310 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
311                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
312 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
313                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
314 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
315             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
316 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
317             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
318 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
319             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
320 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
321                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
322 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
323                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
324 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
325                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
326 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
327                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
328 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
329                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
330 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
331                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
332 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
333                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
334 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
335                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
336 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
337                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
338 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
339                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
340 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
341                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
342 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
343                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
344 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
345                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
346 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
347                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
348 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
349                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
350 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
351                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
352 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
353                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
354 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
355                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
356 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
357                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
358 /*31*/  FLAG_ENTRY0("LATriggered",
359                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
360 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
361                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
362 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
363                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
364 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
365                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
366 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
367                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
368 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
369                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
370 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
371                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
372 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
373                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
374 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
375                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
376 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
377                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
378 /*41-63 reserved*/
379 };
380
381 /*
382  * Misc Error flags
383  */
384 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
385 static struct flag_table misc_err_status_flags[] = {
386 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
387 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
388 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
389 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
390 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
391 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
392 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
393 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
394 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
395 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
396 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
397 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
398 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
399 };
400
401 /*
402  * TXE PIO Error flags and consequences
403  */
404 static struct flag_table pio_err_status_flags[] = {
405 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
406         SEC_WRITE_DROPPED,
407         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
408 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
409         SEC_SPC_FREEZE,
410         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
411 /* 2*/  FLAG_ENTRY("PioCsrParity",
412         SEC_SPC_FREEZE,
413         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
414 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
415         SEC_SPC_FREEZE,
416         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
417 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
418         SEC_SPC_FREEZE,
419         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
420 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
421         SEC_SPC_FREEZE,
422         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
423 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
424         SEC_SPC_FREEZE,
425         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
426 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
427         SEC_SPC_FREEZE,
428         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
429 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
430         SEC_SPC_FREEZE,
431         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
432 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
433         SEC_SPC_FREEZE,
434         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
435 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
436         SEC_SPC_FREEZE,
437         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
438 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
439         SEC_SPC_FREEZE,
440         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
441 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
442         SEC_SPC_FREEZE,
443         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
444 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
445         0,
446         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
447 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
448         0,
449         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
450 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
451         SEC_SPC_FREEZE,
452         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
453 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
454         SEC_SPC_FREEZE,
455         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
456 /*17*/  FLAG_ENTRY("PioInitSmIn",
457         0,
458         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
459 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
460         SEC_SPC_FREEZE,
461         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
462 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
463         SEC_SPC_FREEZE,
464         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
465 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
466         0,
467         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
468 /*21*/  FLAG_ENTRY("PioWriteDataParity",
469         SEC_SPC_FREEZE,
470         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
471 /*22*/  FLAG_ENTRY("PioStateMachine",
472         SEC_SPC_FREEZE,
473         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
474 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
475         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
476         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
477 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
478         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
479         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
480 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
481         SEC_SPC_FREEZE,
482         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
483 /*26*/  FLAG_ENTRY("PioVlfSopParity",
484         SEC_SPC_FREEZE,
485         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
486 /*27*/  FLAG_ENTRY("PioVlFifoParity",
487         SEC_SPC_FREEZE,
488         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
489 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
490         SEC_SPC_FREEZE,
491         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
492 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
493         SEC_SPC_FREEZE,
494         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
495 /*30-31 reserved*/
496 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
497         SEC_SPC_FREEZE,
498         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
499 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
500         SEC_SPC_FREEZE,
501         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
502 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
503         SEC_SPC_FREEZE,
504         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
505 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
506         SEC_SPC_FREEZE,
507         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
508 /*36-63 reserved*/
509 };
510
511 /* TXE PIO errors that cause an SPC freeze */
512 #define ALL_PIO_FREEZE_ERR \
513         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
514         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
515         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
516         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
517         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
518         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
519         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
520         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
521         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
522         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
523         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
524         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
525         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
526         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
527         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
528         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
529         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
530         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
531         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
532         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
533         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
534         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
535         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
536         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
537         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
538         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
539         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
540         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
541         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
542
543 /*
544  * TXE SDMA Error flags
545  */
546 static struct flag_table sdma_err_status_flags[] = {
547 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
548                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
549 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
550                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
551 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
552                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
553 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
554                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
555 /*04-63 reserved*/
556 };
557
558 /* TXE SDMA errors that cause an SPC freeze */
559 #define ALL_SDMA_FREEZE_ERR  \
560                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
561                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
562                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
563
564 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
565 #define PORT_DISCARD_EGRESS_ERRS \
566         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
567         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
568         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
569
570 /*
571  * TXE Egress Error flags
572  */
573 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
574 static struct flag_table egress_err_status_flags[] = {
575 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
576 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
577 /* 2 reserved */
578 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
579                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
580 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
581 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
582 /* 6 reserved */
583 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
584                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
585 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
586                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
587 /* 9-10 reserved */
588 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
589                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
590 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
591 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
592 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
593 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
594 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
595                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
596 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
597                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
598 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
599                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
600 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
601                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
602 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
603                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
604 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
605                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
606 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
607                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
608 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
609                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
610 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
611                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
612 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
613                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
614 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
615                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
616 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
617                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
618 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
619                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
620 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
621                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
622 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
623                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
624 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
625                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
626 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
627                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
628 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
629                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
630 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
631                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
632 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
633                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
634 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
635                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
636 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
637                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
638 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
639                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
640 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
641                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
642 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
643                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
644 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
645 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
646 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
647 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
648 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
649 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
650 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
651 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
652 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
653 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
654 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
655 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
656 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
657 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
658 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
659 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
660 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
661 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
662 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
663 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
664 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
665 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
666                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
667 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
668                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
669 };
670
671 /*
672  * TXE Egress Error Info flags
673  */
674 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
675 static struct flag_table egress_err_info_flags[] = {
676 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
677 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
678 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
679 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
680 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
681 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
682 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
683 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
684 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
685 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
686 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
687 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
688 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
689 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
690 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
691 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
692 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
693 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
694 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
695 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
696 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
697 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
698 };
699
700 /* TXE Egress errors that cause an SPC freeze */
701 #define ALL_TXE_EGRESS_FREEZE_ERR \
702         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
703         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
704         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
705         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
706         | SEES(TX_LAUNCH_CSR_PARITY) \
707         | SEES(TX_SBRD_CTL_CSR_PARITY) \
708         | SEES(TX_CONFIG_PARITY) \
709         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
710         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
711         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
712         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
713         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
714         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
715         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
716         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
717         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
718         | SEES(TX_CREDIT_RETURN_PARITY))
719
720 /*
721  * TXE Send error flags
722  */
723 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
724 static struct flag_table send_err_status_flags[] = {
725 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
726 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
727 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
728 };
729
730 /*
731  * TXE Send Context Error flags and consequences
732  */
733 static struct flag_table sc_err_status_flags[] = {
734 /* 0*/  FLAG_ENTRY("InconsistentSop",
735                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
736                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
737 /* 1*/  FLAG_ENTRY("DisallowedPacket",
738                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
739                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
740 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
741                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
742                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
743 /* 3*/  FLAG_ENTRY("WriteOverflow",
744                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
745                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
746 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
747                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
748                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
749 /* 5-63 reserved*/
750 };
751
752 /*
753  * RXE Receive Error flags
754  */
755 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
756 static struct flag_table rxe_err_status_flags[] = {
757 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
758 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
759 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
760 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
761 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
762 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
763 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
764 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
765 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
766 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
767 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
768 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
769 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
770 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
771 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
772 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
773 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
774                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
775 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
776 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
777 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
778                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
779 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
780                 RXES(RBUF_BLOCK_LIST_READ_COR)),
781 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
782                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
783 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
784                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
785 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
786                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
787 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
788                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
789 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
790 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
791 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
792                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
793 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
794 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
795 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
796 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
797 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
798 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
799 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
800 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
801                 RXES(RBUF_FL_INITDONE_PARITY)),
802 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
803                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
804 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
805 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
806 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
807 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
808                 RXES(LOOKUP_DES_PART1_UNC_COR)),
809 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
810                 RXES(LOOKUP_DES_PART2_PARITY)),
811 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
812 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
813 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
814 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
815 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
816 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
817 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
818 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
819 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
820 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
821 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
822 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
823 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
824 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
825 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
826 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
827 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
828 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
829 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
830 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
831 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
832 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
833 };
834
835 /* RXE errors that will trigger an SPC freeze */
836 #define ALL_RXE_FREEZE_ERR  \
837         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
838         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
839         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
840         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
841         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
842         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
843         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
844         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
845         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
846         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
847         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
848         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
849         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
850         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
851         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
852         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
853         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
854         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
855         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
856         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
857         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
858         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
859         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
860         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
861         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
862         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
863         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
864         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
865         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
866         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
867         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
868         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
869         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
870         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
871         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
872         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
873         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
874         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
875         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
876         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
877         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
878         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
879         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
880         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
881
882 #define RXE_FREEZE_ABORT_MASK \
883         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
884         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
885         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
886
887 /*
888  * DCC Error Flags
889  */
890 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
891 static struct flag_table dcc_err_flags[] = {
892         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
893         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
894         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
895         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
896         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
897         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
898         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
899         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
900         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
901         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
902         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
903         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
904         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
905         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
906         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
907         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
908         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
909         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
910         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
911         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
912         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
913         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
914         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
915         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
916         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
917         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
918         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
919         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
920         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
921         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
922         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
923         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
924         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
925         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
926         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
927         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
928         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
929         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
930         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
931         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
932         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
933         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
934         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
935         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
936         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
937         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
938 };
939
940 /*
941  * LCB error flags
942  */
943 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
944 static struct flag_table lcb_err_flags[] = {
945 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
946 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
947 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
948 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
949                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
950 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
951 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
952 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
953 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
954 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
955 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
956 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
957 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
958 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
959 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
960                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
961 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
962 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
963 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
964 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
965 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
966 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
967                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
968 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
969 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
970 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
971 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
972 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
973 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
974 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
975                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
976 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
977 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
978                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
979 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
980                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
981 };
982
983 /*
984  * DC8051 Error Flags
985  */
986 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
987 static struct flag_table dc8051_err_flags[] = {
988         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
989         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
990         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
991         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
992         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
993         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
994         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
995         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
996         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
997                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
998         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
999 };
1000
1001 /*
1002  * DC8051 Information Error flags
1003  *
1004  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
1005  */
1006 static struct flag_table dc8051_info_err_flags[] = {
1007         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
1008         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
1009         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
1010         FLAG_ENTRY0("Serdes internal loopback failure",
1011                     FAILED_SERDES_INTERNAL_LOOPBACK),
1012         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
1013         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
1014         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
1015         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
1016         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1017         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1018         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1019         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1020         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1021         FLAG_ENTRY0("External Device Request Timeout",
1022                     EXTERNAL_DEVICE_REQ_TIMEOUT),
1023 };
1024
1025 /*
1026  * DC8051 Information Host Information flags
1027  *
1028  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1029  */
1030 static struct flag_table dc8051_info_host_msg_flags[] = {
1031         FLAG_ENTRY0("Host request done", 0x0001),
1032         FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1033         FLAG_ENTRY0("BC SMA message", 0x0004),
1034         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1035         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1036         FLAG_ENTRY0("External device config request", 0x0020),
1037         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1038         FLAG_ENTRY0("LinkUp achieved", 0x0080),
1039         FLAG_ENTRY0("Link going down", 0x0100),
1040         FLAG_ENTRY0("Link width downgraded", 0x0200),
1041 };
1042
1043 static u32 encoded_size(u32 size);
1044 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1045 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1046 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1047                                u8 *continuous);
1048 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1049                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1050 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1051                                       u8 *remote_tx_rate, u16 *link_widths);
1052 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1053                                     u8 *flag_bits, u16 *link_widths);
1054 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1055                                   u8 *device_rev);
1056 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1057 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1058                             u8 *tx_polarity_inversion,
1059                             u8 *rx_polarity_inversion, u8 *max_rate);
1060 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1061                                 unsigned int context, u64 err_status);
1062 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1063 static void handle_dcc_err(struct hfi1_devdata *dd,
1064                            unsigned int context, u64 err_status);
1065 static void handle_lcb_err(struct hfi1_devdata *dd,
1066                            unsigned int context, u64 err_status);
1067 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1068 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1069 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1070 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1071 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1072 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1073 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1074 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1075 static void set_partition_keys(struct hfi1_pportdata *ppd);
1076 static const char *link_state_name(u32 state);
1077 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1078                                           u32 state);
1079 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1080                            u64 *out_data);
1081 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1082 static int thermal_init(struct hfi1_devdata *dd);
1083
1084 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1085 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1086                                             int msecs);
1087 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1088                                   int msecs);
1089 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1090 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1091 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1092                                    int msecs);
1093 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1094                                          int msecs);
1095 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1096 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1097 static void handle_temp_err(struct hfi1_devdata *dd);
1098 static void dc_shutdown(struct hfi1_devdata *dd);
1099 static void dc_start(struct hfi1_devdata *dd);
1100 static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
1101                            unsigned int *np);
1102 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1103 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1104 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1105 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1106
1107 /*
1108  * Error interrupt table entry.  This is used as input to the interrupt
1109  * "clear down" routine used for all second tier error interrupt register.
1110  * Second tier interrupt registers have a single bit representing them
1111  * in the top-level CceIntStatus.
1112  */
1113 struct err_reg_info {
1114         u32 status;             /* status CSR offset */
1115         u32 clear;              /* clear CSR offset */
1116         u32 mask;               /* mask CSR offset */
1117         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1118         const char *desc;
1119 };
1120
1121 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1122 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1123 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1124
1125 /*
1126  * Helpers for building HFI and DC error interrupt table entries.  Different
1127  * helpers are needed because of inconsistent register names.
1128  */
1129 #define EE(reg, handler, desc) \
1130         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1131                 handler, desc }
1132 #define DC_EE1(reg, handler, desc) \
1133         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1134 #define DC_EE2(reg, handler, desc) \
1135         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1136
1137 /*
1138  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1139  * another register containing more information.
1140  */
1141 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1142 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1143 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1144 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1145 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1146 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1147 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1148 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1149 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1150         /* the rest are reserved */
1151 };
1152
1153 /*
1154  * Index into the Various section of the interrupt sources
1155  * corresponding to the Critical Temperature interrupt.
1156  */
1157 #define TCRIT_INT_SOURCE 4
1158
1159 /*
1160  * SDMA error interrupt entry - refers to another register containing more
1161  * information.
1162  */
1163 static const struct err_reg_info sdma_eng_err =
1164         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1165
1166 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1167 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1168 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1169 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1170 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1171 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1172         /* rest are reserved */
1173 };
1174
1175 /*
1176  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1177  * register can not be derived from the MTU value because 10K is not
1178  * a power of 2. Therefore, we need a constant. Everything else can
1179  * be calculated.
1180  */
1181 #define DCC_CFG_PORT_MTU_CAP_10240 7
1182
1183 /*
1184  * Table of the DC grouping of error interrupts.  Each entry refers to
1185  * another register containing more information.
1186  */
1187 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1188 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1189 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1190 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1191 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1192         /* the rest are reserved */
1193 };
1194
1195 struct cntr_entry {
1196         /*
1197          * counter name
1198          */
1199         char *name;
1200
1201         /*
1202          * csr to read for name (if applicable)
1203          */
1204         u64 csr;
1205
1206         /*
1207          * offset into dd or ppd to store the counter's value
1208          */
1209         int offset;
1210
1211         /*
1212          * flags
1213          */
1214         u8 flags;
1215
1216         /*
1217          * accessor for stat element, context either dd or ppd
1218          */
1219         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1220                        int mode, u64 data);
1221 };
1222
1223 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1224 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1225
1226 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1227 { \
1228         name, \
1229         csr, \
1230         offset, \
1231         flags, \
1232         accessor \
1233 }
1234
1235 /* 32bit RXE */
1236 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1237 CNTR_ELEM(#name, \
1238           (counter * 8 + RCV_COUNTER_ARRAY32), \
1239           0, flags | CNTR_32BIT, \
1240           port_access_u32_csr)
1241
1242 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1243 CNTR_ELEM(#name, \
1244           (counter * 8 + RCV_COUNTER_ARRAY32), \
1245           0, flags | CNTR_32BIT, \
1246           dev_access_u32_csr)
1247
1248 /* 64bit RXE */
1249 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251           (counter * 8 + RCV_COUNTER_ARRAY64), \
1252           0, flags, \
1253           port_access_u64_csr)
1254
1255 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1256 CNTR_ELEM(#name, \
1257           (counter * 8 + RCV_COUNTER_ARRAY64), \
1258           0, flags, \
1259           dev_access_u64_csr)
1260
1261 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1262 #define OVR_ELM(ctx) \
1263 CNTR_ELEM("RcvHdrOvr" #ctx, \
1264           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1265           0, CNTR_NORMAL, port_access_u64_csr)
1266
1267 /* 32bit TXE */
1268 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270           (counter * 8 + SEND_COUNTER_ARRAY32), \
1271           0, flags | CNTR_32BIT, \
1272           port_access_u32_csr)
1273
1274 /* 64bit TXE */
1275 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277           (counter * 8 + SEND_COUNTER_ARRAY64), \
1278           0, flags, \
1279           port_access_u64_csr)
1280
1281 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1282 CNTR_ELEM(#name,\
1283           counter * 8 + SEND_COUNTER_ARRAY64, \
1284           0, \
1285           flags, \
1286           dev_access_u64_csr)
1287
1288 /* CCE */
1289 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1290 CNTR_ELEM(#name, \
1291           (counter * 8 + CCE_COUNTER_ARRAY32), \
1292           0, flags | CNTR_32BIT, \
1293           dev_access_u32_csr)
1294
1295 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1296 CNTR_ELEM(#name, \
1297           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1298           0, flags | CNTR_32BIT, \
1299           dev_access_u32_csr)
1300
1301 /* DC */
1302 #define DC_PERF_CNTR(name, counter, flags) \
1303 CNTR_ELEM(#name, \
1304           counter, \
1305           0, \
1306           flags, \
1307           dev_access_u64_csr)
1308
1309 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1310 CNTR_ELEM(#name, \
1311           counter, \
1312           0, \
1313           flags, \
1314           dc_access_lcb_cntr)
1315
1316 /* ibp counters */
1317 #define SW_IBP_CNTR(name, cntr) \
1318 CNTR_ELEM(#name, \
1319           0, \
1320           0, \
1321           CNTR_SYNTH, \
1322           access_ibp_##cntr)
1323
1324 /**
1325  * hfi_addr_from_offset - return addr for readq/writeq
1326  * @dd - the dd device
1327  * @offset - the offset of the CSR within bar0
1328  *
1329  * This routine selects the appropriate base address
1330  * based on the indicated offset.
1331  */
1332 static inline void __iomem *hfi1_addr_from_offset(
1333         const struct hfi1_devdata *dd,
1334         u32 offset)
1335 {
1336         if (offset >= dd->base2_start)
1337                 return dd->kregbase2 + (offset - dd->base2_start);
1338         return dd->kregbase1 + offset;
1339 }
1340
1341 /**
1342  * read_csr - read CSR at the indicated offset
1343  * @dd - the dd device
1344  * @offset - the offset of the CSR within bar0
1345  *
1346  * Return: the value read or all FF's if there
1347  * is no mapping
1348  */
1349 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1350 {
1351         if (dd->flags & HFI1_PRESENT)
1352                 return readq(hfi1_addr_from_offset(dd, offset));
1353         return -1;
1354 }
1355
1356 /**
1357  * write_csr - write CSR at the indicated offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  * @value - value to write
1361  */
1362 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1363 {
1364         if (dd->flags & HFI1_PRESENT) {
1365                 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1366
1367                 /* avoid write to RcvArray */
1368                 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1369                         return;
1370                 writeq(value, base);
1371         }
1372 }
1373
1374 /**
1375  * get_csr_addr - return te iomem address for offset
1376  * @dd - the dd device
1377  * @offset - the offset of the CSR within bar0
1378  *
1379  * Return: The iomem address to use in subsequent
1380  * writeq/readq operations.
1381  */
1382 void __iomem *get_csr_addr(
1383         const struct hfi1_devdata *dd,
1384         u32 offset)
1385 {
1386         if (dd->flags & HFI1_PRESENT)
1387                 return hfi1_addr_from_offset(dd, offset);
1388         return NULL;
1389 }
1390
1391 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1392                                  int mode, u64 value)
1393 {
1394         u64 ret;
1395
1396         if (mode == CNTR_MODE_R) {
1397                 ret = read_csr(dd, csr);
1398         } else if (mode == CNTR_MODE_W) {
1399                 write_csr(dd, csr, value);
1400                 ret = value;
1401         } else {
1402                 dd_dev_err(dd, "Invalid cntr register access mode");
1403                 return 0;
1404         }
1405
1406         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1407         return ret;
1408 }
1409
1410 /* Dev Access */
1411 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1412                               void *context, int vl, int mode, u64 data)
1413 {
1414         struct hfi1_devdata *dd = context;
1415         u64 csr = entry->csr;
1416
1417         if (entry->flags & CNTR_SDMA) {
1418                 if (vl == CNTR_INVALID_VL)
1419                         return 0;
1420                 csr += 0x100 * vl;
1421         } else {
1422                 if (vl != CNTR_INVALID_VL)
1423                         return 0;
1424         }
1425         return read_write_csr(dd, csr, mode, data);
1426 }
1427
1428 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1429                               void *context, int idx, int mode, u64 data)
1430 {
1431         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1432
1433         if (dd->per_sdma && idx < dd->num_sdma)
1434                 return dd->per_sdma[idx].err_cnt;
1435         return 0;
1436 }
1437
1438 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1439                               void *context, int idx, int mode, u64 data)
1440 {
1441         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1442
1443         if (dd->per_sdma && idx < dd->num_sdma)
1444                 return dd->per_sdma[idx].sdma_int_cnt;
1445         return 0;
1446 }
1447
1448 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1449                                    void *context, int idx, int mode, u64 data)
1450 {
1451         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1452
1453         if (dd->per_sdma && idx < dd->num_sdma)
1454                 return dd->per_sdma[idx].idle_int_cnt;
1455         return 0;
1456 }
1457
1458 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1459                                        void *context, int idx, int mode,
1460                                        u64 data)
1461 {
1462         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1463
1464         if (dd->per_sdma && idx < dd->num_sdma)
1465                 return dd->per_sdma[idx].progress_int_cnt;
1466         return 0;
1467 }
1468
1469 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1470                               int vl, int mode, u64 data)
1471 {
1472         struct hfi1_devdata *dd = context;
1473
1474         u64 val = 0;
1475         u64 csr = entry->csr;
1476
1477         if (entry->flags & CNTR_VL) {
1478                 if (vl == CNTR_INVALID_VL)
1479                         return 0;
1480                 csr += 8 * vl;
1481         } else {
1482                 if (vl != CNTR_INVALID_VL)
1483                         return 0;
1484         }
1485
1486         val = read_write_csr(dd, csr, mode, data);
1487         return val;
1488 }
1489
1490 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1491                               int vl, int mode, u64 data)
1492 {
1493         struct hfi1_devdata *dd = context;
1494         u32 csr = entry->csr;
1495         int ret = 0;
1496
1497         if (vl != CNTR_INVALID_VL)
1498                 return 0;
1499         if (mode == CNTR_MODE_R)
1500                 ret = read_lcb_csr(dd, csr, &data);
1501         else if (mode == CNTR_MODE_W)
1502                 ret = write_lcb_csr(dd, csr, data);
1503
1504         if (ret) {
1505                 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1506                 return 0;
1507         }
1508
1509         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1510         return data;
1511 }
1512
1513 /* Port Access */
1514 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1515                                int vl, int mode, u64 data)
1516 {
1517         struct hfi1_pportdata *ppd = context;
1518
1519         if (vl != CNTR_INVALID_VL)
1520                 return 0;
1521         return read_write_csr(ppd->dd, entry->csr, mode, data);
1522 }
1523
1524 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1525                                void *context, int vl, int mode, u64 data)
1526 {
1527         struct hfi1_pportdata *ppd = context;
1528         u64 val;
1529         u64 csr = entry->csr;
1530
1531         if (entry->flags & CNTR_VL) {
1532                 if (vl == CNTR_INVALID_VL)
1533                         return 0;
1534                 csr += 8 * vl;
1535         } else {
1536                 if (vl != CNTR_INVALID_VL)
1537                         return 0;
1538         }
1539         val = read_write_csr(ppd->dd, csr, mode, data);
1540         return val;
1541 }
1542
1543 /* Software defined */
1544 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1545                                 u64 data)
1546 {
1547         u64 ret;
1548
1549         if (mode == CNTR_MODE_R) {
1550                 ret = *cntr;
1551         } else if (mode == CNTR_MODE_W) {
1552                 *cntr = data;
1553                 ret = data;
1554         } else {
1555                 dd_dev_err(dd, "Invalid cntr sw access mode");
1556                 return 0;
1557         }
1558
1559         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1560
1561         return ret;
1562 }
1563
1564 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1565                                  int vl, int mode, u64 data)
1566 {
1567         struct hfi1_pportdata *ppd = context;
1568
1569         if (vl != CNTR_INVALID_VL)
1570                 return 0;
1571         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1572 }
1573
1574 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1575                                  int vl, int mode, u64 data)
1576 {
1577         struct hfi1_pportdata *ppd = context;
1578
1579         if (vl != CNTR_INVALID_VL)
1580                 return 0;
1581         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1582 }
1583
1584 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1585                                        void *context, int vl, int mode,
1586                                        u64 data)
1587 {
1588         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1589
1590         if (vl != CNTR_INVALID_VL)
1591                 return 0;
1592         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1593 }
1594
1595 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1596                                    void *context, int vl, int mode, u64 data)
1597 {
1598         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1599         u64 zero = 0;
1600         u64 *counter;
1601
1602         if (vl == CNTR_INVALID_VL)
1603                 counter = &ppd->port_xmit_discards;
1604         else if (vl >= 0 && vl < C_VL_COUNT)
1605                 counter = &ppd->port_xmit_discards_vl[vl];
1606         else
1607                 counter = &zero;
1608
1609         return read_write_sw(ppd->dd, counter, mode, data);
1610 }
1611
1612 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1613                                        void *context, int vl, int mode,
1614                                        u64 data)
1615 {
1616         struct hfi1_pportdata *ppd = context;
1617
1618         if (vl != CNTR_INVALID_VL)
1619                 return 0;
1620
1621         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1622                              mode, data);
1623 }
1624
1625 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1626                                       void *context, int vl, int mode, u64 data)
1627 {
1628         struct hfi1_pportdata *ppd = context;
1629
1630         if (vl != CNTR_INVALID_VL)
1631                 return 0;
1632
1633         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1634                              mode, data);
1635 }
1636
1637 u64 get_all_cpu_total(u64 __percpu *cntr)
1638 {
1639         int cpu;
1640         u64 counter = 0;
1641
1642         for_each_possible_cpu(cpu)
1643                 counter += *per_cpu_ptr(cntr, cpu);
1644         return counter;
1645 }
1646
1647 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1648                           u64 __percpu *cntr,
1649                           int vl, int mode, u64 data)
1650 {
1651         u64 ret = 0;
1652
1653         if (vl != CNTR_INVALID_VL)
1654                 return 0;
1655
1656         if (mode == CNTR_MODE_R) {
1657                 ret = get_all_cpu_total(cntr) - *z_val;
1658         } else if (mode == CNTR_MODE_W) {
1659                 /* A write can only zero the counter */
1660                 if (data == 0)
1661                         *z_val = get_all_cpu_total(cntr);
1662                 else
1663                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1664         } else {
1665                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1666                 return 0;
1667         }
1668
1669         return ret;
1670 }
1671
1672 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1673                               void *context, int vl, int mode, u64 data)
1674 {
1675         struct hfi1_devdata *dd = context;
1676
1677         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1678                               mode, data);
1679 }
1680
1681 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1682                                    void *context, int vl, int mode, u64 data)
1683 {
1684         struct hfi1_devdata *dd = context;
1685
1686         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1687                               mode, data);
1688 }
1689
1690 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1691                               void *context, int vl, int mode, u64 data)
1692 {
1693         struct hfi1_devdata *dd = context;
1694
1695         return dd->verbs_dev.n_piowait;
1696 }
1697
1698 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1699                                void *context, int vl, int mode, u64 data)
1700 {
1701         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1702
1703         return dd->verbs_dev.n_piodrain;
1704 }
1705
1706 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1707                                    void *context, int vl, int mode, u64 data)
1708 {
1709         struct hfi1_devdata *dd = context;
1710
1711         return dd->ctx0_seq_drop;
1712 }
1713
1714 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1715                               void *context, int vl, int mode, u64 data)
1716 {
1717         struct hfi1_devdata *dd = context;
1718
1719         return dd->verbs_dev.n_txwait;
1720 }
1721
1722 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1723                                void *context, int vl, int mode, u64 data)
1724 {
1725         struct hfi1_devdata *dd = context;
1726
1727         return dd->verbs_dev.n_kmem_wait;
1728 }
1729
1730 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1731                                    void *context, int vl, int mode, u64 data)
1732 {
1733         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1734
1735         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1736                               mode, data);
1737 }
1738
1739 /* Software counters for the error status bits within MISC_ERR_STATUS */
1740 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1741                                              void *context, int vl, int mode,
1742                                              u64 data)
1743 {
1744         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746         return dd->misc_err_status_cnt[12];
1747 }
1748
1749 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1750                                           void *context, int vl, int mode,
1751                                           u64 data)
1752 {
1753         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755         return dd->misc_err_status_cnt[11];
1756 }
1757
1758 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1759                                                void *context, int vl, int mode,
1760                                                u64 data)
1761 {
1762         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764         return dd->misc_err_status_cnt[10];
1765 }
1766
1767 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1768                                                  void *context, int vl,
1769                                                  int mode, u64 data)
1770 {
1771         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773         return dd->misc_err_status_cnt[9];
1774 }
1775
1776 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1777                                            void *context, int vl, int mode,
1778                                            u64 data)
1779 {
1780         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781
1782         return dd->misc_err_status_cnt[8];
1783 }
1784
1785 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1786                                 const struct cntr_entry *entry,
1787                                 void *context, int vl, int mode, u64 data)
1788 {
1789         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790
1791         return dd->misc_err_status_cnt[7];
1792 }
1793
1794 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1795                                                 void *context, int vl,
1796                                                 int mode, u64 data)
1797 {
1798         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799
1800         return dd->misc_err_status_cnt[6];
1801 }
1802
1803 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1804                                               void *context, int vl, int mode,
1805                                               u64 data)
1806 {
1807         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808
1809         return dd->misc_err_status_cnt[5];
1810 }
1811
1812 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1813                                             void *context, int vl, int mode,
1814                                             u64 data)
1815 {
1816         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817
1818         return dd->misc_err_status_cnt[4];
1819 }
1820
1821 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1822                                                  void *context, int vl,
1823                                                  int mode, u64 data)
1824 {
1825         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827         return dd->misc_err_status_cnt[3];
1828 }
1829
1830 static u64 access_misc_csr_write_bad_addr_err_cnt(
1831                                 const struct cntr_entry *entry,
1832                                 void *context, int vl, int mode, u64 data)
1833 {
1834         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1835
1836         return dd->misc_err_status_cnt[2];
1837 }
1838
1839 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1840                                                  void *context, int vl,
1841                                                  int mode, u64 data)
1842 {
1843         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1844
1845         return dd->misc_err_status_cnt[1];
1846 }
1847
1848 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1849                                           void *context, int vl, int mode,
1850                                           u64 data)
1851 {
1852         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853
1854         return dd->misc_err_status_cnt[0];
1855 }
1856
1857 /*
1858  * Software counter for the aggregate of
1859  * individual CceErrStatus counters
1860  */
1861 static u64 access_sw_cce_err_status_aggregated_cnt(
1862                                 const struct cntr_entry *entry,
1863                                 void *context, int vl, int mode, u64 data)
1864 {
1865         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866
1867         return dd->sw_cce_err_status_aggregate;
1868 }
1869
1870 /*
1871  * Software counters corresponding to each of the
1872  * error status bits within CceErrStatus
1873  */
1874 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1875                                               void *context, int vl, int mode,
1876                                               u64 data)
1877 {
1878         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879
1880         return dd->cce_err_status_cnt[40];
1881 }
1882
1883 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1884                                           void *context, int vl, int mode,
1885                                           u64 data)
1886 {
1887         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888
1889         return dd->cce_err_status_cnt[39];
1890 }
1891
1892 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1893                                           void *context, int vl, int mode,
1894                                           u64 data)
1895 {
1896         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897
1898         return dd->cce_err_status_cnt[38];
1899 }
1900
1901 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1902                                              void *context, int vl, int mode,
1903                                              u64 data)
1904 {
1905         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906
1907         return dd->cce_err_status_cnt[37];
1908 }
1909
1910 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1911                                              void *context, int vl, int mode,
1912                                              u64 data)
1913 {
1914         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915
1916         return dd->cce_err_status_cnt[36];
1917 }
1918
1919 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1920                                 const struct cntr_entry *entry,
1921                                 void *context, int vl, int mode, u64 data)
1922 {
1923         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924
1925         return dd->cce_err_status_cnt[35];
1926 }
1927
1928 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1929                                 const struct cntr_entry *entry,
1930                                 void *context, int vl, int mode, u64 data)
1931 {
1932         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933
1934         return dd->cce_err_status_cnt[34];
1935 }
1936
1937 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1938                                                  void *context, int vl,
1939                                                  int mode, u64 data)
1940 {
1941         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942
1943         return dd->cce_err_status_cnt[33];
1944 }
1945
1946 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1947                                                 void *context, int vl, int mode,
1948                                                 u64 data)
1949 {
1950         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951
1952         return dd->cce_err_status_cnt[32];
1953 }
1954
1955 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1956                                    void *context, int vl, int mode, u64 data)
1957 {
1958         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960         return dd->cce_err_status_cnt[31];
1961 }
1962
1963 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1964                                                void *context, int vl, int mode,
1965                                                u64 data)
1966 {
1967         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969         return dd->cce_err_status_cnt[30];
1970 }
1971
1972 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1973                                               void *context, int vl, int mode,
1974                                               u64 data)
1975 {
1976         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978         return dd->cce_err_status_cnt[29];
1979 }
1980
1981 static u64 access_pcic_transmit_back_parity_err_cnt(
1982                                 const struct cntr_entry *entry,
1983                                 void *context, int vl, int mode, u64 data)
1984 {
1985         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987         return dd->cce_err_status_cnt[28];
1988 }
1989
1990 static u64 access_pcic_transmit_front_parity_err_cnt(
1991                                 const struct cntr_entry *entry,
1992                                 void *context, int vl, int mode, u64 data)
1993 {
1994         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996         return dd->cce_err_status_cnt[27];
1997 }
1998
1999 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2000                                              void *context, int vl, int mode,
2001                                              u64 data)
2002 {
2003         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005         return dd->cce_err_status_cnt[26];
2006 }
2007
2008 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2009                                             void *context, int vl, int mode,
2010                                             u64 data)
2011 {
2012         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014         return dd->cce_err_status_cnt[25];
2015 }
2016
2017 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2018                                               void *context, int vl, int mode,
2019                                               u64 data)
2020 {
2021         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023         return dd->cce_err_status_cnt[24];
2024 }
2025
2026 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2027                                              void *context, int vl, int mode,
2028                                              u64 data)
2029 {
2030         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032         return dd->cce_err_status_cnt[23];
2033 }
2034
2035 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2036                                                  void *context, int vl,
2037                                                  int mode, u64 data)
2038 {
2039         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041         return dd->cce_err_status_cnt[22];
2042 }
2043
2044 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2045                                          void *context, int vl, int mode,
2046                                          u64 data)
2047 {
2048         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050         return dd->cce_err_status_cnt[21];
2051 }
2052
2053 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2054                                 const struct cntr_entry *entry,
2055                                 void *context, int vl, int mode, u64 data)
2056 {
2057         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059         return dd->cce_err_status_cnt[20];
2060 }
2061
2062 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2063                                                  void *context, int vl,
2064                                                  int mode, u64 data)
2065 {
2066         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068         return dd->cce_err_status_cnt[19];
2069 }
2070
2071 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2072                                              void *context, int vl, int mode,
2073                                              u64 data)
2074 {
2075         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077         return dd->cce_err_status_cnt[18];
2078 }
2079
2080 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2081                                             void *context, int vl, int mode,
2082                                             u64 data)
2083 {
2084         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086         return dd->cce_err_status_cnt[17];
2087 }
2088
2089 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2090                                               void *context, int vl, int mode,
2091                                               u64 data)
2092 {
2093         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095         return dd->cce_err_status_cnt[16];
2096 }
2097
2098 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2099                                              void *context, int vl, int mode,
2100                                              u64 data)
2101 {
2102         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104         return dd->cce_err_status_cnt[15];
2105 }
2106
2107 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2108                                                  void *context, int vl,
2109                                                  int mode, u64 data)
2110 {
2111         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113         return dd->cce_err_status_cnt[14];
2114 }
2115
2116 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2117                                              void *context, int vl, int mode,
2118                                              u64 data)
2119 {
2120         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122         return dd->cce_err_status_cnt[13];
2123 }
2124
2125 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2126                                 const struct cntr_entry *entry,
2127                                 void *context, int vl, int mode, u64 data)
2128 {
2129         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131         return dd->cce_err_status_cnt[12];
2132 }
2133
2134 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2135                                 const struct cntr_entry *entry,
2136                                 void *context, int vl, int mode, u64 data)
2137 {
2138         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140         return dd->cce_err_status_cnt[11];
2141 }
2142
2143 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2144                                 const struct cntr_entry *entry,
2145                                 void *context, int vl, int mode, u64 data)
2146 {
2147         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149         return dd->cce_err_status_cnt[10];
2150 }
2151
2152 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2153                                 const struct cntr_entry *entry,
2154                                 void *context, int vl, int mode, u64 data)
2155 {
2156         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158         return dd->cce_err_status_cnt[9];
2159 }
2160
2161 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2162                                 const struct cntr_entry *entry,
2163                                 void *context, int vl, int mode, u64 data)
2164 {
2165         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166
2167         return dd->cce_err_status_cnt[8];
2168 }
2169
2170 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2171                                                  void *context, int vl,
2172                                                  int mode, u64 data)
2173 {
2174         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175
2176         return dd->cce_err_status_cnt[7];
2177 }
2178
2179 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2180                                 const struct cntr_entry *entry,
2181                                 void *context, int vl, int mode, u64 data)
2182 {
2183         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184
2185         return dd->cce_err_status_cnt[6];
2186 }
2187
2188 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2189                                                void *context, int vl, int mode,
2190                                                u64 data)
2191 {
2192         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193
2194         return dd->cce_err_status_cnt[5];
2195 }
2196
2197 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2198                                           void *context, int vl, int mode,
2199                                           u64 data)
2200 {
2201         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202
2203         return dd->cce_err_status_cnt[4];
2204 }
2205
2206 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2207                                 const struct cntr_entry *entry,
2208                                 void *context, int vl, int mode, u64 data)
2209 {
2210         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212         return dd->cce_err_status_cnt[3];
2213 }
2214
2215 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2216                                                  void *context, int vl,
2217                                                  int mode, u64 data)
2218 {
2219         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220
2221         return dd->cce_err_status_cnt[2];
2222 }
2223
2224 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2225                                                 void *context, int vl,
2226                                                 int mode, u64 data)
2227 {
2228         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229
2230         return dd->cce_err_status_cnt[1];
2231 }
2232
2233 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2234                                          void *context, int vl, int mode,
2235                                          u64 data)
2236 {
2237         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238
2239         return dd->cce_err_status_cnt[0];
2240 }
2241
2242 /*
2243  * Software counters corresponding to each of the
2244  * error status bits within RcvErrStatus
2245  */
2246 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2247                                         void *context, int vl, int mode,
2248                                         u64 data)
2249 {
2250         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252         return dd->rcv_err_status_cnt[63];
2253 }
2254
2255 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2256                                                 void *context, int vl,
2257                                                 int mode, u64 data)
2258 {
2259         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261         return dd->rcv_err_status_cnt[62];
2262 }
2263
2264 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2265                                                void *context, int vl, int mode,
2266                                                u64 data)
2267 {
2268         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270         return dd->rcv_err_status_cnt[61];
2271 }
2272
2273 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2274                                          void *context, int vl, int mode,
2275                                          u64 data)
2276 {
2277         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279         return dd->rcv_err_status_cnt[60];
2280 }
2281
2282 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2283                                                  void *context, int vl,
2284                                                  int mode, u64 data)
2285 {
2286         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288         return dd->rcv_err_status_cnt[59];
2289 }
2290
2291 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2292                                                  void *context, int vl,
2293                                                  int mode, u64 data)
2294 {
2295         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297         return dd->rcv_err_status_cnt[58];
2298 }
2299
2300 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2301                                             void *context, int vl, int mode,
2302                                             u64 data)
2303 {
2304         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306         return dd->rcv_err_status_cnt[57];
2307 }
2308
2309 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2310                                            void *context, int vl, int mode,
2311                                            u64 data)
2312 {
2313         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315         return dd->rcv_err_status_cnt[56];
2316 }
2317
2318 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2319                                            void *context, int vl, int mode,
2320                                            u64 data)
2321 {
2322         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324         return dd->rcv_err_status_cnt[55];
2325 }
2326
2327 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2328                                 const struct cntr_entry *entry,
2329                                 void *context, int vl, int mode, u64 data)
2330 {
2331         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333         return dd->rcv_err_status_cnt[54];
2334 }
2335
2336 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2337                                 const struct cntr_entry *entry,
2338                                 void *context, int vl, int mode, u64 data)
2339 {
2340         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342         return dd->rcv_err_status_cnt[53];
2343 }
2344
2345 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2346                                                  void *context, int vl,
2347                                                  int mode, u64 data)
2348 {
2349         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351         return dd->rcv_err_status_cnt[52];
2352 }
2353
2354 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2355                                                  void *context, int vl,
2356                                                  int mode, u64 data)
2357 {
2358         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360         return dd->rcv_err_status_cnt[51];
2361 }
2362
2363 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2364                                                  void *context, int vl,
2365                                                  int mode, u64 data)
2366 {
2367         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369         return dd->rcv_err_status_cnt[50];
2370 }
2371
2372 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2373                                                  void *context, int vl,
2374                                                  int mode, u64 data)
2375 {
2376         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378         return dd->rcv_err_status_cnt[49];
2379 }
2380
2381 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2382                                                  void *context, int vl,
2383                                                  int mode, u64 data)
2384 {
2385         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387         return dd->rcv_err_status_cnt[48];
2388 }
2389
2390 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2391                                                  void *context, int vl,
2392                                                  int mode, u64 data)
2393 {
2394         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396         return dd->rcv_err_status_cnt[47];
2397 }
2398
2399 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2400                                          void *context, int vl, int mode,
2401                                          u64 data)
2402 {
2403         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405         return dd->rcv_err_status_cnt[46];
2406 }
2407
2408 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2409                                 const struct cntr_entry *entry,
2410                                 void *context, int vl, int mode, u64 data)
2411 {
2412         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414         return dd->rcv_err_status_cnt[45];
2415 }
2416
2417 static u64 access_rx_lookup_csr_parity_err_cnt(
2418                                 const struct cntr_entry *entry,
2419                                 void *context, int vl, int mode, u64 data)
2420 {
2421         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423         return dd->rcv_err_status_cnt[44];
2424 }
2425
2426 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2427                                 const struct cntr_entry *entry,
2428                                 void *context, int vl, int mode, u64 data)
2429 {
2430         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432         return dd->rcv_err_status_cnt[43];
2433 }
2434
2435 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2436                                 const struct cntr_entry *entry,
2437                                 void *context, int vl, int mode, u64 data)
2438 {
2439         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441         return dd->rcv_err_status_cnt[42];
2442 }
2443
2444 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2445                                 const struct cntr_entry *entry,
2446                                 void *context, int vl, int mode, u64 data)
2447 {
2448         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450         return dd->rcv_err_status_cnt[41];
2451 }
2452
2453 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2454                                 const struct cntr_entry *entry,
2455                                 void *context, int vl, int mode, u64 data)
2456 {
2457         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459         return dd->rcv_err_status_cnt[40];
2460 }
2461
2462 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2463                                 const struct cntr_entry *entry,
2464                                 void *context, int vl, int mode, u64 data)
2465 {
2466         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468         return dd->rcv_err_status_cnt[39];
2469 }
2470
2471 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2472                                 const struct cntr_entry *entry,
2473                                 void *context, int vl, int mode, u64 data)
2474 {
2475         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477         return dd->rcv_err_status_cnt[38];
2478 }
2479
2480 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2481                                 const struct cntr_entry *entry,
2482                                 void *context, int vl, int mode, u64 data)
2483 {
2484         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486         return dd->rcv_err_status_cnt[37];
2487 }
2488
2489 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2490                                 const struct cntr_entry *entry,
2491                                 void *context, int vl, int mode, u64 data)
2492 {
2493         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495         return dd->rcv_err_status_cnt[36];
2496 }
2497
2498 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2499                                 const struct cntr_entry *entry,
2500                                 void *context, int vl, int mode, u64 data)
2501 {
2502         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504         return dd->rcv_err_status_cnt[35];
2505 }
2506
2507 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2508                                 const struct cntr_entry *entry,
2509                                 void *context, int vl, int mode, u64 data)
2510 {
2511         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513         return dd->rcv_err_status_cnt[34];
2514 }
2515
2516 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2517                                 const struct cntr_entry *entry,
2518                                 void *context, int vl, int mode, u64 data)
2519 {
2520         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522         return dd->rcv_err_status_cnt[33];
2523 }
2524
2525 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2526                                         void *context, int vl, int mode,
2527                                         u64 data)
2528 {
2529         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531         return dd->rcv_err_status_cnt[32];
2532 }
2533
2534 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2535                                        void *context, int vl, int mode,
2536                                        u64 data)
2537 {
2538         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540         return dd->rcv_err_status_cnt[31];
2541 }
2542
2543 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2544                                           void *context, int vl, int mode,
2545                                           u64 data)
2546 {
2547         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549         return dd->rcv_err_status_cnt[30];
2550 }
2551
2552 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2553                                              void *context, int vl, int mode,
2554                                              u64 data)
2555 {
2556         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558         return dd->rcv_err_status_cnt[29];
2559 }
2560
2561 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2562                                                  void *context, int vl,
2563                                                  int mode, u64 data)
2564 {
2565         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567         return dd->rcv_err_status_cnt[28];
2568 }
2569
2570 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2571                                 const struct cntr_entry *entry,
2572                                 void *context, int vl, int mode, u64 data)
2573 {
2574         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576         return dd->rcv_err_status_cnt[27];
2577 }
2578
2579 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2580                                 const struct cntr_entry *entry,
2581                                 void *context, int vl, int mode, u64 data)
2582 {
2583         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585         return dd->rcv_err_status_cnt[26];
2586 }
2587
2588 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2589                                 const struct cntr_entry *entry,
2590                                 void *context, int vl, int mode, u64 data)
2591 {
2592         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594         return dd->rcv_err_status_cnt[25];
2595 }
2596
2597 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2598                                 const struct cntr_entry *entry,
2599                                 void *context, int vl, int mode, u64 data)
2600 {
2601         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603         return dd->rcv_err_status_cnt[24];
2604 }
2605
2606 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2607                                 const struct cntr_entry *entry,
2608                                 void *context, int vl, int mode, u64 data)
2609 {
2610         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612         return dd->rcv_err_status_cnt[23];
2613 }
2614
2615 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2616                                 const struct cntr_entry *entry,
2617                                 void *context, int vl, int mode, u64 data)
2618 {
2619         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621         return dd->rcv_err_status_cnt[22];
2622 }
2623
2624 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2625                                 const struct cntr_entry *entry,
2626                                 void *context, int vl, int mode, u64 data)
2627 {
2628         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630         return dd->rcv_err_status_cnt[21];
2631 }
2632
2633 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2634                                 const struct cntr_entry *entry,
2635                                 void *context, int vl, int mode, u64 data)
2636 {
2637         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639         return dd->rcv_err_status_cnt[20];
2640 }
2641
2642 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2643                                 const struct cntr_entry *entry,
2644                                 void *context, int vl, int mode, u64 data)
2645 {
2646         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648         return dd->rcv_err_status_cnt[19];
2649 }
2650
2651 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2652                                                  void *context, int vl,
2653                                                  int mode, u64 data)
2654 {
2655         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657         return dd->rcv_err_status_cnt[18];
2658 }
2659
2660 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2661                                                  void *context, int vl,
2662                                                  int mode, u64 data)
2663 {
2664         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666         return dd->rcv_err_status_cnt[17];
2667 }
2668
2669 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2670                                 const struct cntr_entry *entry,
2671                                 void *context, int vl, int mode, u64 data)
2672 {
2673         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675         return dd->rcv_err_status_cnt[16];
2676 }
2677
2678 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2679                                 const struct cntr_entry *entry,
2680                                 void *context, int vl, int mode, u64 data)
2681 {
2682         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684         return dd->rcv_err_status_cnt[15];
2685 }
2686
2687 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2688                                                 void *context, int vl,
2689                                                 int mode, u64 data)
2690 {
2691         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693         return dd->rcv_err_status_cnt[14];
2694 }
2695
2696 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2697                                                 void *context, int vl,
2698                                                 int mode, u64 data)
2699 {
2700         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702         return dd->rcv_err_status_cnt[13];
2703 }
2704
2705 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2706                                               void *context, int vl, int mode,
2707                                               u64 data)
2708 {
2709         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711         return dd->rcv_err_status_cnt[12];
2712 }
2713
2714 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2715                                           void *context, int vl, int mode,
2716                                           u64 data)
2717 {
2718         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720         return dd->rcv_err_status_cnt[11];
2721 }
2722
2723 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2724                                           void *context, int vl, int mode,
2725                                           u64 data)
2726 {
2727         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729         return dd->rcv_err_status_cnt[10];
2730 }
2731
2732 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2733                                                void *context, int vl, int mode,
2734                                                u64 data)
2735 {
2736         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738         return dd->rcv_err_status_cnt[9];
2739 }
2740
2741 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2742                                             void *context, int vl, int mode,
2743                                             u64 data)
2744 {
2745         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746
2747         return dd->rcv_err_status_cnt[8];
2748 }
2749
2750 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2751                                 const struct cntr_entry *entry,
2752                                 void *context, int vl, int mode, u64 data)
2753 {
2754         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755
2756         return dd->rcv_err_status_cnt[7];
2757 }
2758
2759 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2760                                 const struct cntr_entry *entry,
2761                                 void *context, int vl, int mode, u64 data)
2762 {
2763         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764
2765         return dd->rcv_err_status_cnt[6];
2766 }
2767
2768 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2769                                           void *context, int vl, int mode,
2770                                           u64 data)
2771 {
2772         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773
2774         return dd->rcv_err_status_cnt[5];
2775 }
2776
2777 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2778                                           void *context, int vl, int mode,
2779                                           u64 data)
2780 {
2781         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782
2783         return dd->rcv_err_status_cnt[4];
2784 }
2785
2786 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2787                                          void *context, int vl, int mode,
2788                                          u64 data)
2789 {
2790         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792         return dd->rcv_err_status_cnt[3];
2793 }
2794
2795 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2796                                          void *context, int vl, int mode,
2797                                          u64 data)
2798 {
2799         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800
2801         return dd->rcv_err_status_cnt[2];
2802 }
2803
2804 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2805                                             void *context, int vl, int mode,
2806                                             u64 data)
2807 {
2808         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809
2810         return dd->rcv_err_status_cnt[1];
2811 }
2812
2813 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2814                                          void *context, int vl, int mode,
2815                                          u64 data)
2816 {
2817         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818
2819         return dd->rcv_err_status_cnt[0];
2820 }
2821
2822 /*
2823  * Software counters corresponding to each of the
2824  * error status bits within SendPioErrStatus
2825  */
2826 static u64 access_pio_pec_sop_head_parity_err_cnt(
2827                                 const struct cntr_entry *entry,
2828                                 void *context, int vl, int mode, u64 data)
2829 {
2830         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832         return dd->send_pio_err_status_cnt[35];
2833 }
2834
2835 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2836                                 const struct cntr_entry *entry,
2837                                 void *context, int vl, int mode, u64 data)
2838 {
2839         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841         return dd->send_pio_err_status_cnt[34];
2842 }
2843
2844 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2845                                 const struct cntr_entry *entry,
2846                                 void *context, int vl, int mode, u64 data)
2847 {
2848         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850         return dd->send_pio_err_status_cnt[33];
2851 }
2852
2853 static u64 access_pio_current_free_cnt_parity_err_cnt(
2854                                 const struct cntr_entry *entry,
2855                                 void *context, int vl, int mode, u64 data)
2856 {
2857         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859         return dd->send_pio_err_status_cnt[32];
2860 }
2861
2862 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2863                                           void *context, int vl, int mode,
2864                                           u64 data)
2865 {
2866         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868         return dd->send_pio_err_status_cnt[31];
2869 }
2870
2871 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2872                                           void *context, int vl, int mode,
2873                                           u64 data)
2874 {
2875         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877         return dd->send_pio_err_status_cnt[30];
2878 }
2879
2880 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2881                                            void *context, int vl, int mode,
2882                                            u64 data)
2883 {
2884         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886         return dd->send_pio_err_status_cnt[29];
2887 }
2888
2889 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2890                                 const struct cntr_entry *entry,
2891                                 void *context, int vl, int mode, u64 data)
2892 {
2893         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895         return dd->send_pio_err_status_cnt[28];
2896 }
2897
2898 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2899                                              void *context, int vl, int mode,
2900                                              u64 data)
2901 {
2902         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904         return dd->send_pio_err_status_cnt[27];
2905 }
2906
2907 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2908                                              void *context, int vl, int mode,
2909                                              u64 data)
2910 {
2911         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913         return dd->send_pio_err_status_cnt[26];
2914 }
2915
2916 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2917                                                 void *context, int vl,
2918                                                 int mode, u64 data)
2919 {
2920         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922         return dd->send_pio_err_status_cnt[25];
2923 }
2924
2925 static u64 access_pio_block_qw_count_parity_err_cnt(
2926                                 const struct cntr_entry *entry,
2927                                 void *context, int vl, int mode, u64 data)
2928 {
2929         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931         return dd->send_pio_err_status_cnt[24];
2932 }
2933
2934 static u64 access_pio_write_qw_valid_parity_err_cnt(
2935                                 const struct cntr_entry *entry,
2936                                 void *context, int vl, int mode, u64 data)
2937 {
