GNU Linux-libre 4.14.324-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68
69 #define NUM_IB_PORTS 1
70
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107
108 struct flag_table {
109         u64 flag;       /* the flag */
110         char *str;      /* description string */
111         u16 extra;      /* extra information */
112         u16 unused0;
113         u32 unused1;
114 };
115
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED       0x1
122 #define SEC_PACKET_DROPPED      0x2
123 #define SEC_SC_HALTED           0x4     /* per-context only */
124 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
125
126 #define DEFAULT_KRCVQS            2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203         num, \
204         sc0, sc0val, \
205         sc1, sc1val, \
206         sc2, sc2val, \
207         sc3, sc3val, \
208         sc4, sc4val, \
209         sc5, sc5val, \
210         sc6, sc6val, \
211         sc7, sc7val) \
212 ( \
213         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222
223 #define DC_SC_VL_VAL( \
224         range, \
225         e0, e0val, \
226         e1, e1val, \
227         e2, e2val, \
228         e3, e3val, \
229         e4, e4val, \
230         e5, e5val, \
231         e6, e6val, \
232         e7, e7val, \
233         e8, e8val, \
234         e9, e9val, \
235         e10, e10val, \
236         e11, e11val, \
237         e12, e12val, \
238         e13, e13val, \
239         e14, e14val, \
240         e15, e15val) \
241 ( \
242         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262                         | CCE_STATUS_RXE_FROZE_SMASK \
263                         | CCE_STATUS_TXE_FROZE_SMASK \
264                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267                         | CCE_STATUS_TXE_PAUSED_SMASK \
268                         | CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
280                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
282                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
288                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
290                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
294                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
306                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
308                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
310                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
312                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
314                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
316                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
318                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
320                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
322                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
324                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
326                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
328                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
330                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
332                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
334                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
336                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
338                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/  FLAG_ENTRY0("LATriggered",
342                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
344                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
346                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
352                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
354                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
356                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
358                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
360                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
389         SEC_WRITE_DROPPED,
390         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
392         SEC_SPC_FREEZE,
393         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/  FLAG_ENTRY("PioCsrParity",
395         SEC_SPC_FREEZE,
396         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
398         SEC_SPC_FREEZE,
399         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
401         SEC_SPC_FREEZE,
402         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
404         SEC_SPC_FREEZE,
405         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
407         SEC_SPC_FREEZE,
408         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
410         SEC_SPC_FREEZE,
411         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413         SEC_SPC_FREEZE,
414         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
416         SEC_SPC_FREEZE,
417         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
419         SEC_SPC_FREEZE,
420         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
422         SEC_SPC_FREEZE,
423         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
425         SEC_SPC_FREEZE,
426         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
428         0,
429         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
431         0,
432         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
434         SEC_SPC_FREEZE,
435         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
437         SEC_SPC_FREEZE,
438         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/  FLAG_ENTRY("PioInitSmIn",
440         0,
441         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
443         SEC_SPC_FREEZE,
444         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
446         SEC_SPC_FREEZE,
447         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
449         0,
450         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/  FLAG_ENTRY("PioWriteDataParity",
452         SEC_SPC_FREEZE,
453         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/  FLAG_ENTRY("PioStateMachine",
455         SEC_SPC_FREEZE,
456         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
458         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
461         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
464         SEC_SPC_FREEZE,
465         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/  FLAG_ENTRY("PioVlfSopParity",
467         SEC_SPC_FREEZE,
468         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/  FLAG_ENTRY("PioVlFifoParity",
470         SEC_SPC_FREEZE,
471         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
473         SEC_SPC_FREEZE,
474         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
476         SEC_SPC_FREEZE,
477         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
480         SEC_SPC_FREEZE,
481         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
483         SEC_SPC_FREEZE,
484         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
486         SEC_SPC_FREEZE,
487         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
489         SEC_SPC_FREEZE,
490         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
531                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
533                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689         | SEES(TX_LAUNCH_CSR_PARITY) \
690         | SEES(TX_SBRD_CTL_CSR_PARITY) \
691         | SEES(TX_CONFIG_PARITY) \
692         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701         | SEES(TX_CREDIT_RETURN_PARITY))
702
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/  FLAG_ENTRY("InconsistentSop",
718                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/  FLAG_ENTRY("DisallowedPacket",
721                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
724                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/  FLAG_ENTRY("WriteOverflow",
727                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
730                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763                 RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784                 RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791                 RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793                 RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865 #define RXE_FREEZE_ABORT_MASK \
866         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993         FLAG_ENTRY0("Serdes internal loopback failure",
994                     FAILED_SERDES_INTERNAL_LOOPBACK),
995         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004         FLAG_ENTRY0("External Device Request Timeout",
1005                     EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014         FLAG_ENTRY0("Host request done", 0x0001),
1015         FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016         FLAG_ENTRY0("BC SMA message", 0x0004),
1017         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019         FLAG_ENTRY0("External device config request", 0x0020),
1020         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021         FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022         FLAG_ENTRY0("Link going down", 0x0100),
1023         FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030                                u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034                                       u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036                                      u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038                                   u8 *device_rev);
1039 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042                             u8 *tx_polarity_inversion,
1043                             u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045                                 unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048                            unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050                            unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062                                           u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064                            u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070                                             int msecs);
1071 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072                                   int msecs);
1073 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1075 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076                                    int msecs);
1077 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1078                                          int msecs);
1079 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1080 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1081 static void handle_temp_err(struct hfi1_devdata *dd);
1082 static void dc_shutdown(struct hfi1_devdata *dd);
1083 static void dc_start(struct hfi1_devdata *dd);
1084 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1085                            unsigned int *np);
1086 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1087 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1088 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1089
1090 /*
1091  * Error interrupt table entry.  This is used as input to the interrupt
1092  * "clear down" routine used for all second tier error interrupt register.
1093  * Second tier interrupt registers have a single bit representing them
1094  * in the top-level CceIntStatus.
1095  */
1096 struct err_reg_info {
1097         u32 status;             /* status CSR offset */
1098         u32 clear;              /* clear CSR offset */
1099         u32 mask;               /* mask CSR offset */
1100         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1101         const char *desc;
1102 };
1103
1104 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1105 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1106 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1107
1108 /*
1109  * Helpers for building HFI and DC error interrupt table entries.  Different
1110  * helpers are needed because of inconsistent register names.
1111  */
1112 #define EE(reg, handler, desc) \
1113         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1114                 handler, desc }
1115 #define DC_EE1(reg, handler, desc) \
1116         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1117 #define DC_EE2(reg, handler, desc) \
1118         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1119
1120 /*
1121  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1122  * another register containing more information.
1123  */
1124 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1125 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1126 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1127 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1128 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1129 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1130 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1131 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1132 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1133         /* the rest are reserved */
1134 };
1135
1136 /*
1137  * Index into the Various section of the interrupt sources
1138  * corresponding to the Critical Temperature interrupt.
1139  */
1140 #define TCRIT_INT_SOURCE 4
1141
1142 /*
1143  * SDMA error interrupt entry - refers to another register containing more
1144  * information.
1145  */
1146 static const struct err_reg_info sdma_eng_err =
1147         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1148
1149 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1150 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1151 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1152 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1153 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1154 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1155         /* rest are reserved */
1156 };
1157
1158 /*
1159  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1160  * register can not be derived from the MTU value because 10K is not
1161  * a power of 2. Therefore, we need a constant. Everything else can
1162  * be calculated.
1163  */
1164 #define DCC_CFG_PORT_MTU_CAP_10240 7
1165
1166 /*
1167  * Table of the DC grouping of error interrupts.  Each entry refers to
1168  * another register containing more information.
1169  */
1170 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1171 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1172 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1173 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1174 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1175         /* the rest are reserved */
1176 };
1177
1178 struct cntr_entry {
1179         /*
1180          * counter name
1181          */
1182         char *name;
1183
1184         /*
1185          * csr to read for name (if applicable)
1186          */
1187         u64 csr;
1188
1189         /*
1190          * offset into dd or ppd to store the counter's value
1191          */
1192         int offset;
1193
1194         /*
1195          * flags
1196          */
1197         u8 flags;
1198
1199         /*
1200          * accessor for stat element, context either dd or ppd
1201          */
1202         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1203                        int mode, u64 data);
1204 };
1205
1206 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1207 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1208
1209 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1210 { \
1211         name, \
1212         csr, \
1213         offset, \
1214         flags, \
1215         accessor \
1216 }
1217
1218 /* 32bit RXE */
1219 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1220 CNTR_ELEM(#name, \
1221           (counter * 8 + RCV_COUNTER_ARRAY32), \
1222           0, flags | CNTR_32BIT, \
1223           port_access_u32_csr)
1224
1225 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1226 CNTR_ELEM(#name, \
1227           (counter * 8 + RCV_COUNTER_ARRAY32), \
1228           0, flags | CNTR_32BIT, \
1229           dev_access_u32_csr)
1230
1231 /* 64bit RXE */
1232 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1233 CNTR_ELEM(#name, \
1234           (counter * 8 + RCV_COUNTER_ARRAY64), \
1235           0, flags, \
1236           port_access_u64_csr)
1237
1238 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1239 CNTR_ELEM(#name, \
1240           (counter * 8 + RCV_COUNTER_ARRAY64), \
1241           0, flags, \
1242           dev_access_u64_csr)
1243
1244 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1245 #define OVR_ELM(ctx) \
1246 CNTR_ELEM("RcvHdrOvr" #ctx, \
1247           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1248           0, CNTR_NORMAL, port_access_u64_csr)
1249
1250 /* 32bit TXE */
1251 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1252 CNTR_ELEM(#name, \
1253           (counter * 8 + SEND_COUNTER_ARRAY32), \
1254           0, flags | CNTR_32BIT, \
1255           port_access_u32_csr)
1256
1257 /* 64bit TXE */
1258 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1259 CNTR_ELEM(#name, \
1260           (counter * 8 + SEND_COUNTER_ARRAY64), \
1261           0, flags, \
1262           port_access_u64_csr)
1263
1264 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1265 CNTR_ELEM(#name,\
1266           counter * 8 + SEND_COUNTER_ARRAY64, \
1267           0, \
1268           flags, \
1269           dev_access_u64_csr)
1270
1271 /* CCE */
1272 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1273 CNTR_ELEM(#name, \
1274           (counter * 8 + CCE_COUNTER_ARRAY32), \
1275           0, flags | CNTR_32BIT, \
1276           dev_access_u32_csr)
1277
1278 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1279 CNTR_ELEM(#name, \
1280           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1281           0, flags | CNTR_32BIT, \
1282           dev_access_u32_csr)
1283
1284 /* DC */
1285 #define DC_PERF_CNTR(name, counter, flags) \
1286 CNTR_ELEM(#name, \
1287           counter, \
1288           0, \
1289           flags, \
1290           dev_access_u64_csr)
1291
1292 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1293 CNTR_ELEM(#name, \
1294           counter, \
1295           0, \
1296           flags, \
1297           dc_access_lcb_cntr)
1298
1299 /* ibp counters */
1300 #define SW_IBP_CNTR(name, cntr) \
1301 CNTR_ELEM(#name, \
1302           0, \
1303           0, \
1304           CNTR_SYNTH, \
1305           access_ibp_##cntr)
1306
1307 /**
1308  * hfi_addr_from_offset - return addr for readq/writeq
1309  * @dd - the dd device
1310  * @offset - the offset of the CSR within bar0
1311  *
1312  * This routine selects the appropriate base address
1313  * based on the indicated offset.
1314  */
1315 static inline void __iomem *hfi1_addr_from_offset(
1316         const struct hfi1_devdata *dd,
1317         u32 offset)
1318 {
1319         if (offset >= dd->base2_start)
1320                 return dd->kregbase2 + (offset - dd->base2_start);
1321         return dd->kregbase1 + offset;
1322 }
1323
1324 /**
1325  * read_csr - read CSR at the indicated offset
1326  * @dd - the dd device
1327  * @offset - the offset of the CSR within bar0
1328  *
1329  * Return: the value read or all FF's if there
1330  * is no mapping
1331  */
1332 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1333 {
1334         if (dd->flags & HFI1_PRESENT)
1335                 return readq(hfi1_addr_from_offset(dd, offset));
1336         return -1;
1337 }
1338
1339 /**
1340  * write_csr - write CSR at the indicated offset
1341  * @dd - the dd device
1342  * @offset - the offset of the CSR within bar0
1343  * @value - value to write
1344  */
1345 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1346 {
1347         if (dd->flags & HFI1_PRESENT) {
1348                 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1349
1350                 /* avoid write to RcvArray */
1351                 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1352                         return;
1353                 writeq(value, base);
1354         }
1355 }
1356
1357 /**
1358  * get_csr_addr - return te iomem address for offset
1359  * @dd - the dd device
1360  * @offset - the offset of the CSR within bar0
1361  *
1362  * Return: The iomem address to use in subsequent
1363  * writeq/readq operations.
1364  */
1365 void __iomem *get_csr_addr(
1366         const struct hfi1_devdata *dd,
1367         u32 offset)
1368 {
1369         if (dd->flags & HFI1_PRESENT)
1370                 return hfi1_addr_from_offset(dd, offset);
1371         return NULL;
1372 }
1373
1374 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1375                                  int mode, u64 value)
1376 {
1377         u64 ret;
1378
1379         if (mode == CNTR_MODE_R) {
1380                 ret = read_csr(dd, csr);
1381         } else if (mode == CNTR_MODE_W) {
1382                 write_csr(dd, csr, value);
1383                 ret = value;
1384         } else {
1385                 dd_dev_err(dd, "Invalid cntr register access mode");
1386                 return 0;
1387         }
1388
1389         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1390         return ret;
1391 }
1392
1393 /* Dev Access */
1394 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1395                               void *context, int vl, int mode, u64 data)
1396 {
1397         struct hfi1_devdata *dd = context;
1398         u64 csr = entry->csr;
1399
1400         if (entry->flags & CNTR_SDMA) {
1401                 if (vl == CNTR_INVALID_VL)
1402                         return 0;
1403                 csr += 0x100 * vl;
1404         } else {
1405                 if (vl != CNTR_INVALID_VL)
1406                         return 0;
1407         }
1408         return read_write_csr(dd, csr, mode, data);
1409 }
1410
1411 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1412                               void *context, int idx, int mode, u64 data)
1413 {
1414         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1415
1416         if (dd->per_sdma && idx < dd->num_sdma)
1417                 return dd->per_sdma[idx].err_cnt;
1418         return 0;
1419 }
1420
1421 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1422                               void *context, int idx, int mode, u64 data)
1423 {
1424         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1425
1426         if (dd->per_sdma && idx < dd->num_sdma)
1427                 return dd->per_sdma[idx].sdma_int_cnt;
1428         return 0;
1429 }
1430
1431 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1432                                    void *context, int idx, int mode, u64 data)
1433 {
1434         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1435
1436         if (dd->per_sdma && idx < dd->num_sdma)
1437                 return dd->per_sdma[idx].idle_int_cnt;
1438         return 0;
1439 }
1440
1441 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1442                                        void *context, int idx, int mode,
1443                                        u64 data)
1444 {
1445         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1446
1447         if (dd->per_sdma && idx < dd->num_sdma)
1448                 return dd->per_sdma[idx].progress_int_cnt;
1449         return 0;
1450 }
1451
1452 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1453                               int vl, int mode, u64 data)
1454 {
1455         struct hfi1_devdata *dd = context;
1456
1457         u64 val = 0;
1458         u64 csr = entry->csr;
1459
1460         if (entry->flags & CNTR_VL) {
1461                 if (vl == CNTR_INVALID_VL)
1462                         return 0;
1463                 csr += 8 * vl;
1464         } else {
1465                 if (vl != CNTR_INVALID_VL)
1466                         return 0;
1467         }
1468
1469         val = read_write_csr(dd, csr, mode, data);
1470         return val;
1471 }
1472
1473 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1474                               int vl, int mode, u64 data)
1475 {
1476         struct hfi1_devdata *dd = context;
1477         u32 csr = entry->csr;
1478         int ret = 0;
1479
1480         if (vl != CNTR_INVALID_VL)
1481                 return 0;
1482         if (mode == CNTR_MODE_R)
1483                 ret = read_lcb_csr(dd, csr, &data);
1484         else if (mode == CNTR_MODE_W)
1485                 ret = write_lcb_csr(dd, csr, data);
1486
1487         if (ret) {
1488                 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1489                 return 0;
1490         }
1491
1492         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1493         return data;
1494 }
1495
1496 /* Port Access */
1497 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1498                                int vl, int mode, u64 data)
1499 {
1500         struct hfi1_pportdata *ppd = context;
1501
1502         if (vl != CNTR_INVALID_VL)
1503                 return 0;
1504         return read_write_csr(ppd->dd, entry->csr, mode, data);
1505 }
1506
1507 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1508                                void *context, int vl, int mode, u64 data)
1509 {
1510         struct hfi1_pportdata *ppd = context;
1511         u64 val;
1512         u64 csr = entry->csr;
1513
1514         if (entry->flags & CNTR_VL) {
1515                 if (vl == CNTR_INVALID_VL)
1516                         return 0;
1517                 csr += 8 * vl;
1518         } else {
1519                 if (vl != CNTR_INVALID_VL)
1520                         return 0;
1521         }
1522         val = read_write_csr(ppd->dd, csr, mode, data);
1523         return val;
1524 }
1525
1526 /* Software defined */
1527 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1528                                 u64 data)
1529 {
1530         u64 ret;
1531
1532         if (mode == CNTR_MODE_R) {
1533                 ret = *cntr;
1534         } else if (mode == CNTR_MODE_W) {
1535                 *cntr = data;
1536                 ret = data;
1537         } else {
1538                 dd_dev_err(dd, "Invalid cntr sw access mode");
1539                 return 0;
1540         }
1541
1542         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1543
1544         return ret;
1545 }
1546
1547 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1548                                  int vl, int mode, u64 data)
1549 {
1550         struct hfi1_pportdata *ppd = context;
1551
1552         if (vl != CNTR_INVALID_VL)
1553                 return 0;
1554         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1555 }
1556
1557 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1558                                  int vl, int mode, u64 data)
1559 {
1560         struct hfi1_pportdata *ppd = context;
1561
1562         if (vl != CNTR_INVALID_VL)
1563                 return 0;
1564         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1565 }
1566
1567 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1568                                        void *context, int vl, int mode,
1569                                        u64 data)
1570 {
1571         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1572
1573         if (vl != CNTR_INVALID_VL)
1574                 return 0;
1575         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1576 }
1577
1578 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1579                                    void *context, int vl, int mode, u64 data)
1580 {
1581         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1582         u64 zero = 0;
1583         u64 *counter;
1584
1585         if (vl == CNTR_INVALID_VL)
1586                 counter = &ppd->port_xmit_discards;
1587         else if (vl >= 0 && vl < C_VL_COUNT)
1588                 counter = &ppd->port_xmit_discards_vl[vl];
1589         else
1590                 counter = &zero;
1591
1592         return read_write_sw(ppd->dd, counter, mode, data);
1593 }
1594
1595 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1596                                        void *context, int vl, int mode,
1597                                        u64 data)
1598 {
1599         struct hfi1_pportdata *ppd = context;
1600
1601         if (vl != CNTR_INVALID_VL)
1602                 return 0;
1603
1604         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1605                              mode, data);
1606 }
1607
1608 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1609                                       void *context, int vl, int mode, u64 data)
1610 {
1611         struct hfi1_pportdata *ppd = context;
1612
1613         if (vl != CNTR_INVALID_VL)
1614                 return 0;
1615
1616         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1617                              mode, data);
1618 }
1619
1620 u64 get_all_cpu_total(u64 __percpu *cntr)
1621 {
1622         int cpu;
1623         u64 counter = 0;
1624
1625         for_each_possible_cpu(cpu)
1626                 counter += *per_cpu_ptr(cntr, cpu);
1627         return counter;
1628 }
1629
1630 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1631                           u64 __percpu *cntr,
1632                           int vl, int mode, u64 data)
1633 {
1634         u64 ret = 0;
1635
1636         if (vl != CNTR_INVALID_VL)
1637                 return 0;
1638
1639         if (mode == CNTR_MODE_R) {
1640                 ret = get_all_cpu_total(cntr) - *z_val;
1641         } else if (mode == CNTR_MODE_W) {
1642                 /* A write can only zero the counter */
1643                 if (data == 0)
1644                         *z_val = get_all_cpu_total(cntr);
1645                 else
1646                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1647         } else {
1648                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1649                 return 0;
1650         }
1651
1652         return ret;
1653 }
1654
1655 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1656                               void *context, int vl, int mode, u64 data)
1657 {
1658         struct hfi1_devdata *dd = context;
1659
1660         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1661                               mode, data);
1662 }
1663
1664 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1665                                    void *context, int vl, int mode, u64 data)
1666 {
1667         struct hfi1_devdata *dd = context;
1668
1669         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1670                               mode, data);
1671 }
1672
1673 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1674                               void *context, int vl, int mode, u64 data)
1675 {
1676         struct hfi1_devdata *dd = context;
1677
1678         return dd->verbs_dev.n_piowait;
1679 }
1680
1681 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1682                                void *context, int vl, int mode, u64 data)
1683 {
1684         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686         return dd->verbs_dev.n_piodrain;
1687 }
1688
1689 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1690                                    void *context, int vl, int mode, u64 data)
1691 {
1692         struct hfi1_devdata *dd = context;
1693
1694         return dd->ctx0_seq_drop;
1695 }
1696
1697 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1698                               void *context, int vl, int mode, u64 data)
1699 {
1700         struct hfi1_devdata *dd = context;
1701
1702         return dd->verbs_dev.n_txwait;
1703 }
1704
1705 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1706                                void *context, int vl, int mode, u64 data)
1707 {
1708         struct hfi1_devdata *dd = context;
1709
1710         return dd->verbs_dev.n_kmem_wait;
1711 }
1712
1713 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1714                                    void *context, int vl, int mode, u64 data)
1715 {
1716         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1717
1718         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1719                               mode, data);
1720 }
1721
1722 /* Software counters for the error status bits within MISC_ERR_STATUS */
1723 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1724                                              void *context, int vl, int mode,
1725                                              u64 data)
1726 {
1727         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728
1729         return dd->misc_err_status_cnt[12];
1730 }
1731
1732 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1733                                           void *context, int vl, int mode,
1734                                           u64 data)
1735 {
1736         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737
1738         return dd->misc_err_status_cnt[11];
1739 }
1740
1741 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1742                                                void *context, int vl, int mode,
1743                                                u64 data)
1744 {
1745         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746
1747         return dd->misc_err_status_cnt[10];
1748 }
1749
1750 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1751                                                  void *context, int vl,
1752                                                  int mode, u64 data)
1753 {
1754         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755
1756         return dd->misc_err_status_cnt[9];
1757 }
1758
1759 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1760                                            void *context, int vl, int mode,
1761                                            u64 data)
1762 {
1763         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764
1765         return dd->misc_err_status_cnt[8];
1766 }
1767
1768 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1769                                 const struct cntr_entry *entry,
1770                                 void *context, int vl, int mode, u64 data)
1771 {
1772         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773
1774         return dd->misc_err_status_cnt[7];
1775 }
1776
1777 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1778                                                 void *context, int vl,
1779                                                 int mode, u64 data)
1780 {
1781         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782
1783         return dd->misc_err_status_cnt[6];
1784 }
1785
1786 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1787                                               void *context, int vl, int mode,
1788                                               u64 data)
1789 {
1790         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791
1792         return dd->misc_err_status_cnt[5];
1793 }
1794
1795 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1796                                             void *context, int vl, int mode,
1797                                             u64 data)
1798 {
1799         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800
1801         return dd->misc_err_status_cnt[4];
1802 }
1803
1804 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1805                                                  void *context, int vl,
1806                                                  int mode, u64 data)
1807 {
1808         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809
1810         return dd->misc_err_status_cnt[3];
1811 }
1812
1813 static u64 access_misc_csr_write_bad_addr_err_cnt(
1814                                 const struct cntr_entry *entry,
1815                                 void *context, int vl, int mode, u64 data)
1816 {
1817         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818
1819         return dd->misc_err_status_cnt[2];
1820 }
1821
1822 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1823                                                  void *context, int vl,
1824                                                  int mode, u64 data)
1825 {
1826         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827
1828         return dd->misc_err_status_cnt[1];
1829 }
1830
1831 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1832                                           void *context, int vl, int mode,
1833                                           u64 data)
1834 {
1835         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1836
1837         return dd->misc_err_status_cnt[0];
1838 }
1839
1840 /*
1841  * Software counter for the aggregate of
1842  * individual CceErrStatus counters
1843  */
1844 static u64 access_sw_cce_err_status_aggregated_cnt(
1845                                 const struct cntr_entry *entry,
1846                                 void *context, int vl, int mode, u64 data)
1847 {
1848         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1849
1850         return dd->sw_cce_err_status_aggregate;
1851 }
1852
1853 /*
1854  * Software counters corresponding to each of the
1855  * error status bits within CceErrStatus
1856  */
1857 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1858                                               void *context, int vl, int mode,
1859                                               u64 data)
1860 {
1861         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862
1863         return dd->cce_err_status_cnt[40];
1864 }
1865
1866 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1867                                           void *context, int vl, int mode,
1868                                           u64 data)
1869 {
1870         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871
1872         return dd->cce_err_status_cnt[39];
1873 }
1874
1875 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1876                                           void *context, int vl, int mode,
1877                                           u64 data)
1878 {
1879         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880
1881         return dd->cce_err_status_cnt[38];
1882 }
1883
1884 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1885                                              void *context, int vl, int mode,
1886                                              u64 data)
1887 {
1888         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889
1890         return dd->cce_err_status_cnt[37];
1891 }
1892
1893 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1894                                              void *context, int vl, int mode,
1895                                              u64 data)
1896 {
1897         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898
1899         return dd->cce_err_status_cnt[36];
1900 }
1901
1902 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1903                                 const struct cntr_entry *entry,
1904                                 void *context, int vl, int mode, u64 data)
1905 {
1906         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907
1908         return dd->cce_err_status_cnt[35];
1909 }
1910
1911 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1912                                 const struct cntr_entry *entry,
1913                                 void *context, int vl, int mode, u64 data)
1914 {
1915         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916
1917         return dd->cce_err_status_cnt[34];
1918 }
1919
1920 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1921                                                  void *context, int vl,
1922                                                  int mode, u64 data)
1923 {
1924         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925
1926         return dd->cce_err_status_cnt[33];
1927 }
1928
1929 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1930                                                 void *context, int vl, int mode,
1931                                                 u64 data)
1932 {
1933         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1934
1935         return dd->cce_err_status_cnt[32];
1936 }
1937
1938 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1939                                    void *context, int vl, int mode, u64 data)
1940 {
1941         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942
1943         return dd->cce_err_status_cnt[31];
1944 }
1945
1946 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1947                                                void *context, int vl, int mode,
1948                                                u64 data)
1949 {
1950         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951
1952         return dd->cce_err_status_cnt[30];
1953 }
1954
1955 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1956                                               void *context, int vl, int mode,
1957                                               u64 data)
1958 {
1959         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960
1961         return dd->cce_err_status_cnt[29];
1962 }
1963
1964 static u64 access_pcic_transmit_back_parity_err_cnt(
1965                                 const struct cntr_entry *entry,
1966                                 void *context, int vl, int mode, u64 data)
1967 {
1968         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969
1970         return dd->cce_err_status_cnt[28];
1971 }
1972
1973 static u64 access_pcic_transmit_front_parity_err_cnt(
1974                                 const struct cntr_entry *entry,
1975                                 void *context, int vl, int mode, u64 data)
1976 {
1977         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978
1979         return dd->cce_err_status_cnt[27];
1980 }
1981
1982 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1983                                              void *context, int vl, int mode,
1984                                              u64 data)
1985 {
1986         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987
1988         return dd->cce_err_status_cnt[26];
1989 }
1990
1991 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1992                                             void *context, int vl, int mode,
1993                                             u64 data)
1994 {
1995         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996
1997         return dd->cce_err_status_cnt[25];
1998 }
1999
2000 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2001                                               void *context, int vl, int mode,
2002                                               u64 data)
2003 {
2004         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005
2006         return dd->cce_err_status_cnt[24];
2007 }
2008
2009 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2010                                              void *context, int vl, int mode,
2011                                              u64 data)
2012 {
2013         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014
2015         return dd->cce_err_status_cnt[23];
2016 }
2017
2018 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2019                                                  void *context, int vl,
2020                                                  int mode, u64 data)
2021 {
2022         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023
2024         return dd->cce_err_status_cnt[22];
2025 }
2026
2027 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2028                                          void *context, int vl, int mode,
2029                                          u64 data)
2030 {
2031         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032
2033         return dd->cce_err_status_cnt[21];
2034 }
2035
2036 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2037                                 const struct cntr_entry *entry,
2038                                 void *context, int vl, int mode, u64 data)
2039 {
2040         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041
2042         return dd->cce_err_status_cnt[20];
2043 }
2044
2045 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2046                                                  void *context, int vl,
2047                                                  int mode, u64 data)
2048 {
2049         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050
2051         return dd->cce_err_status_cnt[19];
2052 }
2053
2054 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2055                                              void *context, int vl, int mode,
2056                                              u64 data)
2057 {
2058         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059
2060         return dd->cce_err_status_cnt[18];
2061 }
2062
2063 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2064                                             void *context, int vl, int mode,
2065                                             u64 data)
2066 {
2067         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068
2069         return dd->cce_err_status_cnt[17];
2070 }
2071
2072 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2073                                               void *context, int vl, int mode,
2074                                               u64 data)
2075 {
2076         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077
2078         return dd->cce_err_status_cnt[16];
2079 }
2080
2081 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2082                                              void *context, int vl, int mode,
2083                                              u64 data)
2084 {
2085         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086
2087         return dd->cce_err_status_cnt[15];
2088 }
2089
2090 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2091                                                  void *context, int vl,
2092                                                  int mode, u64 data)
2093 {
2094         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095
2096         return dd->cce_err_status_cnt[14];
2097 }
2098
2099 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2100                                              void *context, int vl, int mode,
2101                                              u64 data)
2102 {
2103         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104
2105         return dd->cce_err_status_cnt[13];
2106 }
2107
2108 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2109                                 const struct cntr_entry *entry,
2110                                 void *context, int vl, int mode, u64 data)
2111 {
2112         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113
2114         return dd->cce_err_status_cnt[12];
2115 }
2116
2117 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2118                                 const struct cntr_entry *entry,
2119                                 void *context, int vl, int mode, u64 data)
2120 {
2121         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122
2123         return dd->cce_err_status_cnt[11];
2124 }
2125
2126 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2127                                 const struct cntr_entry *entry,
2128                                 void *context, int vl, int mode, u64 data)
2129 {
2130         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131
2132         return dd->cce_err_status_cnt[10];
2133 }
2134
2135 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2136                                 const struct cntr_entry *entry,
2137                                 void *context, int vl, int mode, u64 data)
2138 {
2139         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140
2141         return dd->cce_err_status_cnt[9];
2142 }
2143
2144 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2145                                 const struct cntr_entry *entry,
2146                                 void *context, int vl, int mode, u64 data)
2147 {
2148         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149
2150         return dd->cce_err_status_cnt[8];
2151 }
2152
2153 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2154                                                  void *context, int vl,
2155                                                  int mode, u64 data)
2156 {
2157         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158
2159         return dd->cce_err_status_cnt[7];
2160 }
2161
2162 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2163                                 const struct cntr_entry *entry,
2164                                 void *context, int vl, int mode, u64 data)
2165 {
2166         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167
2168         return dd->cce_err_status_cnt[6];
2169 }
2170
2171 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2172                                                void *context, int vl, int mode,
2173                                                u64 data)
2174 {
2175         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176
2177         return dd->cce_err_status_cnt[5];
2178 }
2179
2180 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2181                                           void *context, int vl, int mode,
2182                                           u64 data)
2183 {
2184         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185
2186         return dd->cce_err_status_cnt[4];
2187 }
2188
2189 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2190                                 const struct cntr_entry *entry,
2191                                 void *context, int vl, int mode, u64 data)
2192 {
2193         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194
2195         return dd->cce_err_status_cnt[3];
2196 }
2197
2198 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2199                                                  void *context, int vl,
2200                                                  int mode, u64 data)
2201 {
2202         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203
2204         return dd->cce_err_status_cnt[2];
2205 }
2206
2207 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2208                                                 void *context, int vl,
2209                                                 int mode, u64 data)
2210 {
2211         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212
2213         return dd->cce_err_status_cnt[1];
2214 }
2215
2216 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2217                                          void *context, int vl, int mode,
2218                                          u64 data)
2219 {
2220         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2221
2222         return dd->cce_err_status_cnt[0];
2223 }
2224
2225 /*
2226  * Software counters corresponding to each of the
2227  * error status bits within RcvErrStatus
2228  */
2229 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2230                                         void *context, int vl, int mode,
2231                                         u64 data)
2232 {
2233         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234
2235         return dd->rcv_err_status_cnt[63];
2236 }
2237
2238 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2239                                                 void *context, int vl,
2240                                                 int mode, u64 data)
2241 {
2242         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243
2244         return dd->rcv_err_status_cnt[62];
2245 }
2246
2247 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2248                                                void *context, int vl, int mode,
2249                                                u64 data)
2250 {
2251         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252
2253         return dd->rcv_err_status_cnt[61];
2254 }
2255
2256 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2257                                          void *context, int vl, int mode,
2258                                          u64 data)
2259 {
2260         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261
2262         return dd->rcv_err_status_cnt[60];
2263 }
2264
2265 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266                                                  void *context, int vl,
2267                                                  int mode, u64 data)
2268 {
2269         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270
2271         return dd->rcv_err_status_cnt[59];
2272 }
2273
2274 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2275                                                  void *context, int vl,
2276                                                  int mode, u64 data)
2277 {
2278         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279
2280         return dd->rcv_err_status_cnt[58];
2281 }
2282
2283 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2284                                             void *context, int vl, int mode,
2285                                             u64 data)
2286 {
2287         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288
2289         return dd->rcv_err_status_cnt[57];
2290 }
2291
2292 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2293                                            void *context, int vl, int mode,
2294                                            u64 data)
2295 {
2296         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297
2298         return dd->rcv_err_status_cnt[56];
2299 }
2300
2301 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2302                                            void *context, int vl, int mode,
2303                                            u64 data)
2304 {
2305         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306
2307         return dd->rcv_err_status_cnt[55];
2308 }
2309
2310 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2311                                 const struct cntr_entry *entry,
2312                                 void *context, int vl, int mode, u64 data)
2313 {
2314         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315
2316         return dd->rcv_err_status_cnt[54];
2317 }
2318
2319 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2320                                 const struct cntr_entry *entry,
2321                                 void *context, int vl, int mode, u64 data)
2322 {
2323         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324
2325         return dd->rcv_err_status_cnt[53];
2326 }
2327
2328 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2329                                                  void *context, int vl,
2330                                                  int mode, u64 data)
2331 {
2332         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333
2334         return dd->rcv_err_status_cnt[52];
2335 }
2336
2337 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2338                                                  void *context, int vl,
2339                                                  int mode, u64 data)
2340 {
2341         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342
2343         return dd->rcv_err_status_cnt[51];
2344 }
2345
2346 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2347                                                  void *context, int vl,
2348                                                  int mode, u64 data)
2349 {
2350         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351
2352         return dd->rcv_err_status_cnt[50];
2353 }
2354
2355 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2356                                                  void *context, int vl,
2357                                                  int mode, u64 data)
2358 {
2359         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360
2361         return dd->rcv_err_status_cnt[49];
2362 }
2363
2364 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2365                                                  void *context, int vl,
2366                                                  int mode, u64 data)
2367 {
2368         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369
2370         return dd->rcv_err_status_cnt[48];
2371 }
2372
2373 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2374                                                  void *context, int vl,
2375                                                  int mode, u64 data)
2376 {
2377         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378
2379         return dd->rcv_err_status_cnt[47];
2380 }
2381
2382 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2383                                          void *context, int vl, int mode,
2384                                          u64 data)
2385 {
2386         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387
2388         return dd->rcv_err_status_cnt[46];
2389 }
2390
2391 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2392                                 const struct cntr_entry *entry,
2393                                 void *context, int vl, int mode, u64 data)
2394 {
2395         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396
2397         return dd->rcv_err_status_cnt[45];
2398 }
2399
2400 static u64 access_rx_lookup_csr_parity_err_cnt(
2401                                 const struct cntr_entry *entry,
2402                                 void *context, int vl, int mode, u64 data)
2403 {
2404         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405
2406         return dd->rcv_err_status_cnt[44];
2407 }
2408
2409 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2410                                 const struct cntr_entry *entry,
2411                                 void *context, int vl, int mode, u64 data)
2412 {
2413         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414
2415         return dd->rcv_err_status_cnt[43];
2416 }
2417
2418 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2419                                 const struct cntr_entry *entry,
2420                                 void *context, int vl, int mode, u64 data)
2421 {
2422         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423
2424         return dd->rcv_err_status_cnt[42];
2425 }
2426
2427 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2428                                 const struct cntr_entry *entry,
2429                                 void *context, int vl, int mode, u64 data)
2430 {
2431         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432
2433         return dd->rcv_err_status_cnt[41];
2434 }
2435
2436 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2437                                 const struct cntr_entry *entry,
2438                                 void *context, int vl, int mode, u64 data)
2439 {
2440         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441
2442         return dd->rcv_err_status_cnt[40];
2443 }
2444
2445 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2446                                 const struct cntr_entry *entry,
2447                                 void *context, int vl, int mode, u64 data)
2448 {
2449         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450
2451         return dd->rcv_err_status_cnt[39];
2452 }
2453
2454 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2455                                 const struct cntr_entry *entry,
2456                                 void *context, int vl, int mode, u64 data)
2457 {
2458         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459
2460         return dd->rcv_err_status_cnt[38];
2461 }
2462
2463 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2464                                 const struct cntr_entry *entry,
2465                                 void *context, int vl, int mode, u64 data)
2466 {
2467         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468
2469         return dd->rcv_err_status_cnt[37];
2470 }
2471
2472 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2473                                 const struct cntr_entry *entry,
2474                                 void *context, int vl, int mode, u64 data)
2475 {
2476         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477
2478         return dd->rcv_err_status_cnt[36];
2479 }
2480
2481 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2482                                 const struct cntr_entry *entry,
2483                                 void *context, int vl, int mode, u64 data)
2484 {
2485         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486
2487         return dd->rcv_err_status_cnt[35];
2488 }
2489
2490 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2491                                 const struct cntr_entry *entry,
2492                                 void *context, int vl, int mode, u64 data)
2493 {
2494         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495
2496         return dd->rcv_err_status_cnt[34];
2497 }
2498
2499 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2500                                 const struct cntr_entry *entry,
2501                                 void *context, int vl, int mode, u64 data)
2502 {
2503         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504
2505         return dd->rcv_err_status_cnt[33];
2506 }
2507
2508 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2509                                         void *context, int vl, int mode,
2510                                         u64 data)
2511 {
2512         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513
2514         return dd->rcv_err_status_cnt[32];
2515 }
2516
2517 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2518                                        void *context, int vl, int mode,
2519                                        u64 data)
2520 {
2521         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522
2523         return dd->rcv_err_status_cnt[31];
2524 }
2525
2526 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2527                                           void *context, int vl, int mode,
2528                                           u64 data)
2529 {
2530         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531
2532         return dd->rcv_err_status_cnt[30];
2533 }
2534
2535 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2536                                              void *context, int vl, int mode,
2537                                              u64 data)
2538 {
2539         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540
2541         return dd->rcv_err_status_cnt[29];
2542 }
2543
2544 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2545                                                  void *context, int vl,
2546                                                  int mode, u64 data)
2547 {
2548         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549
2550         return dd->rcv_err_status_cnt[28];
2551 }
2552
2553 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2554                                 const struct cntr_entry *entry,
2555                                 void *context, int vl, int mode, u64 data)
2556 {
2557         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558
2559         return dd->rcv_err_status_cnt[27];
2560 }
2561
2562 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2563                                 const struct cntr_entry *entry,
2564                                 void *context, int vl, int mode, u64 data)
2565 {
2566         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567
2568         return dd->rcv_err_status_cnt[26];
2569 }
2570
2571 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2572                                 const struct cntr_entry *entry,
2573                                 void *context, int vl, int mode, u64 data)
2574 {
2575         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576
2577         return dd->rcv_err_status_cnt[25];
2578 }
2579
2580 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2581                                 const struct cntr_entry *entry,
2582                                 void *context, int vl, int mode, u64 data)
2583 {
2584         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585
2586         return dd->rcv_err_status_cnt[24];
2587 }
2588
2589 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2590                                 const struct cntr_entry *entry,
2591                                 void *context, int vl, int mode, u64 data)
2592 {
2593         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594
2595         return dd->rcv_err_status_cnt[23];
2596 }
2597
2598 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2599                                 const struct cntr_entry *entry,
2600                                 void *context, int vl, int mode, u64 data)
2601 {
2602         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603
2604         return dd->rcv_err_status_cnt[22];
2605 }
2606
2607 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2608                                 const struct cntr_entry *entry,
2609                                 void *context, int vl, int mode, u64 data)
2610 {
2611         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612
2613         return dd->rcv_err_status_cnt[21];
2614 }
2615
2616 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2617                                 const struct cntr_entry *entry,
2618                                 void *context, int vl, int mode, u64 data)
2619 {
2620         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621
2622         return dd->rcv_err_status_cnt[20];
2623 }
2624
2625 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2626                                 const struct cntr_entry *entry,
2627                                 void *context, int vl, int mode, u64 data)
2628 {
2629         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630
2631         return dd->rcv_err_status_cnt[19];
2632 }
2633
2634 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2635                                                  void *context, int vl,
2636                                                  int mode, u64 data)
2637 {
2638         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639
2640         return dd->rcv_err_status_cnt[18];
2641 }
2642
2643 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2644                                                  void *context, int vl,
2645                                                  int mode, u64 data)
2646 {
2647         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648
2649         return dd->rcv_err_status_cnt[17];
2650 }
2651
2652 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2653                                 const struct cntr_entry *entry,
2654                                 void *context, int vl, int mode, u64 data)
2655 {
2656         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657
2658         return dd->rcv_err_status_cnt[16];
2659 }
2660
2661 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2662                                 const struct cntr_entry *entry,
2663                                 void *context, int vl, int mode, u64 data)
2664 {
2665         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666
2667         return dd->rcv_err_status_cnt[15];
2668 }
2669
2670 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2671                                                 void *context, int vl,
2672                                                 int mode, u64 data)
2673 {
2674         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675
2676         return dd->rcv_err_status_cnt[14];
2677 }
2678
2679 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2680                                                 void *context, int vl,
2681                                                 int mode, u64 data)
2682 {
2683         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684
2685         return dd->rcv_err_status_cnt[13];
2686 }
2687
2688 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2689                                               void *context, int vl, int mode,
2690                                               u64 data)
2691 {
2692         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693
2694         return dd->rcv_err_status_cnt[12];
2695 }
2696
2697 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2698                                           void *context, int vl, int mode,
2699                                           u64 data)
2700 {
2701         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702
2703         return dd->rcv_err_status_cnt[11];
2704 }
2705
2706 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2707                                           void *context, int vl, int mode,
2708                                           u64 data)
2709 {
2710         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711
2712         return dd->rcv_err_status_cnt[10];
2713 }
2714
2715 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2716                                                void *context, int vl, int mode,
2717                                                u64 data)
2718 {
2719         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720
2721         return dd->rcv_err_status_cnt[9];
2722 }
2723
2724 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2725                                             void *context, int vl, int mode,
2726                                             u64 data)
2727 {
2728         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729
2730         return dd->rcv_err_status_cnt[8];
2731 }
2732
2733 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2734                                 const struct cntr_entry *entry,
2735                                 void *context, int vl, int mode, u64 data)
2736 {
2737         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738
2739         return dd->rcv_err_status_cnt[7];
2740 }
2741
2742 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2743                                 const struct cntr_entry *entry,
2744                                 void *context, int vl, int mode, u64 data)
2745 {
2746         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747
2748         return dd->rcv_err_status_cnt[6];
2749 }
2750
2751 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2752                                           void *context, int vl, int mode,
2753                                           u64 data)
2754 {
2755         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756
2757         return dd->rcv_err_status_cnt[5];
2758 }
2759
2760 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2761                                           void *context, int vl, int mode,
2762                                           u64 data)
2763 {
2764         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765
2766         return dd->rcv_err_status_cnt[4];
2767 }
2768
2769 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2770                                          void *context, int vl, int mode,
2771                                          u64 data)
2772 {
2773         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774
2775         return dd->rcv_err_status_cnt[3];
2776 }
2777
2778 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2779                                          void *context, int vl, int mode,
2780                                          u64 data)
2781 {
2782         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783
2784         return dd->rcv_err_status_cnt[2];
2785 }
2786
2787 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2788                                             void *context, int vl, int mode,
2789                                             u64 data)
2790 {
2791         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792
2793         return dd->rcv_err_status_cnt[1];
2794 }
2795
2796 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2797                                          void *context, int vl, int mode,
2798                                          u64 data)
2799 {
2800         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2801
2802         return dd->rcv_err_status_cnt[0];
2803 }
2804
2805 /*
2806  * Software counters corresponding to each of the
2807  * error status bits within SendPioErrStatus
2808  */
2809 static u64 access_pio_pec_sop_head_parity_err_cnt(
2810                                 const struct cntr_entry *entry,
2811                                 void *context, int vl, int mode, u64 data)
2812 {
2813         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814
2815         return dd->send_pio_err_status_cnt[35];
2816 }
2817
2818 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2819                                 const struct cntr_entry *entry,
2820                                 void *context, int vl, int mode, u64 data)
2821 {
2822         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823
2824         return dd->send_pio_err_status_cnt[34];
2825 }
2826
2827 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2828                                 const struct cntr_entry *entry,
2829                                 void *context, int vl, int mode, u64 data)