2938         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940         return dd->send_pio_err_status_cnt[23];
2941 }
2942
2943 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2944                                             void *context, int vl, int mode,
2945                                             u64 data)
2946 {
2947         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949         return dd->send_pio_err_status_cnt[22];
2950 }
2951
2952 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2953                                                 void *context, int vl,
2954                                                 int mode, u64 data)
2955 {
2956         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958         return dd->send_pio_err_status_cnt[21];
2959 }
2960
2961 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2962                                                 void *context, int vl,
2963                                                 int mode, u64 data)
2964 {
2965         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967         return dd->send_pio_err_status_cnt[20];
2968 }
2969
2970 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2971                                                 void *context, int vl,
2972                                                 int mode, u64 data)
2973 {
2974         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976         return dd->send_pio_err_status_cnt[19];
2977 }
2978
2979 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2980                                 const struct cntr_entry *entry,
2981                                 void *context, int vl, int mode, u64 data)
2982 {
2983         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985         return dd->send_pio_err_status_cnt[18];
2986 }
2987
2988 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2989                                          void *context, int vl, int mode,
2990                                          u64 data)
2991 {
2992         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994         return dd->send_pio_err_status_cnt[17];
2995 }
2996
2997 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2998                                             void *context, int vl, int mode,
2999                                             u64 data)
3000 {
3001         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003         return dd->send_pio_err_status_cnt[16];
3004 }
3005
3006 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
3007                                 const struct cntr_entry *entry,
3008                                 void *context, int vl, int mode, u64 data)
3009 {
3010         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012         return dd->send_pio_err_status_cnt[15];
3013 }
3014
3015 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
3016                                 const struct cntr_entry *entry,
3017                                 void *context, int vl, int mode, u64 data)
3018 {
3019         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021         return dd->send_pio_err_status_cnt[14];
3022 }
3023
3024 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3025                                 const struct cntr_entry *entry,
3026                                 void *context, int vl, int mode, u64 data)
3027 {
3028         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030         return dd->send_pio_err_status_cnt[13];
3031 }
3032
3033 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3034                                 const struct cntr_entry *entry,
3035                                 void *context, int vl, int mode, u64 data)
3036 {
3037         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039         return dd->send_pio_err_status_cnt[12];
3040 }
3041
3042 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3043                                 const struct cntr_entry *entry,
3044                                 void *context, int vl, int mode, u64 data)
3045 {
3046         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048         return dd->send_pio_err_status_cnt[11];
3049 }
3050
3051 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3052                                 const struct cntr_entry *entry,
3053                                 void *context, int vl, int mode, u64 data)
3054 {
3055         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057         return dd->send_pio_err_status_cnt[10];
3058 }
3059
3060 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3061                                 const struct cntr_entry *entry,
3062                                 void *context, int vl, int mode, u64 data)
3063 {
3064         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066         return dd->send_pio_err_status_cnt[9];
3067 }
3068
3069 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3070                                 const struct cntr_entry *entry,
3071                                 void *context, int vl, int mode, u64 data)
3072 {
3073         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074
3075         return dd->send_pio_err_status_cnt[8];
3076 }
3077
3078 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3079                                 const struct cntr_entry *entry,
3080                                 void *context, int vl, int mode, u64 data)
3081 {
3082         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083
3084         return dd->send_pio_err_status_cnt[7];
3085 }
3086
3087 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3088                                               void *context, int vl, int mode,
3089                                               u64 data)
3090 {
3091         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092
3093         return dd->send_pio_err_status_cnt[6];
3094 }
3095
3096 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3097                                               void *context, int vl, int mode,
3098                                               u64 data)
3099 {
3100         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101
3102         return dd->send_pio_err_status_cnt[5];
3103 }
3104
3105 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3106                                            void *context, int vl, int mode,
3107                                            u64 data)
3108 {
3109         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110
3111         return dd->send_pio_err_status_cnt[4];
3112 }
3113
3114 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3115                                            void *context, int vl, int mode,
3116                                            u64 data)
3117 {
3118         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120         return dd->send_pio_err_status_cnt[3];
3121 }
3122
3123 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3124                                          void *context, int vl, int mode,
3125                                          u64 data)
3126 {
3127         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128
3129         return dd->send_pio_err_status_cnt[2];
3130 }
3131
3132 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3133                                                 void *context, int vl,
3134                                                 int mode, u64 data)
3135 {
3136         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137
3138         return dd->send_pio_err_status_cnt[1];
3139 }
3140
3141 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3142                                              void *context, int vl, int mode,
3143                                              u64 data)
3144 {
3145         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146
3147         return dd->send_pio_err_status_cnt[0];
3148 }
3149
3150 /*
3151  * Software counters corresponding to each of the
3152  * error status bits within SendDmaErrStatus
3153  */
3154 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3155                                 const struct cntr_entry *entry,
3156                                 void *context, int vl, int mode, u64 data)
3157 {
3158         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160         return dd->send_dma_err_status_cnt[3];
3161 }
3162
3163 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3164                                 const struct cntr_entry *entry,
3165                                 void *context, int vl, int mode, u64 data)
3166 {
3167         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168
3169         return dd->send_dma_err_status_cnt[2];
3170 }
3171
3172 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3173                                           void *context, int vl, int mode,
3174                                           u64 data)
3175 {
3176         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177
3178         return dd->send_dma_err_status_cnt[1];
3179 }
3180
3181 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3182                                        void *context, int vl, int mode,
3183                                        u64 data)
3184 {
3185         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186
3187         return dd->send_dma_err_status_cnt[0];
3188 }
3189
3190 /*
3191  * Software counters corresponding to each of the
3192  * error status bits within SendEgressErrStatus
3193  */
3194 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3195                                 const struct cntr_entry *entry,
3196                                 void *context, int vl, int mode, u64 data)
3197 {
3198         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200         return dd->send_egress_err_status_cnt[63];
3201 }
3202
3203 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3204                                 const struct cntr_entry *entry,
3205                                 void *context, int vl, int mode, u64 data)
3206 {
3207         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209         return dd->send_egress_err_status_cnt[62];
3210 }
3211
3212 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3213                                              void *context, int vl, int mode,
3214                                              u64 data)
3215 {
3216         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218         return dd->send_egress_err_status_cnt[61];
3219 }
3220
3221 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3222                                                  void *context, int vl,
3223                                                  int mode, u64 data)
3224 {
3225         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227         return dd->send_egress_err_status_cnt[60];
3228 }
3229
3230 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3231                                 const struct cntr_entry *entry,
3232                                 void *context, int vl, int mode, u64 data)
3233 {
3234         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236         return dd->send_egress_err_status_cnt[59];
3237 }
3238
3239 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3240                                         void *context, int vl, int mode,
3241                                         u64 data)
3242 {
3243         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245         return dd->send_egress_err_status_cnt[58];
3246 }
3247
3248 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3249                                             void *context, int vl, int mode,
3250                                             u64 data)
3251 {
3252         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254         return dd->send_egress_err_status_cnt[57];
3255 }
3256
3257 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3258                                               void *context, int vl, int mode,
3259                                               u64 data)
3260 {
3261         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263         return dd->send_egress_err_status_cnt[56];
3264 }
3265
3266 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3267                                               void *context, int vl, int mode,
3268                                               u64 data)
3269 {
3270         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272         return dd->send_egress_err_status_cnt[55];
3273 }
3274
3275 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3276                                               void *context, int vl, int mode,
3277                                               u64 data)
3278 {
3279         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281         return dd->send_egress_err_status_cnt[54];
3282 }
3283
3284 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3285                                               void *context, int vl, int mode,
3286                                               u64 data)
3287 {
3288         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290         return dd->send_egress_err_status_cnt[53];
3291 }
3292
3293 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3294                                               void *context, int vl, int mode,
3295                                               u64 data)
3296 {
3297         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299         return dd->send_egress_err_status_cnt[52];
3300 }
3301
3302 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3303                                               void *context, int vl, int mode,
3304                                               u64 data)
3305 {
3306         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308         return dd->send_egress_err_status_cnt[51];
3309 }
3310
3311 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3312                                               void *context, int vl, int mode,
3313                                               u64 data)
3314 {
3315         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317         return dd->send_egress_err_status_cnt[50];
3318 }
3319
3320 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3321                                               void *context, int vl, int mode,
3322                                               u64 data)
3323 {
3324         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326         return dd->send_egress_err_status_cnt[49];
3327 }
3328
3329 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3330                                               void *context, int vl, int mode,
3331                                               u64 data)
3332 {
3333         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335         return dd->send_egress_err_status_cnt[48];
3336 }
3337
3338 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3339                                               void *context, int vl, int mode,
3340                                               u64 data)
3341 {
3342         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344         return dd->send_egress_err_status_cnt[47];
3345 }
3346
3347 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3348                                             void *context, int vl, int mode,
3349                                             u64 data)
3350 {
3351         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353         return dd->send_egress_err_status_cnt[46];
3354 }
3355
3356 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3357                                              void *context, int vl, int mode,
3358                                              u64 data)
3359 {
3360         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362         return dd->send_egress_err_status_cnt[45];
3363 }
3364
3365 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3366                                                  void *context, int vl,
3367                                                  int mode, u64 data)
3368 {
3369         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371         return dd->send_egress_err_status_cnt[44];
3372 }
3373
3374 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3375                                 const struct cntr_entry *entry,
3376                                 void *context, int vl, int mode, u64 data)
3377 {
3378         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380         return dd->send_egress_err_status_cnt[43];
3381 }
3382
3383 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3384                                         void *context, int vl, int mode,
3385                                         u64 data)
3386 {
3387         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389         return dd->send_egress_err_status_cnt[42];
3390 }
3391
3392 static u64 access_tx_credit_return_partiy_err_cnt(
3393                                 const struct cntr_entry *entry,
3394                                 void *context, int vl, int mode, u64 data)
3395 {
3396         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398         return dd->send_egress_err_status_cnt[41];
3399 }
3400
3401 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3402                                 const struct cntr_entry *entry,
3403                                 void *context, int vl, int mode, u64 data)
3404 {
3405         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407         return dd->send_egress_err_status_cnt[40];
3408 }
3409
3410 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3411                                 const struct cntr_entry *entry,
3412                                 void *context, int vl, int mode, u64 data)
3413 {
3414         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416         return dd->send_egress_err_status_cnt[39];
3417 }
3418
3419 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3420                                 const struct cntr_entry *entry,
3421                                 void *context, int vl, int mode, u64 data)
3422 {
3423         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425         return dd->send_egress_err_status_cnt[38];
3426 }
3427
3428 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3429                                 const struct cntr_entry *entry,
3430                                 void *context, int vl, int mode, u64 data)
3431 {
3432         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434         return dd->send_egress_err_status_cnt[37];
3435 }
3436
3437 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3438                                 const struct cntr_entry *entry,
3439                                 void *context, int vl, int mode, u64 data)
3440 {
3441         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443         return dd->send_egress_err_status_cnt[36];
3444 }
3445
3446 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3447                                 const struct cntr_entry *entry,
3448                                 void *context, int vl, int mode, u64 data)
3449 {
3450         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452         return dd->send_egress_err_status_cnt[35];
3453 }
3454
3455 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3456                                 const struct cntr_entry *entry,
3457                                 void *context, int vl, int mode, u64 data)
3458 {
3459         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461         return dd->send_egress_err_status_cnt[34];
3462 }
3463
3464 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3465                                 const struct cntr_entry *entry,
3466                                 void *context, int vl, int mode, u64 data)
3467 {
3468         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470         return dd->send_egress_err_status_cnt[33];
3471 }
3472
3473 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3474                                 const struct cntr_entry *entry,
3475                                 void *context, int vl, int mode, u64 data)
3476 {
3477         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479         return dd->send_egress_err_status_cnt[32];
3480 }
3481
3482 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3483                                 const struct cntr_entry *entry,
3484                                 void *context, int vl, int mode, u64 data)
3485 {
3486         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488         return dd->send_egress_err_status_cnt[31];
3489 }
3490
3491 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3492                                 const struct cntr_entry *entry,
3493                                 void *context, int vl, int mode, u64 data)
3494 {
3495         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497         return dd->send_egress_err_status_cnt[30];
3498 }
3499
3500 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3501                                 const struct cntr_entry *entry,
3502                                 void *context, int vl, int mode, u64 data)
3503 {
3504         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506         return dd->send_egress_err_status_cnt[29];
3507 }
3508
3509 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3510                                 const struct cntr_entry *entry,
3511                                 void *context, int vl, int mode, u64 data)
3512 {
3513         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515         return dd->send_egress_err_status_cnt[28];
3516 }
3517
3518 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3519                                 const struct cntr_entry *entry,
3520                                 void *context, int vl, int mode, u64 data)
3521 {
3522         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524         return dd->send_egress_err_status_cnt[27];
3525 }
3526
3527 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3528                                 const struct cntr_entry *entry,
3529                                 void *context, int vl, int mode, u64 data)
3530 {
3531         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533         return dd->send_egress_err_status_cnt[26];
3534 }
3535
3536 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3537                                 const struct cntr_entry *entry,
3538                                 void *context, int vl, int mode, u64 data)
3539 {
3540         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542         return dd->send_egress_err_status_cnt[25];
3543 }
3544
3545 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3546                                 const struct cntr_entry *entry,
3547                                 void *context, int vl, int mode, u64 data)
3548 {
3549         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551         return dd->send_egress_err_status_cnt[24];
3552 }
3553
3554 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3555                                 const struct cntr_entry *entry,
3556                                 void *context, int vl, int mode, u64 data)
3557 {
3558         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560         return dd->send_egress_err_status_cnt[23];
3561 }
3562
3563 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3564                                 const struct cntr_entry *entry,
3565                                 void *context, int vl, int mode, u64 data)
3566 {
3567         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569         return dd->send_egress_err_status_cnt[22];
3570 }
3571
3572 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3573                                 const struct cntr_entry *entry,
3574                                 void *context, int vl, int mode, u64 data)
3575 {
3576         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578         return dd->send_egress_err_status_cnt[21];
3579 }
3580
3581 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3582                                 const struct cntr_entry *entry,
3583                                 void *context, int vl, int mode, u64 data)
3584 {
3585         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587         return dd->send_egress_err_status_cnt[20];
3588 }
3589
3590 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3591                                 const struct cntr_entry *entry,
3592                                 void *context, int vl, int mode, u64 data)
3593 {
3594         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596         return dd->send_egress_err_status_cnt[19];
3597 }
3598
3599 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3600                                 const struct cntr_entry *entry,
3601                                 void *context, int vl, int mode, u64 data)
3602 {
3603         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605         return dd->send_egress_err_status_cnt[18];
3606 }
3607
3608 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3609                                 const struct cntr_entry *entry,
3610                                 void *context, int vl, int mode, u64 data)
3611 {
3612         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614         return dd->send_egress_err_status_cnt[17];
3615 }
3616
3617 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3618                                 const struct cntr_entry *entry,
3619                                 void *context, int vl, int mode, u64 data)
3620 {
3621         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623         return dd->send_egress_err_status_cnt[16];
3624 }
3625
3626 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3627                                            void *context, int vl, int mode,
3628                                            u64 data)
3629 {
3630         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632         return dd->send_egress_err_status_cnt[15];
3633 }
3634
3635 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3636                                                  void *context, int vl,
3637                                                  int mode, u64 data)
3638 {
3639         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641         return dd->send_egress_err_status_cnt[14];
3642 }
3643
3644 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3645                                                void *context, int vl, int mode,
3646                                                u64 data)
3647 {
3648         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650         return dd->send_egress_err_status_cnt[13];
3651 }
3652
3653 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3654                                         void *context, int vl, int mode,
3655                                         u64 data)
3656 {
3657         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659         return dd->send_egress_err_status_cnt[12];
3660 }
3661
3662 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3663                                 const struct cntr_entry *entry,
3664                                 void *context, int vl, int mode, u64 data)
3665 {
3666         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668         return dd->send_egress_err_status_cnt[11];
3669 }
3670
3671 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3672                                              void *context, int vl, int mode,
3673                                              u64 data)
3674 {
3675         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677         return dd->send_egress_err_status_cnt[10];
3678 }
3679
3680 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3681                                             void *context, int vl, int mode,
3682                                             u64 data)
3683 {
3684         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686         return dd->send_egress_err_status_cnt[9];
3687 }
3688
3689 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3690                                 const struct cntr_entry *entry,
3691                                 void *context, int vl, int mode, u64 data)
3692 {
3693         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694
3695         return dd->send_egress_err_status_cnt[8];
3696 }
3697
3698 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3699                                 const struct cntr_entry *entry,
3700                                 void *context, int vl, int mode, u64 data)
3701 {
3702         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703
3704         return dd->send_egress_err_status_cnt[7];
3705 }
3706
3707 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3708                                             void *context, int vl, int mode,
3709                                             u64 data)
3710 {
3711         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712
3713         return dd->send_egress_err_status_cnt[6];
3714 }
3715
3716 static u64 access_tx_incorrect_link_state_err_cnt(
3717                                 const struct cntr_entry *entry,
3718                                 void *context, int vl, int mode, u64 data)
3719 {
3720         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721
3722         return dd->send_egress_err_status_cnt[5];
3723 }
3724
3725 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3726                                       void *context, int vl, int mode,
3727                                       u64 data)
3728 {
3729         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730
3731         return dd->send_egress_err_status_cnt[4];
3732 }
3733
3734 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3735                                 const struct cntr_entry *entry,
3736                                 void *context, int vl, int mode, u64 data)
3737 {
3738         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739
3740         return dd->send_egress_err_status_cnt[3];
3741 }
3742
3743 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3744                                             void *context, int vl, int mode,
3745                                             u64 data)
3746 {
3747         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748
3749         return dd->send_egress_err_status_cnt[2];
3750 }
3751
3752 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3753                                 const struct cntr_entry *entry,
3754                                 void *context, int vl, int mode, u64 data)
3755 {
3756         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757
3758         return dd->send_egress_err_status_cnt[1];
3759 }
3760
3761 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3762                                 const struct cntr_entry *entry,
3763                                 void *context, int vl, int mode, u64 data)
3764 {
3765         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3766
3767         return dd->send_egress_err_status_cnt[0];
3768 }
3769
3770 /*
3771  * Software counters corresponding to each of the
3772  * error status bits within SendErrStatus
3773  */
3774 static u64 access_send_csr_write_bad_addr_err_cnt(
3775                                 const struct cntr_entry *entry,
3776                                 void *context, int vl, int mode, u64 data)
3777 {
3778         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779
3780         return dd->send_err_status_cnt[2];
3781 }
3782
3783 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3784                                                  void *context, int vl,
3785                                                  int mode, u64 data)
3786 {
3787         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788
3789         return dd->send_err_status_cnt[1];
3790 }
3791
3792 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3793                                       void *context, int vl, int mode,
3794                                       u64 data)
3795 {
3796         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797
3798         return dd->send_err_status_cnt[0];
3799 }
3800
3801 /*
3802  * Software counters corresponding to each of the
3803  * error status bits within SendCtxtErrStatus
3804  */
3805 static u64 access_pio_write_out_of_bounds_err_cnt(
3806                                 const struct cntr_entry *entry,
3807                                 void *context, int vl, int mode, u64 data)
3808 {
3809         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810
3811         return dd->sw_ctxt_err_status_cnt[4];
3812 }
3813
3814 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3815                                              void *context, int vl, int mode,
3816                                              u64 data)
3817 {
3818         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820         return dd->sw_ctxt_err_status_cnt[3];
3821 }
3822
3823 static u64 access_pio_write_crosses_boundary_err_cnt(
3824                                 const struct cntr_entry *entry,
3825                                 void *context, int vl, int mode, u64 data)
3826 {
3827         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828
3829         return dd->sw_ctxt_err_status_cnt[2];
3830 }
3831
3832 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3833                                                 void *context, int vl,
3834                                                 int mode, u64 data)
3835 {
3836         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837
3838         return dd->sw_ctxt_err_status_cnt[1];
3839 }
3840
3841 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3842                                                void *context, int vl, int mode,
3843                                                u64 data)
3844 {
3845         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846
3847         return dd->sw_ctxt_err_status_cnt[0];
3848 }
3849
3850 /*
3851  * Software counters corresponding to each of the
3852  * error status bits within SendDmaEngErrStatus
3853  */
3854 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3855                                 const struct cntr_entry *entry,
3856                                 void *context, int vl, int mode, u64 data)
3857 {
3858         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860         return dd->sw_send_dma_eng_err_status_cnt[23];
3861 }
3862
3863 static u64 access_sdma_header_storage_cor_err_cnt(
3864                                 const struct cntr_entry *entry,
3865                                 void *context, int vl, int mode, u64 data)
3866 {
3867         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869         return dd->sw_send_dma_eng_err_status_cnt[22];
3870 }
3871
3872 static u64 access_sdma_packet_tracking_cor_err_cnt(
3873                                 const struct cntr_entry *entry,
3874                                 void *context, int vl, int mode, u64 data)
3875 {
3876         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878         return dd->sw_send_dma_eng_err_status_cnt[21];
3879 }
3880
3881 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3882                                             void *context, int vl, int mode,
3883                                             u64 data)
3884 {
3885         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887         return dd->sw_send_dma_eng_err_status_cnt[20];
3888 }
3889
3890 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3891                                               void *context, int vl, int mode,
3892                                               u64 data)
3893 {
3894         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896         return dd->sw_send_dma_eng_err_status_cnt[19];
3897 }
3898
3899 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3900                                 const struct cntr_entry *entry,
3901                                 void *context, int vl, int mode, u64 data)
3902 {
3903         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905         return dd->sw_send_dma_eng_err_status_cnt[18];
3906 }
3907
3908 static u64 access_sdma_header_storage_unc_err_cnt(
3909                                 const struct cntr_entry *entry,
3910                                 void *context, int vl, int mode, u64 data)
3911 {
3912         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914         return dd->sw_send_dma_eng_err_status_cnt[17];
3915 }
3916
3917 static u64 access_sdma_packet_tracking_unc_err_cnt(
3918                                 const struct cntr_entry *entry,
3919                                 void *context, int vl, int mode, u64 data)
3920 {
3921         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923         return dd->sw_send_dma_eng_err_status_cnt[16];
3924 }
3925
3926 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3927                                             void *context, int vl, int mode,
3928                                             u64 data)
3929 {
3930         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931
3932         return dd->sw_send_dma_eng_err_status_cnt[15];
3933 }
3934
3935 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3936                                               void *context, int vl, int mode,
3937                                               u64 data)
3938 {
3939         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940
3941         return dd->sw_send_dma_eng_err_status_cnt[14];
3942 }
3943
3944 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3945                                        void *context, int vl, int mode,
3946                                        u64 data)
3947 {
3948         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949
3950         return dd->sw_send_dma_eng_err_status_cnt[13];
3951 }
3952
3953 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3954                                              void *context, int vl, int mode,
3955                                              u64 data)
3956 {
3957         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958
3959         return dd->sw_send_dma_eng_err_status_cnt[12];
3960 }
3961
3962 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3963                                               void *context, int vl, int mode,
3964                                               u64 data)
3965 {
3966         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967
3968         return dd->sw_send_dma_eng_err_status_cnt[11];
3969 }
3970
3971 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3972                                              void *context, int vl, int mode,
3973                                              u64 data)
3974 {
3975         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976
3977         return dd->sw_send_dma_eng_err_status_cnt[10];
3978 }
3979
3980 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3981                                           void *context, int vl, int mode,
3982                                           u64 data)
3983 {
3984         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985
3986         return dd->sw_send_dma_eng_err_status_cnt[9];
3987 }
3988
3989 static u64 access_sdma_packet_desc_overflow_err_cnt(
3990                                 const struct cntr_entry *entry,
3991                                 void *context, int vl, int mode, u64 data)
3992 {
3993         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994
3995         return dd->sw_send_dma_eng_err_status_cnt[8];
3996 }
3997
3998 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3999                                                void *context, int vl,
4000                                                int mode, u64 data)
4001 {
4002         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003
4004         return dd->sw_send_dma_eng_err_status_cnt[7];
4005 }
4006
4007 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
4008                                     void *context, int vl, int mode, u64 data)
4009 {
4010         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011
4012         return dd->sw_send_dma_eng_err_status_cnt[6];
4013 }
4014
4015 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
4016                                         void *context, int vl, int mode,
4017                                         u64 data)
4018 {
4019         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020
4021         return dd->sw_send_dma_eng_err_status_cnt[5];
4022 }
4023
4024 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4025                                           void *context, int vl, int mode,
4026                                           u64 data)
4027 {
4028         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029
4030         return dd->sw_send_dma_eng_err_status_cnt[4];
4031 }
4032
4033 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4034                                 const struct cntr_entry *entry,
4035                                 void *context, int vl, int mode, u64 data)
4036 {
4037         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038
4039         return dd->sw_send_dma_eng_err_status_cnt[3];
4040 }
4041
4042 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4043                                         void *context, int vl, int mode,
4044                                         u64 data)
4045 {
4046         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047
4048         return dd->sw_send_dma_eng_err_status_cnt[2];
4049 }
4050
4051 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4052                                             void *context, int vl, int mode,
4053                                             u64 data)
4054 {
4055         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4056
4057         return dd->sw_send_dma_eng_err_status_cnt[1];
4058 }
4059
4060 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4061                                         void *context, int vl, int mode,
4062                                         u64 data)
4063 {
4064         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4065
4066         return dd->sw_send_dma_eng_err_status_cnt[0];
4067 }
4068
4069 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4070                                  void *context, int vl, int mode,
4071                                  u64 data)
4072 {
4073         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4074
4075         u64 val = 0;
4076         u64 csr = entry->csr;
4077
4078         val = read_write_csr(dd, csr, mode, data);
4079         if (mode == CNTR_MODE_R) {
4080                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4081                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4082         } else if (mode == CNTR_MODE_W) {
4083                 dd->sw_rcv_bypass_packet_errors = 0;
4084         } else {
4085                 dd_dev_err(dd, "Invalid cntr register access mode");
4086                 return 0;
4087         }
4088         return val;
4089 }
4090
4091 #define def_access_sw_cpu(cntr) \
4092 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
4093                               void *context, int vl, int mode, u64 data)      \
4094 {                                                                             \
4095         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4096         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
4097                               ppd->ibport_data.rvp.cntr, vl,                  \
4098                               mode, data);                                    \
4099 }
4100
4101 def_access_sw_cpu(rc_acks);
4102 def_access_sw_cpu(rc_qacks);
4103 def_access_sw_cpu(rc_delayed_comp);
4104
4105 #define def_access_ibp_counter(cntr) \
4106 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
4107                                 void *context, int vl, int mode, u64 data)    \
4108 {                                                                             \
4109         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4110                                                                               \
4111         if (vl != CNTR_INVALID_VL)                                            \
4112                 return 0;                                                     \
4113                                                                               \
4114         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4115                              mode, data);                                     \
4116 }
4117
4118 def_access_ibp_counter(loop_pkts);
4119 def_access_ibp_counter(rc_resends);
4120 def_access_ibp_counter(rnr_naks);
4121 def_access_ibp_counter(other_naks);
4122 def_access_ibp_counter(rc_timeouts);
4123 def_access_ibp_counter(pkt_drops);
4124 def_access_ibp_counter(dmawait);
4125 def_access_ibp_counter(rc_seqnak);
4126 def_access_ibp_counter(rc_dupreq);
4127 def_access_ibp_counter(rdma_seq);
4128 def_access_ibp_counter(unaligned);
4129 def_access_ibp_counter(seq_naks);
4130 def_access_ibp_counter(rc_crwaits);
4131
4132 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4133 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4134 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4135 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4136 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4137 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4138 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4139                         CNTR_NORMAL),
4140 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4141                         CNTR_NORMAL),
4142 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4143                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4144                         CNTR_NORMAL),
4145 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4146                         CNTR_NORMAL),
4147 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4148                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4149 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4150                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4151 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4152                         CNTR_NORMAL),
4153 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4154                         CNTR_NORMAL),
4155 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4156                         CNTR_NORMAL),
4157 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4158                         CNTR_NORMAL),
4159 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4160                         CNTR_NORMAL),
4161 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4162                         CNTR_NORMAL),
4163 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4164                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4165 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4166                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4167 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4168                               CNTR_SYNTH),
4169 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4170                             access_dc_rcv_err_cnt),
4171 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4172                                  CNTR_SYNTH),
4173 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4174                                   CNTR_SYNTH),
4175 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4176                                   CNTR_SYNTH),
4177 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4178                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4179 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4180                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4181                                   CNTR_SYNTH),
4182 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4183                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4184 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4185                                CNTR_SYNTH),
4186 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4187                               CNTR_SYNTH),
4188 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4189                                CNTR_SYNTH),
4190 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4191                                  CNTR_SYNTH),
4192 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4193                                 CNTR_SYNTH),
4194 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4195                                 CNTR_SYNTH),
4196 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4197                                CNTR_SYNTH),
4198 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4199                                  CNTR_SYNTH | CNTR_VL),
4200 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4201                                 CNTR_SYNTH | CNTR_VL),
4202 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4203 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4204                                  CNTR_SYNTH | CNTR_VL),
4205 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4206 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4207                                  CNTR_SYNTH | CNTR_VL),
4208 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4209                               CNTR_SYNTH),
4210 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4211                                  CNTR_SYNTH | CNTR_VL),
4212 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4213                                 CNTR_SYNTH),
4214 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4215                                    CNTR_SYNTH | CNTR_VL),
4216 [C_DC_TOTAL_CRC] =
4217         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4218                          CNTR_SYNTH),
4219 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4220                                   CNTR_SYNTH),
4221 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4222                                   CNTR_SYNTH),
4223 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4224                                   CNTR_SYNTH),
4225 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4226                                   CNTR_SYNTH),
4227 [C_DC_CRC_MULT_LN] =
4228         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4229                          CNTR_SYNTH),
4230 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4231                                     CNTR_SYNTH),
4232 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4233                                     CNTR_SYNTH),
4234 [C_DC_SEQ_CRC_CNT] =
4235         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4236                          CNTR_SYNTH),
4237 [C_DC_ESC0_ONLY_CNT] =
4238         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4239                          CNTR_SYNTH),
4240 [C_DC_ESC0_PLUS1_CNT] =
4241         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4242                          CNTR_SYNTH),
4243 [C_DC_ESC0_PLUS2_CNT] =
4244         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4245                          CNTR_SYNTH),
4246 [C_DC_REINIT_FROM_PEER_CNT] =
4247         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4248                          CNTR_SYNTH),
4249 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4250                                   CNTR_SYNTH),
4251 [C_DC_MISC_FLG_CNT] =
4252         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4253                          CNTR_SYNTH),
4254 [C_DC_PRF_GOOD_LTP_CNT] =
4255         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4256 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4257         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4258                          CNTR_SYNTH),
4259 [C_DC_PRF_RX_FLIT_CNT] =
4260         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4261 [C_DC_PRF_TX_FLIT_CNT] =
4262         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4263 [C_DC_PRF_CLK_CNTR] =
4264         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4265 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4266         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4267 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4268         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4269                          CNTR_SYNTH),
4270 [C_DC_PG_STS_TX_SBE_CNT] =
4271         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4272 [C_DC_PG_STS_TX_MBE_CNT] =
4273         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4274                          CNTR_SYNTH),
4275 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4276                             access_sw_cpu_intr),
4277 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4278                             access_sw_cpu_rcv_limit),
4279 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4280                             access_sw_ctx0_seq_drop),
4281 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4282                             access_sw_vtx_wait),
4283 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4284                             access_sw_pio_wait),
4285 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4286                             access_sw_pio_drain),
4287 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4288                             access_sw_kmem_wait),
4289 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4290                             hfi1_access_sw_tid_wait),
4291 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4292                             access_sw_send_schedule),
4293 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4294                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4295                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4296                                       dev_access_u32_csr),
4297 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4298                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4299                              access_sde_int_cnt),
4300 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4301                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4302                              access_sde_err_cnt),
4303 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4304                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4305                                   access_sde_idle_int_cnt),
4306 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4307                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4308                                       access_sde_progress_int_cnt),
4309 /* MISC_ERR_STATUS */
4310 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4311                                 CNTR_NORMAL,
4312                                 access_misc_pll_lock_fail_err_cnt),
4313 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4314                                 CNTR_NORMAL,
4315                                 access_misc_mbist_fail_err_cnt),
4316 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4317                                 CNTR_NORMAL,
4318                                 access_misc_invalid_eep_cmd_err_cnt),
4319 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4320                                 CNTR_NORMAL,
4321                                 access_misc_efuse_done_parity_err_cnt),
4322 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4323                                 CNTR_NORMAL,
4324                                 access_misc_efuse_write_err_cnt),
4325 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4326                                 0, CNTR_NORMAL,
4327                                 access_misc_efuse_read_bad_addr_err_cnt),
4328 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4329                                 CNTR_NORMAL,
4330                                 access_misc_efuse_csr_parity_err_cnt),
4331 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4332                                 CNTR_NORMAL,
4333                                 access_misc_fw_auth_failed_err_cnt),
4334 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4335                                 CNTR_NORMAL,
4336                                 access_misc_key_mismatch_err_cnt),
4337 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4338                                 CNTR_NORMAL,
4339                                 access_misc_sbus_write_failed_err_cnt),
4340 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4341                                 CNTR_NORMAL,
4342                                 access_misc_csr_write_bad_addr_err_cnt),
4343 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4344                                 CNTR_NORMAL,
4345                                 access_misc_csr_read_bad_addr_err_cnt),
4346 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4347                                 CNTR_NORMAL,
4348                                 access_misc_csr_parity_err_cnt),
4349 /* CceErrStatus */
4350 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4351                                 CNTR_NORMAL,
4352                                 access_sw_cce_err_status_aggregated_cnt),
4353 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4354                                 CNTR_NORMAL,
4355                                 access_cce_msix_csr_parity_err_cnt),
4356 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4357                                 CNTR_NORMAL,
4358                                 access_cce_int_map_unc_err_cnt),
4359 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4360                                 CNTR_NORMAL,
4361                                 access_cce_int_map_cor_err_cnt),
4362 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4363                                 CNTR_NORMAL,
4364                                 access_cce_msix_table_unc_err_cnt),
4365 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4366                                 CNTR_NORMAL,
4367                                 access_cce_msix_table_cor_err_cnt),
4368 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4369                                 0, CNTR_NORMAL,
4370                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4371 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4372                                 0, CNTR_NORMAL,
4373                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4374 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4375                                 CNTR_NORMAL,
4376                                 access_cce_seg_write_bad_addr_err_cnt),
4377 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4378                                 CNTR_NORMAL,
4379                                 access_cce_seg_read_bad_addr_err_cnt),
4380 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4381                                 CNTR_NORMAL,
4382                                 access_la_triggered_cnt),
4383 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4384                                 CNTR_NORMAL,
4385                                 access_cce_trgt_cpl_timeout_err_cnt),
4386 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4387                                 CNTR_NORMAL,
4388                                 access_pcic_receive_parity_err_cnt),
4389 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4390                                 CNTR_NORMAL,
4391                                 access_pcic_transmit_back_parity_err_cnt),
4392 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4393                                 0, CNTR_NORMAL,
4394                                 access_pcic_transmit_front_parity_err_cnt),
4395 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4396                                 CNTR_NORMAL,
4397                                 access_pcic_cpl_dat_q_unc_err_cnt),
4398 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4399                                 CNTR_NORMAL,
4400                                 access_pcic_cpl_hd_q_unc_err_cnt),
4401 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4402                                 CNTR_NORMAL,
4403                                 access_pcic_post_dat_q_unc_err_cnt),
4404 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4405                                 CNTR_NORMAL,
4406                                 access_pcic_post_hd_q_unc_err_cnt),
4407 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4408                                 CNTR_NORMAL,
4409                                 access_pcic_retry_sot_mem_unc_err_cnt),
4410 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4411                                 CNTR_NORMAL,
4412                                 access_pcic_retry_mem_unc_err),
4413 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4414                                 CNTR_NORMAL,
4415                                 access_pcic_n_post_dat_q_parity_err_cnt),
4416 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4417                                 CNTR_NORMAL,
4418                                 access_pcic_n_post_h_q_parity_err_cnt),
4419 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4420                                 CNTR_NORMAL,
4421                                 access_pcic_cpl_dat_q_cor_err_cnt),
4422 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4423                                 CNTR_NORMAL,
4424                                 access_pcic_cpl_hd_q_cor_err_cnt),
4425 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4426                                 CNTR_NORMAL,
4427                                 access_pcic_post_dat_q_cor_err_cnt),
4428 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4429                                 CNTR_NORMAL,
4430                                 access_pcic_post_hd_q_cor_err_cnt),
4431 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4432                                 CNTR_NORMAL,
4433                                 access_pcic_retry_sot_mem_cor_err_cnt),
4434 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4435                                 CNTR_NORMAL,
4436                                 access_pcic_retry_mem_cor_err_cnt),
4437 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4438                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4439                                 CNTR_NORMAL,
4440                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4441 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4442                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4443                                 CNTR_NORMAL,
4444                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4445                                 ),
4446 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4447                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4448                         CNTR_NORMAL,
4449                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4450 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4451                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4452                         CNTR_NORMAL,
4453                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4454 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4455                         0, CNTR_NORMAL,
4456                         access_cce_cli2_async_fifo_parity_err_cnt),
4457 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4458                         CNTR_NORMAL,
4459                         access_cce_csr_cfg_bus_parity_err_cnt),
4460 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4461                         0, CNTR_NORMAL,
4462                         access_cce_cli0_async_fifo_parity_err_cnt),
4463 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4464                         CNTR_NORMAL,
4465                         access_cce_rspd_data_parity_err_cnt),
4466 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4467                         CNTR_NORMAL,
4468                         access_cce_trgt_access_err_cnt),
4469 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4470                         0, CNTR_NORMAL,
4471                         access_cce_trgt_async_fifo_parity_err_cnt),
4472 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4473                         CNTR_NORMAL,
4474                         access_cce_csr_write_bad_addr_err_cnt),
4475 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4476                         CNTR_NORMAL,
4477                         access_cce_csr_read_bad_addr_err_cnt),
4478 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4479                         CNTR_NORMAL,
4480                         access_ccs_csr_parity_err_cnt),
4481
4482 /* RcvErrStatus */
4483 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4484                         CNTR_NORMAL,
4485                         access_rx_csr_parity_err_cnt),
4486 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4487                         CNTR_NORMAL,
4488                         access_rx_csr_write_bad_addr_err_cnt),
4489 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4490                         CNTR_NORMAL,
4491                         access_rx_csr_read_bad_addr_err_cnt),
4492 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4493                         CNTR_NORMAL,
4494                         access_rx_dma_csr_unc_err_cnt),
4495 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4496                         CNTR_NORMAL,
4497                         access_rx_dma_dq_fsm_encoding_err_cnt),
4498 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4499                         CNTR_NORMAL,
4500                         access_rx_dma_eq_fsm_encoding_err_cnt),
4501 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4502                         CNTR_NORMAL,
4503                         access_rx_dma_csr_parity_err_cnt),
4504 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4505                         CNTR_NORMAL,
4506                         access_rx_rbuf_data_cor_err_cnt),
4507 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4508                         CNTR_NORMAL,
4509                         access_rx_rbuf_data_unc_err_cnt),
4510 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4511                         CNTR_NORMAL,
4512                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4513 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4514                         CNTR_NORMAL,
4515                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4516 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4517                         CNTR_NORMAL,
4518                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4519 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4520                         CNTR_NORMAL,
4521                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4522 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4523                         CNTR_NORMAL,
4524                         access_rx_rbuf_desc_part2_cor_err_cnt),
4525 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4526                         CNTR_NORMAL,
4527                         access_rx_rbuf_desc_part2_unc_err_cnt),
4528 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4529                         CNTR_NORMAL,
4530                         access_rx_rbuf_desc_part1_cor_err_cnt),
4531 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4532                         CNTR_NORMAL,
4533                         access_rx_rbuf_desc_part1_unc_err_cnt),
4534 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4535                         CNTR_NORMAL,
4536                         access_rx_hq_intr_fsm_err_cnt),
4537 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4538                         CNTR_NORMAL,
4539                         access_rx_hq_intr_csr_parity_err_cnt),
4540 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4541                         CNTR_NORMAL,
4542                         access_rx_lookup_csr_parity_err_cnt),
4543 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4544                         CNTR_NORMAL,
4545                         access_rx_lookup_rcv_array_cor_err_cnt),
4546 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4547                         CNTR_NORMAL,
4548                         access_rx_lookup_rcv_array_unc_err_cnt),
4549 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4550                         0, CNTR_NORMAL,
4551                         access_rx_lookup_des_part2_parity_err_cnt),
4552 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4553                         0, CNTR_NORMAL,
4554                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4555 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4556                         CNTR_NORMAL,
4557                         access_rx_lookup_des_part1_unc_err_cnt),
4558 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4559                         CNTR_NORMAL,
4560                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4561 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4562                         CNTR_NORMAL,
4563                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4564 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4565                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4566                         CNTR_NORMAL,
4567                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4568 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4569                         0, CNTR_NORMAL,
4570                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4571 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4572                         0, CNTR_NORMAL,
4573                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4574 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4575                         CNTR_NORMAL,
4576                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4577 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4578                         CNTR_NORMAL,
4579                         access_rx_rbuf_empty_err_cnt),
4580 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4581                         CNTR_NORMAL,
4582                         access_rx_rbuf_full_err_cnt),
4583 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4584                         CNTR_NORMAL,
4585                         access_rbuf_bad_lookup_err_cnt),
4586 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4587                         CNTR_NORMAL,
4588                         access_rbuf_ctx_id_parity_err_cnt),
4589 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4590                         CNTR_NORMAL,
4591                         access_rbuf_csr_qeopdw_parity_err_cnt),
4592 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4593                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4594                         CNTR_NORMAL,
4595                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4596 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4597                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4598                         CNTR_NORMAL,
4599                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4600 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4601                         0, CNTR_NORMAL,
4602                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4603 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4604                         0, CNTR_NORMAL,
4605                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4606 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4607                         0, 0, CNTR_NORMAL,
4608                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4609 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4610                         0, CNTR_NORMAL,
4611                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4612 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4613                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4614                         CNTR_NORMAL,
4615                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4616 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4617                         0, CNTR_NORMAL,
4618                         access_rx_rbuf_block_list_read_cor_err_cnt),
4619 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4620                         0, CNTR_NORMAL,
4621                         access_rx_rbuf_block_list_read_unc_err_cnt),
4622 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4623                         CNTR_NORMAL,
4624                         access_rx_rbuf_lookup_des_cor_err_cnt),
4625 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4626                         CNTR_NORMAL,
4627                         access_rx_rbuf_lookup_des_unc_err_cnt),
4628 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4629                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4630                         CNTR_NORMAL,
4631                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4632 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4633                         CNTR_NORMAL,
4634                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4635 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4636                         CNTR_NORMAL,
4637                         access_rx_rbuf_free_list_cor_err_cnt),
4638 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4639                         CNTR_NORMAL,
4640                         access_rx_rbuf_free_list_unc_err_cnt),
4641 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4642                         CNTR_NORMAL,
4643                         access_rx_rcv_fsm_encoding_err_cnt),
4644 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4645                         CNTR_NORMAL,
4646                         access_rx_dma_flag_cor_err_cnt),
4647 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4648                         CNTR_NORMAL,
4649                         access_rx_dma_flag_unc_err_cnt),
4650 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4651                         CNTR_NORMAL,
4652                         access_rx_dc_sop_eop_parity_err_cnt),
4653 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4654                         CNTR_NORMAL,
4655                         access_rx_rcv_csr_parity_err_cnt),
4656 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4657                         CNTR_NORMAL,
4658                         access_rx_rcv_qp_map_table_cor_err_cnt),
4659 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4660                         CNTR_NORMAL,
4661                         access_rx_rcv_qp_map_table_unc_err_cnt),
4662 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4663                         CNTR_NORMAL,
4664                         access_rx_rcv_data_cor_err_cnt),
4665 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4666                         CNTR_NORMAL,
4667                         access_rx_rcv_data_unc_err_cnt),
4668 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4669                         CNTR_NORMAL,
4670                         access_rx_rcv_hdr_cor_err_cnt),
4671 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4672                         CNTR_NORMAL,
4673                         access_rx_rcv_hdr_unc_err_cnt),
4674 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4675                         CNTR_NORMAL,
4676                         access_rx_dc_intf_parity_err_cnt),
4677 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4678                         CNTR_NORMAL,
4679                         access_rx_dma_csr_cor_err_cnt),
4680 /* SendPioErrStatus */
4681 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4682                         CNTR_NORMAL,
4683                         access_pio_pec_sop_head_parity_err_cnt),
4684 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4685                         CNTR_NORMAL,
4686                         access_pio_pcc_sop_head_parity_err_cnt),
4687 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4688                         0, 0, CNTR_NORMAL,
4689                         access_pio_last_returned_cnt_parity_err_cnt),
4690 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4691                         0, CNTR_NORMAL,
4692                         access_pio_current_free_cnt_parity_err_cnt),
4693 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4694                         CNTR_NORMAL,
4695                         access_pio_reserved_31_err_cnt),
4696 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4697                         CNTR_NORMAL,
4698                         access_pio_reserved_30_err_cnt),
4699 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4700                         CNTR_NORMAL,
4701                         access_pio_ppmc_sop_len_err_cnt),
4702 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4703                         CNTR_NORMAL,
4704                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4705 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4706                         CNTR_NORMAL,
4707                         access_pio_vl_fifo_parity_err_cnt),
4708 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4709                         CNTR_NORMAL,
4710                         access_pio_vlf_sop_parity_err_cnt),
4711 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4712                         CNTR_NORMAL,
4713                         access_pio_vlf_v1_len_parity_err_cnt),
4714 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4715                         CNTR_NORMAL,
4716                         access_pio_block_qw_count_parity_err_cnt),
4717 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4718                         CNTR_NORMAL,
4719                         access_pio_write_qw_valid_parity_err_cnt),
4720 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4721                         CNTR_NORMAL,
4722                         access_pio_state_machine_err_cnt),
4723 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4724                         CNTR_NORMAL,
4725                         access_pio_write_data_parity_err_cnt),
4726 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4727                         CNTR_NORMAL,
4728                         access_pio_host_addr_mem_cor_err_cnt),
4729 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4730                         CNTR_NORMAL,
4731                         access_pio_host_addr_mem_unc_err_cnt),
4732 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4733                         CNTR_NORMAL,
4734                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4735 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4736                         CNTR_NORMAL,
4737                         access_pio_init_sm_in_err_cnt),
4738 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4739                         CNTR_NORMAL,
4740                         access_pio_ppmc_pbl_fifo_err_cnt),
4741 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4742                         0, CNTR_NORMAL,
4743                         access_pio_credit_ret_fifo_parity_err_cnt),
4744 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4745                         CNTR_NORMAL,
4746                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4747 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4748                         CNTR_NORMAL,
4749                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4750 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4751                         CNTR_NORMAL,
4752                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4753 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4754                         CNTR_NORMAL,
4755                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4756 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4757                         CNTR_NORMAL,
4758                         access_pio_sm_pkt_reset_parity_err_cnt),
4759 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4760                         CNTR_NORMAL,
4761                         access_pio_pkt_evict_fifo_parity_err_cnt),
4762 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4763                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4764                         CNTR_NORMAL,
4765                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4766 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4767                         CNTR_NORMAL,
4768                         access_pio_sbrdctl_crrel_parity_err_cnt),
4769 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4770                         CNTR_NORMAL,
4771                         access_pio_pec_fifo_parity_err_cnt),
4772 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4773                         CNTR_NORMAL,
4774                         access_pio_pcc_fifo_parity_err_cnt),
4775 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4776                         CNTR_NORMAL,
4777                         access_pio_sb_mem_fifo1_err_cnt),
4778 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4779                         CNTR_NORMAL,
4780                         access_pio_sb_mem_fifo0_err_cnt),
4781 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4782                         CNTR_NORMAL,
4783                         access_pio_csr_parity_err_cnt),
4784 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4785                         CNTR_NORMAL,
4786                         access_pio_write_addr_parity_err_cnt),
4787 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4788                         CNTR_NORMAL,
4789                         access_pio_write_bad_ctxt_err_cnt),
4790 /* SendDmaErrStatus */
4791 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4792                         0, CNTR_NORMAL,
4793                         access_sdma_pcie_req_tracking_cor_err_cnt),
4794 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4795                         0, CNTR_NORMAL,
4796                         access_sdma_pcie_req_tracking_unc_err_cnt),
4797 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4798                         CNTR_NORMAL,
4799                         access_sdma_csr_parity_err_cnt),
4800 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4801                         CNTR_NORMAL,
4802                         access_sdma_rpy_tag_err_cnt),
4803 /* SendEgressErrStatus */
4804 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4805                         CNTR_NORMAL,
4806                         access_tx_read_pio_memory_csr_unc_err_cnt),
4807 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4808                         0, CNTR_NORMAL,
4809                         access_tx_read_sdma_memory_csr_err_cnt),
4810 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4811                         CNTR_NORMAL,
4812                         access_tx_egress_fifo_cor_err_cnt),
4813 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4814                         CNTR_NORMAL,
4815                         access_tx_read_pio_memory_cor_err_cnt),
4816 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4817                         CNTR_NORMAL,
4818                         access_tx_read_sdma_memory_cor_err_cnt),
4819 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4820                         CNTR_NORMAL,
4821                         access_tx_sb_hdr_cor_err_cnt),
4822 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4823                         CNTR_NORMAL,
4824                         access_tx_credit_overrun_err_cnt),
4825 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4826                         CNTR_NORMAL,
4827                         access_tx_launch_fifo8_cor_err_cnt),
4828 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4829                         CNTR_NORMAL,
4830                         access_tx_launch_fifo7_cor_err_cnt),
4831 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4832                         CNTR_NORMAL,
4833                         access_tx_launch_fifo6_cor_err_cnt),
4834 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4835                         CNTR_NORMAL,
4836                         access_tx_launch_fifo5_cor_err_cnt),
4837 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4838                         CNTR_NORMAL,
4839                         access_tx_launch_fifo4_cor_err_cnt),
4840 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4841                         CNTR_NORMAL,
4842                         access_tx_launch_fifo3_cor_err_cnt),
4843 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4844                         CNTR_NORMAL,
4845                         access_tx_launch_fifo2_cor_err_cnt),
4846 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4847                         CNTR_NORMAL,
4848                         access_tx_launch_fifo1_cor_err_cnt),
4849 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4850                         CNTR_NORMAL,
4851                         access_tx_launch_fifo0_cor_err_cnt),
4852 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4853                         CNTR_NORMAL,
4854                         access_tx_credit_return_vl_err_cnt),
4855 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4856                         CNTR_NORMAL,
4857                         access_tx_hcrc_insertion_err_cnt),
4858 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4859                         CNTR_NORMAL,
4860                         access_tx_egress_fifo_unc_err_cnt),
4861 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4862                         CNTR_NORMAL,
4863                         access_tx_read_pio_memory_unc_err_cnt),
4864 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4865                         CNTR_NORMAL,
4866                         access_tx_read_sdma_memory_unc_err_cnt),
4867 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4868                         CNTR_NORMAL,
4869                         access_tx_sb_hdr_unc_err_cnt),
4870 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4871                         CNTR_NORMAL,
4872                         access_tx_credit_return_partiy_err_cnt),
4873 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4874                         0, 0, CNTR_NORMAL,
4875                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4876 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4877                         0, 0, CNTR_NORMAL,
4878                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4879 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4880                         0, 0, CNTR_NORMAL,
4881                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4882 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4883                         0, 0, CNTR_NORMAL,
4884                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4885 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4886                         0, 0, CNTR_NORMAL,
4887                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4888 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4889                         0, 0, CNTR_NORMAL,
4890                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4891 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4892                         0, 0, CNTR_NORMAL,
4893                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4894 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4895                         0, 0, CNTR_NORMAL,
4896                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4897 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4898                         0, 0, CNTR_NORMAL,
4899                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4900 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4901                         0, 0, CNTR_NORMAL,
4902                         access_tx_sdma15_disallowed_packet_err_cnt),
4903 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4904                         0, 0, CNTR_NORMAL,
4905                         access_tx_sdma14_disallowed_packet_err_cnt),
4906 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4907                         0, 0, CNTR_NORMAL,
4908                         access_tx_sdma13_disallowed_packet_err_cnt),
4909 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4910                         0, 0, CNTR_NORMAL,
4911                         access_tx_sdma12_disallowed_packet_err_cnt),
4912 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4913                         0, 0, CNTR_NORMAL,
4914                         access_tx_sdma11_disallowed_packet_err_cnt),
4915 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4916                         0, 0, CNTR_NORMAL,
4917                         access_tx_sdma10_disallowed_packet_err_cnt),
4918 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4919                         0, 0, CNTR_NORMAL,
4920                         access_tx_sdma9_disallowed_packet_err_cnt),
4921 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4922                         0, 0, CNTR_NORMAL,
4923                         access_tx_sdma8_disallowed_packet_err_cnt),
4924 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4925                         0, 0, CNTR_NORMAL,
4926                         access_tx_sdma7_disallowed_packet_err_cnt),
4927 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4928                         0, 0, CNTR_NORMAL,
4929                         access_tx_sdma6_disallowed_packet_err_cnt),
4930 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4931                         0, 0, CNTR_NORMAL,
4932                         access_tx_sdma5_disallowed_packet_err_cnt),
4933 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4934                         0, 0, CNTR_NORMAL,
4935                         access_tx_sdma4_disallowed_packet_err_cnt),
4936 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4937                         0, 0, CNTR_NORMAL,
4938                         access_tx_sdma3_disallowed_packet_err_cnt),
4939 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4940                         0, 0, CNTR_NORMAL,
4941                         access_tx_sdma2_disallowed_packet_err_cnt),
4942 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4943                         0, 0, CNTR_NORMAL,
4944                         access_tx_sdma1_disallowed_packet_err_cnt),
4945 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4946                         0, 0, CNTR_NORMAL,
4947                         access_tx_sdma0_disallowed_packet_err_cnt),
4948 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4949                         CNTR_NORMAL,
4950                         access_tx_config_parity_err_cnt),
4951 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4952                         CNTR_NORMAL,
4953                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4954 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4955                         CNTR_NORMAL,
4956                         access_tx_launch_csr_parity_err_cnt),
4957 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4958                         CNTR_NORMAL,
4959                         access_tx_illegal_vl_err_cnt),
4960 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4961                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4962                         CNTR_NORMAL,
4963                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4964 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4965                         CNTR_NORMAL,
4966                         access_egress_reserved_10_err_cnt),
4967 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4968                         CNTR_NORMAL,
4969                         access_egress_reserved_9_err_cnt),
4970 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4971                         0, 0, CNTR_NORMAL,
4972                         access_tx_sdma_launch_intf_parity_err_cnt),
4973 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4974                         CNTR_NORMAL,
4975                         access_tx_pio_launch_intf_parity_err_cnt),
4976 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4977                         CNTR_NORMAL,
4978                         access_egress_reserved_6_err_cnt),
4979 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4980                         CNTR_NORMAL,
4981                         access_tx_incorrect_link_state_err_cnt),
4982 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4983                         CNTR_NORMAL,
4984                         access_tx_linkdown_err_cnt),
4985 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4986                         "EgressFifoUnderrunOrParityErr", 0, 0,
4987                         CNTR_NORMAL,
4988                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4989 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4990                         CNTR_NORMAL,
4991                         access_egress_reserved_2_err_cnt),
4992 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4993                         CNTR_NORMAL,
4994                         access_tx_pkt_integrity_mem_unc_err_cnt),
4995 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4996                         CNTR_NORMAL,
4997                         access_tx_pkt_integrity_mem_cor_err_cnt),
4998 /* SendErrStatus */
4999 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
5000                         CNTR_NORMAL,
5001                         access_send_csr_write_bad_addr_err_cnt),
5002 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
5003                         CNTR_NORMAL,
5004                         access_send_csr_read_bad_addr_err_cnt),
5005 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
5006                         CNTR_NORMAL,
5007                         access_send_csr_parity_cnt),
5008 /* SendCtxtErrStatus */
5009 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
5010                         CNTR_NORMAL,
5011                         access_pio_write_out_of_bounds_err_cnt),
5012 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
5013                         CNTR_NORMAL,
5014                         access_pio_write_overflow_err_cnt),
5015 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
5016                         0, 0, CNTR_NORMAL,
5017                         access_pio_write_crosses_boundary_err_cnt),
5018 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
5019                         CNTR_NORMAL,
5020                         access_pio_disallowed_packet_err_cnt),
5021 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
5022                         CNTR_NORMAL,
5023                         access_pio_inconsistent_sop_err_cnt),
5024 /* SendDmaEngErrStatus */
5025 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5026                         0, 0, CNTR_NORMAL,
5027                         access_sdma_header_request_fifo_cor_err_cnt),
5028 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5029                         CNTR_NORMAL,
5030                         access_sdma_header_storage_cor_err_cnt),
5031 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5032                         CNTR_NORMAL,
5033                         access_sdma_packet_tracking_cor_err_cnt),
5034 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5035                         CNTR_NORMAL,
5036                         access_sdma_assembly_cor_err_cnt),
5037 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5038                         CNTR_NORMAL,
5039                         access_sdma_desc_table_cor_err_cnt),
5040 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5041                         0, 0, CNTR_NORMAL,
5042                         access_sdma_header_request_fifo_unc_err_cnt),
5043 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5044                         CNTR_NORMAL,
5045                         access_sdma_header_storage_unc_err_cnt),
5046 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5047                         CNTR_NORMAL,
5048                         access_sdma_packet_tracking_unc_err_cnt),
5049 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5050                         CNTR_NORMAL,
5051                         access_sdma_assembly_unc_err_cnt),
5052 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5053                         CNTR_NORMAL,
5054                         access_sdma_desc_table_unc_err_cnt),
5055 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5056                         CNTR_NORMAL,
5057                         access_sdma_timeout_err_cnt),
5058 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5059                         CNTR_NORMAL,
5060                         access_sdma_header_length_err_cnt),
5061 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5062                         CNTR_NORMAL,
5063                         access_sdma_header_address_err_cnt),
5064 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5065                         CNTR_NORMAL,
5066                         access_sdma_header_select_err_cnt),
5067 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5068                         CNTR_NORMAL,
5069                         access_sdma_reserved_9_err_cnt),
5070 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5071                         CNTR_NORMAL,
5072                         access_sdma_packet_desc_overflow_err_cnt),
5073 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5074                         CNTR_NORMAL,
5075                         access_sdma_length_mismatch_err_cnt),
5076 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5077                         CNTR_NORMAL,
5078                         access_sdma_halt_err_cnt),
5079 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5080                         CNTR_NORMAL,
5081                         access_sdma_mem_read_err_cnt),
5082 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5083                         CNTR_NORMAL,
5084                         access_sdma_first_desc_err_cnt),
5085 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5086                         CNTR_NORMAL,
5087                         access_sdma_tail_out_of_bounds_err_cnt),
5088 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5089                         CNTR_NORMAL,
5090                         access_sdma_too_long_err_cnt),
5091 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5092                         CNTR_NORMAL,
5093                         access_sdma_gen_mismatch_err_cnt),
5094 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5095                         CNTR_NORMAL,
5096                         access_sdma_wrong_dw_err_cnt),
5097 };
5098
5099 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5100 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5101                         CNTR_NORMAL),
5102 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5103                         CNTR_NORMAL),
5104 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5105                         CNTR_NORMAL),
5106 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5107                         CNTR_NORMAL),
5108 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5109                         CNTR_NORMAL),
5110 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5111                         CNTR_NORMAL),
5112 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5113                         CNTR_NORMAL),
5114 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5115 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5116 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5117 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5118                                       CNTR_SYNTH | CNTR_VL),
5119 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5120                                      CNTR_SYNTH | CNTR_VL),
5121 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5122                                       CNTR_SYNTH | CNTR_VL),
5123 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5124 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5125 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5126                              access_sw_link_dn_cnt),
5127 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5128                            access_sw_link_up_cnt),
5129 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5130                                  access_sw_unknown_frame_cnt),
5131 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5132                              access_sw_xmit_discards),
5133 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5134                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5135                                 access_sw_xmit_discards),
5136 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5137                                  access_xmit_constraint_errs),
5138 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5139                                 access_rcv_constraint_errs),
5140 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5141 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5142 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5143 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5144 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5145 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5146 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5147 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5148 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5149 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5150 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5151 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5152 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5153 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5154                                access_sw_cpu_rc_acks),
5155 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5156                                 access_sw_cpu_rc_qacks),
5157 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5158                                        access_sw_cpu_rc_delayed_comp),
5159 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5160 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5161 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5162 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5163 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5164 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5165 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5166 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5167 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5168 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5169 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5170 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5171 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5172 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5173 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5174 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5175 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5176 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5177 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5178 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5179 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5180 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5181 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5182 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5183 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5184 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5185 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5186 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5187 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5188 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5189 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5190 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5191 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5192 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5193 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5194 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5195 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5196 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5197 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5198 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5199 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5200 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5201 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5202 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5203 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5204 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5205 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5206 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5207 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5208 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5209 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5210 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5211 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5212 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5213 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5214 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5215 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5216 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5217 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5218 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5219 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5220 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5221 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5222 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5223 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5224 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5225 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5226 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5227 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5228 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5229 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5230 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5231 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5232 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5233 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5234 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5235 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5236 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5237 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5238 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5239 };
5240
5241 /* ======================================================================== */
5242
5243 /* return true if this is chip revision revision a */
5244 int is_ax(struct hfi1_devdata *dd)
5245 {
5246         u8 chip_rev_minor =
5247                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5248                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5249         return (chip_rev_minor & 0xf0) == 0;
5250 }
5251
5252 /* return true if this is chip revision revision b */
5253 int is_bx(struct hfi1_devdata *dd)
5254 {
5255         u8 chip_rev_minor =
5256                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5257                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5258         return (chip_rev_minor & 0xF0) == 0x10;
5259 }
5260
5261 /* return true is kernel urg disabled for rcd */
5262 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5263 {
5264         u64 mask;
5265         u32 is = IS_RCVURGENT_START + rcd->ctxt;
5266         u8 bit = is % 64;
5267
5268         mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5269         return !(mask & BIT_ULL(bit));
5270 }
5271
5272 /*
5273  * Append string s to buffer buf.  Arguments curp and len are the current
5274  * position and remaining length, respectively.
5275  *
5276  * return 0 on success, 1 on out of room
5277  */
5278 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5279 {
5280         char *p = *curp;
5281         int len = *lenp;
5282         int result = 0; /* success */
5283         char c;
5284
5285         /* add a comma, if first in the buffer */
5286         if (p != buf) {
5287                 if (len == 0) {
5288                         result = 1; /* out of room */
5289                         goto done;
5290                 }
5291                 *p++ = ',';
5292                 len--;
5293         }
5294
5295         /* copy the string */
5296         while ((c = *s++) != 0) {
5297                 if (len == 0) {
5298                         result = 1; /* out of room */
5299                         goto done;
5300                 }
5301                 *p++ = c;
5302                 len--;
5303         }
5304
5305 done:
5306         /* write return values */
5307         *curp = p;
5308         *lenp = len;
5309
5310         return result;
5311 }
5312
5313 /*
5314  * Using the given flag table, print a comma separated string into
5315  * the buffer.  End in '*' if the buffer is too short.
5316  */
5317 static char *flag_string(char *buf, int buf_len, u64 flags,
5318                          struct flag_table *table, int table_size)
5319 {
5320         char extra[32];
5321         char *p = buf;
5322         int len = buf_len;
5323         int no_room = 0;
5324         int i;
5325
5326         /* make sure there is at least 2 so we can form "*" */
5327         if (len < 2)
5328                 return "";
5329
5330         len--;  /* leave room for a nul */
5331         for (i = 0; i < table_size; i++) {
5332                 if (flags & table[i].flag) {
5333                         no_room = append_str(buf, &p, &len, table[i].str);
5334                         if (no_room)
5335                                 break;
5336                         flags &= ~table[i].flag;
5337                 }
5338         }
5339
5340         /* any undocumented bits left? */
5341         if (!no_room && flags) {
5342                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5343                 no_room = append_str(buf, &p, &len, extra);
5344         }
5345
5346         /* add * if ran out of room */
5347         if (no_room) {
5348                 /* may need to back up to add space for a '*' */
5349                 if (len == 0)
5350                         --p;
5351                 *p++ = '*';
5352         }
5353
5354         /* add final nul - space already allocated above */
5355         *p = 0;
5356         return buf;
5357 }
5358
5359 /* first 8 CCE error interrupt source names */
5360 static const char * const cce_misc_names[] = {
5361         "CceErrInt",            /* 0 */
5362         "RxeErrInt",            /* 1 */
5363         "MiscErrInt",           /* 2 */
5364         "Reserved3",            /* 3 */
5365         "PioErrInt",            /* 4 */
5366         "SDmaErrInt",           /* 5 */
5367         "EgressErrInt",         /* 6 */
5368         "TxeErrInt"             /* 7 */
5369 };
5370
5371 /*
5372  * Return the miscellaneous error interrupt name.
5373  */
5374 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5375 {
5376         if (source < ARRAY_SIZE(cce_misc_names))
5377                 strncpy(buf, cce_misc_names[source], bsize);
5378         else
5379                 snprintf(buf, bsize, "Reserved%u",
5380                          source + IS_GENERAL_ERR_START);
5381
5382         return buf;
5383 }
5384
5385 /*
5386  * Return the SDMA engine error interrupt name.
5387  */
5388 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5389 {
5390         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5391         return buf;
5392 }
5393
5394 /*
5395  * Return the send context error interrupt name.
5396  */
5397 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5398 {
5399         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5400         return buf;
5401 }
5402
5403 static const char * const various_names[] = {
5404         "PbcInt",
5405         "GpioAssertInt",
5406         "Qsfp1Int",
5407         "Qsfp2Int",
5408         "TCritInt"
5409 };
5410
5411 /*
5412  * Return the various interrupt name.
5413  */
5414 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5415 {
5416         if (source < ARRAY_SIZE(various_names))
5417                 strncpy(buf, various_names[source], bsize);
5418         else
5419                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5420         return buf;
5421 }
5422
5423 /*
5424  * Return the DC interrupt name.
5425  */
5426 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5427 {
5428         static const char * const dc_int_names[] = {
5429                 "common",
5430                 "lcb",
5431                 "8051",
5432                 "lbm"   /* local block merge */
5433         };
5434
5435         if (source < ARRAY_SIZE(dc_int_names))
5436                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5437         else
5438                 snprintf(buf, bsize, "DCInt%u", source);
5439         return buf;
5440 }
5441
5442 static const char * const sdma_int_names[] = {
5443         "SDmaInt",
5444         "SdmaIdleInt",
5445         "SdmaProgressInt",
5446 };
5447
5448 /*
5449  * Return the SDMA engine interrupt name.
5450  */
5451 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5452 {
5453         /* what interrupt */
5454         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5455         /* which engine */
5456         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5457
5458         if (likely(what < 3))
5459                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5460         else
5461                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5462         return buf;
5463 }
5464
5465 /*
5466  * Return the receive available interrupt name.
5467  */
5468 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5469 {
5470         snprintf(buf, bsize, "RcvAvailInt%u", source);
5471         return buf;
5472 }
5473
5474 /*
5475  * Return the receive urgent interrupt name.
5476  */
5477 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5478 {
5479         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5480         return buf;
5481 }
5482
5483 /*
5484  * Return the send credit interrupt name.
5485  */
5486 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5487 {
5488         snprintf(buf, bsize, "SendCreditInt%u", source);
5489         return buf;
5490 }
5491
5492 /*
5493  * Return the reserved interrupt name.
5494  */
5495 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5496 {
5497         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5498         return buf;
5499 }
5500
5501 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5502 {
5503         return flag_string(buf, buf_len, flags,
5504                            cce_err_status_flags,
5505                            ARRAY_SIZE(cce_err_status_flags));
5506 }
5507
5508 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5509 {
5510         return flag_string(buf, buf_len, flags,
5511                            rxe_err_status_flags,
5512                            ARRAY_SIZE(rxe_err_status_flags));
5513 }
5514
5515 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5516 {
5517         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5518                            ARRAY_SIZE(misc_err_status_flags));
5519 }
5520
5521 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5522 {
5523         return flag_string(buf, buf_len, flags,
5524                            pio_err_status_flags,
5525                            ARRAY_SIZE(pio_err_status_flags));
5526 }
5527
5528 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5529 {
5530         return flag_string(buf, buf_len, flags,
5531                            sdma_err_status_flags,
5532                            ARRAY_SIZE(sdma_err_status_flags));
5533 }
5534
5535 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5536 {
5537         return flag_string(buf, buf_len, flags,
5538                            egress_err_status_flags,
5539                            ARRAY_SIZE(egress_err_status_flags));
5540 }
5541
5542 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5543 {
5544         return flag_string(buf, buf_len, flags,
5545                            egress_err_info_flags,
5546                            ARRAY_SIZE(egress_err_info_flags));
5547 }
5548
5549 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5550 {
5551         return flag_string(buf, buf_len, flags,
5552                            send_err_status_flags,
5553                            ARRAY_SIZE(send_err_status_flags));
5554 }
5555
5556 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5557 {
5558         char buf[96];
5559         int i = 0;
5560
5561         /*
5562          * For most these errors, there is nothing that can be done except
5563          * report or record it.
5564          */
5565         dd_dev_info(dd, "CCE Error: %s\n",
5566                     cce_err_status_string(buf, sizeof(buf), reg));
5567
5568         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5569             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5570                 /* this error requires a manual drop into SPC freeze mode */
5571                 /* then a fix up */
5572                 start_freeze_handling(dd->pport, FREEZE_SELF);
5573         }
5574
5575         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5576                 if (reg & (1ull << i)) {
5577                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5578                         /* maintain a counter over all cce_err_status errors */
5579                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5580                 }
5581         }
5582 }
5583
5584 /*
5585  * Check counters for receive errors that do not have an interrupt
5586  * associated with them.
5587  */
5588 #define RCVERR_CHECK_TIME 10
5589 static void update_rcverr_timer(struct timer_list *t)
5590 {
5591         struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5592         struct hfi1_pportdata *ppd = dd->pport;
5593         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5594
5595         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5596             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5597                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5598                 set_link_down_reason(
5599                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5600                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5601                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
5602         }
5603         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5604
5605         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5606 }
5607
5608 static int init_rcverr(struct hfi1_devdata *dd)
5609 {
5610         timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5611         /* Assume the hardware counter has been reset */
5612         dd->rcv_ovfl_cnt = 0;
5613         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5614 }
5615
5616 static void free_rcverr(struct hfi1_devdata *dd)
5617 {
5618         if (dd->rcverr_timer.function)
5619                 del_timer_sync(&dd->rcverr_timer);
5620 }
5621
5622 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5623 {
5624         char buf[96];
5625         int i = 0;
5626
5627         dd_dev_info(dd, "Receive Error: %s\n",
5628                     rxe_err_status_string(buf, sizeof(buf), reg));
5629
5630         if (reg & ALL_RXE_FREEZE_ERR) {
5631                 int flags = 0;
5632
5633                 /*
5634                  * Freeze mode recovery is disabled for the errors
5635                  * in RXE_FREEZE_ABORT_MASK
5636                  */
5637                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5638                         flags = FREEZE_ABORT;
5639
5640                 start_freeze_handling(dd->pport, flags);
5641         }
5642
5643         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5644                 if (reg & (1ull << i))
5645                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5646         }
5647 }
5648
5649 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5650 {
5651         char buf[96];
5652         int i = 0;
5653
5654         dd_dev_info(dd, "Misc Error: %s",
5655                     misc_err_status_string(buf, sizeof(buf), reg));
5656         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5657                 if (reg & (1ull << i))
5658                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5659         }
5660 }
5661
5662 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5663 {
5664         char buf[96];
5665         int i = 0;
5666
5667         dd_dev_info(dd, "PIO Error: %s\n",
5668                     pio_err_status_string(buf, sizeof(buf), reg));
5669
5670         if (reg & ALL_PIO_FREEZE_ERR)
5671                 start_freeze_handling(dd->pport, 0);
5672
5673         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5674                 if (reg & (1ull << i))
5675                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5676         }
5677 }
5678
5679 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5680 {
5681         char buf[96];
5682         int i = 0;
5683
5684         dd_dev_info(dd, "SDMA Error: %s\n",
5685                     sdma_err_status_string(buf, sizeof(buf), reg));
5686
5687         if (reg & ALL_SDMA_FREEZE_ERR)
5688                 start_freeze_handling(dd->pport, 0);
5689
5690         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5691                 if (reg & (1ull << i))
5692                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5693         }
5694 }
5695
5696 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5697 {
5698         incr_cntr64(&ppd->port_xmit_discards);
5699 }
5700
5701 static void count_port_inactive(struct hfi1_devdata *dd)
5702 {
5703         __count_port_discards(dd->pport);
5704 }
5705
5706 /*
5707  * We have had a "disallowed packet" error during egress. Determine the
5708  * integrity check which failed, and update relevant error counter, etc.
5709  *
5710  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5711  * bit of state per integrity check, and so we can miss the reason for an
5712  * egress error if more than one packet fails the same integrity check
5713  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5714  */
5715 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5716                                         int vl)
5717 {
5718         struct hfi1_pportdata *ppd = dd->pport;
5719         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5720         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5721         char buf[96];
5722
5723         /* clear down all observed info as quickly as possible after read */
5724         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5725
5726         dd_dev_info(dd,
5727                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5728                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5729
5730         /* Eventually add other counters for each bit */
5731         if (info & PORT_DISCARD_EGRESS_ERRS) {
5732                 int weight, i;
5733
5734                 /*
5735                  * Count all applicable bits as individual errors and
5736                  * attribute them to the packet that triggered this handler.
5737                  * This may not be completely accurate due to limitations
5738                  * on the available hardware error information.  There is
5739                  * a single information register and any number of error
5740                  * packets may have occurred and contributed to it before
5741                  * this routine is called.  This means that:
5742                  * a) If multiple packets with the same error occur before
5743                  *    this routine is called, earlier packets are missed.
5744                  *    There is only a single bit for each error type.
5745                  * b) Errors may not be attributed to the correct VL.
5746                  *    The driver is attributing all bits in the info register
5747                  *    to the packet that triggered this call, but bits
5748                  *    could be an accumulation of different packets with
5749                  *    different VLs.
5750                  * c) A single error packet may have multiple counts attached
5751                  *    to it.  There is no way for the driver to know if
5752                  *    multiple bits set in the info register are due to a
5753                  *    single packet or multiple packets.  The driver assumes
5754                  *    multiple packets.
5755                  */
5756                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5757                 for (i = 0; i < weight; i++) {
5758                         __count_port_discards(ppd);
5759                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5760                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5761                         else if (vl == 15)
5762                                 incr_cntr64(&ppd->port_xmit_discards_vl
5763                                             [C_VL_15]);
5764                 }
5765         }
5766 }
5767
5768 /*
5769  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5770  * register. Does it represent a 'port inactive' error?
5771  */
5772 static inline int port_inactive_err(u64 posn)
5773 {
5774         return (posn >= SEES(TX_LINKDOWN) &&
5775                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5776 }
5777
5778 /*
5779  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5780  * register. Does it represent a 'disallowed packet' error?
5781  */
5782 static inline int disallowed_pkt_err(int posn)
5783 {
5784         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5785                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5786 }
5787
5788 /*
5789  * Input value is a bit position of one of the SDMA engine disallowed
5790  * packet errors.  Return which engine.  Use of this must be guarded by
5791  * disallowed_pkt_err().
5792  */
5793 static inline int disallowed_pkt_engine(int posn)
5794 {
5795         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5796 }
5797
5798 /*
5799  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5800  * be done.
5801  */
5802 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5803 {
5804         struct sdma_vl_map *m;
5805         int vl;
5806
5807         /* range check */
5808         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5809                 return -1;
5810
5811         rcu_read_lock();
5812         m = rcu_dereference(dd->sdma_map);
5813         vl = m->engine_to_vl[engine];
5814         rcu_read_unlock();
5815
5816         return vl;
5817 }
5818
5819 /*
5820  * Translate the send context (sofware index) into a VL.  Return -1 if the
5821  * translation cannot be done.
5822  */
5823 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5824 {
5825         struct send_context_info *sci;
5826         struct send_context *sc;
5827         int i;
5828
5829         sci = &dd->send_contexts[sw_index];
5830
5831         /* there is no information for user (PSM) and ack contexts */
5832         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5833                 return -1;
5834
5835         sc = sci->sc;
5836         if (!sc)
5837                 return -1;
5838         if (dd->vld[15].sc == sc)
5839                 return 15;
5840         for (i = 0; i < num_vls; i++)
5841                 if (dd->vld[i].sc == sc)
5842                         return i;
5843
5844         return -1;
5845 }
5846
5847 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5848 {
5849         u64 reg_copy = reg, handled = 0;
5850         char buf[96];
5851         int i = 0;
5852
5853         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5854                 start_freeze_handling(dd->pport, 0);
5855         else if (is_ax(dd) &&
5856                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5857                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5858                 start_freeze_handling(dd->pport, 0);
5859
5860         while (reg_copy) {
5861                 int posn = fls64(reg_copy);
5862                 /* fls64() returns a 1-based offset, we want it zero based */
5863                 int shift = posn - 1;
5864                 u64 mask = 1ULL << shift;
5865
5866                 if (port_inactive_err(shift)) {
5867                         count_port_inactive(dd);
5868                         handled |= mask;
5869                 } else if (disallowed_pkt_err(shift)) {
5870                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5871
5872                         handle_send_egress_err_info(dd, vl);
5873                         handled |= mask;
5874                 }
5875                 reg_copy &= ~mask;
5876         }
5877
5878         reg &= ~handled;
5879
5880         if (reg)
5881                 dd_dev_info(dd, "Egress Error: %s\n",
5882                             egress_err_status_string(buf, sizeof(buf), reg));
5883
5884         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5885                 if (reg & (1ull << i))
5886                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5887         }
5888 }
5889
5890 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5891 {
5892         char buf[96];
5893         int i = 0;
5894
5895         dd_dev_info(dd, "Send Error: %s\n",
5896                     send_err_status_string(buf, sizeof(buf), reg));
5897
5898         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5899                 if (reg & (1ull << i))
5900                         incr_cntr64(&dd->send_err_status_cnt[i]);
5901         }
5902 }
5903
5904 /*
5905  * The maximum number of times the error clear down will loop before
5906  * blocking a repeating error.  This value is arbitrary.
5907  */
5908 #define MAX_CLEAR_COUNT 20
5909
5910 /*
5911  * Clear and handle an error register.  All error interrupts are funneled
5912  * through here to have a central location to correctly handle single-
5913  * or multi-shot errors.
5914  *
5915  * For non per-context registers, call this routine with a context value
5916  * of 0 so the per-context offset is zero.
5917  *
5918  * If the handler loops too many times, assume that something is wrong
5919  * and can't be fixed, so mask the error bits.
5920  */
5921 static void interrupt_clear_down(struct hfi1_devdata *dd,
5922                                  u32 context,
5923                                  const struct err_reg_info *eri)
5924 {
5925         u64 reg;
5926         u32 count;
5927
5928         /* read in a loop until no more errors are seen */
5929         count = 0;
5930         while (1) {
5931                 reg = read_kctxt_csr(dd, context, eri->status);
5932                 if (reg == 0)
5933                         break;
5934                 write_kctxt_csr(dd, context, eri->clear, reg);
5935                 if (likely(eri->handler))
5936                         eri->handler(dd, context, reg);
5937                 count++;
5938                 if (count > MAX_CLEAR_COUNT) {
5939                         u64 mask;
5940
5941                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5942                                    eri->desc, reg);
5943                         /*
5944                          * Read-modify-write so any other masked bits
5945                          * remain masked.
5946                          */
5947                         mask = read_kctxt_csr(dd, context, eri->mask);
5948                         mask &= ~reg;
5949                         write_kctxt_csr(dd, context, eri->mask, mask);
5950                         break;
5951                 }
5952         }
5953 }
5954
5955 /*
5956  * CCE block "misc" interrupt.  Source is < 16.
5957  */
5958 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5959 {
5960         const struct err_reg_info *eri = &misc_errs[source];
5961
5962         if (eri->handler) {
5963                 interrupt_clear_down(dd, 0, eri);
5964         } else {
5965                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5966                            source);
5967         }
5968 }
5969
5970 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5971 {
5972         return flag_string(buf, buf_len, flags,
5973                            sc_err_status_flags,
5974                            ARRAY_SIZE(sc_err_status_flags));
5975 }
5976
5977 /*
5978  * Send context error interrupt.  Source (hw_context) is < 160.
5979  *
5980  * All send context errors cause the send context to halt.  The normal
5981  * clear-down mechanism cannot be used because we cannot clear the
5982  * error bits until several other long-running items are done first.
5983  * This is OK because with the context halted, nothing else is going
5984  * to happen on it anyway.
5985  */
5986 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5987                                 unsigned int hw_context)
5988 {
5989         struct send_context_info *sci;
5990         struct send_context *sc;
5991         char flags[96];
5992         u64 status;
5993         u32 sw_index;
5994         int i = 0;
5995         unsigned long irq_flags;
5996
5997         sw_index = dd->hw_to_sw[hw_context];
5998         if (sw_index >= dd->num_send_contexts) {
5999                 dd_dev_err(dd,
6000                            "out of range sw index %u for send context %u\n",
6001                            sw_index, hw_context);
6002                 return;
6003         }
6004         sci = &dd->send_contexts[sw_index];
6005         spin_lock_irqsave(&dd->sc_lock, irq_flags);
6006         sc = sci->sc;
6007         if (!sc) {
6008                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
6009                            sw_index, hw_context);
6010                 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6011                 return;
6012         }
6013
6014         /* tell the software that a halt has begun */
6015         sc_stop(sc, SCF_HALTED);
6016
6017         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
6018
6019         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
6020                     send_context_err_status_string(flags, sizeof(flags),
6021                                                    status));
6022
6023         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
6024                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
6025
6026         /*
6027          * Automatically restart halted kernel contexts out of interrupt
6028          * context.  User contexts must ask the driver to restart the context.
6029          */
6030         if (sc->type != SC_USER)
6031                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6032         spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6033
6034         /*
6035          * Update the counters for the corresponding status bits.
6036          * Note that these particular counters are aggregated over all
6037          * 160 contexts.
6038          */
6039         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6040                 if (status & (1ull << i))
6041                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6042         }
6043 }
6044
6045 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6046                                 unsigned int source, u64 status)
6047 {
6048         struct sdma_engine *sde;
6049         int i = 0;
6050
6051         sde = &dd->per_sdma[source];
6052 #ifdef CONFIG_SDMA_VERBOSITY
6053         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6054                    slashstrip(__FILE__), __LINE__, __func__);
6055         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6056                    sde->this_idx, source, (unsigned long long)status);
6057 #endif
6058         sde->err_cnt++;
6059         sdma_engine_error(sde, status);
6060
6061         /*
6062         * Update the counters for the corresponding status bits.
6063         * Note that these particular counters are aggregated over
6064         * all 16 DMA engines.
6065         */
6066         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6067                 if (status & (1ull << i))
6068                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6069         }
6070 }
6071
6072 /*
6073  * CCE block SDMA error interrupt.  Source is < 16.
6074  */
6075 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6076 {
6077 #ifdef CONFIG_SDMA_VERBOSITY
6078         struct sdma_engine *sde = &dd->per_sdma[source];
6079
6080         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6081                    slashstrip(__FILE__), __LINE__, __func__);
6082         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6083                    source);
6084         sdma_dumpstate(sde);
6085 #endif
6086         interrupt_clear_down(dd, source, &sdma_eng_err);
6087 }
6088
6089 /*
6090  * CCE block "various" interrupt.  Source is < 8.
6091  */
6092 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6093 {
6094         const struct err_reg_info *eri = &various_err[source];
6095
6096         /*
6097          * TCritInt cannot go through interrupt_clear_down()
6098          * because it is not a second tier interrupt. The handler
6099          * should be called directly.
6100          */
6101         if (source == TCRIT_INT_SOURCE)
6102                 handle_temp_err(dd);
6103         else if (eri->handler)
6104                 interrupt_clear_down(dd, 0, eri);
6105         else
6106                 dd_dev_info(dd,
6107                             "%s: Unimplemented/reserved interrupt %d\n",
6108                             __func__, source);
6109 }
6110
6111 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6112 {
6113         /* src_ctx is always zero */
6114         struct hfi1_pportdata *ppd = dd->pport;
6115         unsigned long flags;
6116         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6117
6118         if (reg & QSFP_HFI0_MODPRST_N) {
6119                 if (!qsfp_mod_present(ppd)) {
6120                         dd_dev_info(dd, "%s: QSFP module removed\n",
6121                                     __func__);
6122
6123                         ppd->driver_link_ready = 0;
6124                         /*
6125                          * Cable removed, reset all our information about the
6126                          * cache and cable capabilities
6127                          */
6128
6129                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6130                         /*
6131                          * We don't set cache_refresh_required here as we expect
6132                          * an interrupt when a cable is inserted
6133                          */
6134                         ppd->qsfp_info.cache_valid = 0;
6135                         ppd->qsfp_info.reset_needed = 0;
6136                         ppd->qsfp_info.limiting_active = 0;
6137                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6138                                                flags);
6139                         /* Invert the ModPresent pin now to detect plug-in */
6140                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6141                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6142
6143                         if ((ppd->offline_disabled_reason >
6144                           HFI1_ODR_MASK(
6145                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6146                           (ppd->offline_disabled_reason ==
6147                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6148                                 ppd->offline_disabled_reason =
6149                                 HFI1_ODR_MASK(
6150                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6151
6152                         if (ppd->host_link_state == HLS_DN_POLL) {
6153                                 /*
6154                                  * The link is still in POLL. This means
6155                                  * that the normal link down processing
6156                                  * will not happen. We have to do it here
6157                                  * before turning the DC off.
6158                                  */
6159                                 queue_work(ppd->link_wq, &ppd->link_down_work);
6160                         }
6161                 } else {
6162                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6163                                     __func__);
6164
6165                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6166                         ppd->qsfp_info.cache_valid = 0;
6167                         ppd->qsfp_info.cache_refresh_required = 1;
6168                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6169                                                flags);
6170
6171                         /*
6172                          * Stop inversion of ModPresent pin to detect
6173                          * removal of the cable
6174                          */
6175                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6176                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6177                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6178
6179                         ppd->offline_disabled_reason =
6180                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6181                 }
6182         }
6183
6184         if (reg & QSFP_HFI0_INT_N) {
6185                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6186                             __func__);
6187                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6188                 ppd->qsfp_info.check_interrupt_flags = 1;
6189                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6190         }
6191
6192         /* Schedule the QSFP work only if there is a cable attached. */
6193         if (qsfp_mod_present(ppd))
6194                 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6195 }
6196
6197 static int request_host_lcb_access(struct hfi1_devdata *dd)
6198 {
6199         int ret;
6200
6201         ret = do_8051_command(dd, HCMD_MISC,
6202                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6203                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6204         if (ret != HCMD_SUCCESS) {
6205                 dd_dev_err(dd, "%s: command failed with error %d\n",
6206                            __func__, ret);
6207         }
6208         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6209 }
6210
6211 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6212 {
6213         int ret;
6214
6215         ret = do_8051_command(dd, HCMD_MISC,
6216                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6217                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6218         if (ret != HCMD_SUCCESS) {
6219                 dd_dev_err(dd, "%s: command failed with error %d\n",
6220                            __func__, ret);
6221         }
6222         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6223 }
6224
6225 /*
6226  * Set the LCB selector - allow host access.  The DCC selector always
6227  * points to the host.
6228  */
6229 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6230 {
6231         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6232                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6233                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6234 }
6235
6236 /*
6237  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6238  * points to the host.
6239  */
6240 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6241 {
6242         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6243                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6244 }
6245
6246 /*
6247  * Acquire LCB access from the 8051.  If the host already has access,
6248  * just increment a counter.  Otherwise, inform the 8051 that the
6249  * host is taking access.
6250  *
6251  * Returns:
6252  *      0 on success
6253  *      -EBUSY if the 8051 has control and cannot be disturbed
6254  *      -errno if unable to acquire access from the 8051
6255  */
6256 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6257 {
6258         struct hfi1_pportdata *ppd = dd->pport;
6259         int ret = 0;
6260
6261         /*
6262          * Use the host link state lock so the operation of this routine
6263          * { link state check, selector change, count increment } can occur
6264          * as a unit against a link state change.  Otherwise there is a
6265          * race between the state change and the count increment.
6266          */
6267         if (sleep_ok) {
6268                 mutex_lock(&ppd->hls_lock);
6269         } else {
6270                 while (!mutex_trylock(&ppd->hls_lock))
6271                         udelay(1);
6272         }
6273
6274         /* this access is valid only when the link is up */
6275         if (ppd->host_link_state & HLS_DOWN) {
6276                 dd_dev_info(dd, "%s: link state %s not up\n",
6277                             __func__, link_state_name(ppd->host_link_state));
6278                 ret = -EBUSY;
6279                 goto done;
6280         }
6281
6282         if (dd->lcb_access_count == 0) {
6283                 ret = request_host_lcb_access(dd);
6284                 if (ret) {
6285                         dd_dev_err(dd,
6286                                    "%s: unable to acquire LCB access, err %d\n",
6287                                    __func__, ret);
6288                         goto done;
6289                 }
6290                 set_host_lcb_access(dd);
6291         }
6292         dd->lcb_access_count++;
6293 done:
6294         mutex_unlock(&ppd->hls_lock);
6295         return ret;
6296 }
6297
6298 /*
6299  * Release LCB access by decrementing the use count.  If the count is moving
6300  * from 1 to 0, inform 8051 that it has control back.
6301  *
6302  * Returns:
6303  *      0 on success
6304  *      -errno if unable to release access to the 8051
6305  */
6306 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6307 {
6308         int ret = 0;
6309
6310         /*
6311          * Use the host link state lock because the acquire needed it.
6312          * Here, we only need to keep { selector change, count decrement }
6313          * as a unit.
6314          */
6315         if (sleep_ok) {
6316                 mutex_lock(&dd->pport->hls_lock);
6317         } else {
6318                 while (!mutex_trylock(&dd->pport->hls_lock))
6319                         udelay(1);
6320         }
6321
6322         if (dd->lcb_access_count == 0) {
6323                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6324                            __func__);
6325                 goto done;
6326         }
6327
6328         if (dd->lcb_access_count == 1) {
6329                 set_8051_lcb_access(dd);
6330                 ret = request_8051_lcb_access(dd);
6331                 if (ret) {
6332                         dd_dev_err(dd,
6333                                    "%s: unable to release LCB access, err %d\n",
6334                                    __func__, ret);
6335                         /* restore host access if the grant didn't work */
6336                         set_host_lcb_access(dd);
6337                         goto done;
6338                 }
6339         }
6340         dd->lcb_access_count--;
6341 done:
6342         mutex_unlock(&dd->pport->hls_lock);
6343         return ret;
6344 }
6345
6346 /*
6347  * Initialize LCB access variables and state.  Called during driver load,
6348  * after most of the initialization is finished.
6349  *
6350  * The DC default is LCB access on for the host.  The driver defaults to
6351  * leaving access to the 8051.  Assign access now - this constrains the call
6352  * to this routine to be after all LCB set-up is done.  In particular, after
6353  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6354  */
6355 static void init_lcb_access(struct hfi1_devdata *dd)
6356 {
6357         dd->lcb_access_count = 0;
6358 }
6359
6360 /*
6361  * Write a response back to a 8051 request.
6362  */
6363 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6364 {
6365         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6366                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6367                   (u64)return_code <<
6368                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6369                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6370 }
6371
6372 /*
6373  * Handle host requests from the 8051.
6374  */
6375 static void handle_8051_request(struct hfi1_pportdata *ppd)
6376 {
6377         struct hfi1_devdata *dd = ppd->dd;
6378         u64 reg;
6379         u16 data = 0;
6380         u8 type;
6381
6382         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6383         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6384                 return; /* no request */
6385
6386         /* zero out COMPLETED so the response is seen */
6387         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6388
6389         /* extract request details */
6390         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6391                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6392         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6393                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6394
6395         switch (type) {
6396         case HREQ_LOAD_CONFIG:
6397         case HREQ_SAVE_CONFIG:
6398         case HREQ_READ_CONFIG:
6399         case HREQ_SET_TX_EQ_ABS:
6400         case HREQ_SET_TX_EQ_REL:
6401         case HREQ_ENABLE:
6402                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6403                             type);
6404                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6405                 break;
6406         case HREQ_LCB_RESET:
6407                 /* Put the LCB, RX FPE and TX FPE into reset */
6408                 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6409                 /* Make sure the write completed */
6410                 (void)read_csr(dd, DCC_CFG_RESET);
6411                 /* Hold the reset long enough to take effect */
6412                 udelay(1);
6413                 /* Take the LCB, RX FPE and TX FPE out of reset */
6414                 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6415                 hreq_response(dd, HREQ_SUCCESS, 0);
6416
6417                 break;
6418         case HREQ_CONFIG_DONE:
6419                 hreq_response(dd, HREQ_SUCCESS, 0);
6420                 break;
6421
6422         case HREQ_INTERFACE_TEST:
6423                 hreq_response(dd, HREQ_SUCCESS, data);
6424                 break;
6425         default:
6426                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6427                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6428                 break;
6429         }
6430 }
6431
6432 /*
6433  * Set up allocation unit vaulue.
6434  */
6435 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6436 {
6437         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6438
6439         /* do not modify other values in the register */
6440         reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6441         reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6442         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6443 }
6444
6445 /*
6446  * Set up initial VL15 credits of the remote.  Assumes the rest of
6447  * the CM credit registers are zero from a previous global or credit reset.
6448  * Shared limit for VL15 will always be 0.
6449  */
6450 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6451 {
6452         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6453
6454         /* set initial values for total and shared credit limit */
6455         reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6456                  SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6457
6458         /*
6459          * Set total limit to be equal to VL15 credits.
6460          * Leave shared limit at 0.
6461          */
6462         reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6463         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6464
6465         write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6466                   << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6467 }
6468
6469 /*
6470  * Zero all credit details from the previous connection and
6471  * reset the CM manager's internal counters.
6472  */
6473 void reset_link_credits(struct hfi1_devdata *dd)
6474 {
6475         int i;
6476
6477         /* remove all previous VL credit limits */
6478         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6479                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6480         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6481         write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6482         /* reset the CM block */
6483         pio_send_control(dd, PSC_CM_RESET);
6484         /* reset cached value */
6485         dd->vl15buf_cached = 0;
6486 }
6487
6488 /* convert a vCU to a CU */
6489 static u32 vcu_to_cu(u8 vcu)
6490 {
6491         return 1 << vcu;
6492 }
6493
6494 /* convert a CU to a vCU */
6495 static u8 cu_to_vcu(u32 cu)
6496 {
6497         return ilog2(cu);
6498 }
6499
6500 /* convert a vAU to an AU */
6501 static u32 vau_to_au(u8 vau)
6502 {
6503         return 8 * (1 << vau);
6504 }
6505
6506 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6507 {
6508         ppd->sm_trap_qp = 0x0;
6509         ppd->sa_qp = 0x1;
6510 }
6511
6512 /*
6513  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6514  */
6515 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6516 {
6517         u64 reg;
6518
6519         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6520         write_csr(dd, DC_LCB_CFG_RUN, 0);
6521         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6522         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6523                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6524         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6525         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6526         reg = read_csr(dd, DCC_CFG_RESET);
6527         write_csr(dd, DCC_CFG_RESET, reg |
6528                   DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6529         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6530         if (!abort) {
6531                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6532                 write_csr(dd, DCC_CFG_RESET, reg);
6533                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6534         }
6535 }
6536
6537 /*
6538  * This routine should be called after the link has been transitioned to
6539  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6540  * reset).
6541  *
6542  * The expectation is that the caller of this routine would have taken
6543  * care of properly transitioning the link into the correct state.
6544  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6545  *       before calling this function.
6546  */
6547 static void _dc_shutdown(struct hfi1_devdata *dd)
6548 {
6549         lockdep_assert_held(&dd->dc8051_lock);
6550
6551         if (dd->dc_shutdown)
6552                 return;
6553
6554         dd->dc_shutdown = 1;
6555         /* Shutdown the LCB */
6556         lcb_shutdown(dd, 1);
6557         /*
6558          * Going to OFFLINE would have causes the 8051 to put the
6559          * SerDes into reset already. Just need to shut down the 8051,
6560          * itself.
6561          */
6562         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6563 }
6564
6565 static void dc_shutdown(struct hfi1_devdata *dd)
6566 {
6567         mutex_lock(&dd->dc8051_lock);
6568         _dc_shutdown(dd);
6569         mutex_unlock(&dd->dc8051_lock);
6570 }
6571
6572 /*
6573  * Calling this after the DC has been brought out of reset should not
6574  * do any damage.
6575  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6576  *       before calling this function.
6577  */
6578 static void _dc_start(struct hfi1_devdata *dd)
6579 {
6580         lockdep_assert_held(&dd->dc8051_lock);
6581
6582         if (!dd->dc_shutdown)
6583                 return;
6584
6585         /* Take the 8051 out of reset */
6586         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6587         /* Wait until 8051 is ready */
6588         if (wait_fm_ready(dd, TIMEOUT_8051_START))
6589                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6590                            __func__);
6591
6592         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6593         write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6594         /* lcb_shutdown() with abort=1 does not restore these */
6595         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6596         dd->dc_shutdown = 0;
6597 }
6598
6599 static void dc_start(struct hfi1_devdata *dd)
6600 {
6601         mutex_lock(&dd->dc8051_lock);
6602         _dc_start(dd);
6603         mutex_unlock(&dd->dc8051_lock);
6604 }
6605
6606 /*
6607  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6608  */
6609 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6610 {
6611         u64 rx_radr, tx_radr;
6612         u32 version;
6613
6614         if (dd->icode != ICODE_FPGA_EMULATION)
6615                 return;
6616
6617         /*
6618          * These LCB defaults on emulator _s are good, nothing to do here:
6619          *      LCB_CFG_TX_FIFOS_RADR
6620          *      LCB_CFG_RX_FIFOS_RADR
6621          *      LCB_CFG_LN_DCLK
6622          *      LCB_CFG_IGNORE_LOST_RCLK
6623          */
6624         if (is_emulator_s(dd))
6625                 return;
6626         /* else this is _p */
6627
6628         version = emulator_rev(dd);
6629         if (!is_ax(dd))
6630                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6631
6632         if (version <= 0x12) {
6633                 /* release 0x12 and below */
6634
6635                 /*
6636                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6637                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6638                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6639                  */
6640                 rx_radr =
6641                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6642                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6643                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6644                 /*
6645                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6646                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6647                  */
6648                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6649         } else if (version <= 0x18) {
6650                 /* release 0x13 up to 0x18 */
6651                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6652                 rx_radr =
6653                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6654                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6655                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6656                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6657         } else if (version == 0x19) {
6658                 /* release 0x19 */
6659                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6660                 rx_radr =
6661                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6662                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6663                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6664                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6665         } else if (version == 0x1a) {
6666                 /* release 0x1a */
6667                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6668                 rx_radr =
6669                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6670                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6671                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6672                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6673                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6674         } else {
6675                 /* release 0x1b and higher */
6676                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6677                 rx_radr =
6678                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6679                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6680                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6681                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6682         }
6683
6684         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6685         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6686         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6687                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6688         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6689 }
6690
6691 /*
6692  * Handle a SMA idle message
6693  *
6694  * This is a work-queue function outside of the interrupt.