2830 {
2831         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832
2833         return dd->send_pio_err_status_cnt[33];
2834 }
2835
2836 static u64 access_pio_current_free_cnt_parity_err_cnt(
2837                                 const struct cntr_entry *entry,
2838                                 void *context, int vl, int mode, u64 data)
2839 {
2840         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841
2842         return dd->send_pio_err_status_cnt[32];
2843 }
2844
2845 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2846                                           void *context, int vl, int mode,
2847                                           u64 data)
2848 {
2849         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850
2851         return dd->send_pio_err_status_cnt[31];
2852 }
2853
2854 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2855                                           void *context, int vl, int mode,
2856                                           u64 data)
2857 {
2858         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859
2860         return dd->send_pio_err_status_cnt[30];
2861 }
2862
2863 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2864                                            void *context, int vl, int mode,
2865                                            u64 data)
2866 {
2867         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868
2869         return dd->send_pio_err_status_cnt[29];
2870 }
2871
2872 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2873                                 const struct cntr_entry *entry,
2874                                 void *context, int vl, int mode, u64 data)
2875 {
2876         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877
2878         return dd->send_pio_err_status_cnt[28];
2879 }
2880
2881 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2882                                              void *context, int vl, int mode,
2883                                              u64 data)
2884 {
2885         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886
2887         return dd->send_pio_err_status_cnt[27];
2888 }
2889
2890 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2891                                              void *context, int vl, int mode,
2892                                              u64 data)
2893 {
2894         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895
2896         return dd->send_pio_err_status_cnt[26];
2897 }
2898
2899 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2900                                                 void *context, int vl,
2901                                                 int mode, u64 data)
2902 {
2903         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904
2905         return dd->send_pio_err_status_cnt[25];
2906 }
2907
2908 static u64 access_pio_block_qw_count_parity_err_cnt(
2909                                 const struct cntr_entry *entry,
2910                                 void *context, int vl, int mode, u64 data)
2911 {
2912         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913
2914         return dd->send_pio_err_status_cnt[24];
2915 }
2916
2917 static u64 access_pio_write_qw_valid_parity_err_cnt(
2918                                 const struct cntr_entry *entry,
2919                                 void *context, int vl, int mode, u64 data)
2920 {
2921         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922
2923         return dd->send_pio_err_status_cnt[23];
2924 }
2925
2926 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2927                                             void *context, int vl, int mode,
2928                                             u64 data)
2929 {
2930         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931
2932         return dd->send_pio_err_status_cnt[22];
2933 }
2934
2935 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2936                                                 void *context, int vl,
2937                                                 int mode, u64 data)
2938 {
2939         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940
2941         return dd->send_pio_err_status_cnt[21];
2942 }
2943
2944 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2945                                                 void *context, int vl,
2946                                                 int mode, u64 data)
2947 {
2948         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949
2950         return dd->send_pio_err_status_cnt[20];
2951 }
2952
2953 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2954                                                 void *context, int vl,
2955                                                 int mode, u64 data)
2956 {
2957         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958
2959         return dd->send_pio_err_status_cnt[19];
2960 }
2961
2962 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2963                                 const struct cntr_entry *entry,
2964                                 void *context, int vl, int mode, u64 data)
2965 {
2966         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967
2968         return dd->send_pio_err_status_cnt[18];
2969 }
2970
2971 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2972                                          void *context, int vl, int mode,
2973                                          u64 data)
2974 {
2975         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976
2977         return dd->send_pio_err_status_cnt[17];
2978 }
2979
2980 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2981                                             void *context, int vl, int mode,
2982                                             u64 data)
2983 {
2984         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985
2986         return dd->send_pio_err_status_cnt[16];
2987 }
2988
2989 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2990                                 const struct cntr_entry *entry,
2991                                 void *context, int vl, int mode, u64 data)
2992 {
2993         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994
2995         return dd->send_pio_err_status_cnt[15];
2996 }
2997
2998 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2999                                 const struct cntr_entry *entry,
3000                                 void *context, int vl, int mode, u64 data)
3001 {
3002         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003
3004         return dd->send_pio_err_status_cnt[14];
3005 }
3006
3007 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3008                                 const struct cntr_entry *entry,
3009                                 void *context, int vl, int mode, u64 data)
3010 {
3011         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012
3013         return dd->send_pio_err_status_cnt[13];
3014 }
3015
3016 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3017                                 const struct cntr_entry *entry,
3018                                 void *context, int vl, int mode, u64 data)
3019 {
3020         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021
3022         return dd->send_pio_err_status_cnt[12];
3023 }
3024
3025 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3026                                 const struct cntr_entry *entry,
3027                                 void *context, int vl, int mode, u64 data)
3028 {
3029         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030
3031         return dd->send_pio_err_status_cnt[11];
3032 }
3033
3034 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3035                                 const struct cntr_entry *entry,
3036                                 void *context, int vl, int mode, u64 data)
3037 {
3038         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039
3040         return dd->send_pio_err_status_cnt[10];
3041 }
3042
3043 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3044                                 const struct cntr_entry *entry,
3045                                 void *context, int vl, int mode, u64 data)
3046 {
3047         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048
3049         return dd->send_pio_err_status_cnt[9];
3050 }
3051
3052 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3053                                 const struct cntr_entry *entry,
3054                                 void *context, int vl, int mode, u64 data)
3055 {
3056         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057
3058         return dd->send_pio_err_status_cnt[8];
3059 }
3060
3061 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3062                                 const struct cntr_entry *entry,
3063                                 void *context, int vl, int mode, u64 data)
3064 {
3065         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066
3067         return dd->send_pio_err_status_cnt[7];
3068 }
3069
3070 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071                                               void *context, int vl, int mode,
3072                                               u64 data)
3073 {
3074         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075
3076         return dd->send_pio_err_status_cnt[6];
3077 }
3078
3079 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3080                                               void *context, int vl, int mode,
3081                                               u64 data)
3082 {
3083         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084
3085         return dd->send_pio_err_status_cnt[5];
3086 }
3087
3088 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3089                                            void *context, int vl, int mode,
3090                                            u64 data)
3091 {
3092         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093
3094         return dd->send_pio_err_status_cnt[4];
3095 }
3096
3097 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3098                                            void *context, int vl, int mode,
3099                                            u64 data)
3100 {
3101         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102
3103         return dd->send_pio_err_status_cnt[3];
3104 }
3105
3106 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3107                                          void *context, int vl, int mode,
3108                                          u64 data)
3109 {
3110         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111
3112         return dd->send_pio_err_status_cnt[2];
3113 }
3114
3115 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3116                                                 void *context, int vl,
3117                                                 int mode, u64 data)
3118 {
3119         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120
3121         return dd->send_pio_err_status_cnt[1];
3122 }
3123
3124 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3125                                              void *context, int vl, int mode,
3126                                              u64 data)
3127 {
3128         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3129
3130         return dd->send_pio_err_status_cnt[0];
3131 }
3132
3133 /*
3134  * Software counters corresponding to each of the
3135  * error status bits within SendDmaErrStatus
3136  */
3137 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3138                                 const struct cntr_entry *entry,
3139                                 void *context, int vl, int mode, u64 data)
3140 {
3141         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142
3143         return dd->send_dma_err_status_cnt[3];
3144 }
3145
3146 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3147                                 const struct cntr_entry *entry,
3148                                 void *context, int vl, int mode, u64 data)
3149 {
3150         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151
3152         return dd->send_dma_err_status_cnt[2];
3153 }
3154
3155 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3156                                           void *context, int vl, int mode,
3157                                           u64 data)
3158 {
3159         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160
3161         return dd->send_dma_err_status_cnt[1];
3162 }
3163
3164 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3165                                        void *context, int vl, int mode,
3166                                        u64 data)
3167 {
3168         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3169
3170         return dd->send_dma_err_status_cnt[0];
3171 }
3172
3173 /*
3174  * Software counters corresponding to each of the
3175  * error status bits within SendEgressErrStatus
3176  */
3177 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3178                                 const struct cntr_entry *entry,
3179                                 void *context, int vl, int mode, u64 data)
3180 {
3181         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182
3183         return dd->send_egress_err_status_cnt[63];
3184 }
3185
3186 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3187                                 const struct cntr_entry *entry,
3188                                 void *context, int vl, int mode, u64 data)
3189 {
3190         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191
3192         return dd->send_egress_err_status_cnt[62];
3193 }
3194
3195 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3196                                              void *context, int vl, int mode,
3197                                              u64 data)
3198 {
3199         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200
3201         return dd->send_egress_err_status_cnt[61];
3202 }
3203
3204 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3205                                                  void *context, int vl,
3206                                                  int mode, u64 data)
3207 {
3208         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209
3210         return dd->send_egress_err_status_cnt[60];
3211 }
3212
3213 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3214                                 const struct cntr_entry *entry,
3215                                 void *context, int vl, int mode, u64 data)
3216 {
3217         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218
3219         return dd->send_egress_err_status_cnt[59];
3220 }
3221
3222 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3223                                         void *context, int vl, int mode,
3224                                         u64 data)
3225 {
3226         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227
3228         return dd->send_egress_err_status_cnt[58];
3229 }
3230
3231 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3232                                             void *context, int vl, int mode,
3233                                             u64 data)
3234 {
3235         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236
3237         return dd->send_egress_err_status_cnt[57];
3238 }
3239
3240 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3241                                               void *context, int vl, int mode,
3242                                               u64 data)
3243 {
3244         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245
3246         return dd->send_egress_err_status_cnt[56];
3247 }
3248
3249 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3250                                               void *context, int vl, int mode,
3251                                               u64 data)
3252 {
3253         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254
3255         return dd->send_egress_err_status_cnt[55];
3256 }
3257
3258 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3259                                               void *context, int vl, int mode,
3260                                               u64 data)
3261 {
3262         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263
3264         return dd->send_egress_err_status_cnt[54];
3265 }
3266
3267 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3268                                               void *context, int vl, int mode,
3269                                               u64 data)
3270 {
3271         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272
3273         return dd->send_egress_err_status_cnt[53];
3274 }
3275
3276 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3277                                               void *context, int vl, int mode,
3278                                               u64 data)
3279 {
3280         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281
3282         return dd->send_egress_err_status_cnt[52];
3283 }
3284
3285 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3286                                               void *context, int vl, int mode,
3287                                               u64 data)
3288 {
3289         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290
3291         return dd->send_egress_err_status_cnt[51];
3292 }
3293
3294 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3295                                               void *context, int vl, int mode,
3296                                               u64 data)
3297 {
3298         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299
3300         return dd->send_egress_err_status_cnt[50];
3301 }
3302
3303 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3304                                               void *context, int vl, int mode,
3305                                               u64 data)
3306 {
3307         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308
3309         return dd->send_egress_err_status_cnt[49];
3310 }
3311
3312 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3313                                               void *context, int vl, int mode,
3314                                               u64 data)
3315 {
3316         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317
3318         return dd->send_egress_err_status_cnt[48];
3319 }
3320
3321 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3322                                               void *context, int vl, int mode,
3323                                               u64 data)
3324 {
3325         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326
3327         return dd->send_egress_err_status_cnt[47];
3328 }
3329
3330 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3331                                             void *context, int vl, int mode,
3332                                             u64 data)
3333 {
3334         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335
3336         return dd->send_egress_err_status_cnt[46];
3337 }
3338
3339 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3340                                              void *context, int vl, int mode,
3341                                              u64 data)
3342 {
3343         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344
3345         return dd->send_egress_err_status_cnt[45];
3346 }
3347
3348 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3349                                                  void *context, int vl,
3350                                                  int mode, u64 data)
3351 {
3352         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353
3354         return dd->send_egress_err_status_cnt[44];
3355 }
3356
3357 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3358                                 const struct cntr_entry *entry,
3359                                 void *context, int vl, int mode, u64 data)
3360 {
3361         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362
3363         return dd->send_egress_err_status_cnt[43];
3364 }
3365
3366 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3367                                         void *context, int vl, int mode,
3368                                         u64 data)
3369 {
3370         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371
3372         return dd->send_egress_err_status_cnt[42];
3373 }
3374
3375 static u64 access_tx_credit_return_partiy_err_cnt(
3376                                 const struct cntr_entry *entry,
3377                                 void *context, int vl, int mode, u64 data)
3378 {
3379         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380
3381         return dd->send_egress_err_status_cnt[41];
3382 }
3383
3384 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3385                                 const struct cntr_entry *entry,
3386                                 void *context, int vl, int mode, u64 data)
3387 {
3388         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389
3390         return dd->send_egress_err_status_cnt[40];
3391 }
3392
3393 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3394                                 const struct cntr_entry *entry,
3395                                 void *context, int vl, int mode, u64 data)
3396 {
3397         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398
3399         return dd->send_egress_err_status_cnt[39];
3400 }
3401
3402 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3403                                 const struct cntr_entry *entry,
3404                                 void *context, int vl, int mode, u64 data)
3405 {
3406         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407
3408         return dd->send_egress_err_status_cnt[38];
3409 }
3410
3411 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3412                                 const struct cntr_entry *entry,
3413                                 void *context, int vl, int mode, u64 data)
3414 {
3415         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416
3417         return dd->send_egress_err_status_cnt[37];
3418 }
3419
3420 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3421                                 const struct cntr_entry *entry,
3422                                 void *context, int vl, int mode, u64 data)
3423 {
3424         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425
3426         return dd->send_egress_err_status_cnt[36];
3427 }
3428
3429 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3430                                 const struct cntr_entry *entry,
3431                                 void *context, int vl, int mode, u64 data)
3432 {
3433         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434
3435         return dd->send_egress_err_status_cnt[35];
3436 }
3437
3438 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3439                                 const struct cntr_entry *entry,
3440                                 void *context, int vl, int mode, u64 data)
3441 {
3442         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443
3444         return dd->send_egress_err_status_cnt[34];
3445 }
3446
3447 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3448                                 const struct cntr_entry *entry,
3449                                 void *context, int vl, int mode, u64 data)
3450 {
3451         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452
3453         return dd->send_egress_err_status_cnt[33];
3454 }
3455
3456 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3457                                 const struct cntr_entry *entry,
3458                                 void *context, int vl, int mode, u64 data)
3459 {
3460         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461
3462         return dd->send_egress_err_status_cnt[32];
3463 }
3464
3465 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3466                                 const struct cntr_entry *entry,
3467                                 void *context, int vl, int mode, u64 data)
3468 {
3469         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470
3471         return dd->send_egress_err_status_cnt[31];
3472 }
3473
3474 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3475                                 const struct cntr_entry *entry,
3476                                 void *context, int vl, int mode, u64 data)
3477 {
3478         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479
3480         return dd->send_egress_err_status_cnt[30];
3481 }
3482
3483 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3484                                 const struct cntr_entry *entry,
3485                                 void *context, int vl, int mode, u64 data)
3486 {
3487         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488
3489         return dd->send_egress_err_status_cnt[29];
3490 }
3491
3492 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3493                                 const struct cntr_entry *entry,
3494                                 void *context, int vl, int mode, u64 data)
3495 {
3496         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497
3498         return dd->send_egress_err_status_cnt[28];
3499 }
3500
3501 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3502                                 const struct cntr_entry *entry,
3503                                 void *context, int vl, int mode, u64 data)
3504 {
3505         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506
3507         return dd->send_egress_err_status_cnt[27];
3508 }
3509
3510 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3511                                 const struct cntr_entry *entry,
3512                                 void *context, int vl, int mode, u64 data)
3513 {
3514         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515
3516         return dd->send_egress_err_status_cnt[26];
3517 }
3518
3519 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3520                                 const struct cntr_entry *entry,
3521                                 void *context, int vl, int mode, u64 data)
3522 {
3523         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524
3525         return dd->send_egress_err_status_cnt[25];
3526 }
3527
3528 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3529                                 const struct cntr_entry *entry,
3530                                 void *context, int vl, int mode, u64 data)
3531 {
3532         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533
3534         return dd->send_egress_err_status_cnt[24];
3535 }
3536
3537 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3538                                 const struct cntr_entry *entry,
3539                                 void *context, int vl, int mode, u64 data)
3540 {
3541         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542
3543         return dd->send_egress_err_status_cnt[23];
3544 }
3545
3546 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3547                                 const struct cntr_entry *entry,
3548                                 void *context, int vl, int mode, u64 data)
3549 {
3550         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551
3552         return dd->send_egress_err_status_cnt[22];
3553 }
3554
3555 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3556                                 const struct cntr_entry *entry,
3557                                 void *context, int vl, int mode, u64 data)
3558 {
3559         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560
3561         return dd->send_egress_err_status_cnt[21];
3562 }
3563
3564 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3565                                 const struct cntr_entry *entry,
3566                                 void *context, int vl, int mode, u64 data)
3567 {
3568         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569
3570         return dd->send_egress_err_status_cnt[20];
3571 }
3572
3573 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3574                                 const struct cntr_entry *entry,
3575                                 void *context, int vl, int mode, u64 data)
3576 {
3577         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578
3579         return dd->send_egress_err_status_cnt[19];
3580 }
3581
3582 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3583                                 const struct cntr_entry *entry,
3584                                 void *context, int vl, int mode, u64 data)
3585 {
3586         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587
3588         return dd->send_egress_err_status_cnt[18];
3589 }
3590
3591 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3592                                 const struct cntr_entry *entry,
3593                                 void *context, int vl, int mode, u64 data)
3594 {
3595         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596
3597         return dd->send_egress_err_status_cnt[17];
3598 }
3599
3600 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3601                                 const struct cntr_entry *entry,
3602                                 void *context, int vl, int mode, u64 data)
3603 {
3604         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605
3606         return dd->send_egress_err_status_cnt[16];
3607 }
3608
3609 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3610                                            void *context, int vl, int mode,
3611                                            u64 data)
3612 {
3613         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614
3615         return dd->send_egress_err_status_cnt[15];
3616 }
3617
3618 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3619                                                  void *context, int vl,
3620                                                  int mode, u64 data)
3621 {
3622         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623
3624         return dd->send_egress_err_status_cnt[14];
3625 }
3626
3627 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3628                                                void *context, int vl, int mode,
3629                                                u64 data)
3630 {
3631         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632
3633         return dd->send_egress_err_status_cnt[13];
3634 }
3635
3636 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3637                                         void *context, int vl, int mode,
3638                                         u64 data)
3639 {
3640         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641
3642         return dd->send_egress_err_status_cnt[12];
3643 }
3644
3645 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3646                                 const struct cntr_entry *entry,
3647                                 void *context, int vl, int mode, u64 data)
3648 {
3649         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650
3651         return dd->send_egress_err_status_cnt[11];
3652 }
3653
3654 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3655                                              void *context, int vl, int mode,
3656                                              u64 data)
3657 {
3658         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659
3660         return dd->send_egress_err_status_cnt[10];
3661 }
3662
3663 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3664                                             void *context, int vl, int mode,
3665                                             u64 data)
3666 {
3667         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668
3669         return dd->send_egress_err_status_cnt[9];
3670 }
3671
3672 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3673                                 const struct cntr_entry *entry,
3674                                 void *context, int vl, int mode, u64 data)
3675 {
3676         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677
3678         return dd->send_egress_err_status_cnt[8];
3679 }
3680
3681 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3682                                 const struct cntr_entry *entry,
3683                                 void *context, int vl, int mode, u64 data)
3684 {
3685         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686
3687         return dd->send_egress_err_status_cnt[7];
3688 }
3689
3690 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3691                                             void *context, int vl, int mode,
3692                                             u64 data)
3693 {
3694         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695
3696         return dd->send_egress_err_status_cnt[6];
3697 }
3698
3699 static u64 access_tx_incorrect_link_state_err_cnt(
3700                                 const struct cntr_entry *entry,
3701                                 void *context, int vl, int mode, u64 data)
3702 {
3703         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704
3705         return dd->send_egress_err_status_cnt[5];
3706 }
3707
3708 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3709                                       void *context, int vl, int mode,
3710                                       u64 data)
3711 {
3712         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713
3714         return dd->send_egress_err_status_cnt[4];
3715 }
3716
3717 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3718                                 const struct cntr_entry *entry,
3719                                 void *context, int vl, int mode, u64 data)
3720 {
3721         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722
3723         return dd->send_egress_err_status_cnt[3];
3724 }
3725
3726 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3727                                             void *context, int vl, int mode,
3728                                             u64 data)
3729 {
3730         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731
3732         return dd->send_egress_err_status_cnt[2];
3733 }
3734
3735 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3736                                 const struct cntr_entry *entry,
3737                                 void *context, int vl, int mode, u64 data)
3738 {
3739         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740
3741         return dd->send_egress_err_status_cnt[1];
3742 }
3743
3744 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3745                                 const struct cntr_entry *entry,
3746                                 void *context, int vl, int mode, u64 data)
3747 {
3748         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3749
3750         return dd->send_egress_err_status_cnt[0];
3751 }
3752
3753 /*
3754  * Software counters corresponding to each of the
3755  * error status bits within SendErrStatus
3756  */
3757 static u64 access_send_csr_write_bad_addr_err_cnt(
3758                                 const struct cntr_entry *entry,
3759                                 void *context, int vl, int mode, u64 data)
3760 {
3761         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762
3763         return dd->send_err_status_cnt[2];
3764 }
3765
3766 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3767                                                  void *context, int vl,
3768                                                  int mode, u64 data)
3769 {
3770         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771
3772         return dd->send_err_status_cnt[1];
3773 }
3774
3775 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3776                                       void *context, int vl, int mode,
3777                                       u64 data)
3778 {
3779         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3780
3781         return dd->send_err_status_cnt[0];
3782 }
3783
3784 /*
3785  * Software counters corresponding to each of the
3786  * error status bits within SendCtxtErrStatus
3787  */
3788 static u64 access_pio_write_out_of_bounds_err_cnt(
3789                                 const struct cntr_entry *entry,
3790                                 void *context, int vl, int mode, u64 data)
3791 {
3792         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793
3794         return dd->sw_ctxt_err_status_cnt[4];
3795 }
3796
3797 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3798                                              void *context, int vl, int mode,
3799                                              u64 data)
3800 {
3801         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802
3803         return dd->sw_ctxt_err_status_cnt[3];
3804 }
3805
3806 static u64 access_pio_write_crosses_boundary_err_cnt(
3807                                 const struct cntr_entry *entry,
3808                                 void *context, int vl, int mode, u64 data)
3809 {
3810         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811
3812         return dd->sw_ctxt_err_status_cnt[2];
3813 }
3814
3815 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3816                                                 void *context, int vl,
3817                                                 int mode, u64 data)
3818 {
3819         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820
3821         return dd->sw_ctxt_err_status_cnt[1];
3822 }
3823
3824 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3825                                                void *context, int vl, int mode,
3826                                                u64 data)
3827 {
3828         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3829
3830         return dd->sw_ctxt_err_status_cnt[0];
3831 }
3832
3833 /*
3834  * Software counters corresponding to each of the
3835  * error status bits within SendDmaEngErrStatus
3836  */
3837 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3838                                 const struct cntr_entry *entry,
3839                                 void *context, int vl, int mode, u64 data)
3840 {
3841         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842
3843         return dd->sw_send_dma_eng_err_status_cnt[23];
3844 }
3845
3846 static u64 access_sdma_header_storage_cor_err_cnt(
3847                                 const struct cntr_entry *entry,
3848                                 void *context, int vl, int mode, u64 data)
3849 {
3850         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851
3852         return dd->sw_send_dma_eng_err_status_cnt[22];
3853 }
3854
3855 static u64 access_sdma_packet_tracking_cor_err_cnt(
3856                                 const struct cntr_entry *entry,
3857                                 void *context, int vl, int mode, u64 data)
3858 {
3859         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860
3861         return dd->sw_send_dma_eng_err_status_cnt[21];
3862 }
3863
3864 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3865                                             void *context, int vl, int mode,
3866                                             u64 data)
3867 {
3868         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869
3870         return dd->sw_send_dma_eng_err_status_cnt[20];
3871 }
3872
3873 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3874                                               void *context, int vl, int mode,
3875                                               u64 data)
3876 {
3877         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878
3879         return dd->sw_send_dma_eng_err_status_cnt[19];
3880 }
3881
3882 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3883                                 const struct cntr_entry *entry,
3884                                 void *context, int vl, int mode, u64 data)
3885 {
3886         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887
3888         return dd->sw_send_dma_eng_err_status_cnt[18];
3889 }
3890
3891 static u64 access_sdma_header_storage_unc_err_cnt(
3892                                 const struct cntr_entry *entry,
3893                                 void *context, int vl, int mode, u64 data)
3894 {
3895         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896
3897         return dd->sw_send_dma_eng_err_status_cnt[17];
3898 }
3899
3900 static u64 access_sdma_packet_tracking_unc_err_cnt(
3901                                 const struct cntr_entry *entry,
3902                                 void *context, int vl, int mode, u64 data)
3903 {
3904         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905
3906         return dd->sw_send_dma_eng_err_status_cnt[16];
3907 }
3908
3909 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3910                                             void *context, int vl, int mode,
3911                                             u64 data)
3912 {
3913         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914
3915         return dd->sw_send_dma_eng_err_status_cnt[15];
3916 }
3917
3918 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3919                                               void *context, int vl, int mode,
3920                                               u64 data)
3921 {
3922         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923
3924         return dd->sw_send_dma_eng_err_status_cnt[14];
3925 }
3926
3927 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3928                                        void *context, int vl, int mode,
3929                                        u64 data)
3930 {
3931         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932
3933         return dd->sw_send_dma_eng_err_status_cnt[13];
3934 }
3935
3936 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3937                                              void *context, int vl, int mode,
3938                                              u64 data)
3939 {
3940         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941
3942         return dd->sw_send_dma_eng_err_status_cnt[12];
3943 }
3944
3945 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3946                                               void *context, int vl, int mode,
3947                                               u64 data)
3948 {
3949         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950
3951         return dd->sw_send_dma_eng_err_status_cnt[11];
3952 }
3953
3954 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3955                                              void *context, int vl, int mode,
3956                                              u64 data)
3957 {
3958         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959
3960         return dd->sw_send_dma_eng_err_status_cnt[10];
3961 }
3962
3963 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3964                                           void *context, int vl, int mode,
3965                                           u64 data)
3966 {
3967         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968
3969         return dd->sw_send_dma_eng_err_status_cnt[9];
3970 }
3971
3972 static u64 access_sdma_packet_desc_overflow_err_cnt(
3973                                 const struct cntr_entry *entry,
3974                                 void *context, int vl, int mode, u64 data)
3975 {
3976         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977
3978         return dd->sw_send_dma_eng_err_status_cnt[8];
3979 }
3980
3981 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3982                                                void *context, int vl,
3983                                                int mode, u64 data)
3984 {
3985         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3986
3987         return dd->sw_send_dma_eng_err_status_cnt[7];
3988 }
3989
3990 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3991                                     void *context, int vl, int mode, u64 data)
3992 {
3993         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994
3995         return dd->sw_send_dma_eng_err_status_cnt[6];
3996 }
3997
3998 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3999                                         void *context, int vl, int mode,
4000                                         u64 data)
4001 {
4002         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003
4004         return dd->sw_send_dma_eng_err_status_cnt[5];
4005 }
4006
4007 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4008                                           void *context, int vl, int mode,
4009                                           u64 data)
4010 {
4011         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012
4013         return dd->sw_send_dma_eng_err_status_cnt[4];
4014 }
4015
4016 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4017                                 const struct cntr_entry *entry,
4018                                 void *context, int vl, int mode, u64 data)
4019 {
4020         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021
4022         return dd->sw_send_dma_eng_err_status_cnt[3];
4023 }
4024
4025 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4026                                         void *context, int vl, int mode,
4027                                         u64 data)
4028 {
4029         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030
4031         return dd->sw_send_dma_eng_err_status_cnt[2];
4032 }
4033
4034 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4035                                             void *context, int vl, int mode,
4036                                             u64 data)
4037 {
4038         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039
4040         return dd->sw_send_dma_eng_err_status_cnt[1];
4041 }
4042
4043 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4044                                         void *context, int vl, int mode,
4045                                         u64 data)
4046 {
4047         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048
4049         return dd->sw_send_dma_eng_err_status_cnt[0];
4050 }
4051
4052 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4053                                  void *context, int vl, int mode,
4054                                  u64 data)
4055 {
4056         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4057
4058         u64 val = 0;
4059         u64 csr = entry->csr;
4060
4061         val = read_write_csr(dd, csr, mode, data);
4062         if (mode == CNTR_MODE_R) {
4063                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4064                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4065         } else if (mode == CNTR_MODE_W) {
4066                 dd->sw_rcv_bypass_packet_errors = 0;
4067         } else {
4068                 dd_dev_err(dd, "Invalid cntr register access mode");
4069                 return 0;
4070         }
4071         return val;
4072 }
4073
4074 #define def_access_sw_cpu(cntr) \
4075 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
4076                               void *context, int vl, int mode, u64 data)      \
4077 {                                                                             \
4078         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4079         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
4080                               ppd->ibport_data.rvp.cntr, vl,                  \
4081                               mode, data);                                    \
4082 }
4083
4084 def_access_sw_cpu(rc_acks);
4085 def_access_sw_cpu(rc_qacks);
4086 def_access_sw_cpu(rc_delayed_comp);
4087
4088 #define def_access_ibp_counter(cntr) \
4089 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
4090                                 void *context, int vl, int mode, u64 data)    \
4091 {                                                                             \
4092         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4093                                                                               \
4094         if (vl != CNTR_INVALID_VL)                                            \
4095                 return 0;                                                     \
4096                                                                               \
4097         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4098                              mode, data);                                     \
4099 }
4100
4101 def_access_ibp_counter(loop_pkts);
4102 def_access_ibp_counter(rc_resends);
4103 def_access_ibp_counter(rnr_naks);
4104 def_access_ibp_counter(other_naks);
4105 def_access_ibp_counter(rc_timeouts);
4106 def_access_ibp_counter(pkt_drops);
4107 def_access_ibp_counter(dmawait);
4108 def_access_ibp_counter(rc_seqnak);
4109 def_access_ibp_counter(rc_dupreq);
4110 def_access_ibp_counter(rdma_seq);
4111 def_access_ibp_counter(unaligned);
4112 def_access_ibp_counter(seq_naks);
4113
4114 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4115 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4116 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4117                         CNTR_NORMAL),
4118 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4119                         CNTR_NORMAL),
4120 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4121                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4122                         CNTR_NORMAL),
4123 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4124                         CNTR_NORMAL),
4125 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4126                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4127 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4128                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4129 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4130                         CNTR_NORMAL),
4131 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4132                         CNTR_NORMAL),
4133 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4134                         CNTR_NORMAL),
4135 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4136                         CNTR_NORMAL),
4137 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4138                         CNTR_NORMAL),
4139 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4140                         CNTR_NORMAL),
4141 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4142                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4143 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4144                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4145 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4146                               CNTR_SYNTH),
4147 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4148                             access_dc_rcv_err_cnt),
4149 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4150                                  CNTR_SYNTH),
4151 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4152                                   CNTR_SYNTH),
4153 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4154                                   CNTR_SYNTH),
4155 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4156                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4157 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4158                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4159                                   CNTR_SYNTH),
4160 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4161                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4162 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4163                                CNTR_SYNTH),
4164 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4165                               CNTR_SYNTH),
4166 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4167                                CNTR_SYNTH),
4168 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4169                                  CNTR_SYNTH),
4170 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4171                                 CNTR_SYNTH),
4172 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4173                                 CNTR_SYNTH),
4174 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4175                                CNTR_SYNTH),
4176 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4177                                  CNTR_SYNTH | CNTR_VL),
4178 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4179                                 CNTR_SYNTH | CNTR_VL),
4180 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4181 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4182                                  CNTR_SYNTH | CNTR_VL),
4183 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4184 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4185                                  CNTR_SYNTH | CNTR_VL),
4186 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4187                               CNTR_SYNTH),
4188 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4189                                  CNTR_SYNTH | CNTR_VL),
4190 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4191                                 CNTR_SYNTH),
4192 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4193                                    CNTR_SYNTH | CNTR_VL),
4194 [C_DC_TOTAL_CRC] =
4195         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4196                          CNTR_SYNTH),
4197 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4198                                   CNTR_SYNTH),
4199 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4200                                   CNTR_SYNTH),
4201 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4202                                   CNTR_SYNTH),
4203 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4204                                   CNTR_SYNTH),
4205 [C_DC_CRC_MULT_LN] =
4206         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4207                          CNTR_SYNTH),
4208 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4209                                     CNTR_SYNTH),
4210 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4211                                     CNTR_SYNTH),
4212 [C_DC_SEQ_CRC_CNT] =
4213         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4214                          CNTR_SYNTH),
4215 [C_DC_ESC0_ONLY_CNT] =
4216         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4217                          CNTR_SYNTH),
4218 [C_DC_ESC0_PLUS1_CNT] =
4219         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4220                          CNTR_SYNTH),
4221 [C_DC_ESC0_PLUS2_CNT] =
4222         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4223                          CNTR_SYNTH),
4224 [C_DC_REINIT_FROM_PEER_CNT] =
4225         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4226                          CNTR_SYNTH),
4227 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4228                                   CNTR_SYNTH),
4229 [C_DC_MISC_FLG_CNT] =
4230         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4231                          CNTR_SYNTH),
4232 [C_DC_PRF_GOOD_LTP_CNT] =
4233         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4234 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4235         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4236                          CNTR_SYNTH),
4237 [C_DC_PRF_RX_FLIT_CNT] =
4238         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4239 [C_DC_PRF_TX_FLIT_CNT] =
4240         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4241 [C_DC_PRF_CLK_CNTR] =
4242         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4243 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4244         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4245 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4246         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4247                          CNTR_SYNTH),
4248 [C_DC_PG_STS_TX_SBE_CNT] =
4249         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4250 [C_DC_PG_STS_TX_MBE_CNT] =
4251         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4252                          CNTR_SYNTH),
4253 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4254                             access_sw_cpu_intr),
4255 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4256                             access_sw_cpu_rcv_limit),
4257 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4258                             access_sw_ctx0_seq_drop),
4259 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4260                             access_sw_vtx_wait),
4261 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4262                             access_sw_pio_wait),
4263 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4264                             access_sw_pio_drain),
4265 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4266                             access_sw_kmem_wait),
4267 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4268                             access_sw_send_schedule),
4269 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4270                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4271                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272                                       dev_access_u32_csr),
4273 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4274                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4275                              access_sde_int_cnt),
4276 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4277                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4278                              access_sde_err_cnt),
4279 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4280                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4281                                   access_sde_idle_int_cnt),
4282 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4283                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4284                                       access_sde_progress_int_cnt),
4285 /* MISC_ERR_STATUS */
4286 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4287                                 CNTR_NORMAL,
4288                                 access_misc_pll_lock_fail_err_cnt),
4289 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4290                                 CNTR_NORMAL,
4291                                 access_misc_mbist_fail_err_cnt),
4292 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4293                                 CNTR_NORMAL,
4294                                 access_misc_invalid_eep_cmd_err_cnt),
4295 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4296                                 CNTR_NORMAL,
4297                                 access_misc_efuse_done_parity_err_cnt),
4298 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4299                                 CNTR_NORMAL,
4300                                 access_misc_efuse_write_err_cnt),
4301 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4302                                 0, CNTR_NORMAL,
4303                                 access_misc_efuse_read_bad_addr_err_cnt),
4304 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4305                                 CNTR_NORMAL,
4306                                 access_misc_efuse_csr_parity_err_cnt),
4307 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4308                                 CNTR_NORMAL,
4309                                 access_misc_fw_auth_failed_err_cnt),
4310 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4311                                 CNTR_NORMAL,
4312                                 access_misc_key_mismatch_err_cnt),
4313 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4314                                 CNTR_NORMAL,
4315                                 access_misc_sbus_write_failed_err_cnt),
4316 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4317                                 CNTR_NORMAL,
4318                                 access_misc_csr_write_bad_addr_err_cnt),
4319 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4320                                 CNTR_NORMAL,
4321                                 access_misc_csr_read_bad_addr_err_cnt),
4322 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4323                                 CNTR_NORMAL,
4324                                 access_misc_csr_parity_err_cnt),
4325 /* CceErrStatus */
4326 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4327                                 CNTR_NORMAL,
4328                                 access_sw_cce_err_status_aggregated_cnt),
4329 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4330                                 CNTR_NORMAL,
4331                                 access_cce_msix_csr_parity_err_cnt),
4332 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4333                                 CNTR_NORMAL,
4334                                 access_cce_int_map_unc_err_cnt),
4335 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4336                                 CNTR_NORMAL,
4337                                 access_cce_int_map_cor_err_cnt),
4338 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4339                                 CNTR_NORMAL,
4340                                 access_cce_msix_table_unc_err_cnt),
4341 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4342                                 CNTR_NORMAL,
4343                                 access_cce_msix_table_cor_err_cnt),
4344 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4345                                 0, CNTR_NORMAL,
4346                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4347 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4348                                 0, CNTR_NORMAL,
4349                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4350 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4351                                 CNTR_NORMAL,
4352                                 access_cce_seg_write_bad_addr_err_cnt),
4353 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4354                                 CNTR_NORMAL,
4355                                 access_cce_seg_read_bad_addr_err_cnt),
4356 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4357                                 CNTR_NORMAL,
4358                                 access_la_triggered_cnt),
4359 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4360                                 CNTR_NORMAL,
4361                                 access_cce_trgt_cpl_timeout_err_cnt),
4362 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4363                                 CNTR_NORMAL,
4364                                 access_pcic_receive_parity_err_cnt),
4365 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4366                                 CNTR_NORMAL,
4367                                 access_pcic_transmit_back_parity_err_cnt),
4368 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4369                                 0, CNTR_NORMAL,
4370                                 access_pcic_transmit_front_parity_err_cnt),
4371 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4372                                 CNTR_NORMAL,
4373                                 access_pcic_cpl_dat_q_unc_err_cnt),
4374 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4375                                 CNTR_NORMAL,
4376                                 access_pcic_cpl_hd_q_unc_err_cnt),
4377 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4378                                 CNTR_NORMAL,
4379                                 access_pcic_post_dat_q_unc_err_cnt),
4380 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4381                                 CNTR_NORMAL,
4382                                 access_pcic_post_hd_q_unc_err_cnt),
4383 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4384                                 CNTR_NORMAL,
4385                                 access_pcic_retry_sot_mem_unc_err_cnt),
4386 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4387                                 CNTR_NORMAL,
4388                                 access_pcic_retry_mem_unc_err),
4389 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4390                                 CNTR_NORMAL,
4391                                 access_pcic_n_post_dat_q_parity_err_cnt),
4392 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4393                                 CNTR_NORMAL,
4394                                 access_pcic_n_post_h_q_parity_err_cnt),
4395 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4396                                 CNTR_NORMAL,
4397                                 access_pcic_cpl_dat_q_cor_err_cnt),
4398 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4399                                 CNTR_NORMAL,
4400                                 access_pcic_cpl_hd_q_cor_err_cnt),
4401 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4402                                 CNTR_NORMAL,
4403                                 access_pcic_post_dat_q_cor_err_cnt),
4404 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4405                                 CNTR_NORMAL,
4406                                 access_pcic_post_hd_q_cor_err_cnt),
4407 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4408                                 CNTR_NORMAL,
4409                                 access_pcic_retry_sot_mem_cor_err_cnt),
4410 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4411                                 CNTR_NORMAL,
4412                                 access_pcic_retry_mem_cor_err_cnt),
4413 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4414                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4415                                 CNTR_NORMAL,
4416                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4417 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4418                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4419                                 CNTR_NORMAL,
4420                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4421                                 ),
4422 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4423                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4424                         CNTR_NORMAL,
4425                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4426 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4427                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4428                         CNTR_NORMAL,
4429                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4430 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4431                         0, CNTR_NORMAL,
4432                         access_cce_cli2_async_fifo_parity_err_cnt),
4433 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4434                         CNTR_NORMAL,
4435                         access_cce_csr_cfg_bus_parity_err_cnt),
4436 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4437                         0, CNTR_NORMAL,
4438                         access_cce_cli0_async_fifo_parity_err_cnt),
4439 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4440                         CNTR_NORMAL,
4441                         access_cce_rspd_data_parity_err_cnt),
4442 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4443                         CNTR_NORMAL,
4444                         access_cce_trgt_access_err_cnt),
4445 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4446                         0, CNTR_NORMAL,
4447                         access_cce_trgt_async_fifo_parity_err_cnt),
4448 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4449                         CNTR_NORMAL,
4450                         access_cce_csr_write_bad_addr_err_cnt),
4451 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4452                         CNTR_NORMAL,
4453                         access_cce_csr_read_bad_addr_err_cnt),
4454 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4455                         CNTR_NORMAL,
4456                         access_ccs_csr_parity_err_cnt),
4457
4458 /* RcvErrStatus */
4459 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4460                         CNTR_NORMAL,
4461                         access_rx_csr_parity_err_cnt),
4462 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4463                         CNTR_NORMAL,
4464                         access_rx_csr_write_bad_addr_err_cnt),
4465 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4466                         CNTR_NORMAL,
4467                         access_rx_csr_read_bad_addr_err_cnt),
4468 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4469                         CNTR_NORMAL,
4470                         access_rx_dma_csr_unc_err_cnt),
4471 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4472                         CNTR_NORMAL,
4473                         access_rx_dma_dq_fsm_encoding_err_cnt),
4474 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4475                         CNTR_NORMAL,
4476                         access_rx_dma_eq_fsm_encoding_err_cnt),
4477 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4478                         CNTR_NORMAL,
4479                         access_rx_dma_csr_parity_err_cnt),
4480 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4481                         CNTR_NORMAL,
4482                         access_rx_rbuf_data_cor_err_cnt),
4483 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4484                         CNTR_NORMAL,
4485                         access_rx_rbuf_data_unc_err_cnt),
4486 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4487                         CNTR_NORMAL,
4488                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4489 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4490                         CNTR_NORMAL,
4491                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4492 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4493                         CNTR_NORMAL,
4494                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4495 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4496                         CNTR_NORMAL,
4497                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4498 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4499                         CNTR_NORMAL,
4500                         access_rx_rbuf_desc_part2_cor_err_cnt),
4501 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4502                         CNTR_NORMAL,
4503                         access_rx_rbuf_desc_part2_unc_err_cnt),
4504 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4505                         CNTR_NORMAL,
4506                         access_rx_rbuf_desc_part1_cor_err_cnt),
4507 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4508                         CNTR_NORMAL,
4509                         access_rx_rbuf_desc_part1_unc_err_cnt),
4510 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4511                         CNTR_NORMAL,
4512                         access_rx_hq_intr_fsm_err_cnt),
4513 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4514                         CNTR_NORMAL,
4515                         access_rx_hq_intr_csr_parity_err_cnt),
4516 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4517                         CNTR_NORMAL,
4518                         access_rx_lookup_csr_parity_err_cnt),
4519 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4520                         CNTR_NORMAL,
4521                         access_rx_lookup_rcv_array_cor_err_cnt),
4522 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4523                         CNTR_NORMAL,
4524                         access_rx_lookup_rcv_array_unc_err_cnt),
4525 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4526                         0, CNTR_NORMAL,
4527                         access_rx_lookup_des_part2_parity_err_cnt),
4528 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4529                         0, CNTR_NORMAL,
4530                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4531 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4532                         CNTR_NORMAL,
4533                         access_rx_lookup_des_part1_unc_err_cnt),
4534 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4535                         CNTR_NORMAL,
4536                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4537 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4538                         CNTR_NORMAL,
4539                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4540 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4541                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4542                         CNTR_NORMAL,
4543                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4544 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4545                         0, CNTR_NORMAL,
4546                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4547 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4548                         0, CNTR_NORMAL,
4549                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4550 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4551                         CNTR_NORMAL,