6695  */
6696 void handle_sma_message(struct work_struct *work)
6697 {
6698         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6699                                                         sma_message_work);
6700         struct hfi1_devdata *dd = ppd->dd;
6701         u64 msg;
6702         int ret;
6703
6704         /*
6705          * msg is bytes 1-4 of the 40-bit idle message - the command code
6706          * is stripped off
6707          */
6708         ret = read_idle_sma(dd, &msg);
6709         if (ret)
6710                 return;
6711         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6712         /*
6713          * React to the SMA message.  Byte[1] (0 for us) is the command.
6714          */
6715         switch (msg & 0xff) {
6716         case SMA_IDLE_ARM:
6717                 /*
6718                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6719                  * State Transitions
6720                  *
6721                  * Only expected in INIT or ARMED, discard otherwise.
6722                  */
6723                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6724                         ppd->neighbor_normal = 1;
6725                 break;
6726         case SMA_IDLE_ACTIVE:
6727                 /*
6728                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6729                  * State Transitions
6730                  *
6731                  * Can activate the node.  Discard otherwise.
6732                  */
6733                 if (ppd->host_link_state == HLS_UP_ARMED &&
6734                     ppd->is_active_optimize_enabled) {
6735                         ppd->neighbor_normal = 1;
6736                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6737                         if (ret)
6738                                 dd_dev_err(
6739                                         dd,
6740                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6741                                         __func__);
6742                 }
6743                 break;
6744         default:
6745                 dd_dev_err(dd,
6746                            "%s: received unexpected SMA idle message 0x%llx\n",
6747                            __func__, msg);
6748                 break;
6749         }
6750 }
6751
6752 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6753 {
6754         u64 rcvctrl;
6755         unsigned long flags;
6756
6757         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6758         rcvctrl = read_csr(dd, RCV_CTRL);
6759         rcvctrl |= add;
6760         rcvctrl &= ~clear;
6761         write_csr(dd, RCV_CTRL, rcvctrl);
6762         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6763 }
6764
6765 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6766 {
6767         adjust_rcvctrl(dd, add, 0);
6768 }
6769
6770 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6771 {
6772         adjust_rcvctrl(dd, 0, clear);
6773 }
6774
6775 /*
6776  * Called from all interrupt handlers to start handling an SPC freeze.
6777  */
6778 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6779 {
6780         struct hfi1_devdata *dd = ppd->dd;
6781         struct send_context *sc;
6782         int i;
6783         int sc_flags;
6784
6785         if (flags & FREEZE_SELF)
6786                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6787
6788         /* enter frozen mode */
6789         dd->flags |= HFI1_FROZEN;
6790
6791         /* notify all SDMA engines that they are going into a freeze */
6792         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6793
6794         sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6795                                               SCF_LINK_DOWN : 0);
6796         /* do halt pre-handling on all enabled send contexts */
6797         for (i = 0; i < dd->num_send_contexts; i++) {
6798                 sc = dd->send_contexts[i].sc;
6799                 if (sc && (sc->flags & SCF_ENABLED))
6800                         sc_stop(sc, sc_flags);
6801         }
6802
6803         /* Send context are frozen. Notify user space */
6804         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6805
6806         if (flags & FREEZE_ABORT) {
6807                 dd_dev_err(dd,
6808                            "Aborted freeze recovery. Please REBOOT system\n");
6809                 return;
6810         }
6811         /* queue non-interrupt handler */
6812         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6813 }
6814
6815 /*
6816  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6817  * depending on the "freeze" parameter.
6818  *
6819  * No need to return an error if it times out, our only option
6820  * is to proceed anyway.
6821  */
6822 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6823 {
6824         unsigned long timeout;
6825         u64 reg;
6826
6827         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6828         while (1) {
6829                 reg = read_csr(dd, CCE_STATUS);
6830                 if (freeze) {
6831                         /* waiting until all indicators are set */
6832                         if ((reg & ALL_FROZE) == ALL_FROZE)
6833                                 return; /* all done */
6834                 } else {
6835                         /* waiting until all indicators are clear */
6836                         if ((reg & ALL_FROZE) == 0)
6837                                 return; /* all done */
6838                 }
6839
6840                 if (time_after(jiffies, timeout)) {
6841                         dd_dev_err(dd,
6842                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6843                                    freeze ? "" : "un", reg & ALL_FROZE,
6844                                    freeze ? ALL_FROZE : 0ull);
6845                         return;
6846                 }
6847                 usleep_range(80, 120);
6848         }
6849 }
6850
6851 /*
6852  * Do all freeze handling for the RXE block.
6853  */
6854 static void rxe_freeze(struct hfi1_devdata *dd)
6855 {
6856         int i;
6857         struct hfi1_ctxtdata *rcd;
6858
6859         /* disable port */
6860         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6861
6862         /* disable all receive contexts */
6863         for (i = 0; i < dd->num_rcv_contexts; i++) {
6864                 rcd = hfi1_rcd_get_by_index(dd, i);
6865                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6866                 hfi1_rcd_put(rcd);
6867         }
6868 }
6869
6870 /*
6871  * Unfreeze handling for the RXE block - kernel contexts only.
6872  * This will also enable the port.  User contexts will do unfreeze
6873  * handling on a per-context basis as they call into the driver.
6874  *
6875  */
6876 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6877 {
6878         u32 rcvmask;
6879         u16 i;
6880         struct hfi1_ctxtdata *rcd;
6881
6882         /* enable all kernel contexts */
6883         for (i = 0; i < dd->num_rcv_contexts; i++) {
6884                 rcd = hfi1_rcd_get_by_index(dd, i);
6885
6886                 /* Ensure all non-user contexts(including vnic) are enabled */
6887                 if (!rcd ||
6888                     (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6889                         hfi1_rcd_put(rcd);
6890                         continue;
6891                 }
6892                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6893                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6894                 rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6895                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6896                 hfi1_rcvctrl(dd, rcvmask, rcd);
6897                 hfi1_rcd_put(rcd);
6898         }
6899
6900         /* enable port */
6901         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6902 }
6903
6904 /*
6905  * Non-interrupt SPC freeze handling.
6906  *
6907  * This is a work-queue function outside of the triggering interrupt.
6908  */
6909 void handle_freeze(struct work_struct *work)
6910 {
6911         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6912                                                                 freeze_work);
6913         struct hfi1_devdata *dd = ppd->dd;
6914
6915         /* wait for freeze indicators on all affected blocks */
6916         wait_for_freeze_status(dd, 1);
6917
6918         /* SPC is now frozen */
6919
6920         /* do send PIO freeze steps */
6921         pio_freeze(dd);
6922
6923         /* do send DMA freeze steps */
6924         sdma_freeze(dd);
6925
6926         /* do send egress freeze steps - nothing to do */
6927
6928         /* do receive freeze steps */
6929         rxe_freeze(dd);
6930
6931         /*
6932          * Unfreeze the hardware - clear the freeze, wait for each
6933          * block's frozen bit to clear, then clear the frozen flag.
6934          */
6935         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6936         wait_for_freeze_status(dd, 0);
6937
6938         if (is_ax(dd)) {
6939                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6940                 wait_for_freeze_status(dd, 1);
6941                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6942                 wait_for_freeze_status(dd, 0);
6943         }
6944
6945         /* do send PIO unfreeze steps for kernel contexts */
6946         pio_kernel_unfreeze(dd);
6947
6948         /* do send DMA unfreeze steps */
6949         sdma_unfreeze(dd);
6950
6951         /* do send egress unfreeze steps - nothing to do */
6952
6953         /* do receive unfreeze steps for kernel contexts */
6954         rxe_kernel_unfreeze(dd);
6955
6956         /*
6957          * The unfreeze procedure touches global device registers when
6958          * it disables and re-enables RXE. Mark the device unfrozen
6959          * after all that is done so other parts of the driver waiting
6960          * for the device to unfreeze don't do things out of order.
6961          *
6962          * The above implies that the meaning of HFI1_FROZEN flag is
6963          * "Device has gone into freeze mode and freeze mode handling
6964          * is still in progress."
6965          *
6966          * The flag will be removed when freeze mode processing has
6967          * completed.
6968          */
6969         dd->flags &= ~HFI1_FROZEN;
6970         wake_up(&dd->event_queue);
6971
6972         /* no longer frozen */
6973 }
6974
6975 /**
6976  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6977  * counters.
6978  * @ppd: info of physical Hfi port
6979  * @link_width: new link width after link up or downgrade
6980  *
6981  * Update the PortXmitWait and PortVlXmitWait counters after
6982  * a link up or downgrade event to reflect a link width change.
6983  */
6984 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6985 {
6986         int i;
6987         u16 tx_width;
6988         u16 link_speed;
6989
6990         tx_width = tx_link_width(link_width);
6991         link_speed = get_link_speed(ppd->link_speed_active);
6992
6993         /*
6994          * There are C_VL_COUNT number of PortVLXmitWait counters.
6995          * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6996          */
6997         for (i = 0; i < C_VL_COUNT + 1; i++)
6998                 get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6999 }
7000
7001 /*
7002  * Handle a link up interrupt from the 8051.
7003  *
7004  * This is a work-queue function outside of the interrupt.
7005  */
7006 void handle_link_up(struct work_struct *work)
7007 {
7008         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7009                                                   link_up_work);
7010         struct hfi1_devdata *dd = ppd->dd;
7011
7012         set_link_state(ppd, HLS_UP_INIT);
7013
7014         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
7015         read_ltp_rtt(dd);
7016         /*
7017          * OPA specifies that certain counters are cleared on a transition
7018          * to link up, so do that.
7019          */
7020         clear_linkup_counters(dd);
7021         /*
7022          * And (re)set link up default values.
7023          */
7024         set_linkup_defaults(ppd);
7025
7026         /*
7027          * Set VL15 credits. Use cached value from verify cap interrupt.
7028          * In case of quick linkup or simulator, vl15 value will be set by
7029          * handle_linkup_change. VerifyCap interrupt handler will not be
7030          * called in those scenarios.
7031          */
7032         if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7033                 set_up_vl15(dd, dd->vl15buf_cached);
7034
7035         /* enforce link speed enabled */
7036         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7037                 /* oops - current speed is not enabled, bounce */
7038                 dd_dev_err(dd,
7039                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7040                            ppd->link_speed_active, ppd->link_speed_enabled);
7041                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7042                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
7043                 set_link_state(ppd, HLS_DN_OFFLINE);
7044                 start_link(ppd);
7045         }
7046 }
7047
7048 /*
7049  * Several pieces of LNI information were cached for SMA in ppd.
7050  * Reset these on link down
7051  */
7052 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7053 {
7054         ppd->neighbor_guid = 0;
7055         ppd->neighbor_port_number = 0;
7056         ppd->neighbor_type = 0;
7057         ppd->neighbor_fm_security = 0;
7058 }
7059
7060 static const char * const link_down_reason_strs[] = {
7061         [OPA_LINKDOWN_REASON_NONE] = "None",
7062         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7063         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7064         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7065         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7066         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7067         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7068         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7069         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7070         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7071         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7072         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7073         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7074         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7075         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7076         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7077         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7078         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7079         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7080         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7081         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7082         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7083         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7084         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7085         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7086         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7087         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7088         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7089         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7090         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7091         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7092         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7093         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7094                                         "Excessive buffer overrun",
7095         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7096         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7097         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7098         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7099         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7100         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7101         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7102         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7103                                         "Local media not installed",
7104         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7105         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7106         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7107                                         "End to end not installed",
7108         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7109         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7110         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7111         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7112         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7113         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7114 };
7115
7116 /* return the neighbor link down reason string */
7117 static const char *link_down_reason_str(u8 reason)
7118 {
7119         const char *str = NULL;
7120
7121         if (reason < ARRAY_SIZE(link_down_reason_strs))
7122                 str = link_down_reason_strs[reason];
7123         if (!str)
7124                 str = "(invalid)";
7125
7126         return str;
7127 }
7128
7129 /*
7130  * Handle a link down interrupt from the 8051.
7131  *
7132  * This is a work-queue function outside of the interrupt.
7133  */
7134 void handle_link_down(struct work_struct *work)
7135 {
7136         u8 lcl_reason, neigh_reason = 0;
7137         u8 link_down_reason;
7138         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7139                                                   link_down_work);
7140         int was_up;
7141         static const char ldr_str[] = "Link down reason: ";
7142
7143         if ((ppd->host_link_state &
7144              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7145              ppd->port_type == PORT_TYPE_FIXED)
7146                 ppd->offline_disabled_reason =
7147                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7148
7149         /* Go offline first, then deal with reading/writing through 8051 */
7150         was_up = !!(ppd->host_link_state & HLS_UP);
7151         set_link_state(ppd, HLS_DN_OFFLINE);
7152         xchg(&ppd->is_link_down_queued, 0);
7153
7154         if (was_up) {
7155                 lcl_reason = 0;
7156                 /* link down reason is only valid if the link was up */
7157                 read_link_down_reason(ppd->dd, &link_down_reason);
7158                 switch (link_down_reason) {
7159                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7160                         /* the link went down, no idle message reason */
7161                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7162                                     ldr_str);
7163                         break;
7164                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7165                         /*
7166                          * The neighbor reason is only valid if an idle message
7167                          * was received for it.
7168                          */
7169                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
7170                         dd_dev_info(ppd->dd,
7171                                     "%sNeighbor link down message %d, %s\n",
7172                                     ldr_str, neigh_reason,
7173                                     link_down_reason_str(neigh_reason));
7174                         break;
7175                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7176                         dd_dev_info(ppd->dd,
7177                                     "%sHost requested link to go offline\n",
7178                                     ldr_str);
7179                         break;
7180                 default:
7181                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7182                                     ldr_str, link_down_reason);
7183                         break;
7184                 }
7185
7186                 /*
7187                  * If no reason, assume peer-initiated but missed
7188                  * LinkGoingDown idle flits.
7189                  */
7190                 if (neigh_reason == 0)
7191                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7192         } else {
7193                 /* went down while polling or going up */
7194                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7195         }
7196
7197         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7198
7199         /* inform the SMA when the link transitions from up to down */
7200         if (was_up && ppd->local_link_down_reason.sma == 0 &&
7201             ppd->neigh_link_down_reason.sma == 0) {
7202                 ppd->local_link_down_reason.sma =
7203                                         ppd->local_link_down_reason.latest;
7204                 ppd->neigh_link_down_reason.sma =
7205                                         ppd->neigh_link_down_reason.latest;
7206         }
7207
7208         reset_neighbor_info(ppd);
7209
7210         /* disable the port */
7211         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7212
7213         /*
7214          * If there is no cable attached, turn the DC off. Otherwise,
7215          * start the link bring up.
7216          */
7217         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7218                 dc_shutdown(ppd->dd);
7219         else
7220                 start_link(ppd);
7221 }
7222
7223 void handle_link_bounce(struct work_struct *work)
7224 {
7225         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7226                                                         link_bounce_work);
7227
7228         /*
7229          * Only do something if the link is currently up.
7230          */
7231         if (ppd->host_link_state & HLS_UP) {
7232                 set_link_state(ppd, HLS_DN_OFFLINE);
7233                 start_link(ppd);
7234         } else {
7235                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7236                             __func__, link_state_name(ppd->host_link_state));
7237         }
7238 }
7239
7240 /*
7241  * Mask conversion: Capability exchange to Port LTP.  The capability
7242  * exchange has an implicit 16b CRC that is mandatory.
7243  */
7244 static int cap_to_port_ltp(int cap)
7245 {
7246         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7247
7248         if (cap & CAP_CRC_14B)
7249                 port_ltp |= PORT_LTP_CRC_MODE_14;
7250         if (cap & CAP_CRC_48B)
7251                 port_ltp |= PORT_LTP_CRC_MODE_48;
7252         if (cap & CAP_CRC_12B_16B_PER_LANE)
7253                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7254
7255         return port_ltp;
7256 }
7257
7258 /*
7259  * Convert an OPA Port LTP mask to capability mask
7260  */
7261 int port_ltp_to_cap(int port_ltp)
7262 {
7263         int cap_mask = 0;
7264
7265         if (port_ltp & PORT_LTP_CRC_MODE_14)
7266                 cap_mask |= CAP_CRC_14B;
7267         if (port_ltp & PORT_LTP_CRC_MODE_48)
7268                 cap_mask |= CAP_CRC_48B;
7269         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7270                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7271
7272         return cap_mask;
7273 }
7274
7275 /*
7276  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7277  */
7278 static int lcb_to_port_ltp(int lcb_crc)
7279 {
7280         int port_ltp = 0;
7281
7282         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7283                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7284         else if (lcb_crc == LCB_CRC_48B)
7285                 port_ltp = PORT_LTP_CRC_MODE_48;
7286         else if (lcb_crc == LCB_CRC_14B)
7287                 port_ltp = PORT_LTP_CRC_MODE_14;
7288         else
7289                 port_ltp = PORT_LTP_CRC_MODE_16;
7290
7291         return port_ltp;
7292 }
7293
7294 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7295 {
7296         if (ppd->pkeys[2] != 0) {
7297                 ppd->pkeys[2] = 0;
7298                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7299                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7300         }
7301 }
7302
7303 /*
7304  * Convert the given link width to the OPA link width bitmask.
7305  */
7306 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7307 {
7308         switch (width) {
7309         case 0:
7310                 /*
7311                  * Simulator and quick linkup do not set the width.
7312                  * Just set it to 4x without complaint.
7313                  */
7314                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7315                         return OPA_LINK_WIDTH_4X;
7316                 return 0; /* no lanes up */
7317         case 1: return OPA_LINK_WIDTH_1X;
7318         case 2: return OPA_LINK_WIDTH_2X;
7319         case 3: return OPA_LINK_WIDTH_3X;
7320         case 4: return OPA_LINK_WIDTH_4X;
7321         default:
7322                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7323                             __func__, width);
7324                 return OPA_LINK_WIDTH_4X;
7325         }
7326 }
7327
7328 /*
7329  * Do a population count on the bottom nibble.
7330  */
7331 static const u8 bit_counts[16] = {
7332         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7333 };
7334
7335 static inline u8 nibble_to_count(u8 nibble)
7336 {
7337         return bit_counts[nibble & 0xf];
7338 }
7339
7340 /*
7341  * Read the active lane information from the 8051 registers and return
7342  * their widths.
7343  *
7344  * Active lane information is found in these 8051 registers:
7345  *      enable_lane_tx
7346  *      enable_lane_rx
7347  */
7348 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7349                             u16 *rx_width)
7350 {
7351         u16 tx, rx;
7352         u8 enable_lane_rx;
7353         u8 enable_lane_tx;
7354         u8 tx_polarity_inversion;
7355         u8 rx_polarity_inversion;
7356         u8 max_rate;
7357
7358         /* read the active lanes */
7359         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7360                          &rx_polarity_inversion, &max_rate);
7361         read_local_lni(dd, &enable_lane_rx);
7362
7363         /* convert to counts */
7364         tx = nibble_to_count(enable_lane_tx);
7365         rx = nibble_to_count(enable_lane_rx);
7366
7367         /*
7368          * Set link_speed_active here, overriding what was set in
7369          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7370          * set the max_rate field in handle_verify_cap until v0.19.
7371          */
7372         if ((dd->icode == ICODE_RTL_SILICON) &&
7373             (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7374                 /* max_rate: 0 = 12.5G, 1 = 25G */
7375                 switch (max_rate) {
7376                 case 0:
7377                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7378                         break;
7379                 case 1:
7380                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7381                         break;
7382                 default:
7383                         dd_dev_err(dd,
7384                                    "%s: unexpected max rate %d, using 25Gb\n",
7385                                    __func__, (int)max_rate);
7386                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7387                         break;
7388                 }
7389         }
7390
7391         dd_dev_info(dd,
7392                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7393                     enable_lane_tx, tx, enable_lane_rx, rx);
7394         *tx_width = link_width_to_bits(dd, tx);
7395         *rx_width = link_width_to_bits(dd, rx);
7396 }
7397
7398 /*
7399  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7400  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7401  * after link up.  I.e. look elsewhere for downgrade information.
7402  *
7403  * Bits are:
7404  *      + bits [7:4] contain the number of active transmitters
7405  *      + bits [3:0] contain the number of active receivers
7406  * These are numbers 1 through 4 and can be different values if the
7407  * link is asymmetric.
7408  *
7409  * verify_cap_local_fm_link_width[0] retains its original value.
7410  */
7411 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7412                               u16 *rx_width)
7413 {
7414         u16 widths, tx, rx;
7415         u8 misc_bits, local_flags;
7416         u16 active_tx, active_rx;
7417
7418         read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7419         tx = widths >> 12;
7420         rx = (widths >> 8) & 0xf;
7421
7422         *tx_width = link_width_to_bits(dd, tx);
7423         *rx_width = link_width_to_bits(dd, rx);
7424
7425         /* print the active widths */
7426         get_link_widths(dd, &active_tx, &active_rx);
7427 }
7428
7429 /*
7430  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7431  * hardware information when the link first comes up.
7432  *
7433  * The link width is not available until after VerifyCap.AllFramesReceived
7434  * (the trigger for handle_verify_cap), so this is outside that routine
7435  * and should be called when the 8051 signals linkup.
7436  */
7437 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7438 {
7439         u16 tx_width, rx_width;
7440
7441         /* get end-of-LNI link widths */
7442         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7443
7444         /* use tx_width as the link is supposed to be symmetric on link up */
7445         ppd->link_width_active = tx_width;
7446         /* link width downgrade active (LWD.A) starts out matching LW.A */
7447         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7448         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7449         /* per OPA spec, on link up LWD.E resets to LWD.S */
7450         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7451         /* cache the active egress rate (units {10^6 bits/sec]) */
7452         ppd->current_egress_rate = active_egress_rate(ppd);
7453 }
7454
7455 /*
7456  * Handle a verify capabilities interrupt from the 8051.
7457  *
7458  * This is a work-queue function outside of the interrupt.
7459  */
7460 void handle_verify_cap(struct work_struct *work)
7461 {
7462         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7463                                                                 link_vc_work);
7464         struct hfi1_devdata *dd = ppd->dd;
7465         u64 reg;
7466         u8 power_management;
7467         u8 continuous;
7468         u8 vcu;
7469         u8 vau;
7470         u8 z;
7471         u16 vl15buf;
7472         u16 link_widths;
7473         u16 crc_mask;
7474         u16 crc_val;
7475         u16 device_id;
7476         u16 active_tx, active_rx;
7477         u8 partner_supported_crc;
7478         u8 remote_tx_rate;
7479         u8 device_rev;
7480
7481         set_link_state(ppd, HLS_VERIFY_CAP);
7482
7483         lcb_shutdown(dd, 0);
7484         adjust_lcb_for_fpga_serdes(dd);
7485
7486         read_vc_remote_phy(dd, &power_management, &continuous);
7487         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7488                               &partner_supported_crc);
7489         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7490         read_remote_device_id(dd, &device_id, &device_rev);
7491
7492         /* print the active widths */
7493         get_link_widths(dd, &active_tx, &active_rx);
7494         dd_dev_info(dd,
7495                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7496                     (int)power_management, (int)continuous);
7497         dd_dev_info(dd,
7498                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7499                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7500                     (int)partner_supported_crc);
7501         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7502                     (u32)remote_tx_rate, (u32)link_widths);
7503         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7504                     (u32)device_id, (u32)device_rev);
7505         /*
7506          * The peer vAU value just read is the peer receiver value.  HFI does
7507          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7508          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7509          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7510          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7511          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7512          * subject to the Z value exception.
7513          */
7514         if (vau == 0)
7515                 vau = 1;
7516         set_up_vau(dd, vau);
7517
7518         /*
7519          * Set VL15 credits to 0 in global credit register. Cache remote VL15
7520          * credits value and wait for link-up interrupt ot set it.
7521          */
7522         set_up_vl15(dd, 0);
7523         dd->vl15buf_cached = vl15buf;
7524
7525         /* set up the LCB CRC mode */
7526         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7527
7528         /* order is important: use the lowest bit in common */
7529         if (crc_mask & CAP_CRC_14B)
7530                 crc_val = LCB_CRC_14B;
7531         else if (crc_mask & CAP_CRC_48B)
7532                 crc_val = LCB_CRC_48B;
7533         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7534                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7535         else
7536                 crc_val = LCB_CRC_16B;
7537
7538         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7539         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7540                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7541
7542         /* set (14b only) or clear sideband credit */
7543         reg = read_csr(dd, SEND_CM_CTRL);
7544         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7545                 write_csr(dd, SEND_CM_CTRL,
7546                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7547         } else {
7548                 write_csr(dd, SEND_CM_CTRL,
7549                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7550         }
7551
7552         ppd->link_speed_active = 0;     /* invalid value */
7553         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7554                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7555                 switch (remote_tx_rate) {
7556                 case 0:
7557                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7558                         break;
7559                 case 1:
7560                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7561                         break;
7562                 }
7563         } else {
7564                 /* actual rate is highest bit of the ANDed rates */
7565                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7566
7567                 if (rate & 2)
7568                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7569                 else if (rate & 1)
7570                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7571         }
7572         if (ppd->link_speed_active == 0) {
7573                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7574                            __func__, (int)remote_tx_rate);
7575                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7576         }
7577
7578         /*
7579          * Cache the values of the supported, enabled, and active
7580          * LTP CRC modes to return in 'portinfo' queries. But the bit
7581          * flags that are returned in the portinfo query differ from
7582          * what's in the link_crc_mask, crc_sizes, and crc_val
7583          * variables. Convert these here.
7584          */
7585         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7586                 /* supported crc modes */
7587         ppd->port_ltp_crc_mode |=
7588                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7589                 /* enabled crc modes */
7590         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7591                 /* active crc mode */
7592
7593         /* set up the remote credit return table */
7594         assign_remote_cm_au_table(dd, vcu);
7595
7596         /*
7597          * The LCB is reset on entry to handle_verify_cap(), so this must
7598          * be applied on every link up.
7599          *
7600          * Adjust LCB error kill enable to kill the link if
7601          * these RBUF errors are seen:
7602          *      REPLAY_BUF_MBE_SMASK
7603          *      FLIT_INPUT_BUF_MBE_SMASK
7604          */
7605         if (is_ax(dd)) {                        /* fixed in B0 */
7606                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7607                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7608                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7609                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7610         }
7611
7612         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7613         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7614
7615         /* give 8051 access to the LCB CSRs */
7616         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7617         set_8051_lcb_access(dd);
7618
7619         /* tell the 8051 to go to LinkUp */
7620         set_link_state(ppd, HLS_GOING_UP);
7621 }
7622
7623 /**
7624  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7625  * policy against the current active link widths.
7626  * @ppd: info of physical Hfi port
7627  * @refresh_widths: True indicates link downgrade event
7628  * @return: True indicates a successful link downgrade. False indicates
7629  *          link downgrade event failed and the link will bounce back to
7630  *          default link width.
7631  *
7632  * Called when the enabled policy changes or the active link widths
7633  * change.
7634  * Refresh_widths indicates that a link downgrade occurred. The
7635  * link_downgraded variable is set by refresh_widths and
7636  * determines the success/failure of the policy application.
7637  */
7638 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7639                                  bool refresh_widths)
7640 {
7641         int do_bounce = 0;
7642         int tries;
7643         u16 lwde;
7644         u16 tx, rx;
7645         bool link_downgraded = refresh_widths;
7646
7647         /* use the hls lock to avoid a race with actual link up */
7648         tries = 0;
7649 retry:
7650         mutex_lock(&ppd->hls_lock);
7651         /* only apply if the link is up */
7652         if (ppd->host_link_state & HLS_DOWN) {
7653                 /* still going up..wait and retry */
7654                 if (ppd->host_link_state & HLS_GOING_UP) {
7655                         if (++tries < 1000) {
7656                                 mutex_unlock(&ppd->hls_lock);
7657                                 usleep_range(100, 120); /* arbitrary */
7658                                 goto retry;
7659                         }
7660                         dd_dev_err(ppd->dd,
7661                                    "%s: giving up waiting for link state change\n",
7662                                    __func__);
7663                 }
7664                 goto done;
7665         }
7666
7667         lwde = ppd->link_width_downgrade_enabled;
7668
7669         if (refresh_widths) {
7670                 get_link_widths(ppd->dd, &tx, &rx);
7671                 ppd->link_width_downgrade_tx_active = tx;
7672                 ppd->link_width_downgrade_rx_active = rx;
7673         }
7674
7675         if (ppd->link_width_downgrade_tx_active == 0 ||
7676             ppd->link_width_downgrade_rx_active == 0) {
7677                 /* the 8051 reported a dead link as a downgrade */
7678                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7679                 link_downgraded = false;
7680         } else if (lwde == 0) {
7681                 /* downgrade is disabled */
7682
7683                 /* bounce if not at starting active width */
7684                 if ((ppd->link_width_active !=
7685                      ppd->link_width_downgrade_tx_active) ||
7686                     (ppd->link_width_active !=
7687                      ppd->link_width_downgrade_rx_active)) {
7688                         dd_dev_err(ppd->dd,
7689                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7690                         dd_dev_err(ppd->dd,
7691                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7692                                    ppd->link_width_active,
7693                                    ppd->link_width_downgrade_tx_active,
7694                                    ppd->link_width_downgrade_rx_active);
7695                         do_bounce = 1;
7696                         link_downgraded = false;
7697                 }
7698         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7699                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7700                 /* Tx or Rx is outside the enabled policy */
7701                 dd_dev_err(ppd->dd,
7702                            "Link is outside of downgrade allowed, downing link\n");
7703                 dd_dev_err(ppd->dd,
7704                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7705                            lwde, ppd->link_width_downgrade_tx_active,
7706                            ppd->link_width_downgrade_rx_active);
7707                 do_bounce = 1;
7708                 link_downgraded = false;
7709         }
7710
7711 done:
7712         mutex_unlock(&ppd->hls_lock);
7713
7714         if (do_bounce) {
7715                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7716                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7717                 set_link_state(ppd, HLS_DN_OFFLINE);
7718                 start_link(ppd);
7719         }
7720
7721         return link_downgraded;
7722 }
7723
7724 /*
7725  * Handle a link downgrade interrupt from the 8051.
7726  *
7727  * This is a work-queue function outside of the interrupt.
7728  */
7729 void handle_link_downgrade(struct work_struct *work)
7730 {
7731         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7732                                                         link_downgrade_work);
7733
7734         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7735         if (apply_link_downgrade_policy(ppd, true))
7736                 update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7737 }
7738
7739 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7740 {
7741         return flag_string(buf, buf_len, flags, dcc_err_flags,
7742                 ARRAY_SIZE(dcc_err_flags));
7743 }
7744
7745 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7746 {
7747         return flag_string(buf, buf_len, flags, lcb_err_flags,
7748                 ARRAY_SIZE(lcb_err_flags));
7749 }
7750
7751 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7752 {
7753         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7754                 ARRAY_SIZE(dc8051_err_flags));
7755 }
7756
7757 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7758 {
7759         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7760                 ARRAY_SIZE(dc8051_info_err_flags));
7761 }
7762
7763 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7764 {
7765         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7766                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7767 }
7768
7769 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7770 {
7771         struct hfi1_pportdata *ppd = dd->pport;
7772         u64 info, err, host_msg;
7773         int queue_link_down = 0;
7774         char buf[96];
7775
7776         /* look at the flags */
7777         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7778                 /* 8051 information set by firmware */
7779                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7780                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7781                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7782                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7783                 host_msg = (info >>
7784                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7785                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7786
7787                 /*
7788                  * Handle error flags.
7789                  */
7790                 if (err & FAILED_LNI) {
7791                         /*
7792                          * LNI error indications are cleared by the 8051
7793                          * only when starting polling.  Only pay attention
7794                          * to them when in the states that occur during
7795                          * LNI.
7796                          */
7797                         if (ppd->host_link_state
7798                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7799                                 queue_link_down = 1;
7800                                 dd_dev_info(dd, "Link error: %s\n",
7801                                             dc8051_info_err_string(buf,
7802                                                                    sizeof(buf),
7803                                                                    err &
7804                                                                    FAILED_LNI));
7805                         }
7806                         err &= ~(u64)FAILED_LNI;
7807                 }
7808                 /* unknown frames can happen durning LNI, just count */
7809                 if (err & UNKNOWN_FRAME) {
7810                         ppd->unknown_frame_count++;
7811                         err &= ~(u64)UNKNOWN_FRAME;
7812                 }
7813                 if (err) {
7814                         /* report remaining errors, but do not do anything */
7815                         dd_dev_err(dd, "8051 info error: %s\n",
7816                                    dc8051_info_err_string(buf, sizeof(buf),
7817                                                           err));
7818                 }
7819
7820                 /*
7821                  * Handle host message flags.
7822                  */
7823                 if (host_msg & HOST_REQ_DONE) {
7824                         /*
7825                          * Presently, the driver does a busy wait for
7826                          * host requests to complete.  This is only an
7827                          * informational message.
7828                          * NOTE: The 8051 clears the host message
7829                          * information *on the next 8051 command*.
7830                          * Therefore, when linkup is achieved,
7831                          * this flag will still be set.
7832                          */
7833                         host_msg &= ~(u64)HOST_REQ_DONE;
7834                 }
7835                 if (host_msg & BC_SMA_MSG) {
7836                         queue_work(ppd->link_wq, &ppd->sma_message_work);
7837                         host_msg &= ~(u64)BC_SMA_MSG;
7838                 }
7839                 if (host_msg & LINKUP_ACHIEVED) {
7840                         dd_dev_info(dd, "8051: Link up\n");
7841                         queue_work(ppd->link_wq, &ppd->link_up_work);
7842                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7843                 }
7844                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7845                         handle_8051_request(ppd);
7846                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7847                 }
7848                 if (host_msg & VERIFY_CAP_FRAME) {
7849                         queue_work(ppd->link_wq, &ppd->link_vc_work);
7850                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7851                 }
7852                 if (host_msg & LINK_GOING_DOWN) {
7853                         const char *extra = "";
7854                         /* no downgrade action needed if going down */
7855                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7856                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7857                                 extra = " (ignoring downgrade)";
7858                         }
7859                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7860                         queue_link_down = 1;
7861                         host_msg &= ~(u64)LINK_GOING_DOWN;
7862                 }
7863                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7864                         queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7865                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7866                 }
7867                 if (host_msg) {
7868                         /* report remaining messages, but do not do anything */
7869                         dd_dev_info(dd, "8051 info host message: %s\n",
7870                                     dc8051_info_host_msg_string(buf,
7871                                                                 sizeof(buf),
7872                                                                 host_msg));
7873                 }
7874
7875                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7876         }
7877         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7878                 /*
7879                  * Lost the 8051 heartbeat.  If this happens, we
7880                  * receive constant interrupts about it.  Disable
7881                  * the interrupt after the first.
7882                  */
7883                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7884                 write_csr(dd, DC_DC8051_ERR_EN,
7885                           read_csr(dd, DC_DC8051_ERR_EN) &
7886                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7887
7888                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7889         }
7890         if (reg) {
7891                 /* report the error, but do not do anything */
7892                 dd_dev_err(dd, "8051 error: %s\n",
7893                            dc8051_err_string(buf, sizeof(buf), reg));
7894         }
7895
7896         if (queue_link_down) {
7897                 /*
7898                  * if the link is already going down or disabled, do not
7899                  * queue another. If there's a link down entry already
7900                  * queued, don't queue another one.
7901                  */
7902                 if ((ppd->host_link_state &
7903                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7904                     ppd->link_enabled == 0) {
7905                         dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7906                                     __func__, ppd->host_link_state,
7907                                     ppd->link_enabled);
7908                 } else {
7909                         if (xchg(&ppd->is_link_down_queued, 1) == 1)
7910                                 dd_dev_info(dd,
7911                                             "%s: link down request already queued\n",
7912                                             __func__);
7913                         else
7914                                 queue_work(ppd->link_wq, &ppd->link_down_work);
7915                 }
7916         }
7917 }
7918
7919 static const char * const fm_config_txt[] = {
7920 [0] =
7921         "BadHeadDist: Distance violation between two head flits",
7922 [1] =
7923         "BadTailDist: Distance violation between two tail flits",
7924 [2] =
7925         "BadCtrlDist: Distance violation between two credit control flits",
7926 [3] =
7927         "BadCrdAck: Credits return for unsupported VL",
7928 [4] =
7929         "UnsupportedVLMarker: Received VL Marker",
7930 [5] =
7931         "BadPreempt: Exceeded the preemption nesting level",
7932 [6] =
7933         "BadControlFlit: Received unsupported control flit",
7934 /* no 7 */
7935 [8] =
7936         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7937 };
7938
7939 static const char * const port_rcv_txt[] = {
7940 [1] =
7941         "BadPktLen: Illegal PktLen",
7942 [2] =
7943         "PktLenTooLong: Packet longer than PktLen",
7944 [3] =
7945         "PktLenTooShort: Packet shorter than PktLen",
7946 [4] =
7947         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7948 [5] =
7949         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7950 [6] =
7951         "BadL2: Illegal L2 opcode",
7952 [7] =
7953         "BadSC: Unsupported SC",
7954 [9] =
7955         "BadRC: Illegal RC",
7956 [11] =
7957         "PreemptError: Preempting with same VL",
7958 [12] =
7959         "PreemptVL15: Preempting a VL15 packet",
7960 };
7961
7962 #define OPA_LDR_FMCONFIG_OFFSET 16
7963 #define OPA_LDR_PORTRCV_OFFSET 0
7964 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7965 {
7966         u64 info, hdr0, hdr1;
7967         const char *extra;
7968         char buf[96];
7969         struct hfi1_pportdata *ppd = dd->pport;
7970         u8 lcl_reason = 0;
7971         int do_bounce = 0;
7972
7973         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7974                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7975                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7976                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7977                         /* set status bit */
7978                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7979                 }
7980                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7981         }
7982
7983         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7984                 struct hfi1_pportdata *ppd = dd->pport;
7985                 /* this counter saturates at (2^32) - 1 */
7986                 if (ppd->link_downed < (u32)UINT_MAX)
7987                         ppd->link_downed++;
7988                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7989         }
7990
7991         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7992                 u8 reason_valid = 1;
7993
7994                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7995                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7996                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7997                         /* set status bit */
7998                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7999                 }
8000                 switch (info) {
8001                 case 0:
8002                 case 1:
8003                 case 2:
8004                 case 3:
8005                 case 4:
8006                 case 5:
8007                 case 6:
8008                         extra = fm_config_txt[info];
8009                         break;
8010                 case 8:
8011                         extra = fm_config_txt[info];
8012                         if (ppd->port_error_action &
8013                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
8014                                 do_bounce = 1;
8015                                 /*
8016                                  * lcl_reason cannot be derived from info
8017                                  * for this error
8018                                  */
8019                                 lcl_reason =
8020                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
8021                         }
8022                         break;
8023                 default:
8024                         reason_valid = 0;
8025                         snprintf(buf, sizeof(buf), "reserved%lld", info);
8026                         extra = buf;
8027                         break;
8028                 }
8029
8030                 if (reason_valid && !do_bounce) {
8031                         do_bounce = ppd->port_error_action &
8032                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8033                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8034                 }
8035
8036                 /* just report this */
8037                 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8038                                         extra);
8039                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8040         }
8041
8042         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8043                 u8 reason_valid = 1;
8044
8045                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8046                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8047                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8048                 if (!(dd->err_info_rcvport.status_and_code &
8049                       OPA_EI_STATUS_SMASK)) {
8050                         dd->err_info_rcvport.status_and_code =
8051                                 info & OPA_EI_CODE_SMASK;
8052                         /* set status bit */
8053                         dd->err_info_rcvport.status_and_code |=
8054                                 OPA_EI_STATUS_SMASK;
8055                         /*
8056                          * save first 2 flits in the packet that caused
8057                          * the error
8058                          */
8059                         dd->err_info_rcvport.packet_flit1 = hdr0;
8060                         dd->err_info_rcvport.packet_flit2 = hdr1;
8061                 }
8062                 switch (info) {
8063                 case 1:
8064                 case 2:
8065                 case 3:
8066                 case 4:
8067                 case 5:
8068                 case 6:
8069                 case 7:
8070                 case 9:
8071                 case 11:
8072                 case 12:
8073                         extra = port_rcv_txt[info];
8074                         break;
8075                 default:
8076                         reason_valid = 0;
8077                         snprintf(buf, sizeof(buf), "reserved%lld", info);
8078                         extra = buf;
8079                         break;
8080                 }
8081
8082                 if (reason_valid && !do_bounce) {
8083                         do_bounce = ppd->port_error_action &
8084                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8085                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8086                 }
8087
8088                 /* just report this */
8089                 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8090                                         "               hdr0 0x%llx, hdr1 0x%llx\n",
8091                                         extra, hdr0, hdr1);
8092
8093                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8094         }
8095
8096         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8097                 /* informative only */
8098                 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8099                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8100         }
8101         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8102                 /* informative only */
8103                 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8104                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8105         }
8106
8107         if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8108                 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8109
8110         /* report any remaining errors */
8111         if (reg)
8112                 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8113                                         dcc_err_string(buf, sizeof(buf), reg));
8114
8115         if (lcl_reason == 0)
8116                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8117
8118         if (do_bounce) {
8119                 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8120                                         __func__);
8121                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8122                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
8123         }
8124 }
8125
8126 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8127 {
8128         char buf[96];
8129
8130         dd_dev_info(dd, "LCB Error: %s\n",
8131                     lcb_err_string(buf, sizeof(buf), reg));
8132 }
8133
8134 /*
8135  * CCE block DC interrupt.  Source is < 8.
8136  */
8137 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8138 {
8139         const struct err_reg_info *eri = &dc_errs[source];
8140
8141         if (eri->handler) {
8142                 interrupt_clear_down(dd, 0, eri);
8143         } else if (source == 3 /* dc_lbm_int */) {
8144                 /*
8145                  * This indicates that a parity error has occurred on the
8146                  * address/control lines presented to the LBM.  The error
8147                  * is a single pulse, there is no associated error flag,
8148                  * and it is non-maskable.  This is because if a parity
8149                  * error occurs on the request the request is dropped.
8150                  * This should never occur, but it is nice to know if it
8151                  * ever does.
8152                  */
8153                 dd_dev_err(dd, "Parity error in DC LBM block\n");
8154         } else {
8155                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8156         }
8157 }
8158
8159 /*
8160  * TX block send credit interrupt.  Source is < 160.
8161  */
8162 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8163 {
8164         sc_group_release_update(dd, source);
8165 }
8166
8167 /*
8168  * TX block SDMA interrupt.  Source is < 48.
8169  *
8170  * SDMA interrupts are grouped by type:
8171  *
8172  *       0 -  N-1 = SDma
8173  *       N - 2N-1 = SDmaProgress
8174  *      2N - 3N-1 = SDmaIdle
8175  */
8176 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8177 {
8178         /* what interrupt */
8179         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8180         /* which engine */
8181         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8182
8183 #ifdef CONFIG_SDMA_VERBOSITY
8184         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8185                    slashstrip(__FILE__), __LINE__, __func__);
8186         sdma_dumpstate(&dd->per_sdma[which]);
8187 #endif
8188
8189         if (likely(what < 3 && which < dd->num_sdma)) {
8190                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8191         } else {
8192                 /* should not happen */
8193                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8194         }
8195 }
8196
8197 /**
8198  * is_rcv_avail_int() - User receive context available IRQ handler
8199  * @dd: valid dd
8200  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8201  *
8202  * RX block receive available interrupt.  Source is < 160.
8203  *
8204  * This is the general interrupt handler for user (PSM) receive contexts,
8205  * and can only be used for non-threaded IRQs.
8206  */
8207 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8208 {
8209         struct hfi1_ctxtdata *rcd;
8210         char *err_detail;
8211
8212         if (likely(source < dd->num_rcv_contexts)) {
8213                 rcd = hfi1_rcd_get_by_index(dd, source);
8214                 if (rcd) {
8215                         handle_user_interrupt(rcd);
8216                         hfi1_rcd_put(rcd);
8217                         return; /* OK */
8218                 }
8219                 /* received an interrupt, but no rcd */
8220                 err_detail = "dataless";
8221         } else {
8222                 /* received an interrupt, but are not using that context */
8223                 err_detail = "out of range";
8224         }
8225         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8226                    err_detail, source);
8227 }
8228
8229 /**
8230  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8231  * @dd: valid dd
8232  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8233  *
8234  * RX block receive urgent interrupt.  Source is < 160.
8235  *
8236  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8237  */
8238 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8239 {
8240         struct hfi1_ctxtdata *rcd;
8241         char *err_detail;
8242
8243         if (likely(source < dd->num_rcv_contexts)) {
8244                 rcd = hfi1_rcd_get_by_index(dd, source);
8245                 if (rcd) {
8246                         handle_user_interrupt(rcd);
8247                         hfi1_rcd_put(rcd);
8248                         return; /* OK */
8249                 }
8250                 /* received an interrupt, but no rcd */
8251                 err_detail = "dataless";
8252         } else {
8253                 /* received an interrupt, but are not using that context */
8254                 err_detail = "out of range";
8255         }
8256         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8257                    err_detail, source);
8258 }
8259
8260 /*
8261  * Reserved range interrupt.  Should not be called in normal operation.
8262  */
8263 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8264 {
8265         char name[64];
8266
8267         dd_dev_err(dd, "unexpected %s interrupt\n",
8268                    is_reserved_name(name, sizeof(name), source));
8269 }
8270
8271 static const struct is_table is_table[] = {
8272 /*
8273  * start                 end
8274  *                              name func               interrupt func
8275  */
8276 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8277                                 is_misc_err_name,       is_misc_err_int },
8278 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8279                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8280 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8281                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8282 { IS_SDMA_START,             IS_SDMA_IDLE_END,
8283                                 is_sdma_eng_name,       is_sdma_eng_int },
8284 { IS_VARIOUS_START,          IS_VARIOUS_END,
8285                                 is_various_name,        is_various_int },
8286 { IS_DC_START,       IS_DC_END,
8287                                 is_dc_name,             is_dc_int },
8288 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8289                                 is_rcv_avail_name,      is_rcv_avail_int },
8290 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8291                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8292 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8293                                 is_send_credit_name,    is_send_credit_int},
8294 { IS_RESERVED_START,     IS_RESERVED_END,
8295                                 is_reserved_name,       is_reserved_int},
8296 };
8297
8298 /*
8299  * Interrupt source interrupt - called when the given source has an interrupt.
8300  * Source is a bit index into an array of 64-bit integers.
8301  */
8302 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8303 {
8304         const struct is_table *entry;
8305
8306         /* avoids a double compare by walking the table in-order */
8307         for (entry = &is_table[0]; entry->is_name; entry++) {
8308                 if (source <= entry->end) {
8309                         trace_hfi1_interrupt(dd, entry, source);
8310                         entry->is_int(dd, source - entry->start);
8311                         return;
8312                 }
8313         }
8314         /* fell off the end */
8315         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8316 }
8317
8318 /**
8319  * gerneral_interrupt() -  General interrupt handler
8320  * @irq: MSIx IRQ vector
8321  * @data: hfi1 devdata
8322  *
8323  * This is able to correctly handle all non-threaded interrupts.  Receive
8324  * context DATA IRQs are threaded and are not supported by this handler.
8325  *
8326  */
8327 irqreturn_t general_interrupt(int irq, void *data)
8328 {
8329         struct hfi1_devdata *dd = data;
8330         u64 regs[CCE_NUM_INT_CSRS];
8331         u32 bit;
8332         int i;
8333         irqreturn_t handled = IRQ_NONE;
8334
8335         this_cpu_inc(*dd->int_counter);
8336
8337         /* phase 1: scan and clear all handled interrupts */
8338         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8339                 if (dd->gi_mask[i] == 0) {
8340                         regs[i] = 0;    /* used later */
8341                         continue;
8342                 }
8343                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8344                                 dd->gi_mask[i];
8345                 /* only clear if anything is set */
8346                 if (regs[i])
8347                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8348         }
8349
8350         /* phase 2: call the appropriate handler */
8351         for_each_set_bit(bit, (unsigned long *)&regs[0],
8352                          CCE_NUM_INT_CSRS * 64) {
8353                 is_interrupt(dd, bit);
8354                 handled = IRQ_HANDLED;
8355         }
8356
8357         return handled;
8358 }
8359
8360 irqreturn_t sdma_interrupt(int irq, void *data)
8361 {
8362         struct sdma_engine *sde = data;
8363         struct hfi1_devdata *dd = sde->dd;
8364         u64 status;
8365
8366 #ifdef CONFIG_SDMA_VERBOSITY
8367         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8368                    slashstrip(__FILE__), __LINE__, __func__);
8369         sdma_dumpstate(sde);
8370 #endif
8371
8372         this_cpu_inc(*dd->int_counter);
8373
8374         /* This read_csr is really bad in the hot path */
8375         status = read_csr(dd,
8376                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8377                           & sde->imask;
8378         if (likely(status)) {
8379                 /* clear the interrupt(s) */
8380                 write_csr(dd,
8381                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8382                           status);
8383
8384                 /* handle the interrupt(s) */
8385                 sdma_engine_interrupt(sde, status);
8386         } else {
8387                 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8388                                         sde->this_idx);
8389         }
8390         return IRQ_HANDLED;
8391 }
8392
8393 /*
8394  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8395  * to insure that the write completed.  This does NOT guarantee that
8396  * queued DMA writes to memory from the chip are pushed.
8397  */
8398 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8399 {
8400         struct hfi1_devdata *dd = rcd->dd;
8401         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8402
8403         write_csr(dd, addr, rcd->imask);
8404         /* force the above write on the chip and get a value back */
8405         (void)read_csr(dd, addr);
8406 }
8407
8408 /* force the receive interrupt */
8409 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8410 {
8411         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8412 }
8413
8414 /*
8415  * Return non-zero if a packet is present.
8416  *
8417  * This routine is called when rechecking for packets after the RcvAvail
8418  * interrupt has been cleared down.  First, do a quick check of memory for
8419  * a packet present.  If not found, use an expensive CSR read of the context
8420  * tail to determine the actual tail.  The CSR read is necessary because there
8421  * is no method to push pending DMAs to memory other than an interrupt and we
8422  * are trying to determine if we need to force an interrupt.
8423  */
8424 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8425 {
8426         u32 tail;
8427
8428         if (hfi1_packet_present(rcd))
8429                 return 1;
8430
8431         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8432         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8433         return hfi1_rcd_head(rcd) != tail;
8434 }
8435
8436 /**
8437  * Common code for receive contexts interrupt handlers.