4552                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4553 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4554                         CNTR_NORMAL,
4555                         access_rx_rbuf_empty_err_cnt),
4556 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4557                         CNTR_NORMAL,
4558                         access_rx_rbuf_full_err_cnt),
4559 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4560                         CNTR_NORMAL,
4561                         access_rbuf_bad_lookup_err_cnt),
4562 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4563                         CNTR_NORMAL,
4564                         access_rbuf_ctx_id_parity_err_cnt),
4565 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4566                         CNTR_NORMAL,
4567                         access_rbuf_csr_qeopdw_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4569                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4570                         CNTR_NORMAL,
4571                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4572 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4573                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4574                         CNTR_NORMAL,
4575                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4576 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4577                         0, CNTR_NORMAL,
4578                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4579 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4580                         0, CNTR_NORMAL,
4581                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4582 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4583                         0, 0, CNTR_NORMAL,
4584                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4585 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4586                         0, CNTR_NORMAL,
4587                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4588 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4589                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4590                         CNTR_NORMAL,
4591                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4592 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4593                         0, CNTR_NORMAL,
4594                         access_rx_rbuf_block_list_read_cor_err_cnt),
4595 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4596                         0, CNTR_NORMAL,
4597                         access_rx_rbuf_block_list_read_unc_err_cnt),
4598 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4599                         CNTR_NORMAL,
4600                         access_rx_rbuf_lookup_des_cor_err_cnt),
4601 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4602                         CNTR_NORMAL,
4603                         access_rx_rbuf_lookup_des_unc_err_cnt),
4604 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4605                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4606                         CNTR_NORMAL,
4607                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4608 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4609                         CNTR_NORMAL,
4610                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4611 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4612                         CNTR_NORMAL,
4613                         access_rx_rbuf_free_list_cor_err_cnt),
4614 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4615                         CNTR_NORMAL,
4616                         access_rx_rbuf_free_list_unc_err_cnt),
4617 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4618                         CNTR_NORMAL,
4619                         access_rx_rcv_fsm_encoding_err_cnt),
4620 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4621                         CNTR_NORMAL,
4622                         access_rx_dma_flag_cor_err_cnt),
4623 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4624                         CNTR_NORMAL,
4625                         access_rx_dma_flag_unc_err_cnt),
4626 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4627                         CNTR_NORMAL,
4628                         access_rx_dc_sop_eop_parity_err_cnt),
4629 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4630                         CNTR_NORMAL,
4631                         access_rx_rcv_csr_parity_err_cnt),
4632 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4633                         CNTR_NORMAL,
4634                         access_rx_rcv_qp_map_table_cor_err_cnt),
4635 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4636                         CNTR_NORMAL,
4637                         access_rx_rcv_qp_map_table_unc_err_cnt),
4638 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4639                         CNTR_NORMAL,
4640                         access_rx_rcv_data_cor_err_cnt),
4641 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4642                         CNTR_NORMAL,
4643                         access_rx_rcv_data_unc_err_cnt),
4644 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4645                         CNTR_NORMAL,
4646                         access_rx_rcv_hdr_cor_err_cnt),
4647 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4648                         CNTR_NORMAL,
4649                         access_rx_rcv_hdr_unc_err_cnt),
4650 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4651                         CNTR_NORMAL,
4652                         access_rx_dc_intf_parity_err_cnt),
4653 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4654                         CNTR_NORMAL,
4655                         access_rx_dma_csr_cor_err_cnt),
4656 /* SendPioErrStatus */
4657 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4658                         CNTR_NORMAL,
4659                         access_pio_pec_sop_head_parity_err_cnt),
4660 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4661                         CNTR_NORMAL,
4662                         access_pio_pcc_sop_head_parity_err_cnt),
4663 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4664                         0, 0, CNTR_NORMAL,
4665                         access_pio_last_returned_cnt_parity_err_cnt),
4666 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4667                         0, CNTR_NORMAL,
4668                         access_pio_current_free_cnt_parity_err_cnt),
4669 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4670                         CNTR_NORMAL,
4671                         access_pio_reserved_31_err_cnt),
4672 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4673                         CNTR_NORMAL,
4674                         access_pio_reserved_30_err_cnt),
4675 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4676                         CNTR_NORMAL,
4677                         access_pio_ppmc_sop_len_err_cnt),
4678 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4679                         CNTR_NORMAL,
4680                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4681 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4682                         CNTR_NORMAL,
4683                         access_pio_vl_fifo_parity_err_cnt),
4684 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4685                         CNTR_NORMAL,
4686                         access_pio_vlf_sop_parity_err_cnt),
4687 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4688                         CNTR_NORMAL,
4689                         access_pio_vlf_v1_len_parity_err_cnt),
4690 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4691                         CNTR_NORMAL,
4692                         access_pio_block_qw_count_parity_err_cnt),
4693 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4694                         CNTR_NORMAL,
4695                         access_pio_write_qw_valid_parity_err_cnt),
4696 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4697                         CNTR_NORMAL,
4698                         access_pio_state_machine_err_cnt),
4699 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4700                         CNTR_NORMAL,
4701                         access_pio_write_data_parity_err_cnt),
4702 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4703                         CNTR_NORMAL,
4704                         access_pio_host_addr_mem_cor_err_cnt),
4705 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4706                         CNTR_NORMAL,
4707                         access_pio_host_addr_mem_unc_err_cnt),
4708 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4709                         CNTR_NORMAL,
4710                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4711 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4712                         CNTR_NORMAL,
4713                         access_pio_init_sm_in_err_cnt),
4714 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4715                         CNTR_NORMAL,
4716                         access_pio_ppmc_pbl_fifo_err_cnt),
4717 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4718                         0, CNTR_NORMAL,
4719                         access_pio_credit_ret_fifo_parity_err_cnt),
4720 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4721                         CNTR_NORMAL,
4722                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4723 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4724                         CNTR_NORMAL,
4725                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4726 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4727                         CNTR_NORMAL,
4728                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4729 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4730                         CNTR_NORMAL,
4731                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4732 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4733                         CNTR_NORMAL,
4734                         access_pio_sm_pkt_reset_parity_err_cnt),
4735 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4736                         CNTR_NORMAL,
4737                         access_pio_pkt_evict_fifo_parity_err_cnt),
4738 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4739                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4740                         CNTR_NORMAL,
4741                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4742 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4743                         CNTR_NORMAL,
4744                         access_pio_sbrdctl_crrel_parity_err_cnt),
4745 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4746                         CNTR_NORMAL,
4747                         access_pio_pec_fifo_parity_err_cnt),
4748 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4749                         CNTR_NORMAL,
4750                         access_pio_pcc_fifo_parity_err_cnt),
4751 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4752                         CNTR_NORMAL,
4753                         access_pio_sb_mem_fifo1_err_cnt),
4754 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4755                         CNTR_NORMAL,
4756                         access_pio_sb_mem_fifo0_err_cnt),
4757 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4758                         CNTR_NORMAL,
4759                         access_pio_csr_parity_err_cnt),
4760 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4761                         CNTR_NORMAL,
4762                         access_pio_write_addr_parity_err_cnt),
4763 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4764                         CNTR_NORMAL,
4765                         access_pio_write_bad_ctxt_err_cnt),
4766 /* SendDmaErrStatus */
4767 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4768                         0, CNTR_NORMAL,
4769                         access_sdma_pcie_req_tracking_cor_err_cnt),
4770 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4771                         0, CNTR_NORMAL,
4772                         access_sdma_pcie_req_tracking_unc_err_cnt),
4773 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4774                         CNTR_NORMAL,
4775                         access_sdma_csr_parity_err_cnt),
4776 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4777                         CNTR_NORMAL,
4778                         access_sdma_rpy_tag_err_cnt),
4779 /* SendEgressErrStatus */
4780 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4781                         CNTR_NORMAL,
4782                         access_tx_read_pio_memory_csr_unc_err_cnt),
4783 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4784                         0, CNTR_NORMAL,
4785                         access_tx_read_sdma_memory_csr_err_cnt),
4786 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4787                         CNTR_NORMAL,
4788                         access_tx_egress_fifo_cor_err_cnt),
4789 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4790                         CNTR_NORMAL,
4791                         access_tx_read_pio_memory_cor_err_cnt),
4792 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4793                         CNTR_NORMAL,
4794                         access_tx_read_sdma_memory_cor_err_cnt),
4795 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4796                         CNTR_NORMAL,
4797                         access_tx_sb_hdr_cor_err_cnt),
4798 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4799                         CNTR_NORMAL,
4800                         access_tx_credit_overrun_err_cnt),
4801 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4802                         CNTR_NORMAL,
4803                         access_tx_launch_fifo8_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4805                         CNTR_NORMAL,
4806                         access_tx_launch_fifo7_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4808                         CNTR_NORMAL,
4809                         access_tx_launch_fifo6_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4811                         CNTR_NORMAL,
4812                         access_tx_launch_fifo5_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4814                         CNTR_NORMAL,
4815                         access_tx_launch_fifo4_cor_err_cnt),
4816 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4817                         CNTR_NORMAL,
4818                         access_tx_launch_fifo3_cor_err_cnt),
4819 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4820                         CNTR_NORMAL,
4821                         access_tx_launch_fifo2_cor_err_cnt),
4822 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4823                         CNTR_NORMAL,
4824                         access_tx_launch_fifo1_cor_err_cnt),
4825 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4826                         CNTR_NORMAL,
4827                         access_tx_launch_fifo0_cor_err_cnt),
4828 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4829                         CNTR_NORMAL,
4830                         access_tx_credit_return_vl_err_cnt),
4831 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4832                         CNTR_NORMAL,
4833                         access_tx_hcrc_insertion_err_cnt),
4834 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4835                         CNTR_NORMAL,
4836                         access_tx_egress_fifo_unc_err_cnt),
4837 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4838                         CNTR_NORMAL,
4839                         access_tx_read_pio_memory_unc_err_cnt),
4840 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4841                         CNTR_NORMAL,
4842                         access_tx_read_sdma_memory_unc_err_cnt),
4843 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4844                         CNTR_NORMAL,
4845                         access_tx_sb_hdr_unc_err_cnt),
4846 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4847                         CNTR_NORMAL,
4848                         access_tx_credit_return_partiy_err_cnt),
4849 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4850                         0, 0, CNTR_NORMAL,
4851                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4853                         0, 0, CNTR_NORMAL,
4854                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4856                         0, 0, CNTR_NORMAL,
4857                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4859                         0, 0, CNTR_NORMAL,
4860                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4862                         0, 0, CNTR_NORMAL,
4863                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4864 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4865                         0, 0, CNTR_NORMAL,
4866                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4867 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4868                         0, 0, CNTR_NORMAL,
4869                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4870 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4871                         0, 0, CNTR_NORMAL,
4872                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4873 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4874                         0, 0, CNTR_NORMAL,
4875                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4876 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4877                         0, 0, CNTR_NORMAL,
4878                         access_tx_sdma15_disallowed_packet_err_cnt),
4879 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4880                         0, 0, CNTR_NORMAL,
4881                         access_tx_sdma14_disallowed_packet_err_cnt),
4882 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4883                         0, 0, CNTR_NORMAL,
4884                         access_tx_sdma13_disallowed_packet_err_cnt),
4885 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4886                         0, 0, CNTR_NORMAL,
4887                         access_tx_sdma12_disallowed_packet_err_cnt),
4888 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4889                         0, 0, CNTR_NORMAL,
4890                         access_tx_sdma11_disallowed_packet_err_cnt),
4891 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4892                         0, 0, CNTR_NORMAL,
4893                         access_tx_sdma10_disallowed_packet_err_cnt),
4894 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4895                         0, 0, CNTR_NORMAL,
4896                         access_tx_sdma9_disallowed_packet_err_cnt),
4897 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4898                         0, 0, CNTR_NORMAL,
4899                         access_tx_sdma8_disallowed_packet_err_cnt),
4900 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4901                         0, 0, CNTR_NORMAL,
4902                         access_tx_sdma7_disallowed_packet_err_cnt),
4903 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4904                         0, 0, CNTR_NORMAL,
4905                         access_tx_sdma6_disallowed_packet_err_cnt),
4906 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4907                         0, 0, CNTR_NORMAL,
4908                         access_tx_sdma5_disallowed_packet_err_cnt),
4909 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4910                         0, 0, CNTR_NORMAL,
4911                         access_tx_sdma4_disallowed_packet_err_cnt),
4912 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4913                         0, 0, CNTR_NORMAL,
4914                         access_tx_sdma3_disallowed_packet_err_cnt),
4915 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4916                         0, 0, CNTR_NORMAL,
4917                         access_tx_sdma2_disallowed_packet_err_cnt),
4918 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4919                         0, 0, CNTR_NORMAL,
4920                         access_tx_sdma1_disallowed_packet_err_cnt),
4921 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4922                         0, 0, CNTR_NORMAL,
4923                         access_tx_sdma0_disallowed_packet_err_cnt),
4924 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4925                         CNTR_NORMAL,
4926                         access_tx_config_parity_err_cnt),
4927 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4928                         CNTR_NORMAL,
4929                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4930 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4931                         CNTR_NORMAL,
4932                         access_tx_launch_csr_parity_err_cnt),
4933 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4934                         CNTR_NORMAL,
4935                         access_tx_illegal_vl_err_cnt),
4936 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4937                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4938                         CNTR_NORMAL,
4939                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4940 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4941                         CNTR_NORMAL,
4942                         access_egress_reserved_10_err_cnt),
4943 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4944                         CNTR_NORMAL,
4945                         access_egress_reserved_9_err_cnt),
4946 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4947                         0, 0, CNTR_NORMAL,
4948                         access_tx_sdma_launch_intf_parity_err_cnt),
4949 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4950                         CNTR_NORMAL,
4951                         access_tx_pio_launch_intf_parity_err_cnt),
4952 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4953                         CNTR_NORMAL,
4954                         access_egress_reserved_6_err_cnt),
4955 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4956                         CNTR_NORMAL,
4957                         access_tx_incorrect_link_state_err_cnt),
4958 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4959                         CNTR_NORMAL,
4960                         access_tx_linkdown_err_cnt),
4961 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4962                         "EgressFifoUnderrunOrParityErr", 0, 0,
4963                         CNTR_NORMAL,
4964                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4965 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4966                         CNTR_NORMAL,
4967                         access_egress_reserved_2_err_cnt),
4968 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4969                         CNTR_NORMAL,
4970                         access_tx_pkt_integrity_mem_unc_err_cnt),
4971 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4972                         CNTR_NORMAL,
4973                         access_tx_pkt_integrity_mem_cor_err_cnt),
4974 /* SendErrStatus */
4975 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4976                         CNTR_NORMAL,
4977                         access_send_csr_write_bad_addr_err_cnt),
4978 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4979                         CNTR_NORMAL,
4980                         access_send_csr_read_bad_addr_err_cnt),
4981 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4982                         CNTR_NORMAL,
4983                         access_send_csr_parity_cnt),
4984 /* SendCtxtErrStatus */
4985 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4986                         CNTR_NORMAL,
4987                         access_pio_write_out_of_bounds_err_cnt),
4988 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4989                         CNTR_NORMAL,
4990                         access_pio_write_overflow_err_cnt),
4991 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4992                         0, 0, CNTR_NORMAL,
4993                         access_pio_write_crosses_boundary_err_cnt),
4994 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4995                         CNTR_NORMAL,
4996                         access_pio_disallowed_packet_err_cnt),
4997 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4998                         CNTR_NORMAL,
4999                         access_pio_inconsistent_sop_err_cnt),
5000 /* SendDmaEngErrStatus */
5001 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5002                         0, 0, CNTR_NORMAL,
5003                         access_sdma_header_request_fifo_cor_err_cnt),
5004 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5005                         CNTR_NORMAL,
5006                         access_sdma_header_storage_cor_err_cnt),
5007 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5008                         CNTR_NORMAL,
5009                         access_sdma_packet_tracking_cor_err_cnt),
5010 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5011                         CNTR_NORMAL,
5012                         access_sdma_assembly_cor_err_cnt),
5013 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5014                         CNTR_NORMAL,
5015                         access_sdma_desc_table_cor_err_cnt),
5016 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5017                         0, 0, CNTR_NORMAL,
5018                         access_sdma_header_request_fifo_unc_err_cnt),
5019 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5020                         CNTR_NORMAL,
5021                         access_sdma_header_storage_unc_err_cnt),
5022 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5023                         CNTR_NORMAL,
5024                         access_sdma_packet_tracking_unc_err_cnt),
5025 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5026                         CNTR_NORMAL,
5027                         access_sdma_assembly_unc_err_cnt),
5028 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5029                         CNTR_NORMAL,
5030                         access_sdma_desc_table_unc_err_cnt),
5031 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5032                         CNTR_NORMAL,
5033                         access_sdma_timeout_err_cnt),
5034 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5035                         CNTR_NORMAL,
5036                         access_sdma_header_length_err_cnt),
5037 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5038                         CNTR_NORMAL,
5039                         access_sdma_header_address_err_cnt),
5040 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5041                         CNTR_NORMAL,
5042                         access_sdma_header_select_err_cnt),
5043 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5044                         CNTR_NORMAL,
5045                         access_sdma_reserved_9_err_cnt),
5046 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5047                         CNTR_NORMAL,
5048                         access_sdma_packet_desc_overflow_err_cnt),
5049 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5050                         CNTR_NORMAL,
5051                         access_sdma_length_mismatch_err_cnt),
5052 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5053                         CNTR_NORMAL,
5054                         access_sdma_halt_err_cnt),
5055 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5056                         CNTR_NORMAL,
5057                         access_sdma_mem_read_err_cnt),
5058 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5059                         CNTR_NORMAL,
5060                         access_sdma_first_desc_err_cnt),
5061 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5062                         CNTR_NORMAL,
5063                         access_sdma_tail_out_of_bounds_err_cnt),
5064 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5065                         CNTR_NORMAL,
5066                         access_sdma_too_long_err_cnt),
5067 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5068                         CNTR_NORMAL,
5069                         access_sdma_gen_mismatch_err_cnt),
5070 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5071                         CNTR_NORMAL,
5072                         access_sdma_wrong_dw_err_cnt),
5073 };
5074
5075 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5076 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5077                         CNTR_NORMAL),
5078 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5079                         CNTR_NORMAL),
5080 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5081                         CNTR_NORMAL),
5082 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5083                         CNTR_NORMAL),
5084 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5085                         CNTR_NORMAL),
5086 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5087                         CNTR_NORMAL),
5088 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5089                         CNTR_NORMAL),
5090 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5091 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5092 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5093 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5094                                       CNTR_SYNTH | CNTR_VL),
5095 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5096                                      CNTR_SYNTH | CNTR_VL),
5097 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5098                                       CNTR_SYNTH | CNTR_VL),
5099 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5100 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5101 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5102                              access_sw_link_dn_cnt),
5103 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5104                            access_sw_link_up_cnt),
5105 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5106                                  access_sw_unknown_frame_cnt),
5107 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5108                              access_sw_xmit_discards),
5109 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5110                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5111                                 access_sw_xmit_discards),
5112 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5113                                  access_xmit_constraint_errs),
5114 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5115                                 access_rcv_constraint_errs),
5116 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5117 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5118 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5119 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5120 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5121 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5122 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5123 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5124 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5125 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5126 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5127 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5128 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5129                                access_sw_cpu_rc_acks),
5130 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5131                                 access_sw_cpu_rc_qacks),
5132 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5133                                        access_sw_cpu_rc_delayed_comp),
5134 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5135 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5136 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5137 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5138 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5139 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5140 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5141 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5142 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5143 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5144 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5145 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5146 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5147 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5148 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5149 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5150 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5151 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5152 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5153 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5154 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5155 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5156 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5157 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5158 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5159 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5160 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5161 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5162 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5163 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5164 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5165 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5166 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5167 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5168 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5169 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5170 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5171 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5172 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5173 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5174 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5175 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5176 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5177 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5178 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5179 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5180 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5181 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5182 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5183 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5184 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5185 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5186 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5187 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5188 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5189 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5190 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5191 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5192 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5193 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5194 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5195 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5196 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5197 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5198 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5199 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5200 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5201 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5202 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5203 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5204 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5205 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5206 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5207 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5208 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5209 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5210 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5211 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5212 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5213 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5214 };
5215
5216 /* ======================================================================== */
5217
5218 /* return true if this is chip revision revision a */
5219 int is_ax(struct hfi1_devdata *dd)
5220 {
5221         u8 chip_rev_minor =
5222                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5223                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5224         return (chip_rev_minor & 0xf0) == 0;
5225 }
5226
5227 /* return true if this is chip revision revision b */
5228 int is_bx(struct hfi1_devdata *dd)
5229 {
5230         u8 chip_rev_minor =
5231                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5232                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5233         return (chip_rev_minor & 0xF0) == 0x10;
5234 }
5235
5236 /*
5237  * Append string s to buffer buf.  Arguments curp and len are the current
5238  * position and remaining length, respectively.
5239  *
5240  * return 0 on success, 1 on out of room
5241  */
5242 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5243 {
5244         char *p = *curp;
5245         int len = *lenp;
5246         int result = 0; /* success */
5247         char c;
5248
5249         /* add a comma, if first in the buffer */
5250         if (p != buf) {
5251                 if (len == 0) {
5252                         result = 1; /* out of room */
5253                         goto done;
5254                 }
5255                 *p++ = ',';
5256                 len--;
5257         }
5258
5259         /* copy the string */
5260         while ((c = *s++) != 0) {
5261                 if (len == 0) {
5262                         result = 1; /* out of room */
5263                         goto done;
5264                 }
5265                 *p++ = c;
5266                 len--;
5267         }
5268
5269 done:
5270         /* write return values */
5271         *curp = p;
5272         *lenp = len;
5273
5274         return result;
5275 }
5276
5277 /*
5278  * Using the given flag table, print a comma separated string into
5279  * the buffer.  End in '*' if the buffer is too short.
5280  */
5281 static char *flag_string(char *buf, int buf_len, u64 flags,
5282                          struct flag_table *table, int table_size)
5283 {
5284         char extra[32];
5285         char *p = buf;
5286         int len = buf_len;
5287         int no_room = 0;
5288         int i;
5289
5290         /* make sure there is at least 2 so we can form "*" */
5291         if (len < 2)
5292                 return "";
5293
5294         len--;  /* leave room for a nul */
5295         for (i = 0; i < table_size; i++) {
5296                 if (flags & table[i].flag) {
5297                         no_room = append_str(buf, &p, &len, table[i].str);
5298                         if (no_room)
5299                                 break;
5300                         flags &= ~table[i].flag;
5301                 }
5302         }
5303
5304         /* any undocumented bits left? */
5305         if (!no_room && flags) {
5306                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5307                 no_room = append_str(buf, &p, &len, extra);
5308         }
5309
5310         /* add * if ran out of room */
5311         if (no_room) {
5312                 /* may need to back up to add space for a '*' */
5313                 if (len == 0)
5314                         --p;
5315                 *p++ = '*';
5316         }
5317
5318         /* add final nul - space already allocated above */
5319         *p = 0;
5320         return buf;
5321 }
5322
5323 /* first 8 CCE error interrupt source names */
5324 static const char * const cce_misc_names[] = {
5325         "CceErrInt",            /* 0 */
5326         "RxeErrInt",            /* 1 */
5327         "MiscErrInt",           /* 2 */
5328         "Reserved3",            /* 3 */
5329         "PioErrInt",            /* 4 */
5330         "SDmaErrInt",           /* 5 */
5331         "EgressErrInt",         /* 6 */
5332         "TxeErrInt"             /* 7 */
5333 };
5334
5335 /*
5336  * Return the miscellaneous error interrupt name.
5337  */
5338 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5339 {
5340         if (source < ARRAY_SIZE(cce_misc_names))
5341                 strncpy(buf, cce_misc_names[source], bsize);
5342         else
5343                 snprintf(buf, bsize, "Reserved%u",
5344                          source + IS_GENERAL_ERR_START);
5345
5346         return buf;
5347 }
5348
5349 /*
5350  * Return the SDMA engine error interrupt name.
5351  */
5352 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5353 {
5354         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5355         return buf;
5356 }
5357
5358 /*
5359  * Return the send context error interrupt name.
5360  */
5361 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5362 {
5363         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5364         return buf;
5365 }
5366
5367 static const char * const various_names[] = {
5368         "PbcInt",
5369         "GpioAssertInt",
5370         "Qsfp1Int",
5371         "Qsfp2Int",
5372         "TCritInt"
5373 };
5374
5375 /*
5376  * Return the various interrupt name.
5377  */
5378 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5379 {
5380         if (source < ARRAY_SIZE(various_names))
5381                 strncpy(buf, various_names[source], bsize);
5382         else
5383                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5384         return buf;
5385 }
5386
5387 /*
5388  * Return the DC interrupt name.
5389  */
5390 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5391 {
5392         static const char * const dc_int_names[] = {
5393                 "common",
5394                 "lcb",
5395                 "8051",
5396                 "lbm"   /* local block merge */
5397         };
5398
5399         if (source < ARRAY_SIZE(dc_int_names))
5400                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5401         else
5402                 snprintf(buf, bsize, "DCInt%u", source);
5403         return buf;
5404 }
5405
5406 static const char * const sdma_int_names[] = {
5407         "SDmaInt",
5408         "SdmaIdleInt",
5409         "SdmaProgressInt",
5410 };
5411
5412 /*
5413  * Return the SDMA engine interrupt name.
5414  */
5415 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5416 {
5417         /* what interrupt */
5418         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5419         /* which engine */
5420         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5421
5422         if (likely(what < 3))
5423                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5424         else
5425                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5426         return buf;
5427 }
5428
5429 /*
5430  * Return the receive available interrupt name.
5431  */
5432 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5433 {
5434         snprintf(buf, bsize, "RcvAvailInt%u", source);
5435         return buf;
5436 }
5437
5438 /*
5439  * Return the receive urgent interrupt name.
5440  */
5441 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5442 {
5443         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5444         return buf;
5445 }
5446
5447 /*
5448  * Return the send credit interrupt name.
5449  */
5450 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5451 {
5452         snprintf(buf, bsize, "SendCreditInt%u", source);
5453         return buf;
5454 }
5455
5456 /*
5457  * Return the reserved interrupt name.
5458  */
5459 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5460 {
5461         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5462         return buf;
5463 }
5464
5465 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5466 {
5467         return flag_string(buf, buf_len, flags,
5468                            cce_err_status_flags,
5469                            ARRAY_SIZE(cce_err_status_flags));
5470 }
5471
5472 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5473 {
5474         return flag_string(buf, buf_len, flags,
5475                            rxe_err_status_flags,
5476                            ARRAY_SIZE(rxe_err_status_flags));
5477 }
5478
5479 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5480 {
5481         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5482                            ARRAY_SIZE(misc_err_status_flags));
5483 }
5484
5485 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5486 {
5487         return flag_string(buf, buf_len, flags,
5488                            pio_err_status_flags,
5489                            ARRAY_SIZE(pio_err_status_flags));
5490 }
5491
5492 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5493 {
5494         return flag_string(buf, buf_len, flags,
5495                            sdma_err_status_flags,
5496                            ARRAY_SIZE(sdma_err_status_flags));
5497 }
5498
5499 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5500 {
5501         return flag_string(buf, buf_len, flags,
5502                            egress_err_status_flags,
5503                            ARRAY_SIZE(egress_err_status_flags));
5504 }
5505
5506 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5507 {
5508         return flag_string(buf, buf_len, flags,
5509                            egress_err_info_flags,
5510                            ARRAY_SIZE(egress_err_info_flags));
5511 }
5512
5513 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5514 {
5515         return flag_string(buf, buf_len, flags,
5516                            send_err_status_flags,
5517                            ARRAY_SIZE(send_err_status_flags));
5518 }
5519
5520 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5521 {
5522         char buf[96];
5523         int i = 0;
5524
5525         /*
5526          * For most these errors, there is nothing that can be done except
5527          * report or record it.
5528          */
5529         dd_dev_info(dd, "CCE Error: %s\n",
5530                     cce_err_status_string(buf, sizeof(buf), reg));
5531
5532         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5533             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5534                 /* this error requires a manual drop into SPC freeze mode */
5535                 /* then a fix up */
5536                 start_freeze_handling(dd->pport, FREEZE_SELF);
5537         }
5538
5539         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5540                 if (reg & (1ull << i)) {
5541                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5542                         /* maintain a counter over all cce_err_status errors */
5543                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5544                 }
5545         }
5546 }
5547
5548 /*
5549  * Check counters for receive errors that do not have an interrupt
5550  * associated with them.
5551  */
5552 #define RCVERR_CHECK_TIME 10
5553 static void update_rcverr_timer(unsigned long opaque)
5554 {
5555         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5556         struct hfi1_pportdata *ppd = dd->pport;
5557         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5558
5559         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5560             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5561                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5562                 set_link_down_reason(
5563                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5564                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5565                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
5566         }
5567         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5568
5569         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5570 }
5571
5572 static int init_rcverr(struct hfi1_devdata *dd)
5573 {
5574         setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5575         /* Assume the hardware counter has been reset */
5576         dd->rcv_ovfl_cnt = 0;
5577         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5578 }
5579
5580 static void free_rcverr(struct hfi1_devdata *dd)
5581 {
5582         if (dd->rcverr_timer.data)
5583                 del_timer_sync(&dd->rcverr_timer);
5584         dd->rcverr_timer.data = 0;
5585 }
5586
5587 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5588 {
5589         char buf[96];
5590         int i = 0;
5591
5592         dd_dev_info(dd, "Receive Error: %s\n",
5593                     rxe_err_status_string(buf, sizeof(buf), reg));
5594
5595         if (reg & ALL_RXE_FREEZE_ERR) {
5596                 int flags = 0;
5597
5598                 /*
5599                  * Freeze mode recovery is disabled for the errors
5600                  * in RXE_FREEZE_ABORT_MASK
5601                  */
5602                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5603                         flags = FREEZE_ABORT;
5604
5605                 start_freeze_handling(dd->pport, flags);
5606         }
5607
5608         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5609                 if (reg & (1ull << i))
5610                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5611         }
5612 }
5613
5614 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5615 {
5616         char buf[96];
5617         int i = 0;
5618
5619         dd_dev_info(dd, "Misc Error: %s",
5620                     misc_err_status_string(buf, sizeof(buf), reg));
5621         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5622                 if (reg & (1ull << i))
5623                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5624         }
5625 }
5626
5627 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5628 {
5629         char buf[96];
5630         int i = 0;
5631
5632         dd_dev_info(dd, "PIO Error: %s\n",
5633                     pio_err_status_string(buf, sizeof(buf), reg));
5634
5635         if (reg & ALL_PIO_FREEZE_ERR)
5636                 start_freeze_handling(dd->pport, 0);
5637
5638         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5639                 if (reg & (1ull << i))
5640                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5641         }
5642 }
5643
5644 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5645 {
5646         char buf[96];
5647         int i = 0;
5648
5649         dd_dev_info(dd, "SDMA Error: %s\n",
5650                     sdma_err_status_string(buf, sizeof(buf), reg));
5651
5652         if (reg & ALL_SDMA_FREEZE_ERR)
5653                 start_freeze_handling(dd->pport, 0);
5654
5655         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5656                 if (reg & (1ull << i))
5657                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5658         }
5659 }
5660
5661 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5662 {
5663         incr_cntr64(&ppd->port_xmit_discards);
5664 }
5665
5666 static void count_port_inactive(struct hfi1_devdata *dd)
5667 {
5668         __count_port_discards(dd->pport);
5669 }
5670
5671 /*
5672  * We have had a "disallowed packet" error during egress. Determine the
5673  * integrity check which failed, and update relevant error counter, etc.
5674  *
5675  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5676  * bit of state per integrity check, and so we can miss the reason for an
5677  * egress error if more than one packet fails the same integrity check
5678  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5679  */
5680 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5681                                         int vl)
5682 {
5683         struct hfi1_pportdata *ppd = dd->pport;
5684         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5685         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5686         char buf[96];
5687
5688         /* clear down all observed info as quickly as possible after read */
5689         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5690
5691         dd_dev_info(dd,
5692                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5693                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5694
5695         /* Eventually add other counters for each bit */
5696         if (info & PORT_DISCARD_EGRESS_ERRS) {
5697                 int weight, i;
5698
5699                 /*
5700                  * Count all applicable bits as individual errors and
5701                  * attribute them to the packet that triggered this handler.
5702                  * This may not be completely accurate due to limitations
5703                  * on the available hardware error information.  There is
5704                  * a single information register and any number of error
5705                  * packets may have occurred and contributed to it before
5706                  * this routine is called.  This means that:
5707                  * a) If multiple packets with the same error occur before
5708                  *    this routine is called, earlier packets are missed.
5709                  *    There is only a single bit for each error type.
5710                  * b) Errors may not be attributed to the correct VL.
5711                  *    The driver is attributing all bits in the info register
5712                  *    to the packet that triggered this call, but bits
5713                  *    could be an accumulation of different packets with
5714                  *    different VLs.
5715                  * c) A single error packet may have multiple counts attached
5716                  *    to it.  There is no way for the driver to know if
5717                  *    multiple bits set in the info register are due to a
5718                  *    single packet or multiple packets.  The driver assumes
5719                  *    multiple packets.
5720                  */
5721                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5722                 for (i = 0; i < weight; i++) {
5723                         __count_port_discards(ppd);
5724                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5725                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5726                         else if (vl == 15)
5727                                 incr_cntr64(&ppd->port_xmit_discards_vl
5728                                             [C_VL_15]);
5729                 }
5730         }
5731 }
5732
5733 /*
5734  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5735  * register. Does it represent a 'port inactive' error?
5736  */
5737 static inline int port_inactive_err(u64 posn)
5738 {
5739         return (posn >= SEES(TX_LINKDOWN) &&
5740                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5741 }
5742
5743 /*
5744  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5745  * register. Does it represent a 'disallowed packet' error?
5746  */
5747 static inline int disallowed_pkt_err(int posn)
5748 {
5749         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5750                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5751 }
5752
5753 /*
5754  * Input value is a bit position of one of the SDMA engine disallowed
5755  * packet errors.  Return which engine.  Use of this must be guarded by
5756  * disallowed_pkt_err().
5757  */
5758 static inline int disallowed_pkt_engine(int posn)
5759 {
5760         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5761 }
5762
5763 /*
5764  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5765  * be done.
5766  */
5767 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5768 {
5769         struct sdma_vl_map *m;
5770         int vl;
5771
5772         /* range check */
5773         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5774                 return -1;
5775
5776         rcu_read_lock();
5777         m = rcu_dereference(dd->sdma_map);
5778         vl = m->engine_to_vl[engine];
5779         rcu_read_unlock();
5780
5781         return vl;
5782 }
5783
5784 /*
5785  * Translate the send context (sofware index) into a VL.  Return -1 if the
5786  * translation cannot be done.
5787  */
5788 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5789 {
5790         struct send_context_info *sci;
5791         struct send_context *sc;
5792         int i;
5793
5794         sci = &dd->send_contexts[sw_index];
5795
5796         /* there is no information for user (PSM) and ack contexts */
5797         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5798                 return -1;
5799
5800         sc = sci->sc;
5801         if (!sc)
5802                 return -1;
5803         if (dd->vld[15].sc == sc)
5804                 return 15;
5805         for (i = 0; i < num_vls; i++)
5806                 if (dd->vld[i].sc == sc)
5807                         return i;
5808
5809         return -1;
5810 }
5811
5812 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5813 {
5814         u64 reg_copy = reg, handled = 0;
5815         char buf[96];
5816         int i = 0;
5817
5818         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5819                 start_freeze_handling(dd->pport, 0);
5820         else if (is_ax(dd) &&
5821                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5822                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5823                 start_freeze_handling(dd->pport, 0);
5824
5825         while (reg_copy) {
5826                 int posn = fls64(reg_copy);
5827                 /* fls64() returns a 1-based offset, we want it zero based */
5828                 int shift = posn - 1;
5829                 u64 mask = 1ULL << shift;
5830
5831                 if (port_inactive_err(shift)) {
5832                         count_port_inactive(dd);
5833                         handled |= mask;
5834                 } else if (disallowed_pkt_err(shift)) {
5835                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5836
5837                         handle_send_egress_err_info(dd, vl);
5838                         handled |= mask;
5839                 }
5840                 reg_copy &= ~mask;
5841         }
5842
5843         reg &= ~handled;
5844
5845         if (reg)
5846                 dd_dev_info(dd, "Egress Error: %s\n",
5847                             egress_err_status_string(buf, sizeof(buf), reg));
5848
5849         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5850                 if (reg & (1ull << i))
5851                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5852         }
5853 }
5854
5855 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5856 {
5857         char buf[96];
5858         int i = 0;
5859
5860         dd_dev_info(dd, "Send Error: %s\n",
5861                     send_err_status_string(buf, sizeof(buf), reg));
5862
5863         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5864                 if (reg & (1ull << i))
5865                         incr_cntr64(&dd->send_err_status_cnt[i]);
5866         }
5867 }
5868
5869 /*
5870  * The maximum number of times the error clear down will loop before
5871  * blocking a repeating error.  This value is arbitrary.
5872  */
5873 #define MAX_CLEAR_COUNT 20
5874
5875 /*
5876  * Clear and handle an error register.  All error interrupts are funneled
5877  * through here to have a central location to correctly handle single-
5878  * or multi-shot errors.
5879  *
5880  * For non per-context registers, call this routine with a context value
5881  * of 0 so the per-context offset is zero.
5882  *
5883  * If the handler loops too many times, assume that something is wrong
5884  * and can't be fixed, so mask the error bits.
5885  */
5886 static void interrupt_clear_down(struct hfi1_devdata *dd,
5887                                  u32 context,
5888                                  const struct err_reg_info *eri)
5889 {
5890         u64 reg;
5891         u32 count;
5892
5893         /* read in a loop until no more errors are seen */
5894         count = 0;
5895         while (1) {
5896                 reg = read_kctxt_csr(dd, context, eri->status);
5897                 if (reg == 0)
5898                         break;
5899                 write_kctxt_csr(dd, context, eri->clear, reg);
5900                 if (likely(eri->handler))
5901                         eri->handler(dd, context, reg);
5902                 count++;
5903                 if (count > MAX_CLEAR_COUNT) {
5904                         u64 mask;
5905
5906                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5907                                    eri->desc, reg);
5908                         /*
5909                          * Read-modify-write so any other masked bits
5910                          * remain masked.
5911                          */
5912                         mask = read_kctxt_csr(dd, context, eri->mask);
5913                         mask &= ~reg;
5914                         write_kctxt_csr(dd, context, eri->mask, mask);
5915                         break;
5916                 }
5917         }
5918 }
5919
5920 /*
5921  * CCE block "misc" interrupt.  Source is < 16.
5922  */
5923 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5924 {
5925         const struct err_reg_info *eri = &misc_errs[source];
5926
5927         if (eri->handler) {
5928                 interrupt_clear_down(dd, 0, eri);
5929         } else {
5930                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5931                            source);
5932         }
5933 }
5934
5935 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5936 {
5937         return flag_string(buf, buf_len, flags,
5938                            sc_err_status_flags,
5939                            ARRAY_SIZE(sc_err_status_flags));
5940 }
5941
5942 /*
5943  * Send context error interrupt.  Source (hw_context) is < 160.
5944  *
5945  * All send context errors cause the send context to halt.  The normal
5946  * clear-down mechanism cannot be used because we cannot clear the
5947  * error bits until several other long-running items are done first.
5948  * This is OK because with the context halted, nothing else is going
5949  * to happen on it anyway.
5950  */
5951 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5952                                 unsigned int hw_context)
5953 {
5954         struct send_context_info *sci;
5955         struct send_context *sc;
5956         char flags[96];
5957         u64 status;
5958         u32 sw_index;
5959         int i = 0;
5960         unsigned long irq_flags;
5961
5962         sw_index = dd->hw_to_sw[hw_context];
5963         if (sw_index >= dd->num_send_contexts) {
5964                 dd_dev_err(dd,
5965                            "out of range sw index %u for send context %u\n",
5966                            sw_index, hw_context);
5967                 return;
5968         }
5969         sci = &dd->send_contexts[sw_index];
5970         spin_lock_irqsave(&dd->sc_lock, irq_flags);
5971         sc = sci->sc;
5972         if (!sc) {
5973                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5974                            sw_index, hw_context);
5975                 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5976                 return;
5977         }
5978
5979         /* tell the software that a halt has begun */
5980         sc_stop(sc, SCF_HALTED);
5981
5982         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5983
5984         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5985                     send_context_err_status_string(flags, sizeof(flags),
5986                                                    status));
5987
5988         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5989                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5990
5991         /*
5992          * Automatically restart halted kernel contexts out of interrupt
5993          * context.  User contexts must ask the driver to restart the context.
5994          */
5995         if (sc->type != SC_USER)
5996                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5997         spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5998
5999         /*
6000          * Update the counters for the corresponding status bits.
6001          * Note that these particular counters are aggregated over all
6002          * 160 contexts.
6003          */
6004         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6005                 if (status & (1ull << i))
6006                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6007         }
6008 }
6009
6010 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6011                                 unsigned int source, u64 status)
6012 {
6013         struct sdma_engine *sde;
6014         int i = 0;
6015
6016         sde = &dd->per_sdma[source];
6017 #ifdef CONFIG_SDMA_VERBOSITY
6018         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6019                    slashstrip(__FILE__), __LINE__, __func__);
6020         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6021                    sde->this_idx, source, (unsigned long long)status);
6022 #endif
6023         sde->err_cnt++;
6024         sdma_engine_error(sde, status);
6025
6026         /*
6027         * Update the counters for the corresponding status bits.
6028         * Note that these particular counters are aggregated over
6029         * all 16 DMA engines.
6030         */
6031         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6032                 if (status & (1ull << i))
6033                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6034         }
6035 }
6036
6037 /*
6038  * CCE block SDMA error interrupt.  Source is < 16.
6039  */
6040 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6041 {
6042 #ifdef CONFIG_SDMA_VERBOSITY
6043         struct sdma_engine *sde = &dd->per_sdma[source];
6044
6045         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6046                    slashstrip(__FILE__), __LINE__, __func__);
6047         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6048                    source);
6049         sdma_dumpstate(sde);
6050 #endif
6051         interrupt_clear_down(dd, source, &sdma_eng_err);
6052 }
6053
6054 /*
6055  * CCE block "various" interrupt.  Source is < 8.
6056  */
6057 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6058 {
6059         const struct err_reg_info *eri = &various_err[source];
6060
6061         /*
6062          * TCritInt cannot go through interrupt_clear_down()
6063          * because it is not a second tier interrupt. The handler
6064          * should be called directly.
6065          */
6066         if (source == TCRIT_INT_SOURCE)
6067                 handle_temp_err(dd);
6068         else if (eri->handler)
6069                 interrupt_clear_down(dd, 0, eri);
6070         else
6071                 dd_dev_info(dd,
6072                             "%s: Unimplemented/reserved interrupt %d\n",
6073                             __func__, source);
6074 }
6075
6076 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6077 {
6078         /* src_ctx is always zero */
6079         struct hfi1_pportdata *ppd = dd->pport;
6080         unsigned long flags;
6081         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6082
6083         if (reg & QSFP_HFI0_MODPRST_N) {
6084                 if (!qsfp_mod_present(ppd)) {
6085                         dd_dev_info(dd, "%s: QSFP module removed\n",
6086                                     __func__);
6087
6088                         ppd->driver_link_ready = 0;
6089                         /*
6090                          * Cable removed, reset all our information about the
6091                          * cache and cable capabilities
6092                          */
6093
6094                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6095                         /*
6096                          * We don't set cache_refresh_required here as we expect
6097                          * an interrupt when a cable is inserted
6098                          */
6099                         ppd->qsfp_info.cache_valid = 0;
6100                         ppd->qsfp_info.reset_needed = 0;
6101                         ppd->qsfp_info.limiting_active = 0;
6102                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6103                                                flags);
6104                         /* Invert the ModPresent pin now to detect plug-in */
6105                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6106                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6107
6108                         if ((ppd->offline_disabled_reason >
6109                           HFI1_ODR_MASK(
6110                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6111                           (ppd->offline_disabled_reason ==
6112                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6113                                 ppd->offline_disabled_reason =
6114                                 HFI1_ODR_MASK(
6115                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6116
6117                         if (ppd->host_link_state == HLS_DN_POLL) {
6118                                 /*
6119                                  * The link is still in POLL. This means
6120                                  * that the normal link down processing
6121                                  * will not happen. We have to do it here
6122                                  * before turning the DC off.
6123                                  */
6124                                 queue_work(ppd->link_wq, &ppd->link_down_work);
6125                         }
6126                 } else {
6127                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6128                                     __func__);
6129
6130                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6131                         ppd->qsfp_info.cache_valid = 0;
6132                         ppd->qsfp_info.cache_refresh_required = 1;
6133                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6134                                                flags);
6135
6136                         /*
6137                          * Stop inversion of ModPresent pin to detect
6138                          * removal of the cable
6139                          */
6140                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6141                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6142                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6143
6144                         ppd->offline_disabled_reason =
6145                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6146                 }
6147         }
6148
6149         if (reg & QSFP_HFI0_INT_N) {
6150                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6151                             __func__);
6152                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6153                 ppd->qsfp_info.check_interrupt_flags = 1;
6154                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6155         }
6156
6157         /* Schedule the QSFP work only if there is a cable attached. */
6158         if (qsfp_mod_present(ppd))
6159                 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6160 }
6161
6162 static int request_host_lcb_access(struct hfi1_devdata *dd)
6163 {
6164         int ret;
6165
6166         ret = do_8051_command(dd, HCMD_MISC,
6167                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6168                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6169         if (ret != HCMD_SUCCESS) {
6170                 dd_dev_err(dd, "%s: command failed with error %d\n",
6171                            __func__, ret);
6172         }
6173         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6174 }
6175
6176 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6177 {
6178         int ret;
6179
6180         ret = do_8051_command(dd, HCMD_MISC,
6181                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6182                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6183         if (ret != HCMD_SUCCESS) {
6184                 dd_dev_err(dd, "%s: command failed with error %d\n",
6185                            __func__, ret);
6186         }
6187         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6188 }
6189
6190 /*
6191  * Set the LCB selector - allow host access.  The DCC selector always
6192  * points to the host.
6193  */
6194 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6195 {
6196         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6197                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6198                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6199 }
6200
6201 /*
6202  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6203  * points to the host.
6204  */
6205 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6206 {
6207         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6208                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6209 }
6210
6211 /*
6212  * Acquire LCB access from the 8051.  If the host already has access,
6213  * just increment a counter.  Otherwise, inform the 8051 that the
6214  * host is taking access.