8438  * Update traces, increment kernel IRQ counter and
8439  * setup ASPM when needed.
8440  */
8441 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8442 {
8443         struct hfi1_devdata *dd = rcd->dd;
8444
8445         trace_hfi1_receive_interrupt(dd, rcd);
8446         this_cpu_inc(*dd->int_counter);
8447         aspm_ctx_disable(rcd);
8448 }
8449
8450 /**
8451  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8452  * when there are packets present in the queue. When calling
8453  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8454  *
8455  * @rcd: valid receive context
8456  */
8457 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8458 {
8459         if (!rcd->rcvhdrq)
8460                 return;
8461         clear_recv_intr(rcd);
8462         if (check_packet_present(rcd))
8463                 force_recv_intr(rcd);
8464 }
8465
8466 /**
8467  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8468  *
8469  * @rcd: Ptr to hfi1_ctxtdata of receive context
8470  *
8471  *  Hold IRQs so we can safely clear the interrupt and
8472  *  recheck for a packet that may have arrived after the previous
8473  *  check and the interrupt clear.  If a packet arrived, force another
8474  *  interrupt. This routine can be called at the end of receive packet
8475  *  processing in interrupt service routines, interrupt service thread
8476  *  and softirqs
8477  */
8478 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8479 {
8480         unsigned long flags;
8481
8482         local_irq_save(flags);
8483         __hfi1_rcd_eoi_intr(rcd);
8484         local_irq_restore(flags);
8485 }
8486
8487 /**
8488  * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8489  * @napi - pointer to napi object
8490  * @budget - netdev budget
8491  */
8492 int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8493 {
8494         struct hfi1_netdev_rxq *rxq = container_of(napi,
8495                         struct hfi1_netdev_rxq, napi);
8496         struct hfi1_ctxtdata *rcd = rxq->rcd;
8497         int work_done = 0;
8498
8499         work_done = rcd->do_interrupt(rcd, budget);
8500
8501         if (work_done < budget) {
8502                 napi_complete_done(napi, work_done);
8503                 hfi1_rcd_eoi_intr(rcd);
8504         }
8505
8506         return work_done;
8507 }
8508
8509 /* Receive packet napi handler for netdevs VNIC and AIP  */
8510 irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8511 {
8512         struct hfi1_ctxtdata *rcd = data;
8513
8514         receive_interrupt_common(rcd);
8515
8516         if (likely(rcd->napi)) {
8517                 if (likely(napi_schedule_prep(rcd->napi)))
8518                         __napi_schedule_irqoff(rcd->napi);
8519                 else
8520                         __hfi1_rcd_eoi_intr(rcd);
8521         } else {
8522                 WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8523                           rcd->ctxt);
8524                 __hfi1_rcd_eoi_intr(rcd);
8525         }
8526
8527         return IRQ_HANDLED;
8528 }
8529
8530 /*
8531  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8532  * This routine will try to handle packets immediately (latency), but if
8533  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8534  * chip receive interrupt is *not* cleared down until this or the thread (if
8535  * invoked) is finished.  The intent is to avoid extra interrupts while we
8536  * are processing packets anyway.
8537  */
8538 irqreturn_t receive_context_interrupt(int irq, void *data)
8539 {
8540         struct hfi1_ctxtdata *rcd = data;
8541         int disposition;
8542
8543         receive_interrupt_common(rcd);
8544
8545         /* receive interrupt remains blocked while processing packets */
8546         disposition = rcd->do_interrupt(rcd, 0);
8547
8548         /*
8549          * Too many packets were seen while processing packets in this
8550          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8551          * remains blocked.
8552          */
8553         if (disposition == RCV_PKT_LIMIT)
8554                 return IRQ_WAKE_THREAD;
8555
8556         __hfi1_rcd_eoi_intr(rcd);
8557         return IRQ_HANDLED;
8558 }
8559
8560 /*
8561  * Receive packet thread handler.  This expects to be invoked with the
8562  * receive interrupt still blocked.
8563  */
8564 irqreturn_t receive_context_thread(int irq, void *data)
8565 {
8566         struct hfi1_ctxtdata *rcd = data;
8567
8568         /* receive interrupt is still blocked from the IRQ handler */
8569         (void)rcd->do_interrupt(rcd, 1);
8570
8571         hfi1_rcd_eoi_intr(rcd);
8572
8573         return IRQ_HANDLED;
8574 }
8575
8576 /* ========================================================================= */
8577
8578 u32 read_physical_state(struct hfi1_devdata *dd)
8579 {
8580         u64 reg;
8581
8582         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8583         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8584                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8585 }
8586
8587 u32 read_logical_state(struct hfi1_devdata *dd)
8588 {
8589         u64 reg;
8590
8591         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8592         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8593                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8594 }
8595
8596 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8597 {
8598         u64 reg;
8599
8600         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8601         /* clear current state, set new state */
8602         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8603         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8604         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8605 }
8606
8607 /*
8608  * Use the 8051 to read a LCB CSR.
8609  */
8610 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8611 {
8612         u32 regno;
8613         int ret;
8614
8615         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8616                 if (acquire_lcb_access(dd, 0) == 0) {
8617                         *data = read_csr(dd, addr);
8618                         release_lcb_access(dd, 0);
8619                         return 0;
8620                 }
8621                 return -EBUSY;
8622         }
8623
8624         /* register is an index of LCB registers: (offset - base) / 8 */
8625         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8626         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8627         if (ret != HCMD_SUCCESS)
8628                 return -EBUSY;
8629         return 0;
8630 }
8631
8632 /*
8633  * Provide a cache for some of the LCB registers in case the LCB is
8634  * unavailable.
8635  * (The LCB is unavailable in certain link states, for example.)
8636  */
8637 struct lcb_datum {
8638         u32 off;
8639         u64 val;
8640 };
8641
8642 static struct lcb_datum lcb_cache[] = {
8643         { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8644         { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8645         { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8646 };
8647
8648 static void update_lcb_cache(struct hfi1_devdata *dd)
8649 {
8650         int i;
8651         int ret;
8652         u64 val;
8653
8654         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8655                 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8656
8657                 /* Update if we get good data */
8658                 if (likely(ret != -EBUSY))
8659                         lcb_cache[i].val = val;
8660         }
8661 }
8662
8663 static int read_lcb_cache(u32 off, u64 *val)
8664 {
8665         int i;
8666
8667         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8668                 if (lcb_cache[i].off == off) {
8669                         *val = lcb_cache[i].val;
8670                         return 0;
8671                 }
8672         }
8673
8674         pr_warn("%s bad offset 0x%x\n", __func__, off);
8675         return -1;
8676 }
8677
8678 /*
8679  * Read an LCB CSR.  Access may not be in host control, so check.
8680  * Return 0 on success, -EBUSY on failure.
8681  */
8682 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8683 {
8684         struct hfi1_pportdata *ppd = dd->pport;
8685
8686         /* if up, go through the 8051 for the value */
8687         if (ppd->host_link_state & HLS_UP)
8688                 return read_lcb_via_8051(dd, addr, data);
8689         /* if going up or down, check the cache, otherwise, no access */
8690         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8691                 if (read_lcb_cache(addr, data))
8692                         return -EBUSY;
8693                 return 0;
8694         }
8695
8696         /* otherwise, host has access */
8697         *data = read_csr(dd, addr);
8698         return 0;
8699 }
8700
8701 /*
8702  * Use the 8051 to write a LCB CSR.
8703  */
8704 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8705 {
8706         u32 regno;
8707         int ret;
8708
8709         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8710             (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8711                 if (acquire_lcb_access(dd, 0) == 0) {
8712                         write_csr(dd, addr, data);
8713                         release_lcb_access(dd, 0);
8714                         return 0;
8715                 }
8716                 return -EBUSY;
8717         }
8718
8719         /* register is an index of LCB registers: (offset - base) / 8 */
8720         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8721         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8722         if (ret != HCMD_SUCCESS)
8723                 return -EBUSY;
8724         return 0;
8725 }
8726
8727 /*
8728  * Write an LCB CSR.  Access may not be in host control, so check.
8729  * Return 0 on success, -EBUSY on failure.
8730  */
8731 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8732 {
8733         struct hfi1_pportdata *ppd = dd->pport;
8734
8735         /* if up, go through the 8051 for the value */
8736         if (ppd->host_link_state & HLS_UP)
8737                 return write_lcb_via_8051(dd, addr, data);
8738         /* if going up or down, no access */
8739         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8740                 return -EBUSY;
8741         /* otherwise, host has access */
8742         write_csr(dd, addr, data);
8743         return 0;
8744 }
8745
8746 /*
8747  * Returns:
8748  *      < 0 = Linux error, not able to get access
8749  *      > 0 = 8051 command RETURN_CODE
8750  */
8751 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8752                            u64 *out_data)
8753 {
8754         u64 reg, completed;
8755         int return_code;
8756         unsigned long timeout;
8757
8758         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8759
8760         mutex_lock(&dd->dc8051_lock);
8761
8762         /* We can't send any commands to the 8051 if it's in reset */
8763         if (dd->dc_shutdown) {
8764                 return_code = -ENODEV;
8765                 goto fail;
8766         }
8767
8768         /*
8769          * If an 8051 host command timed out previously, then the 8051 is
8770          * stuck.
8771          *
8772          * On first timeout, attempt to reset and restart the entire DC
8773          * block (including 8051). (Is this too big of a hammer?)
8774          *
8775          * If the 8051 times out a second time, the reset did not bring it
8776          * back to healthy life. In that case, fail any subsequent commands.
8777          */
8778         if (dd->dc8051_timed_out) {
8779                 if (dd->dc8051_timed_out > 1) {
8780                         dd_dev_err(dd,
8781                                    "Previous 8051 host command timed out, skipping command %u\n",
8782                                    type);
8783                         return_code = -ENXIO;
8784                         goto fail;
8785                 }
8786                 _dc_shutdown(dd);
8787                 _dc_start(dd);
8788         }
8789
8790         /*
8791          * If there is no timeout, then the 8051 command interface is
8792          * waiting for a command.
8793          */
8794
8795         /*
8796          * When writing a LCB CSR, out_data contains the full value to
8797          * to be written, while in_data contains the relative LCB
8798          * address in 7:0.  Do the work here, rather than the caller,
8799          * of distrubting the write data to where it needs to go:
8800          *
8801          * Write data
8802          *   39:00 -> in_data[47:8]
8803          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8804          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8805          */
8806         if (type == HCMD_WRITE_LCB_CSR) {
8807                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8808                 /* must preserve COMPLETED - it is tied to hardware */
8809                 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8810                 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8811                 reg |= ((((*out_data) >> 40) & 0xff) <<
8812                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8813                       | ((((*out_data) >> 48) & 0xffff) <<
8814                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8815                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8816         }
8817
8818         /*
8819          * Do two writes: the first to stabilize the type and req_data, the
8820          * second to activate.
8821          */
8822         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8823                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8824                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8825                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8826         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8827         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8828         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8829
8830         /* wait for completion, alternate: interrupt */
8831         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8832         while (1) {
8833                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8834                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8835                 if (completed)
8836                         break;
8837                 if (time_after(jiffies, timeout)) {
8838                         dd->dc8051_timed_out++;
8839                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8840                         if (out_data)
8841                                 *out_data = 0;
8842                         return_code = -ETIMEDOUT;
8843                         goto fail;
8844                 }
8845                 udelay(2);
8846         }
8847
8848         if (out_data) {
8849                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8850                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8851                 if (type == HCMD_READ_LCB_CSR) {
8852                         /* top 16 bits are in a different register */
8853                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8854                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8855                                 << (48
8856                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8857                 }
8858         }
8859         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8860                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8861         dd->dc8051_timed_out = 0;
8862         /*
8863          * Clear command for next user.
8864          */
8865         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8866
8867 fail:
8868         mutex_unlock(&dd->dc8051_lock);
8869         return return_code;
8870 }
8871
8872 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8873 {
8874         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8875 }
8876
8877 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8878                      u8 lane_id, u32 config_data)
8879 {
8880         u64 data;
8881         int ret;
8882
8883         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8884                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8885                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8886         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8887         if (ret != HCMD_SUCCESS) {
8888                 dd_dev_err(dd,
8889                            "load 8051 config: field id %d, lane %d, err %d\n",
8890                            (int)field_id, (int)lane_id, ret);
8891         }
8892         return ret;
8893 }
8894
8895 /*
8896  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8897  * set the result, even on error.
8898  * Return 0 on success, -errno on failure
8899  */
8900 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8901                      u32 *result)
8902 {
8903         u64 big_data;
8904         u32 addr;
8905         int ret;
8906
8907         /* address start depends on the lane_id */
8908         if (lane_id < 4)
8909                 addr = (4 * NUM_GENERAL_FIELDS)
8910                         + (lane_id * 4 * NUM_LANE_FIELDS);
8911         else
8912                 addr = 0;
8913         addr += field_id * 4;
8914
8915         /* read is in 8-byte chunks, hardware will truncate the address down */
8916         ret = read_8051_data(dd, addr, 8, &big_data);
8917
8918         if (ret == 0) {
8919                 /* extract the 4 bytes we want */
8920                 if (addr & 0x4)
8921                         *result = (u32)(big_data >> 32);
8922                 else
8923                         *result = (u32)big_data;
8924         } else {
8925                 *result = 0;
8926                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8927                            __func__, lane_id, field_id);
8928         }
8929
8930         return ret;
8931 }
8932
8933 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8934                               u8 continuous)
8935 {
8936         u32 frame;
8937
8938         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8939                 | power_management << POWER_MANAGEMENT_SHIFT;
8940         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8941                                 GENERAL_CONFIG, frame);
8942 }
8943
8944 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8945                                  u16 vl15buf, u8 crc_sizes)
8946 {
8947         u32 frame;
8948
8949         frame = (u32)vau << VAU_SHIFT
8950                 | (u32)z << Z_SHIFT
8951                 | (u32)vcu << VCU_SHIFT
8952                 | (u32)vl15buf << VL15BUF_SHIFT
8953                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8954         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8955                                 GENERAL_CONFIG, frame);
8956 }
8957
8958 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8959                                     u8 *flag_bits, u16 *link_widths)
8960 {
8961         u32 frame;
8962
8963         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8964                          &frame);
8965         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8966         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8967         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8968 }
8969
8970 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8971                                     u8 misc_bits,
8972                                     u8 flag_bits,
8973                                     u16 link_widths)
8974 {
8975         u32 frame;
8976
8977         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8978                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8979                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8980         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8981                      frame);
8982 }
8983
8984 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8985                                  u8 device_rev)
8986 {
8987         u32 frame;
8988
8989         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8990                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8991         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8992 }
8993
8994 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8995                                   u8 *device_rev)
8996 {
8997         u32 frame;
8998
8999         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
9000         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
9001         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
9002                         & REMOTE_DEVICE_REV_MASK;
9003 }
9004
9005 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
9006 {
9007         u32 frame;
9008         u32 mask;
9009
9010         mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
9011         read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
9012         /* Clear, then set field */
9013         frame &= ~mask;
9014         frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
9015         return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
9016                                 frame);
9017 }
9018
9019 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
9020                       u8 *ver_patch)
9021 {
9022         u32 frame;
9023
9024         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
9025         *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
9026                 STS_FM_VERSION_MAJOR_MASK;
9027         *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
9028                 STS_FM_VERSION_MINOR_MASK;
9029
9030         read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
9031         *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
9032                 STS_FM_VERSION_PATCH_MASK;
9033 }
9034
9035 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
9036                                u8 *continuous)
9037 {
9038         u32 frame;
9039
9040         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
9041         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9042                                         & POWER_MANAGEMENT_MASK;
9043         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9044                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9045 }
9046
9047 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9048                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9049 {
9050         u32 frame;
9051
9052         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9053         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
9054         *z = (frame >> Z_SHIFT) & Z_MASK;
9055         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9056         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9057         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9058 }
9059
9060 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9061                                       u8 *remote_tx_rate,
9062                                       u16 *link_widths)
9063 {
9064         u32 frame;
9065
9066         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9067                          &frame);
9068         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9069                                 & REMOTE_TX_RATE_MASK;
9070         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9071 }
9072
9073 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9074 {
9075         u32 frame;
9076
9077         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9078         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9079 }
9080
9081 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9082 {
9083         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9084 }
9085
9086 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9087 {
9088         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9089 }
9090
9091 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9092 {
9093         u32 frame;
9094         int ret;
9095
9096         *link_quality = 0;
9097         if (dd->pport->host_link_state & HLS_UP) {
9098                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9099                                        &frame);
9100                 if (ret == 0)
9101                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
9102                                                 & LINK_QUALITY_MASK;
9103         }
9104 }
9105
9106 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9107 {
9108         u32 frame;
9109
9110         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9111         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9112 }
9113
9114 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9115 {
9116         u32 frame;
9117
9118         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9119         *ldr = (frame & 0xff);
9120 }
9121
9122 static int read_tx_settings(struct hfi1_devdata *dd,
9123                             u8 *enable_lane_tx,
9124                             u8 *tx_polarity_inversion,
9125                             u8 *rx_polarity_inversion,
9126                             u8 *max_rate)
9127 {
9128         u32 frame;
9129         int ret;
9130
9131         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9132         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9133                                 & ENABLE_LANE_TX_MASK;
9134         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9135                                 & TX_POLARITY_INVERSION_MASK;
9136         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9137                                 & RX_POLARITY_INVERSION_MASK;
9138         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9139         return ret;
9140 }
9141
9142 static int write_tx_settings(struct hfi1_devdata *dd,
9143                              u8 enable_lane_tx,
9144                              u8 tx_polarity_inversion,
9145                              u8 rx_polarity_inversion,
9146                              u8 max_rate)
9147 {
9148         u32 frame;
9149
9150         /* no need to mask, all variable sizes match field widths */
9151         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9152                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9153                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9154                 | max_rate << MAX_RATE_SHIFT;
9155         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9156 }
9157
9158 /*
9159  * Read an idle LCB message.
9160  *
9161  * Returns 0 on success, -EINVAL on error
9162  */
9163 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9164 {
9165         int ret;
9166
9167         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9168         if (ret != HCMD_SUCCESS) {
9169                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
9170                            (u32)type, ret);
9171                 return -EINVAL;
9172         }
9173         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9174         /* return only the payload as we already know the type */
9175         *data_out >>= IDLE_PAYLOAD_SHIFT;
9176         return 0;
9177 }
9178
9179 /*
9180  * Read an idle SMA message.  To be done in response to a notification from
9181  * the 8051.
9182  *
9183  * Returns 0 on success, -EINVAL on error
9184  */
9185 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9186 {
9187         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9188                                  data);
9189 }
9190
9191 /*
9192  * Send an idle LCB message.
9193  *
9194  * Returns 0 on success, -EINVAL on error
9195  */
9196 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9197 {
9198         int ret;
9199
9200         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9201         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9202         if (ret != HCMD_SUCCESS) {
9203                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9204                            data, ret);
9205                 return -EINVAL;
9206         }
9207         return 0;
9208 }
9209
9210 /*
9211  * Send an idle SMA message.
9212  *
9213  * Returns 0 on success, -EINVAL on error
9214  */
9215 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9216 {
9217         u64 data;
9218
9219         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9220                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9221         return send_idle_message(dd, data);
9222 }
9223
9224 /*
9225  * Initialize the LCB then do a quick link up.  This may or may not be
9226  * in loopback.
9227  *
9228  * return 0 on success, -errno on error
9229  */
9230 static int do_quick_linkup(struct hfi1_devdata *dd)
9231 {
9232         int ret;
9233
9234         lcb_shutdown(dd, 0);
9235
9236         if (loopback) {
9237                 /* LCB_CFG_LOOPBACK.VAL = 2 */
9238                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9239                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9240                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9241                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9242         }
9243
9244         /* start the LCBs */
9245         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9246         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9247
9248         /* simulator only loopback steps */
9249         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9250                 /* LCB_CFG_RUN.EN = 1 */
9251                 write_csr(dd, DC_LCB_CFG_RUN,
9252                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9253
9254                 ret = wait_link_transfer_active(dd, 10);
9255                 if (ret)
9256                         return ret;
9257
9258                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9259                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9260         }
9261
9262         if (!loopback) {
9263                 /*
9264                  * When doing quick linkup and not in loopback, both
9265                  * sides must be done with LCB set-up before either
9266                  * starts the quick linkup.  Put a delay here so that
9267                  * both sides can be started and have a chance to be
9268                  * done with LCB set up before resuming.
9269                  */
9270                 dd_dev_err(dd,
9271                            "Pausing for peer to be finished with LCB set up\n");
9272                 msleep(5000);
9273                 dd_dev_err(dd, "Continuing with quick linkup\n");
9274         }
9275
9276         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9277         set_8051_lcb_access(dd);
9278
9279         /*
9280          * State "quick" LinkUp request sets the physical link state to
9281          * LinkUp without a verify capability sequence.
9282          * This state is in simulator v37 and later.
9283          */
9284         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9285         if (ret != HCMD_SUCCESS) {
9286                 dd_dev_err(dd,
9287                            "%s: set physical link state to quick LinkUp failed with return %d\n",
9288                            __func__, ret);
9289
9290                 set_host_lcb_access(dd);
9291                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9292
9293                 if (ret >= 0)
9294                         ret = -EINVAL;
9295                 return ret;
9296         }
9297
9298         return 0; /* success */
9299 }
9300
9301 /*
9302  * Do all special steps to set up loopback.
9303  */
9304 static int init_loopback(struct hfi1_devdata *dd)
9305 {
9306         dd_dev_info(dd, "Entering loopback mode\n");
9307
9308         /* all loopbacks should disable self GUID check */
9309         write_csr(dd, DC_DC8051_CFG_MODE,
9310                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9311
9312         /*
9313          * The simulator has only one loopback option - LCB.  Switch
9314          * to that option, which includes quick link up.
9315          *
9316          * Accept all valid loopback values.
9317          */
9318         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9319             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9320              loopback == LOOPBACK_CABLE)) {
9321                 loopback = LOOPBACK_LCB;
9322                 quick_linkup = 1;
9323                 return 0;
9324         }
9325
9326         /*
9327          * SerDes loopback init sequence is handled in set_local_link_attributes
9328          */
9329         if (loopback == LOOPBACK_SERDES)
9330                 return 0;
9331
9332         /* LCB loopback - handled at poll time */
9333         if (loopback == LOOPBACK_LCB) {
9334                 quick_linkup = 1; /* LCB is always quick linkup */
9335
9336                 /* not supported in emulation due to emulation RTL changes */
9337                 if (dd->icode == ICODE_FPGA_EMULATION) {
9338                         dd_dev_err(dd,
9339                                    "LCB loopback not supported in emulation\n");
9340                         return -EINVAL;
9341                 }
9342                 return 0;
9343         }
9344
9345         /* external cable loopback requires no extra steps */
9346         if (loopback == LOOPBACK_CABLE)
9347                 return 0;
9348
9349         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9350         return -EINVAL;
9351 }
9352
9353 /*
9354  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9355  * used in the Verify Capability link width attribute.
9356  */
9357 static u16 opa_to_vc_link_widths(u16 opa_widths)
9358 {
9359         int i;
9360         u16 result = 0;
9361
9362         static const struct link_bits {
9363                 u16 from;
9364                 u16 to;
9365         } opa_link_xlate[] = {
9366                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9367                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9368                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9369                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9370         };
9371
9372         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9373                 if (opa_widths & opa_link_xlate[i].from)
9374                         result |= opa_link_xlate[i].to;
9375         }
9376         return result;
9377 }
9378
9379 /*
9380  * Set link attributes before moving to polling.
9381  */
9382 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9383 {
9384         struct hfi1_devdata *dd = ppd->dd;
9385         u8 enable_lane_tx;
9386         u8 tx_polarity_inversion;
9387         u8 rx_polarity_inversion;
9388         int ret;
9389         u32 misc_bits = 0;
9390         /* reset our fabric serdes to clear any lingering problems */
9391         fabric_serdes_reset(dd);
9392
9393         /* set the local tx rate - need to read-modify-write */
9394         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9395                                &rx_polarity_inversion, &ppd->local_tx_rate);
9396         if (ret)
9397                 goto set_local_link_attributes_fail;
9398
9399         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9400                 /* set the tx rate to the fastest enabled */
9401                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9402                         ppd->local_tx_rate = 1;
9403                 else
9404                         ppd->local_tx_rate = 0;
9405         } else {
9406                 /* set the tx rate to all enabled */
9407                 ppd->local_tx_rate = 0;
9408                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9409                         ppd->local_tx_rate |= 2;
9410                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9411                         ppd->local_tx_rate |= 1;
9412         }
9413
9414         enable_lane_tx = 0xF; /* enable all four lanes */
9415         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9416                                 rx_polarity_inversion, ppd->local_tx_rate);
9417         if (ret != HCMD_SUCCESS)
9418                 goto set_local_link_attributes_fail;
9419
9420         ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9421         if (ret != HCMD_SUCCESS) {
9422                 dd_dev_err(dd,
9423                            "Failed to set host interface version, return 0x%x\n",
9424                            ret);
9425                 goto set_local_link_attributes_fail;
9426         }
9427
9428         /*
9429          * DC supports continuous updates.
9430          */
9431         ret = write_vc_local_phy(dd,
9432                                  0 /* no power management */,
9433                                  1 /* continuous updates */);
9434         if (ret != HCMD_SUCCESS)
9435                 goto set_local_link_attributes_fail;
9436
9437         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9438         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9439                                     ppd->port_crc_mode_enabled);
9440         if (ret != HCMD_SUCCESS)
9441                 goto set_local_link_attributes_fail;
9442
9443         /*
9444          * SerDes loopback init sequence requires
9445          * setting bit 0 of MISC_CONFIG_BITS
9446          */
9447         if (loopback == LOOPBACK_SERDES)
9448                 misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9449
9450         /*
9451          * An external device configuration request is used to reset the LCB
9452          * to retry to obtain operational lanes when the first attempt is
9453          * unsuccesful.
9454          */
9455         if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9456                 misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9457
9458         ret = write_vc_local_link_mode(dd, misc_bits, 0,
9459                                        opa_to_vc_link_widths(
9460                                                 ppd->link_width_enabled));
9461         if (ret != HCMD_SUCCESS)
9462                 goto set_local_link_attributes_fail;
9463
9464         /* let peer know who we are */
9465         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9466         if (ret == HCMD_SUCCESS)
9467                 return 0;
9468
9469 set_local_link_attributes_fail:
9470         dd_dev_err(dd,
9471                    "Failed to set local link attributes, return 0x%x\n",
9472                    ret);
9473         return ret;
9474 }
9475
9476 /*
9477  * Call this to start the link.
9478  * Do not do anything if the link is disabled.
9479  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9480  */
9481 int start_link(struct hfi1_pportdata *ppd)
9482 {
9483         /*
9484          * Tune the SerDes to a ballpark setting for optimal signal and bit
9485          * error rate.  Needs to be done before starting the link.
9486          */
9487         tune_serdes(ppd);
9488
9489         if (!ppd->driver_link_ready) {
9490                 dd_dev_info(ppd->dd,
9491                             "%s: stopping link start because driver is not ready\n",
9492                             __func__);
9493                 return 0;
9494         }
9495
9496         /*
9497          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9498          * pkey table can be configured properly if the HFI unit is connected
9499          * to switch port with MgmtAllowed=NO
9500          */
9501         clear_full_mgmt_pkey(ppd);
9502
9503         return set_link_state(ppd, HLS_DN_POLL);
9504 }
9505
9506 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9507 {
9508         struct hfi1_devdata *dd = ppd->dd;
9509         u64 mask;
9510         unsigned long timeout;
9511
9512         /*
9513          * Some QSFP cables have a quirk that asserts the IntN line as a side
9514          * effect of power up on plug-in. We ignore this false positive
9515          * interrupt until the module has finished powering up by waiting for
9516          * a minimum timeout of the module inrush initialization time of
9517          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9518          * module have stabilized.
9519          */
9520         msleep(500);
9521
9522         /*
9523          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9524          */
9525         timeout = jiffies + msecs_to_jiffies(2000);
9526         while (1) {
9527                 mask = read_csr(dd, dd->hfi1_id ?
9528                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9529                 if (!(mask & QSFP_HFI0_INT_N))
9530                         break;
9531                 if (time_after(jiffies, timeout)) {
9532                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9533                                     __func__);
9534                         break;
9535                 }
9536                 udelay(2);
9537         }
9538 }
9539
9540 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9541 {
9542         struct hfi1_devdata *dd = ppd->dd;
9543         u64 mask;
9544
9545         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9546         if (enable) {
9547                 /*
9548                  * Clear the status register to avoid an immediate interrupt
9549                  * when we re-enable the IntN pin
9550                  */
9551                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9552                           QSFP_HFI0_INT_N);
9553                 mask |= (u64)QSFP_HFI0_INT_N;
9554         } else {
9555                 mask &= ~(u64)QSFP_HFI0_INT_N;
9556         }
9557         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9558 }
9559
9560 int reset_qsfp(struct hfi1_pportdata *ppd)
9561 {
9562         struct hfi1_devdata *dd = ppd->dd;
9563         u64 mask, qsfp_mask;
9564
9565         /* Disable INT_N from triggering QSFP interrupts */
9566         set_qsfp_int_n(ppd, 0);
9567
9568         /* Reset the QSFP */
9569         mask = (u64)QSFP_HFI0_RESET_N;
9570
9571         qsfp_mask = read_csr(dd,
9572                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9573         qsfp_mask &= ~mask;
9574         write_csr(dd,
9575                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9576
9577         udelay(10);
9578
9579         qsfp_mask |= mask;
9580         write_csr(dd,
9581                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9582
9583         wait_for_qsfp_init(ppd);
9584
9585         /*
9586          * Allow INT_N to trigger the QSFP interrupt to watch
9587          * for alarms and warnings
9588          */
9589         set_qsfp_int_n(ppd, 1);
9590
9591         /*
9592          * After the reset, AOC transmitters are enabled by default. They need
9593          * to be turned off to complete the QSFP setup before they can be
9594          * enabled again.
9595          */
9596         return set_qsfp_tx(ppd, 0);
9597 }
9598
9599 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9600                                         u8 *qsfp_interrupt_status)
9601 {
9602         struct hfi1_devdata *dd = ppd->dd;
9603
9604         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9605             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9606                 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9607                            __func__);
9608
9609         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9610             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9611                 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9612                            __func__);
9613
9614         /*
9615          * The remaining alarms/warnings don't matter if the link is down.
9616          */
9617         if (ppd->host_link_state & HLS_DOWN)
9618                 return 0;
9619
9620         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9621             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9622                 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9623                            __func__);
9624
9625         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9626             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9627                 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9628                            __func__);
9629
9630         /* Byte 2 is vendor specific */
9631
9632         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9633             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9634                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9635                            __func__);
9636
9637         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9638             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9639                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9640                            __func__);
9641
9642         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9643             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9644                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9645                            __func__);
9646
9647         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9648             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9649                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9650                            __func__);
9651
9652         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9653             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9654                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9655                            __func__);
9656
9657         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9658             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9659                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9660                            __func__);
9661
9662         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9663             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9664                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9665                            __func__);
9666
9667         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9668             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9669                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9670                            __func__);
9671
9672         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9673             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9674                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9675                            __func__);
9676
9677         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9678             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9679                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9680                            __func__);
9681
9682         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9683             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9684                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9685                            __func__);
9686
9687         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9688             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9689                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9690                            __func__);
9691
9692         /* Bytes 9-10 and 11-12 are reserved */
9693         /* Bytes 13-15 are vendor specific */
9694
9695         return 0;
9696 }
9697
9698 /* This routine will only be scheduled if the QSFP module present is asserted */
9699 void qsfp_event(struct work_struct *work)
9700 {
9701         struct qsfp_data *qd;
9702         struct hfi1_pportdata *ppd;
9703         struct hfi1_devdata *dd;
9704
9705         qd = container_of(work, struct qsfp_data, qsfp_work);
9706         ppd = qd->ppd;
9707         dd = ppd->dd;
9708
9709         /* Sanity check */
9710         if (!qsfp_mod_present(ppd))
9711                 return;
9712
9713         if (ppd->host_link_state == HLS_DN_DISABLE) {
9714                 dd_dev_info(ppd->dd,
9715                             "%s: stopping link start because link is disabled\n",
9716                             __func__);
9717                 return;
9718         }
9719
9720         /*
9721          * Turn DC back on after cable has been re-inserted. Up until
9722          * now, the DC has been in reset to save power.
9723          */
9724         dc_start(dd);
9725
9726         if (qd->cache_refresh_required) {
9727                 set_qsfp_int_n(ppd, 0);
9728
9729                 wait_for_qsfp_init(ppd);
9730
9731                 /*
9732                  * Allow INT_N to trigger the QSFP interrupt to watch
9733                  * for alarms and warnings
9734                  */
9735                 set_qsfp_int_n(ppd, 1);
9736
9737                 start_link(ppd);
9738         }
9739
9740         if (qd->check_interrupt_flags) {
9741                 u8 qsfp_interrupt_status[16] = {0,};
9742
9743                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9744                                   &qsfp_interrupt_status[0], 16) != 16) {
9745                         dd_dev_info(dd,
9746                                     "%s: Failed to read status of QSFP module\n",
9747                                     __func__);
9748                 } else {
9749                         unsigned long flags;
9750
9751                         handle_qsfp_error_conditions(
9752                                         ppd, qsfp_interrupt_status);
9753                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9754                         ppd->qsfp_info.check_interrupt_flags = 0;
9755                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9756                                                flags);
9757                 }
9758         }
9759 }
9760
9761 void init_qsfp_int(struct hfi1_devdata *dd)
9762 {
9763         struct hfi1_pportdata *ppd = dd->pport;
9764         u64 qsfp_mask;
9765
9766         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9767         /* Clear current status to avoid spurious interrupts */
9768         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9769                   qsfp_mask);
9770         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9771                   qsfp_mask);
9772
9773         set_qsfp_int_n(ppd, 0);
9774
9775         /* Handle active low nature of INT_N and MODPRST_N pins */
9776         if (qsfp_mod_present(ppd))
9777                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9778         write_csr(dd,
9779                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9780                   qsfp_mask);
9781
9782         /* Enable the appropriate QSFP IRQ source */
9783         if (!dd->hfi1_id)
9784                 set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9785         else
9786                 set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9787 }
9788
9789 /*
9790  * Do a one-time initialize of the LCB block.
9791  */
9792 static void init_lcb(struct hfi1_devdata *dd)
9793 {
9794         /* simulator does not correctly handle LCB cclk loopback, skip */
9795         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9796                 return;
9797
9798         /* the DC has been reset earlier in the driver load */
9799
9800         /* set LCB for cclk loopback on the port */
9801         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9802         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9803         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9804         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9805         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9806         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9807         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9808 }
9809
9810 /*
9811  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9812  * on error.
9813  */
9814 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9815 {
9816         int ret;
9817         u8 status;
9818
9819         /*
9820          * Report success if not a QSFP or, if it is a QSFP, but the cable is
9821          * not present
9822          */
9823         if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9824                 return 0;
9825
9826         /* read byte 2, the status byte */
9827         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9828         if (ret < 0)
9829                 return ret;
9830         if (ret != 1)
9831                 return -EIO;
9832
9833         return 0; /* success */
9834 }
9835
9836 /*
9837  * Values for QSFP retry.
9838  *
9839  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9840  * arrived at from experience on a large cluster.
9841  */
9842 #define MAX_QSFP_RETRIES 20
9843 #define QSFP_RETRY_WAIT 500 /* msec */
9844
9845 /*
9846  * Try a QSFP read.  If it fails, schedule a retry for later.
9847  * Called on first link activation after driver load.
9848  */
9849 static void try_start_link(struct hfi1_pportdata *ppd)
9850 {
9851         if (test_qsfp_read(ppd)) {
9852                 /* read failed */
9853                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9854                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9855                         return;
9856                 }
9857                 dd_dev_info(ppd->dd,
9858                             "QSFP not responding, waiting and retrying %d\n",
9859                             (int)ppd->qsfp_retry_count);
9860                 ppd->qsfp_retry_count++;
9861                 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9862                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9863                 return;
9864         }
9865         ppd->qsfp_retry_count = 0;
9866
9867         start_link(ppd);
9868 }
9869
9870 /*
9871  * Workqueue function to start the link after a delay.
9872  */
9873 void handle_start_link(struct work_struct *work)
9874 {
9875         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9876                                                   start_link_work.work);
9877         try_start_link(ppd);
9878 }
9879
9880 int bringup_serdes(struct hfi1_pportdata *ppd)
9881 {
9882         struct hfi1_devdata *dd = ppd->dd;
9883         u64 guid;
9884         int ret;
9885
9886         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9887                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9888
9889         guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9890         if (!guid) {
9891                 if (dd->base_guid)
9892                         guid = dd->base_guid + ppd->port - 1;
9893                 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9894         }
9895
9896         /* Set linkinit_reason on power up per OPA spec */
9897         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9898
9899         /* one-time init of the LCB */
9900         init_lcb(dd);
9901
9902         if (loopback) {
9903                 ret = init_loopback(dd);
9904                 if (ret < 0)
9905                         return ret;
9906         }
9907
9908         get_port_type(ppd);
9909         if (ppd->port_type == PORT_TYPE_QSFP) {
9910                 set_qsfp_int_n(ppd, 0);
9911                 wait_for_qsfp_init(ppd);
9912                 set_qsfp_int_n(ppd, 1);
9913         }
9914
9915         try_start_link(ppd);
9916         return 0;
9917 }
9918
9919 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9920 {
9921         struct hfi1_devdata *dd = ppd->dd;
9922
9923         /*
9924          * Shut down the link and keep it down.   First turn off that the
9925          * driver wants to allow the link to be up (driver_link_ready).
9926          * Then make sure the link is not automatically restarted
9927          * (link_enabled).  Cancel any pending restart.  And finally
9928          * go offline.
9929          */
9930         ppd->driver_link_ready = 0;
9931         ppd->link_enabled = 0;
9932
9933         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9934         flush_delayed_work(&ppd->start_link_work);
9935         cancel_delayed_work_sync(&ppd->start_link_work);
9936
9937         ppd->offline_disabled_reason =
9938                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9939         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9940                              OPA_LINKDOWN_REASON_REBOOT);
9941         set_link_state(ppd, HLS_DN_OFFLINE);
9942
9943         /* disable the port */
9944         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9945         cancel_work_sync(&ppd->freeze_work);
9946 }
9947
9948 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9949 {
9950         struct hfi1_pportdata *ppd;
9951         int i;
9952
9953         ppd = (struct hfi1_pportdata *)(dd + 1);
9954         for (i = 0; i < dd->num_pports; i++, ppd++) {
9955                 ppd->ibport_data.rvp.rc_acks = NULL;
9956                 ppd->ibport_data.rvp.rc_qacks = NULL;
9957                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9958                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9959                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9960                 if (!ppd->ibport_data.rvp.rc_acks ||
9961                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9962                     !ppd->ibport_data.rvp.rc_qacks)
9963                         return -ENOMEM;
9964         }
9965
9966         return 0;
9967 }
9968
9969 /*
9970  * index is the index into the receive array
9971  */
9972 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9973                   u32 type, unsigned long pa, u16 order)
9974 {
9975         u64 reg;
9976
9977         if (!(dd->flags & HFI1_PRESENT))
9978                 goto done;
9979
9980         if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9981                 pa = 0;
9982                 order = 0;
9983         } else if (type > PT_INVALID) {
9984                 dd_dev_err(dd,
9985                            "unexpected receive array type %u for index %u, not handled\n",
9986                            type, index);
9987                 goto done;
9988         }
9989         trace_hfi1_put_tid(dd, index, type, pa, order);
9990
9991 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9992         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9993                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9994                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9995                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9996         trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9997         writeq(reg, dd->rcvarray_wc + (index * 8));
9998
9999         if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
10000                 /*
10001                  * Eager entries are written and flushed
10002                  *
10003                  * Expected entries are flushed every 4 writes
10004                  */
10005                 flush_wc();
10006 done:
10007         return;
10008 }
10009
10010 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
10011 {
10012         struct hfi1_devdata *dd = rcd->dd;
10013         u32 i;
10014
10015         /* this could be optimized */
10016         for (i = rcd->eager_base; i < rcd->eager_base +
10017                      rcd->egrbufs.alloced; i++)
10018                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10019
10020         for (i = rcd->expected_base;
10021                         i < rcd->expected_base + rcd->expected_count; i++)
10022                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10023 }
10024
10025 static const char * const ib_cfg_name_strings[] = {
10026         "HFI1_IB_CFG_LIDLMC",
10027         "HFI1_IB_CFG_LWID_DG_ENB",
10028         "HFI1_IB_CFG_LWID_ENB",
10029         "HFI1_IB_CFG_LWID",
10030         "HFI1_IB_CFG_SPD_ENB",
10031         "HFI1_IB_CFG_SPD",
10032         "HFI1_IB_CFG_RXPOL_ENB",
10033         "HFI1_IB_CFG_LREV_ENB",
10034         "HFI1_IB_CFG_LINKLATENCY",
10035         "HFI1_IB_CFG_HRTBT",
10036         "HFI1_IB_CFG_OP_VLS",
10037         "HFI1_IB_CFG_VL_HIGH_CAP",
10038         "HFI1_IB_CFG_VL_LOW_CAP",
10039         "HFI1_IB_CFG_OVERRUN_THRESH",
10040         "HFI1_IB_CFG_PHYERR_THRESH",
10041         "HFI1_IB_CFG_LINKDEFAULT",
10042         "HFI1_IB_CFG_PKEYS",
10043         "HFI1_IB_CFG_MTU",
10044         "HFI1_IB_CFG_LSTATE",
10045         "HFI1_IB_CFG_VL_HIGH_LIMIT",
10046         "HFI1_IB_CFG_PMA_TICKS",
10047         "HFI1_IB_CFG_PORT"
10048 };
10049
10050 static const char *ib_cfg_name(int which)
10051 {
10052         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10053                 return "invalid";
10054         return ib_cfg_name_strings[which];
10055 }
10056
10057 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10058 {
10059         struct hfi1_devdata *dd = ppd->dd;
10060         int val = 0;
10061
10062         switch (which) {
10063         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10064                 val = ppd->link_width_enabled;
10065                 break;
10066         case HFI1_IB_CFG_LWID: /* currently active Link-width */
10067                 val = ppd->link_width_active;
10068                 break;
10069         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10070                 val = ppd->link_speed_enabled;
10071                 break;
10072         case HFI1_IB_CFG_SPD: /* current Link speed */
10073                 val = ppd->link_speed_active;
10074                 break;
10075
10076         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10077         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10078         case HFI1_IB_CFG_LINKLATENCY:
10079                 goto unimplemented;
10080
10081         case HFI1_IB_CFG_OP_VLS:
10082                 val = ppd->actual_vls_operational;
10083                 break;
10084         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10085                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10086                 break;
10087         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10088                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10089                 break;
10090         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10091                 val = ppd->overrun_threshold;
10092                 break;
10093         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10094                 val = ppd->phy_error_threshold;
10095                 break;
10096         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10097                 val = HLS_DEFAULT;
10098                 break;
10099
10100         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10101         case HFI1_IB_CFG_PMA_TICKS:
10102         default:
10103 unimplemented:
10104                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10105                         dd_dev_info(
10106                                 dd,
10107                                 "%s: which %s: not implemented\n",
10108                                 __func__,
10109                                 ib_cfg_name(which));
10110                 break;
10111         }
10112
10113         return val;
10114 }
10115
10116 /*
10117  * The largest MAD packet size.
10118  */
10119 #define MAX_MAD_PACKET 2048
10120
10121 /*
10122  * Return the maximum header bytes that can go on the _wire_
10123  * for this device. This count includes the ICRC which is
10124  * not part of the packet held in memory but it is appended
10125  * by the HW.
10126  * This is dependent on the device's receive header entry size.
10127  * HFI allows this to be set per-receive context, but the
10128  * driver presently enforces a global value.
10129  */
10130 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10131 {
10132         /*
10133          * The maximum non-payload (MTU) bytes in LRH.PktLen are
10134          * the Receive Header Entry Size minus the PBC (or RHF) size
10135          * plus one DW for the ICRC appended by HW.
10136          *
10137          * dd->rcd[0].rcvhdrqentsize is in DW.
10138          * We use rcd[0] as all context will have the same value. Also,
10139          * the first kernel context would have been allocated by now so
10140          * we are guaranteed a valid value.
10141          */
10142         return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10143 }
10144
10145 /*
10146  * Set Send Length
10147  * @ppd - per port data
10148  *
10149  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10150  * registers compare against LRH.PktLen, so use the max bytes included
10151  * in the LRH.
10152  *
10153  * This routine changes all VL values except VL15, which it maintains at
10154  * the same value.
10155  */
10156 static void set_send_length(struct hfi1_pportdata *ppd)
10157 {
10158         struct hfi1_devdata *dd = ppd->dd;
10159         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10160         u32 maxvlmtu = dd->vld[15].mtu;
10161         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10162                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10163                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10164         int i, j;
10165         u32 thres;
10166
10167         for (i = 0; i < ppd->vls_supported; i++) {
10168                 if (dd->vld[i].mtu > maxvlmtu)
10169                         maxvlmtu = dd->vld[i].mtu;
10170                 if (i <= 3)
10171                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10172                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10173                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10174                 else
10175                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10176                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10177                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10178         }
10179         write_csr(dd, SEND_LEN_CHECK0, len1);
10180         write_csr(dd, SEND_LEN_CHECK1, len2);
10181         /* adjust kernel credit return thresholds based on new MTUs */
10182         /* all kernel receive contexts have the same hdrqentsize */
10183         for (i = 0; i < ppd->vls_supported; i++) {
10184                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10185                             sc_mtu_to_threshold(dd->vld[i].sc,
10186                                                 dd->vld[i].mtu,
10187                                                 get_hdrqentsize(dd->rcd[0])));
10188                 for (j = 0; j < INIT_SC_PER_VL; j++)
10189                         sc_set_cr_threshold(
10190                                         pio_select_send_context_vl(dd, j, i),
10191                                             thres);
10192         }
10193         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10194                     sc_mtu_to_threshold(dd->vld[15].sc,
10195                                         dd->vld[15].mtu,
10196                                         dd->rcd[0]->rcvhdrqentsize));
10197         sc_set_cr_threshold(dd->vld[15].sc, thres);
10198
10199         /* Adjust maximum MTU for the port in DC */
10200         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10201                 (ilog2(maxvlmtu >> 8) + 1);
10202         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10203         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10204         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10205                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10206         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10207 }
10208
10209 static void set_lidlmc(struct hfi1_pportdata *ppd)
10210 {
10211         int i;
10212         u64 sreg = 0;
10213         struct hfi1_devdata *dd = ppd->dd;
10214         u32 mask = ~((1U << ppd->lmc) - 1);
10215         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10216         u32 lid;
10217
10218         /*
10219          * Program 0 in CSR if port lid is extended. This prevents
10220          * 9B packets being sent out for large lids.
10221          */
10222         lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10223         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10224                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10225         c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10226                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10227               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10228                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10229         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10230
10231         /*
10232          * Iterate over all the send contexts and set their SLID check
10233          */
10234         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10235                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10236                (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10237                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10238
10239         for (i = 0; i < chip_send_contexts(dd); i++) {
10240                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10241                           i, (u32)sreg);
10242                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10243         }
10244
10245         /* Now we have to do the same thing for the sdma engines */
10246         sdma_update_lmc(dd, mask, lid);
10247 }
10248
10249 static const char *state_completed_string(u32 completed)
10250 {
10251         static const char * const state_completed[] = {
10252                 "EstablishComm",
10253                 "OptimizeEQ",
10254                 "VerifyCap"
10255         };
10256
10257         if (completed < ARRAY_SIZE(state_completed))
10258                 return state_completed[completed];
10259
10260         return "unknown";
10261 }
10262
10263 static const char all_lanes_dead_timeout_expired[] =
10264         "All lanes were inactive â€“ was the interconnect media removed?";
10265 static const char tx_out_of_policy[] =
10266         "Passing lanes on local port do not meet the local link width policy";
10267 static const char no_state_complete[] =
10268         "State timeout occurred before link partner completed the state";
10269 static const char * const state_complete_reasons[] = {
10270         [0x00] = "Reason unknown",
10271         [0x01] = "Link was halted by driver, refer to LinkDownReason",
10272         [0x02] = "Link partner reported failure",
10273         [0x10] = "Unable to achieve frame sync on any lane",
10274         [0x11] =
10275           "Unable to find a common bit rate with the link partner",
10276         [0x12] =
10277           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10278         [0x13] =
10279           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10280         [0x14] = no_state_complete,
10281         [0x15] =
10282           "State timeout occurred before link partner identified equalization presets",
10283         [0x16] =
10284           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10285         [0x17] = tx_out_of_policy,
10286         [0x20] = all_lanes_dead_timeout_expired,
10287         [0x21] =
10288           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10289         [0x22] = no_state_complete,
10290         [0x23] =
10291           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10292         [0x24] = tx_out_of_policy,
10293         [0x30] = all_lanes_dead_timeout_expired,
10294         [0x31] =
10295           "State timeout occurred waiting for host to process received frames",
10296         [0x32] = no_state_complete,
10297         [0x33] =
10298           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10299         [0x34] = tx_out_of_policy,
10300         [0x35] = "Negotiated link width is mutually exclusive",
10301         [0x36] =
10302           "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10303         [0x37] = "Unable to resolve secure data exchange",
10304 };
10305
10306 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10307                                                      u32 code)
10308 {
10309         const char *str = NULL;
10310
10311         if (code < ARRAY_SIZE(state_complete_reasons))
10312                 str = state_complete_reasons[code];
10313
10314         if (str)
10315                 return str;
10316         return "Reserved";
10317 }
10318
10319 /* describe the given last state complete frame */
10320 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10321                                   const char *prefix)
10322 {
10323         struct hfi1_devdata *dd = ppd->dd;
10324         u32 success;
10325         u32 state;
10326         u32 reason;
10327         u32 lanes;
10328
10329         /*
10330          * Decode frame:
10331          *  [ 0: 0] - success
10332          *  [ 3: 1] - state
10333          *  [ 7: 4] - next state timeout
10334          *  [15: 8] - reason code
10335          *  [31:16] - lanes
10336          */
10337         success = frame & 0x1;
10338         state = (frame >> 1) & 0x7;
10339         reason = (frame >> 8) & 0xff;
10340         lanes = (frame >> 16) & 0xffff;
10341
10342         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10343                    prefix, frame);
10344         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10345                    state_completed_string(state), state);
10346         dd_dev_err(dd, "    state successfully completed: %s\n",
10347                    success ? "yes" : "no");
10348         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10349                    reason, state_complete_reason_code_string(ppd, reason));
10350         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10351 }
10352
10353 /*
10354  * Read the last state complete frames and explain them.  This routine
10355  * expects to be called if the link went down during link negotiation
10356  * and initialization (LNI).  That is, anywhere between polling and link up.
10357  */
10358 static void check_lni_states(struct hfi1_pportdata *ppd)
10359 {
10360         u32 last_local_state;
10361         u32 last_remote_state;
10362
10363         read_last_local_state(ppd->dd, &last_local_state);
10364         read_last_remote_state(ppd->dd, &last_remote_state);
10365
10366         /*
10367          * Don't report anything if there is nothing to report.  A value of
10368          * 0 means the link was taken down while polling and there was no
10369          * training in-process.
10370          */
10371         if (last_local_state == 0 && last_remote_state == 0)
10372                 return;
10373
10374         decode_state_complete(ppd, last_local_state, "transmitted");
10375         decode_state_complete(ppd, last_remote_state, "received");
10376 }
10377
10378 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10379 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10380 {
10381         u64 reg;
10382         unsigned long timeout;
10383
10384         /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10385         timeout = jiffies + msecs_to_jiffies(wait_ms);
10386         while (1) {
10387                 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10388                 if (reg)
10389                         break;
10390                 if (time_after(jiffies, timeout)) {
10391                         dd_dev_err(dd,
10392                                    "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10393                         return -ETIMEDOUT;
10394                 }
10395                 udelay(2);
10396         }
10397         return 0;
10398 }
10399
10400 /* called when the logical link state is not down as it should be */
10401 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10402 {
10403         struct hfi1_devdata *dd = ppd->dd;
10404
10405         /*
10406          * Bring link up in LCB loopback
10407          */
10408         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10409         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10410                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10411
10412         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10413         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10414         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10415         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10416
10417         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10418         (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10419         udelay(3);
10420         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10421         write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10422
10423         wait_link_transfer_active(dd, 100);
10424
10425         /*
10426          * Bring the link down again.
10427          */
10428         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10429         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10430         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10431
10432         dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10433 }
10434
10435 /*
10436  * Helper for set_link_state().  Do not call except from that routine.
10437  * Expects ppd->hls_mutex to be held.
10438  *
10439  * @rem_reason value to be sent to the neighbor
10440  *
10441  * LinkDownReasons only set if transition succeeds.
10442  */
10443 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10444 {
10445         struct hfi1_devdata *dd = ppd->dd;
10446         u32 previous_state;
10447         int offline_state_ret;
10448         int ret;
10449
10450         update_lcb_cache(dd);
10451
10452         previous_state = ppd->host_link_state;
10453         ppd->host_link_state = HLS_GOING_OFFLINE;
10454
10455         /* start offline transition */
10456         ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10457
10458         if (ret != HCMD_SUCCESS) {
10459                 dd_dev_err(dd,
10460                            "Failed to transition to Offline link state, return %d\n",
10461                            ret);
10462                 return -EINVAL;
10463         }
10464         if (ppd->offline_disabled_reason ==
10465                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10466                 ppd->offline_disabled_reason =
10467                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10468
10469         offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10470         if (offline_state_ret < 0)
10471                 return offline_state_ret;
10472
10473         /* Disabling AOC transmitters */
10474         if (ppd->port_type == PORT_TYPE_QSFP &&
10475             ppd->qsfp_info.limiting_active &&
10476             qsfp_mod_present(ppd)) {
10477                 int ret;
10478
10479                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10480                 if (ret == 0) {
10481                         set_qsfp_tx(ppd, 0);
10482                         release_chip_resource(dd, qsfp_resource(dd));
10483                 } else {
10484                         /* not fatal, but should warn */
10485                         dd_dev_err(dd,
10486                                    "Unable to acquire lock to turn off QSFP TX\n");
10487                 }
10488         }
10489
10490         /*
10491          * Wait for the offline.Quiet transition if it hasn't happened yet. It
10492          * can take a while for the link to go down.
10493          */
10494         if (offline_state_ret != PLS_OFFLINE_QUIET) {
10495                 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10496                 if (ret < 0)
10497                         return ret;
10498         }
10499
10500         /*
10501          * Now in charge of LCB - must be after the physical state is
10502          * offline.quiet and before host_link_state is changed.
10503          */
10504         set_host_lcb_access(dd);
10505         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10506
10507         /* make sure the logical state is also down */
10508         ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10509         if (ret)
10510                 force_logical_link_state_down(ppd);
10511
10512         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10513         update_statusp(ppd, IB_PORT_DOWN);
10514
10515         /*
10516          * The LNI has a mandatory wait time after the physical state
10517          * moves to Offline.Quiet.  The wait time may be different
10518          * depending on how the link went down.  The 8051 firmware
10519          * will observe the needed wait time and only move to ready
10520          * when that is completed.  The largest of the quiet timeouts
10521          * is 6s, so wait that long and then at least 0.5s more for
10522          * other transitions, and another 0.5s for a buffer.
10523          */
10524         ret = wait_fm_ready(dd, 7000);
10525         if (ret) {
10526                 dd_dev_err(dd,
10527                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10528                 /* state is really offline, so make it so */
10529                 ppd->host_link_state = HLS_DN_OFFLINE;
10530                 return ret;
10531         }
10532
10533         /*
10534          * The state is now offline and the 8051 is ready to accept host
10535          * requests.
10536          *      - change our state
10537          *      - notify others if we were previously in a linkup state
10538          */
10539         ppd->host_link_state = HLS_DN_OFFLINE;
10540         if (previous_state & HLS_UP) {
10541                 /* went down while link was up */
10542                 handle_linkup_change(dd, 0);
10543         } else if (previous_state
10544                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10545                 /* went down while attempting link up */
10546                 check_lni_states(ppd);
10547
10548                 /* The QSFP doesn't need to be reset on LNI failure */
10549                 ppd->qsfp_info.reset_needed = 0;
10550         }
10551
10552         /* the active link width (downgrade) is 0 on link down */
10553         ppd->link_width_active = 0;
10554         ppd->link_width_downgrade_tx_active = 0;
10555         ppd->link_width_downgrade_rx_active = 0;
10556         ppd->current_egress_rate = 0;
10557         return 0;
10558 }
10559
10560 /* return the link state name */
10561 static const char *link_state_name(u32 state)
10562 {
10563         const char *name;
10564         int n = ilog2(state);
10565         static const char * const names[] = {
10566                 [__HLS_UP_INIT_BP]       = "INIT",
10567                 [__HLS_UP_ARMED_BP]      = "ARMED",
10568                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10569                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10570                 [__HLS_DN_POLL_BP]       = "POLL",
10571                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10572                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10573                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10574                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10575                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10576                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10577         };
10578
10579         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10580         return name ? name : "unknown";
10581 }
10582
10583 /* return the link state reason name */
10584 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10585 {
10586         if (state == HLS_UP_INIT) {
10587                 switch (ppd->linkinit_reason) {
10588                 case OPA_LINKINIT_REASON_LINKUP:
10589                         return "(LINKUP)";
10590                 case OPA_LINKINIT_REASON_FLAPPING:
10591                         return "(FLAPPING)";
10592                 case OPA_LINKINIT_OUTSIDE_POLICY:
10593                         return "(OUTSIDE_POLICY)";
10594                 case OPA_LINKINIT_QUARANTINED:
10595                         return "(QUARANTINED)";
10596                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10597                         return "(INSUFIC_CAPABILITY)";
10598                 default:
10599                         break;
10600                 }
10601         }
10602         return "";
10603 }
10604
10605 /*
10606  * driver_pstate - convert the driver's notion of a port's
10607  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10608  * Return -1 (converted to a u32) to indicate error.
10609  */
10610 u32 driver_pstate(struct hfi1_pportdata *ppd)
10611 {
10612         switch (ppd->host_link_state) {
10613         case HLS_UP_INIT:
10614         case HLS_UP_ARMED:
10615         case HLS_UP_ACTIVE:
10616                 return IB_PORTPHYSSTATE_LINKUP;
10617         case HLS_DN_POLL:
10618                 return IB_PORTPHYSSTATE_POLLING;
10619         case HLS_DN_DISABLE:
10620                 return IB_PORTPHYSSTATE_DISABLED;
10621         case HLS_DN_OFFLINE:
10622                 return OPA_PORTPHYSSTATE_OFFLINE;
10623         case HLS_VERIFY_CAP:
10624                 return IB_PORTPHYSSTATE_TRAINING;
10625         case HLS_GOING_UP:
10626                 return IB_PORTPHYSSTATE_TRAINING;
10627         case HLS_GOING_OFFLINE:
10628                 return OPA_PORTPHYSSTATE_OFFLINE;
10629         case HLS_LINK_COOLDOWN:
10630                 return OPA_PORTPHYSSTATE_OFFLINE;
10631         case HLS_DN_DOWNDEF:
10632         default:
10633                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10634                            ppd->host_link_state);
10635                 return  -1;
10636         }
10637 }
10638
10639 /*
10640  * driver_lstate - convert the driver's notion of a port's
10641  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10642  * (converted to a u32) to indicate error.
10643  */
10644 u32 driver_lstate(struct hfi1_pportdata *ppd)
10645 {
10646         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10647                 return IB_PORT_DOWN;
10648
10649         switch (ppd->host_link_state & HLS_UP) {
10650         case HLS_UP_INIT:
10651                 return IB_PORT_INIT;
10652         case HLS_UP_ARMED:
10653                 return IB_PORT_ARMED;
10654         case HLS_UP_ACTIVE:
10655                 return IB_PORT_ACTIVE;
10656         default:
10657                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10658                            ppd->host_link_state);
10659         return -1;
10660         }
10661 }
10662
10663 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10664                           u8 neigh_reason, u8 rem_reason)
10665 {
10666         if (ppd->local_link_down_reason.latest == 0 &&
10667             ppd->neigh_link_down_reason.latest == 0) {
10668                 ppd->local_link_down_reason.latest = lcl_reason;
10669                 ppd->neigh_link_down_reason.latest = neigh_reason;
10670                 ppd->remote_link_down_reason = rem_reason;
10671         }
10672 }
10673
10674 /**
10675  * data_vls_operational() - Verify if data VL BCT credits and MTU
10676  *                          are both set.
10677  * @ppd: pointer to hfi1_pportdata structure
10678  *
10679  * Return: true - Ok, false -otherwise.
10680  */
10681 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10682 {
10683         int i;
10684         u64 reg;
10685
10686         if (!ppd->actual_vls_operational)
10687                 return false;
10688
10689         for (i = 0; i < ppd->vls_supported; i++) {
10690                 reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10691                 if ((reg && !ppd->dd->vld[i].mtu) ||
10692                     (!reg && ppd->dd->vld[i].mtu))
10693                         return false;
10694         }
10695
10696         return true;
10697 }
10698
10699 /*
10700  * Change the physical and/or logical link state.
10701  *
10702  * Do not call this routine while inside an interrupt.  It contains
10703  * calls to routines that can take multiple seconds to finish.
10704  *
10705  * Returns 0 on success, -errno on failure.
10706  */
10707 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10708 {
10709         struct hfi1_devdata *dd = ppd->dd;
10710         struct ib_event event = {.device = NULL};
10711         int ret1, ret = 0;
10712         int orig_new_state, poll_bounce;
10713
10714         mutex_lock(&ppd->hls_lock);
10715
10716         orig_new_state = state;
10717         if (state == HLS_DN_DOWNDEF)
10718                 state = HLS_DEFAULT;
10719
10720         /* interpret poll -> poll as a link bounce */
10721         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10722                       state == HLS_DN_POLL;
10723
10724         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10725                     link_state_name(ppd->host_link_state),
10726                     link_state_name(orig_new_state),
10727                     poll_bounce ? "(bounce) " : "",
10728                     link_state_reason_name(ppd, state));
10729
10730         /*
10731          * If we're going to a (HLS_*) link state that implies the logical
10732          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10733          * reset is_sm_config_started to 0.
10734          */
10735         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10736                 ppd->is_sm_config_started = 0;
10737
10738         /*
10739          * Do nothing if the states match.  Let a poll to poll link bounce
10740          * go through.
10741          */
10742         if (ppd->host_link_state == state && !poll_bounce)
10743                 goto done;
10744
10745         switch (state) {
10746         case HLS_UP_INIT:
10747                 if (ppd->host_link_state == HLS_DN_POLL &&
10748                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10749                         /*
10750                          * Quick link up jumps from polling to here.
10751                          *
10752                          * Whether in normal or loopback mode, the
10753                          * simulator jumps from polling to link up.
10754                          * Accept that here.
10755                          */
10756                         /* OK */
10757                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10758                         goto unexpected;
10759                 }
10760
10761                 /*
10762                  * Wait for Link_Up physical state.
10763                  * Physical and Logical states should already be
10764                  * be transitioned to LinkUp and LinkInit respectively.
10765                  */
10766                 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10767                 if (ret) {
10768                         dd_dev_err(dd,
10769                                    "%s: physical state did not change to LINK-UP\n",
10770                                    __func__);
10771                         break;
10772                 }
10773
10774                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10775                 if (ret) {
10776                         dd_dev_err(dd,
10777                                    "%s: logical state did not change to INIT\n",
10778                                    __func__);
10779                         break;
10780                 }
10781
10782                 /* clear old transient LINKINIT_REASON code */
10783                 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10784                         ppd->linkinit_reason =
10785                                 OPA_LINKINIT_REASON_LINKUP;
10786
10787                 /* enable the port */
10788                 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10789
10790                 handle_linkup_change(dd, 1);
10791                 pio_kernel_linkup(dd);
10792
10793                 /*
10794                  * After link up, a new link width will have been set.
10795                  * Update the xmit counters with regards to the new
10796                  * link width.
10797                  */
10798                 update_xmit_counters(ppd, ppd->link_width_active);
10799
10800                 ppd->host_link_state = HLS_UP_INIT;
10801                 update_statusp(ppd, IB_PORT_INIT);
10802                 break;
10803         case HLS_UP_ARMED:
10804                 if (ppd->host_link_state != HLS_UP_INIT)
10805                         goto unexpected;
10806
10807                 if (!data_vls_operational(ppd)) {
10808                         dd_dev_err(dd,
10809                                    "%s: Invalid data VL credits or mtu\n",
10810                                    __func__);
10811                         ret = -EINVAL;
10812                         break;
10813                 }
10814
10815                 set_logical_state(dd, LSTATE_ARMED);
10816                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10817                 if (ret) {
10818                         dd_dev_err(dd,
10819                                    "%s: logical state did not change to ARMED\n",
10820                                    __func__);
10821                         break;
10822                 }
10823                 ppd->host_link_state = HLS_UP_ARMED;
10824                 update_statusp(ppd, IB_PORT_ARMED);
10825                 /*
10826                  * The simulator does not currently implement SMA messages,
10827                  * so neighbor_normal is not set.  Set it here when we first
10828                  * move to Armed.
10829                  */
10830                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10831                         ppd->neighbor_normal = 1;
10832                 break;
10833         case HLS_UP_ACTIVE:
10834                 if (ppd->host_link_state != HLS_UP_ARMED)
10835                         goto unexpected;
10836
10837                 set_logical_state(dd, LSTATE_ACTIVE);
10838                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10839                 if (ret) {
10840                         dd_dev_err(dd,
10841                                    "%s: logical state did not change to ACTIVE\n",
10842                                    __func__);
10843                 } else {
10844                         /* tell all engines to go running */
10845                         sdma_all_running(dd);
10846                         ppd->host_link_state = HLS_UP_ACTIVE;
10847                         update_statusp(ppd, IB_PORT_ACTIVE);
10848
10849                         /* Signal the IB layer that the port has went active */
10850                         event.device = &dd->verbs_dev.rdi.ibdev;
10851                         event.element.port_num = ppd->port;
10852                         event.event = IB_EVENT_PORT_ACTIVE;
10853                 }
10854                 break;
10855         case HLS_DN_POLL:
10856                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10857                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10858                     dd->dc_shutdown)
10859                         dc_start(dd);
10860                 /* Hand LED control to the DC */
10861                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10862
10863                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10864                         u8 tmp = ppd->link_enabled;
10865
10866                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10867                         if (ret) {
10868                                 ppd->link_enabled = tmp;
10869                                 break;
10870                         }
10871                         ppd->remote_link_down_reason = 0;
10872
10873                         if (ppd->driver_link_ready)
10874                                 ppd->link_enabled = 1;
10875                 }
10876
10877                 set_all_slowpath(ppd->dd);
10878                 ret = set_local_link_attributes(ppd);
10879                 if (ret)
10880                         break;
10881
10882                 ppd->port_error_action = 0;
10883
10884                 if (quick_linkup) {
10885                         /* quick linkup does not go into polling */
10886                         ret = do_quick_linkup(dd);
10887                 } else {
10888                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10889                         if (!ret1)
10890                                 ret1 = wait_phys_link_out_of_offline(ppd,
10891                                                                      3000);
10892                         if (ret1 != HCMD_SUCCESS) {
10893                                 dd_dev_err(dd,
10894                                            "Failed to transition to Polling link state, return 0x%x\n",
10895                                            ret1);
10896                                 ret = -EINVAL;
10897                         }
10898                 }
10899
10900                 /*
10901                  * Change the host link state after requesting DC8051 to
10902                  * change its physical state so that we can ignore any
10903                  * interrupt with stale LNI(XX) error, which will not be
10904                  * cleared until DC8051 transitions to Polling state.
10905                  */
10906                 ppd->host_link_state = HLS_DN_POLL;
10907                 ppd->offline_disabled_reason =
10908                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10909                 /*
10910                  * If an error occurred above, go back to offline.  The
10911                  * caller may reschedule another attempt.
10912                  */
10913                 if (ret)
10914                         goto_offline(ppd, 0);
10915                 else
10916                         log_physical_state(ppd, PLS_POLLING);
10917                 break;
10918         case HLS_DN_DISABLE:
10919                 /* link is disabled */
10920                 ppd->link_enabled = 0;
10921
10922                 /* allow any state to transition to disabled */
10923
10924                 /* must transition to offline first */
10925                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10926                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10927                         if (ret)
10928                                 break;
10929                         ppd->remote_link_down_reason = 0;
10930                 }
10931
10932                 if (!dd->dc_shutdown) {
10933                         ret1 = set_physical_link_state(dd, PLS_DISABLED);
10934                         if (ret1 != HCMD_SUCCESS) {
10935                                 dd_dev_err(dd,
10936                                            "Failed to transition to Disabled link state, return 0x%x\n",
10937                                            ret1);
10938                                 ret = -EINVAL;
10939                                 break;
10940                         }
10941                         ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10942                         if (ret) {
10943                                 dd_dev_err(dd,
10944                                            "%s: physical state did not change to DISABLED\n",
10945                                            __func__);
10946                                 break;
10947                         }
10948                         dc_shutdown(dd);
10949                 }
10950                 ppd->host_link_state = HLS_DN_DISABLE;
10951                 break;
10952         case HLS_DN_OFFLINE:
10953                 if (ppd->host_link_state == HLS_DN_DISABLE)
10954                         dc_start(dd);
10955
10956                 /* allow any state to transition to offline */
10957                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10958                 if (!ret)
10959                         ppd->remote_link_down_reason = 0;
10960                 break;
10961         case HLS_VERIFY_CAP:
10962                 if (ppd->host_link_state != HLS_DN_POLL)
10963                         goto unexpected;
10964                 ppd->host_link_state = HLS_VERIFY_CAP;
10965                 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10966                 break;
10967         case HLS_GOING_UP:
10968                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10969                         goto unexpected;
10970
10971                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10972                 if (ret1 != HCMD_SUCCESS) {
10973                         dd_dev_err(dd,
10974                                    "Failed to transition to link up state, return 0x%x\n",
10975                                    ret1);
10976                         ret = -EINVAL;
10977                         break;
10978                 }
10979                 ppd->host_link_state = HLS_GOING_UP;
10980                 break;
10981
10982         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10983         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10984         default:
10985                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10986                             __func__, state);
10987                 ret = -EINVAL;
10988                 break;
10989         }
10990
10991         goto done;
10992
10993 unexpected:
10994         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10995                    __func__, link_state_name(ppd->host_link_state),
10996                    link_state_name(state));
10997         ret = -EINVAL;
10998
10999 done:
11000         mutex_unlock(&ppd->hls_lock);
11001
11002         if (event.device)
11003                 ib_dispatch_event(&event);
11004
11005         return ret;
11006 }
11007
11008 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
11009 {
11010         u64 reg;
11011         int ret = 0;
11012
11013         switch (which) {
11014         case HFI1_IB_CFG_LIDLMC:
11015                 set_lidlmc(ppd);
11016                 break;
11017         case HFI1_IB_CFG_VL_HIGH_LIMIT:
11018                 /*
11019                  * The VL Arbitrator high limit is sent in units of 4k
11020                  * bytes, while HFI stores it in units of 64 bytes.
11021                  */
11022                 val *= 4096 / 64;
11023                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
11024                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
11025                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
11026                 break;
11027         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
11028                 /* HFI only supports POLL as the default link down state */
11029                 if (val != HLS_DN_POLL)
11030                         ret = -EINVAL;
11031                 break;
11032         case HFI1_IB_CFG_OP_VLS:
11033                 if (ppd->vls_operational != val) {
11034                         ppd->vls_operational = val;
11035                         if (!ppd->port)
11036                                 ret = -EINVAL;
11037                 }
11038                 break;
11039         /*
11040          * For link width, link width downgrade, and speed enable, always AND
11041          * the setting with what is actually supported.  This has two benefits.
11042          * First, enabled can't have unsupported values, no matter what the
11043          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11044          * "fill in with your supported value" have all the bits in the
11045          * field set, so simply ANDing with supported has the desired result.
11046          */
11047         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11048                 ppd->link_width_enabled = val & ppd->link_width_supported;
11049                 break;
11050         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11051                 ppd->link_width_downgrade_enabled =
11052                                 val & ppd->link_width_downgrade_supported;
11053                 break;
11054         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11055                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
11056                 break;
11057         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11058                 /*
11059                  * HFI does not follow IB specs, save this value
11060                  * so we can report it, if asked.
11061                  */
11062                 ppd->overrun_threshold = val;
11063                 break;
11064         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11065                 /*
11066                  * HFI does not follow IB specs, save this value
11067                  * so we can report it, if asked.
11068                  */
11069                 ppd->phy_error_threshold = val;
11070                 break;
11071
11072         case HFI1_IB_CFG_MTU:
11073                 set_send_length(ppd);
11074                 break;
11075
11076         case HFI1_IB_CFG_PKEYS:
11077                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11078                         set_partition_keys(ppd);
11079                 break;
11080
11081         default:
11082                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11083                         dd_dev_info(ppd->dd,
11084                                     "%s: which %s, val 0x%x: not implemented\n",
11085                                     __func__, ib_cfg_name(which), val);
11086                 break;
11087         }
11088         return ret;
11089 }
11090
11091 /* begin functions related to vl arbitration table caching */
11092 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11093 {
11094         int i;
11095
11096         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11097                         VL_ARB_LOW_PRIO_TABLE_SIZE);
11098         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11099                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
11100
11101         /*
11102          * Note that we always return values directly from the
11103          * 'vl_arb_cache' (and do no CSR reads) in response to a
11104          * 'Get(VLArbTable)'. This is obviously correct after a
11105          * 'Set(VLArbTable)', since the cache will then be up to
11106          * date. But it's also correct prior to any 'Set(VLArbTable)'
11107          * since then both the cache, and the relevant h/w registers
11108          * will be zeroed.
11109          */
11110
11111         for (i = 0; i < MAX_PRIO_TABLE; i++)
11112                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
11113 }
11114
11115 /*
11116  * vl_arb_lock_cache
11117  *
11118  * All other vl_arb_* functions should be called only after locking
11119  * the cache.
11120  */
11121 static inline struct vl_arb_cache *
11122 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11123 {
11124         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11125                 return NULL;
11126         spin_lock(&ppd->vl_arb_cache[idx].lock);
11127         return &ppd->vl_arb_cache[idx];
11128 }
11129
11130 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11131 {
11132         spin_unlock(&ppd->vl_arb_cache[idx].lock);
11133 }
11134
11135 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11136                              struct ib_vl_weight_elem *vl)
11137 {
11138         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11139 }
11140
11141 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11142                              struct ib_vl_weight_elem *vl)
11143 {
11144         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11145 }
11146
11147 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11148                               struct ib_vl_weight_elem *vl)
11149 {
11150         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11151 }
11152
11153 /* end functions related to vl arbitration table caching */
11154
11155 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11156                           u32 size, struct ib_vl_weight_elem *vl)
11157 {
11158         struct hfi1_devdata *dd = ppd->dd;
11159         u64 reg;
11160         unsigned int i, is_up = 0;
11161         int drain, ret = 0;
11162
11163         mutex_lock(&ppd->hls_lock);
11164
11165         if (ppd->host_link_state & HLS_UP)
11166                 is_up = 1;
11167
11168         drain = !is_ax(dd) && is_up;
11169
11170         if (drain)
11171                 /*
11172                  * Before adjusting VL arbitration weights, empty per-VL
11173                  * FIFOs, otherwise a packet whose VL weight is being
11174                  * set to 0 could get stuck in a FIFO with no chance to
11175                  * egress.
11176                  */
11177                 ret = stop_drain_data_vls(dd);
11178
11179         if (ret) {
11180                 dd_dev_err(
11181                         dd,
11182                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11183                         __func__);
11184                 goto err;
11185         }
11186
11187         for (i = 0; i < size; i++, vl++) {
11188                 /*
11189                  * NOTE: The low priority shift and mask are used here, but
11190                  * they are the same for both the low and high registers.
11191                  */
11192                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11193                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11194                       | (((u64)vl->weight
11195                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11196                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11197                 write_csr(dd, target + (i * 8), reg);
11198         }
11199         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11200
11201         if (drain)
11202                 open_fill_data_vls(dd); /* reopen all VLs */
11203
11204 err:
11205         mutex_unlock(&ppd->hls_lock);
11206
11207         return ret;
11208 }
11209
11210 /*
11211  * Read one credit merge VL register.
11212  */
11213 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11214                            struct vl_limit *vll)
11215 {
11216         u64 reg = read_csr(dd, csr);
11217
11218         vll->dedicated = cpu_to_be16(
11219                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11220                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11221         vll->shared = cpu_to_be16(
11222                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11223                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11224 }
11225
11226 /*
11227  * Read the current credit merge limits.
11228  */
11229 static int get_buffer_control(struct hfi1_devdata *dd,
11230                               struct buffer_control *bc, u16 *overall_limit)
11231 {
11232         u64 reg;
11233         int i;
11234
11235         /* not all entries are filled in */
11236         memset(bc, 0, sizeof(*bc));
11237
11238         /* OPA and HFI have a 1-1 mapping */
11239         for (i = 0; i < TXE_NUM_DATA_VL; i++)
11240                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11241
11242         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11243         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11244
11245         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11246         bc->overall_shared_limit = cpu_to_be16(
11247                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11248                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11249         if (overall_limit)
11250                 *overall_limit = (reg
11251                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11252                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11253         return sizeof(struct buffer_control);
11254 }
11255
11256 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11257 {
11258         u64 reg;
11259         int i;
11260
11261         /* each register contains 16 SC->VLnt mappings, 4 bits each */
11262         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11263         for (i = 0; i < sizeof(u64); i++) {
11264                 u8 byte = *(((u8 *)&reg) + i);
11265
11266                 dp->vlnt[2 * i] = byte & 0xf;
11267                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11268         }
11269
11270         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11271         for (i = 0; i < sizeof(u64); i++) {
11272                 u8 byte = *(((u8 *)&reg) + i);
11273
11274                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11275                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11276         }
11277         return sizeof(struct sc2vlnt);
11278 }
11279
11280 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11281                               struct ib_vl_weight_elem *vl)
11282 {
11283         unsigned int i;
11284
11285         for (i = 0; i < nelems; i++, vl++) {
11286                 vl->vl = 0xf;
11287                 vl->weight = 0;
11288         }
11289 }
11290
11291 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11292 {
11293         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11294                   DC_SC_VL_VAL(15_0,
11295                                0, dp->vlnt[0] & 0xf,
11296                                1, dp->vlnt[1] & 0xf,
11297                                2, dp->vlnt[2] & 0xf,
11298                                3, dp->vlnt[3] & 0xf,
11299                                4, dp->vlnt[4] & 0xf,
11300                                5, dp->vlnt[5] & 0xf,
11301                                6, dp->vlnt[6] & 0xf,
11302                                7, dp->vlnt[7] & 0xf,
11303                                8, dp->vlnt[8] & 0xf,
11304                                9, dp->vlnt[9] & 0xf,
11305                                10, dp->vlnt[10] & 0xf,
11306                                11, dp->vlnt[11] & 0xf,
11307                                12, dp->vlnt[12] & 0xf,
11308                                13, dp->vlnt[13] & 0xf,
11309                                14, dp->vlnt[14] & 0xf,
11310                                15, dp->vlnt[15] & 0xf));
11311         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11312                   DC_SC_VL_VAL(31_16,
11313                                16, dp->vlnt[16] & 0xf,
11314                                17, dp->vlnt[17] & 0xf,
11315                                18, dp->vlnt[18] & 0xf,
11316                                19, dp->vlnt[19] & 0xf,
11317                                20, dp->vlnt[20] & 0xf,
11318                                21, dp->vlnt[21] & 0xf,
11319                                22, dp->vlnt[22] & 0xf,
11320                                23, dp->vlnt[23] & 0xf,
11321                                24, dp->vlnt[24] & 0xf,
11322                                25, dp->vlnt[25] & 0xf,
11323                                26, dp->vlnt[26] & 0xf,
11324                                27, dp->vlnt[27] & 0xf,
11325                                28, dp->vlnt[28] & 0xf,
11326                                29, dp->vlnt[29] & 0xf,
11327                                30, dp->vlnt[30] & 0xf,
11328                                31, dp->vlnt[31] & 0xf));
11329 }
11330
11331 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11332                         u16 limit)
11333 {
11334         if (limit != 0)
11335                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11336                             what, (int)limit, idx);
11337 }
11338
11339 /* change only the shared limit portion of SendCmGLobalCredit */
11340 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11341 {
11342         u64 reg;
11343
11344         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11345         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11346         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11347         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11348 }
11349
11350 /* change only the total credit limit portion of SendCmGLobalCredit */
11351 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11352 {
11353         u64 reg;
11354
11355         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11356         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11357         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11358         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11359 }
11360
11361 /* set the given per-VL shared limit */
11362 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11363 {
11364         u64 reg;
11365         u32 addr;
11366
11367         if (vl < TXE_NUM_DATA_VL)
11368                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11369         else
11370                 addr = SEND_CM_CREDIT_VL15;
11371
11372         reg = read_csr(dd, addr);
11373         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11374         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11375         write_csr(dd, addr, reg);
11376 }
11377
11378 /* set the given per-VL dedicated limit */
11379 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11380 {
11381         u64 reg;
11382         u32 addr;
11383
11384         if (vl < TXE_NUM_DATA_VL)
11385                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11386         else
11387                 addr = SEND_CM_CREDIT_VL15;
11388
11389         reg = read_csr(dd, addr);
11390         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11391         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11392         write_csr(dd, addr, reg);
11393 }
11394
11395 /* spin until the given per-VL status mask bits clear */
11396 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11397                                      const char *which)
11398 {
11399         unsigned long timeout;
11400         u64 reg;
11401
11402         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11403         while (1) {
11404                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11405
11406                 if (reg == 0)
11407                         return; /* success */
11408                 if (time_after(jiffies, timeout))
11409                         break;          /* timed out */
11410                 udelay(1);
11411         }
11412
11413         dd_dev_err(dd,
11414                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11415                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11416         /*
11417          * If this occurs, it is likely there was a credit loss on the link.
11418          * The only recovery from that is a link bounce.
11419          */
11420         dd_dev_err(dd,
11421                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11422 }
11423
11424 /*
11425  * The number of credits on the VLs may be changed while everything
11426  * is "live", but the following algorithm must be followed due to
11427  * how the hardware is actually implemented.  In particular,
11428  * Return_Credit_Status[] is the only correct status check.
11429  *
11430  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11431  *     set Global_Shared_Credit_Limit = 0
11432  *     use_all_vl = 1
11433  * mask0 = all VLs that are changing either dedicated or shared limits
11434  * set Shared_Limit[mask0] = 0
11435  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11436  * if (changing any dedicated limit)
11437  *     mask1 = all VLs that are lowering dedicated limits
11438  *     lower Dedicated_Limit[mask1]
11439  *     spin until Return_Credit_Status[mask1] == 0
11440  *     raise Dedicated_Limits
11441  * raise Shared_Limits
11442  * raise Global_Shared_Credit_Limit
11443  *
11444  * lower = if the new limit is lower, set the limit to the new value
11445  * raise = if the new limit is higher than the current value (may be changed
11446  *      earlier in the algorithm), set the new limit to the new value
11447  */
11448 int set_buffer_control(struct hfi1_pportdata *ppd,
11449                        struct buffer_control *new_bc)
11450 {
11451         struct hfi1_devdata *dd = ppd->dd;
11452         u64 changing_mask, ld_mask, stat_mask;
11453         int change_count;
11454         int i, use_all_mask;
11455         int this_shared_changing;
11456         int vl_count = 0, ret;
11457         /*
11458          * A0: add the variable any_shared_limit_changing below and in the
11459          * algorithm above.  If removing A0 support, it can be removed.
11460          */
11461         int any_shared_limit_changing;
11462         struct buffer_control cur_bc;
11463         u8 changing[OPA_MAX_VLS];
11464         u8 lowering_dedicated[OPA_MAX_VLS];
11465         u16 cur_total;
11466         u32 new_total = 0;
11467         const u64 all_mask =
11468         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11469          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11470          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11471          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11472          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11473          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11474          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11475          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11476          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11477
11478 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11479 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11480
11481         /* find the new total credits, do sanity check on unused VLs */
11482         for (i = 0; i < OPA_MAX_VLS; i++) {
11483                 if (valid_vl(i)) {
11484                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11485                         continue;
11486                 }
11487                 nonzero_msg(dd, i, "dedicated",
11488                             be16_to_cpu(new_bc->vl[i].dedicated));
11489                 nonzero_msg(dd, i, "shared",
11490                             be16_to_cpu(new_bc->vl[i].shared));
11491                 new_bc->vl[i].dedicated = 0;
11492                 new_bc->vl[i].shared = 0;
11493         }
11494         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11495
11496         /* fetch the current values */
11497         get_buffer_control(dd, &cur_bc, &cur_total);
11498
11499         /*
11500          * Create the masks we will use.
11501          */
11502         memset(changing, 0, sizeof(changing));
11503         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11504         /*
11505          * NOTE: Assumes that the individual VL bits are adjacent and in
11506          * increasing order
11507          */
11508         stat_mask =
11509                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11510         changing_mask = 0;
11511         ld_mask = 0;
11512         change_count = 0;
11513         any_shared_limit_changing = 0;
11514         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11515                 if (!valid_vl(i))
11516                         continue;
11517                 this_shared_changing = new_bc->vl[i].shared
11518                                                 != cur_bc.vl[i].shared;
11519                 if (this_shared_changing)
11520                         any_shared_limit_changing = 1;
11521                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11522                     this_shared_changing) {
11523                         changing[i] = 1;
11524                         changing_mask |= stat_mask;
11525                         change_count++;
11526                 }
11527                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11528                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11529                         lowering_dedicated[i] = 1;
11530                         ld_mask |= stat_mask;
11531                 }
11532         }
11533
11534         /* bracket the credit change with a total adjustment */
11535         if (new_total > cur_total)
11536                 set_global_limit(dd, new_total);
11537
11538         /*
11539          * Start the credit change algorithm.
11540          */
11541         use_all_mask = 0;
11542         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11543              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11544             (is_ax(dd) && any_shared_limit_changing)) {
11545                 set_global_shared(dd, 0);
11546                 cur_bc.overall_shared_limit = 0;
11547                 use_all_mask = 1;
11548         }
11549
11550         for (i = 0; i < NUM_USABLE_VLS; i++) {
11551                 if (!valid_vl(i))
11552                         continue;
11553
11554                 if (changing[i]) {
11555                         set_vl_shared(dd, i, 0);
11556                         cur_bc.vl[i].shared = 0;
11557                 }
11558         }
11559
11560         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11561                                  "shared");
11562
11563         if (change_count > 0) {
11564                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11565                         if (!valid_vl(i))
11566                                 continue;
11567
11568                         if (lowering_dedicated[i]) {
11569                                 set_vl_dedicated(dd, i,
11570                                                  be16_to_cpu(new_bc->
11571                                                              vl[i].dedicated));
11572                                 cur_bc.vl[i].dedicated =
11573                                                 new_bc->vl[i].dedicated;
11574                         }
11575                 }
11576
11577                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11578
11579                 /* now raise all dedicated that are going up */
11580                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11581                         if (!valid_vl(i))
11582                                 continue;
11583
11584                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11585                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11586                                 set_vl_dedicated(dd, i,
11587                                                  be16_to_cpu(new_bc->
11588                                                              vl[i].dedicated));
11589                 }
11590         }
11591
11592         /* next raise all shared that are going up */
11593         for (i = 0; i < NUM_USABLE_VLS; i++) {
11594                 if (!valid_vl(i))
11595                         continue;
11596
11597                 if (be16_to_cpu(new_bc->vl[i].shared) >
11598                                 be16_to_cpu(cur_bc.vl[i].shared))
11599                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11600         }
11601
11602         /* finally raise the global shared */
11603         if (be16_to_cpu(new_bc->overall_shared_limit) >
11604             be16_to_cpu(cur_bc.overall_shared_limit))
11605                 set_global_shared(dd,
11606                                   be16_to_cpu(new_bc->overall_shared_limit));
11607
11608         /* bracket the credit change with a total adjustment */
11609         if (new_total < cur_total)
11610                 set_global_limit(dd, new_total);
11611
11612         /*
11613          * Determine the actual number of operational VLS using the number of
11614          * dedicated and shared credits for each VL.
11615          */
11616         if (change_count > 0) {
11617                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11618                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11619                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11620                                 vl_count++;
11621                 ppd->actual_vls_operational = vl_count;
11622                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11623                                     ppd->actual_vls_operational :
11624                                     ppd->vls_operational,
11625                                     NULL);
11626                 if (ret == 0)
11627                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11628                                            ppd->actual_vls_operational :
11629                                            ppd->vls_operational, NULL);
11630                 if (ret)
11631                         return ret;
11632         }
11633         return 0;
11634 }
11635
11636 /*
11637  * Read the given fabric manager table. Return the size of the
11638  * table (in bytes) on success, and a negative error code on
11639  * failure.
11640  */
11641 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11642
11643 {
11644         int size;
11645         struct vl_arb_cache *vlc;
11646
11647         switch (which) {
11648         case FM_TBL_VL_HIGH_ARB:
11649                 size = 256;
11650                 /*
11651                  * OPA specifies 128 elements (of 2 bytes each), though
11652                  * HFI supports only 16 elements in h/w.
11653                  */
11654                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11655                 vl_arb_get_cache(vlc, t);
11656                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11657                 break;
11658         case FM_TBL_VL_LOW_ARB:
11659                 size = 256;
11660                 /*
11661                  * OPA specifies 128 elements (of 2 bytes each), though
11662                  * HFI supports only 16 elements in h/w.
11663                  */
11664                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11665                 vl_arb_get_cache(vlc, t);
11666                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11667                 break;
11668         case FM_TBL_BUFFER_CONTROL:
11669                 size = get_buffer_control(ppd->dd, t, NULL);
11670                 break;
11671         case FM_TBL_SC2VLNT:
11672                 size = get_sc2vlnt(ppd->dd, t);
11673                 break;
11674         case FM_TBL_VL_PREEMPT_ELEMS:
11675                 size = 256;
11676                 /* OPA specifies 128 elements, of 2 bytes each */
11677                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11678                 break;
11679         case FM_TBL_VL_PREEMPT_MATRIX:
11680                 size = 256;
11681                 /*
11682                  * OPA specifies that this is the same size as the VL
11683                  * arbitration tables (i.e., 256 bytes).
11684                  */
11685                 break;
11686         default:
11687                 return -EINVAL;
11688         }
11689         return size;
11690 }
11691
11692 /*
11693  * Write the given fabric manager table.
11694  */
11695 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11696 {
11697         int ret = 0;
11698         struct vl_arb_cache *vlc;
11699
11700         switch (which) {
11701         case FM_TBL_VL_HIGH_ARB:
11702                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11703                 if (vl_arb_match_cache(vlc, t)) {
11704                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11705                         break;
11706                 }
11707                 vl_arb_set_cache(vlc, t);
11708                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11709                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11710                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11711                 break;
11712         case FM_TBL_VL_LOW_ARB:
11713                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11714                 if (vl_arb_match_cache(vlc, t)) {
11715                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11716                         break;
11717                 }
11718                 vl_arb_set_cache(vlc, t);
11719                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11720                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11721                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11722                 break;
11723         case FM_TBL_BUFFER_CONTROL:
11724                 ret = set_buffer_control(ppd, t);
11725                 break;
11726         case FM_TBL_SC2VLNT:
11727                 set_sc2vlnt(ppd->dd, t);
11728                 break;
11729         default:
11730                 ret = -EINVAL;
11731         }
11732         return ret;
11733 }
11734
11735 /*
11736  * Disable all data VLs.
11737  *
11738  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11739  */
11740 static int disable_data_vls(struct hfi1_devdata *dd)
11741 {
11742         if (is_ax(dd))
11743                 return 1;
11744
11745         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11746
11747         return 0;
11748 }
11749
11750 /*
11751  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11752  * Just re-enables all data VLs (the "fill" part happens
11753  * automatically - the name was chosen for symmetry with
11754  * stop_drain_data_vls()).
11755  *
11756  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11757  */
11758 int open_fill_data_vls(struct hfi1_devdata *dd)
11759 {
11760         if (is_ax(dd))
11761                 return 1;
11762
11763         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11764
11765         return 0;
11766 }
11767
11768 /*
11769  * drain_data_vls() - assumes that disable_data_vls() has been called,
11770  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11771  * engines to drop to 0.
11772  */
11773 static void drain_data_vls(struct hfi1_devdata *dd)
11774 {
11775         sc_wait(dd);
11776         sdma_wait(dd);
11777         pause_for_credit_return(dd);
11778 }
11779
11780 /*
11781  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11782  *
11783  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11784  * meant to be used like this:
11785  *
11786  * stop_drain_data_vls(dd);
11787  * // do things with per-VL resources
11788  * open_fill_data_vls(dd);
11789  */
11790 int stop_drain_data_vls(struct hfi1_devdata *dd)
11791 {
11792         int ret;
11793
11794         ret = disable_data_vls(dd);
11795         if (ret == 0)
11796                 drain_data_vls(dd);
11797
11798         return ret;
11799 }
11800
11801 /*
11802  * Convert a nanosecond time to a cclock count.  No matter how slow
11803  * the cclock, a non-zero ns will always have a non-zero result.
11804  */
11805 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11806 {
11807         u32 cclocks;
11808
11809         if (dd->icode == ICODE_FPGA_EMULATION)
11810                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11811         else  /* simulation pretends to be ASIC */
11812                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11813         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11814                 cclocks = 1;
11815         return cclocks;
11816 }
11817
11818 /*
11819  * Convert a cclock count to nanoseconds. Not matter how slow
11820  * the cclock, a non-zero cclocks will always have a non-zero result.
11821  */
11822 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11823 {
11824         u32 ns;
11825
11826         if (dd->icode == ICODE_FPGA_EMULATION)
11827                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11828         else  /* simulation pretends to be ASIC */
11829                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11830         if (cclocks && !ns)
11831                 ns = 1;
11832         return ns;
11833 }
11834
11835 /*
11836  * Dynamically adjust the receive interrupt timeout for a context based on
11837  * incoming packet rate.
11838  *
11839  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11840  */
11841 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11842 {
11843         struct hfi1_devdata *dd = rcd->dd;
11844         u32 timeout = rcd->rcvavail_timeout;
11845
11846         /*
11847          * This algorithm doubles or halves the timeout depending on whether
11848          * the number of packets received in this interrupt were less than or
11849          * greater equal the interrupt count.
11850          *
11851          * The calculations below do not allow a steady state to be achieved.
11852          * Only at the endpoints it is possible to have an unchanging
11853          * timeout.
11854          */
11855         if (npkts < rcv_intr_count) {
11856                 /*
11857                  * Not enough packets arrived before the timeout, adjust
11858                  * timeout downward.
11859                  */
11860                 if (timeout < 2) /* already at minimum? */
11861                         return;
11862                 timeout >>= 1;
11863         } else {
11864                 /*
11865                  * More than enough packets arrived before the timeout, adjust
11866                  * timeout upward.
11867                  */
11868                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11869                         return;
11870                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11871         }
11872
11873         rcd->rcvavail_timeout = timeout;
11874         /*
11875          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11876          * been verified to be in range
11877          */
11878         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11879                         (u64)timeout <<
11880                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11881 }
11882
11883 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11884                     u32 intr_adjust, u32 npkts)
11885 {
11886         struct hfi1_devdata *dd = rcd->dd;
11887         u64 reg;
11888         u32 ctxt = rcd->ctxt;
11889
11890         /*
11891          * Need to write timeout register before updating RcvHdrHead to ensure
11892          * that a new value is used when the HW decides to restart counting.
11893          */
11894         if (intr_adjust)
11895                 adjust_rcv_timeout(rcd, npkts);
11896         if (updegr) {
11897                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11898                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11899                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11900         }
11901         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11902                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11903                         << RCV_HDR_HEAD_HEAD_SHIFT);
11904         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11905 }
11906
11907 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11908 {
11909         u32 head, tail;
11910
11911         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11912                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11913
11914         if (hfi1_rcvhdrtail_kvaddr(rcd))
11915                 tail = get_rcvhdrtail(rcd);
11916         else
11917                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11918
11919         return head == tail;
11920 }
11921
11922 /*
11923  * Context Control and Receive Array encoding for buffer size:
11924  *      0x0 invalid
11925  *      0x1   4 KB
11926  *      0x2   8 KB
11927  *      0x3  16 KB
11928  *      0x4  32 KB
11929  *      0x5  64 KB
11930  *      0x6 128 KB
11931  *      0x7 256 KB
11932  *      0x8 512 KB (Receive Array only)
11933  *      0x9   1 MB (Receive Array only)
11934  *      0xa   2 MB (Receive Array only)
11935  *
11936  *      0xB-0xF - reserved (Receive Array only)
11937  *
11938  *
11939  * This routine assumes that the value has already been sanity checked.
11940  */
11941 static u32 encoded_size(u32 size)
11942 {
11943         switch (size) {
11944         case   4 * 1024: return 0x1;
11945         case   8 * 1024: return 0x2;
11946         case  16 * 1024: return 0x3;
11947         case  32 * 1024: return 0x4;
11948         case  64 * 1024: return 0x5;
11949         case 128 * 1024: return 0x6;
11950         case 256 * 1024: return 0x7;
11951         case 512 * 1024: return 0x8;
11952         case   1 * 1024 * 1024: return 0x9;
11953         case   2 * 1024 * 1024: return 0xa;
11954         }
11955         return 0x1;     /* if invalid, go with the minimum size */
11956 }
11957
11958 /**
11959  * encode_rcv_header_entry_size - return chip specific encoding for size
11960  * @size: size in dwords
11961  *
11962  * Convert a receive header entry size that to the encoding used in the CSR.
11963  *
11964  * Return a zero if the given size is invalid, otherwise the encoding.
11965  */
11966 u8 encode_rcv_header_entry_size(u8 size)
11967 {
11968         /* there are only 3 valid receive header entry sizes */
11969         if (size == 2)
11970                 return 1;
11971         if (size == 16)
11972                 return 2;
11973         if (size == 32)
11974                 return 4;
11975         return 0; /* invalid */
11976 }
11977
11978 /**
11979  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11980  * @dd: the device data
11981  * @thecnt: the header count
11982  */
11983 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11984 {
11985         if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11986                 dd_dev_err(dd, "Receive header queue count too small\n");
11987                 return -EINVAL;
11988         }
11989
11990         if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11991                 dd_dev_err(dd,
11992                            "Receive header queue count cannot be greater than %u\n",
11993                            HFI1_MAX_HDRQ_EGRBUF_CNT);
11994                 return -EINVAL;
11995         }
11996
11997         if (thecnt % HDRQ_INCREMENT) {
11998                 dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11999                            thecnt, HDRQ_INCREMENT);
12000                 return -EINVAL;
12001         }
12002
12003         return 0;
12004 }
12005
12006 /**
12007  * set_hdrq_regs - set header queue registers for context
12008  * @dd: the device data
12009  * @ctxt: the context
12010  * @entsize: the dword entry size
12011  * @hdrcnt: the number of header entries
12012  */
12013 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
12014 {
12015         u64 reg;
12016
12017         reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
12018               RCV_HDR_CNT_CNT_SHIFT;
12019         write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
12020         reg = ((u64)encode_rcv_header_entry_size(entsize) &
12021                RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
12022               RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
12023         write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
12024         reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
12025               RCV_HDR_SIZE_HDR_SIZE_SHIFT;
12026         write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
12027
12028         /*
12029          * Program dummy tail address for every receive context
12030          * before enabling any receive context
12031          */
12032         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12033                         dd->rcvhdrtail_dummy_dma);
12034 }
12035
12036 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
12037                   struct hfi1_ctxtdata *rcd)
12038 {
12039         u64 rcvctrl, reg;
12040         int did_enable = 0;
12041         u16 ctxt;
12042
12043         if (!rcd)
12044                 return;
12045
12046         ctxt = rcd->ctxt;
12047
12048         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12049
12050         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12051         /* if the context already enabled, don't do the extra steps */
12052         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12053             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12054                 /* reset the tail and hdr addresses, and sequence count */
12055                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12056                                 rcd->rcvhdrq_dma);
12057                 if (hfi1_rcvhdrtail_kvaddr(rcd))
12058                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12059                                         rcd->rcvhdrqtailaddr_dma);
12060                 hfi1_set_seq_cnt(rcd, 1);
12061
12062                 /* reset the cached receive header queue head value */
12063                 hfi1_set_rcd_head(rcd, 0);
12064
12065                 /*
12066                  * Zero the receive header queue so we don't get false
12067                  * positives when checking the sequence number.  The
12068                  * sequence numbers could land exactly on the same spot.
12069                  * E.g. a rcd restart before the receive header wrapped.
12070                  */
12071                 memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12072
12073                 /* starting timeout */
12074                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12075
12076                 /* enable the context */
12077                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12078
12079                 /* clean the egr buffer size first */
12080                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12081                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12082                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12083                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12084
12085                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12086                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12087                 did_enable = 1;
12088
12089                 /* zero RcvEgrIndexHead */
12090                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12091
12092                 /* set eager count and base index */
12093                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12094                         & RCV_EGR_CTRL_EGR_CNT_MASK)
12095                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12096                         (((rcd->eager_base >> RCV_SHIFT)
12097                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12098                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12099                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12100
12101                 /*
12102                  * Set TID (expected) count and base index.
12103                  * rcd->expected_count is set to individual RcvArray entries,
12104                  * not pairs, and the CSR takes a pair-count in groups of
12105                  * four, so divide by 8.
12106                  */
12107                 reg = (((rcd->expected_count >> RCV_SHIFT)
12108                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12109                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12110                       (((rcd->expected_base >> RCV_SHIFT)
12111                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12112                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12113                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12114                 if (ctxt == HFI1_CTRL_CTXT)
12115                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12116         }
12117         if (op & HFI1_RCVCTRL_CTXT_DIS) {
12118                 write_csr(dd, RCV_VL15, 0);
12119                 /*
12120                  * When receive context is being disabled turn on tail
12121                  * update with a dummy tail address and then disable
12122                  * receive context.