6215  *
6216  * Returns:
6217  *      0 on success
6218  *      -EBUSY if the 8051 has control and cannot be disturbed
6219  *      -errno if unable to acquire access from the 8051
6220  */
6221 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6222 {
6223         struct hfi1_pportdata *ppd = dd->pport;
6224         int ret = 0;
6225
6226         /*
6227          * Use the host link state lock so the operation of this routine
6228          * { link state check, selector change, count increment } can occur
6229          * as a unit against a link state change.  Otherwise there is a
6230          * race between the state change and the count increment.
6231          */
6232         if (sleep_ok) {
6233                 mutex_lock(&ppd->hls_lock);
6234         } else {
6235                 while (!mutex_trylock(&ppd->hls_lock))
6236                         udelay(1);
6237         }
6238
6239         /* this access is valid only when the link is up */
6240         if (ppd->host_link_state & HLS_DOWN) {
6241                 dd_dev_info(dd, "%s: link state %s not up\n",
6242                             __func__, link_state_name(ppd->host_link_state));
6243                 ret = -EBUSY;
6244                 goto done;
6245         }
6246
6247         if (dd->lcb_access_count == 0) {
6248                 ret = request_host_lcb_access(dd);
6249                 if (ret) {
6250                         dd_dev_err(dd,
6251                                    "%s: unable to acquire LCB access, err %d\n",
6252                                    __func__, ret);
6253                         goto done;
6254                 }
6255                 set_host_lcb_access(dd);
6256         }
6257         dd->lcb_access_count++;
6258 done:
6259         mutex_unlock(&ppd->hls_lock);
6260         return ret;
6261 }
6262
6263 /*
6264  * Release LCB access by decrementing the use count.  If the count is moving
6265  * from 1 to 0, inform 8051 that it has control back.
6266  *
6267  * Returns:
6268  *      0 on success
6269  *      -errno if unable to release access to the 8051
6270  */
6271 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6272 {
6273         int ret = 0;
6274
6275         /*
6276          * Use the host link state lock because the acquire needed it.
6277          * Here, we only need to keep { selector change, count decrement }
6278          * as a unit.
6279          */
6280         if (sleep_ok) {
6281                 mutex_lock(&dd->pport->hls_lock);
6282         } else {
6283                 while (!mutex_trylock(&dd->pport->hls_lock))
6284                         udelay(1);
6285         }
6286
6287         if (dd->lcb_access_count == 0) {
6288                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6289                            __func__);
6290                 goto done;
6291         }
6292
6293         if (dd->lcb_access_count == 1) {
6294                 set_8051_lcb_access(dd);
6295                 ret = request_8051_lcb_access(dd);
6296                 if (ret) {
6297                         dd_dev_err(dd,
6298                                    "%s: unable to release LCB access, err %d\n",
6299                                    __func__, ret);
6300                         /* restore host access if the grant didn't work */
6301                         set_host_lcb_access(dd);
6302                         goto done;
6303                 }
6304         }
6305         dd->lcb_access_count--;
6306 done:
6307         mutex_unlock(&dd->pport->hls_lock);
6308         return ret;
6309 }
6310
6311 /*
6312  * Initialize LCB access variables and state.  Called during driver load,
6313  * after most of the initialization is finished.
6314  *
6315  * The DC default is LCB access on for the host.  The driver defaults to
6316  * leaving access to the 8051.  Assign access now - this constrains the call
6317  * to this routine to be after all LCB set-up is done.  In particular, after
6318  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6319  */
6320 static void init_lcb_access(struct hfi1_devdata *dd)
6321 {
6322         dd->lcb_access_count = 0;
6323 }
6324
6325 /*
6326  * Write a response back to a 8051 request.
6327  */
6328 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6329 {
6330         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6331                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6332                   (u64)return_code <<
6333                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6334                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6335 }
6336
6337 /*
6338  * Handle host requests from the 8051.
6339  */
6340 static void handle_8051_request(struct hfi1_pportdata *ppd)
6341 {
6342         struct hfi1_devdata *dd = ppd->dd;
6343         u64 reg;
6344         u16 data = 0;
6345         u8 type;
6346
6347         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6348         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6349                 return; /* no request */
6350
6351         /* zero out COMPLETED so the response is seen */
6352         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6353
6354         /* extract request details */
6355         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6356                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6357         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6358                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6359
6360         switch (type) {
6361         case HREQ_LOAD_CONFIG:
6362         case HREQ_SAVE_CONFIG:
6363         case HREQ_READ_CONFIG:
6364         case HREQ_SET_TX_EQ_ABS:
6365         case HREQ_SET_TX_EQ_REL:
6366         case HREQ_ENABLE:
6367                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6368                             type);
6369                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6370                 break;
6371         case HREQ_CONFIG_DONE:
6372                 hreq_response(dd, HREQ_SUCCESS, 0);
6373                 break;
6374
6375         case HREQ_INTERFACE_TEST:
6376                 hreq_response(dd, HREQ_SUCCESS, data);
6377                 break;
6378         default:
6379                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6380                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6381                 break;
6382         }
6383 }
6384
6385 /*
6386  * Set up allocation unit vaulue.
6387  */
6388 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6389 {
6390         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6391
6392         /* do not modify other values in the register */
6393         reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6394         reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6395         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6396 }
6397
6398 /*
6399  * Set up initial VL15 credits of the remote.  Assumes the rest of
6400  * the CM credit registers are zero from a previous global or credit reset.
6401  * Shared limit for VL15 will always be 0.
6402  */
6403 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6404 {
6405         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6406
6407         /* set initial values for total and shared credit limit */
6408         reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6409                  SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6410
6411         /*
6412          * Set total limit to be equal to VL15 credits.
6413          * Leave shared limit at 0.
6414          */
6415         reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6416         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6417
6418         write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6419                   << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6420 }
6421
6422 /*
6423  * Zero all credit details from the previous connection and
6424  * reset the CM manager's internal counters.
6425  */
6426 void reset_link_credits(struct hfi1_devdata *dd)
6427 {
6428         int i;
6429
6430         /* remove all previous VL credit limits */
6431         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6432                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6433         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6434         write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6435         /* reset the CM block */
6436         pio_send_control(dd, PSC_CM_RESET);
6437         /* reset cached value */
6438         dd->vl15buf_cached = 0;
6439 }
6440
6441 /* convert a vCU to a CU */
6442 static u32 vcu_to_cu(u8 vcu)
6443 {
6444         return 1 << vcu;
6445 }
6446
6447 /* convert a CU to a vCU */
6448 static u8 cu_to_vcu(u32 cu)
6449 {
6450         return ilog2(cu);
6451 }
6452
6453 /* convert a vAU to an AU */
6454 static u32 vau_to_au(u8 vau)
6455 {
6456         return 8 * (1 << vau);
6457 }
6458
6459 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6460 {
6461         ppd->sm_trap_qp = 0x0;
6462         ppd->sa_qp = 0x1;
6463 }
6464
6465 /*
6466  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6467  */
6468 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6469 {
6470         u64 reg;
6471
6472         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6473         write_csr(dd, DC_LCB_CFG_RUN, 0);
6474         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6475         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6476                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6477         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6478         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6479         reg = read_csr(dd, DCC_CFG_RESET);
6480         write_csr(dd, DCC_CFG_RESET, reg |
6481                   (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6482                   (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6483         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6484         if (!abort) {
6485                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6486                 write_csr(dd, DCC_CFG_RESET, reg);
6487                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6488         }
6489 }
6490
6491 /*
6492  * This routine should be called after the link has been transitioned to
6493  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6494  * reset).
6495  *
6496  * The expectation is that the caller of this routine would have taken
6497  * care of properly transitioning the link into the correct state.
6498  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6499  *       before calling this function.
6500  */
6501 static void _dc_shutdown(struct hfi1_devdata *dd)
6502 {
6503         lockdep_assert_held(&dd->dc8051_lock);
6504
6505         if (dd->dc_shutdown)
6506                 return;
6507
6508         dd->dc_shutdown = 1;
6509         /* Shutdown the LCB */
6510         lcb_shutdown(dd, 1);
6511         /*
6512          * Going to OFFLINE would have causes the 8051 to put the
6513          * SerDes into reset already. Just need to shut down the 8051,
6514          * itself.
6515          */
6516         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6517 }
6518
6519 static void dc_shutdown(struct hfi1_devdata *dd)
6520 {
6521         mutex_lock(&dd->dc8051_lock);
6522         _dc_shutdown(dd);
6523         mutex_unlock(&dd->dc8051_lock);
6524 }
6525
6526 /*
6527  * Calling this after the DC has been brought out of reset should not
6528  * do any damage.
6529  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6530  *       before calling this function.
6531  */
6532 static void _dc_start(struct hfi1_devdata *dd)
6533 {
6534         lockdep_assert_held(&dd->dc8051_lock);
6535
6536         if (!dd->dc_shutdown)
6537                 return;
6538
6539         /* Take the 8051 out of reset */
6540         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6541         /* Wait until 8051 is ready */
6542         if (wait_fm_ready(dd, TIMEOUT_8051_START))
6543                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6544                            __func__);
6545
6546         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6547         write_csr(dd, DCC_CFG_RESET, 0x10);
6548         /* lcb_shutdown() with abort=1 does not restore these */
6549         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6550         dd->dc_shutdown = 0;
6551 }
6552
6553 static void dc_start(struct hfi1_devdata *dd)
6554 {
6555         mutex_lock(&dd->dc8051_lock);
6556         _dc_start(dd);
6557         mutex_unlock(&dd->dc8051_lock);
6558 }
6559
6560 /*
6561  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6562  */
6563 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6564 {
6565         u64 rx_radr, tx_radr;
6566         u32 version;
6567
6568         if (dd->icode != ICODE_FPGA_EMULATION)
6569                 return;
6570
6571         /*
6572          * These LCB defaults on emulator _s are good, nothing to do here:
6573          *      LCB_CFG_TX_FIFOS_RADR
6574          *      LCB_CFG_RX_FIFOS_RADR
6575          *      LCB_CFG_LN_DCLK
6576          *      LCB_CFG_IGNORE_LOST_RCLK
6577          */
6578         if (is_emulator_s(dd))
6579                 return;
6580         /* else this is _p */
6581
6582         version = emulator_rev(dd);
6583         if (!is_ax(dd))
6584                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6585
6586         if (version <= 0x12) {
6587                 /* release 0x12 and below */
6588
6589                 /*
6590                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6591                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6592                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6593                  */
6594                 rx_radr =
6595                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6596                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6597                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6598                 /*
6599                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6600                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6601                  */
6602                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6603         } else if (version <= 0x18) {
6604                 /* release 0x13 up to 0x18 */
6605                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6606                 rx_radr =
6607                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6608                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6609                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6610                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6611         } else if (version == 0x19) {
6612                 /* release 0x19 */
6613                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6614                 rx_radr =
6615                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6616                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6617                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6618                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6619         } else if (version == 0x1a) {
6620                 /* release 0x1a */
6621                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6622                 rx_radr =
6623                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6624                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6625                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6626                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6627                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6628         } else {
6629                 /* release 0x1b and higher */
6630                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6631                 rx_radr =
6632                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6633                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6634                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6635                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6636         }
6637
6638         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6639         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6640         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6641                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6642         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6643 }
6644
6645 /*
6646  * Handle a SMA idle message
6647  *
6648  * This is a work-queue function outside of the interrupt.
6649  */
6650 void handle_sma_message(struct work_struct *work)
6651 {
6652         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6653                                                         sma_message_work);
6654         struct hfi1_devdata *dd = ppd->dd;
6655         u64 msg;
6656         int ret;
6657
6658         /*
6659          * msg is bytes 1-4 of the 40-bit idle message - the command code
6660          * is stripped off
6661          */
6662         ret = read_idle_sma(dd, &msg);
6663         if (ret)
6664                 return;
6665         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6666         /*
6667          * React to the SMA message.  Byte[1] (0 for us) is the command.
6668          */
6669         switch (msg & 0xff) {
6670         case SMA_IDLE_ARM:
6671                 /*
6672                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6673                  * State Transitions
6674                  *
6675                  * Only expected in INIT or ARMED, discard otherwise.
6676                  */
6677                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6678                         ppd->neighbor_normal = 1;
6679                 break;
6680         case SMA_IDLE_ACTIVE:
6681                 /*
6682                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6683                  * State Transitions
6684                  *
6685                  * Can activate the node.  Discard otherwise.
6686                  */
6687                 if (ppd->host_link_state == HLS_UP_ARMED &&
6688                     ppd->is_active_optimize_enabled) {
6689                         ppd->neighbor_normal = 1;
6690                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6691                         if (ret)
6692                                 dd_dev_err(
6693                                         dd,
6694                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6695                                         __func__);
6696                 }
6697                 break;
6698         default:
6699                 dd_dev_err(dd,
6700                            "%s: received unexpected SMA idle message 0x%llx\n",
6701                            __func__, msg);
6702                 break;
6703         }
6704 }
6705
6706 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6707 {
6708         u64 rcvctrl;
6709         unsigned long flags;
6710
6711         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6712         rcvctrl = read_csr(dd, RCV_CTRL);
6713         rcvctrl |= add;
6714         rcvctrl &= ~clear;
6715         write_csr(dd, RCV_CTRL, rcvctrl);
6716         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6717 }
6718
6719 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6720 {
6721         adjust_rcvctrl(dd, add, 0);
6722 }
6723
6724 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6725 {
6726         adjust_rcvctrl(dd, 0, clear);
6727 }
6728
6729 /*
6730  * Called from all interrupt handlers to start handling an SPC freeze.
6731  */
6732 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6733 {
6734         struct hfi1_devdata *dd = ppd->dd;
6735         struct send_context *sc;
6736         int i;
6737         int sc_flags;
6738
6739         if (flags & FREEZE_SELF)
6740                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6741
6742         /* enter frozen mode */
6743         dd->flags |= HFI1_FROZEN;
6744
6745         /* notify all SDMA engines that they are going into a freeze */
6746         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6747
6748         sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6749                                               SCF_LINK_DOWN : 0);
6750         /* do halt pre-handling on all enabled send contexts */
6751         for (i = 0; i < dd->num_send_contexts; i++) {
6752                 sc = dd->send_contexts[i].sc;
6753                 if (sc && (sc->flags & SCF_ENABLED))
6754                         sc_stop(sc, sc_flags);
6755         }
6756
6757         /* Send context are frozen. Notify user space */
6758         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6759
6760         if (flags & FREEZE_ABORT) {
6761                 dd_dev_err(dd,
6762                            "Aborted freeze recovery. Please REBOOT system\n");
6763                 return;
6764         }
6765         /* queue non-interrupt handler */
6766         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6767 }
6768
6769 /*
6770  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6771  * depending on the "freeze" parameter.
6772  *
6773  * No need to return an error if it times out, our only option
6774  * is to proceed anyway.
6775  */
6776 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6777 {
6778         unsigned long timeout;
6779         u64 reg;
6780
6781         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6782         while (1) {
6783                 reg = read_csr(dd, CCE_STATUS);
6784                 if (freeze) {
6785                         /* waiting until all indicators are set */
6786                         if ((reg & ALL_FROZE) == ALL_FROZE)
6787                                 return; /* all done */
6788                 } else {
6789                         /* waiting until all indicators are clear */
6790                         if ((reg & ALL_FROZE) == 0)
6791                                 return; /* all done */
6792                 }
6793
6794                 if (time_after(jiffies, timeout)) {
6795                         dd_dev_err(dd,
6796                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6797                                    freeze ? "" : "un", reg & ALL_FROZE,
6798                                    freeze ? ALL_FROZE : 0ull);
6799                         return;
6800                 }
6801                 usleep_range(80, 120);
6802         }
6803 }
6804
6805 /*
6806  * Do all freeze handling for the RXE block.
6807  */
6808 static void rxe_freeze(struct hfi1_devdata *dd)
6809 {
6810         int i;
6811         struct hfi1_ctxtdata *rcd;
6812
6813         /* disable port */
6814         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6815
6816         /* disable all receive contexts */
6817         for (i = 0; i < dd->num_rcv_contexts; i++) {
6818                 rcd = hfi1_rcd_get_by_index(dd, i);
6819                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6820                 hfi1_rcd_put(rcd);
6821         }
6822 }
6823
6824 /*
6825  * Unfreeze handling for the RXE block - kernel contexts only.
6826  * This will also enable the port.  User contexts will do unfreeze
6827  * handling on a per-context basis as they call into the driver.
6828  *
6829  */
6830 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6831 {
6832         u32 rcvmask;
6833         u16 i;
6834         struct hfi1_ctxtdata *rcd;
6835
6836         /* enable all kernel contexts */
6837         for (i = 0; i < dd->num_rcv_contexts; i++) {
6838                 rcd = hfi1_rcd_get_by_index(dd, i);
6839
6840                 /* Ensure all non-user contexts(including vnic) are enabled */
6841                 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) {
6842                         hfi1_rcd_put(rcd);
6843                         continue;
6844                 }
6845                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6846                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6847                 rcvmask |= rcd->rcvhdrtail_kvaddr ?
6848                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6849                 hfi1_rcvctrl(dd, rcvmask, rcd);
6850                 hfi1_rcd_put(rcd);
6851         }
6852
6853         /* enable port */
6854         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6855 }
6856
6857 /*
6858  * Non-interrupt SPC freeze handling.
6859  *
6860  * This is a work-queue function outside of the triggering interrupt.
6861  */
6862 void handle_freeze(struct work_struct *work)
6863 {
6864         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6865                                                                 freeze_work);
6866         struct hfi1_devdata *dd = ppd->dd;
6867
6868         /* wait for freeze indicators on all affected blocks */
6869         wait_for_freeze_status(dd, 1);
6870
6871         /* SPC is now frozen */
6872
6873         /* do send PIO freeze steps */
6874         pio_freeze(dd);
6875
6876         /* do send DMA freeze steps */
6877         sdma_freeze(dd);
6878
6879         /* do send egress freeze steps - nothing to do */
6880
6881         /* do receive freeze steps */
6882         rxe_freeze(dd);
6883
6884         /*
6885          * Unfreeze the hardware - clear the freeze, wait for each
6886          * block's frozen bit to clear, then clear the frozen flag.
6887          */
6888         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6889         wait_for_freeze_status(dd, 0);
6890
6891         if (is_ax(dd)) {
6892                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6893                 wait_for_freeze_status(dd, 1);
6894                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6895                 wait_for_freeze_status(dd, 0);
6896         }
6897
6898         /* do send PIO unfreeze steps for kernel contexts */
6899         pio_kernel_unfreeze(dd);
6900
6901         /* do send DMA unfreeze steps */
6902         sdma_unfreeze(dd);
6903
6904         /* do send egress unfreeze steps - nothing to do */
6905
6906         /* do receive unfreeze steps for kernel contexts */
6907         rxe_kernel_unfreeze(dd);
6908
6909         /*
6910          * The unfreeze procedure touches global device registers when
6911          * it disables and re-enables RXE. Mark the device unfrozen
6912          * after all that is done so other parts of the driver waiting
6913          * for the device to unfreeze don't do things out of order.
6914          *
6915          * The above implies that the meaning of HFI1_FROZEN flag is
6916          * "Device has gone into freeze mode and freeze mode handling
6917          * is still in progress."
6918          *
6919          * The flag will be removed when freeze mode processing has
6920          * completed.
6921          */
6922         dd->flags &= ~HFI1_FROZEN;
6923         wake_up(&dd->event_queue);
6924
6925         /* no longer frozen */
6926 }
6927
6928 /*
6929  * Handle a link up interrupt from the 8051.
6930  *
6931  * This is a work-queue function outside of the interrupt.
6932  */
6933 void handle_link_up(struct work_struct *work)
6934 {
6935         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6936                                                   link_up_work);
6937         struct hfi1_devdata *dd = ppd->dd;
6938
6939         set_link_state(ppd, HLS_UP_INIT);
6940
6941         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6942         read_ltp_rtt(dd);
6943         /*
6944          * OPA specifies that certain counters are cleared on a transition
6945          * to link up, so do that.
6946          */
6947         clear_linkup_counters(dd);
6948         /*
6949          * And (re)set link up default values.
6950          */
6951         set_linkup_defaults(ppd);
6952
6953         /*
6954          * Set VL15 credits. Use cached value from verify cap interrupt.
6955          * In case of quick linkup or simulator, vl15 value will be set by
6956          * handle_linkup_change. VerifyCap interrupt handler will not be
6957          * called in those scenarios.
6958          */
6959         if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6960                 set_up_vl15(dd, dd->vl15buf_cached);
6961
6962         /* enforce link speed enabled */
6963         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6964                 /* oops - current speed is not enabled, bounce */
6965                 dd_dev_err(dd,
6966                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6967                            ppd->link_speed_active, ppd->link_speed_enabled);
6968                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6969                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
6970                 set_link_state(ppd, HLS_DN_OFFLINE);
6971                 start_link(ppd);
6972         }
6973 }
6974
6975 /*
6976  * Several pieces of LNI information were cached for SMA in ppd.
6977  * Reset these on link down
6978  */
6979 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6980 {
6981         ppd->neighbor_guid = 0;
6982         ppd->neighbor_port_number = 0;
6983         ppd->neighbor_type = 0;
6984         ppd->neighbor_fm_security = 0;
6985 }
6986
6987 static const char * const link_down_reason_strs[] = {
6988         [OPA_LINKDOWN_REASON_NONE] = "None",
6989         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6990         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6991         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6992         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6993         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6994         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6995         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6996         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6997         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6998         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6999         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7000         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7001         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7002         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7003         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7004         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7005         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7006         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7007         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7008         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7009         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7010         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7011         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7012         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7013         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7014         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7015         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7016         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7017         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7018         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7019         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7020         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7021                                         "Excessive buffer overrun",
7022         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7023         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7024         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7025         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7026         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7027         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7028         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7029         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7030                                         "Local media not installed",
7031         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7032         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7033         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7034                                         "End to end not installed",
7035         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7036         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7037         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7038         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7039         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7040         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7041 };
7042
7043 /* return the neighbor link down reason string */
7044 static const char *link_down_reason_str(u8 reason)
7045 {
7046         const char *str = NULL;
7047
7048         if (reason < ARRAY_SIZE(link_down_reason_strs))
7049                 str = link_down_reason_strs[reason];
7050         if (!str)
7051                 str = "(invalid)";
7052
7053         return str;
7054 }
7055
7056 /*
7057  * Handle a link down interrupt from the 8051.
7058  *
7059  * This is a work-queue function outside of the interrupt.
7060  */
7061 void handle_link_down(struct work_struct *work)
7062 {
7063         u8 lcl_reason, neigh_reason = 0;
7064         u8 link_down_reason;
7065         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7066                                                   link_down_work);
7067         int was_up;
7068         static const char ldr_str[] = "Link down reason: ";
7069
7070         if ((ppd->host_link_state &
7071              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7072              ppd->port_type == PORT_TYPE_FIXED)
7073                 ppd->offline_disabled_reason =
7074                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7075
7076         /* Go offline first, then deal with reading/writing through 8051 */
7077         was_up = !!(ppd->host_link_state & HLS_UP);
7078         set_link_state(ppd, HLS_DN_OFFLINE);
7079         xchg(&ppd->is_link_down_queued, 0);
7080
7081         if (was_up) {
7082                 lcl_reason = 0;
7083                 /* link down reason is only valid if the link was up */
7084                 read_link_down_reason(ppd->dd, &link_down_reason);
7085                 switch (link_down_reason) {
7086                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7087                         /* the link went down, no idle message reason */
7088                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7089                                     ldr_str);
7090                         break;
7091                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7092                         /*
7093                          * The neighbor reason is only valid if an idle message
7094                          * was received for it.
7095                          */
7096                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
7097                         dd_dev_info(ppd->dd,
7098                                     "%sNeighbor link down message %d, %s\n",
7099                                     ldr_str, neigh_reason,
7100                                     link_down_reason_str(neigh_reason));
7101                         break;
7102                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7103                         dd_dev_info(ppd->dd,
7104                                     "%sHost requested link to go offline\n",
7105                                     ldr_str);
7106                         break;
7107                 default:
7108                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7109                                     ldr_str, link_down_reason);
7110                         break;
7111                 }
7112
7113                 /*
7114                  * If no reason, assume peer-initiated but missed
7115                  * LinkGoingDown idle flits.
7116                  */
7117                 if (neigh_reason == 0)
7118                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7119         } else {
7120                 /* went down while polling or going up */
7121                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7122         }
7123
7124         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7125
7126         /* inform the SMA when the link transitions from up to down */
7127         if (was_up && ppd->local_link_down_reason.sma == 0 &&
7128             ppd->neigh_link_down_reason.sma == 0) {
7129                 ppd->local_link_down_reason.sma =
7130                                         ppd->local_link_down_reason.latest;
7131                 ppd->neigh_link_down_reason.sma =
7132                                         ppd->neigh_link_down_reason.latest;
7133         }
7134
7135         reset_neighbor_info(ppd);
7136
7137         /* disable the port */
7138         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7139
7140         /*
7141          * If there is no cable attached, turn the DC off. Otherwise,
7142          * start the link bring up.
7143          */
7144         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7145                 dc_shutdown(ppd->dd);
7146         else
7147                 start_link(ppd);
7148 }
7149
7150 void handle_link_bounce(struct work_struct *work)
7151 {
7152         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7153                                                         link_bounce_work);
7154
7155         /*
7156          * Only do something if the link is currently up.
7157          */
7158         if (ppd->host_link_state & HLS_UP) {
7159                 set_link_state(ppd, HLS_DN_OFFLINE);
7160                 start_link(ppd);
7161         } else {
7162                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7163                             __func__, link_state_name(ppd->host_link_state));
7164         }
7165 }
7166
7167 /*
7168  * Mask conversion: Capability exchange to Port LTP.  The capability
7169  * exchange has an implicit 16b CRC that is mandatory.
7170  */
7171 static int cap_to_port_ltp(int cap)
7172 {
7173         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7174
7175         if (cap & CAP_CRC_14B)
7176                 port_ltp |= PORT_LTP_CRC_MODE_14;
7177         if (cap & CAP_CRC_48B)
7178                 port_ltp |= PORT_LTP_CRC_MODE_48;
7179         if (cap & CAP_CRC_12B_16B_PER_LANE)
7180                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7181
7182         return port_ltp;
7183 }
7184
7185 /*
7186  * Convert an OPA Port LTP mask to capability mask
7187  */
7188 int port_ltp_to_cap(int port_ltp)
7189 {
7190         int cap_mask = 0;
7191
7192         if (port_ltp & PORT_LTP_CRC_MODE_14)
7193                 cap_mask |= CAP_CRC_14B;
7194         if (port_ltp & PORT_LTP_CRC_MODE_48)
7195                 cap_mask |= CAP_CRC_48B;
7196         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7197                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7198
7199         return cap_mask;
7200 }
7201
7202 /*
7203  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7204  */
7205 static int lcb_to_port_ltp(int lcb_crc)
7206 {
7207         int port_ltp = 0;
7208
7209         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7210                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7211         else if (lcb_crc == LCB_CRC_48B)
7212                 port_ltp = PORT_LTP_CRC_MODE_48;
7213         else if (lcb_crc == LCB_CRC_14B)
7214                 port_ltp = PORT_LTP_CRC_MODE_14;
7215         else
7216                 port_ltp = PORT_LTP_CRC_MODE_16;
7217
7218         return port_ltp;
7219 }
7220
7221 /*
7222  * Our neighbor has indicated that we are allowed to act as a fabric
7223  * manager, so place the full management partition key in the second
7224  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7225  * that we should already have the limited management partition key in
7226  * array element 1, and also that the port is not yet up when
7227  * add_full_mgmt_pkey() is invoked.
7228  */
7229 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7230 {
7231         struct hfi1_devdata *dd = ppd->dd;
7232
7233         /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7234         if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7235                 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7236                             __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7237         ppd->pkeys[2] = FULL_MGMT_P_KEY;
7238         (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7239         hfi1_event_pkey_change(ppd->dd, ppd->port);
7240 }
7241
7242 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7243 {
7244         if (ppd->pkeys[2] != 0) {
7245                 ppd->pkeys[2] = 0;
7246                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7247                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7248         }
7249 }
7250
7251 /*
7252  * Convert the given link width to the OPA link width bitmask.
7253  */
7254 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7255 {
7256         switch (width) {
7257         case 0:
7258                 /*
7259                  * Simulator and quick linkup do not set the width.
7260                  * Just set it to 4x without complaint.
7261                  */
7262                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7263                         return OPA_LINK_WIDTH_4X;
7264                 return 0; /* no lanes up */
7265         case 1: return OPA_LINK_WIDTH_1X;
7266         case 2: return OPA_LINK_WIDTH_2X;
7267         case 3: return OPA_LINK_WIDTH_3X;
7268         default:
7269                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7270                             __func__, width);
7271                 /* fall through */
7272         case 4: return OPA_LINK_WIDTH_4X;
7273         }
7274 }
7275
7276 /*
7277  * Do a population count on the bottom nibble.
7278  */
7279 static const u8 bit_counts[16] = {
7280         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7281 };
7282
7283 static inline u8 nibble_to_count(u8 nibble)
7284 {
7285         return bit_counts[nibble & 0xf];
7286 }
7287
7288 /*
7289  * Read the active lane information from the 8051 registers and return
7290  * their widths.
7291  *
7292  * Active lane information is found in these 8051 registers:
7293  *      enable_lane_tx
7294  *      enable_lane_rx
7295  */
7296 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7297                             u16 *rx_width)
7298 {
7299         u16 tx, rx;
7300         u8 enable_lane_rx;
7301         u8 enable_lane_tx;
7302         u8 tx_polarity_inversion;
7303         u8 rx_polarity_inversion;
7304         u8 max_rate;
7305
7306         /* read the active lanes */
7307         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7308                          &rx_polarity_inversion, &max_rate);
7309         read_local_lni(dd, &enable_lane_rx);
7310
7311         /* convert to counts */
7312         tx = nibble_to_count(enable_lane_tx);
7313         rx = nibble_to_count(enable_lane_rx);
7314
7315         /*
7316          * Set link_speed_active here, overriding what was set in
7317          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7318          * set the max_rate field in handle_verify_cap until v0.19.
7319          */
7320         if ((dd->icode == ICODE_RTL_SILICON) &&
7321             (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7322                 /* max_rate: 0 = 12.5G, 1 = 25G */
7323                 switch (max_rate) {
7324                 case 0:
7325                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7326                         break;
7327                 default:
7328                         dd_dev_err(dd,
7329                                    "%s: unexpected max rate %d, using 25Gb\n",
7330                                    __func__, (int)max_rate);
7331                         /* fall through */
7332                 case 1:
7333                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7334                         break;
7335                 }
7336         }
7337
7338         dd_dev_info(dd,
7339                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7340                     enable_lane_tx, tx, enable_lane_rx, rx);
7341         *tx_width = link_width_to_bits(dd, tx);
7342         *rx_width = link_width_to_bits(dd, rx);
7343 }
7344
7345 /*
7346  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7347  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7348  * after link up.  I.e. look elsewhere for downgrade information.
7349  *
7350  * Bits are:
7351  *      + bits [7:4] contain the number of active transmitters
7352  *      + bits [3:0] contain the number of active receivers
7353  * These are numbers 1 through 4 and can be different values if the
7354  * link is asymmetric.
7355  *
7356  * verify_cap_local_fm_link_width[0] retains its original value.
7357  */
7358 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7359                               u16 *rx_width)
7360 {
7361         u16 widths, tx, rx;
7362         u8 misc_bits, local_flags;
7363         u16 active_tx, active_rx;
7364
7365         read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7366         tx = widths >> 12;
7367         rx = (widths >> 8) & 0xf;
7368
7369         *tx_width = link_width_to_bits(dd, tx);
7370         *rx_width = link_width_to_bits(dd, rx);
7371
7372         /* print the active widths */
7373         get_link_widths(dd, &active_tx, &active_rx);
7374 }
7375
7376 /*
7377  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7378  * hardware information when the link first comes up.
7379  *
7380  * The link width is not available until after VerifyCap.AllFramesReceived
7381  * (the trigger for handle_verify_cap), so this is outside that routine
7382  * and should be called when the 8051 signals linkup.
7383  */
7384 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7385 {
7386         u16 tx_width, rx_width;
7387
7388         /* get end-of-LNI link widths */
7389         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7390
7391         /* use tx_width as the link is supposed to be symmetric on link up */
7392         ppd->link_width_active = tx_width;
7393         /* link width downgrade active (LWD.A) starts out matching LW.A */
7394         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7395         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7396         /* per OPA spec, on link up LWD.E resets to LWD.S */
7397         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7398         /* cache the active egress rate (units {10^6 bits/sec]) */
7399         ppd->current_egress_rate = active_egress_rate(ppd);
7400 }
7401
7402 /*
7403  * Handle a verify capabilities interrupt from the 8051.
7404  *
7405  * This is a work-queue function outside of the interrupt.
7406  */
7407 void handle_verify_cap(struct work_struct *work)
7408 {
7409         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7410                                                                 link_vc_work);
7411         struct hfi1_devdata *dd = ppd->dd;
7412         u64 reg;
7413         u8 power_management;
7414         u8 continuous;
7415         u8 vcu;
7416         u8 vau;
7417         u8 z;
7418         u16 vl15buf;
7419         u16 link_widths;
7420         u16 crc_mask;
7421         u16 crc_val;
7422         u16 device_id;
7423         u16 active_tx, active_rx;
7424         u8 partner_supported_crc;
7425         u8 remote_tx_rate;
7426         u8 device_rev;
7427
7428         set_link_state(ppd, HLS_VERIFY_CAP);
7429
7430         lcb_shutdown(dd, 0);
7431         adjust_lcb_for_fpga_serdes(dd);
7432
7433         read_vc_remote_phy(dd, &power_management, &continuous);
7434         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7435                               &partner_supported_crc);
7436         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7437         read_remote_device_id(dd, &device_id, &device_rev);
7438         /*
7439          * And the 'MgmtAllowed' information, which is exchanged during
7440          * LNI, is also be available at this point.
7441          */
7442         read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7443         /* print the active widths */
7444         get_link_widths(dd, &active_tx, &active_rx);
7445         dd_dev_info(dd,
7446                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7447                     (int)power_management, (int)continuous);
7448         dd_dev_info(dd,
7449                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7450                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7451                     (int)partner_supported_crc);
7452         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7453                     (u32)remote_tx_rate, (u32)link_widths);
7454         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7455                     (u32)device_id, (u32)device_rev);
7456         /*
7457          * The peer vAU value just read is the peer receiver value.  HFI does
7458          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7459          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7460          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7461          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7462          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7463          * subject to the Z value exception.
7464          */
7465         if (vau == 0)
7466                 vau = 1;
7467         set_up_vau(dd, vau);
7468
7469         /*
7470          * Set VL15 credits to 0 in global credit register. Cache remote VL15
7471          * credits value and wait for link-up interrupt ot set it.
7472          */
7473         set_up_vl15(dd, 0);
7474         dd->vl15buf_cached = vl15buf;
7475
7476         /* set up the LCB CRC mode */
7477         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7478
7479         /* order is important: use the lowest bit in common */
7480         if (crc_mask & CAP_CRC_14B)
7481                 crc_val = LCB_CRC_14B;
7482         else if (crc_mask & CAP_CRC_48B)
7483                 crc_val = LCB_CRC_48B;
7484         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7485                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7486         else
7487                 crc_val = LCB_CRC_16B;
7488
7489         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7490         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7491                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7492
7493         /* set (14b only) or clear sideband credit */
7494         reg = read_csr(dd, SEND_CM_CTRL);
7495         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7496                 write_csr(dd, SEND_CM_CTRL,
7497                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7498         } else {
7499                 write_csr(dd, SEND_CM_CTRL,
7500                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7501         }
7502
7503         ppd->link_speed_active = 0;     /* invalid value */
7504         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7505                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7506                 switch (remote_tx_rate) {
7507                 case 0:
7508                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7509                         break;
7510                 case 1:
7511                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7512                         break;
7513                 }
7514         } else {
7515                 /* actual rate is highest bit of the ANDed rates */
7516                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7517
7518                 if (rate & 2)
7519                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7520                 else if (rate & 1)
7521                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7522         }
7523         if (ppd->link_speed_active == 0) {
7524                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7525                            __func__, (int)remote_tx_rate);
7526                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7527         }
7528
7529         /*
7530          * Cache the values of the supported, enabled, and active
7531          * LTP CRC modes to return in 'portinfo' queries. But the bit
7532          * flags that are returned in the portinfo query differ from
7533          * what's in the link_crc_mask, crc_sizes, and crc_val
7534          * variables. Convert these here.
7535          */
7536         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7537                 /* supported crc modes */
7538         ppd->port_ltp_crc_mode |=
7539                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7540                 /* enabled crc modes */
7541         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7542                 /* active crc mode */
7543
7544         /* set up the remote credit return table */
7545         assign_remote_cm_au_table(dd, vcu);
7546
7547         /*
7548          * The LCB is reset on entry to handle_verify_cap(), so this must
7549          * be applied on every link up.
7550          *
7551          * Adjust LCB error kill enable to kill the link if
7552          * these RBUF errors are seen:
7553          *      REPLAY_BUF_MBE_SMASK
7554          *      FLIT_INPUT_BUF_MBE_SMASK
7555          */
7556         if (is_ax(dd)) {                        /* fixed in B0 */
7557                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7558                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7559                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7560                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7561         }
7562
7563         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7564         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7565
7566         /* give 8051 access to the LCB CSRs */
7567         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7568         set_8051_lcb_access(dd);
7569
7570         if (ppd->mgmt_allowed)
7571                 add_full_mgmt_pkey(ppd);
7572
7573         /* tell the 8051 to go to LinkUp */
7574         set_link_state(ppd, HLS_GOING_UP);
7575 }
7576
7577 /*
7578  * Apply the link width downgrade enabled policy against the current active
7579  * link widths.
7580  *
7581  * Called when the enabled policy changes or the active link widths change.
7582  */
7583 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7584 {
7585         int do_bounce = 0;
7586         int tries;
7587         u16 lwde;
7588         u16 tx, rx;
7589
7590         /* use the hls lock to avoid a race with actual link up */
7591         tries = 0;
7592 retry:
7593         mutex_lock(&ppd->hls_lock);
7594         /* only apply if the link is up */
7595         if (ppd->host_link_state & HLS_DOWN) {
7596                 /* still going up..wait and retry */
7597                 if (ppd->host_link_state & HLS_GOING_UP) {
7598                         if (++tries < 1000) {
7599                                 mutex_unlock(&ppd->hls_lock);
7600                                 usleep_range(100, 120); /* arbitrary */
7601                                 goto retry;
7602                         }
7603                         dd_dev_err(ppd->dd,
7604                                    "%s: giving up waiting for link state change\n",
7605                                    __func__);
7606                 }
7607                 goto done;
7608         }
7609
7610         lwde = ppd->link_width_downgrade_enabled;
7611
7612         if (refresh_widths) {
7613                 get_link_widths(ppd->dd, &tx, &rx);
7614                 ppd->link_width_downgrade_tx_active = tx;
7615                 ppd->link_width_downgrade_rx_active = rx;
7616         }
7617
7618         if (ppd->link_width_downgrade_tx_active == 0 ||
7619             ppd->link_width_downgrade_rx_active == 0) {
7620                 /* the 8051 reported a dead link as a downgrade */
7621                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7622         } else if (lwde == 0) {
7623                 /* downgrade is disabled */
7624
7625                 /* bounce if not at starting active width */
7626                 if ((ppd->link_width_active !=
7627                      ppd->link_width_downgrade_tx_active) ||
7628                     (ppd->link_width_active !=
7629                      ppd->link_width_downgrade_rx_active)) {
7630                         dd_dev_err(ppd->dd,
7631                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7632                         dd_dev_err(ppd->dd,
7633                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7634                                    ppd->link_width_active,
7635                                    ppd->link_width_downgrade_tx_active,
7636                                    ppd->link_width_downgrade_rx_active);
7637                         do_bounce = 1;
7638                 }
7639         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7640                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7641                 /* Tx or Rx is outside the enabled policy */
7642                 dd_dev_err(ppd->dd,
7643                            "Link is outside of downgrade allowed, downing link\n");
7644                 dd_dev_err(ppd->dd,
7645                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7646                            lwde, ppd->link_width_downgrade_tx_active,
7647                            ppd->link_width_downgrade_rx_active);
7648                 do_bounce = 1;
7649         }
7650
7651 done:
7652         mutex_unlock(&ppd->hls_lock);
7653
7654         if (do_bounce) {
7655                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7656                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7657                 set_link_state(ppd, HLS_DN_OFFLINE);
7658                 start_link(ppd);
7659         }
7660 }
7661
7662 /*
7663  * Handle a link downgrade interrupt from the 8051.
7664  *
7665  * This is a work-queue function outside of the interrupt.
7666  */
7667 void handle_link_downgrade(struct work_struct *work)
7668 {
7669         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7670                                                         link_downgrade_work);
7671
7672         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7673         apply_link_downgrade_policy(ppd, 1);
7674 }
7675
7676 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7677 {
7678         return flag_string(buf, buf_len, flags, dcc_err_flags,
7679                 ARRAY_SIZE(dcc_err_flags));
7680 }
7681
7682 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7683 {
7684         return flag_string(buf, buf_len, flags, lcb_err_flags,
7685                 ARRAY_SIZE(lcb_err_flags));
7686 }
7687
7688 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7689 {
7690         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7691                 ARRAY_SIZE(dc8051_err_flags));
7692 }
7693
7694 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7695 {
7696         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7697                 ARRAY_SIZE(dc8051_info_err_flags));
7698 }
7699
7700 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7701 {
7702         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7703                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7704 }
7705
7706 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7707 {
7708         struct hfi1_pportdata *ppd = dd->pport;
7709         u64 info, err, host_msg;
7710         int queue_link_down = 0;
7711         char buf[96];
7712
7713         /* look at the flags */
7714         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7715                 /* 8051 information set by firmware */
7716                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7717                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7718                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7719                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7720                 host_msg = (info >>
7721                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7722                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7723
7724                 /*
7725                  * Handle error flags.
7726                  */
7727                 if (err & FAILED_LNI) {
7728                         /*
7729                          * LNI error indications are cleared by the 8051
7730                          * only when starting polling.  Only pay attention
7731                          * to them when in the states that occur during
7732                          * LNI.
7733                          */
7734                         if (ppd->host_link_state
7735                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7736                                 queue_link_down = 1;
7737                                 dd_dev_info(dd, "Link error: %s\n",
7738                                             dc8051_info_err_string(buf,
7739                                                                    sizeof(buf),
7740                                                                    err &
7741                                                                    FAILED_LNI));
7742                         }
7743                         err &= ~(u64)FAILED_LNI;
7744                 }
7745                 /* unknown frames can happen durning LNI, just count */
7746                 if (err & UNKNOWN_FRAME) {
7747                         ppd->unknown_frame_count++;
7748                         err &= ~(u64)UNKNOWN_FRAME;
7749                 }
7750                 if (err) {
7751                         /* report remaining errors, but do not do anything */
7752                         dd_dev_err(dd, "8051 info error: %s\n",
7753                                    dc8051_info_err_string(buf, sizeof(buf),
7754                                                           err));
7755                 }
7756
7757                 /*
7758                  * Handle host message flags.
7759                  */
7760                 if (host_msg & HOST_REQ_DONE) {
7761                         /*
7762                          * Presently, the driver does a busy wait for
7763                          * host requests to complete.  This is only an
7764                          * informational message.
7765                          * NOTE: The 8051 clears the host message
7766                          * information *on the next 8051 command*.
7767                          * Therefore, when linkup is achieved,
7768                          * this flag will still be set.
7769                          */
7770                         host_msg &= ~(u64)HOST_REQ_DONE;
7771                 }
7772                 if (host_msg & BC_SMA_MSG) {
7773                         queue_work(ppd->link_wq, &ppd->sma_message_work);
7774                         host_msg &= ~(u64)BC_SMA_MSG;
7775                 }
7776                 if (host_msg & LINKUP_ACHIEVED) {
7777                         dd_dev_info(dd, "8051: Link up\n");
7778                         queue_work(ppd->link_wq, &ppd->link_up_work);
7779                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7780                 }
7781                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7782                         handle_8051_request(ppd);
7783                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7784                 }
7785                 if (host_msg & VERIFY_CAP_FRAME) {
7786                         queue_work(ppd->link_wq, &ppd->link_vc_work);
7787                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7788                 }
7789                 if (host_msg & LINK_GOING_DOWN) {
7790                         const char *extra = "";
7791                         /* no downgrade action needed if going down */
7792                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7793                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7794                                 extra = " (ignoring downgrade)";
7795                         }
7796                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7797                         queue_link_down = 1;
7798                         host_msg &= ~(u64)LINK_GOING_DOWN;
7799                 }
7800                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7801                         queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7802                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7803                 }
7804                 if (host_msg) {
7805                         /* report remaining messages, but do not do anything */
7806                         dd_dev_info(dd, "8051 info host message: %s\n",
7807                                     dc8051_info_host_msg_string(buf,
7808                                                                 sizeof(buf),
7809                                                                 host_msg));
7810                 }
7811
7812                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7813         }
7814         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7815                 /*
7816                  * Lost the 8051 heartbeat.  If this happens, we
7817                  * receive constant interrupts about it.  Disable
7818                  * the interrupt after the first.
7819                  */
7820                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7821                 write_csr(dd, DC_DC8051_ERR_EN,
7822                           read_csr(dd, DC_DC8051_ERR_EN) &
7823                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7824
7825                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7826         }
7827         if (reg) {
7828                 /* report the error, but do not do anything */
7829                 dd_dev_err(dd, "8051 error: %s\n",
7830                            dc8051_err_string(buf, sizeof(buf), reg));
7831         }
7832
7833         if (queue_link_down) {
7834                 /*
7835                  * if the link is already going down or disabled, do not
7836                  * queue another. If there's a link down entry already
7837                  * queued, don't queue another one.
7838                  */
7839                 if ((ppd->host_link_state &
7840                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7841                     ppd->link_enabled == 0) {
7842                         dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7843                                     __func__, ppd->host_link_state,
7844                                     ppd->link_enabled);
7845                 } else {
7846                         if (xchg(&ppd->is_link_down_queued, 1) == 1)
7847                                 dd_dev_info(dd,
7848                                             "%s: link down request already queued\n",
7849                                             __func__);
7850                         else
7851                                 queue_work(ppd->link_wq, &ppd->link_down_work);
7852                 }
7853         }
7854 }
7855
7856 static const char * const fm_config_txt[] = {
7857 [0] =
7858         "BadHeadDist: Distance violation between two head flits",
7859 [1] =
7860         "BadTailDist: Distance violation between two tail flits",
7861 [2] =
7862         "BadCtrlDist: Distance violation between two credit control flits",
7863 [3] =
7864         "BadCrdAck: Credits return for unsupported VL",
7865 [4] =
7866         "UnsupportedVLMarker: Received VL Marker",
7867 [5] =
7868         "BadPreempt: Exceeded the preemption nesting level",
7869 [6] =
7870         "BadControlFlit: Received unsupported control flit",
7871 /* no 7 */
7872 [8] =
7873         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7874 };
7875
7876 static const char * const port_rcv_txt[] = {
7877 [1] =
7878         "BadPktLen: Illegal PktLen",
7879 [2] =
7880         "PktLenTooLong: Packet longer than PktLen",
7881 [3] =
7882         "PktLenTooShort: Packet shorter than PktLen",
7883 [4] =
7884         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7885 [5] =
7886         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7887 [6] =
7888         "BadL2: Illegal L2 opcode",
7889 [7] =
7890         "BadSC: Unsupported SC",
7891 [9] =
7892         "BadRC: Illegal RC",
7893 [11] =
7894         "PreemptError: Preempting with same VL",
7895 [12] =
7896         "PreemptVL15: Preempting a VL15 packet",
7897 };
7898
7899 #define OPA_LDR_FMCONFIG_OFFSET 16
7900 #define OPA_LDR_PORTRCV_OFFSET 0
7901 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7902 {
7903         u64 info, hdr0, hdr1;
7904         const char *extra;
7905         char buf[96];
7906         struct hfi1_pportdata *ppd = dd->pport;
7907         u8 lcl_reason = 0;
7908         int do_bounce = 0;
7909
7910         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7911                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7912                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7913                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7914                         /* set status bit */
7915                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7916                 }
7917                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7918         }
7919
7920         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7921                 struct hfi1_pportdata *ppd = dd->pport;
7922                 /* this counter saturates at (2^32) - 1 */
7923                 if (ppd->link_downed < (u32)UINT_MAX)
7924                         ppd->link_downed++;
7925                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7926         }
7927
7928         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7929                 u8 reason_valid = 1;
7930
7931                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7932                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7933                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7934                         /* set status bit */
7935                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7936                 }
7937                 switch (info) {
7938                 case 0:
7939                 case 1:
7940                 case 2:
7941                 case 3:
7942                 case 4:
7943                 case 5:
7944                 case 6:
7945                         extra = fm_config_txt[info];
7946                         break;
7947                 case 8:
7948                         extra = fm_config_txt[info];
7949                         if (ppd->port_error_action &
7950                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7951                                 do_bounce = 1;
7952                                 /*
7953                                  * lcl_reason cannot be derived from info
7954                                  * for this error
7955                                  */
7956                                 lcl_reason =
7957                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7958                         }
7959                         break;
7960                 default:
7961                         reason_valid = 0;
7962                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7963                         extra = buf;
7964                         break;
7965                 }
7966
7967                 if (reason_valid && !do_bounce) {
7968                         do_bounce = ppd->port_error_action &
7969                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7970                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7971                 }
7972
7973                 /* just report this */
7974                 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7975                                         extra);
7976                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7977         }
7978
7979         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7980                 u8 reason_valid = 1;
7981
7982                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7983                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7984                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7985                 if (!(dd->err_info_rcvport.status_and_code &
7986                       OPA_EI_STATUS_SMASK)) {
7987                         dd->err_info_rcvport.status_and_code =
7988                                 info & OPA_EI_CODE_SMASK;
7989                         /* set status bit */
7990                         dd->err_info_rcvport.status_and_code |=
7991                                 OPA_EI_STATUS_SMASK;
7992                         /*
7993                          * save first 2 flits in the packet that caused
7994                          * the error
7995                          */
7996                         dd->err_info_rcvport.packet_flit1 = hdr0;
7997                         dd->err_info_rcvport.packet_flit2 = hdr1;
7998                 }
7999                 switch (info) {
8000                 case 1:
8001                 case 2:
8002                 case 3:
8003                 case 4:
8004                 case 5:
8005                 case 6:
8006                 case 7:
8007                 case 9:
8008                 case 11:
8009                 case 12:
8010                         extra = port_rcv_txt[info];
8011                         break;
8012                 default:
8013                         reason_valid = 0;
8014                         snprintf(buf, sizeof(buf), "reserved%lld", info);
8015                         extra = buf;
8016                         break;
8017                 }
8018
8019                 if (reason_valid && !do_bounce) {
8020                         do_bounce = ppd->port_error_action &
8021                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8022                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8023                 }
8024
8025                 /* just report this */
8026                 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8027                                         "               hdr0 0x%llx, hdr1 0x%llx\n",
8028                                         extra, hdr0, hdr1);
8029
8030                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8031         }
8032
8033         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8034                 /* informative only */
8035                 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8036                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8037         }
8038         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8039                 /* informative only */
8040                 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8041                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8042         }
8043
8044         if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8045                 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8046
8047         /* report any remaining errors */
8048         if (reg)
8049                 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8050                                         dcc_err_string(buf, sizeof(buf), reg));
8051
8052         if (lcl_reason == 0)
8053                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8054
8055         if (do_bounce) {
8056                 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8057                                         __func__);
8058                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8059                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
8060         }
8061 }
8062
8063 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8064 {
8065         char buf[96];
8066
8067         dd_dev_info(dd, "LCB Error: %s\n",
8068                     lcb_err_string(buf, sizeof(buf), reg));
8069 }
8070
8071 /*
8072  * CCE block DC interrupt.  Source is < 8.
8073  */
8074 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8075 {
8076         const struct err_reg_info *eri = &dc_errs[source];
8077
8078         if (eri->handler) {
8079                 interrupt_clear_down(dd, 0, eri);
8080         } else if (source == 3 /* dc_lbm_int */) {
8081                 /*
8082                  * This indicates that a parity error has occurred on the
8083                  * address/control lines presented to the LBM.  The error
8084                  * is a single pulse, there is no associated error flag,
8085                  * and it is non-maskable.  This is because if a parity
8086                  * error occurs on the request the request is dropped.
8087                  * This should never occur, but it is nice to know if it
8088                  * ever does.
8089                  */
8090                 dd_dev_err(dd, "Parity error in DC LBM block\n");
8091         } else {
8092                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8093         }
8094 }
8095
8096 /*
8097  * TX block send credit interrupt.  Source is < 160.
8098  */
8099 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8100 {
8101         sc_group_release_update(dd, source);
8102 }
8103
8104 /*
8105  * TX block SDMA interrupt.  Source is < 48.
8106  *
8107  * SDMA interrupts are grouped by type:
8108  *
8109  *       0 -  N-1 = SDma
8110  *       N - 2N-1 = SDmaProgress
8111  *      2N - 3N-1 = SDmaIdle
8112  */
8113 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8114 {
8115         /* what interrupt */
8116         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8117         /* which engine */
8118         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8119
8120 #ifdef CONFIG_SDMA_VERBOSITY
8121         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8122                    slashstrip(__FILE__), __LINE__, __func__);
8123         sdma_dumpstate(&dd->per_sdma[which]);
8124 #endif
8125
8126         if (likely(what < 3 && which < dd->num_sdma)) {
8127                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8128         } else {
8129                 /* should not happen */
8130                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8131         }
8132 }
8133
8134 /*
8135  * RX block receive available interrupt.  Source is < 160.
8136  */
8137 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8138 {
8139         struct hfi1_ctxtdata *rcd;
8140         char *err_detail;
8141
8142         if (likely(source < dd->num_rcv_contexts)) {
8143                 rcd = hfi1_rcd_get_by_index(dd, source);
8144                 if (rcd) {
8145                         /* Check for non-user contexts, including vnic */
8146                         if ((source < dd->first_dyn_alloc_ctxt) ||
8147                             (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8148                                 rcd->do_interrupt(rcd, 0);
8149                         else
8150                                 handle_user_interrupt(rcd);
8151
8152                         hfi1_rcd_put(rcd);
8153                         return; /* OK */
8154                 }
8155                 /* received an interrupt, but no rcd */
8156                 err_detail = "dataless";
8157         } else {
8158                 /* received an interrupt, but are not using that context */
8159                 err_detail = "out of range";
8160         }
8161         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8162                    err_detail, source);
8163 }
8164
8165 /*
8166  * RX block receive urgent interrupt.  Source is < 160.
8167  */
8168 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8169 {
8170         struct hfi1_ctxtdata *rcd;
8171         char *err_detail;
8172
8173         if (likely(source < dd->num_rcv_contexts)) {
8174                 rcd = hfi1_rcd_get_by_index(dd, source);
8175                 if (rcd) {
8176                         /* only pay attention to user urgent interrupts */
8177                         if ((source >= dd->first_dyn_alloc_ctxt) &&
8178                             (!rcd->sc || (rcd->sc->type == SC_USER)))
8179                                 handle_user_interrupt(rcd);
8180
8181                         hfi1_rcd_put(rcd);
8182                         return; /* OK */
8183                 }
8184                 /* received an interrupt, but no rcd */
8185                 err_detail = "dataless";
8186         } else {
8187                 /* received an interrupt, but are not using that context */
8188                 err_detail = "out of range";
8189         }
8190         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8191                    err_detail, source);
8192 }
8193
8194 /*
8195  * Reserved range interrupt.  Should not be called in normal operation.
8196  */
8197 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8198 {
8199         char name[64];
8200
8201         dd_dev_err(dd, "unexpected %s interrupt\n",
8202                    is_reserved_name(name, sizeof(name), source));
8203 }
8204
8205 static const struct is_table is_table[] = {
8206 /*
8207  * start                 end
8208  *                              name func               interrupt func
8209  */
8210 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8211                                 is_misc_err_name,       is_misc_err_int },
8212 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8213                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8214 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8215                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8216 { IS_SDMA_START,             IS_SDMA_END,
8217                                 is_sdma_eng_name,       is_sdma_eng_int },
8218 { IS_VARIOUS_START,          IS_VARIOUS_END,
8219                                 is_various_name,        is_various_int },
8220 { IS_DC_START,       IS_DC_END,
8221                                 is_dc_name,             is_dc_int },
8222 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8223                                 is_rcv_avail_name,      is_rcv_avail_int },
8224 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8225                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8226 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8227                                 is_send_credit_name,    is_send_credit_int},
8228 { IS_RESERVED_START,     IS_RESERVED_END,
8229                                 is_reserved_name,       is_reserved_int},
8230 };
8231
8232 /*
8233  * Interrupt source interrupt - called when the given source has an interrupt.
8234  * Source is a bit index into an array of 64-bit integers.
8235  */
8236 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8237 {
8238         const struct is_table *entry;
8239
8240         /* avoids a double compare by walking the table in-order */
8241         for (entry = &is_table[0]; entry->is_name; entry++) {
8242                 if (source < entry->end) {
8243                         trace_hfi1_interrupt(dd, entry, source);
8244                         entry->is_int(dd, source - entry->start);
8245                         return;
8246                 }
8247         }
8248         /* fell off the end */
8249         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8250 }
8251
8252 /*
8253  * General interrupt handler.  This is able to correctly handle
8254  * all interrupts in case INTx is used.
8255  */
8256 static irqreturn_t general_interrupt(int irq, void *data)
8257 {
8258         struct hfi1_devdata *dd = data;
8259         u64 regs[CCE_NUM_INT_CSRS];
8260         u32 bit;
8261         int i;
8262         irqreturn_t handled = IRQ_NONE;
8263
8264         this_cpu_inc(*dd->int_counter);
8265
8266         /* phase 1: scan and clear all handled interrupts */
8267         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8268                 if (dd->gi_mask[i] == 0) {
8269                         regs[i] = 0;    /* used later */
8270                         continue;
8271                 }
8272                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8273                                 dd->gi_mask[i];
8274                 /* only clear if anything is set */
8275                 if (regs[i])
8276                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8277         }
8278
8279         /* phase 2: call the appropriate handler */
8280         for_each_set_bit(bit, (unsigned long *)&regs[0],
8281                          CCE_NUM_INT_CSRS * 64) {
8282                 is_interrupt(dd, bit);
8283                 handled = IRQ_HANDLED;
8284         }
8285
8286         return handled;
8287 }
8288
8289 static irqreturn_t sdma_interrupt(int irq, void *data)
8290 {
8291         struct sdma_engine *sde = data;
8292         struct hfi1_devdata *dd = sde->dd;
8293         u64 status;
8294
8295 #ifdef CONFIG_SDMA_VERBOSITY
8296         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8297                    slashstrip(__FILE__), __LINE__, __func__);
8298         sdma_dumpstate(sde);
8299 #endif
8300
8301         this_cpu_inc(*dd->int_counter);
8302
8303         /* This read_csr is really bad in the hot path */
8304         status = read_csr(dd,
8305                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8306                           & sde->imask;
8307         if (likely(status)) {
8308                 /* clear the interrupt(s) */
8309                 write_csr(dd,
8310                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8311                           status);
8312
8313                 /* handle the interrupt(s) */
8314                 sdma_engine_interrupt(sde, status);
8315         } else {
8316                 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8317                                         sde->this_idx);
8318         }
8319         return IRQ_HANDLED;
8320 }
8321
8322 /*
8323  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8324  * to insure that the write completed.  This does NOT guarantee that
8325  * queued DMA writes to memory from the chip are pushed.
8326  */
8327 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8328 {
8329         struct hfi1_devdata *dd = rcd->dd;
8330         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8331
8332         mmiowb();       /* make sure everything before is written */
8333         write_csr(dd, addr, rcd->imask);
8334         /* force the above write on the chip and get a value back */
8335         (void)read_csr(dd, addr);
8336 }
8337
8338 /* force the receive interrupt */
8339 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8340 {
8341         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8342 }
8343
8344 /*
8345  * Return non-zero if a packet is present.
8346  *
8347  * This routine is called when rechecking for packets after the RcvAvail
8348  * interrupt has been cleared down.  First, do a quick check of memory for
8349  * a packet present.  If not found, use an expensive CSR read of the context
8350  * tail to determine the actual tail.  The CSR read is necessary because there
8351  * is no method to push pending DMAs to memory other than an interrupt and we
8352  * are trying to determine if we need to force an interrupt.
8353  */
8354 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8355 {
8356         u32 tail;
8357         int present;
8358
8359         if (!rcd->rcvhdrtail_kvaddr)
8360                 present = (rcd->seq_cnt ==
8361                                 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8362         else /* is RDMA rtail */
8363                 present = (rcd->head != get_rcvhdrtail(rcd));
8364
8365         if (present)
8366                 return 1;
8367
8368         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8369         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8370         return rcd->head != tail;
8371 }
8372
8373 /*
8374  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8375  * This routine will try to handle packets immediately (latency), but if
8376  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8377  * chip receive interrupt is *not* cleared down until this or the thread (if
8378  * invoked) is finished.  The intent is to avoid extra interrupts while we
8379  * are processing packets anyway.
8380  */
8381 static irqreturn_t receive_context_interrupt(int irq, void *data)
8382 {
8383         struct hfi1_ctxtdata *rcd = data;
8384         struct hfi1_devdata *dd = rcd->dd;
8385         int disposition;
8386         int present;
8387
8388         trace_hfi1_receive_interrupt(dd, rcd);
8389         this_cpu_inc(*dd->int_counter);
8390         aspm_ctx_disable(rcd);
8391
8392         /* receive interrupt remains blocked while processing packets */
8393         disposition = rcd->do_interrupt(rcd, 0);
8394
8395         /*
8396          * Too many packets were seen while processing packets in this
8397          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8398          * remains blocked.
8399          */
8400         if (disposition == RCV_PKT_LIMIT)
8401                 return IRQ_WAKE_THREAD;
8402
8403         /*
8404          * The packet processor detected no more packets.  Clear the receive
8405          * interrupt and recheck for a packet packet that may have arrived
8406          * after the previous check and interrupt clear.  If a packet arrived,
8407          * force another interrupt.
8408          */
8409         clear_recv_intr(rcd);
8410         present = check_packet_present(rcd);
8411         if (present)
8412                 force_recv_intr(rcd);
8413
8414         return IRQ_HANDLED;
8415 }
8416
8417 /*
8418  * Receive packet thread handler.  This expects to be invoked with the
8419  * receive interrupt still blocked.
8420  */
8421 static irqreturn_t receive_context_thread(int irq, void *data)
8422 {
8423         struct hfi1_ctxtdata *rcd = data;
8424         int present;
8425
8426         /* receive interrupt is still blocked from the IRQ handler */
8427         (void)rcd->do_interrupt(rcd, 1);
8428
8429         /*
8430          * The packet processor will only return if it detected no more
8431          * packets.  Hold IRQs here so we can safely clear the interrupt and
8432          * recheck for a packet that may have arrived after the previous
8433          * check and the interrupt clear.  If a packet arrived, force another
8434          * interrupt.
8435          */
8436         local_irq_disable();
8437         clear_recv_intr(rcd);
8438         present = check_packet_present(rcd);
8439         if (present)
8440                 force_recv_intr(rcd);
8441         local_irq_enable();
8442
8443         return IRQ_HANDLED;
8444 }
8445
8446 /* ========================================================================= */
8447
8448 u32 read_physical_state(struct hfi1_devdata *dd)
8449 {
8450         u64 reg;
8451
8452         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8453         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8454                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8455 }
8456
8457 u32 read_logical_state(struct hfi1_devdata *dd)
8458 {
8459         u64 reg;
8460
8461         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8462         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8463                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8464 }
8465
8466 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8467 {
8468         u64 reg;
8469
8470         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8471         /* clear current state, set new state */
8472         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8473         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8474         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8475 }
8476
8477 /*
8478  * Use the 8051 to read a LCB CSR.
8479  */
8480 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8481 {
8482         u32 regno;
8483         int ret;
8484
8485         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8486                 if (acquire_lcb_access(dd, 0) == 0) {
8487                         *data = read_csr(dd, addr);
8488                         release_lcb_access(dd, 0);
8489                         return 0;
8490                 }
8491                 return -EBUSY;
8492         }
8493
8494         /* register is an index of LCB registers: (offset - base) / 8 */
8495         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8496         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8497         if (ret != HCMD_SUCCESS)
8498                 return -EBUSY;
8499         return 0;
8500 }
8501
8502 /*
8503  * Provide a cache for some of the LCB registers in case the LCB is
8504  * unavailable.
8505  * (The LCB is unavailable in certain link states, for example.)
8506  */
8507 struct lcb_datum {
8508         u32 off;
8509         u64 val;
8510 };
8511
8512 static struct lcb_datum lcb_cache[] = {
8513         { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8514         { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8515         { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8516 };
8517
8518 static void update_lcb_cache(struct hfi1_devdata *dd)
8519 {
8520         int i;
8521         int ret;
8522         u64 val;
8523
8524         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8525                 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8526
8527                 /* Update if we get good data */
8528                 if (likely(ret != -EBUSY))
8529                         lcb_cache[i].val = val;
8530         }
8531 }
8532
8533 static int read_lcb_cache(u32 off, u64 *val)
8534 {
8535         int i;
8536
8537         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8538                 if (lcb_cache[i].off == off) {
8539                         *val = lcb_cache[i].val;
8540                         return 0;
8541                 }
8542         }
8543
8544         pr_warn("%s bad offset 0x%x\n", __func__, off);
8545         return -1;
8546 }
8547
8548 /*
8549  * Read an LCB CSR.  Access may not be in host control, so check.
8550  * Return 0 on success, -EBUSY on failure.
8551  */
8552 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8553 {
8554         struct hfi1_pportdata *ppd = dd->pport;
8555
8556         /* if up, go through the 8051 for the value */
8557         if (ppd->host_link_state & HLS_UP)
8558                 return read_lcb_via_8051(dd, addr, data);
8559         /* if going up or down, check the cache, otherwise, no access */
8560         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8561                 if (read_lcb_cache(addr, data))
8562                         return -EBUSY;
8563                 return 0;
8564         }
8565
8566         /* otherwise, host has access */
8567         *data = read_csr(dd, addr);
8568         return 0;
8569 }
8570
8571 /*
8572  * Use the 8051 to write a LCB CSR.
8573  */
8574 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8575 {
8576         u32 regno;
8577         int ret;
8578
8579         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8580             (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8581                 if (acquire_lcb_access(dd, 0) == 0) {
8582                         write_csr(dd, addr, data);
8583                         release_lcb_access(dd, 0);
8584                         return 0;
8585                 }
8586                 return -EBUSY;
8587         }
8588
8589         /* register is an index of LCB registers: (offset - base) / 8 */
8590         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8591         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8592         if (ret != HCMD_SUCCESS)
8593                 return -EBUSY;
8594         return 0;
8595 }
8596
8597 /*
8598  * Write an LCB CSR.  Access may not be in host control, so check.
8599  * Return 0 on success, -EBUSY on failure.
8600  */
8601 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8602 {
8603         struct hfi1_pportdata *ppd = dd->pport;
8604
8605         /* if up, go through the 8051 for the value */
8606         if (ppd->host_link_state & HLS_UP)
8607                 return write_lcb_via_8051(dd, addr, data);
8608         /* if going up or down, no access */
8609         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8610                 return -EBUSY;
8611         /* otherwise, host has access */
8612         write_csr(dd, addr, data);
8613         return 0;
8614 }
8615
8616 /*
8617  * Returns:
8618  *      < 0 = Linux error, not able to get access
8619  *      > 0 = 8051 command RETURN_CODE
8620  */
8621 static int do_8051_command(
8622         struct hfi1_devdata *dd,
8623         u32 type,
8624         u64 in_data,
8625         u64 *out_data)
8626 {
8627         u64 reg, completed;
8628         int return_code;
8629         unsigned long timeout;
8630
8631         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8632
8633         mutex_lock(&dd->dc8051_lock);
8634
8635         /* We can't send any commands to the 8051 if it's in reset */
8636         if (dd->dc_shutdown) {
8637                 return_code = -ENODEV;
8638                 goto fail;
8639         }
8640
8641         /*
8642          * If an 8051 host command timed out previously, then the 8051 is
8643          * stuck.
8644          *
8645          * On first timeout, attempt to reset and restart the entire DC
8646          * block (including 8051). (Is this too big of a hammer?)
8647          *
8648          * If the 8051 times out a second time, the reset did not bring it
8649          * back to healthy life. In that case, fail any subsequent commands.
8650          */
8651         if (dd->dc8051_timed_out) {
8652                 if (dd->dc8051_timed_out > 1) {
8653                         dd_dev_err(dd,
8654                                    "Previous 8051 host command timed out, skipping command %u\n",
8655                                    type);
8656                         return_code = -ENXIO;
8657                         goto fail;
8658                 }
8659                 _dc_shutdown(dd);
8660                 _dc_start(dd);
8661         }
8662
8663         /*
8664          * If there is no timeout, then the 8051 command interface is
8665          * waiting for a command.
8666          */
8667
8668         /*
8669          * When writing a LCB CSR, out_data contains the full value to
8670          * to be written, while in_data contains the relative LCB
8671          * address in 7:0.  Do the work here, rather than the caller,
8672          * of distrubting the write data to where it needs to go:
8673          *
8674          * Write data
8675          *   39:00 -> in_data[47:8]
8676          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8677          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8678          */
8679         if (type == HCMD_WRITE_LCB_CSR) {
8680                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8681                 /* must preserve COMPLETED - it is tied to hardware */
8682                 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8683                 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8684                 reg |= ((((*out_data) >> 40) & 0xff) <<
8685                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8686                       | ((((*out_data) >> 48) & 0xffff) <<
8687                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8688                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8689         }
8690
8691         /*
8692          * Do two writes: the first to stabilize the type and req_data, the
8693          * second to activate.
8694          */
8695         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8696                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8697                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8698                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8699         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8700         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8701         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8702
8703         /* wait for completion, alternate: interrupt */
8704         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8705         while (1) {
8706                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8707                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8708                 if (completed)
8709                         break;
8710                 if (time_after(jiffies, timeout)) {
8711                         dd->dc8051_timed_out++;
8712                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8713                         if (out_data)
8714                                 *out_data = 0;
8715                         return_code = -ETIMEDOUT;
8716                         goto fail;
8717                 }
8718                 udelay(2);
8719         }
8720
8721         if (out_data) {
8722                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8723                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8724                 if (type == HCMD_READ_LCB_CSR) {
8725                         /* top 16 bits are in a different register */
8726                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8727                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8728                                 << (48
8729                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8730                 }
8731         }
8732         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8733                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8734         dd->dc8051_timed_out = 0;
8735         /*
8736          * Clear command for next user.
8737          */
8738         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8739
8740 fail:
8741         mutex_unlock(&dd->dc8051_lock);
8742         return return_code;
8743 }
8744
8745 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8746 {
8747         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8748 }
8749
8750 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8751                      u8 lane_id, u32 config_data)
8752 {
8753         u64 data;
8754         int ret;
8755
8756         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8757                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8758                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8759         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8760         if (ret != HCMD_SUCCESS) {
8761                 dd_dev_err(dd,
8762                            "load 8051 config: field id %d, lane %d, err %d\n",
8763                            (int)field_id, (int)lane_id, ret);
8764         }
8765         return ret;
8766 }
8767
8768 /*
8769  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8770  * set the result, even on error.
8771  * Return 0 on success, -errno on failure
8772  */
8773 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8774                      u32 *result)
8775 {
8776         u64 big_data;
8777         u32 addr;
8778         int ret;
8779
8780         /* address start depends on the lane_id */
8781         if (lane_id < 4)
8782                 addr = (4 * NUM_GENERAL_FIELDS)
8783                         + (lane_id * 4 * NUM_LANE_FIELDS);
8784         else
8785                 addr = 0;
8786         addr += field_id * 4;
8787
8788         /* read is in 8-byte chunks, hardware will truncate the address down */
8789         ret = read_8051_data(dd, addr, 8, &big_data);
8790
8791         if (ret == 0) {
8792                 /* extract the 4 bytes we want */
8793                 if (addr & 0x4)
8794                         *result = (u32)(big_data >> 32);
8795                 else
8796                         *result = (u32)big_data;
8797         } else {
8798                 *result = 0;
8799                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8800                            __func__, lane_id, field_id);
8801         }
8802
8803         return ret;
8804 }
8805
8806 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8807                               u8 continuous)
8808 {
8809         u32 frame;
8810
8811         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8812                 | power_management << POWER_MANAGEMENT_SHIFT;
8813         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8814                                 GENERAL_CONFIG, frame);
8815 }
8816
8817 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8818                                  u16 vl15buf, u8 crc_sizes)
8819 {
8820         u32 frame;
8821
8822         frame = (u32)vau << VAU_SHIFT
8823                 | (u32)z << Z_SHIFT
8824                 | (u32)vcu << VCU_SHIFT
8825                 | (u32)vl15buf << VL15BUF_SHIFT
8826                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8827         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8828                                 GENERAL_CONFIG, frame);
8829 }
8830
8831 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8832                                      u8 *flag_bits, u16 *link_widths)
8833 {
8834         u32 frame;
8835
8836         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8837                          &frame);
8838         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8839         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8840         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8841 }
8842
8843 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8844                                      u8 misc_bits,
8845                                      u8 flag_bits,
8846                                      u16 link_widths)
8847 {
8848         u32 frame;
8849
8850         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8851                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8852                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8853         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8854                      frame);
8855 }
8856
8857 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8858                                  u8 device_rev)
8859 {
8860         u32 frame;
8861
8862         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8863                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8864         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8865 }
8866
8867 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8868                                   u8 *device_rev)
8869 {
8870         u32 frame;
8871
8872         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8873         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8874         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8875                         & REMOTE_DEVICE_REV_MASK;
8876 }
8877
8878 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8879 {
8880         u32 frame;
8881         u32 mask;
8882
8883         mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8884         read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8885         /* Clear, then set field */
8886         frame &= ~mask;
8887         frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8888         return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8889                                 frame);
8890 }
8891
8892 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8893                       u8 *ver_patch)
8894 {
8895         u32 frame;
8896
8897         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8898         *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8899                 STS_FM_VERSION_MAJOR_MASK;
8900         *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8901                 STS_FM_VERSION_MINOR_MASK;
8902
8903         read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8904         *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8905                 STS_FM_VERSION_PATCH_MASK;
8906 }
8907
8908 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8909                                u8 *continuous)
8910 {
8911         u32 frame;
8912
8913         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8914         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8915                                         & POWER_MANAGEMENT_MASK;
8916         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8917                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8918 }
8919
8920 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8921                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8922 {
8923         u32 frame;
8924
8925         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8926         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8927         *z = (frame >> Z_SHIFT) & Z_MASK;
8928         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8929         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8930         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8931 }
8932
8933 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8934                                       u8 *remote_tx_rate,
8935                                       u16 *link_widths)
8936 {
8937         u32 frame;
8938
8939         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8940                          &frame);
8941         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8942                                 & REMOTE_TX_RATE_MASK;
8943         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8944 }
8945
8946 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8947 {
8948         u32 frame;
8949
8950         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8951         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8952 }
8953
8954 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8955 {
8956         u32 frame;
8957
8958         read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8959         *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8960 }
8961
8962 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8963 {
8964         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8965 }
8966
8967 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8968 {
8969         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8970 }
8971
8972 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8973 {
8974         u32 frame;
8975         int ret;
8976
8977         *link_quality = 0;
8978         if (dd->pport->host_link_state & HLS_UP) {
8979                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8980                                        &frame);
8981                 if (ret == 0)
8982                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
8983                                                 & LINK_QUALITY_MASK;
8984         }
8985 }
8986
8987 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8988 {
8989         u32 frame;
8990
8991         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8992         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8993 }
8994
8995 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8996 {
8997         u32 frame;
8998
8999         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9000         *ldr = (frame & 0xff);
9001 }
9002
9003 static int read_tx_settings(struct hfi1_devdata *dd,
9004                             u8 *enable_lane_tx,
9005                             u8 *tx_polarity_inversion,
9006                             u8 *rx_polarity_inversion,
9007                             u8 *max_rate)
9008 {
9009         u32 frame;
9010         int ret;
9011
9012         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9013         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9014                                 & ENABLE_LANE_TX_MASK;
9015         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9016                                 & TX_POLARITY_INVERSION_MASK;
9017         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9018                                 & RX_POLARITY_INVERSION_MASK;
9019         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9020         return ret;
9021 }
9022
9023 static int write_tx_settings(struct hfi1_devdata *dd,
9024                              u8 enable_lane_tx,
9025                              u8 tx_polarity_inversion,
9026                              u8 rx_polarity_inversion,
9027                              u8 max_rate)
9028 {
9029         u32 frame;
9030
9031         /* no need to mask, all variable sizes match field widths */
9032         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9033                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9034                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9035                 | max_rate << MAX_RATE_SHIFT;
9036         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9037 }
9038
9039 /*
9040  * Read an idle LCB message.
9041  *
9042  * Returns 0 on success, -EINVAL on error
9043  */
9044 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9045 {
9046         int ret;
9047
9048         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9049         if (ret != HCMD_SUCCESS) {
9050                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
9051                            (u32)type, ret);
9052                 return -EINVAL;
9053         }
9054         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9055         /* return only the payload as we already know the type */
9056         *data_out >>= IDLE_PAYLOAD_SHIFT;
9057         return 0;
9058 }
9059
9060 /*
9061  * Read an idle SMA message.  To be done in response to a notification from
9062  * the 8051.
9063  *
9064  * Returns 0 on success, -EINVAL on error
9065  */
9066 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9067 {
9068         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9069                                  data);
9070 }
9071
9072 /*
9073  * Send an idle LCB message.
9074  *
9075  * Returns 0 on success, -EINVAL on error
9076  */
9077 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9078 {
9079         int ret;
9080
9081         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9082         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9083         if (ret != HCMD_SUCCESS) {
9084                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9085                            data, ret);
9086                 return -EINVAL;
9087         }
9088         return 0;
9089 }
9090
9091 /*
9092  * Send an idle SMA message.
9093  *
9094  * Returns 0 on success, -EINVAL on error
9095  */
9096 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9097 {
9098         u64 data;
9099
9100         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9101                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9102         return send_idle_message(dd, data);
9103 }
9104
9105 /*
9106  * Initialize the LCB then do a quick link up.  This may or may not be
9107  * in loopback.
9108  *
9109  * return 0 on success, -errno on error
9110  */
9111 static int do_quick_linkup(struct hfi1_devdata *dd)
9112 {
9113         int ret;
9114
9115         lcb_shutdown(dd, 0);
9116
9117         if (loopback) {
9118                 /* LCB_CFG_LOOPBACK.VAL = 2 */
9119                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9120                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9121                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9122                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9123         }
9124
9125         /* start the LCBs */
9126         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9127         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9128
9129         /* simulator only loopback steps */
9130         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9131                 /* LCB_CFG_RUN.EN = 1 */
9132                 write_csr(dd, DC_LCB_CFG_RUN,
9133                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9134
9135                 ret = wait_link_transfer_active(dd, 10);
9136                 if (ret)
9137                         return ret;
9138
9139                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9140                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9141         }
9142
9143         if (!loopback) {
9144                 /*
9145                  * When doing quick linkup and not in loopback, both
9146                  * sides must be done with LCB set-up before either
9147                  * starts the quick linkup.  Put a delay here so that
9148                  * both sides can be started and have a chance to be
9149                  * done with LCB set up before resuming.
9150                  */
9151                 dd_dev_err(dd,
9152                            "Pausing for peer to be finished with LCB set up\n");
9153                 msleep(5000);
9154                 dd_dev_err(dd, "Continuing with quick linkup\n");
9155         }
9156
9157         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9158         set_8051_lcb_access(dd);
9159
9160         /*
9161          * State "quick" LinkUp request sets the physical link state to
9162          * LinkUp without a verify capability sequence.
9163          * This state is in simulator v37 and later.
9164          */
9165         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9166         if (ret != HCMD_SUCCESS) {
9167                 dd_dev_err(dd,
9168                            "%s: set physical link state to quick LinkUp failed with return %d\n",
9169                            __func__, ret);
9170
9171                 set_host_lcb_access(dd);
9172                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9173
9174                 if (ret >= 0)
9175                         ret = -EINVAL;
9176                 return ret;
9177         }
9178
9179         return 0; /* success */
9180 }
9181
9182 /*
9183  * Set the SerDes to internal loopback mode.
9184  * Returns 0 on success, -errno on error.
9185  */
9186 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9187 {
9188         int ret;
9189
9190         ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9191         if (ret == HCMD_SUCCESS)
9192                 return 0;
9193         dd_dev_err(dd,
9194                    "Set physical link state to SerDes Loopback failed with return %d\n",
9195                    ret);
9196         if (ret >= 0)
9197                 ret = -EINVAL;
9198         return ret;
9199 }
9200
9201 /*
9202  * Do all special steps to set up loopback.
9203  */
9204 static int init_loopback(struct hfi1_devdata *dd)
9205 {
9206         dd_dev_info(dd, "Entering loopback mode\n");
9207
9208         /* all loopbacks should disable self GUID check */
9209         write_csr(dd, DC_DC8051_CFG_MODE,
9210                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9211
9212         /*
9213          * The simulator has only one loopback option - LCB.  Switch
9214          * to that option, which includes quick link up.
9215          *
9216          * Accept all valid loopback values.
9217          */
9218         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9219             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9220              loopback == LOOPBACK_CABLE)) {
9221                 loopback = LOOPBACK_LCB;
9222                 quick_linkup = 1;
9223                 return 0;
9224         }
9225
9226         /* handle serdes loopback */
9227         if (loopback == LOOPBACK_SERDES) {
9228                 /* internal serdes loopack needs quick linkup on RTL */
9229                 if (dd->icode == ICODE_RTL_SILICON)
9230                         quick_linkup = 1;
9231                 return set_serdes_loopback_mode(dd);
9232         }
9233
9234         /* LCB loopback - handled at poll time */
9235         if (loopback == LOOPBACK_LCB) {
9236                 quick_linkup = 1; /* LCB is always quick linkup */
9237
9238                 /* not supported in emulation due to emulation RTL changes */
9239                 if (dd->icode == ICODE_FPGA_EMULATION) {
9240                         dd_dev_err(dd,
9241                                    "LCB loopback not supported in emulation\n");
9242                         return -EINVAL;
9243                 }
9244                 return 0;
9245         }
9246
9247         /* external cable loopback requires no extra steps */
9248         if (loopback == LOOPBACK_CABLE)
9249                 return 0;
9250
9251         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9252         return -EINVAL;
9253 }
9254
9255 /*
9256  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9257  * used in the Verify Capability link width attribute.
9258  */
9259 static u16 opa_to_vc_link_widths(u16 opa_widths)
9260 {
9261         int i;
9262         u16 result = 0;
9263
9264         static const struct link_bits {
9265                 u16 from;
9266                 u16 to;
9267         } opa_link_xlate[] = {
9268                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9269                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9270                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9271                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9272         };
9273
9274         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9275                 if (opa_widths & opa_link_xlate[i].from)
9276                         result |= opa_link_xlate[i].to;
9277         }
9278         return result;
9279 }
9280
9281 /*
9282  * Set link attributes before moving to polling.
9283  */
9284 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9285 {
9286         struct hfi1_devdata *dd = ppd->dd;
9287         u8 enable_lane_tx;
9288         u8 tx_polarity_inversion;
9289         u8 rx_polarity_inversion;
9290         int ret;
9291
9292         /* reset our fabric serdes to clear any lingering problems */
9293         fabric_serdes_reset(dd);
9294
9295         /* set the local tx rate - need to read-modify-write */
9296         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9297                                &rx_polarity_inversion, &ppd->local_tx_rate);
9298         if (ret)
9299                 goto set_local_link_attributes_fail;
9300
9301         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9302                 /* set the tx rate to the fastest enabled */
9303                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9304                         ppd->local_tx_rate = 1;
9305                 else
9306                         ppd->local_tx_rate = 0;
9307         } else {
9308                 /* set the tx rate to all enabled */
9309                 ppd->local_tx_rate = 0;
9310                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9311                         ppd->local_tx_rate |= 2;
9312                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9313                         ppd->local_tx_rate |= 1;
9314         }
9315
9316         enable_lane_tx = 0xF; /* enable all four lanes */
9317         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9318                                 rx_polarity_inversion, ppd->local_tx_rate);
9319         if (ret != HCMD_SUCCESS)
9320                 goto set_local_link_attributes_fail;
9321
9322         /*
9323          * DC supports continuous updates.
9324          */
9325         ret = write_vc_local_phy(dd,
9326                                  0 /* no power management */,
9327                                  1 /* continuous updates */);
9328         if (ret != HCMD_SUCCESS)
9329                 goto set_local_link_attributes_fail;
9330
9331         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9332         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9333                                     ppd->port_crc_mode_enabled);
9334         if (ret != HCMD_SUCCESS)
9335                 goto set_local_link_attributes_fail;
9336
9337         ret = write_vc_local_link_width(dd, 0, 0,
9338                                         opa_to_vc_link_widths(
9339                                                 ppd->link_width_enabled));
9340         if (ret != HCMD_SUCCESS)
9341                 goto set_local_link_attributes_fail;
9342
9343         /* let peer know who we are */
9344         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9345         if (ret == HCMD_SUCCESS)
9346                 return 0;
9347
9348 set_local_link_attributes_fail:
9349         dd_dev_err(dd,
9350                    "Failed to set local link attributes, return 0x%x\n",
9351                    ret);
9352         return ret;
9353 }
9354
9355 /*
9356  * Call this to start the link.
9357  * Do not do anything if the link is disabled.
9358  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9359  */
9360 int start_link(struct hfi1_pportdata *ppd)
9361 {
9362         /*
9363          * Tune the SerDes to a ballpark setting for optimal signal and bit
9364          * error rate.  Needs to be done before starting the link.
9365          */
9366         tune_serdes(ppd);
9367
9368         if (!ppd->driver_link_ready) {
9369                 dd_dev_info(ppd->dd,
9370                             "%s: stopping link start because driver is not ready\n",
9371                             __func__);
9372                 return 0;
9373         }
9374
9375         /*
9376          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9377          * pkey table can be configured properly if the HFI unit is connected
9378          * to switch port with MgmtAllowed=NO
9379          */
9380         clear_full_mgmt_pkey(ppd);
9381
9382         return set_link_state(ppd, HLS_DN_POLL);
9383 }
9384
9385 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9386 {
9387         struct hfi1_devdata *dd = ppd->dd;
9388         u64 mask;
9389         unsigned long timeout;
9390
9391         /*
9392          * Some QSFP cables have a quirk that asserts the IntN line as a side
9393          * effect of power up on plug-in. We ignore this false positive
9394          * interrupt until the module has finished powering up by waiting for
9395          * a minimum timeout of the module inrush initialization time of
9396          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9397          * module have stabilized.
9398          */
9399         msleep(500);
9400
9401         /*
9402          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9403          */
9404         timeout = jiffies + msecs_to_jiffies(2000);
9405         while (1) {
9406                 mask = read_csr(dd, dd->hfi1_id ?
9407                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9408                 if (!(mask & QSFP_HFI0_INT_N))
9409                         break;
9410                 if (time_after(jiffies, timeout)) {
9411                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9412                                     __func__);
9413                         break;
9414                 }
9415                 udelay(2);
9416         }
9417 }
9418
9419 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9420 {
9421         struct hfi1_devdata *dd = ppd->dd;
9422         u64 mask;
9423
9424         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9425         if (enable) {
9426                 /*
9427                  * Clear the status register to avoid an immediate interrupt
9428                  * when we re-enable the IntN pin
9429                  */
9430                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9431                           QSFP_HFI0_INT_N);
9432                 mask |= (u64)QSFP_HFI0_INT_N;
9433         } else {
9434                 mask &= ~(u64)QSFP_HFI0_INT_N;
9435         }
9436         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9437 }
9438
9439 int reset_qsfp(struct hfi1_pportdata *ppd)
9440 {
9441         struct hfi1_devdata *dd = ppd->dd;
9442         u64 mask, qsfp_mask;
9443
9444         /* Disable INT_N from triggering QSFP interrupts */
9445         set_qsfp_int_n(ppd, 0);
9446
9447         /* Reset the QSFP */
9448         mask = (u64)QSFP_HFI0_RESET_N;
9449
9450         qsfp_mask = read_csr(dd,
9451                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9452         qsfp_mask &= ~mask;
9453         write_csr(dd,
9454                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9455
9456         udelay(10);
9457
9458         qsfp_mask |= mask;
9459         write_csr(dd,
9460                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9461
9462         wait_for_qsfp_init(ppd);
9463
9464         /*
9465          * Allow INT_N to trigger the QSFP interrupt to watch
9466          * for alarms and warnings
9467          */
9468         set_qsfp_int_n(ppd, 1);
9469
9470         /*
9471          * After the reset, AOC transmitters are enabled by default. They need
9472          * to be turned off to complete the QSFP setup before they can be
9473          * enabled again.
9474          */
9475         return set_qsfp_tx(ppd, 0);
9476 }
9477
9478 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9479                                         u8 *qsfp_interrupt_status)
9480 {
9481         struct hfi1_devdata *dd = ppd->dd;
9482
9483         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9484             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9485                 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9486                            __func__);
9487
9488         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9489             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9490                 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9491                            __func__);
9492
9493         /*
9494          * The remaining alarms/warnings don't matter if the link is down.
9495          */
9496         if (ppd->host_link_state & HLS_DOWN)
9497                 return 0;
9498
9499         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9500             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9501                 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9502                            __func__);
9503
9504         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9505             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9506                 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9507                            __func__);
9508
9509         /* Byte 2 is vendor specific */
9510
9511         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9512             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9513                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9514                            __func__);
9515
9516         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9517             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9518                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9519                            __func__);
9520
9521         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9522             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9523                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9524                            __func__);
9525
9526         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9527             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9528                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9529                            __func__);
9530
9531         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9532             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9533                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9534                            __func__);
9535
9536         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9537             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9538                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9539                            __func__);
9540
9541         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9542             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9543                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9544                            __func__);
9545
9546         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9547             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9548                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9549                            __func__);
9550
9551         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9552             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9553                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9554                            __func__);
9555
9556         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9557             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9558                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9559                            __func__);
9560
9561         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9562             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9563                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9564                            __func__);
9565
9566         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9567             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9568                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9569                            __func__);
9570
9571         /* Bytes 9-10 and 11-12 are reserved */
9572         /* Bytes 13-15 are vendor specific */
9573
9574         return 0;
9575 }
9576
9577 /* This routine will only be scheduled if the QSFP module present is asserted */
9578 void qsfp_event(struct work_struct *work)
9579 {
9580         struct qsfp_data *qd;
9581         struct hfi1_pportdata *ppd;
9582         struct hfi1_devdata *dd;
9583
9584         qd = container_of(work, struct qsfp_data, qsfp_work);
9585         ppd = qd->ppd;
9586         dd = ppd->dd;
9587
9588         /* Sanity check */
9589         if (!qsfp_mod_present(ppd))
9590                 return;
9591
9592         if (ppd->host_link_state == HLS_DN_DISABLE) {
9593                 dd_dev_info(ppd->dd,
9594                             "%s: stopping link start because link is disabled\n",
9595                             __func__);
9596                 return;
9597         }
9598
9599         /*
9600          * Turn DC back on after cable has been re-inserted. Up until
9601          * now, the DC has been in reset to save power.