12123                  */
12124                 if (dd->rcvhdrtail_dummy_dma) {
12125                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12126                                         dd->rcvhdrtail_dummy_dma);
12127                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12128                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12129                 }
12130
12131                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12132         }
12133         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12134                 set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12135                               IS_RCVAVAIL_START + rcd->ctxt, true);
12136                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12137         }
12138         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12139                 set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12140                               IS_RCVAVAIL_START + rcd->ctxt, false);
12141                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12142         }
12143         if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12144                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12145         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12146                 /* See comment on RcvCtxtCtrl.TailUpd above */
12147                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12148                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12149         }
12150         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12151                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12152         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12153                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12154         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12155                 /*
12156                  * In one-packet-per-eager mode, the size comes from
12157                  * the RcvArray entry.
12158                  */
12159                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12160                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12161         }
12162         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12163                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12164         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12165                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12166         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12167                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12168         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12169                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12170         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12171                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12172         if (op & HFI1_RCVCTRL_URGENT_ENB)
12173                 set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12174                               IS_RCVURGENT_START + rcd->ctxt, true);
12175         if (op & HFI1_RCVCTRL_URGENT_DIS)
12176                 set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12177                               IS_RCVURGENT_START + rcd->ctxt, false);
12178
12179         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12180         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12181
12182         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
12183         if (did_enable &&
12184             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12185                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12186                 if (reg != 0) {
12187                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12188                                     ctxt, reg);
12189                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12190                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12191                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12192                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12193                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12194                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12195                                     ctxt, reg, reg == 0 ? "not" : "still");
12196                 }
12197         }
12198
12199         if (did_enable) {
12200                 /*
12201                  * The interrupt timeout and count must be set after
12202                  * the context is enabled to take effect.
12203                  */
12204                 /* set interrupt timeout */
12205                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12206                                 (u64)rcd->rcvavail_timeout <<
12207                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12208
12209                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12210                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12211                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12212         }
12213
12214         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12215                 /*
12216                  * If the context has been disabled and the Tail Update has
12217                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12218                  * so it doesn't contain an address that is invalid.
12219                  */
12220                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12221                                 dd->rcvhdrtail_dummy_dma);
12222 }
12223
12224 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12225 {
12226         int ret;
12227         u64 val = 0;
12228
12229         if (namep) {
12230                 ret = dd->cntrnameslen;
12231                 *namep = dd->cntrnames;
12232         } else {
12233                 const struct cntr_entry *entry;
12234                 int i, j;
12235
12236                 ret = (dd->ndevcntrs) * sizeof(u64);
12237
12238                 /* Get the start of the block of counters */
12239                 *cntrp = dd->cntrs;
12240
12241                 /*
12242                  * Now go and fill in each counter in the block.
12243                  */
12244                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12245                         entry = &dev_cntrs[i];
12246                         hfi1_cdbg(CNTR, "reading %s", entry->name);
12247                         if (entry->flags & CNTR_DISABLED) {
12248                                 /* Nothing */
12249                                 hfi1_cdbg(CNTR, "\tDisabled\n");
12250                         } else {
12251                                 if (entry->flags & CNTR_VL) {
12252                                         hfi1_cdbg(CNTR, "\tPer VL\n");
12253                                         for (j = 0; j < C_VL_COUNT; j++) {
12254                                                 val = entry->rw_cntr(entry,
12255                                                                   dd, j,
12256                                                                   CNTR_MODE_R,
12257                                                                   0);
12258                                                 hfi1_cdbg(
12259                                                    CNTR,
12260                                                    "\t\tRead 0x%llx for %d\n",
12261                                                    val, j);
12262                                                 dd->cntrs[entry->offset + j] =
12263                                                                             val;
12264                                         }
12265                                 } else if (entry->flags & CNTR_SDMA) {
12266                                         hfi1_cdbg(CNTR,
12267                                                   "\t Per SDMA Engine\n");
12268                                         for (j = 0; j < chip_sdma_engines(dd);
12269                                              j++) {
12270                                                 val =
12271                                                 entry->rw_cntr(entry, dd, j,
12272                                                                CNTR_MODE_R, 0);
12273                                                 hfi1_cdbg(CNTR,
12274                                                           "\t\tRead 0x%llx for %d\n",
12275                                                           val, j);
12276                                                 dd->cntrs[entry->offset + j] =
12277                                                                         val;
12278                                         }
12279                                 } else {
12280                                         val = entry->rw_cntr(entry, dd,
12281                                                         CNTR_INVALID_VL,
12282                                                         CNTR_MODE_R, 0);
12283                                         dd->cntrs[entry->offset] = val;
12284                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12285                                 }
12286                         }
12287                 }
12288         }
12289         return ret;
12290 }
12291
12292 /*
12293  * Used by sysfs to create files for hfi stats to read
12294  */
12295 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12296 {
12297         int ret;
12298         u64 val = 0;
12299
12300         if (namep) {
12301                 ret = ppd->dd->portcntrnameslen;
12302                 *namep = ppd->dd->portcntrnames;
12303         } else {
12304                 const struct cntr_entry *entry;
12305                 int i, j;
12306
12307                 ret = ppd->dd->nportcntrs * sizeof(u64);
12308                 *cntrp = ppd->cntrs;
12309
12310                 for (i = 0; i < PORT_CNTR_LAST; i++) {
12311                         entry = &port_cntrs[i];
12312                         hfi1_cdbg(CNTR, "reading %s", entry->name);
12313                         if (entry->flags & CNTR_DISABLED) {
12314                                 /* Nothing */
12315                                 hfi1_cdbg(CNTR, "\tDisabled\n");
12316                                 continue;
12317                         }
12318
12319                         if (entry->flags & CNTR_VL) {
12320                                 hfi1_cdbg(CNTR, "\tPer VL");
12321                                 for (j = 0; j < C_VL_COUNT; j++) {
12322                                         val = entry->rw_cntr(entry, ppd, j,
12323                                                                CNTR_MODE_R,
12324                                                                0);
12325                                         hfi1_cdbg(
12326                                            CNTR,
12327                                            "\t\tRead 0x%llx for %d",
12328                                            val, j);
12329                                         ppd->cntrs[entry->offset + j] = val;
12330                                 }
12331                         } else {
12332                                 val = entry->rw_cntr(entry, ppd,
12333                                                        CNTR_INVALID_VL,
12334                                                        CNTR_MODE_R,
12335                                                        0);
12336                                 ppd->cntrs[entry->offset] = val;
12337                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12338                         }
12339                 }
12340         }
12341         return ret;
12342 }
12343
12344 static void free_cntrs(struct hfi1_devdata *dd)
12345 {
12346         struct hfi1_pportdata *ppd;
12347         int i;
12348
12349         if (dd->synth_stats_timer.function)
12350                 del_timer_sync(&dd->synth_stats_timer);
12351         cancel_work_sync(&dd->update_cntr_work);
12352         ppd = (struct hfi1_pportdata *)(dd + 1);
12353         for (i = 0; i < dd->num_pports; i++, ppd++) {
12354                 kfree(ppd->cntrs);
12355                 kfree(ppd->scntrs);
12356                 free_percpu(ppd->ibport_data.rvp.rc_acks);
12357                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12358                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12359                 ppd->cntrs = NULL;
12360                 ppd->scntrs = NULL;
12361                 ppd->ibport_data.rvp.rc_acks = NULL;
12362                 ppd->ibport_data.rvp.rc_qacks = NULL;
12363                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12364         }
12365         kfree(dd->portcntrnames);
12366         dd->portcntrnames = NULL;
12367         kfree(dd->cntrs);
12368         dd->cntrs = NULL;
12369         kfree(dd->scntrs);
12370         dd->scntrs = NULL;
12371         kfree(dd->cntrnames);
12372         dd->cntrnames = NULL;
12373         if (dd->update_cntr_wq) {
12374                 destroy_workqueue(dd->update_cntr_wq);
12375                 dd->update_cntr_wq = NULL;
12376         }
12377 }
12378
12379 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12380                               u64 *psval, void *context, int vl)
12381 {
12382         u64 val;
12383         u64 sval = *psval;
12384
12385         if (entry->flags & CNTR_DISABLED) {
12386                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12387                 return 0;
12388         }
12389
12390         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12391
12392         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12393
12394         /* If its a synthetic counter there is more work we need to do */
12395         if (entry->flags & CNTR_SYNTH) {
12396                 if (sval == CNTR_MAX) {
12397                         /* No need to read already saturated */
12398                         return CNTR_MAX;
12399                 }
12400
12401                 if (entry->flags & CNTR_32BIT) {
12402                         /* 32bit counters can wrap multiple times */
12403                         u64 upper = sval >> 32;
12404                         u64 lower = (sval << 32) >> 32;
12405
12406                         if (lower > val) { /* hw wrapped */
12407                                 if (upper == CNTR_32BIT_MAX)
12408                                         val = CNTR_MAX;
12409                                 else
12410                                         upper++;
12411                         }
12412
12413                         if (val != CNTR_MAX)
12414                                 val = (upper << 32) | val;
12415
12416                 } else {
12417                         /* If we rolled we are saturated */
12418                         if ((val < sval) || (val > CNTR_MAX))
12419                                 val = CNTR_MAX;
12420                 }
12421         }
12422
12423         *psval = val;
12424
12425         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12426
12427         return val;
12428 }
12429
12430 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12431                                struct cntr_entry *entry,
12432                                u64 *psval, void *context, int vl, u64 data)
12433 {
12434         u64 val;
12435
12436         if (entry->flags & CNTR_DISABLED) {
12437                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12438                 return 0;
12439         }
12440
12441         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12442
12443         if (entry->flags & CNTR_SYNTH) {
12444                 *psval = data;
12445                 if (entry->flags & CNTR_32BIT) {
12446                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12447                                              (data << 32) >> 32);
12448                         val = data; /* return the full 64bit value */
12449                 } else {
12450                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12451                                              data);
12452                 }
12453         } else {
12454                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12455         }
12456
12457         *psval = val;
12458
12459         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12460
12461         return val;
12462 }
12463
12464 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12465 {
12466         struct cntr_entry *entry;
12467         u64 *sval;
12468
12469         entry = &dev_cntrs[index];
12470         sval = dd->scntrs + entry->offset;
12471
12472         if (vl != CNTR_INVALID_VL)
12473                 sval += vl;
12474
12475         return read_dev_port_cntr(dd, entry, sval, dd, vl);
12476 }
12477
12478 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12479 {
12480         struct cntr_entry *entry;
12481         u64 *sval;
12482
12483         entry = &dev_cntrs[index];
12484         sval = dd->scntrs + entry->offset;
12485
12486         if (vl != CNTR_INVALID_VL)
12487                 sval += vl;
12488
12489         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12490 }
12491
12492 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12493 {
12494         struct cntr_entry *entry;
12495         u64 *sval;
12496
12497         entry = &port_cntrs[index];
12498         sval = ppd->scntrs + entry->offset;
12499
12500         if (vl != CNTR_INVALID_VL)
12501                 sval += vl;
12502
12503         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12504             (index <= C_RCV_HDR_OVF_LAST)) {
12505                 /* We do not want to bother for disabled contexts */
12506                 return 0;
12507         }
12508
12509         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12510 }
12511
12512 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12513 {
12514         struct cntr_entry *entry;
12515         u64 *sval;
12516
12517         entry = &port_cntrs[index];
12518         sval = ppd->scntrs + entry->offset;
12519
12520         if (vl != CNTR_INVALID_VL)
12521                 sval += vl;
12522
12523         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12524             (index <= C_RCV_HDR_OVF_LAST)) {
12525                 /* We do not want to bother for disabled contexts */
12526                 return 0;
12527         }
12528
12529         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12530 }
12531
12532 static void do_update_synth_timer(struct work_struct *work)
12533 {
12534         u64 cur_tx;
12535         u64 cur_rx;
12536         u64 total_flits;
12537         u8 update = 0;
12538         int i, j, vl;
12539         struct hfi1_pportdata *ppd;
12540         struct cntr_entry *entry;
12541         struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12542                                                update_cntr_work);
12543
12544         /*
12545          * Rather than keep beating on the CSRs pick a minimal set that we can
12546          * check to watch for potential roll over. We can do this by looking at
12547          * the number of flits sent/recv. If the total flits exceeds 32bits then
12548          * we have to iterate all the counters and update.
12549          */
12550         entry = &dev_cntrs[C_DC_RCV_FLITS];
12551         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12552
12553         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12554         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12555
12556         hfi1_cdbg(
12557             CNTR,
12558             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12559             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12560
12561         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12562                 /*
12563                  * May not be strictly necessary to update but it won't hurt and
12564                  * simplifies the logic here.
12565                  */
12566                 update = 1;
12567                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12568                           dd->unit);
12569         } else {
12570                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12571                 hfi1_cdbg(CNTR,
12572                           "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12573                           total_flits, (u64)CNTR_32BIT_MAX);
12574                 if (total_flits >= CNTR_32BIT_MAX) {
12575                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12576                                   dd->unit);
12577                         update = 1;
12578                 }
12579         }
12580
12581         if (update) {
12582                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12583                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12584                         entry = &dev_cntrs[i];
12585                         if (entry->flags & CNTR_VL) {
12586                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12587                                         read_dev_cntr(dd, i, vl);
12588                         } else {
12589                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12590                         }
12591                 }
12592                 ppd = (struct hfi1_pportdata *)(dd + 1);
12593                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12594                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12595                                 entry = &port_cntrs[j];
12596                                 if (entry->flags & CNTR_VL) {
12597                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12598                                                 read_port_cntr(ppd, j, vl);
12599                                 } else {
12600                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12601                                 }
12602                         }
12603                 }
12604
12605                 /*
12606                  * We want the value in the register. The goal is to keep track
12607                  * of the number of "ticks" not the counter value. In other
12608                  * words if the register rolls we want to notice it and go ahead
12609                  * and force an update.
12610                  */
12611                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12612                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12613                                                 CNTR_MODE_R, 0);
12614
12615                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12616                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12617                                                 CNTR_MODE_R, 0);
12618
12619                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12620                           dd->unit, dd->last_tx, dd->last_rx);
12621
12622         } else {
12623                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12624         }
12625 }
12626
12627 static void update_synth_timer(struct timer_list *t)
12628 {
12629         struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12630
12631         queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12632         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12633 }
12634
12635 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12636 static int init_cntrs(struct hfi1_devdata *dd)
12637 {
12638         int i, rcv_ctxts, j;
12639         size_t sz;
12640         char *p;
12641         char name[C_MAX_NAME];
12642         struct hfi1_pportdata *ppd;
12643         const char *bit_type_32 = ",32";
12644         const int bit_type_32_sz = strlen(bit_type_32);
12645         u32 sdma_engines = chip_sdma_engines(dd);
12646
12647         /* set up the stats timer; the add_timer is done at the end */
12648         timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12649
12650         /***********************/
12651         /* per device counters */
12652         /***********************/
12653
12654         /* size names and determine how many we have*/
12655         dd->ndevcntrs = 0;
12656         sz = 0;
12657
12658         for (i = 0; i < DEV_CNTR_LAST; i++) {
12659                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12660                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12661                         continue;
12662                 }
12663
12664                 if (dev_cntrs[i].flags & CNTR_VL) {
12665                         dev_cntrs[i].offset = dd->ndevcntrs;
12666                         for (j = 0; j < C_VL_COUNT; j++) {
12667                                 snprintf(name, C_MAX_NAME, "%s%d",
12668                                          dev_cntrs[i].name, vl_from_idx(j));
12669                                 sz += strlen(name);
12670                                 /* Add ",32" for 32-bit counters */
12671                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12672                                         sz += bit_type_32_sz;
12673                                 sz++;
12674                                 dd->ndevcntrs++;
12675                         }
12676                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12677                         dev_cntrs[i].offset = dd->ndevcntrs;
12678                         for (j = 0; j < sdma_engines; j++) {
12679                                 snprintf(name, C_MAX_NAME, "%s%d",
12680                                          dev_cntrs[i].name, j);
12681                                 sz += strlen(name);
12682                                 /* Add ",32" for 32-bit counters */
12683                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12684                                         sz += bit_type_32_sz;
12685                                 sz++;
12686                                 dd->ndevcntrs++;
12687                         }
12688                 } else {
12689                         /* +1 for newline. */
12690                         sz += strlen(dev_cntrs[i].name) + 1;
12691                         /* Add ",32" for 32-bit counters */
12692                         if (dev_cntrs[i].flags & CNTR_32BIT)
12693                                 sz += bit_type_32_sz;
12694                         dev_cntrs[i].offset = dd->ndevcntrs;
12695                         dd->ndevcntrs++;
12696                 }
12697         }
12698
12699         /* allocate space for the counter values */
12700         dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12701                             GFP_KERNEL);
12702         if (!dd->cntrs)
12703                 goto bail;
12704
12705         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12706         if (!dd->scntrs)
12707                 goto bail;
12708
12709         /* allocate space for the counter names */
12710         dd->cntrnameslen = sz;
12711         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12712         if (!dd->cntrnames)
12713                 goto bail;
12714
12715         /* fill in the names */
12716         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12717                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12718                         /* Nothing */
12719                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12720                         for (j = 0; j < C_VL_COUNT; j++) {
12721                                 snprintf(name, C_MAX_NAME, "%s%d",
12722                                          dev_cntrs[i].name,
12723                                          vl_from_idx(j));
12724                                 memcpy(p, name, strlen(name));
12725                                 p += strlen(name);
12726
12727                                 /* Counter is 32 bits */
12728                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12729                                         memcpy(p, bit_type_32, bit_type_32_sz);
12730                                         p += bit_type_32_sz;
12731                                 }
12732
12733                                 *p++ = '\n';
12734                         }
12735                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12736                         for (j = 0; j < sdma_engines; j++) {
12737                                 snprintf(name, C_MAX_NAME, "%s%d",
12738                                          dev_cntrs[i].name, j);
12739                                 memcpy(p, name, strlen(name));
12740                                 p += strlen(name);
12741
12742                                 /* Counter is 32 bits */
12743                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12744                                         memcpy(p, bit_type_32, bit_type_32_sz);
12745                                         p += bit_type_32_sz;
12746                                 }
12747
12748                                 *p++ = '\n';
12749                         }
12750                 } else {
12751                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12752                         p += strlen(dev_cntrs[i].name);
12753
12754                         /* Counter is 32 bits */
12755                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12756                                 memcpy(p, bit_type_32, bit_type_32_sz);
12757                                 p += bit_type_32_sz;
12758                         }
12759
12760                         *p++ = '\n';
12761                 }
12762         }
12763
12764         /*********************/
12765         /* per port counters */
12766         /*********************/
12767
12768         /*
12769          * Go through the counters for the overflows and disable the ones we
12770          * don't need. This varies based on platform so we need to do it
12771          * dynamically here.
12772          */
12773         rcv_ctxts = dd->num_rcv_contexts;
12774         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12775              i <= C_RCV_HDR_OVF_LAST; i++) {
12776                 port_cntrs[i].flags |= CNTR_DISABLED;
12777         }
12778
12779         /* size port counter names and determine how many we have*/
12780         sz = 0;
12781         dd->nportcntrs = 0;
12782         for (i = 0; i < PORT_CNTR_LAST; i++) {
12783                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12784                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12785                         continue;
12786                 }
12787
12788                 if (port_cntrs[i].flags & CNTR_VL) {
12789                         port_cntrs[i].offset = dd->nportcntrs;
12790                         for (j = 0; j < C_VL_COUNT; j++) {
12791                                 snprintf(name, C_MAX_NAME, "%s%d",
12792                                          port_cntrs[i].name, vl_from_idx(j));
12793                                 sz += strlen(name);
12794                                 /* Add ",32" for 32-bit counters */
12795                                 if (port_cntrs[i].flags & CNTR_32BIT)
12796                                         sz += bit_type_32_sz;
12797                                 sz++;
12798                                 dd->nportcntrs++;
12799                         }
12800                 } else {
12801                         /* +1 for newline */
12802                         sz += strlen(port_cntrs[i].name) + 1;
12803                         /* Add ",32" for 32-bit counters */
12804                         if (port_cntrs[i].flags & CNTR_32BIT)
12805                                 sz += bit_type_32_sz;
12806                         port_cntrs[i].offset = dd->nportcntrs;
12807                         dd->nportcntrs++;
12808                 }
12809         }
12810
12811         /* allocate space for the counter names */
12812         dd->portcntrnameslen = sz;
12813         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12814         if (!dd->portcntrnames)
12815                 goto bail;
12816
12817         /* fill in port cntr names */
12818         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12819                 if (port_cntrs[i].flags & CNTR_DISABLED)
12820                         continue;
12821
12822                 if (port_cntrs[i].flags & CNTR_VL) {
12823                         for (j = 0; j < C_VL_COUNT; j++) {
12824                                 snprintf(name, C_MAX_NAME, "%s%d",
12825                                          port_cntrs[i].name, vl_from_idx(j));
12826                                 memcpy(p, name, strlen(name));
12827                                 p += strlen(name);
12828
12829                                 /* Counter is 32 bits */
12830                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12831                                         memcpy(p, bit_type_32, bit_type_32_sz);
12832                                         p += bit_type_32_sz;
12833                                 }
12834
12835                                 *p++ = '\n';
12836                         }
12837                 } else {
12838                         memcpy(p, port_cntrs[i].name,
12839                                strlen(port_cntrs[i].name));
12840                         p += strlen(port_cntrs[i].name);
12841
12842                         /* Counter is 32 bits */
12843                         if (port_cntrs[i].flags & CNTR_32BIT) {
12844                                 memcpy(p, bit_type_32, bit_type_32_sz);
12845                                 p += bit_type_32_sz;
12846                         }
12847
12848                         *p++ = '\n';
12849                 }
12850         }
12851
12852         /* allocate per port storage for counter values */
12853         ppd = (struct hfi1_pportdata *)(dd + 1);
12854         for (i = 0; i < dd->num_pports; i++, ppd++) {
12855                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12856                 if (!ppd->cntrs)
12857                         goto bail;
12858
12859                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12860                 if (!ppd->scntrs)
12861                         goto bail;
12862         }
12863
12864         /* CPU counters need to be allocated and zeroed */
12865         if (init_cpu_counters(dd))
12866                 goto bail;
12867
12868         dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12869                                                      WQ_MEM_RECLAIM, dd->unit);
12870         if (!dd->update_cntr_wq)
12871                 goto bail;
12872
12873         INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12874
12875         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12876         return 0;
12877 bail:
12878         free_cntrs(dd);
12879         return -ENOMEM;
12880 }
12881
12882 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12883 {
12884         switch (chip_lstate) {
12885         case LSTATE_DOWN:
12886                 return IB_PORT_DOWN;
12887         case LSTATE_INIT:
12888                 return IB_PORT_INIT;
12889         case LSTATE_ARMED:
12890                 return IB_PORT_ARMED;
12891         case LSTATE_ACTIVE:
12892                 return IB_PORT_ACTIVE;
12893         default:
12894                 dd_dev_err(dd,
12895                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12896                            chip_lstate);
12897                 return IB_PORT_DOWN;
12898         }
12899 }
12900
12901 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12902 {
12903         /* look at the HFI meta-states only */
12904         switch (chip_pstate & 0xf0) {
12905         case PLS_DISABLED:
12906                 return IB_PORTPHYSSTATE_DISABLED;
12907         case PLS_OFFLINE:
12908                 return OPA_PORTPHYSSTATE_OFFLINE;
12909         case PLS_POLLING:
12910                 return IB_PORTPHYSSTATE_POLLING;
12911         case PLS_CONFIGPHY:
12912                 return IB_PORTPHYSSTATE_TRAINING;
12913         case PLS_LINKUP:
12914                 return IB_PORTPHYSSTATE_LINKUP;
12915         case PLS_PHYTEST:
12916                 return IB_PORTPHYSSTATE_PHY_TEST;
12917         default:
12918                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12919                            chip_pstate);
12920                 return IB_PORTPHYSSTATE_DISABLED;
12921         }
12922 }
12923
12924 /* return the OPA port logical state name */
12925 const char *opa_lstate_name(u32 lstate)
12926 {
12927         static const char * const port_logical_names[] = {
12928                 "PORT_NOP",
12929                 "PORT_DOWN",
12930                 "PORT_INIT",
12931                 "PORT_ARMED",
12932                 "PORT_ACTIVE",
12933                 "PORT_ACTIVE_DEFER",
12934         };
12935         if (lstate < ARRAY_SIZE(port_logical_names))
12936                 return port_logical_names[lstate];
12937         return "unknown";
12938 }
12939
12940 /* return the OPA port physical state name */
12941 const char *opa_pstate_name(u32 pstate)
12942 {
12943         static const char * const port_physical_names[] = {
12944                 "PHYS_NOP",
12945                 "reserved1",
12946                 "PHYS_POLL",
12947                 "PHYS_DISABLED",
12948                 "PHYS_TRAINING",
12949                 "PHYS_LINKUP",
12950                 "PHYS_LINK_ERR_RECOVER",
12951                 "PHYS_PHY_TEST",
12952                 "reserved8",
12953                 "PHYS_OFFLINE",
12954                 "PHYS_GANGED",
12955                 "PHYS_TEST",
12956         };
12957         if (pstate < ARRAY_SIZE(port_physical_names))
12958                 return port_physical_names[pstate];
12959         return "unknown";
12960 }
12961
12962 /**
12963  * update_statusp - Update userspace status flag
12964  * @ppd: Port data structure
12965  * @state: port state information
12966  *
12967  * Actual port status is determined by the host_link_state value
12968  * in the ppd.
12969  *
12970  * host_link_state MUST be updated before updating the user space
12971  * statusp.
12972  */
12973 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12974 {
12975         /*
12976          * Set port status flags in the page mapped into userspace
12977          * memory. Do it here to ensure a reliable state - this is
12978          * the only function called by all state handling code.
12979          * Always set the flags due to the fact that the cache value
12980          * might have been changed explicitly outside of this
12981          * function.
12982          */
12983         if (ppd->statusp) {
12984                 switch (state) {
12985                 case IB_PORT_DOWN:
12986                 case IB_PORT_INIT:
12987                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12988                                            HFI1_STATUS_IB_READY);
12989                         break;
12990                 case IB_PORT_ARMED:
12991                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12992                         break;
12993                 case IB_PORT_ACTIVE:
12994                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12995                         break;
12996                 }
12997         }
12998         dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12999                     opa_lstate_name(state), state);
13000 }
13001
13002 /**
13003  * wait_logical_linkstate - wait for an IB link state change to occur
13004  * @ppd: port device
13005  * @state: the state to wait for
13006  * @msecs: the number of milliseconds to wait
13007  *
13008  * Wait up to msecs milliseconds for IB link state change to occur.
13009  * For now, take the easy polling route.
13010  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13011  */
13012 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13013                                   int msecs)
13014 {
13015         unsigned long timeout;
13016         u32 new_state;
13017
13018         timeout = jiffies + msecs_to_jiffies(msecs);
13019         while (1) {
13020                 new_state = chip_to_opa_lstate(ppd->dd,
13021                                                read_logical_state(ppd->dd));
13022                 if (new_state == state)
13023                         break;
13024                 if (time_after(jiffies, timeout)) {
13025                         dd_dev_err(ppd->dd,
13026                                    "timeout waiting for link state 0x%x\n",
13027                                    state);
13028                         return -ETIMEDOUT;
13029                 }
13030                 msleep(20);
13031         }
13032
13033         return 0;
13034 }
13035
13036 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
13037 {
13038         u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
13039
13040         dd_dev_info(ppd->dd,
13041                     "physical state changed to %s (0x%x), phy 0x%x\n",
13042                     opa_pstate_name(ib_pstate), ib_pstate, state);
13043 }
13044
13045 /*
13046  * Read the physical hardware link state and check if it matches host
13047  * drivers anticipated state.
13048  */
13049 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13050 {
13051         u32 read_state = read_physical_state(ppd->dd);
13052
13053         if (read_state == state) {
13054                 log_state_transition(ppd, state);
13055         } else {
13056                 dd_dev_err(ppd->dd,
13057                            "anticipated phy link state 0x%x, read 0x%x\n",
13058                            state, read_state);
13059         }
13060 }
13061
13062 /*
13063  * wait_physical_linkstate - wait for an physical link state change to occur
13064  * @ppd: port device
13065  * @state: the state to wait for
13066  * @msecs: the number of milliseconds to wait
13067  *
13068  * Wait up to msecs milliseconds for physical link state change to occur.
13069  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13070  */
13071 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13072                                    int msecs)
13073 {
13074         u32 read_state;
13075         unsigned long timeout;
13076
13077         timeout = jiffies + msecs_to_jiffies(msecs);
13078         while (1) {
13079                 read_state = read_physical_state(ppd->dd);
13080                 if (read_state == state)
13081                         break;
13082                 if (time_after(jiffies, timeout)) {
13083                         dd_dev_err(ppd->dd,
13084                                    "timeout waiting for phy link state 0x%x\n",
13085                                    state);
13086                         return -ETIMEDOUT;
13087                 }
13088                 usleep_range(1950, 2050); /* sleep 2ms-ish */
13089         }
13090
13091         log_state_transition(ppd, state);
13092         return 0;
13093 }
13094
13095 /*
13096  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13097  * @ppd: port device
13098  * @msecs: the number of milliseconds to wait
13099  *
13100  * Wait up to msecs milliseconds for any offline physical link
13101  * state change to occur.
13102  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13103  */
13104 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13105                                             int msecs)
13106 {
13107         u32 read_state;
13108         unsigned long timeout;
13109
13110         timeout = jiffies + msecs_to_jiffies(msecs);
13111         while (1) {
13112                 read_state = read_physical_state(ppd->dd);
13113                 if ((read_state & 0xF0) == PLS_OFFLINE)
13114                         break;
13115                 if (time_after(jiffies, timeout)) {
13116                         dd_dev_err(ppd->dd,
13117                                    "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13118                                    read_state, msecs);
13119                         return -ETIMEDOUT;
13120                 }
13121                 usleep_range(1950, 2050); /* sleep 2ms-ish */
13122         }
13123
13124         log_state_transition(ppd, read_state);
13125         return read_state;
13126 }
13127
13128 /*
13129  * wait_phys_link_out_of_offline - wait for any out of offline state
13130  * @ppd: port device
13131  * @msecs: the number of milliseconds to wait
13132  *
13133  * Wait up to msecs milliseconds for any out of offline physical link
13134  * state change to occur.
13135  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13136  */
13137 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13138                                          int msecs)
13139 {
13140         u32 read_state;
13141         unsigned long timeout;
13142
13143         timeout = jiffies + msecs_to_jiffies(msecs);
13144         while (1) {
13145                 read_state = read_physical_state(ppd->dd);
13146                 if ((read_state & 0xF0) != PLS_OFFLINE)
13147                         break;
13148                 if (time_after(jiffies, timeout)) {
13149                         dd_dev_err(ppd->dd,
13150                                    "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13151                                    read_state, msecs);
13152                         return -ETIMEDOUT;
13153                 }
13154                 usleep_range(1950, 2050); /* sleep 2ms-ish */
13155         }
13156
13157         log_state_transition(ppd, read_state);
13158         return read_state;
13159 }
13160
13161 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13162 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13163
13164 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13165 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13166
13167 void hfi1_init_ctxt(struct send_context *sc)
13168 {
13169         if (sc) {
13170                 struct hfi1_devdata *dd = sc->dd;
13171                 u64 reg;
13172                 u8 set = (sc->type == SC_USER ?
13173                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13174                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13175                 reg = read_kctxt_csr(dd, sc->hw_context,
13176                                      SEND_CTXT_CHECK_ENABLE);
13177                 if (set)
13178                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13179                 else
13180                         SET_STATIC_RATE_CONTROL_SMASK(reg);
13181                 write_kctxt_csr(dd, sc->hw_context,
13182                                 SEND_CTXT_CHECK_ENABLE, reg);
13183         }
13184 }
13185
13186 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13187 {
13188         int ret = 0;
13189         u64 reg;
13190
13191         if (dd->icode != ICODE_RTL_SILICON) {
13192                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13193                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13194                                     __func__);
13195                 return -EINVAL;
13196         }
13197         reg = read_csr(dd, ASIC_STS_THERM);
13198         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13199                       ASIC_STS_THERM_CURR_TEMP_MASK);
13200         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13201                         ASIC_STS_THERM_LO_TEMP_MASK);
13202         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13203                         ASIC_STS_THERM_HI_TEMP_MASK);
13204         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13205                           ASIC_STS_THERM_CRIT_TEMP_MASK);
13206         /* triggers is a 3-bit value - 1 bit per trigger. */
13207         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13208
13209         return ret;
13210 }
13211
13212 /* ========================================================================= */
13213
13214 /**
13215  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13216  * @dd: valid devdata
13217  * @src: IRQ source to determine register index from
13218  * @bits: the bits to set or clear
13219  * @set: true == set the bits, false == clear the bits
13220  *
13221  */
13222 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13223                            bool set)
13224 {
13225         u64 reg;
13226         u16 idx = src / BITS_PER_REGISTER;
13227
13228         spin_lock(&dd->irq_src_lock);
13229         reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13230         if (set)
13231                 reg |= bits;
13232         else
13233                 reg &= ~bits;
13234         write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13235         spin_unlock(&dd->irq_src_lock);
13236 }
13237
13238 /**
13239  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13240  * @dd: valid devdata
13241  * @first: first IRQ source to set/clear
13242  * @last: last IRQ source (inclusive) to set/clear
13243  * @set: true == set the bits, false == clear the bits
13244  *
13245  * If first == last, set the exact source.
13246  */
13247 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13248 {
13249         u64 bits = 0;
13250         u64 bit;
13251         u16 src;
13252
13253         if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13254                 return -EINVAL;
13255
13256         if (last < first)
13257                 return -ERANGE;
13258
13259         for (src = first; src <= last; src++) {
13260                 bit = src % BITS_PER_REGISTER;
13261                 /* wrapped to next register? */
13262                 if (!bit && bits) {
13263                         read_mod_write(dd, src - 1, bits, set);
13264                         bits = 0;
13265                 }
13266                 bits |= BIT_ULL(bit);
13267         }
13268         read_mod_write(dd, last, bits, set);
13269
13270         return 0;
13271 }
13272
13273 /*
13274  * Clear all interrupt sources on the chip.
13275  */
13276 void clear_all_interrupts(struct hfi1_devdata *dd)
13277 {
13278         int i;
13279
13280         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13281                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13282
13283         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13284         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13285         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13286         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13287         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13288         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13289         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13290         for (i = 0; i < chip_send_contexts(dd); i++)
13291                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13292         for (i = 0; i < chip_sdma_engines(dd); i++)
13293                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13294
13295         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13296         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13297         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13298 }
13299
13300 /*
13301  * Remap the interrupt source from the general handler to the given MSI-X
13302  * interrupt.
13303  */
13304 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13305 {
13306         u64 reg;
13307         int m, n;
13308
13309         /* clear from the handled mask of the general interrupt */
13310         m = isrc / 64;
13311         n = isrc % 64;
13312         if (likely(m < CCE_NUM_INT_CSRS)) {
13313                 dd->gi_mask[m] &= ~((u64)1 << n);
13314         } else {
13315                 dd_dev_err(dd, "remap interrupt err\n");
13316                 return;
13317         }
13318
13319         /* direct the chip source to the given MSI-X interrupt */
13320         m = isrc / 8;
13321         n = isrc % 8;
13322         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13323         reg &= ~((u64)0xff << (8 * n));
13324         reg |= ((u64)msix_intr & 0xff) << (8 * n);
13325         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13326 }
13327
13328 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13329 {
13330         /*
13331          * SDMA engine interrupt sources grouped by type, rather than
13332          * engine.  Per-engine interrupts are as follows:
13333          *      SDMA
13334          *      SDMAProgress
13335          *      SDMAIdle
13336          */
13337         remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13338         remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13339         remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13340 }
13341
13342 /*
13343  * Set the general handler to accept all interrupts, remap all
13344  * chip interrupts back to MSI-X 0.
13345  */
13346 void reset_interrupts(struct hfi1_devdata *dd)
13347 {
13348         int i;
13349
13350         /* all interrupts handled by the general handler */
13351         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13352                 dd->gi_mask[i] = ~(u64)0;
13353
13354         /* all chip interrupts map to MSI-X 0 */
13355         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13356                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13357 }
13358
13359 /**
13360  * set_up_interrupts() - Initialize the IRQ resources and state
13361  * @dd: valid devdata
13362  *
13363  */
13364 static int set_up_interrupts(struct hfi1_devdata *dd)
13365 {
13366         int ret;
13367
13368         /* mask all interrupts */
13369         set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13370
13371         /* clear all pending interrupts */
13372         clear_all_interrupts(dd);
13373
13374         /* reset general handler mask, chip MSI-X mappings */
13375         reset_interrupts(dd);
13376
13377         /* ask for MSI-X interrupts */
13378         ret = msix_initialize(dd);
13379         if (ret)
13380                 return ret;
13381
13382         ret = msix_request_irqs(dd);
13383         if (ret)
13384                 msix_clean_up_interrupts(dd);
13385
13386         return ret;
13387 }
13388
13389 /*
13390  * Set up context values in dd.  Sets:
13391  *
13392  *      num_rcv_contexts - number of contexts being used
13393  *      n_krcv_queues - number of kernel contexts
13394  *      first_dyn_alloc_ctxt - first dynamically allocated context
13395  *                             in array of contexts
13396  *      freectxts  - number of free user contexts
13397  *      num_send_contexts - number of PIO send contexts being used
13398  *      num_netdev_contexts - number of contexts reserved for netdev
13399  */
13400 static int set_up_context_variables(struct hfi1_devdata *dd)
13401 {
13402         unsigned long num_kernel_contexts;
13403         u16 num_netdev_contexts;
13404         int ret;
13405         unsigned ngroups;
13406         int rmt_count;
13407         u32 n_usr_ctxts;
13408         u32 send_contexts = chip_send_contexts(dd);
13409         u32 rcv_contexts = chip_rcv_contexts(dd);
13410
13411         /*
13412          * Kernel receive contexts:
13413          * - Context 0 - control context (VL15/multicast/error)
13414          * - Context 1 - first kernel context
13415          * - Context 2 - second kernel context
13416          * ...
13417          */
13418         if (n_krcvqs)
13419                 /*
13420                  * n_krcvqs is the sum of module parameter kernel receive
13421                  * contexts, krcvqs[].  It does not include the control
13422                  * context, so add that.
13423                  */
13424                 num_kernel_contexts = n_krcvqs + 1;
13425         else
13426                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13427         /*
13428          * Every kernel receive context needs an ACK send context.
13429          * one send context is allocated for each VL{0-7} and VL15
13430          */
13431         if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13432                 dd_dev_err(dd,
13433                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
13434                            send_contexts - num_vls - 1,
13435                            num_kernel_contexts);
13436                 num_kernel_contexts = send_contexts - num_vls - 1;
13437         }
13438
13439         /*
13440          * User contexts:
13441          *      - default to 1 user context per real (non-HT) CPU core if
13442          *        num_user_contexts is negative
13443          */
13444         if (num_user_contexts < 0)
13445                 n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13446         else
13447                 n_usr_ctxts = num_user_contexts;
13448         /*
13449          * Adjust the counts given a global max.
13450          */
13451         if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13452                 dd_dev_err(dd,
13453                            "Reducing # user receive contexts to: %u, from %u\n",
13454                            (u32)(rcv_contexts - num_kernel_contexts),
13455                            n_usr_ctxts);
13456                 /* recalculate */
13457                 n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13458         }
13459
13460         num_netdev_contexts =
13461                 hfi1_num_netdev_contexts(dd, rcv_contexts -
13462                                          (num_kernel_contexts + n_usr_ctxts),
13463                                          &node_affinity.real_cpu_mask);
13464         /*
13465          * RMT entries are allocated as follows:
13466          * 1. QOS (0 to 128 entries)
13467          * 2. FECN (num_kernel_context - 1 [a] + num_user_contexts +
13468          *          num_netdev_contexts [b])
13469          * 3. netdev (NUM_NETDEV_MAP_ENTRIES)
13470          *
13471          * Notes:
13472          * [a] Kernel contexts (except control) are included in FECN if kernel
13473          *     TID_RDMA is active.
13474          * [b] Netdev and user contexts are randomly allocated from the same
13475          *     context pool, so FECN must cover all contexts in the pool.
13476          */
13477         rmt_count = qos_rmt_entries(num_kernel_contexts - 1, NULL, NULL)
13478                     + (HFI1_CAP_IS_KSET(TID_RDMA) ? num_kernel_contexts - 1
13479                                                   : 0)
13480                     + n_usr_ctxts
13481                     + num_netdev_contexts
13482                     + NUM_NETDEV_MAP_ENTRIES;
13483         if (rmt_count > NUM_MAP_ENTRIES) {
13484                 int over = rmt_count - NUM_MAP_ENTRIES;
13485                 /* try to squish user contexts, minimum of 1 */
13486                 if (over >= n_usr_ctxts) {
13487                         dd_dev_err(dd, "RMT overflow: reduce the requested number of contexts\n");
13488                         return -EINVAL;
13489                 }
13490                 dd_dev_err(dd, "RMT overflow: reducing # user contexts from %u to %u\n",
13491                            n_usr_ctxts, n_usr_ctxts - over);
13492                 n_usr_ctxts -= over;
13493         }
13494
13495         /* the first N are kernel contexts, the rest are user/netdev contexts */
13496         dd->num_rcv_contexts =
13497                 num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13498         dd->n_krcv_queues = num_kernel_contexts;
13499         dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13500         dd->num_netdev_contexts = num_netdev_contexts;
13501         dd->num_user_contexts = n_usr_ctxts;
13502         dd->freectxts = n_usr_ctxts;
13503         dd_dev_info(dd,
13504                     "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13505                     rcv_contexts,
13506                     (int)dd->num_rcv_contexts,
13507                     (int)dd->n_krcv_queues,
13508                     dd->num_netdev_contexts,
13509                     dd->num_user_contexts);
13510
13511         /*
13512          * Receive array allocation:
13513          *   All RcvArray entries are divided into groups of 8. This
13514          *   is required by the hardware and will speed up writes to
13515          *   consecutive entries by using write-combining of the entire
13516          *   cacheline.
13517          *
13518          *   The number of groups are evenly divided among all contexts.
13519          *   any left over groups will be given to the first N user
13520          *   contexts.
13521          */
13522         dd->rcv_entries.group_size = RCV_INCREMENT;
13523         ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13524         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13525         dd->rcv_entries.nctxt_extra = ngroups -
13526                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13527         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13528                     dd->rcv_entries.ngroups,
13529                     dd->rcv_entries.nctxt_extra);
13530         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13531             MAX_EAGER_ENTRIES * 2) {
13532                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13533                         dd->rcv_entries.group_size;
13534                 dd_dev_info(dd,
13535                             "RcvArray group count too high, change to %u\n",
13536                             dd->rcv_entries.ngroups);
13537                 dd->rcv_entries.nctxt_extra = 0;
13538         }
13539         /*
13540          * PIO send contexts
13541          */
13542         ret = init_sc_pools_and_sizes(dd);
13543         if (ret >= 0) { /* success */
13544                 dd->num_send_contexts = ret;
13545                 dd_dev_info(
13546                         dd,
13547                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13548                         send_contexts,
13549                         dd->num_send_contexts,
13550                         dd->sc_sizes[SC_KERNEL].count,
13551                         dd->sc_sizes[SC_ACK].count,
13552                         dd->sc_sizes[SC_USER].count,
13553                         dd->sc_sizes[SC_VL15].count);
13554                 ret = 0;        /* success */
13555         }
13556
13557         return ret;
13558 }
13559
13560 /*
13561  * Set the device/port partition key table. The MAD code
13562  * will ensure that, at least, the partial management
13563  * partition key is present in the table.
13564  */
13565 static void set_partition_keys(struct hfi1_pportdata *ppd)
13566 {
13567         struct hfi1_devdata *dd = ppd->dd;
13568         u64 reg = 0;
13569         int i;
13570
13571         dd_dev_info(dd, "Setting partition keys\n");
13572         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13573                 reg |= (ppd->pkeys[i] &
13574                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13575                         ((i % 4) *
13576                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13577                 /* Each register holds 4 PKey values. */
13578                 if ((i % 4) == 3) {
13579                         write_csr(dd, RCV_PARTITION_KEY +
13580                                   ((i - 3) * 2), reg);
13581                         reg = 0;
13582                 }
13583         }
13584
13585         /* Always enable HW pkeys check when pkeys table is set */
13586         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13587 }
13588
13589 /*
13590  * These CSRs and memories are uninitialized on reset and must be
13591  * written before reading to set the ECC/parity bits.
13592  *
13593  * NOTE: All user context CSRs that are not mmaped write-only
13594  * (e.g. the TID flows) must be initialized even if the driver never
13595  * reads them.
13596  */
13597 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13598 {
13599         int i, j;
13600
13601         /* CceIntMap */
13602         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13603                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13604
13605         /* SendCtxtCreditReturnAddr */
13606         for (i = 0; i < chip_send_contexts(dd); i++)
13607                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13608
13609         /* PIO Send buffers */
13610         /* SDMA Send buffers */
13611         /*
13612          * These are not normally read, and (presently) have no method
13613          * to be read, so are not pre-initialized
13614          */
13615
13616         /* RcvHdrAddr */
13617         /* RcvHdrTailAddr */
13618         /* RcvTidFlowTable */
13619         for (i = 0; i < chip_rcv_contexts(dd); i++) {
13620                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13621                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13622                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13623                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13624         }
13625
13626         /* RcvArray */
13627         for (i = 0; i < chip_rcv_array_count(dd); i++)
13628                 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13629
13630         /* RcvQPMapTable */
13631         for (i = 0; i < 32; i++)
13632                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13633 }
13634
13635 /*
13636  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13637  */
13638 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13639                              u64 ctrl_bits)
13640 {
13641         unsigned long timeout;
13642         u64 reg;
13643
13644         /* is the condition present? */
13645         reg = read_csr(dd, CCE_STATUS);
13646         if ((reg & status_bits) == 0)
13647                 return;
13648
13649         /* clear the condition */
13650         write_csr(dd, CCE_CTRL, ctrl_bits);
13651
13652         /* wait for the condition to clear */
13653         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13654         while (1) {
13655                 reg = read_csr(dd, CCE_STATUS);
13656                 if ((reg & status_bits) == 0)
13657                         return;
13658                 if (time_after(jiffies, timeout)) {
13659                         dd_dev_err(dd,
13660                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13661                                    status_bits, reg & status_bits);
13662                         return;
13663                 }
13664                 udelay(1);
13665         }
13666 }
13667
13668 /* set CCE CSRs to chip reset defaults */
13669 static void reset_cce_csrs(struct hfi1_devdata *dd)
13670 {
13671         int i;
13672
13673         /* CCE_REVISION read-only */
13674         /* CCE_REVISION2 read-only */
13675         /* CCE_CTRL - bits clear automatically */
13676         /* CCE_STATUS read-only, use CceCtrl to clear */
13677         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13678         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13679         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13680         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13681                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13682         /* CCE_ERR_STATUS read-only */
13683         write_csr(dd, CCE_ERR_MASK, 0);
13684         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13685         /* CCE_ERR_FORCE leave alone */
13686         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13687                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13688         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13689         /* CCE_PCIE_CTRL leave alone */
13690         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13691                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13692                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13693                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13694         }
13695         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13696                 /* CCE_MSIX_PBA read-only */
13697                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13698                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13699         }
13700         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13701                 write_csr(dd, CCE_INT_MAP, 0);
13702         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13703                 /* CCE_INT_STATUS read-only */
13704                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13705                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13706                 /* CCE_INT_FORCE leave alone */
13707                 /* CCE_INT_BLOCKED read-only */
13708         }
13709         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13710                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13711 }
13712
13713 /* set MISC CSRs to chip reset defaults */
13714 static void reset_misc_csrs(struct hfi1_devdata *dd)
13715 {
13716         int i;
13717
13718         for (i = 0; i < 32; i++) {
13719                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13720                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13721                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13722         }
13723         /*
13724          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13725          * only be written 128-byte chunks
13726          */
13727         /* init RSA engine to clear lingering errors */
13728         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13729         write_csr(dd, MISC_CFG_RSA_MU, 0);
13730         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13731         /* MISC_STS_8051_DIGEST read-only */
13732         /* MISC_STS_SBM_DIGEST read-only */
13733         /* MISC_STS_PCIE_DIGEST read-only */
13734         /* MISC_STS_FAB_DIGEST read-only */
13735         /* MISC_ERR_STATUS read-only */
13736         write_csr(dd, MISC_ERR_MASK, 0);
13737         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13738         /* MISC_ERR_FORCE leave alone */
13739 }
13740
13741 /* set TXE CSRs to chip reset defaults */
13742 static void reset_txe_csrs(struct hfi1_devdata *dd)
13743 {
13744         int i;
13745
13746         /*
13747          * TXE Kernel CSRs
13748          */
13749         write_csr(dd, SEND_CTRL, 0);
13750         __cm_reset(dd, 0);      /* reset CM internal state */
13751         /* SEND_CONTEXTS read-only */
13752         /* SEND_DMA_ENGINES read-only */
13753         /* SEND_PIO_MEM_SIZE read-only */
13754         /* SEND_DMA_MEM_SIZE read-only */
13755         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13756         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13757         /* SEND_PIO_ERR_STATUS read-only */
13758         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13759         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13760         /* SEND_PIO_ERR_FORCE leave alone */
13761         /* SEND_DMA_ERR_STATUS read-only */
13762         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13763         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13764         /* SEND_DMA_ERR_FORCE leave alone */
13765         /* SEND_EGRESS_ERR_STATUS read-only */
13766         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13767         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13768         /* SEND_EGRESS_ERR_FORCE leave alone */
13769         write_csr(dd, SEND_BTH_QP, 0);
13770         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13771         write_csr(dd, SEND_SC2VLT0, 0);
13772         write_csr(dd, SEND_SC2VLT1, 0);
13773         write_csr(dd, SEND_SC2VLT2, 0);
13774         write_csr(dd, SEND_SC2VLT3, 0);
13775         write_csr(dd, SEND_LEN_CHECK0, 0);
13776         write_csr(dd, SEND_LEN_CHECK1, 0);
13777         /* SEND_ERR_STATUS read-only */
13778         write_csr(dd, SEND_ERR_MASK, 0);
13779         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13780         /* SEND_ERR_FORCE read-only */
13781         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13782                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13783         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13784                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13785         for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13786                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13787         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13788                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13789         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13790                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13791         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13792         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13793         /* SEND_CM_CREDIT_USED_STATUS read-only */
13794         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13795         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13796         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13797         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13798         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13799         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13800                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13801         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13802         /* SEND_CM_CREDIT_USED_VL read-only */
13803         /* SEND_CM_CREDIT_USED_VL15 read-only */
13804         /* SEND_EGRESS_CTXT_STATUS read-only */
13805         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13806         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13807         /* SEND_EGRESS_ERR_INFO read-only */
13808         /* SEND_EGRESS_ERR_SOURCE read-only */
13809
13810         /*
13811          * TXE Per-Context CSRs
13812          */
13813         for (i = 0; i < chip_send_contexts(dd); i++) {
13814                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13815                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13816                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13817                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13818                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13819                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13820                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13821                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13822                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13823                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13824                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13825                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13826         }
13827
13828         /*
13829          * TXE Per-SDMA CSRs
13830          */
13831         for (i = 0; i < chip_sdma_engines(dd); i++) {
13832                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13833                 /* SEND_DMA_STATUS read-only */
13834                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13835                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13836                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13837                 /* SEND_DMA_HEAD read-only */
13838                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13839                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13840                 /* SEND_DMA_IDLE_CNT read-only */
13841                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13842                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13843                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13844                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13845                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13846                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13847                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13848                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13849                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13850                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13851                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13852                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13853                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13854                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13855         }
13856 }
13857
13858 /*
13859  * Expect on entry:
13860  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13861  */
13862 static void init_rbufs(struct hfi1_devdata *dd)
13863 {
13864         u64 reg;
13865         int count;
13866
13867         /*
13868          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13869          * clear.