9602          */
9603         dc_start(dd);
9604
9605         if (qd->cache_refresh_required) {
9606                 set_qsfp_int_n(ppd, 0);
9607
9608                 wait_for_qsfp_init(ppd);
9609
9610                 /*
9611                  * Allow INT_N to trigger the QSFP interrupt to watch
9612                  * for alarms and warnings
9613                  */
9614                 set_qsfp_int_n(ppd, 1);
9615
9616                 start_link(ppd);
9617         }
9618
9619         if (qd->check_interrupt_flags) {
9620                 u8 qsfp_interrupt_status[16] = {0,};
9621
9622                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9623                                   &qsfp_interrupt_status[0], 16) != 16) {
9624                         dd_dev_info(dd,
9625                                     "%s: Failed to read status of QSFP module\n",
9626                                     __func__);
9627                 } else {
9628                         unsigned long flags;
9629
9630                         handle_qsfp_error_conditions(
9631                                         ppd, qsfp_interrupt_status);
9632                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9633                         ppd->qsfp_info.check_interrupt_flags = 0;
9634                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9635                                                flags);
9636                 }
9637         }
9638 }
9639
9640 static void init_qsfp_int(struct hfi1_devdata *dd)
9641 {
9642         struct hfi1_pportdata *ppd = dd->pport;
9643         u64 qsfp_mask, cce_int_mask;
9644         const int qsfp1_int_smask = QSFP1_INT % 64;
9645         const int qsfp2_int_smask = QSFP2_INT % 64;
9646
9647         /*
9648          * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9649          * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9650          * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9651          * the index of the appropriate CSR in the CCEIntMask CSR array
9652          */
9653         cce_int_mask = read_csr(dd, CCE_INT_MASK +
9654                                 (8 * (QSFP1_INT / 64)));
9655         if (dd->hfi1_id) {
9656                 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9657                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9658                           cce_int_mask);
9659         } else {
9660                 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9661                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9662                           cce_int_mask);
9663         }
9664
9665         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9666         /* Clear current status to avoid spurious interrupts */
9667         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9668                   qsfp_mask);
9669         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9670                   qsfp_mask);
9671
9672         set_qsfp_int_n(ppd, 0);
9673
9674         /* Handle active low nature of INT_N and MODPRST_N pins */
9675         if (qsfp_mod_present(ppd))
9676                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9677         write_csr(dd,
9678                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9679                   qsfp_mask);
9680 }
9681
9682 /*
9683  * Do a one-time initialize of the LCB block.
9684  */
9685 static void init_lcb(struct hfi1_devdata *dd)
9686 {
9687         /* simulator does not correctly handle LCB cclk loopback, skip */
9688         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9689                 return;
9690
9691         /* the DC has been reset earlier in the driver load */
9692
9693         /* set LCB for cclk loopback on the port */
9694         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9695         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9696         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9697         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9698         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9699         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9700         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9701 }
9702
9703 /*
9704  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9705  * on error.
9706  */
9707 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9708 {
9709         int ret;
9710         u8 status;
9711
9712         /*
9713          * Report success if not a QSFP or, if it is a QSFP, but the cable is
9714          * not present
9715          */
9716         if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9717                 return 0;
9718
9719         /* read byte 2, the status byte */
9720         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9721         if (ret < 0)
9722                 return ret;
9723         if (ret != 1)
9724                 return -EIO;
9725
9726         return 0; /* success */
9727 }
9728
9729 /*
9730  * Values for QSFP retry.
9731  *
9732  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9733  * arrived at from experience on a large cluster.
9734  */
9735 #define MAX_QSFP_RETRIES 20
9736 #define QSFP_RETRY_WAIT 500 /* msec */
9737
9738 /*
9739  * Try a QSFP read.  If it fails, schedule a retry for later.
9740  * Called on first link activation after driver load.
9741  */
9742 static void try_start_link(struct hfi1_pportdata *ppd)
9743 {
9744         if (test_qsfp_read(ppd)) {
9745                 /* read failed */
9746                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9747                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9748                         return;
9749                 }
9750                 dd_dev_info(ppd->dd,
9751                             "QSFP not responding, waiting and retrying %d\n",
9752                             (int)ppd->qsfp_retry_count);
9753                 ppd->qsfp_retry_count++;
9754                 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9755                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9756                 return;
9757         }
9758         ppd->qsfp_retry_count = 0;
9759
9760         start_link(ppd);
9761 }
9762
9763 /*
9764  * Workqueue function to start the link after a delay.
9765  */
9766 void handle_start_link(struct work_struct *work)
9767 {
9768         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9769                                                   start_link_work.work);
9770         try_start_link(ppd);
9771 }
9772
9773 int bringup_serdes(struct hfi1_pportdata *ppd)
9774 {
9775         struct hfi1_devdata *dd = ppd->dd;
9776         u64 guid;
9777         int ret;
9778
9779         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9780                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9781
9782         guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9783         if (!guid) {
9784                 if (dd->base_guid)
9785                         guid = dd->base_guid + ppd->port - 1;
9786                 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9787         }
9788
9789         /* Set linkinit_reason on power up per OPA spec */
9790         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9791
9792         /* one-time init of the LCB */
9793         init_lcb(dd);
9794
9795         if (loopback) {
9796                 ret = init_loopback(dd);
9797                 if (ret < 0)
9798                         return ret;
9799         }
9800
9801         get_port_type(ppd);
9802         if (ppd->port_type == PORT_TYPE_QSFP) {
9803                 set_qsfp_int_n(ppd, 0);
9804                 wait_for_qsfp_init(ppd);
9805                 set_qsfp_int_n(ppd, 1);
9806         }
9807
9808         try_start_link(ppd);
9809         return 0;
9810 }
9811
9812 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9813 {
9814         struct hfi1_devdata *dd = ppd->dd;
9815
9816         /*
9817          * Shut down the link and keep it down.   First turn off that the
9818          * driver wants to allow the link to be up (driver_link_ready).
9819          * Then make sure the link is not automatically restarted
9820          * (link_enabled).  Cancel any pending restart.  And finally
9821          * go offline.
9822          */
9823         ppd->driver_link_ready = 0;
9824         ppd->link_enabled = 0;
9825
9826         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9827         flush_delayed_work(&ppd->start_link_work);
9828         cancel_delayed_work_sync(&ppd->start_link_work);
9829
9830         ppd->offline_disabled_reason =
9831                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9832         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9833                              OPA_LINKDOWN_REASON_SMA_DISABLED);
9834         set_link_state(ppd, HLS_DN_OFFLINE);
9835
9836         /* disable the port */
9837         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9838         cancel_work_sync(&ppd->freeze_work);
9839 }
9840
9841 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9842 {
9843         struct hfi1_pportdata *ppd;
9844         int i;
9845
9846         ppd = (struct hfi1_pportdata *)(dd + 1);
9847         for (i = 0; i < dd->num_pports; i++, ppd++) {
9848                 ppd->ibport_data.rvp.rc_acks = NULL;
9849                 ppd->ibport_data.rvp.rc_qacks = NULL;
9850                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9851                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9852                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9853                 if (!ppd->ibport_data.rvp.rc_acks ||
9854                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9855                     !ppd->ibport_data.rvp.rc_qacks)
9856                         return -ENOMEM;
9857         }
9858
9859         return 0;
9860 }
9861
9862 /*
9863  * index is the index into the receive array
9864  */
9865 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9866                   u32 type, unsigned long pa, u16 order)
9867 {
9868         u64 reg;
9869
9870         if (!(dd->flags & HFI1_PRESENT))
9871                 goto done;
9872
9873         if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9874                 pa = 0;
9875                 order = 0;
9876         } else if (type > PT_INVALID) {
9877                 dd_dev_err(dd,
9878                            "unexpected receive array type %u for index %u, not handled\n",
9879                            type, index);
9880                 goto done;
9881         }
9882         trace_hfi1_put_tid(dd, index, type, pa, order);
9883
9884 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9885         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9886                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9887                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9888                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9889         trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9890         writeq(reg, dd->rcvarray_wc + (index * 8));
9891
9892         if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9893                 /*
9894                  * Eager entries are written and flushed
9895                  *
9896                  * Expected entries are flushed every 4 writes
9897                  */
9898                 flush_wc();
9899 done:
9900         return;
9901 }
9902
9903 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9904 {
9905         struct hfi1_devdata *dd = rcd->dd;
9906         u32 i;
9907
9908         /* this could be optimized */
9909         for (i = rcd->eager_base; i < rcd->eager_base +
9910                      rcd->egrbufs.alloced; i++)
9911                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9912
9913         for (i = rcd->expected_base;
9914                         i < rcd->expected_base + rcd->expected_count; i++)
9915                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9916 }
9917
9918 static const char * const ib_cfg_name_strings[] = {
9919         "HFI1_IB_CFG_LIDLMC",
9920         "HFI1_IB_CFG_LWID_DG_ENB",
9921         "HFI1_IB_CFG_LWID_ENB",
9922         "HFI1_IB_CFG_LWID",
9923         "HFI1_IB_CFG_SPD_ENB",
9924         "HFI1_IB_CFG_SPD",
9925         "HFI1_IB_CFG_RXPOL_ENB",
9926         "HFI1_IB_CFG_LREV_ENB",
9927         "HFI1_IB_CFG_LINKLATENCY",
9928         "HFI1_IB_CFG_HRTBT",
9929         "HFI1_IB_CFG_OP_VLS",
9930         "HFI1_IB_CFG_VL_HIGH_CAP",
9931         "HFI1_IB_CFG_VL_LOW_CAP",
9932         "HFI1_IB_CFG_OVERRUN_THRESH",
9933         "HFI1_IB_CFG_PHYERR_THRESH",
9934         "HFI1_IB_CFG_LINKDEFAULT",
9935         "HFI1_IB_CFG_PKEYS",
9936         "HFI1_IB_CFG_MTU",
9937         "HFI1_IB_CFG_LSTATE",
9938         "HFI1_IB_CFG_VL_HIGH_LIMIT",
9939         "HFI1_IB_CFG_PMA_TICKS",
9940         "HFI1_IB_CFG_PORT"
9941 };
9942
9943 static const char *ib_cfg_name(int which)
9944 {
9945         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9946                 return "invalid";
9947         return ib_cfg_name_strings[which];
9948 }
9949
9950 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9951 {
9952         struct hfi1_devdata *dd = ppd->dd;
9953         int val = 0;
9954
9955         switch (which) {
9956         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9957                 val = ppd->link_width_enabled;
9958                 break;
9959         case HFI1_IB_CFG_LWID: /* currently active Link-width */
9960                 val = ppd->link_width_active;
9961                 break;
9962         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9963                 val = ppd->link_speed_enabled;
9964                 break;
9965         case HFI1_IB_CFG_SPD: /* current Link speed */
9966                 val = ppd->link_speed_active;
9967                 break;
9968
9969         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9970         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9971         case HFI1_IB_CFG_LINKLATENCY:
9972                 goto unimplemented;
9973
9974         case HFI1_IB_CFG_OP_VLS:
9975                 val = ppd->actual_vls_operational;
9976                 break;
9977         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9978                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9979                 break;
9980         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9981                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9982                 break;
9983         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9984                 val = ppd->overrun_threshold;
9985                 break;
9986         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9987                 val = ppd->phy_error_threshold;
9988                 break;
9989         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9990                 val = dd->link_default;
9991                 break;
9992
9993         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9994         case HFI1_IB_CFG_PMA_TICKS:
9995         default:
9996 unimplemented:
9997                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9998                         dd_dev_info(
9999                                 dd,
10000                                 "%s: which %s: not implemented\n",
10001                                 __func__,
10002                                 ib_cfg_name(which));
10003                 break;
10004         }
10005
10006         return val;
10007 }
10008
10009 /*
10010  * The largest MAD packet size.
10011  */
10012 #define MAX_MAD_PACKET 2048
10013
10014 /*
10015  * Return the maximum header bytes that can go on the _wire_
10016  * for this device. This count includes the ICRC which is
10017  * not part of the packet held in memory but it is appended
10018  * by the HW.
10019  * This is dependent on the device's receive header entry size.
10020  * HFI allows this to be set per-receive context, but the
10021  * driver presently enforces a global value.
10022  */
10023 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10024 {
10025         /*
10026          * The maximum non-payload (MTU) bytes in LRH.PktLen are
10027          * the Receive Header Entry Size minus the PBC (or RHF) size
10028          * plus one DW for the ICRC appended by HW.
10029          *
10030          * dd->rcd[0].rcvhdrqentsize is in DW.
10031          * We use rcd[0] as all context will have the same value. Also,
10032          * the first kernel context would have been allocated by now so
10033          * we are guaranteed a valid value.
10034          */
10035         return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10036 }
10037
10038 /*
10039  * Set Send Length
10040  * @ppd - per port data
10041  *
10042  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10043  * registers compare against LRH.PktLen, so use the max bytes included
10044  * in the LRH.
10045  *
10046  * This routine changes all VL values except VL15, which it maintains at
10047  * the same value.
10048  */
10049 static void set_send_length(struct hfi1_pportdata *ppd)
10050 {
10051         struct hfi1_devdata *dd = ppd->dd;
10052         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10053         u32 maxvlmtu = dd->vld[15].mtu;
10054         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10055                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10056                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10057         int i, j;
10058         u32 thres;
10059
10060         for (i = 0; i < ppd->vls_supported; i++) {
10061                 if (dd->vld[i].mtu > maxvlmtu)
10062                         maxvlmtu = dd->vld[i].mtu;
10063                 if (i <= 3)
10064                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10065                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10066                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10067                 else
10068                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10069                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10070                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10071         }
10072         write_csr(dd, SEND_LEN_CHECK0, len1);
10073         write_csr(dd, SEND_LEN_CHECK1, len2);
10074         /* adjust kernel credit return thresholds based on new MTUs */
10075         /* all kernel receive contexts have the same hdrqentsize */
10076         for (i = 0; i < ppd->vls_supported; i++) {
10077                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10078                             sc_mtu_to_threshold(dd->vld[i].sc,
10079                                                 dd->vld[i].mtu,
10080                                                 dd->rcd[0]->rcvhdrqentsize));
10081                 for (j = 0; j < INIT_SC_PER_VL; j++)
10082                         sc_set_cr_threshold(
10083                                         pio_select_send_context_vl(dd, j, i),
10084                                             thres);
10085         }
10086         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10087                     sc_mtu_to_threshold(dd->vld[15].sc,
10088                                         dd->vld[15].mtu,
10089                                         dd->rcd[0]->rcvhdrqentsize));
10090         sc_set_cr_threshold(dd->vld[15].sc, thres);
10091
10092         /* Adjust maximum MTU for the port in DC */
10093         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10094                 (ilog2(maxvlmtu >> 8) + 1);
10095         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10096         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10097         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10098                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10099         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10100 }
10101
10102 static void set_lidlmc(struct hfi1_pportdata *ppd)
10103 {
10104         int i;
10105         u64 sreg = 0;
10106         struct hfi1_devdata *dd = ppd->dd;
10107         u32 mask = ~((1U << ppd->lmc) - 1);
10108         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10109         u32 lid;
10110
10111         /*
10112          * Program 0 in CSR if port lid is extended. This prevents
10113          * 9B packets being sent out for large lids.
10114          */
10115         lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10116         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10117                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10118         c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10119                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10120               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10121                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10122         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10123
10124         /*
10125          * Iterate over all the send contexts and set their SLID check
10126          */
10127         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10128                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10129                (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10130                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10131
10132         for (i = 0; i < dd->chip_send_contexts; i++) {
10133                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10134                           i, (u32)sreg);
10135                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10136         }
10137
10138         /* Now we have to do the same thing for the sdma engines */
10139         sdma_update_lmc(dd, mask, lid);
10140 }
10141
10142 static const char *state_completed_string(u32 completed)
10143 {
10144         static const char * const state_completed[] = {
10145                 "EstablishComm",
10146                 "OptimizeEQ",
10147                 "VerifyCap"
10148         };
10149
10150         if (completed < ARRAY_SIZE(state_completed))
10151                 return state_completed[completed];
10152
10153         return "unknown";
10154 }
10155
10156 static const char all_lanes_dead_timeout_expired[] =
10157         "All lanes were inactive â€“ was the interconnect media removed?";
10158 static const char tx_out_of_policy[] =
10159         "Passing lanes on local port do not meet the local link width policy";
10160 static const char no_state_complete[] =
10161         "State timeout occurred before link partner completed the state";
10162 static const char * const state_complete_reasons[] = {
10163         [0x00] = "Reason unknown",
10164         [0x01] = "Link was halted by driver, refer to LinkDownReason",
10165         [0x02] = "Link partner reported failure",
10166         [0x10] = "Unable to achieve frame sync on any lane",
10167         [0x11] =
10168           "Unable to find a common bit rate with the link partner",
10169         [0x12] =
10170           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10171         [0x13] =
10172           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10173         [0x14] = no_state_complete,
10174         [0x15] =
10175           "State timeout occurred before link partner identified equalization presets",
10176         [0x16] =
10177           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10178         [0x17] = tx_out_of_policy,
10179         [0x20] = all_lanes_dead_timeout_expired,
10180         [0x21] =
10181           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10182         [0x22] = no_state_complete,
10183         [0x23] =
10184           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10185         [0x24] = tx_out_of_policy,
10186         [0x30] = all_lanes_dead_timeout_expired,
10187         [0x31] =
10188           "State timeout occurred waiting for host to process received frames",
10189         [0x32] = no_state_complete,
10190         [0x33] =
10191           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10192         [0x34] = tx_out_of_policy,
10193 };
10194
10195 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10196                                                      u32 code)
10197 {
10198         const char *str = NULL;
10199
10200         if (code < ARRAY_SIZE(state_complete_reasons))
10201                 str = state_complete_reasons[code];
10202
10203         if (str)
10204                 return str;
10205         return "Reserved";
10206 }
10207
10208 /* describe the given last state complete frame */
10209 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10210                                   const char *prefix)
10211 {
10212         struct hfi1_devdata *dd = ppd->dd;
10213         u32 success;
10214         u32 state;
10215         u32 reason;
10216         u32 lanes;
10217
10218         /*
10219          * Decode frame:
10220          *  [ 0: 0] - success
10221          *  [ 3: 1] - state
10222          *  [ 7: 4] - next state timeout
10223          *  [15: 8] - reason code
10224          *  [31:16] - lanes
10225          */
10226         success = frame & 0x1;
10227         state = (frame >> 1) & 0x7;
10228         reason = (frame >> 8) & 0xff;
10229         lanes = (frame >> 16) & 0xffff;
10230
10231         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10232                    prefix, frame);
10233         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10234                    state_completed_string(state), state);
10235         dd_dev_err(dd, "    state successfully completed: %s\n",
10236                    success ? "yes" : "no");
10237         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10238                    reason, state_complete_reason_code_string(ppd, reason));
10239         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10240 }
10241
10242 /*
10243  * Read the last state complete frames and explain them.  This routine
10244  * expects to be called if the link went down during link negotiation
10245  * and initialization (LNI).  That is, anywhere between polling and link up.
10246  */
10247 static void check_lni_states(struct hfi1_pportdata *ppd)
10248 {
10249         u32 last_local_state;
10250         u32 last_remote_state;
10251
10252         read_last_local_state(ppd->dd, &last_local_state);
10253         read_last_remote_state(ppd->dd, &last_remote_state);
10254
10255         /*
10256          * Don't report anything if there is nothing to report.  A value of
10257          * 0 means the link was taken down while polling and there was no
10258          * training in-process.
10259          */
10260         if (last_local_state == 0 && last_remote_state == 0)
10261                 return;
10262
10263         decode_state_complete(ppd, last_local_state, "transmitted");
10264         decode_state_complete(ppd, last_remote_state, "received");
10265 }
10266
10267 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10268 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10269 {
10270         u64 reg;
10271         unsigned long timeout;
10272
10273         /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10274         timeout = jiffies + msecs_to_jiffies(wait_ms);
10275         while (1) {
10276                 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10277                 if (reg)
10278                         break;
10279                 if (time_after(jiffies, timeout)) {
10280                         dd_dev_err(dd,
10281                                    "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10282                         return -ETIMEDOUT;
10283                 }
10284                 udelay(2);
10285         }
10286         return 0;
10287 }
10288
10289 /* called when the logical link state is not down as it should be */
10290 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10291 {
10292         struct hfi1_devdata *dd = ppd->dd;
10293
10294         /*
10295          * Bring link up in LCB loopback
10296          */
10297         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10298         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10299                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10300
10301         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10302         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10303         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10304         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10305
10306         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10307         (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10308         udelay(3);
10309         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10310         write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10311
10312         wait_link_transfer_active(dd, 100);
10313
10314         /*
10315          * Bring the link down again.
10316          */
10317         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10318         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10319         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10320
10321         /* adjust ppd->statusp, if needed */
10322         update_statusp(ppd, IB_PORT_DOWN);
10323
10324         dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10325 }
10326
10327 /*
10328  * Helper for set_link_state().  Do not call except from that routine.
10329  * Expects ppd->hls_mutex to be held.
10330  *
10331  * @rem_reason value to be sent to the neighbor
10332  *
10333  * LinkDownReasons only set if transition succeeds.
10334  */
10335 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10336 {
10337         struct hfi1_devdata *dd = ppd->dd;
10338         u32 previous_state;
10339         int offline_state_ret;
10340         int ret;
10341
10342         update_lcb_cache(dd);
10343
10344         previous_state = ppd->host_link_state;
10345         ppd->host_link_state = HLS_GOING_OFFLINE;
10346
10347         /* start offline transition */
10348         ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10349
10350         if (ret != HCMD_SUCCESS) {
10351                 dd_dev_err(dd,
10352                            "Failed to transition to Offline link state, return %d\n",
10353                            ret);
10354                 return -EINVAL;
10355         }
10356         if (ppd->offline_disabled_reason ==
10357                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10358                 ppd->offline_disabled_reason =
10359                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10360
10361         offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10362         if (offline_state_ret < 0)
10363                 return offline_state_ret;
10364
10365         /* Disabling AOC transmitters */
10366         if (ppd->port_type == PORT_TYPE_QSFP &&
10367             ppd->qsfp_info.limiting_active &&
10368             qsfp_mod_present(ppd)) {
10369                 int ret;
10370
10371                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10372                 if (ret == 0) {
10373                         set_qsfp_tx(ppd, 0);
10374                         release_chip_resource(dd, qsfp_resource(dd));
10375                 } else {
10376                         /* not fatal, but should warn */
10377                         dd_dev_err(dd,
10378                                    "Unable to acquire lock to turn off QSFP TX\n");
10379                 }
10380         }
10381
10382         /*
10383          * Wait for the offline.Quiet transition if it hasn't happened yet. It
10384          * can take a while for the link to go down.
10385          */
10386         if (offline_state_ret != PLS_OFFLINE_QUIET) {
10387                 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10388                 if (ret < 0)
10389                         return ret;
10390         }
10391
10392         /*
10393          * Now in charge of LCB - must be after the physical state is
10394          * offline.quiet and before host_link_state is changed.
10395          */
10396         set_host_lcb_access(dd);
10397         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10398
10399         /* make sure the logical state is also down */
10400         ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10401         if (ret)
10402                 force_logical_link_state_down(ppd);
10403
10404         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10405
10406         /*
10407          * The LNI has a mandatory wait time after the physical state
10408          * moves to Offline.Quiet.  The wait time may be different
10409          * depending on how the link went down.  The 8051 firmware
10410          * will observe the needed wait time and only move to ready
10411          * when that is completed.  The largest of the quiet timeouts
10412          * is 6s, so wait that long and then at least 0.5s more for
10413          * other transitions, and another 0.5s for a buffer.
10414          */
10415         ret = wait_fm_ready(dd, 7000);
10416         if (ret) {
10417                 dd_dev_err(dd,
10418                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10419                 /* state is really offline, so make it so */
10420                 ppd->host_link_state = HLS_DN_OFFLINE;
10421                 return ret;
10422         }
10423
10424         /*
10425          * The state is now offline and the 8051 is ready to accept host
10426          * requests.
10427          *      - change our state
10428          *      - notify others if we were previously in a linkup state
10429          */
10430         ppd->host_link_state = HLS_DN_OFFLINE;
10431         if (previous_state & HLS_UP) {
10432                 /* went down while link was up */
10433                 handle_linkup_change(dd, 0);
10434         } else if (previous_state
10435                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10436                 /* went down while attempting link up */
10437                 check_lni_states(ppd);
10438
10439                 /* The QSFP doesn't need to be reset on LNI failure */
10440                 ppd->qsfp_info.reset_needed = 0;
10441         }
10442
10443         /* the active link width (downgrade) is 0 on link down */
10444         ppd->link_width_active = 0;
10445         ppd->link_width_downgrade_tx_active = 0;
10446         ppd->link_width_downgrade_rx_active = 0;
10447         ppd->current_egress_rate = 0;
10448         return 0;
10449 }
10450
10451 /* return the link state name */
10452 static const char *link_state_name(u32 state)
10453 {
10454         const char *name;
10455         int n = ilog2(state);
10456         static const char * const names[] = {
10457                 [__HLS_UP_INIT_BP]       = "INIT",
10458                 [__HLS_UP_ARMED_BP]      = "ARMED",
10459                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10460                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10461                 [__HLS_DN_POLL_BP]       = "POLL",
10462                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10463                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10464                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10465                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10466                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10467                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10468         };
10469
10470         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10471         return name ? name : "unknown";
10472 }
10473
10474 /* return the link state reason name */
10475 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10476 {
10477         if (state == HLS_UP_INIT) {
10478                 switch (ppd->linkinit_reason) {
10479                 case OPA_LINKINIT_REASON_LINKUP:
10480                         return "(LINKUP)";
10481                 case OPA_LINKINIT_REASON_FLAPPING:
10482                         return "(FLAPPING)";
10483                 case OPA_LINKINIT_OUTSIDE_POLICY:
10484                         return "(OUTSIDE_POLICY)";
10485                 case OPA_LINKINIT_QUARANTINED:
10486                         return "(QUARANTINED)";
10487                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10488                         return "(INSUFIC_CAPABILITY)";
10489                 default:
10490                         break;
10491                 }
10492         }
10493         return "";
10494 }
10495
10496 /*
10497  * driver_pstate - convert the driver's notion of a port's
10498  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10499  * Return -1 (converted to a u32) to indicate error.
10500  */
10501 u32 driver_pstate(struct hfi1_pportdata *ppd)
10502 {
10503         switch (ppd->host_link_state) {
10504         case HLS_UP_INIT:
10505         case HLS_UP_ARMED:
10506         case HLS_UP_ACTIVE:
10507                 return IB_PORTPHYSSTATE_LINKUP;
10508         case HLS_DN_POLL:
10509                 return IB_PORTPHYSSTATE_POLLING;
10510         case HLS_DN_DISABLE:
10511                 return IB_PORTPHYSSTATE_DISABLED;
10512         case HLS_DN_OFFLINE:
10513                 return OPA_PORTPHYSSTATE_OFFLINE;
10514         case HLS_VERIFY_CAP:
10515                 return IB_PORTPHYSSTATE_POLLING;
10516         case HLS_GOING_UP:
10517                 return IB_PORTPHYSSTATE_POLLING;
10518         case HLS_GOING_OFFLINE:
10519                 return OPA_PORTPHYSSTATE_OFFLINE;
10520         case HLS_LINK_COOLDOWN:
10521                 return OPA_PORTPHYSSTATE_OFFLINE;
10522         case HLS_DN_DOWNDEF:
10523         default:
10524                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10525                            ppd->host_link_state);
10526                 return  -1;
10527         }
10528 }
10529
10530 /*
10531  * driver_lstate - convert the driver's notion of a port's
10532  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10533  * (converted to a u32) to indicate error.
10534  */
10535 u32 driver_lstate(struct hfi1_pportdata *ppd)
10536 {
10537         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10538                 return IB_PORT_DOWN;
10539
10540         switch (ppd->host_link_state & HLS_UP) {
10541         case HLS_UP_INIT:
10542                 return IB_PORT_INIT;
10543         case HLS_UP_ARMED:
10544                 return IB_PORT_ARMED;
10545         case HLS_UP_ACTIVE:
10546                 return IB_PORT_ACTIVE;
10547         default:
10548                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10549                            ppd->host_link_state);
10550         return -1;
10551         }
10552 }
10553
10554 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10555                           u8 neigh_reason, u8 rem_reason)
10556 {
10557         if (ppd->local_link_down_reason.latest == 0 &&
10558             ppd->neigh_link_down_reason.latest == 0) {
10559                 ppd->local_link_down_reason.latest = lcl_reason;
10560                 ppd->neigh_link_down_reason.latest = neigh_reason;
10561                 ppd->remote_link_down_reason = rem_reason;
10562         }
10563 }
10564
10565 /**
10566  * data_vls_operational() - Verify if data VL BCT credits and MTU
10567  *                          are both set.
10568  * @ppd: pointer to hfi1_pportdata structure
10569  *
10570  * Return: true - Ok, false -otherwise.
10571  */
10572 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10573 {
10574         int i;
10575         u64 reg;
10576
10577         if (!ppd->actual_vls_operational)
10578                 return false;
10579
10580         for (i = 0; i < ppd->vls_supported; i++) {
10581                 reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10582                 if ((reg && !ppd->dd->vld[i].mtu) ||
10583                     (!reg && ppd->dd->vld[i].mtu))
10584                         return false;
10585         }
10586
10587         return true;
10588 }
10589
10590 /*
10591  * Change the physical and/or logical link state.
10592  *
10593  * Do not call this routine while inside an interrupt.  It contains
10594  * calls to routines that can take multiple seconds to finish.
10595  *
10596  * Returns 0 on success, -errno on failure.
10597  */
10598 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10599 {
10600         struct hfi1_devdata *dd = ppd->dd;
10601         struct ib_event event = {.device = NULL};
10602         int ret1, ret = 0;
10603         int orig_new_state, poll_bounce;
10604
10605         mutex_lock(&ppd->hls_lock);
10606
10607         orig_new_state = state;
10608         if (state == HLS_DN_DOWNDEF)
10609                 state = dd->link_default;
10610
10611         /* interpret poll -> poll as a link bounce */
10612         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10613                       state == HLS_DN_POLL;
10614
10615         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10616                     link_state_name(ppd->host_link_state),
10617                     link_state_name(orig_new_state),
10618                     poll_bounce ? "(bounce) " : "",
10619                     link_state_reason_name(ppd, state));
10620
10621         /*
10622          * If we're going to a (HLS_*) link state that implies the logical
10623          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10624          * reset is_sm_config_started to 0.
10625          */
10626         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10627                 ppd->is_sm_config_started = 0;
10628
10629         /*
10630          * Do nothing if the states match.  Let a poll to poll link bounce
10631          * go through.
10632          */
10633         if (ppd->host_link_state == state && !poll_bounce)
10634                 goto done;
10635
10636         switch (state) {
10637         case HLS_UP_INIT:
10638                 if (ppd->host_link_state == HLS_DN_POLL &&
10639                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10640                         /*
10641                          * Quick link up jumps from polling to here.
10642                          *
10643                          * Whether in normal or loopback mode, the
10644                          * simulator jumps from polling to link up.
10645                          * Accept that here.
10646                          */
10647                         /* OK */
10648                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10649                         goto unexpected;
10650                 }
10651
10652                 /*
10653                  * Wait for Link_Up physical state.
10654                  * Physical and Logical states should already be
10655                  * be transitioned to LinkUp and LinkInit respectively.
10656                  */
10657                 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10658                 if (ret) {
10659                         dd_dev_err(dd,
10660                                    "%s: physical state did not change to LINK-UP\n",
10661                                    __func__);
10662                         break;
10663                 }
10664
10665                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10666                 if (ret) {
10667                         dd_dev_err(dd,
10668                                    "%s: logical state did not change to INIT\n",
10669                                    __func__);
10670                         break;
10671                 }
10672
10673                 /* clear old transient LINKINIT_REASON code */
10674                 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10675                         ppd->linkinit_reason =
10676                                 OPA_LINKINIT_REASON_LINKUP;
10677
10678                 /* enable the port */
10679                 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10680
10681                 handle_linkup_change(dd, 1);
10682                 pio_kernel_linkup(dd);
10683
10684                 ppd->host_link_state = HLS_UP_INIT;
10685                 break;
10686         case HLS_UP_ARMED:
10687                 if (ppd->host_link_state != HLS_UP_INIT)
10688                         goto unexpected;
10689
10690                 if (!data_vls_operational(ppd)) {
10691                         dd_dev_err(dd,
10692                                    "%s: Invalid data VL credits or mtu\n",
10693                                    __func__);
10694                         ret = -EINVAL;
10695                         break;
10696                 }
10697
10698                 set_logical_state(dd, LSTATE_ARMED);
10699                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10700                 if (ret) {
10701                         dd_dev_err(dd,
10702                                    "%s: logical state did not change to ARMED\n",
10703                                    __func__);
10704                         break;
10705                 }
10706                 ppd->host_link_state = HLS_UP_ARMED;
10707                 /*
10708                  * The simulator does not currently implement SMA messages,
10709                  * so neighbor_normal is not set.  Set it here when we first
10710                  * move to Armed.
10711                  */
10712                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10713                         ppd->neighbor_normal = 1;
10714                 break;
10715         case HLS_UP_ACTIVE:
10716                 if (ppd->host_link_state != HLS_UP_ARMED)
10717                         goto unexpected;
10718
10719                 set_logical_state(dd, LSTATE_ACTIVE);
10720                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10721                 if (ret) {
10722                         dd_dev_err(dd,
10723                                    "%s: logical state did not change to ACTIVE\n",
10724                                    __func__);
10725                 } else {
10726                         /* tell all engines to go running */
10727                         sdma_all_running(dd);
10728                         ppd->host_link_state = HLS_UP_ACTIVE;
10729
10730                         /* Signal the IB layer that the port has went active */
10731                         event.device = &dd->verbs_dev.rdi.ibdev;
10732                         event.element.port_num = ppd->port;
10733                         event.event = IB_EVENT_PORT_ACTIVE;
10734                 }
10735                 break;
10736         case HLS_DN_POLL:
10737                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10738                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10739                     dd->dc_shutdown)
10740                         dc_start(dd);
10741                 /* Hand LED control to the DC */
10742                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10743
10744                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10745                         u8 tmp = ppd->link_enabled;
10746
10747                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10748                         if (ret) {
10749                                 ppd->link_enabled = tmp;
10750                                 break;
10751                         }
10752                         ppd->remote_link_down_reason = 0;
10753
10754                         if (ppd->driver_link_ready)
10755                                 ppd->link_enabled = 1;
10756                 }
10757
10758                 set_all_slowpath(ppd->dd);
10759                 ret = set_local_link_attributes(ppd);
10760                 if (ret)
10761                         break;
10762
10763                 ppd->port_error_action = 0;
10764
10765                 if (quick_linkup) {
10766                         /* quick linkup does not go into polling */
10767                         ret = do_quick_linkup(dd);
10768                 } else {
10769                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10770                         if (!ret1)
10771                                 ret1 = wait_phys_link_out_of_offline(ppd,
10772                                                                      3000);
10773                         if (ret1 != HCMD_SUCCESS) {
10774                                 dd_dev_err(dd,
10775                                            "Failed to transition to Polling link state, return 0x%x\n",
10776                                            ret1);
10777                                 ret = -EINVAL;
10778                         }
10779                 }
10780
10781                 /*
10782                  * Change the host link state after requesting DC8051 to
10783                  * change its physical state so that we can ignore any
10784                  * interrupt with stale LNI(XX) error, which will not be
10785                  * cleared until DC8051 transitions to Polling state.
10786                  */
10787                 ppd->host_link_state = HLS_DN_POLL;
10788                 ppd->offline_disabled_reason =
10789                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10790                 /*
10791                  * If an error occurred above, go back to offline.  The
10792                  * caller may reschedule another attempt.
10793                  */
10794                 if (ret)
10795                         goto_offline(ppd, 0);
10796                 else
10797                         log_physical_state(ppd, PLS_POLLING);
10798                 break;
10799         case HLS_DN_DISABLE:
10800                 /* link is disabled */
10801                 ppd->link_enabled = 0;
10802
10803                 /* allow any state to transition to disabled */
10804
10805                 /* must transition to offline first */
10806                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10807                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10808                         if (ret)
10809                                 break;
10810                         ppd->remote_link_down_reason = 0;
10811                 }
10812
10813                 if (!dd->dc_shutdown) {
10814                         ret1 = set_physical_link_state(dd, PLS_DISABLED);
10815                         if (ret1 != HCMD_SUCCESS) {
10816                                 dd_dev_err(dd,
10817                                            "Failed to transition to Disabled link state, return 0x%x\n",
10818                                            ret1);
10819                                 ret = -EINVAL;
10820                                 break;
10821                         }
10822                         ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10823                         if (ret) {
10824                                 dd_dev_err(dd,
10825                                            "%s: physical state did not change to DISABLED\n",
10826                                            __func__);
10827                                 break;
10828                         }
10829                         dc_shutdown(dd);
10830                 }
10831                 ppd->host_link_state = HLS_DN_DISABLE;
10832                 break;
10833         case HLS_DN_OFFLINE:
10834                 if (ppd->host_link_state == HLS_DN_DISABLE)
10835                         dc_start(dd);
10836
10837                 /* allow any state to transition to offline */
10838                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10839                 if (!ret)
10840                         ppd->remote_link_down_reason = 0;
10841                 break;
10842         case HLS_VERIFY_CAP:
10843                 if (ppd->host_link_state != HLS_DN_POLL)
10844                         goto unexpected;
10845                 ppd->host_link_state = HLS_VERIFY_CAP;
10846                 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10847                 break;
10848         case HLS_GOING_UP:
10849                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10850                         goto unexpected;
10851
10852                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10853                 if (ret1 != HCMD_SUCCESS) {
10854                         dd_dev_err(dd,
10855                                    "Failed to transition to link up state, return 0x%x\n",
10856                                    ret1);
10857                         ret = -EINVAL;
10858                         break;
10859                 }
10860                 ppd->host_link_state = HLS_GOING_UP;
10861                 break;
10862
10863         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10864         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10865         default:
10866                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10867                             __func__, state);
10868                 ret = -EINVAL;
10869                 break;
10870         }
10871
10872         goto done;
10873
10874 unexpected:
10875         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10876                    __func__, link_state_name(ppd->host_link_state),
10877                    link_state_name(state));
10878         ret = -EINVAL;
10879
10880 done:
10881         mutex_unlock(&ppd->hls_lock);
10882
10883         if (event.device)
10884                 ib_dispatch_event(&event);
10885
10886         return ret;
10887 }
10888
10889 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10890 {
10891         u64 reg;
10892         int ret = 0;
10893
10894         switch (which) {
10895         case HFI1_IB_CFG_LIDLMC:
10896                 set_lidlmc(ppd);
10897                 break;
10898         case HFI1_IB_CFG_VL_HIGH_LIMIT:
10899                 /*
10900                  * The VL Arbitrator high limit is sent in units of 4k
10901                  * bytes, while HFI stores it in units of 64 bytes.
10902                  */
10903                 val *= 4096 / 64;
10904                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10905                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10906                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10907                 break;
10908         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10909                 /* HFI only supports POLL as the default link down state */
10910                 if (val != HLS_DN_POLL)
10911                         ret = -EINVAL;
10912                 break;
10913         case HFI1_IB_CFG_OP_VLS:
10914                 if (ppd->vls_operational != val) {
10915                         ppd->vls_operational = val;
10916                         if (!ppd->port)
10917                                 ret = -EINVAL;
10918                 }
10919                 break;
10920         /*
10921          * For link width, link width downgrade, and speed enable, always AND
10922          * the setting with what is actually supported.  This has two benefits.
10923          * First, enabled can't have unsupported values, no matter what the
10924          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10925          * "fill in with your supported value" have all the bits in the
10926          * field set, so simply ANDing with supported has the desired result.
10927          */
10928         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10929                 ppd->link_width_enabled = val & ppd->link_width_supported;
10930                 break;
10931         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10932                 ppd->link_width_downgrade_enabled =
10933                                 val & ppd->link_width_downgrade_supported;
10934                 break;
10935         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10936                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10937                 break;
10938         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10939                 /*
10940                  * HFI does not follow IB specs, save this value
10941                  * so we can report it, if asked.
10942                  */
10943                 ppd->overrun_threshold = val;
10944                 break;
10945         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10946                 /*
10947                  * HFI does not follow IB specs, save this value
10948                  * so we can report it, if asked.
10949                  */
10950                 ppd->phy_error_threshold = val;
10951                 break;
10952
10953         case HFI1_IB_CFG_MTU:
10954                 set_send_length(ppd);
10955                 break;
10956
10957         case HFI1_IB_CFG_PKEYS:
10958                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10959                         set_partition_keys(ppd);
10960                 break;
10961
10962         default:
10963                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10964                         dd_dev_info(ppd->dd,
10965                                     "%s: which %s, val 0x%x: not implemented\n",
10966                                     __func__, ib_cfg_name(which), val);
10967                 break;
10968         }
10969         return ret;
10970 }
10971
10972 /* begin functions related to vl arbitration table caching */
10973 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10974 {
10975         int i;
10976
10977         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10978                         VL_ARB_LOW_PRIO_TABLE_SIZE);
10979         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10980                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
10981
10982         /*
10983          * Note that we always return values directly from the
10984          * 'vl_arb_cache' (and do no CSR reads) in response to a
10985          * 'Get(VLArbTable)'. This is obviously correct after a
10986          * 'Set(VLArbTable)', since the cache will then be up to
10987          * date. But it's also correct prior to any 'Set(VLArbTable)'
10988          * since then both the cache, and the relevant h/w registers
10989          * will be zeroed.
10990          */
10991
10992         for (i = 0; i < MAX_PRIO_TABLE; i++)
10993                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10994 }
10995
10996 /*
10997  * vl_arb_lock_cache
10998  *
10999  * All other vl_arb_* functions should be called only after locking
11000  * the cache.
11001  */
11002 static inline struct vl_arb_cache *
11003 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11004 {
11005         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11006                 return NULL;
11007         spin_lock(&ppd->vl_arb_cache[idx].lock);
11008         return &ppd->vl_arb_cache[idx];
11009 }
11010
11011 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11012 {
11013         spin_unlock(&ppd->vl_arb_cache[idx].lock);
11014 }
11015
11016 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11017                              struct ib_vl_weight_elem *vl)
11018 {
11019         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11020 }
11021
11022 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11023                              struct ib_vl_weight_elem *vl)
11024 {
11025         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11026 }
11027
11028 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11029                               struct ib_vl_weight_elem *vl)
11030 {
11031         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11032 }
11033
11034 /* end functions related to vl arbitration table caching */
11035
11036 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11037                           u32 size, struct ib_vl_weight_elem *vl)
11038 {
11039         struct hfi1_devdata *dd = ppd->dd;
11040         u64 reg;
11041         unsigned int i, is_up = 0;
11042         int drain, ret = 0;
11043
11044         mutex_lock(&ppd->hls_lock);
11045
11046         if (ppd->host_link_state & HLS_UP)
11047                 is_up = 1;
11048
11049         drain = !is_ax(dd) && is_up;
11050
11051         if (drain)
11052                 /*
11053                  * Before adjusting VL arbitration weights, empty per-VL
11054                  * FIFOs, otherwise a packet whose VL weight is being
11055                  * set to 0 could get stuck in a FIFO with no chance to
11056                  * egress.
11057                  */
11058                 ret = stop_drain_data_vls(dd);
11059
11060         if (ret) {
11061                 dd_dev_err(
11062                         dd,
11063                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11064                         __func__);
11065                 goto err;
11066         }
11067
11068         for (i = 0; i < size; i++, vl++) {
11069                 /*
11070                  * NOTE: The low priority shift and mask are used here, but
11071                  * they are the same for both the low and high registers.
11072                  */
11073                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11074                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11075                       | (((u64)vl->weight
11076                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11077                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11078                 write_csr(dd, target + (i * 8), reg);
11079         }
11080         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11081
11082         if (drain)
11083                 open_fill_data_vls(dd); /* reopen all VLs */
11084
11085 err:
11086         mutex_unlock(&ppd->hls_lock);
11087
11088         return ret;
11089 }
11090
11091 /*
11092  * Read one credit merge VL register.
11093  */
11094 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11095                            struct vl_limit *vll)
11096 {
11097         u64 reg = read_csr(dd, csr);
11098
11099         vll->dedicated = cpu_to_be16(
11100                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11101                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11102         vll->shared = cpu_to_be16(
11103                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11104                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11105 }
11106
11107 /*
11108  * Read the current credit merge limits.
11109  */
11110 static int get_buffer_control(struct hfi1_devdata *dd,
11111                               struct buffer_control *bc, u16 *overall_limit)
11112 {
11113         u64 reg;
11114         int i;
11115
11116         /* not all entries are filled in */
11117         memset(bc, 0, sizeof(*bc));
11118
11119         /* OPA and HFI have a 1-1 mapping */
11120         for (i = 0; i < TXE_NUM_DATA_VL; i++)
11121                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11122
11123         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11124         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11125
11126         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11127         bc->overall_shared_limit = cpu_to_be16(
11128                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11129                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11130         if (overall_limit)
11131                 *overall_limit = (reg
11132                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11133                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11134         return sizeof(struct buffer_control);
11135 }
11136
11137 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11138 {
11139         u64 reg;
11140         int i;
11141
11142         /* each register contains 16 SC->VLnt mappings, 4 bits each */
11143         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11144         for (i = 0; i < sizeof(u64); i++) {
11145                 u8 byte = *(((u8 *)&reg) + i);
11146
11147                 dp->vlnt[2 * i] = byte & 0xf;
11148                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11149         }
11150
11151         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11152         for (i = 0; i < sizeof(u64); i++) {
11153                 u8 byte = *(((u8 *)&reg) + i);
11154
11155                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11156                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11157         }
11158         return sizeof(struct sc2vlnt);
11159 }
11160
11161 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11162                               struct ib_vl_weight_elem *vl)
11163 {
11164         unsigned int i;
11165
11166         for (i = 0; i < nelems; i++, vl++) {
11167                 vl->vl = 0xf;
11168                 vl->weight = 0;
11169         }
11170 }
11171
11172 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11173 {
11174         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11175                   DC_SC_VL_VAL(15_0,
11176                                0, dp->vlnt[0] & 0xf,
11177                                1, dp->vlnt[1] & 0xf,
11178                                2, dp->vlnt[2] & 0xf,
11179                                3, dp->vlnt[3] & 0xf,
11180                                4, dp->vlnt[4] & 0xf,
11181                                5, dp->vlnt[5] & 0xf,
11182                                6, dp->vlnt[6] & 0xf,
11183                                7, dp->vlnt[7] & 0xf,
11184                                8, dp->vlnt[8] & 0xf,
11185                                9, dp->vlnt[9] & 0xf,
11186                                10, dp->vlnt[10] & 0xf,
11187                                11, dp->vlnt[11] & 0xf,
11188                                12, dp->vlnt[12] & 0xf,
11189                                13, dp->vlnt[13] & 0xf,
11190                                14, dp->vlnt[14] & 0xf,
11191                                15, dp->vlnt[15] & 0xf));
11192         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11193                   DC_SC_VL_VAL(31_16,
11194                                16, dp->vlnt[16] & 0xf,
11195                                17, dp->vlnt[17] & 0xf,
11196                                18, dp->vlnt[18] & 0xf,
11197                                19, dp->vlnt[19] & 0xf,
11198                                20, dp->vlnt[20] & 0xf,
11199                                21, dp->vlnt[21] & 0xf,
11200                                22, dp->vlnt[22] & 0xf,
11201                                23, dp->vlnt[23] & 0xf,
11202                                24, dp->vlnt[24] & 0xf,
11203                                25, dp->vlnt[25] & 0xf,
11204                                26, dp->vlnt[26] & 0xf,
11205                                27, dp->vlnt[27] & 0xf,
11206                                28, dp->vlnt[28] & 0xf,
11207                                29, dp->vlnt[29] & 0xf,
11208                                30, dp->vlnt[30] & 0xf,
11209                                31, dp->vlnt[31] & 0xf));
11210 }
11211
11212 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11213                         u16 limit)
11214 {
11215         if (limit != 0)
11216                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11217                             what, (int)limit, idx);
11218 }
11219
11220 /* change only the shared limit portion of SendCmGLobalCredit */
11221 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11222 {
11223         u64 reg;
11224
11225         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11226         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11227         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11228         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11229 }
11230
11231 /* change only the total credit limit portion of SendCmGLobalCredit */
11232 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11233 {
11234         u64 reg;
11235
11236         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11237         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11238         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11239         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11240 }
11241
11242 /* set the given per-VL shared limit */
11243 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11244 {
11245         u64 reg;
11246         u32 addr;
11247
11248         if (vl < TXE_NUM_DATA_VL)
11249                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11250         else
11251                 addr = SEND_CM_CREDIT_VL15;
11252
11253         reg = read_csr(dd, addr);
11254         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11255         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11256         write_csr(dd, addr, reg);
11257 }
11258
11259 /* set the given per-VL dedicated limit */
11260 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11261 {
11262         u64 reg;
11263         u32 addr;
11264
11265         if (vl < TXE_NUM_DATA_VL)
11266                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11267         else
11268                 addr = SEND_CM_CREDIT_VL15;
11269
11270         reg = read_csr(dd, addr);
11271         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11272         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11273         write_csr(dd, addr, reg);
11274 }
11275
11276 /* spin until the given per-VL status mask bits clear */
11277 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11278                                      const char *which)
11279 {
11280         unsigned long timeout;
11281         u64 reg;
11282
11283         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11284         while (1) {
11285                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11286
11287                 if (reg == 0)
11288                         return; /* success */
11289                 if (time_after(jiffies, timeout))
11290                         break;          /* timed out */
11291                 udelay(1);
11292         }
11293
11294         dd_dev_err(dd,
11295                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11296                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11297         /*
11298          * If this occurs, it is likely there was a credit loss on the link.
11299          * The only recovery from that is a link bounce.
11300          */
11301         dd_dev_err(dd,
11302                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11303 }
11304
11305 /*
11306  * The number of credits on the VLs may be changed while everything
11307  * is "live", but the following algorithm must be followed due to
11308  * how the hardware is actually implemented.  In particular,
11309  * Return_Credit_Status[] is the only correct status check.
11310  *
11311  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11312  *     set Global_Shared_Credit_Limit = 0
11313  *     use_all_vl = 1
11314  * mask0 = all VLs that are changing either dedicated or shared limits
11315  * set Shared_Limit[mask0] = 0
11316  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11317  * if (changing any dedicated limit)
11318  *     mask1 = all VLs that are lowering dedicated limits
11319  *     lower Dedicated_Limit[mask1]
11320  *     spin until Return_Credit_Status[mask1] == 0
11321  *     raise Dedicated_Limits
11322  * raise Shared_Limits
11323  * raise Global_Shared_Credit_Limit
11324  *
11325  * lower = if the new limit is lower, set the limit to the new value
11326  * raise = if the new limit is higher than the current value (may be changed
11327  *      earlier in the algorithm), set the new limit to the new value
11328  */
11329 int set_buffer_control(struct hfi1_pportdata *ppd,
11330                        struct buffer_control *new_bc)
11331 {
11332         struct hfi1_devdata *dd = ppd->dd;
11333         u64 changing_mask, ld_mask, stat_mask;
11334         int change_count;
11335         int i, use_all_mask;
11336         int this_shared_changing;
11337         int vl_count = 0, ret;
11338         /*
11339          * A0: add the variable any_shared_limit_changing below and in the
11340          * algorithm above.  If removing A0 support, it can be removed.
11341          */
11342         int any_shared_limit_changing;
11343         struct buffer_control cur_bc;
11344         u8 changing[OPA_MAX_VLS];
11345         u8 lowering_dedicated[OPA_MAX_VLS];
11346         u16 cur_total;
11347         u32 new_total = 0;
11348         const u64 all_mask =
11349         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11350          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11351          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11352          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11353          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11354          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11355          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11356          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11357          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11358
11359 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11360 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11361
11362         /* find the new total credits, do sanity check on unused VLs */
11363         for (i = 0; i < OPA_MAX_VLS; i++) {
11364                 if (valid_vl(i)) {
11365                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11366                         continue;
11367                 }
11368                 nonzero_msg(dd, i, "dedicated",
11369                             be16_to_cpu(new_bc->vl[i].dedicated));
11370                 nonzero_msg(dd, i, "shared",
11371                             be16_to_cpu(new_bc->vl[i].shared));
11372                 new_bc->vl[i].dedicated = 0;
11373                 new_bc->vl[i].shared = 0;
11374         }
11375         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11376
11377         /* fetch the current values */
11378         get_buffer_control(dd, &cur_bc, &cur_total);
11379
11380         /*
11381          * Create the masks we will use.
11382          */
11383         memset(changing, 0, sizeof(changing));
11384         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11385         /*
11386          * NOTE: Assumes that the individual VL bits are adjacent and in
11387          * increasing order
11388          */
11389         stat_mask =
11390                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11391         changing_mask = 0;
11392         ld_mask = 0;
11393         change_count = 0;
11394         any_shared_limit_changing = 0;
11395         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11396                 if (!valid_vl(i))
11397                         continue;
11398                 this_shared_changing = new_bc->vl[i].shared
11399                                                 != cur_bc.vl[i].shared;
11400                 if (this_shared_changing)
11401                         any_shared_limit_changing = 1;
11402                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11403                     this_shared_changing) {
11404                         changing[i] = 1;
11405                         changing_mask |= stat_mask;
11406                         change_count++;
11407                 }
11408                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11409                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11410                         lowering_dedicated[i] = 1;
11411                         ld_mask |= stat_mask;
11412                 }
11413         }
11414
11415         /* bracket the credit change with a total adjustment */
11416         if (new_total > cur_total)
11417                 set_global_limit(dd, new_total);
11418
11419         /*
11420          * Start the credit change algorithm.
11421          */
11422         use_all_mask = 0;
11423         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11424              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11425             (is_ax(dd) && any_shared_limit_changing)) {
11426                 set_global_shared(dd, 0);
11427                 cur_bc.overall_shared_limit = 0;
11428                 use_all_mask = 1;
11429         }
11430
11431         for (i = 0; i < NUM_USABLE_VLS; i++) {
11432                 if (!valid_vl(i))
11433                         continue;
11434
11435                 if (changing[i]) {
11436                         set_vl_shared(dd, i, 0);
11437                         cur_bc.vl[i].shared = 0;
11438                 }
11439         }
11440
11441         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11442                                  "shared");
11443
11444         if (change_count > 0) {
11445                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11446                         if (!valid_vl(i))
11447                                 continue;
11448
11449                         if (lowering_dedicated[i]) {
11450                                 set_vl_dedicated(dd, i,
11451                                                  be16_to_cpu(new_bc->
11452                                                              vl[i].dedicated));
11453                                 cur_bc.vl[i].dedicated =
11454                                                 new_bc->vl[i].dedicated;
11455                         }
11456                 }
11457
11458                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11459
11460                 /* now raise all dedicated that are going up */
11461                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11462                         if (!valid_vl(i))
11463                                 continue;
11464
11465                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11466                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11467                                 set_vl_dedicated(dd, i,
11468                                                  be16_to_cpu(new_bc->
11469                                                              vl[i].dedicated));
11470                 }
11471         }
11472
11473         /* next raise all shared that are going up */
11474         for (i = 0; i < NUM_USABLE_VLS; i++) {
11475                 if (!valid_vl(i))
11476                         continue;
11477
11478                 if (be16_to_cpu(new_bc->vl[i].shared) >
11479                                 be16_to_cpu(cur_bc.vl[i].shared))
11480                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11481         }
11482
11483         /* finally raise the global shared */
11484         if (be16_to_cpu(new_bc->overall_shared_limit) >
11485             be16_to_cpu(cur_bc.overall_shared_limit))
11486                 set_global_shared(dd,
11487                                   be16_to_cpu(new_bc->overall_shared_limit));
11488
11489         /* bracket the credit change with a total adjustment */
11490         if (new_total < cur_total)
11491                 set_global_limit(dd, new_total);
11492
11493         /*
11494          * Determine the actual number of operational VLS using the number of
11495          * dedicated and shared credits for each VL.
11496          */
11497         if (change_count > 0) {
11498                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11499                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11500                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11501                                 vl_count++;
11502                 ppd->actual_vls_operational = vl_count;
11503                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11504                                     ppd->actual_vls_operational :
11505                                     ppd->vls_operational,
11506                                     NULL);
11507                 if (ret == 0)
11508                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11509                                            ppd->actual_vls_operational :
11510                                            ppd->vls_operational, NULL);
11511                 if (ret)
11512                         return ret;
11513         }
11514         return 0;
11515 }
11516
11517 /*
11518  * Read the given fabric manager table. Return the size of the
11519  * table (in bytes) on success, and a negative error code on
11520  * failure.
11521  */
11522 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11523
11524 {
11525         int size;
11526         struct vl_arb_cache *vlc;
11527
11528         switch (which) {
11529         case FM_TBL_VL_HIGH_ARB:
11530                 size = 256;
11531                 /*
11532                  * OPA specifies 128 elements (of 2 bytes each), though
11533                  * HFI supports only 16 elements in h/w.
11534                  */
11535                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11536                 vl_arb_get_cache(vlc, t);
11537                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11538                 break;
11539         case FM_TBL_VL_LOW_ARB:
11540                 size = 256;
11541                 /*
11542                  * OPA specifies 128 elements (of 2 bytes each), though
11543                  * HFI supports only 16 elements in h/w.
11544                  */
11545                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11546                 vl_arb_get_cache(vlc, t);
11547                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11548                 break;
11549         case FM_TBL_BUFFER_CONTROL:
11550                 size = get_buffer_control(ppd->dd, t, NULL);
11551                 break;
11552         case FM_TBL_SC2VLNT:
11553                 size = get_sc2vlnt(ppd->dd, t);
11554                 break;
11555         case FM_TBL_VL_PREEMPT_ELEMS:
11556                 size = 256;
11557                 /* OPA specifies 128 elements, of 2 bytes each */
11558                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11559                 break;
11560         case FM_TBL_VL_PREEMPT_MATRIX:
11561                 size = 256;
11562                 /*
11563                  * OPA specifies that this is the same size as the VL
11564                  * arbitration tables (i.e., 256 bytes).
11565                  */
11566                 break;
11567         default:
11568                 return -EINVAL;
11569         }
11570         return size;
11571 }
11572
11573 /*
11574  * Write the given fabric manager table.
11575  */
11576 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11577 {
11578         int ret = 0;
11579         struct vl_arb_cache *vlc;
11580
11581         switch (which) {
11582         case FM_TBL_VL_HIGH_ARB:
11583                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11584                 if (vl_arb_match_cache(vlc, t)) {
11585                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11586                         break;
11587                 }
11588                 vl_arb_set_cache(vlc, t);
11589                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11590                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11591                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11592                 break;
11593         case FM_TBL_VL_LOW_ARB:
11594                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11595                 if (vl_arb_match_cache(vlc, t)) {
11596                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11597                         break;
11598                 }
11599                 vl_arb_set_cache(vlc, t);
11600                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11601                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11602                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11603                 break;
11604         case FM_TBL_BUFFER_CONTROL:
11605                 ret = set_buffer_control(ppd, t);
11606                 break;
11607         case FM_TBL_SC2VLNT:
11608                 set_sc2vlnt(ppd->dd, t);
11609                 break;
11610         default:
11611                 ret = -EINVAL;
11612         }
11613         return ret;
11614 }
11615
11616 /*
11617  * Disable all data VLs.
11618  *
11619  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11620  */
11621 static int disable_data_vls(struct hfi1_devdata *dd)
11622 {
11623         if (is_ax(dd))
11624                 return 1;
11625
11626         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11627
11628         return 0;
11629 }
11630
11631 /*
11632  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11633  * Just re-enables all data VLs (the "fill" part happens
11634  * automatically - the name was chosen for symmetry with
11635  * stop_drain_data_vls()).
11636  *
11637  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11638  */
11639 int open_fill_data_vls(struct hfi1_devdata *dd)
11640 {
11641         if (is_ax(dd))
11642                 return 1;
11643
11644         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11645
11646         return 0;
11647 }
11648
11649 /*
11650  * drain_data_vls() - assumes that disable_data_vls() has been called,
11651  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11652  * engines to drop to 0.
11653  */
11654 static void drain_data_vls(struct hfi1_devdata *dd)
11655 {
11656         sc_wait(dd);
11657         sdma_wait(dd);
11658         pause_for_credit_return(dd);
11659 }
11660
11661 /*
11662  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11663  *
11664  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11665  * meant to be used like this:
11666  *
11667  * stop_drain_data_vls(dd);
11668  * // do things with per-VL resources
11669  * open_fill_data_vls(dd);
11670  */
11671 int stop_drain_data_vls(struct hfi1_devdata *dd)
11672 {
11673         int ret;
11674
11675         ret = disable_data_vls(dd);
11676         if (ret == 0)
11677                 drain_data_vls(dd);
11678
11679         return ret;
11680 }
11681
11682 /*
11683  * Convert a nanosecond time to a cclock count.  No matter how slow
11684  * the cclock, a non-zero ns will always have a non-zero result.
11685  */
11686 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11687 {
11688         u32 cclocks;
11689
11690         if (dd->icode == ICODE_FPGA_EMULATION)
11691                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11692         else  /* simulation pretends to be ASIC */
11693                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11694         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11695                 cclocks = 1;
11696         return cclocks;
11697 }
11698
11699 /*
11700  * Convert a cclock count to nanoseconds. Not matter how slow
11701  * the cclock, a non-zero cclocks will always have a non-zero result.
11702  */
11703 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11704 {
11705         u32 ns;
11706
11707         if (dd->icode == ICODE_FPGA_EMULATION)
11708                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11709         else  /* simulation pretends to be ASIC */
11710                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11711         if (cclocks && !ns)
11712                 ns = 1;
11713         return ns;
11714 }
11715
11716 /*
11717  * Dynamically adjust the receive interrupt timeout for a context based on
11718  * incoming packet rate.
11719  *
11720  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11721  */
11722 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11723 {
11724         struct hfi1_devdata *dd = rcd->dd;
11725         u32 timeout = rcd->rcvavail_timeout;
11726
11727         /*
11728          * This algorithm doubles or halves the timeout depending on whether
11729          * the number of packets received in this interrupt were less than or
11730          * greater equal the interrupt count.
11731          *
11732          * The calculations below do not allow a steady state to be achieved.
11733          * Only at the endpoints it is possible to have an unchanging
11734          * timeout.
11735          */
11736         if (npkts < rcv_intr_count) {
11737                 /*
11738                  * Not enough packets arrived before the timeout, adjust
11739                  * timeout downward.
11740                  */
11741                 if (timeout < 2) /* already at minimum? */
11742                         return;
11743                 timeout >>= 1;
11744         } else {
11745                 /*
11746                  * More than enough packets arrived before the timeout, adjust
11747                  * timeout upward.
11748                  */
11749                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11750                         return;
11751                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11752         }
11753
11754         rcd->rcvavail_timeout = timeout;
11755         /*
11756          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11757          * been verified to be in range
11758          */
11759         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11760                         (u64)timeout <<
11761                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11762 }
11763
11764 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11765                     u32 intr_adjust, u32 npkts)
11766 {
11767         struct hfi1_devdata *dd = rcd->dd;
11768         u64 reg;
11769         u32 ctxt = rcd->ctxt;
11770
11771         /*
11772          * Need to write timeout register before updating RcvHdrHead to ensure
11773          * that a new value is used when the HW decides to restart counting.
11774          */
11775         if (intr_adjust)
11776                 adjust_rcv_timeout(rcd, npkts);
11777         if (updegr) {
11778                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11779                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11780                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11781         }
11782         mmiowb();
11783         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11784                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11785                         << RCV_HDR_HEAD_HEAD_SHIFT);
11786         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11787         mmiowb();
11788 }
11789
11790 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11791 {
11792         u32 head, tail;
11793
11794         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11795                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11796
11797         if (rcd->rcvhdrtail_kvaddr)
11798                 tail = get_rcvhdrtail(rcd);
11799         else
11800                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11801
11802         return head == tail;
11803 }
11804
11805 /*
11806  * Context Control and Receive Array encoding for buffer size:
11807  *      0x0 invalid
11808  *      0x1   4 KB
11809  *      0x2   8 KB
11810  *      0x3  16 KB
11811  *      0x4  32 KB
11812  *      0x5  64 KB
11813  *      0x6 128 KB
11814  *      0x7 256 KB
11815  *      0x8 512 KB (Receive Array only)
11816  *      0x9   1 MB (Receive Array only)
11817  *      0xa   2 MB (Receive Array only)
11818  *
11819  *      0xB-0xF - reserved (Receive Array only)
11820  *
11821  *
11822  * This routine assumes that the value has already been sanity checked.
11823  */
11824 static u32 encoded_size(u32 size)
11825 {
11826         switch (size) {
11827         case   4 * 1024: return 0x1;
11828         case   8 * 1024: return 0x2;
11829         case  16 * 1024: return 0x3;
11830         case  32 * 1024: return 0x4;
11831         case  64 * 1024: return 0x5;
11832         case 128 * 1024: return 0x6;
11833         case 256 * 1024: return 0x7;
11834         case 512 * 1024: return 0x8;
11835         case   1 * 1024 * 1024: return 0x9;
11836         case   2 * 1024 * 1024: return 0xa;
11837         }
11838         return 0x1;     /* if invalid, go with the minimum size */
11839 }
11840
11841 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11842                   struct hfi1_ctxtdata *rcd)
11843 {
11844         u64 rcvctrl, reg;
11845         int did_enable = 0;
11846         u16 ctxt;
11847
11848         if (!rcd)
11849                 return;
11850
11851         ctxt = rcd->ctxt;
11852
11853         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11854
11855         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11856         /* if the context already enabled, don't do the extra steps */
11857         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11858             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11859                 /* reset the tail and hdr addresses, and sequence count */
11860                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11861                                 rcd->rcvhdrq_dma);
11862                 if (rcd->rcvhdrtail_kvaddr)
11863                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11864                                         rcd->rcvhdrqtailaddr_dma);
11865                 rcd->seq_cnt = 1;
11866
11867                 /* reset the cached receive header queue head value */
11868                 rcd->head = 0;
11869
11870                 /*
11871                  * Zero the receive header queue so we don't get false
11872                  * positives when checking the sequence number.  The
11873                  * sequence numbers could land exactly on the same spot.
11874                  * E.g. a rcd restart before the receive header wrapped.
11875                  */
11876                 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11877
11878                 /* starting timeout */
11879                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11880
11881                 /* enable the context */
11882                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11883
11884                 /* clean the egr buffer size first */
11885                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11886                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11887                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11888                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11889
11890                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11891                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11892                 did_enable = 1;
11893
11894                 /* zero RcvEgrIndexHead */
11895                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11896
11897                 /* set eager count and base index */
11898                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11899                         & RCV_EGR_CTRL_EGR_CNT_MASK)
11900                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11901                         (((rcd->eager_base >> RCV_SHIFT)
11902                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11903                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11904                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11905
11906                 /*
11907                  * Set TID (expected) count and base index.
11908                  * rcd->expected_count is set to individual RcvArray entries,
11909                  * not pairs, and the CSR takes a pair-count in groups of
11910                  * four, so divide by 8.
11911                  */
11912                 reg = (((rcd->expected_count >> RCV_SHIFT)
11913                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11914                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11915                       (((rcd->expected_base >> RCV_SHIFT)
11916                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11917                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11918                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11919                 if (ctxt == HFI1_CTRL_CTXT)
11920                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11921         }
11922         if (op & HFI1_RCVCTRL_CTXT_DIS) {
11923                 write_csr(dd, RCV_VL15, 0);
11924                 /*
11925                  * When receive context is being disabled turn on tail
11926                  * update with a dummy tail address and then disable
11927                  * receive context.
11928                  */
11929                 if (dd->rcvhdrtail_dummy_dma) {
11930                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11931                                         dd->rcvhdrtail_dummy_dma);
11932                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11933                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11934                 }
11935
11936                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11937         }
11938         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11939                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11940         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11941                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11942         if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11943                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11944         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11945                 /* See comment on RcvCtxtCtrl.TailUpd above */
11946                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11947                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11948         }
11949         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11950                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11951         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11952                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11953         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11954                 /*
11955                  * In one-packet-per-eager mode, the size comes from
11956                  * the RcvArray entry.
11957                  */
11958                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11959                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11960         }
11961         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11962                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11963         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11964                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11965         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11966                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11967         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11968                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11969         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11970                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11971         rcd->rcvctrl = rcvctrl;
11972         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11973         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11974
11975         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11976         if (did_enable &&
11977             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11978                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11979                 if (reg != 0) {
11980                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11981                                     ctxt, reg);
11982                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11983                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11984                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11985                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11986                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11987                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11988                                     ctxt, reg, reg == 0 ? "not" : "still");
11989                 }
11990         }
11991
11992         if (did_enable) {
11993                 /*
11994                  * The interrupt timeout and count must be set after
11995                  * the context is enabled to take effect.
11996                  */
11997                 /* set interrupt timeout */
11998                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11999                                 (u64)rcd->rcvavail_timeout <<
12000                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12001
12002                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12003                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12004                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12005         }
12006
12007         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12008                 /*
12009                  * If the context has been disabled and the Tail Update has
12010                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12011                  * so it doesn't contain an address that is invalid.
12012                  */
12013                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12014                                 dd->rcvhdrtail_dummy_dma);
12015 }
12016
12017 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12018 {
12019         int ret;
12020         u64 val = 0;
12021
12022         if (namep) {
12023                 ret = dd->cntrnameslen;
12024                 *namep = dd->cntrnames;
12025         } else {
12026                 const struct cntr_entry *entry;
12027                 int i, j;
12028
12029                 ret = (dd->ndevcntrs) * sizeof(u64);
12030
12031                 /* Get the start of the block of counters */
12032                 *cntrp = dd->cntrs;
12033
12034                 /*
12035                  * Now go and fill in each counter in the block.
12036                  */
12037                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12038                         entry = &dev_cntrs[i];
12039                         hfi1_cdbg(CNTR, "reading %s", entry->name);
12040                         if (entry->flags & CNTR_DISABLED) {
12041                                 /* Nothing */
12042                                 hfi1_cdbg(CNTR, "\tDisabled\n");
12043                         } else {
12044                                 if (entry->flags & CNTR_VL) {
12045                                         hfi1_cdbg(CNTR, "\tPer VL\n");
12046                                         for (j = 0; j < C_VL_COUNT; j++) {
12047                                                 val = entry->rw_cntr(entry,
12048                                                                   dd, j,
12049                                                                   CNTR_MODE_R,
12050                                                                   0);
12051                                                 hfi1_cdbg(
12052                                                    CNTR,
12053                                                    "\t\tRead 0x%llx for %d\n",
12054                                                    val, j);
12055                                                 dd->cntrs[entry->offset + j] =
12056                                                                             val;
12057                                         }
12058                                 } else if (entry->flags & CNTR_SDMA) {
12059                                         hfi1_cdbg(CNTR,
12060                                                   "\t Per SDMA Engine\n");
12061                                         for (j = 0; j < dd->chip_sdma_engines;
12062                                              j++) {
12063                                                 val =
12064                                                 entry->rw_cntr(entry, dd, j,
12065                                                                CNTR_MODE_R, 0);
12066                                                 hfi1_cdbg(CNTR,
12067                                                           "\t\tRead 0x%llx for %d\n",
12068                                                           val, j);
12069                                                 dd->cntrs[entry->offset + j] =
12070                                                                         val;
12071                                         }
12072                                 } else {
12073                                         val = entry->rw_cntr(entry, dd,
12074                                                         CNTR_INVALID_VL,
12075                                                         CNTR_MODE_R, 0);
12076                                         dd->cntrs[entry->offset] = val;
12077                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12078                                 }
12079                         }
12080                 }
12081         }
12082         return ret;
12083 }
12084
12085 /*
12086  * Used by sysfs to create files for hfi stats to read
12087  */
12088 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12089 {
12090         int ret;
12091         u64 val = 0;
12092
12093         if (namep) {
12094                 ret = ppd->dd->portcntrnameslen;
12095                 *namep = ppd->dd->portcntrnames;
12096         } else {
12097                 const struct cntr_entry *entry;
12098                 int i, j;
12099
12100                 ret = ppd->dd->nportcntrs * sizeof(u64);
12101                 *cntrp = ppd->cntrs;
12102
12103                 for (i = 0; i < PORT_CNTR_LAST; i++) {
12104                         entry = &port_cntrs[i];
12105                         hfi1_cdbg(CNTR, "reading %s", entry->name);
12106                         if (entry->flags & CNTR_DISABLED) {
12107                                 /* Nothing */
12108                                 hfi1_cdbg(CNTR, "\tDisabled\n");
12109                                 continue;
12110                         }
12111
12112                         if (entry->flags & CNTR_VL) {
12113                                 hfi1_cdbg(CNTR, "\tPer VL");
12114                                 for (j = 0; j < C_VL_COUNT; j++) {
12115                                         val = entry->rw_cntr(entry, ppd, j,
12116                                                                CNTR_MODE_R,
12117                                                                0);
12118                                         hfi1_cdbg(
12119                                            CNTR,
12120                                            "\t\tRead 0x%llx for %d",
12121                                            val, j);
12122                                         ppd->cntrs[entry->offset + j] = val;
12123                                 }
12124                         } else {
12125                                 val = entry->rw_cntr(entry, ppd,
12126                                                        CNTR_INVALID_VL,
12127                                                        CNTR_MODE_R,
12128                                                        0);
12129                                 ppd->cntrs[entry->offset] = val;
12130                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12131                         }
12132                 }
12133         }
12134         return ret;
12135 }
12136
12137 static void free_cntrs(struct hfi1_devdata *dd)
12138 {
12139         struct hfi1_pportdata *ppd;
12140         int i;
12141
12142         if (dd->synth_stats_timer.data)
12143                 del_timer_sync(&dd->synth_stats_timer);
12144         cancel_work_sync(&dd->update_cntr_work);
12145         dd->synth_stats_timer.data = 0;
12146         ppd = (struct hfi1_pportdata *)(dd + 1);
12147         for (i = 0; i < dd->num_pports; i++, ppd++) {
12148                 kfree(ppd->cntrs);
12149                 kfree(ppd->scntrs);
12150                 free_percpu(ppd->ibport_data.rvp.rc_acks);
12151                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12152                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12153                 ppd->cntrs = NULL;
12154                 ppd->scntrs = NULL;
12155                 ppd->ibport_data.rvp.rc_acks = NULL;
12156                 ppd->ibport_data.rvp.rc_qacks = NULL;
12157                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12158         }
12159         kfree(dd->portcntrnames);
12160         dd->portcntrnames = NULL;
12161         kfree(dd->cntrs);
12162         dd->cntrs = NULL;
12163         kfree(dd->scntrs);
12164         dd->scntrs = NULL;
12165         kfree(dd->cntrnames);
12166         dd->cntrnames = NULL;
12167         if (dd->update_cntr_wq) {
12168                 destroy_workqueue(dd->update_cntr_wq);
12169                 dd->update_cntr_wq = NULL;
12170         }
12171 }
12172
12173 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12174                               u64 *psval, void *context, int vl)
12175 {
12176         u64 val;
12177         u64 sval = *psval;
12178
12179         if (entry->flags & CNTR_DISABLED) {
12180                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12181                 return 0;
12182         }
12183
12184         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12185
12186         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12187
12188         /* If its a synthetic counter there is more work we need to do */
12189         if (entry->flags & CNTR_SYNTH) {
12190                 if (sval == CNTR_MAX) {
12191                         /* No need to read already saturated */
12192                         return CNTR_MAX;
12193                 }
12194
12195                 if (entry->flags & CNTR_32BIT) {
12196                         /* 32bit counters can wrap multiple times */
12197                         u64 upper = sval >> 32;
12198                         u64 lower = (sval << 32) >> 32;
12199
12200                         if (lower > val) { /* hw wrapped */
12201                                 if (upper == CNTR_32BIT_MAX)
12202                                         val = CNTR_MAX;
12203                                 else
12204                                         upper++;
12205                         }
12206
12207                         if (val != CNTR_MAX)
12208                                 val = (upper << 32) | val;
12209
12210                 } else {
12211                         /* If we rolled we are saturated */
12212                         if ((val < sval) || (val > CNTR_MAX))
12213                                 val = CNTR_MAX;
12214                 }
12215         }
12216
12217         *psval = val;
12218
12219         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12220
12221         return val;
12222 }
12223
12224 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12225                                struct cntr_entry *entry,
12226                                u64 *psval, void *context, int vl, u64 data)
12227 {
12228         u64 val;
12229
12230         if (entry->flags & CNTR_DISABLED) {
12231                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12232                 return 0;
12233         }
12234
12235         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12236
12237         if (entry->flags & CNTR_SYNTH) {
12238                 *psval = data;
12239                 if (entry->flags & CNTR_32BIT) {
12240                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12241                                              (data << 32) >> 32);
12242                         val = data; /* return the full 64bit value */
12243                 } else {
12244                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12245                                              data);
12246                 }
12247         } else {
12248                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12249         }
12250
12251         *psval = val;
12252
12253         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12254
12255         return val;
12256 }
12257
12258 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12259 {
12260         struct cntr_entry *entry;
12261         u64 *sval;
12262
12263         entry = &dev_cntrs[index];
12264         sval = dd->scntrs + entry->offset;
12265
12266         if (vl != CNTR_INVALID_VL)
12267                 sval += vl;
12268
12269         return read_dev_port_cntr(dd, entry, sval, dd, vl);
12270 }
12271
12272 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12273 {
12274         struct cntr_entry *entry;
12275         u64 *sval;
12276
12277         entry = &dev_cntrs[index];
12278         sval = dd->scntrs + entry->offset;
12279
12280         if (vl != CNTR_INVALID_VL)
12281                 sval += vl;
12282
12283         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12284 }
12285
12286 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12287 {
12288         struct cntr_entry *entry;
12289         u64 *sval;
12290
12291         entry = &port_cntrs[index];
12292         sval = ppd->scntrs + entry->offset;
12293
12294         if (vl != CNTR_INVALID_VL)
12295                 sval += vl;
12296
12297         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12298             (index <= C_RCV_HDR_OVF_LAST)) {
12299                 /* We do not want to bother for disabled contexts */
12300                 return 0;
12301         }
12302
12303         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12304 }
12305
12306 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12307 {
12308         struct cntr_entry *entry;
12309         u64 *sval;
12310
12311         entry = &port_cntrs[index];
12312         sval = ppd->scntrs + entry->offset;
12313
12314         if (vl != CNTR_INVALID_VL)
12315                 sval += vl;
12316
12317         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12318             (index <= C_RCV_HDR_OVF_LAST)) {
12319                 /* We do not want to bother for disabled contexts */
12320                 return 0;
12321         }
12322
12323         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12324 }
12325
12326 static void do_update_synth_timer(struct work_struct *work)
12327 {
12328         u64 cur_tx;
12329         u64 cur_rx;
12330         u64 total_flits;
12331         u8 update = 0;
12332         int i, j, vl;
12333         struct hfi1_pportdata *ppd;
12334         struct cntr_entry *entry;
12335         struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12336                                                update_cntr_work);
12337
12338         /*
12339          * Rather than keep beating on the CSRs pick a minimal set that we can
12340          * check to watch for potential roll over. We can do this by looking at
12341          * the number of flits sent/recv. If the total flits exceeds 32bits then
12342          * we have to iterate all the counters and update.
12343          */
12344         entry = &dev_cntrs[C_DC_RCV_FLITS];
12345         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12346
12347         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12348         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12349
12350         hfi1_cdbg(
12351             CNTR,
12352             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12353             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12354
12355         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12356                 /*
12357                  * May not be strictly necessary to update but it won't hurt and
12358                  * simplifies the logic here.
12359                  */
12360                 update = 1;
12361                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12362                           dd->unit);
12363         } else {
12364                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12365                 hfi1_cdbg(CNTR,
12366                           "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12367                           total_flits, (u64)CNTR_32BIT_MAX);
12368                 if (total_flits >= CNTR_32BIT_MAX) {
12369                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12370                                   dd->unit);
12371                         update = 1;
12372                 }
12373         }
12374
12375         if (update) {
12376                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12377                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12378                         entry = &dev_cntrs[i];
12379                         if (entry->flags & CNTR_VL) {
12380                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12381                                         read_dev_cntr(dd, i, vl);
12382                         } else {
12383                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12384                         }
12385                 }
12386                 ppd = (struct hfi1_pportdata *)(dd + 1);
12387                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12388                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12389                                 entry = &port_cntrs[j];
12390                                 if (entry->flags & CNTR_VL) {
12391                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12392                                                 read_port_cntr(ppd, j, vl);
12393                                 } else {
12394                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12395                                 }
12396                         }
12397                 }
12398
12399                 /*
12400                  * We want the value in the register. The goal is to keep track
12401                  * of the number of "ticks" not the counter value. In other
12402                  * words if the register rolls we want to notice it and go ahead
12403                  * and force an update.
12404                  */
12405                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12406                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12407                                                 CNTR_MODE_R, 0);
12408
12409                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12410                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12411                                                 CNTR_MODE_R, 0);
12412
12413                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12414                           dd->unit, dd->last_tx, dd->last_rx);
12415
12416         } else {
12417                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12418         }
12419 }
12420
12421 static void update_synth_timer(unsigned long opaque)
12422 {
12423         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12424
12425         queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12426         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12427 }
12428
12429 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12430 static int init_cntrs(struct hfi1_devdata *dd)
12431 {
12432         int i, rcv_ctxts, j;
12433         size_t sz;
12434         char *p;
12435         char name[C_MAX_NAME];
12436         struct hfi1_pportdata *ppd;
12437         const char *bit_type_32 = ",32";
12438         const int bit_type_32_sz = strlen(bit_type_32);
12439
12440         /* set up the stats timer; the add_timer is done at the end */
12441         setup_timer(&dd->synth_stats_timer, update_synth_timer,
12442                     (unsigned long)dd);
12443
12444         /***********************/
12445         /* per device counters */
12446         /***********************/
12447
12448         /* size names and determine how many we have*/
12449         dd->ndevcntrs = 0;
12450         sz = 0;
12451
12452         for (i = 0; i < DEV_CNTR_LAST; i++) {
12453                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12454                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12455                         continue;
12456                 }
12457
12458                 if (dev_cntrs[i].flags & CNTR_VL) {
12459                         dev_cntrs[i].offset = dd->ndevcntrs;
12460                         for (j = 0; j < C_VL_COUNT; j++) {
12461                                 snprintf(name, C_MAX_NAME, "%s%d",
12462                                          dev_cntrs[i].name, vl_from_idx(j));
12463                                 sz += strlen(name);
12464                                 /* Add ",32" for 32-bit counters */
12465                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12466                                         sz += bit_type_32_sz;
12467                                 sz++;
12468                                 dd->ndevcntrs++;
12469                         }
12470                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12471                         dev_cntrs[i].offset = dd->ndevcntrs;
12472                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12473                                 snprintf(name, C_MAX_NAME, "%s%d",
12474                                          dev_cntrs[i].name, j);
12475                                 sz += strlen(name);
12476                                 /* Add ",32" for 32-bit counters */
12477                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12478                                         sz += bit_type_32_sz;
12479                                 sz++;
12480                                 dd->ndevcntrs++;
12481                         }
12482                 } else {
12483                         /* +1 for newline. */
12484                         sz += strlen(dev_cntrs[i].name) + 1;
12485                         /* Add ",32" for 32-bit counters */
12486                         if (dev_cntrs[i].flags & CNTR_32BIT)
12487                                 sz += bit_type_32_sz;
12488                         dev_cntrs[i].offset = dd->ndevcntrs;
12489                         dd->ndevcntrs++;
12490                 }
12491         }
12492
12493         /* allocate space for the counter values */
12494         dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12495                             GFP_KERNEL);
12496         if (!dd->cntrs)
12497                 goto bail;
12498
12499         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12500         if (!dd->scntrs)
12501                 goto bail;
12502
12503         /* allocate space for the counter names */
12504         dd->cntrnameslen = sz;
12505         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12506         if (!dd->cntrnames)
12507                 goto bail;
12508
12509         /* fill in the names */
12510         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12511                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12512                         /* Nothing */
12513                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12514                         for (j = 0; j < C_VL_COUNT; j++) {
12515                                 snprintf(name, C_MAX_NAME, "%s%d",
12516                                          dev_cntrs[i].name,
12517                                          vl_from_idx(j));
12518                                 memcpy(p, name, strlen(name));
12519                                 p += strlen(name);
12520
12521                                 /* Counter is 32 bits */
12522                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12523                                         memcpy(p, bit_type_32, bit_type_32_sz);
12524                                         p += bit_type_32_sz;
12525                                 }
12526
12527                                 *p++ = '\n';
12528                         }
12529                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12530                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12531                                 snprintf(name, C_MAX_NAME, "%s%d",
12532                                          dev_cntrs[i].name, j);
12533                                 memcpy(p, name, strlen(name));
12534                                 p += strlen(name);
12535
12536                                 /* Counter is 32 bits */
12537                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12538                                         memcpy(p, bit_type_32, bit_type_32_sz);
12539                                         p += bit_type_32_sz;
12540                                 }
12541
12542                                 *p++ = '\n';
12543                         }
12544                 } else {
12545                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12546                         p += strlen(dev_cntrs[i].name);
12547
12548                         /* Counter is 32 bits */
12549                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12550                                 memcpy(p, bit_type_32, bit_type_32_sz);
12551                                 p += bit_type_32_sz;
12552                         }
12553
12554                         *p++ = '\n';
12555                 }
12556         }
12557
12558         /*********************/
12559         /* per port counters */
12560         /*********************/
12561
12562         /*
12563          * Go through the counters for the overflows and disable the ones we
12564          * don't need. This varies based on platform so we need to do it
12565          * dynamically here.
12566          */
12567         rcv_ctxts = dd->num_rcv_contexts;
12568         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12569              i <= C_RCV_HDR_OVF_LAST; i++) {
12570                 port_cntrs[i].flags |= CNTR_DISABLED;
12571         }
12572
12573         /* size port counter names and determine how many we have*/
12574         sz = 0;
12575         dd->nportcntrs = 0;
12576         for (i = 0; i < PORT_CNTR_LAST; i++) {
12577                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12578                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12579                         continue;
12580                 }
12581
12582                 if (port_cntrs[i].flags & CNTR_VL) {
12583                         port_cntrs[i].offset = dd->nportcntrs;
12584                         for (j = 0; j < C_VL_COUNT; j++) {
12585                                 snprintf(name, C_MAX_NAME, "%s%d",
12586                                          port_cntrs[i].name, vl_from_idx(j));
12587                                 sz += strlen(name);
12588                                 /* Add ",32" for 32-bit counters */
12589                                 if (port_cntrs[i].flags & CNTR_32BIT)
12590                                         sz += bit_type_32_sz;
12591                                 sz++;
12592                                 dd->nportcntrs++;
12593                         }
12594                 } else {
12595                         /* +1 for newline */
12596                         sz += strlen(port_cntrs[i].name) + 1;
12597                         /* Add ",32" for 32-bit counters */
12598                         if (port_cntrs[i].flags & CNTR_32BIT)
12599                                 sz += bit_type_32_sz;
12600                         port_cntrs[i].offset = dd->nportcntrs;
12601                         dd->nportcntrs++;
12602                 }
12603         }
12604
12605         /* allocate space for the counter names */
12606         dd->portcntrnameslen = sz;
12607         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12608         if (!dd->portcntrnames)
12609                 goto bail;
12610
12611         /* fill in port cntr names */
12612         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12613                 if (port_cntrs[i].flags & CNTR_DISABLED)
12614                         continue;
12615
12616                 if (port_cntrs[i].flags & CNTR_VL) {
12617                         for (j = 0; j < C_VL_COUNT; j++) {
12618                                 snprintf(name, C_MAX_NAME, "%s%d",
12619                                          port_cntrs[i].name, vl_from_idx(j));
12620                                 memcpy(p, name, strlen(name));
12621                                 p += strlen(name);
12622
12623                                 /* Counter is 32 bits */
12624                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12625                                         memcpy(p, bit_type_32, bit_type_32_sz);
12626                                         p += bit_type_32_sz;
12627                                 }
12628
12629                                 *p++ = '\n';
12630                         }
12631                 } else {
12632                         memcpy(p, port_cntrs[i].name,
12633                                strlen(port_cntrs[i].name));
12634                         p += strlen(port_cntrs[i].name);
12635
12636                         /* Counter is 32 bits */
12637                         if (port_cntrs[i].flags & CNTR_32BIT) {
12638                                 memcpy(p, bit_type_32, bit_type_32_sz);
12639                                 p += bit_type_32_sz;
12640                         }
12641
12642                         *p++ = '\n';
12643                 }
12644         }
12645
12646         /* allocate per port storage for counter values */
12647         ppd = (struct hfi1_pportdata *)(dd + 1);
12648         for (i = 0; i < dd->num_pports; i++, ppd++) {
12649                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12650                 if (!ppd->cntrs)
12651                         goto bail;
12652
12653                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12654                 if (!ppd->scntrs)
12655                         goto bail;
12656         }
12657
12658         /* CPU counters need to be allocated and zeroed */
12659         if (init_cpu_counters(dd))
12660                 goto bail;
12661
12662         dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12663                                                      WQ_MEM_RECLAIM, dd->unit);
12664         if (!dd->update_cntr_wq)
12665                 goto bail;
12666
12667         INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12668
12669         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12670         return 0;
12671 bail:
12672         free_cntrs(dd);
12673         return -ENOMEM;
12674 }
12675
12676 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12677 {
12678         switch (chip_lstate) {
12679         default:
12680                 dd_dev_err(dd,
12681                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12682                            chip_lstate);
12683                 /* fall through */
12684         case LSTATE_DOWN:
12685                 return IB_PORT_DOWN;
12686         case LSTATE_INIT:
12687                 return IB_PORT_INIT;
12688         case LSTATE_ARMED:
12689                 return IB_PORT_ARMED;
12690         case LSTATE_ACTIVE:
12691                 return IB_PORT_ACTIVE;
12692         }
12693 }
12694
12695 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12696 {
12697         /* look at the HFI meta-states only */
12698         switch (chip_pstate & 0xf0) {
12699         default:
12700                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12701                            chip_pstate);
12702                 /* fall through */
12703         case PLS_DISABLED:
12704                 return IB_PORTPHYSSTATE_DISABLED;
12705         case PLS_OFFLINE:
12706                 return OPA_PORTPHYSSTATE_OFFLINE;
12707         case PLS_POLLING:
12708                 return IB_PORTPHYSSTATE_POLLING;
12709         case PLS_CONFIGPHY:
12710                 return IB_PORTPHYSSTATE_TRAINING;
12711         case PLS_LINKUP:
12712                 return IB_PORTPHYSSTATE_LINKUP;
12713         case PLS_PHYTEST:
12714                 return IB_PORTPHYSSTATE_PHY_TEST;
12715         }
12716 }
12717
12718 /* return the OPA port logical state name */
12719 const char *opa_lstate_name(u32 lstate)
12720 {
12721         static const char * const port_logical_names[] = {
12722                 "PORT_NOP",
12723                 "PORT_DOWN",
12724                 "PORT_INIT",
12725                 "PORT_ARMED",
12726                 "PORT_ACTIVE",
12727                 "PORT_ACTIVE_DEFER",
12728         };
12729         if (lstate < ARRAY_SIZE(port_logical_names))
12730                 return port_logical_names[lstate];
12731         return "unknown";
12732 }
12733
12734 /* return the OPA port physical state name */
12735 const char *opa_pstate_name(u32 pstate)
12736 {
12737         static const char * const port_physical_names[] = {
12738                 "PHYS_NOP",
12739                 "reserved1",
12740                 "PHYS_POLL",
12741                 "PHYS_DISABLED",
12742                 "PHYS_TRAINING",
12743                 "PHYS_LINKUP",
12744                 "PHYS_LINK_ERR_RECOVER",
12745                 "PHYS_PHY_TEST",
12746                 "reserved8",
12747                 "PHYS_OFFLINE",
12748                 "PHYS_GANGED",
12749                 "PHYS_TEST",
12750         };
12751         if (pstate < ARRAY_SIZE(port_physical_names))
12752                 return port_physical_names[pstate];
12753         return "unknown";
12754 }
12755
12756 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12757 {
12758         /*
12759          * Set port status flags in the page mapped into userspace
12760          * memory. Do it here to ensure a reliable state - this is
12761          * the only function called by all state handling code.