13870          */
13871         count = 0;
13872         while (1) {
13873                 reg = read_csr(dd, RCV_STATUS);
13874                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13875                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13876                         break;
13877                 /*
13878                  * Give up after 1ms - maximum wait time.
13879                  *
13880                  * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13881                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13882                  *      136 KB / (66% * 250MB/s) = 844us
13883                  */
13884                 if (count++ > 500) {
13885                         dd_dev_err(dd,
13886                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13887                                    __func__, reg);
13888                         break;
13889                 }
13890                 udelay(2); /* do not busy-wait the CSR */
13891         }
13892
13893         /* start the init - expect RcvCtrl to be 0 */
13894         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13895
13896         /*
13897          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13898          * period after the write before RcvStatus.RxRbufInitDone is valid.
13899          * The delay in the first run through the loop below is sufficient and
13900          * required before the first read of RcvStatus.RxRbufInintDone.
13901          */
13902         read_csr(dd, RCV_CTRL);
13903
13904         /* wait for the init to finish */
13905         count = 0;
13906         while (1) {
13907                 /* delay is required first time through - see above */
13908                 udelay(2); /* do not busy-wait the CSR */
13909                 reg = read_csr(dd, RCV_STATUS);
13910                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13911                         break;
13912
13913                 /* give up after 100us - slowest possible at 33MHz is 73us */
13914                 if (count++ > 50) {
13915                         dd_dev_err(dd,
13916                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13917                                    __func__);
13918                         break;
13919                 }
13920         }
13921 }
13922
13923 /* set RXE CSRs to chip reset defaults */
13924 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13925 {
13926         int i, j;
13927
13928         /*
13929          * RXE Kernel CSRs
13930          */
13931         write_csr(dd, RCV_CTRL, 0);
13932         init_rbufs(dd);
13933         /* RCV_STATUS read-only */
13934         /* RCV_CONTEXTS read-only */
13935         /* RCV_ARRAY_CNT read-only */
13936         /* RCV_BUF_SIZE read-only */
13937         write_csr(dd, RCV_BTH_QP, 0);
13938         write_csr(dd, RCV_MULTICAST, 0);
13939         write_csr(dd, RCV_BYPASS, 0);
13940         write_csr(dd, RCV_VL15, 0);
13941         /* this is a clear-down */
13942         write_csr(dd, RCV_ERR_INFO,
13943                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13944         /* RCV_ERR_STATUS read-only */
13945         write_csr(dd, RCV_ERR_MASK, 0);
13946         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13947         /* RCV_ERR_FORCE leave alone */
13948         for (i = 0; i < 32; i++)
13949                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13950         for (i = 0; i < 4; i++)
13951                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13952         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13953                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13954         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13955                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13956         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13957                 clear_rsm_rule(dd, i);
13958         for (i = 0; i < 32; i++)
13959                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13960
13961         /*
13962          * RXE Kernel and User Per-Context CSRs
13963          */
13964         for (i = 0; i < chip_rcv_contexts(dd); i++) {
13965                 /* kernel */
13966                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13967                 /* RCV_CTXT_STATUS read-only */
13968                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13969                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13970                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13971                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13972                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13973                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13974                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13975                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13976                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13977                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13978
13979                 /* user */
13980                 /* RCV_HDR_TAIL read-only */
13981                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13982                 /* RCV_EGR_INDEX_TAIL read-only */
13983                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13984                 /* RCV_EGR_OFFSET_TAIL read-only */
13985                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13986                         write_uctxt_csr(dd, i,
13987                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
13988                 }
13989         }
13990 }
13991
13992 /*
13993  * Set sc2vl tables.
13994  *
13995  * They power on to zeros, so to avoid send context errors
13996  * they need to be set:
13997  *
13998  * SC 0-7 -> VL 0-7 (respectively)
13999  * SC 15  -> VL 15
14000  * otherwise
14001  *        -> VL 0
14002  */
14003 static void init_sc2vl_tables(struct hfi1_devdata *dd)
14004 {
14005         int i;
14006         /* init per architecture spec, constrained by hardware capability */
14007
14008         /* HFI maps sent packets */
14009         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
14010                 0,
14011                 0, 0, 1, 1,
14012                 2, 2, 3, 3,
14013                 4, 4, 5, 5,
14014                 6, 6, 7, 7));
14015         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14016                 1,
14017                 8, 0, 9, 0,
14018                 10, 0, 11, 0,
14019                 12, 0, 13, 0,
14020                 14, 0, 15, 15));
14021         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14022                 2,
14023                 16, 0, 17, 0,
14024                 18, 0, 19, 0,
14025                 20, 0, 21, 0,
14026                 22, 0, 23, 0));
14027         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14028                 3,
14029                 24, 0, 25, 0,
14030                 26, 0, 27, 0,
14031                 28, 0, 29, 0,
14032                 30, 0, 31, 0));
14033
14034         /* DC maps received packets */
14035         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14036                 15_0,
14037                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14038                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14039         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14040                 31_16,
14041                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14042                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14043
14044         /* initialize the cached sc2vl values consistently with h/w */
14045         for (i = 0; i < 32; i++) {
14046                 if (i < 8 || i == 15)
14047                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
14048                 else
14049                         *((u8 *)(dd->sc2vl) + i) = 0;
14050         }
14051 }
14052
14053 /*
14054  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14055  * depend on the chip going through a power-on reset - a driver may be loaded
14056  * and unloaded many times.
14057  *
14058  * Do not write any CSR values to the chip in this routine - there may be
14059  * a reset following the (possible) FLR in this routine.
14060  *
14061  */
14062 static int init_chip(struct hfi1_devdata *dd)
14063 {
14064         int i;
14065         int ret = 0;
14066
14067         /*
14068          * Put the HFI CSRs in a known state.
14069          * Combine this with a DC reset.
14070          *
14071          * Stop the device from doing anything while we do a
14072          * reset.  We know there are no other active users of
14073          * the device since we are now in charge.  Turn off
14074          * off all outbound and inbound traffic and make sure
14075          * the device does not generate any interrupts.
14076          */
14077
14078         /* disable send contexts and SDMA engines */
14079         write_csr(dd, SEND_CTRL, 0);
14080         for (i = 0; i < chip_send_contexts(dd); i++)
14081                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14082         for (i = 0; i < chip_sdma_engines(dd); i++)
14083                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14084         /* disable port (turn off RXE inbound traffic) and contexts */
14085         write_csr(dd, RCV_CTRL, 0);
14086         for (i = 0; i < chip_rcv_contexts(dd); i++)
14087                 write_csr(dd, RCV_CTXT_CTRL, 0);
14088         /* mask all interrupt sources */
14089         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14090                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14091
14092         /*
14093          * DC Reset: do a full DC reset before the register clear.
14094          * A recommended length of time to hold is one CSR read,
14095          * so reread the CceDcCtrl.  Then, hold the DC in reset
14096          * across the clear.
14097          */
14098         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14099         (void)read_csr(dd, CCE_DC_CTRL);
14100
14101         if (use_flr) {
14102                 /*
14103                  * A FLR will reset the SPC core and part of the PCIe.
14104                  * The parts that need to be restored have already been
14105                  * saved.
14106                  */
14107                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14108
14109                 /* do the FLR, the DC reset will remain */
14110                 pcie_flr(dd->pcidev);
14111
14112                 /* restore command and BARs */
14113                 ret = restore_pci_variables(dd);
14114                 if (ret) {
14115                         dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14116                                    __func__);
14117                         return ret;
14118                 }
14119
14120                 if (is_ax(dd)) {
14121                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
14122                         pcie_flr(dd->pcidev);
14123                         ret = restore_pci_variables(dd);
14124                         if (ret) {
14125                                 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14126                                            __func__);
14127                                 return ret;
14128                         }
14129                 }
14130         } else {
14131                 dd_dev_info(dd, "Resetting CSRs with writes\n");
14132                 reset_cce_csrs(dd);
14133                 reset_txe_csrs(dd);
14134                 reset_rxe_csrs(dd);
14135                 reset_misc_csrs(dd);
14136         }
14137         /* clear the DC reset */
14138         write_csr(dd, CCE_DC_CTRL, 0);
14139
14140         /* Set the LED off */
14141         setextled(dd, 0);
14142
14143         /*
14144          * Clear the QSFP reset.
14145          * An FLR enforces a 0 on all out pins. The driver does not touch
14146          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14147          * anything plugged constantly in reset, if it pays attention
14148          * to RESET_N.
14149          * Prime examples of this are optical cables. Set all pins high.
14150          * I2CCLK and I2CDAT will change per direction, and INT_N and
14151          * MODPRS_N are input only and their value is ignored.
14152          */
14153         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14154         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14155         init_chip_resources(dd);
14156         return ret;
14157 }
14158
14159 static void init_early_variables(struct hfi1_devdata *dd)
14160 {
14161         int i;
14162
14163         /* assign link credit variables */
14164         dd->vau = CM_VAU;
14165         dd->link_credits = CM_GLOBAL_CREDITS;
14166         if (is_ax(dd))
14167                 dd->link_credits--;
14168         dd->vcu = cu_to_vcu(hfi1_cu);
14169         /* enough room for 8 MAD packets plus header - 17K */
14170         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14171         if (dd->vl15_init > dd->link_credits)
14172                 dd->vl15_init = dd->link_credits;
14173
14174         write_uninitialized_csrs_and_memories(dd);
14175
14176         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14177                 for (i = 0; i < dd->num_pports; i++) {
14178                         struct hfi1_pportdata *ppd = &dd->pport[i];
14179
14180                         set_partition_keys(ppd);
14181                 }
14182         init_sc2vl_tables(dd);
14183 }
14184
14185 static void init_kdeth_qp(struct hfi1_devdata *dd)
14186 {
14187         write_csr(dd, SEND_BTH_QP,
14188                   (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14189                   SEND_BTH_QP_KDETH_QP_SHIFT);
14190
14191         write_csr(dd, RCV_BTH_QP,
14192                   (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14193                   RCV_BTH_QP_KDETH_QP_SHIFT);
14194 }
14195
14196 /**
14197  * hfi1_get_qp_map
14198  * @dd: device data
14199  * @idx: index to read
14200  */
14201 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14202 {
14203         u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14204
14205         reg >>= (idx % 8) * 8;
14206         return reg;
14207 }
14208
14209 /**
14210  * init_qpmap_table
14211  * @dd - device data
14212  * @first_ctxt - first context
14213  * @last_ctxt - first context
14214  *
14215  * This return sets the qpn mapping table that
14216  * is indexed by qpn[8:1].
14217  *
14218  * The routine will round robin the 256 settings
14219  * from first_ctxt to last_ctxt.
14220  *
14221  * The first/last looks ahead to having specialized
14222  * receive contexts for mgmt and bypass.  Normal
14223  * verbs traffic will assumed to be on a range
14224  * of receive contexts.
14225  */
14226 static void init_qpmap_table(struct hfi1_devdata *dd,
14227                              u32 first_ctxt,
14228                              u32 last_ctxt)
14229 {
14230         u64 reg = 0;
14231         u64 regno = RCV_QP_MAP_TABLE;
14232         int i;
14233         u64 ctxt = first_ctxt;
14234
14235         for (i = 0; i < 256; i++) {
14236                 reg |= ctxt << (8 * (i % 8));
14237                 ctxt++;
14238                 if (ctxt > last_ctxt)
14239                         ctxt = first_ctxt;
14240                 if (i % 8 == 7) {
14241                         write_csr(dd, regno, reg);
14242                         reg = 0;
14243                         regno += 8;
14244                 }
14245         }
14246
14247         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14248                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14249 }
14250
14251 struct rsm_map_table {
14252         u64 map[NUM_MAP_REGS];
14253         unsigned int used;
14254 };
14255
14256 struct rsm_rule_data {
14257         u8 offset;
14258         u8 pkt_type;
14259         u32 field1_off;
14260         u32 field2_off;
14261         u32 index1_off;
14262         u32 index1_width;
14263         u32 index2_off;
14264         u32 index2_width;
14265         u32 mask1;
14266         u32 value1;
14267         u32 mask2;
14268         u32 value2;
14269 };
14270
14271 /*
14272  * Return an initialized RMT map table for users to fill in.  OK if it
14273  * returns NULL, indicating no table.
14274  */
14275 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14276 {
14277         struct rsm_map_table *rmt;
14278         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14279
14280         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14281         if (rmt) {
14282                 memset(rmt->map, rxcontext, sizeof(rmt->map));
14283                 rmt->used = 0;
14284         }
14285
14286         return rmt;
14287 }
14288
14289 /*
14290  * Write the final RMT map table to the chip and free the table.  OK if
14291  * table is NULL.
14292  */
14293 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14294                                    struct rsm_map_table *rmt)
14295 {
14296         int i;
14297
14298         if (rmt) {
14299                 /* write table to chip */
14300                 for (i = 0; i < NUM_MAP_REGS; i++)
14301                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14302
14303                 /* enable RSM */
14304                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14305         }
14306 }
14307
14308 /* Is a receive side mapping rule */
14309 static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14310 {
14311         return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14312 }
14313
14314 /*
14315  * Add a receive side mapping rule.
14316  */
14317 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14318                          struct rsm_rule_data *rrd)
14319 {
14320         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14321                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14322                   1ull << rule_index | /* enable bit */
14323                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14324         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14325                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14326                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14327                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14328                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14329                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14330                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14331         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14332                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14333                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14334                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14335                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14336 }
14337
14338 /*
14339  * Clear a receive side mapping rule.
14340  */
14341 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14342 {
14343         write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14344         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14345         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14346 }
14347
14348 /* return the number of RSM map table entries that will be used for QOS */
14349 static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
14350                            unsigned int *np)
14351 {
14352         int i;
14353         unsigned int m, n;
14354         uint max_by_vl = 0;
14355
14356         /* is QOS active at all? */
14357         if (n_krcv_queues < MIN_KERNEL_KCTXTS ||
14358             num_vls == 1 ||
14359             krcvqsset <= 1)
14360                 goto no_qos;
14361
14362         /* determine bits for qpn */
14363         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14364                 if (krcvqs[i] > max_by_vl)
14365                         max_by_vl = krcvqs[i];
14366         if (max_by_vl > 32)
14367                 goto no_qos;
14368         m = ilog2(__roundup_pow_of_two(max_by_vl));
14369
14370         /* determine bits for vl */
14371         n = ilog2(__roundup_pow_of_two(num_vls));
14372
14373         /* reject if too much is used */
14374         if ((m + n) > 7)
14375                 goto no_qos;
14376
14377         if (mp)
14378                 *mp = m;
14379         if (np)
14380                 *np = n;
14381
14382         return 1 << (m + n);
14383
14384 no_qos:
14385         if (mp)
14386                 *mp = 0;
14387         if (np)
14388                 *np = 0;
14389         return 0;
14390 }
14391
14392 /**
14393  * init_qos - init RX qos
14394  * @dd - device data
14395  * @rmt - RSM map table
14396  *
14397  * This routine initializes Rule 0 and the RSM map table to implement
14398  * quality of service (qos).
14399  *
14400  * If all of the limit tests succeed, qos is applied based on the array
14401  * interpretation of krcvqs where entry 0 is VL0.
14402  *
14403  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14404  * feed both the RSM map table and the single rule.
14405  */
14406 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14407 {
14408         struct rsm_rule_data rrd;
14409         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14410         unsigned int rmt_entries;
14411         u64 reg;
14412
14413         if (!rmt)
14414                 goto bail;
14415         rmt_entries = qos_rmt_entries(dd->n_krcv_queues - 1, &m, &n);
14416         if (rmt_entries == 0)
14417                 goto bail;
14418         qpns_per_vl = 1 << m;
14419
14420         /* enough room in the map table? */
14421         rmt_entries = 1 << (m + n);
14422         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14423                 goto bail;
14424
14425         /* add qos entries to the the RSM map table */
14426         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14427                 unsigned tctxt;
14428
14429                 for (qpn = 0, tctxt = ctxt;
14430                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14431                         unsigned idx, regoff, regidx;
14432
14433                         /* generate the index the hardware will produce */
14434                         idx = rmt->used + ((qpn << n) ^ i);
14435                         regoff = (idx % 8) * 8;
14436                         regidx = idx / 8;
14437                         /* replace default with context number */
14438                         reg = rmt->map[regidx];
14439                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14440                                 << regoff);
14441                         reg |= (u64)(tctxt++) << regoff;
14442                         rmt->map[regidx] = reg;
14443                         if (tctxt == ctxt + krcvqs[i])
14444                                 tctxt = ctxt;
14445                 }
14446                 ctxt += krcvqs[i];
14447         }
14448
14449         rrd.offset = rmt->used;
14450         rrd.pkt_type = 2;
14451         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14452         rrd.field2_off = LRH_SC_MATCH_OFFSET;
14453         rrd.index1_off = LRH_SC_SELECT_OFFSET;
14454         rrd.index1_width = n;
14455         rrd.index2_off = QPN_SELECT_OFFSET;
14456         rrd.index2_width = m + n;
14457         rrd.mask1 = LRH_BTH_MASK;
14458         rrd.value1 = LRH_BTH_VALUE;
14459         rrd.mask2 = LRH_SC_MASK;
14460         rrd.value2 = LRH_SC_VALUE;
14461
14462         /* add rule 0 */
14463         add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14464
14465         /* mark RSM map entries as used */
14466         rmt->used += rmt_entries;
14467         /* map everything else to the mcast/err/vl15 context */
14468         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14469         dd->qos_shift = n + 1;
14470         return;
14471 bail:
14472         dd->qos_shift = 1;
14473         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14474 }
14475
14476 static void init_fecn_handling(struct hfi1_devdata *dd,
14477                                struct rsm_map_table *rmt)
14478 {
14479         struct rsm_rule_data rrd;
14480         u64 reg;
14481         int i, idx, regoff, regidx, start;
14482         u8 offset;
14483         u32 total_cnt;
14484
14485         if (HFI1_CAP_IS_KSET(TID_RDMA))
14486                 /* Exclude context 0 */
14487                 start = 1;
14488         else
14489                 start = dd->first_dyn_alloc_ctxt;
14490
14491         total_cnt = dd->num_rcv_contexts - start;
14492
14493         /* there needs to be enough room in the map table */
14494         if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14495                 dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14496                 return;
14497         }
14498
14499         /*
14500          * RSM will extract the destination context as an index into the
14501          * map table.  The destination contexts are a sequential block
14502          * in the range start...num_rcv_contexts-1 (inclusive).
14503          * Map entries are accessed as offset + extracted value.  Adjust
14504          * the added offset so this sequence can be placed anywhere in
14505          * the table - as long as the entries themselves do not wrap.
14506          * There are only enough bits in offset for the table size, so
14507          * start with that to allow for a "negative" offset.
14508          */
14509         offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14510
14511         for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14512              i++, idx++) {
14513                 /* replace with identity mapping */
14514                 regoff = (idx % 8) * 8;
14515                 regidx = idx / 8;
14516                 reg = rmt->map[regidx];
14517                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14518                 reg |= (u64)i << regoff;
14519                 rmt->map[regidx] = reg;
14520         }
14521
14522         /*
14523          * For RSM intercept of Expected FECN packets:
14524          * o packet type 0 - expected
14525          * o match on F (bit 95), using select/match 1, and
14526          * o match on SH (bit 133), using select/match 2.
14527          *
14528          * Use index 1 to extract the 8-bit receive context from DestQP
14529          * (start at bit 64).  Use that as the RSM map table index.
14530          */
14531         rrd.offset = offset;
14532         rrd.pkt_type = 0;
14533         rrd.field1_off = 95;
14534         rrd.field2_off = 133;
14535         rrd.index1_off = 64;
14536         rrd.index1_width = 8;
14537         rrd.index2_off = 0;
14538         rrd.index2_width = 0;
14539         rrd.mask1 = 1;
14540         rrd.value1 = 1;
14541         rrd.mask2 = 1;
14542         rrd.value2 = 1;
14543
14544         /* add rule 1 */
14545         add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14546
14547         rmt->used += total_cnt;
14548 }
14549
14550 static inline bool hfi1_is_rmt_full(int start, int spare)
14551 {
14552         return (start + spare) > NUM_MAP_ENTRIES;
14553 }
14554
14555 static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14556 {
14557         u8 i, j;
14558         u8 ctx_id = 0;
14559         u64 reg;
14560         u32 regoff;
14561         int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14562         int ctxt_count = hfi1_netdev_ctxt_count(dd);
14563
14564         /* We already have contexts mapped in RMT */
14565         if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14566                 dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14567                 return true;
14568         }
14569
14570         if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14571                 dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14572                            rmt_start);
14573                 return false;
14574         }
14575
14576         dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14577                 rmt_start,
14578                 rmt_start + NUM_NETDEV_MAP_ENTRIES);
14579
14580         /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14581         regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14582         reg = read_csr(dd, regoff);
14583         for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14584                 /* Update map register with netdev context */
14585                 j = (rmt_start + i) % 8;
14586                 reg &= ~(0xffllu << (j * 8));
14587                 reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14588                 /* Wrap up netdev ctx index */
14589                 ctx_id %= ctxt_count;
14590                 /* Write back map register */
14591                 if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14592                         dev_dbg(&(dd)->pcidev->dev,
14593                                 "RMT[%d] =0x%llx\n",
14594                                 regoff - RCV_RSM_MAP_TABLE, reg);
14595
14596                         write_csr(dd, regoff, reg);
14597                         regoff += 8;
14598                         if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14599                                 reg = read_csr(dd, regoff);
14600                 }
14601         }
14602
14603         return true;
14604 }
14605
14606 static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14607                                  int rule, struct rsm_rule_data *rrd)
14608 {
14609         if (!hfi1_netdev_update_rmt(dd)) {
14610                 dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14611                 return;
14612         }
14613
14614         add_rsm_rule(dd, rule, rrd);
14615         add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14616 }
14617
14618 void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14619 {
14620         /*
14621          * go through with the initialisation only if this rule actually doesn't
14622          * exist yet
14623          */
14624         if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14625                 int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14626                 struct rsm_rule_data rrd = {
14627                         .offset = rmt_start,
14628                         .pkt_type = IB_PACKET_TYPE,
14629                         .field1_off = LRH_BTH_MATCH_OFFSET,
14630                         .mask1 = LRH_BTH_MASK,
14631                         .value1 = LRH_BTH_VALUE,
14632                         .field2_off = BTH_DESTQP_MATCH_OFFSET,
14633                         .mask2 = BTH_DESTQP_MASK,
14634                         .value2 = BTH_DESTQP_VALUE,
14635                         .index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14636                                         ilog2(NUM_NETDEV_MAP_ENTRIES),
14637                         .index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14638                         .index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14639                         .index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14640                 };
14641
14642                 hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14643         }
14644 }
14645
14646 /* Initialize RSM for VNIC */
14647 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14648 {
14649         int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14650         struct rsm_rule_data rrd = {
14651                 /* Add rule for vnic */
14652                 .offset = rmt_start,
14653                 .pkt_type = 4,
14654                 /* Match 16B packets */
14655                 .field1_off = L2_TYPE_MATCH_OFFSET,
14656                 .mask1 = L2_TYPE_MASK,
14657                 .value1 = L2_16B_VALUE,
14658                 /* Match ETH L4 packets */
14659                 .field2_off = L4_TYPE_MATCH_OFFSET,
14660                 .mask2 = L4_16B_TYPE_MASK,
14661                 .value2 = L4_16B_ETH_VALUE,
14662                 /* Calc context from veswid and entropy */
14663                 .index1_off = L4_16B_HDR_VESWID_OFFSET,
14664                 .index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14665                 .index2_off = L2_16B_ENTROPY_OFFSET,
14666                 .index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14667         };
14668
14669         hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14670 }
14671
14672 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14673 {
14674         clear_rsm_rule(dd, RSM_INS_VNIC);
14675 }
14676
14677 void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14678 {
14679         /* only actually clear the rule if it's the last user asking to do so */
14680         if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14681                 clear_rsm_rule(dd, RSM_INS_AIP);
14682 }
14683
14684 static int init_rxe(struct hfi1_devdata *dd)
14685 {
14686         struct rsm_map_table *rmt;
14687         u64 val;
14688
14689         /* enable all receive errors */
14690         write_csr(dd, RCV_ERR_MASK, ~0ull);
14691
14692         rmt = alloc_rsm_map_table(dd);
14693         if (!rmt)
14694                 return -ENOMEM;
14695
14696         /* set up QOS, including the QPN map table */
14697         init_qos(dd, rmt);
14698         init_fecn_handling(dd, rmt);
14699         complete_rsm_map_table(dd, rmt);
14700         /* record number of used rsm map entries for netdev */
14701         hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14702         kfree(rmt);
14703
14704         /*
14705          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14706          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14707          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14708          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14709          * Max_PayLoad_Size set to its minimum of 128.
14710          *
14711          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14712          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14713          * tune_pcie_caps() which is called after this routine.
14714          */
14715
14716         /* Have 16 bytes (4DW) of bypass header available in header queue */
14717         val = read_csr(dd, RCV_BYPASS);
14718         val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14719         val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14720                 RCV_BYPASS_HDR_SIZE_SHIFT);
14721         write_csr(dd, RCV_BYPASS, val);
14722         return 0;
14723 }
14724
14725 static void init_other(struct hfi1_devdata *dd)
14726 {
14727         /* enable all CCE errors */
14728         write_csr(dd, CCE_ERR_MASK, ~0ull);
14729         /* enable *some* Misc errors */
14730         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14731         /* enable all DC errors, except LCB */
14732         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14733         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14734 }
14735
14736 /*
14737  * Fill out the given AU table using the given CU.  A CU is defined in terms
14738  * AUs.  The table is a an encoding: given the index, how many AUs does that
14739  * represent?
14740  *
14741  * NOTE: Assumes that the register layout is the same for the
14742  * local and remote tables.
14743  */
14744 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14745                                u32 csr0to3, u32 csr4to7)
14746 {
14747         write_csr(dd, csr0to3,
14748                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14749                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14750                   2ull * cu <<
14751                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14752                   4ull * cu <<
14753                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14754         write_csr(dd, csr4to7,
14755                   8ull * cu <<
14756                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14757                   16ull * cu <<
14758                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14759                   32ull * cu <<
14760                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14761                   64ull * cu <<
14762                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14763 }
14764
14765 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14766 {
14767         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14768                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14769 }
14770
14771 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14772 {
14773         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14774                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14775 }
14776
14777 static void init_txe(struct hfi1_devdata *dd)
14778 {
14779         int i;
14780
14781         /* enable all PIO, SDMA, general, and Egress errors */
14782         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14783         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14784         write_csr(dd, SEND_ERR_MASK, ~0ull);
14785         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14786
14787         /* enable all per-context and per-SDMA engine errors */
14788         for (i = 0; i < chip_send_contexts(dd); i++)
14789                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14790         for (i = 0; i < chip_sdma_engines(dd); i++)
14791                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14792
14793         /* set the local CU to AU mapping */
14794         assign_local_cm_au_table(dd, dd->vcu);
14795
14796         /*
14797          * Set reasonable default for Credit Return Timer
14798          * Don't set on Simulator - causes it to choke.
14799          */
14800         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14801                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14802 }
14803
14804 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14805                        u16 jkey)
14806 {
14807         u8 hw_ctxt;
14808         u64 reg;
14809
14810         if (!rcd || !rcd->sc)
14811                 return -EINVAL;
14812
14813         hw_ctxt = rcd->sc->hw_context;
14814         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14815                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14816                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14817         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14818         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14819                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14820         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14821         /*
14822          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14823          */
14824         if (!is_ax(dd)) {
14825                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14826                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14827                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14828         }
14829
14830         /* Enable J_KEY check on receive context. */
14831         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14832                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14833                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14834         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14835
14836         return 0;
14837 }
14838
14839 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14840 {
14841         u8 hw_ctxt;
14842         u64 reg;
14843
14844         if (!rcd || !rcd->sc)
14845                 return -EINVAL;
14846
14847         hw_ctxt = rcd->sc->hw_context;
14848         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14849         /*
14850          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14851          * This check would not have been enabled for A0 h/w, see
14852          * set_ctxt_jkey().
14853          */
14854         if (!is_ax(dd)) {
14855                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14856                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14857                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14858         }
14859         /* Turn off the J_KEY on the receive side */
14860         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14861
14862         return 0;
14863 }
14864
14865 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14866                        u16 pkey)
14867 {
14868         u8 hw_ctxt;
14869         u64 reg;
14870
14871         if (!rcd || !rcd->sc)
14872                 return -EINVAL;
14873
14874         hw_ctxt = rcd->sc->hw_context;
14875         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14876                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14877         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14878         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14879         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14880         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14881         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14882
14883         return 0;
14884 }
14885
14886 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14887 {
14888         u8 hw_ctxt;
14889         u64 reg;
14890
14891         if (!ctxt || !ctxt->sc)
14892                 return -EINVAL;
14893
14894         hw_ctxt = ctxt->sc->hw_context;
14895         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14896         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14897         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14898         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14899
14900         return 0;
14901 }
14902
14903 /*
14904  * Start doing the clean up the the chip. Our clean up happens in multiple
14905  * stages and this is just the first.
14906  */
14907 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14908 {
14909         aspm_exit(dd);
14910         free_cntrs(dd);
14911         free_rcverr(dd);
14912         finish_chip_resources(dd);
14913 }
14914
14915 #define HFI_BASE_GUID(dev) \
14916         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14917
14918 /*
14919  * Information can be shared between the two HFIs on the same ASIC
14920  * in the same OS.  This function finds the peer device and sets
14921  * up a shared structure.
14922  */
14923 static int init_asic_data(struct hfi1_devdata *dd)
14924 {
14925         unsigned long index;
14926         struct hfi1_devdata *peer;
14927         struct hfi1_asic_data *asic_data;
14928         int ret = 0;
14929
14930         /* pre-allocate the asic structure in case we are the first device */
14931         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14932         if (!asic_data)
14933                 return -ENOMEM;
14934
14935         xa_lock_irq(&hfi1_dev_table);
14936         /* Find our peer device */
14937         xa_for_each(&hfi1_dev_table, index, peer) {
14938                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14939                     dd->unit != peer->unit)
14940                         break;
14941         }
14942
14943         if (peer) {
14944                 /* use already allocated structure */
14945                 dd->asic_data = peer->asic_data;
14946                 kfree(asic_data);
14947         } else {
14948                 dd->asic_data = asic_data;
14949                 mutex_init(&dd->asic_data->asic_resource_mutex);
14950         }
14951         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14952         xa_unlock_irq(&hfi1_dev_table);
14953
14954         /* first one through - set up i2c devices */
14955         if (!peer)
14956                 ret = set_up_i2c(dd, dd->asic_data);
14957
14958         return ret;
14959 }
14960
14961 /*
14962  * Set dd->boardname.  Use a generic name if a name is not returned from
14963  * EFI variable space.
14964  *
14965  * Return 0 on success, -ENOMEM if space could not be allocated.
14966  */
14967 static int obtain_boardname(struct hfi1_devdata *dd)
14968 {
14969         /* generic board description */
14970         const char generic[] =
14971                 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14972         unsigned long size;
14973         int ret;
14974
14975         ret = read_hfi1_efi_var(dd, "description", &size,
14976                                 (void **)&dd->boardname);
14977         if (ret) {
14978                 dd_dev_info(dd, "Board description not found\n");
14979                 /* use generic description */
14980                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14981                 if (!dd->boardname)
14982                         return -ENOMEM;
14983         }
14984         return 0;
14985 }
14986
14987 /*
14988  * Check the interrupt registers to make sure that they are mapped correctly.
14989  * It is intended to help user identify any mismapping by VMM when the driver
14990  * is running in a VM. This function should only be called before interrupt
14991  * is set up properly.
14992  *
14993  * Return 0 on success, -EINVAL on failure.
14994  */
14995 static int check_int_registers(struct hfi1_devdata *dd)
14996 {
14997         u64 reg;
14998         u64 all_bits = ~(u64)0;
14999         u64 mask;
15000
15001         /* Clear CceIntMask[0] to avoid raising any interrupts */
15002         mask = read_csr(dd, CCE_INT_MASK);
15003         write_csr(dd, CCE_INT_MASK, 0ull);
15004         reg = read_csr(dd, CCE_INT_MASK);
15005         if (reg)
15006                 goto err_exit;
15007
15008         /* Clear all interrupt status bits */
15009         write_csr(dd, CCE_INT_CLEAR, all_bits);
15010         reg = read_csr(dd, CCE_INT_STATUS);
15011         if (reg)
15012                 goto err_exit;
15013
15014         /* Set all interrupt status bits */
15015         write_csr(dd, CCE_INT_FORCE, all_bits);
15016         reg = read_csr(dd, CCE_INT_STATUS);
15017         if (reg != all_bits)
15018                 goto err_exit;
15019
15020         /* Restore the interrupt mask */
15021         write_csr(dd, CCE_INT_CLEAR, all_bits);
15022         write_csr(dd, CCE_INT_MASK, mask);
15023
15024         return 0;
15025 err_exit:
15026         write_csr(dd, CCE_INT_MASK, mask);
15027         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
15028         return -EINVAL;
15029 }
15030
15031 /**
15032  * hfi1_init_dd() - Initialize most of the dd structure.
15033  * @dev: the pci_dev for hfi1_ib device
15034  * @ent: pci_device_id struct for this dev
15035  *
15036  * This is global, and is called directly at init to set up the
15037  * chip-specific function pointers for later use.
15038  */
15039 int hfi1_init_dd(struct hfi1_devdata *dd)
15040 {
15041         struct pci_dev *pdev = dd->pcidev;
15042         struct hfi1_pportdata *ppd;
15043         u64 reg;
15044         int i, ret;
15045         static const char * const inames[] = { /* implementation names */
15046                 "RTL silicon",
15047                 "RTL VCS simulation",
15048                 "RTL FPGA emulation",
15049                 "Functional simulator"
15050         };
15051         struct pci_dev *parent = pdev->bus->self;
15052         u32 sdma_engines = chip_sdma_engines(dd);
15053
15054         ppd = dd->pport;
15055         for (i = 0; i < dd->num_pports; i++, ppd++) {
15056                 int vl;
15057                 /* init common fields */
15058                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15059                 /* DC supports 4 link widths */
15060                 ppd->link_width_supported =
15061                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15062                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15063                 ppd->link_width_downgrade_supported =
15064                         ppd->link_width_supported;
15065                 /* start out enabling only 4X */
15066                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15067                 ppd->link_width_downgrade_enabled =
15068                                         ppd->link_width_downgrade_supported;
15069                 /* link width active is 0 when link is down */
15070                 /* link width downgrade active is 0 when link is down */
15071
15072                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15073                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
15074                         dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15075                                    num_vls, HFI1_MAX_VLS_SUPPORTED);
15076                         num_vls = HFI1_MAX_VLS_SUPPORTED;
15077                 }
15078                 ppd->vls_supported = num_vls;
15079                 ppd->vls_operational = ppd->vls_supported;
15080                 /* Set the default MTU. */
15081                 for (vl = 0; vl < num_vls; vl++)
15082                         dd->vld[vl].mtu = hfi1_max_mtu;
15083                 dd->vld[15].mtu = MAX_MAD_PACKET;
15084                 /*
15085                  * Set the initial values to reasonable default, will be set
15086                  * for real when link is up.
15087                  */
15088                 ppd->overrun_threshold = 0x4;
15089                 ppd->phy_error_threshold = 0xf;
15090                 ppd->port_crc_mode_enabled = link_crc_mask;
15091                 /* initialize supported LTP CRC mode */
15092                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15093                 /* initialize enabled LTP CRC mode */
15094                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15095                 /* start in offline */
15096                 ppd->host_link_state = HLS_DN_OFFLINE;
15097                 init_vl_arb_caches(ppd);
15098         }
15099
15100         /*
15101          * Do remaining PCIe setup and save PCIe values in dd.
15102          * Any error printing is already done by the init code.
15103          * On return, we have the chip mapped.
15104          */
15105         ret = hfi1_pcie_ddinit(dd, pdev);
15106         if (ret < 0)
15107                 goto bail_free;
15108
15109         /* Save PCI space registers to rewrite after device reset */
15110         ret = save_pci_variables(dd);
15111         if (ret < 0)
15112                 goto bail_cleanup;
15113
15114         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15115                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
15116         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15117                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
15118
15119         /*
15120          * Check interrupt registers mapping if the driver has no access to
15121          * the upstream component. In this case, it is likely that the driver
15122          * is running in a VM.
15123          */
15124         if (!parent) {
15125                 ret = check_int_registers(dd);
15126                 if (ret)
15127                         goto bail_cleanup;
15128         }
15129
15130         /*
15131          * obtain the hardware ID - NOT related to unit, which is a
15132          * software enumeration
15133          */
15134         reg = read_csr(dd, CCE_REVISION2);
15135         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15136                                         & CCE_REVISION2_HFI_ID_MASK;
15137         /* the variable size will remove unwanted bits */
15138         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15139         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15140         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15141                     dd->icode < ARRAY_SIZE(inames) ?
15142                     inames[dd->icode] : "unknown", (int)dd->irev);
15143
15144         /* speeds the hardware can support */
15145         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15146         /* speeds allowed to run at */
15147         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15148         /* give a reasonable active value, will be set on link up */
15149         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15150
15151         /* fix up link widths for emulation _p */
15152         ppd = dd->pport;
15153         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15154                 ppd->link_width_supported =
15155                         ppd->link_width_enabled =
15156                         ppd->link_width_downgrade_supported =
15157                         ppd->link_width_downgrade_enabled =
15158                                 OPA_LINK_WIDTH_1X;
15159         }
15160         /* insure num_vls isn't larger than number of sdma engines */
15161         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15162                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15163                            num_vls, sdma_engines);
15164                 num_vls = sdma_engines;
15165                 ppd->vls_supported = sdma_engines;
15166                 ppd->vls_operational = ppd->vls_supported;
15167         }
15168
15169         /*
15170          * Convert the ns parameter to the 64 * cclocks used in the CSR.
15171          * Limit the max if larger than the field holds.  If timeout is
15172          * non-zero, then the calculated field will be at least 1.
15173          *
15174          * Must be after icode is set up - the cclock rate depends
15175          * on knowing the hardware being used.
15176          */
15177         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15178         if (dd->rcv_intr_timeout_csr >
15179                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15180                 dd->rcv_intr_timeout_csr =
15181                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15182         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15183                 dd->rcv_intr_timeout_csr = 1;
15184
15185         /* needs to be done before we look for the peer device */
15186         read_guid(dd);
15187
15188         /* set up shared ASIC data with peer device */
15189         ret = init_asic_data(dd);
15190         if (ret)
15191                 goto bail_cleanup;
15192
15193         /* obtain chip sizes, reset chip CSRs */
15194         ret = init_chip(dd);
15195         if (ret)
15196                 goto bail_cleanup;
15197
15198         /* read in the PCIe link speed information */
15199         ret = pcie_speeds(dd);
15200         if (ret)
15201                 goto bail_cleanup;
15202
15203         /* call before get_platform_config(), after init_chip_resources() */
15204         ret = eprom_init(dd);
15205         if (ret)
15206                 goto bail_free_rcverr;
15207
15208         /* Needs to be called before hfi1_firmware_init */
15209         get_platform_config(dd);
15210
15211         /* read in firmware */
15212         ret = hfi1_firmware_init(dd);
15213         if (ret)
15214                 goto bail_cleanup;
15215
15216         /*
15217          * In general, the PCIe Gen3 transition must occur after the
15218          * chip has been idled (so it won't initiate any PCIe transactions
15219          * e.g. an interrupt) and before the driver changes any registers
15220          * (the transition will reset the registers).
15221          *
15222          * In particular, place this call after:
15223          * - init_chip()     - the chip will not initiate any PCIe transactions
15224          * - pcie_speeds()   - reads the current link speed
15225          * - hfi1_firmware_init() - the needed firmware is ready to be
15226          *                          downloaded
15227          */
15228         ret = do_pcie_gen3_transition(dd);
15229         if (ret)
15230                 goto bail_cleanup;
15231
15232         /*
15233          * This should probably occur in hfi1_pcie_init(), but historically
15234          * occurs after the do_pcie_gen3_transition() code.
15235          */
15236         tune_pcie_caps(dd);
15237
15238         /* start setting dd values and adjusting CSRs */
15239         init_early_variables(dd);
15240
15241         parse_platform_config(dd);
15242
15243         ret = obtain_boardname(dd);
15244         if (ret)
15245                 goto bail_cleanup;
15246
15247         snprintf(dd->boardversion, BOARD_VERS_MAX,
15248                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15249                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15250                  (u32)dd->majrev,
15251                  (u32)dd->minrev,
15252                  (dd->revision >> CCE_REVISION_SW_SHIFT)
15253                     & CCE_REVISION_SW_MASK);
15254
15255         /* alloc netdev data */
15256         ret = hfi1_netdev_alloc(dd);
15257         if (ret)
15258                 goto bail_cleanup;
15259
15260         ret = set_up_context_variables(dd);
15261         if (ret)
15262                 goto bail_cleanup;
15263
15264         /* set initial RXE CSRs */
15265         ret = init_rxe(dd);
15266         if (ret)
15267                 goto bail_cleanup;
15268
15269         /* set initial TXE CSRs */
15270         init_txe(dd);
15271         /* set initial non-RXE, non-TXE CSRs */
15272         init_other(dd);
15273         /* set up KDETH QP prefix in both RX and TX CSRs */
15274         init_kdeth_qp(dd);
15275
15276         ret = hfi1_dev_affinity_init(dd);
15277         if (ret)
15278                 goto bail_cleanup;
15279
15280         /* send contexts must be set up before receive contexts */
15281         ret = init_send_contexts(dd);
15282         if (ret)
15283                 goto bail_cleanup;
15284
15285         ret = hfi1_create_kctxts(dd);
15286         if (ret)
15287                 goto bail_cleanup;
15288
15289         /*
15290          * Initialize aspm, to be done after gen3 transition and setting up
15291          * contexts and before enabling interrupts
15292          */
15293         aspm_init(dd);
15294
15295         ret = init_pervl_scs(dd);
15296         if (ret)
15297                 goto bail_cleanup;
15298
15299         /* sdma init */
15300         for (i = 0; i < dd->num_pports; ++i) {
15301                 ret = sdma_init(dd, i);
15302                 if (ret)
15303                         goto bail_cleanup;
15304         }
15305
15306         /* use contexts created by hfi1_create_kctxts */
15307         ret = set_up_interrupts(dd);
15308         if (ret)
15309                 goto bail_cleanup;
15310
15311         ret = hfi1_comp_vectors_set_up(dd);
15312         if (ret)
15313                 goto bail_clear_intr;
15314
15315         /* set up LCB access - must be after set_up_interrupts() */
15316         init_lcb_access(dd);
15317
15318         /*
15319          * Serial number is created from the base guid:
15320          * [27:24] = base guid [38:35]
15321          * [23: 0] = base guid [23: 0]
15322          */
15323         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15324                  (dd->base_guid & 0xFFFFFF) |
15325                      ((dd->base_guid >> 11) & 0xF000000));
15326
15327         dd->oui1 = dd->base_guid >> 56 & 0xFF;
15328         dd->oui2 = dd->base_guid >> 48 & 0xFF;
15329         dd->oui3 = dd->base_guid >> 40 & 0xFF;
15330
15331         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15332         if (ret)
15333                 goto bail_clear_intr;
15334
15335         thermal_init(dd);
15336
15337         ret = init_cntrs(dd);
15338         if (ret)
15339                 goto bail_clear_intr;
15340
15341         ret = init_rcverr(dd);
15342         if (ret)
15343                 goto bail_free_cntrs;
15344
15345         init_completion(&dd->user_comp);
15346
15347         /* The user refcount starts with one to inidicate an active device */
15348         atomic_set(&dd->user_refcount, 1);
15349
15350         goto bail;
15351
15352 bail_free_rcverr:
15353         free_rcverr(dd);
15354 bail_free_cntrs:
15355         free_cntrs(dd);
15356 bail_clear_intr:
15357         hfi1_comp_vectors_clean_up(dd);
15358         msix_clean_up_interrupts(dd);
15359 bail_cleanup:
15360         hfi1_netdev_free(dd);
15361         hfi1_pcie_ddcleanup(dd);
15362 bail_free:
15363         hfi1_free_devdata(dd);
15364 bail:
15365         return ret;
15366 }
15367
15368 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15369                         u32 dw_len)
15370 {
15371         u32 delta_cycles;
15372         u32 current_egress_rate = ppd->current_egress_rate;
15373         /* rates here are in units of 10^6 bits/sec */
15374
15375         if (desired_egress_rate == -1)
15376                 return 0; /* shouldn't happen */
15377
15378         if (desired_egress_rate >= current_egress_rate)
15379                 return 0; /* we can't help go faster, only slower */
15380
15381         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15382                         egress_cycles(dw_len * 4, current_egress_rate);
15383
15384         return (u16)delta_cycles;
15385 }
15386
15387 /**
15388  * create_pbc - build a pbc for transmission
15389  * @flags: special case flags or-ed in built pbc
15390  * @srate: static rate
15391  * @vl: vl
15392  * @dwlen: dword length (header words + data words + pbc words)
15393  *
15394  * Create a PBC with the given flags, rate, VL, and length.
15395  *
15396  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15397  * for verbs, which does not use this PSM feature.  The lone other caller
15398  * is for the diagnostic interface which calls this if the user does not
15399  * supply their own PBC.
15400  */
15401 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15402                u32 dw_len)
15403 {
15404         u64 pbc, delay = 0;
15405
15406         if (unlikely(srate_mbs))
15407                 delay = delay_cycles(ppd, srate_mbs, dw_len);
15408
15409         pbc = flags
15410                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15411                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15412                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15413                 | (dw_len & PBC_LENGTH_DWS_MASK)
15414                         << PBC_LENGTH_DWS_SHIFT;
15415
15416         return pbc;
15417 }
15418
15419 #define SBUS_THERMAL    0x4f
15420 #define SBUS_THERM_MONITOR_MODE 0x1
15421
15422 #define THERM_FAILURE(dev, ret, reason) \
15423         dd_dev_err((dd),                                                \
15424                    "Thermal sensor initialization failed: %s (%d)\n",   \
15425                    (reason), (ret))
15426
15427 /*
15428  * Initialize the thermal sensor.
15429  *
15430  * After initialization, enable polling of thermal sensor through
15431  * SBus interface. In order for this to work, the SBus Master
15432  * firmware has to be loaded due to the fact that the HW polling
15433  * logic uses SBus interrupts, which are not supported with
15434  * default firmware. Otherwise, no data will be returned through
15435  * the ASIC_STS_THERM CSR.
15436  */
15437 static int thermal_init(struct hfi1_devdata *dd)
15438 {
15439         int ret = 0;
15440
15441         if (dd->icode != ICODE_RTL_SILICON ||
15442             check_chip_resource(dd, CR_THERM_INIT, NULL))
15443                 return ret;
15444
15445         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15446         if (ret) {
15447                 THERM_FAILURE(dd, ret, "Acquire SBus");
15448                 return ret;
15449         }
15450
15451         dd_dev_info(dd, "Initializing thermal sensor\n");
15452         /* Disable polling of thermal readings */
15453         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15454         msleep(100);
15455         /* Thermal Sensor Initialization */
15456         /*    Step 1: Reset the Thermal SBus Receiver */
15457         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15458                                 RESET_SBUS_RECEIVER, 0);
15459         if (ret) {
15460                 THERM_FAILURE(dd, ret, "Bus Reset");
15461                 goto done;
15462         }
15463         /*    Step 2: Set Reset bit in Thermal block */
15464         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15465                                 WRITE_SBUS_RECEIVER, 0x1);
15466         if (ret) {
15467                 THERM_FAILURE(dd, ret, "Therm Block Reset");
15468                 goto done;
15469         }
15470         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15471         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15472                                 WRITE_SBUS_RECEIVER, 0x32);
15473         if (ret) {
15474                 THERM_FAILURE(dd, ret, "Write Clock Div");
15475                 goto done;
15476         }
15477         /*    Step 4: Select temperature mode */
15478         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15479                                 WRITE_SBUS_RECEIVER,
15480                                 SBUS_THERM_MONITOR_MODE);
15481         if (ret) {
15482                 THERM_FAILURE(dd, ret, "Write Mode Sel");
15483                 goto done;
15484         }
15485         /*    Step 5: De-assert block reset and start conversion */
15486         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15487                                 WRITE_SBUS_RECEIVER, 0x2);
15488         if (ret) {
15489                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15490                 goto done;
15491         }
15492         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15493         msleep(22);
15494
15495         /* Enable polling of thermal readings */
15496         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15497
15498         /* Set initialized flag */
15499         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15500         if (ret)
15501                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15502
15503 done:
15504         release_chip_resource(dd, CR_SBUS);
15505         return ret;
15506 }
15507
15508 static void handle_temp_err(struct hfi1_devdata *dd)
15509 {
15510         struct hfi1_pportdata *ppd = &dd->pport[0];
15511         /*
15512          * Thermal Critical Interrupt
15513          * Put the device into forced freeze mode, take link down to
15514          * offline, and put DC into reset.
15515          */
15516         dd_dev_emerg(dd,
15517                      "Critical temperature reached! Forcing device into freeze mode!\n");
15518         dd->flags |= HFI1_FORCED_FREEZE;
15519         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15520         /*
15521          * Shut DC down as much and as quickly as possible.
15522          *
15523          * Step 1: Take the link down to OFFLINE. This will cause the
15524          *         8051 to put the Serdes in reset. However, we don't want to
15525          *         go through the entire link state machine since we want to
15526          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15527          *         but rather an attempt to save the chip.
15528          *         Code below is almost the same as quiet_serdes() but avoids
15529          *         all the extra work and the sleeps.
15530          */
15531         ppd->driver_link_ready = 0;
15532         ppd->link_enabled = 0;
15533         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15534                                 PLS_OFFLINE);
15535         /*
15536          * Step 2: Shutdown LCB and 8051
15537          *         After shutdown, do not restore DC_CFG_RESET value.
15538          */
15539         dc_shutdown(dd);
15540 }