12762          * Always set the flags due to the fact that the cache value
12763          * might have been changed explicitly outside of this
12764          * function.
12765          */
12766         if (ppd->statusp) {
12767                 switch (state) {
12768                 case IB_PORT_DOWN:
12769                 case IB_PORT_INIT:
12770                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12771                                            HFI1_STATUS_IB_READY);
12772                         break;
12773                 case IB_PORT_ARMED:
12774                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12775                         break;
12776                 case IB_PORT_ACTIVE:
12777                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12778                         break;
12779                 }
12780         }
12781 }
12782
12783 /*
12784  * wait_logical_linkstate - wait for an IB link state change to occur
12785  * @ppd: port device
12786  * @state: the state to wait for
12787  * @msecs: the number of milliseconds to wait
12788  *
12789  * Wait up to msecs milliseconds for IB link state change to occur.
12790  * For now, take the easy polling route.
12791  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12792  */
12793 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12794                                   int msecs)
12795 {
12796         unsigned long timeout;
12797         u32 new_state;
12798
12799         timeout = jiffies + msecs_to_jiffies(msecs);
12800         while (1) {
12801                 new_state = chip_to_opa_lstate(ppd->dd,
12802                                                read_logical_state(ppd->dd));
12803                 if (new_state == state)
12804                         break;
12805                 if (time_after(jiffies, timeout)) {
12806                         dd_dev_err(ppd->dd,
12807                                    "timeout waiting for link state 0x%x\n",
12808                                    state);
12809                         return -ETIMEDOUT;
12810                 }
12811                 msleep(20);
12812         }
12813
12814         update_statusp(ppd, state);
12815         dd_dev_info(ppd->dd,
12816                     "logical state changed to %s (0x%x)\n",
12817                     opa_lstate_name(state),
12818                     state);
12819         return 0;
12820 }
12821
12822 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12823 {
12824         u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12825
12826         dd_dev_info(ppd->dd,
12827                     "physical state changed to %s (0x%x), phy 0x%x\n",
12828                     opa_pstate_name(ib_pstate), ib_pstate, state);
12829 }
12830
12831 /*
12832  * Read the physical hardware link state and check if it matches host
12833  * drivers anticipated state.
12834  */
12835 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12836 {
12837         u32 read_state = read_physical_state(ppd->dd);
12838
12839         if (read_state == state) {
12840                 log_state_transition(ppd, state);
12841         } else {
12842                 dd_dev_err(ppd->dd,
12843                            "anticipated phy link state 0x%x, read 0x%x\n",
12844                            state, read_state);
12845         }
12846 }
12847
12848 /*
12849  * wait_physical_linkstate - wait for an physical link state change to occur
12850  * @ppd: port device
12851  * @state: the state to wait for
12852  * @msecs: the number of milliseconds to wait
12853  *
12854  * Wait up to msecs milliseconds for physical link state change to occur.
12855  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12856  */
12857 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12858                                    int msecs)
12859 {
12860         u32 read_state;
12861         unsigned long timeout;
12862
12863         timeout = jiffies + msecs_to_jiffies(msecs);
12864         while (1) {
12865                 read_state = read_physical_state(ppd->dd);
12866                 if (read_state == state)
12867                         break;
12868                 if (time_after(jiffies, timeout)) {
12869                         dd_dev_err(ppd->dd,
12870                                    "timeout waiting for phy link state 0x%x\n",
12871                                    state);
12872                         return -ETIMEDOUT;
12873                 }
12874                 usleep_range(1950, 2050); /* sleep 2ms-ish */
12875         }
12876
12877         log_state_transition(ppd, state);
12878         return 0;
12879 }
12880
12881 /*
12882  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12883  * @ppd: port device
12884  * @msecs: the number of milliseconds to wait
12885  *
12886  * Wait up to msecs milliseconds for any offline physical link
12887  * state change to occur.
12888  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12889  */
12890 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12891                                             int msecs)
12892 {
12893         u32 read_state;
12894         unsigned long timeout;
12895
12896         timeout = jiffies + msecs_to_jiffies(msecs);
12897         while (1) {
12898                 read_state = read_physical_state(ppd->dd);
12899                 if ((read_state & 0xF0) == PLS_OFFLINE)
12900                         break;
12901                 if (time_after(jiffies, timeout)) {
12902                         dd_dev_err(ppd->dd,
12903                                    "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12904                                    read_state, msecs);
12905                         return -ETIMEDOUT;
12906                 }
12907                 usleep_range(1950, 2050); /* sleep 2ms-ish */
12908         }
12909
12910         log_state_transition(ppd, read_state);
12911         return read_state;
12912 }
12913
12914 /*
12915  * wait_phys_link_out_of_offline - wait for any out of offline state
12916  * @ppd: port device
12917  * @msecs: the number of milliseconds to wait
12918  *
12919  * Wait up to msecs milliseconds for any out of offline physical link
12920  * state change to occur.
12921  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12922  */
12923 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
12924                                          int msecs)
12925 {
12926         u32 read_state;
12927         unsigned long timeout;
12928
12929         timeout = jiffies + msecs_to_jiffies(msecs);
12930         while (1) {
12931                 read_state = read_physical_state(ppd->dd);
12932                 if ((read_state & 0xF0) != PLS_OFFLINE)
12933                         break;
12934                 if (time_after(jiffies, timeout)) {
12935                         dd_dev_err(ppd->dd,
12936                                    "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
12937                                    read_state, msecs);
12938                         return -ETIMEDOUT;
12939                 }
12940                 usleep_range(1950, 2050); /* sleep 2ms-ish */
12941         }
12942
12943         log_state_transition(ppd, read_state);
12944         return read_state;
12945 }
12946
12947 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12948 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12949
12950 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12951 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12952
12953 void hfi1_init_ctxt(struct send_context *sc)
12954 {
12955         if (sc) {
12956                 struct hfi1_devdata *dd = sc->dd;
12957                 u64 reg;
12958                 u8 set = (sc->type == SC_USER ?
12959                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12960                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12961                 reg = read_kctxt_csr(dd, sc->hw_context,
12962                                      SEND_CTXT_CHECK_ENABLE);
12963                 if (set)
12964                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12965                 else
12966                         SET_STATIC_RATE_CONTROL_SMASK(reg);
12967                 write_kctxt_csr(dd, sc->hw_context,
12968                                 SEND_CTXT_CHECK_ENABLE, reg);
12969         }
12970 }
12971
12972 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12973 {
12974         int ret = 0;
12975         u64 reg;
12976
12977         if (dd->icode != ICODE_RTL_SILICON) {
12978                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12979                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12980                                     __func__);
12981                 return -EINVAL;
12982         }
12983         reg = read_csr(dd, ASIC_STS_THERM);
12984         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12985                       ASIC_STS_THERM_CURR_TEMP_MASK);
12986         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12987                         ASIC_STS_THERM_LO_TEMP_MASK);
12988         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12989                         ASIC_STS_THERM_HI_TEMP_MASK);
12990         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12991                           ASIC_STS_THERM_CRIT_TEMP_MASK);
12992         /* triggers is a 3-bit value - 1 bit per trigger. */
12993         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12994
12995         return ret;
12996 }
12997
12998 /* ========================================================================= */
12999
13000 /*
13001  * Enable/disable chip from delivering interrupts.
13002  */
13003 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
13004 {
13005         int i;
13006
13007         /*
13008          * In HFI, the mask needs to be 1 to allow interrupts.
13009          */
13010         if (enable) {
13011                 /* enable all interrupts */
13012                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13013                         write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
13014
13015                 init_qsfp_int(dd);
13016         } else {
13017                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13018                         write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13019         }
13020 }
13021
13022 /*
13023  * Clear all interrupt sources on the chip.
13024  */
13025 static void clear_all_interrupts(struct hfi1_devdata *dd)
13026 {
13027         int i;
13028
13029         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13030                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13031
13032         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13033         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13034         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13035         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13036         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13037         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13038         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13039         for (i = 0; i < dd->chip_send_contexts; i++)
13040                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13041         for (i = 0; i < dd->chip_sdma_engines; i++)
13042                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13043
13044         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13045         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13046         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13047 }
13048
13049 /* Move to pcie.c? */
13050 static void disable_intx(struct pci_dev *pdev)
13051 {
13052         pci_intx(pdev, 0);
13053 }
13054
13055 /**
13056  * hfi1_clean_up_interrupts() - Free all IRQ resources
13057  * @dd: valid device data data structure
13058  *
13059  * Free the MSI or INTx IRQs and assoicated PCI resources,
13060  * if they have been allocated.
13061  */
13062 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
13063 {
13064         int i;
13065
13066         /* remove irqs - must happen before disabling/turning off */
13067         if (dd->num_msix_entries) {
13068                 /* MSI-X */
13069                 struct hfi1_msix_entry *me = dd->msix_entries;
13070
13071                 for (i = 0; i < dd->num_msix_entries; i++, me++) {
13072                         if (!me->arg) /* => no irq, no affinity */
13073                                 continue;
13074                         hfi1_put_irq_affinity(dd, me);
13075                         free_irq(me->irq, me->arg);
13076                 }
13077
13078                 /* clean structures */
13079                 kfree(dd->msix_entries);
13080                 dd->msix_entries = NULL;
13081                 dd->num_msix_entries = 0;
13082         } else {
13083                 /* INTx */
13084                 if (dd->requested_intx_irq) {
13085                         free_irq(dd->pcidev->irq, dd);
13086                         dd->requested_intx_irq = 0;
13087                 }
13088                 disable_intx(dd->pcidev);
13089         }
13090
13091         pci_free_irq_vectors(dd->pcidev);
13092 }
13093
13094 /*
13095  * Remap the interrupt source from the general handler to the given MSI-X
13096  * interrupt.
13097  */
13098 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13099 {
13100         u64 reg;
13101         int m, n;
13102
13103         /* clear from the handled mask of the general interrupt */
13104         m = isrc / 64;
13105         n = isrc % 64;
13106         if (likely(m < CCE_NUM_INT_CSRS)) {
13107                 dd->gi_mask[m] &= ~((u64)1 << n);
13108         } else {
13109                 dd_dev_err(dd, "remap interrupt err\n");
13110                 return;
13111         }
13112
13113         /* direct the chip source to the given MSI-X interrupt */
13114         m = isrc / 8;
13115         n = isrc % 8;
13116         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13117         reg &= ~((u64)0xff << (8 * n));
13118         reg |= ((u64)msix_intr & 0xff) << (8 * n);
13119         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13120 }
13121
13122 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13123                                   int engine, int msix_intr)
13124 {
13125         /*
13126          * SDMA engine interrupt sources grouped by type, rather than
13127          * engine.  Per-engine interrupts are as follows:
13128          *      SDMA
13129          *      SDMAProgress
13130          *      SDMAIdle
13131          */
13132         remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13133                    msix_intr);
13134         remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13135                    msix_intr);
13136         remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13137                    msix_intr);
13138 }
13139
13140 static int request_intx_irq(struct hfi1_devdata *dd)
13141 {
13142         int ret;
13143
13144         snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
13145                  dd->unit);
13146         ret = request_irq(dd->pcidev->irq, general_interrupt,
13147                           IRQF_SHARED, dd->intx_name, dd);
13148         if (ret)
13149                 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13150                            ret);
13151         else
13152                 dd->requested_intx_irq = 1;
13153         return ret;
13154 }
13155
13156 static int request_msix_irqs(struct hfi1_devdata *dd)
13157 {
13158         int first_general, last_general;
13159         int first_sdma, last_sdma;
13160         int first_rx, last_rx;
13161         int i, ret = 0;
13162
13163         /* calculate the ranges we are going to use */
13164         first_general = 0;
13165         last_general = first_general + 1;
13166         first_sdma = last_general;
13167         last_sdma = first_sdma + dd->num_sdma;
13168         first_rx = last_sdma;
13169         last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13170
13171         /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13172         dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13173
13174         /*
13175          * Sanity check - the code expects all SDMA chip source
13176          * interrupts to be in the same CSR, starting at bit 0.  Verify
13177          * that this is true by checking the bit location of the start.
13178          */
13179         BUILD_BUG_ON(IS_SDMA_START % 64);
13180
13181         for (i = 0; i < dd->num_msix_entries; i++) {
13182                 struct hfi1_msix_entry *me = &dd->msix_entries[i];
13183                 const char *err_info;
13184                 irq_handler_t handler;
13185                 irq_handler_t thread = NULL;
13186                 void *arg = NULL;
13187                 int idx;
13188                 struct hfi1_ctxtdata *rcd = NULL;
13189                 struct sdma_engine *sde = NULL;
13190
13191                 /* obtain the arguments to request_irq */
13192                 if (first_general <= i && i < last_general) {
13193                         idx = i - first_general;
13194                         handler = general_interrupt;
13195                         arg = dd;
13196                         snprintf(me->name, sizeof(me->name),
13197                                  DRIVER_NAME "_%d", dd->unit);
13198                         err_info = "general";
13199                         me->type = IRQ_GENERAL;
13200                 } else if (first_sdma <= i && i < last_sdma) {
13201                         idx = i - first_sdma;
13202                         sde = &dd->per_sdma[idx];
13203                         handler = sdma_interrupt;
13204                         arg = sde;
13205                         snprintf(me->name, sizeof(me->name),
13206                                  DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13207                         err_info = "sdma";
13208                         remap_sdma_interrupts(dd, idx, i);
13209                         me->type = IRQ_SDMA;
13210                 } else if (first_rx <= i && i < last_rx) {
13211                         idx = i - first_rx;
13212                         rcd = hfi1_rcd_get_by_index(dd, idx);
13213                         if (rcd) {
13214                                 /*
13215                                  * Set the interrupt register and mask for this
13216                                  * context's interrupt.
13217                                  */
13218                                 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13219                                 rcd->imask = ((u64)1) <<
13220                                           ((IS_RCVAVAIL_START + idx) % 64);
13221                                 handler = receive_context_interrupt;
13222                                 thread = receive_context_thread;
13223                                 arg = rcd;
13224                                 snprintf(me->name, sizeof(me->name),
13225                                          DRIVER_NAME "_%d kctxt%d",
13226                                          dd->unit, idx);
13227                                 err_info = "receive context";
13228                                 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13229                                 me->type = IRQ_RCVCTXT;
13230                                 rcd->msix_intr = i;
13231                                 hfi1_rcd_put(rcd);
13232                         }
13233                 } else {
13234                         /* not in our expected range - complain, then
13235                          * ignore it
13236                          */
13237                         dd_dev_err(dd,
13238                                    "Unexpected extra MSI-X interrupt %d\n", i);
13239                         continue;
13240                 }
13241                 /* no argument, no interrupt */
13242                 if (!arg)
13243                         continue;
13244                 /* make sure the name is terminated */
13245                 me->name[sizeof(me->name) - 1] = 0;
13246                 me->irq = pci_irq_vector(dd->pcidev, i);
13247                 /*
13248                  * On err return me->irq.  Don't need to clear this
13249                  * because 'arg' has not been set, and cleanup will
13250                  * do the right thing.
13251                  */
13252                 if (me->irq < 0)
13253                         return me->irq;
13254
13255                 ret = request_threaded_irq(me->irq, handler, thread, 0,
13256                                            me->name, arg);
13257                 if (ret) {
13258                         dd_dev_err(dd,
13259                                    "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13260                                    err_info, me->irq, idx, ret);
13261                         return ret;
13262                 }
13263                 /*
13264                  * assign arg after request_irq call, so it will be
13265                  * cleaned up
13266                  */
13267                 me->arg = arg;
13268
13269                 ret = hfi1_get_irq_affinity(dd, me);
13270                 if (ret)
13271                         dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13272         }
13273
13274         return ret;
13275 }
13276
13277 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13278 {
13279         int i;
13280
13281         if (!dd->num_msix_entries) {
13282                 synchronize_irq(dd->pcidev->irq);
13283                 return;
13284         }
13285
13286         for (i = 0; i < dd->vnic.num_ctxt; i++) {
13287                 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13288                 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13289
13290                 synchronize_irq(me->irq);
13291         }
13292 }
13293
13294 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13295 {
13296         struct hfi1_devdata *dd = rcd->dd;
13297         struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13298
13299         if (!me->arg) /* => no irq, no affinity */
13300                 return;
13301
13302         hfi1_put_irq_affinity(dd, me);
13303         free_irq(me->irq, me->arg);
13304
13305         me->arg = NULL;
13306 }
13307
13308 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13309 {
13310         struct hfi1_devdata *dd = rcd->dd;
13311         struct hfi1_msix_entry *me;
13312         int idx = rcd->ctxt;
13313         void *arg = rcd;
13314         int ret;
13315
13316         rcd->msix_intr = dd->vnic.msix_idx++;
13317         me = &dd->msix_entries[rcd->msix_intr];
13318
13319         /*
13320          * Set the interrupt register and mask for this
13321          * context's interrupt.
13322          */
13323         rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13324         rcd->imask = ((u64)1) <<
13325                   ((IS_RCVAVAIL_START + idx) % 64);
13326
13327         snprintf(me->name, sizeof(me->name),
13328                  DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13329         me->name[sizeof(me->name) - 1] = 0;
13330         me->type = IRQ_RCVCTXT;
13331         me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13332         if (me->irq < 0) {
13333                 dd_dev_err(dd, "vnic irq vector request (idx %d) fail %d\n",
13334                            idx, me->irq);
13335                 return;
13336         }
13337         remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13338
13339         ret = request_threaded_irq(me->irq, receive_context_interrupt,
13340                                    receive_context_thread, 0, me->name, arg);
13341         if (ret) {
13342                 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13343                            me->irq, idx, ret);
13344                 return;
13345         }
13346         /*
13347          * assign arg after request_irq call, so it will be
13348          * cleaned up
13349          */
13350         me->arg = arg;
13351
13352         ret = hfi1_get_irq_affinity(dd, me);
13353         if (ret) {
13354                 dd_dev_err(dd,
13355                            "unable to pin IRQ %d\n", ret);
13356                 free_irq(me->irq, me->arg);
13357         }
13358 }
13359
13360 /*
13361  * Set the general handler to accept all interrupts, remap all
13362  * chip interrupts back to MSI-X 0.
13363  */
13364 static void reset_interrupts(struct hfi1_devdata *dd)
13365 {
13366         int i;
13367
13368         /* all interrupts handled by the general handler */
13369         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13370                 dd->gi_mask[i] = ~(u64)0;
13371
13372         /* all chip interrupts map to MSI-X 0 */
13373         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13374                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13375 }
13376
13377 static int set_up_interrupts(struct hfi1_devdata *dd)
13378 {
13379         u32 total;
13380         int ret, request;
13381         int single_interrupt = 0; /* we expect to have all the interrupts */
13382
13383         /*
13384          * Interrupt count:
13385          *      1 general, "slow path" interrupt (includes the SDMA engines
13386          *              slow source, SDMACleanupDone)
13387          *      N interrupts - one per used SDMA engine
13388          *      M interrupt - one per kernel receive context
13389          *      V interrupt - one for each VNIC context
13390          */
13391         total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13392
13393         /* ask for MSI-X interrupts */
13394         request = request_msix(dd, total);
13395         if (request < 0) {
13396                 ret = request;
13397                 goto fail;
13398         } else if (request == 0) {
13399                 /* using INTx */
13400                 /* dd->num_msix_entries already zero */
13401                 single_interrupt = 1;
13402                 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13403         } else if (request < total) {
13404                 /* using MSI-X, with reduced interrupts */
13405                 dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13406                            total, request);
13407                 ret = -EINVAL;
13408                 goto fail;
13409         } else {
13410                 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13411                                            GFP_KERNEL);
13412                 if (!dd->msix_entries) {
13413                         ret = -ENOMEM;
13414                         goto fail;
13415                 }
13416                 /* using MSI-X */
13417                 dd->num_msix_entries = total;
13418                 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13419         }
13420
13421         /* mask all interrupts */
13422         set_intr_state(dd, 0);
13423         /* clear all pending interrupts */
13424         clear_all_interrupts(dd);
13425
13426         /* reset general handler mask, chip MSI-X mappings */
13427         reset_interrupts(dd);
13428
13429         if (single_interrupt)
13430                 ret = request_intx_irq(dd);
13431         else
13432                 ret = request_msix_irqs(dd);
13433         if (ret)
13434                 goto fail;
13435
13436         return 0;
13437
13438 fail:
13439         hfi1_clean_up_interrupts(dd);
13440         return ret;
13441 }
13442
13443 /*
13444  * Set up context values in dd.  Sets:
13445  *
13446  *      num_rcv_contexts - number of contexts being used
13447  *      n_krcv_queues - number of kernel contexts
13448  *      first_dyn_alloc_ctxt - first dynamically allocated context
13449  *                             in array of contexts
13450  *      freectxts  - number of free user contexts
13451  *      num_send_contexts - number of PIO send contexts being used
13452  *      num_vnic_contexts - number of contexts reserved for VNIC
13453  */
13454 static int set_up_context_variables(struct hfi1_devdata *dd)
13455 {
13456         unsigned long num_kernel_contexts;
13457         u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13458         int total_contexts;
13459         int ret;
13460         unsigned ngroups;
13461         int qos_rmt_count;
13462         int user_rmt_reduced;
13463
13464         /*
13465          * Kernel receive contexts:
13466          * - Context 0 - control context (VL15/multicast/error)
13467          * - Context 1 - first kernel context
13468          * - Context 2 - second kernel context
13469          * ...
13470          */
13471         if (n_krcvqs)
13472                 /*
13473                  * n_krcvqs is the sum of module parameter kernel receive
13474                  * contexts, krcvqs[].  It does not include the control
13475                  * context, so add that.
13476                  */
13477                 num_kernel_contexts = n_krcvqs + 1;
13478         else
13479                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13480         /*
13481          * Every kernel receive context needs an ACK send context.
13482          * one send context is allocated for each VL{0-7} and VL15
13483          */
13484         if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13485                 dd_dev_err(dd,
13486                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
13487                            (int)(dd->chip_send_contexts - num_vls - 1),
13488                            num_kernel_contexts);
13489                 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13490         }
13491
13492         /* Accommodate VNIC contexts if possible */
13493         if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) {
13494                 dd_dev_err(dd, "No receive contexts available for VNIC\n");
13495                 num_vnic_contexts = 0;
13496         }
13497         total_contexts = num_kernel_contexts + num_vnic_contexts;
13498
13499         /*
13500          * User contexts:
13501          *      - default to 1 user context per real (non-HT) CPU core if
13502          *        num_user_contexts is negative
13503          */
13504         if (num_user_contexts < 0)
13505                 num_user_contexts =
13506                         cpumask_weight(&node_affinity.real_cpu_mask);
13507
13508         /*
13509          * Adjust the counts given a global max.
13510          */
13511         if (total_contexts + num_user_contexts > dd->chip_rcv_contexts) {
13512                 dd_dev_err(dd,
13513                            "Reducing # user receive contexts to: %d, from %d\n",
13514                            (int)(dd->chip_rcv_contexts - total_contexts),
13515                            (int)num_user_contexts);
13516                 /* recalculate */
13517                 num_user_contexts = dd->chip_rcv_contexts - total_contexts;
13518         }
13519
13520         /* each user context requires an entry in the RMT */
13521         qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13522         if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13523                 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13524                 dd_dev_err(dd,
13525                            "RMT size is reducing the number of user receive contexts from %d to %d\n",
13526                            (int)num_user_contexts,
13527                            user_rmt_reduced);
13528                 /* recalculate */
13529                 num_user_contexts = user_rmt_reduced;
13530         }
13531
13532         total_contexts += num_user_contexts;
13533
13534         /* the first N are kernel contexts, the rest are user/vnic contexts */
13535         dd->num_rcv_contexts = total_contexts;
13536         dd->n_krcv_queues = num_kernel_contexts;
13537         dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13538         dd->num_vnic_contexts = num_vnic_contexts;
13539         dd->num_user_contexts = num_user_contexts;
13540         dd->freectxts = num_user_contexts;
13541         dd_dev_info(dd,
13542                     "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13543                     (int)dd->chip_rcv_contexts,
13544                     (int)dd->num_rcv_contexts,
13545                     (int)dd->n_krcv_queues,
13546                     dd->num_vnic_contexts,
13547                     dd->num_user_contexts);
13548
13549         /*
13550          * Receive array allocation:
13551          *   All RcvArray entries are divided into groups of 8. This
13552          *   is required by the hardware and will speed up writes to
13553          *   consecutive entries by using write-combining of the entire
13554          *   cacheline.
13555          *
13556          *   The number of groups are evenly divided among all contexts.
13557          *   any left over groups will be given to the first N user
13558          *   contexts.
13559          */
13560         dd->rcv_entries.group_size = RCV_INCREMENT;
13561         ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13562         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13563         dd->rcv_entries.nctxt_extra = ngroups -
13564                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13565         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13566                     dd->rcv_entries.ngroups,
13567                     dd->rcv_entries.nctxt_extra);
13568         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13569             MAX_EAGER_ENTRIES * 2) {
13570                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13571                         dd->rcv_entries.group_size;
13572                 dd_dev_info(dd,
13573                             "RcvArray group count too high, change to %u\n",
13574                             dd->rcv_entries.ngroups);
13575                 dd->rcv_entries.nctxt_extra = 0;
13576         }
13577         /*
13578          * PIO send contexts
13579          */
13580         ret = init_sc_pools_and_sizes(dd);
13581         if (ret >= 0) { /* success */
13582                 dd->num_send_contexts = ret;
13583                 dd_dev_info(
13584                         dd,
13585                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13586                         dd->chip_send_contexts,
13587                         dd->num_send_contexts,
13588                         dd->sc_sizes[SC_KERNEL].count,
13589                         dd->sc_sizes[SC_ACK].count,
13590                         dd->sc_sizes[SC_USER].count,
13591                         dd->sc_sizes[SC_VL15].count);
13592                 ret = 0;        /* success */
13593         }
13594
13595         return ret;
13596 }
13597
13598 /*
13599  * Set the device/port partition key table. The MAD code
13600  * will ensure that, at least, the partial management
13601  * partition key is present in the table.
13602  */
13603 static void set_partition_keys(struct hfi1_pportdata *ppd)
13604 {
13605         struct hfi1_devdata *dd = ppd->dd;
13606         u64 reg = 0;
13607         int i;
13608
13609         dd_dev_info(dd, "Setting partition keys\n");
13610         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13611                 reg |= (ppd->pkeys[i] &
13612                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13613                         ((i % 4) *
13614                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13615                 /* Each register holds 4 PKey values. */
13616                 if ((i % 4) == 3) {
13617                         write_csr(dd, RCV_PARTITION_KEY +
13618                                   ((i - 3) * 2), reg);
13619                         reg = 0;
13620                 }
13621         }
13622
13623         /* Always enable HW pkeys check when pkeys table is set */
13624         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13625 }
13626
13627 /*
13628  * These CSRs and memories are uninitialized on reset and must be
13629  * written before reading to set the ECC/parity bits.
13630  *
13631  * NOTE: All user context CSRs that are not mmaped write-only
13632  * (e.g. the TID flows) must be initialized even if the driver never
13633  * reads them.
13634  */
13635 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13636 {
13637         int i, j;
13638
13639         /* CceIntMap */
13640         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13641                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13642
13643         /* SendCtxtCreditReturnAddr */
13644         for (i = 0; i < dd->chip_send_contexts; i++)
13645                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13646
13647         /* PIO Send buffers */
13648         /* SDMA Send buffers */
13649         /*
13650          * These are not normally read, and (presently) have no method
13651          * to be read, so are not pre-initialized
13652          */
13653
13654         /* RcvHdrAddr */
13655         /* RcvHdrTailAddr */
13656         /* RcvTidFlowTable */
13657         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13658                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13659                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13660                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13661                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13662         }
13663
13664         /* RcvArray */
13665         for (i = 0; i < dd->chip_rcv_array_count; i++)
13666                 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13667
13668         /* RcvQPMapTable */
13669         for (i = 0; i < 32; i++)
13670                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13671 }
13672
13673 /*
13674  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13675  */
13676 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13677                              u64 ctrl_bits)
13678 {
13679         unsigned long timeout;
13680         u64 reg;
13681
13682         /* is the condition present? */
13683         reg = read_csr(dd, CCE_STATUS);
13684         if ((reg & status_bits) == 0)
13685                 return;
13686
13687         /* clear the condition */
13688         write_csr(dd, CCE_CTRL, ctrl_bits);
13689
13690         /* wait for the condition to clear */
13691         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13692         while (1) {
13693                 reg = read_csr(dd, CCE_STATUS);
13694                 if ((reg & status_bits) == 0)
13695                         return;
13696                 if (time_after(jiffies, timeout)) {
13697                         dd_dev_err(dd,
13698                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13699                                    status_bits, reg & status_bits);
13700                         return;
13701                 }
13702                 udelay(1);
13703         }
13704 }
13705
13706 /* set CCE CSRs to chip reset defaults */
13707 static void reset_cce_csrs(struct hfi1_devdata *dd)
13708 {
13709         int i;
13710
13711         /* CCE_REVISION read-only */
13712         /* CCE_REVISION2 read-only */
13713         /* CCE_CTRL - bits clear automatically */
13714         /* CCE_STATUS read-only, use CceCtrl to clear */
13715         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13716         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13717         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13718         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13719                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13720         /* CCE_ERR_STATUS read-only */
13721         write_csr(dd, CCE_ERR_MASK, 0);
13722         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13723         /* CCE_ERR_FORCE leave alone */
13724         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13725                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13726         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13727         /* CCE_PCIE_CTRL leave alone */
13728         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13729                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13730                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13731                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13732         }
13733         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13734                 /* CCE_MSIX_PBA read-only */
13735                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13736                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13737         }
13738         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13739                 write_csr(dd, CCE_INT_MAP, 0);
13740         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13741                 /* CCE_INT_STATUS read-only */
13742                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13743                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13744                 /* CCE_INT_FORCE leave alone */
13745                 /* CCE_INT_BLOCKED read-only */
13746         }
13747         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13748                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13749 }
13750
13751 /* set MISC CSRs to chip reset defaults */
13752 static void reset_misc_csrs(struct hfi1_devdata *dd)
13753 {
13754         int i;
13755
13756         for (i = 0; i < 32; i++) {
13757                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13758                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13759                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13760         }
13761         /*
13762          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13763          * only be written 128-byte chunks
13764          */
13765         /* init RSA engine to clear lingering errors */
13766         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13767         write_csr(dd, MISC_CFG_RSA_MU, 0);
13768         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13769         /* MISC_STS_8051_DIGEST read-only */
13770         /* MISC_STS_SBM_DIGEST read-only */
13771         /* MISC_STS_PCIE_DIGEST read-only */
13772         /* MISC_STS_FAB_DIGEST read-only */
13773         /* MISC_ERR_STATUS read-only */
13774         write_csr(dd, MISC_ERR_MASK, 0);
13775         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13776         /* MISC_ERR_FORCE leave alone */
13777 }
13778
13779 /* set TXE CSRs to chip reset defaults */
13780 static void reset_txe_csrs(struct hfi1_devdata *dd)
13781 {
13782         int i;
13783
13784         /*
13785          * TXE Kernel CSRs
13786          */
13787         write_csr(dd, SEND_CTRL, 0);
13788         __cm_reset(dd, 0);      /* reset CM internal state */
13789         /* SEND_CONTEXTS read-only */
13790         /* SEND_DMA_ENGINES read-only */
13791         /* SEND_PIO_MEM_SIZE read-only */
13792         /* SEND_DMA_MEM_SIZE read-only */
13793         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13794         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13795         /* SEND_PIO_ERR_STATUS read-only */
13796         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13797         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13798         /* SEND_PIO_ERR_FORCE leave alone */
13799         /* SEND_DMA_ERR_STATUS read-only */
13800         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13801         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13802         /* SEND_DMA_ERR_FORCE leave alone */
13803         /* SEND_EGRESS_ERR_STATUS read-only */
13804         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13805         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13806         /* SEND_EGRESS_ERR_FORCE leave alone */
13807         write_csr(dd, SEND_BTH_QP, 0);
13808         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13809         write_csr(dd, SEND_SC2VLT0, 0);
13810         write_csr(dd, SEND_SC2VLT1, 0);
13811         write_csr(dd, SEND_SC2VLT2, 0);
13812         write_csr(dd, SEND_SC2VLT3, 0);
13813         write_csr(dd, SEND_LEN_CHECK0, 0);
13814         write_csr(dd, SEND_LEN_CHECK1, 0);
13815         /* SEND_ERR_STATUS read-only */
13816         write_csr(dd, SEND_ERR_MASK, 0);
13817         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13818         /* SEND_ERR_FORCE read-only */
13819         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13820                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13821         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13822                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13823         for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13824                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13825         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13826                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13827         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13828                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13829         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13830         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13831         /* SEND_CM_CREDIT_USED_STATUS read-only */
13832         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13833         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13834         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13835         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13836         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13837         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13838                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13839         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13840         /* SEND_CM_CREDIT_USED_VL read-only */
13841         /* SEND_CM_CREDIT_USED_VL15 read-only */
13842         /* SEND_EGRESS_CTXT_STATUS read-only */
13843         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13844         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13845         /* SEND_EGRESS_ERR_INFO read-only */
13846         /* SEND_EGRESS_ERR_SOURCE read-only */
13847
13848         /*
13849          * TXE Per-Context CSRs
13850          */
13851         for (i = 0; i < dd->chip_send_contexts; i++) {
13852                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13853                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13854                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13855                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13856                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13857                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13858                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13859                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13860                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13861                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13862                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13863                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13864         }
13865
13866         /*
13867          * TXE Per-SDMA CSRs
13868          */
13869         for (i = 0; i < dd->chip_sdma_engines; i++) {
13870                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13871                 /* SEND_DMA_STATUS read-only */
13872                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13873                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13874                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13875                 /* SEND_DMA_HEAD read-only */
13876                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13877                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13878                 /* SEND_DMA_IDLE_CNT read-only */
13879                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13880                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13881                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13882                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13883                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13884                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13885                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13886                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13887                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13888                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13889                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13890                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13891                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13892                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13893         }
13894 }
13895
13896 /*
13897  * Expect on entry:
13898  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13899  */
13900 static void init_rbufs(struct hfi1_devdata *dd)
13901 {
13902         u64 reg;
13903         int count;
13904
13905         /*
13906          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13907          * clear.
13908          */
13909         count = 0;
13910         while (1) {
13911                 reg = read_csr(dd, RCV_STATUS);
13912                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13913                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13914                         break;
13915                 /*
13916                  * Give up after 1ms - maximum wait time.
13917                  *
13918                  * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13919                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13920                  *      136 KB / (66% * 250MB/s) = 844us
13921                  */
13922                 if (count++ > 500) {
13923                         dd_dev_err(dd,
13924                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13925                                    __func__, reg);
13926                         break;
13927                 }
13928                 udelay(2); /* do not busy-wait the CSR */
13929         }
13930
13931         /* start the init - expect RcvCtrl to be 0 */
13932         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13933
13934         /*
13935          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13936          * period after the write before RcvStatus.RxRbufInitDone is valid.
13937          * The delay in the first run through the loop below is sufficient and
13938          * required before the first read of RcvStatus.RxRbufInintDone.
13939          */
13940         read_csr(dd, RCV_CTRL);
13941
13942         /* wait for the init to finish */
13943         count = 0;
13944         while (1) {
13945                 /* delay is required first time through - see above */
13946                 udelay(2); /* do not busy-wait the CSR */
13947                 reg = read_csr(dd, RCV_STATUS);
13948                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13949                         break;
13950
13951                 /* give up after 100us - slowest possible at 33MHz is 73us */
13952                 if (count++ > 50) {
13953                         dd_dev_err(dd,
13954                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13955                                    __func__);
13956                         break;
13957                 }
13958         }
13959 }
13960
13961 /* set RXE CSRs to chip reset defaults */
13962 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13963 {
13964         int i, j;
13965
13966         /*
13967          * RXE Kernel CSRs
13968          */
13969         write_csr(dd, RCV_CTRL, 0);
13970         init_rbufs(dd);
13971         /* RCV_STATUS read-only */
13972         /* RCV_CONTEXTS read-only */
13973         /* RCV_ARRAY_CNT read-only */
13974         /* RCV_BUF_SIZE read-only */
13975         write_csr(dd, RCV_BTH_QP, 0);
13976         write_csr(dd, RCV_MULTICAST, 0);
13977         write_csr(dd, RCV_BYPASS, 0);
13978         write_csr(dd, RCV_VL15, 0);
13979         /* this is a clear-down */
13980         write_csr(dd, RCV_ERR_INFO,
13981                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13982         /* RCV_ERR_STATUS read-only */
13983         write_csr(dd, RCV_ERR_MASK, 0);
13984         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13985         /* RCV_ERR_FORCE leave alone */
13986         for (i = 0; i < 32; i++)
13987                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13988         for (i = 0; i < 4; i++)
13989                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13990         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13991                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13992         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13993                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13994         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13995                 clear_rsm_rule(dd, i);
13996         for (i = 0; i < 32; i++)
13997                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13998
13999         /*
14000          * RXE Kernel and User Per-Context CSRs
14001          */
14002         for (i = 0; i < dd->chip_rcv_contexts; i++) {
14003                 /* kernel */
14004                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
14005                 /* RCV_CTXT_STATUS read-only */
14006                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
14007                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
14008                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
14009                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
14010                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
14011                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
14012                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
14013                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
14014                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
14015                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
14016
14017                 /* user */
14018                 /* RCV_HDR_TAIL read-only */
14019                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
14020                 /* RCV_EGR_INDEX_TAIL read-only */
14021                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
14022                 /* RCV_EGR_OFFSET_TAIL read-only */
14023                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
14024                         write_uctxt_csr(dd, i,
14025                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
14026                 }
14027         }
14028 }
14029
14030 /*
14031  * Set sc2vl tables.
14032  *
14033  * They power on to zeros, so to avoid send context errors
14034  * they need to be set:
14035  *
14036  * SC 0-7 -> VL 0-7 (respectively)
14037  * SC 15  -> VL 15
14038  * otherwise
14039  *        -> VL 0
14040  */
14041 static void init_sc2vl_tables(struct hfi1_devdata *dd)
14042 {
14043         int i;
14044         /* init per architecture spec, constrained by hardware capability */
14045
14046         /* HFI maps sent packets */
14047         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
14048                 0,
14049                 0, 0, 1, 1,
14050                 2, 2, 3, 3,
14051                 4, 4, 5, 5,
14052                 6, 6, 7, 7));
14053         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14054                 1,
14055                 8, 0, 9, 0,
14056                 10, 0, 11, 0,
14057                 12, 0, 13, 0,
14058                 14, 0, 15, 15));
14059         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14060                 2,
14061                 16, 0, 17, 0,
14062                 18, 0, 19, 0,
14063                 20, 0, 21, 0,
14064                 22, 0, 23, 0));
14065         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14066                 3,
14067                 24, 0, 25, 0,
14068                 26, 0, 27, 0,
14069                 28, 0, 29, 0,
14070                 30, 0, 31, 0));
14071
14072         /* DC maps received packets */
14073         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14074                 15_0,
14075                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14076                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14077         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14078                 31_16,
14079                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14080                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14081
14082         /* initialize the cached sc2vl values consistently with h/w */
14083         for (i = 0; i < 32; i++) {
14084                 if (i < 8 || i == 15)
14085                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
14086                 else
14087                         *((u8 *)(dd->sc2vl) + i) = 0;
14088         }
14089 }
14090
14091 /*
14092  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14093  * depend on the chip going through a power-on reset - a driver may be loaded
14094  * and unloaded many times.
14095  *
14096  * Do not write any CSR values to the chip in this routine - there may be
14097  * a reset following the (possible) FLR in this routine.
14098  *
14099  */
14100 static int init_chip(struct hfi1_devdata *dd)
14101 {
14102         int i;
14103         int ret = 0;
14104
14105         /*
14106          * Put the HFI CSRs in a known state.
14107          * Combine this with a DC reset.
14108          *
14109          * Stop the device from doing anything while we do a
14110          * reset.  We know there are no other active users of
14111          * the device since we are now in charge.  Turn off
14112          * off all outbound and inbound traffic and make sure
14113          * the device does not generate any interrupts.
14114          */
14115
14116         /* disable send contexts and SDMA engines */
14117         write_csr(dd, SEND_CTRL, 0);
14118         for (i = 0; i < dd->chip_send_contexts; i++)
14119                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14120         for (i = 0; i < dd->chip_sdma_engines; i++)
14121                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14122         /* disable port (turn off RXE inbound traffic) and contexts */
14123         write_csr(dd, RCV_CTRL, 0);
14124         for (i = 0; i < dd->chip_rcv_contexts; i++)
14125                 write_csr(dd, RCV_CTXT_CTRL, 0);
14126         /* mask all interrupt sources */
14127         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14128                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14129
14130         /*
14131          * DC Reset: do a full DC reset before the register clear.
14132          * A recommended length of time to hold is one CSR read,
14133          * so reread the CceDcCtrl.  Then, hold the DC in reset
14134          * across the clear.
14135          */
14136         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14137         (void)read_csr(dd, CCE_DC_CTRL);
14138
14139         if (use_flr) {
14140                 /*
14141                  * A FLR will reset the SPC core and part of the PCIe.
14142                  * The parts that need to be restored have already been
14143                  * saved.
14144                  */
14145                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14146
14147                 /* do the FLR, the DC reset will remain */
14148                 pcie_flr(dd->pcidev);
14149
14150                 /* restore command and BARs */
14151                 ret = restore_pci_variables(dd);
14152                 if (ret) {
14153                         dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14154                                    __func__);
14155                         return ret;
14156                 }
14157
14158                 if (is_ax(dd)) {
14159                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
14160                         pcie_flr(dd->pcidev);
14161                         ret = restore_pci_variables(dd);
14162                         if (ret) {
14163                                 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14164                                            __func__);
14165                                 return ret;
14166                         }
14167                 }
14168         } else {
14169                 dd_dev_info(dd, "Resetting CSRs with writes\n");
14170                 reset_cce_csrs(dd);
14171                 reset_txe_csrs(dd);
14172                 reset_rxe_csrs(dd);
14173                 reset_misc_csrs(dd);
14174         }
14175         /* clear the DC reset */
14176         write_csr(dd, CCE_DC_CTRL, 0);
14177
14178         /* Set the LED off */
14179         setextled(dd, 0);
14180
14181         /*
14182          * Clear the QSFP reset.
14183          * An FLR enforces a 0 on all out pins. The driver does not touch
14184          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14185          * anything plugged constantly in reset, if it pays attention
14186          * to RESET_N.
14187          * Prime examples of this are optical cables. Set all pins high.
14188          * I2CCLK and I2CDAT will change per direction, and INT_N and
14189          * MODPRS_N are input only and their value is ignored.
14190          */
14191         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14192         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14193         init_chip_resources(dd);
14194         return ret;
14195 }
14196
14197 static void init_early_variables(struct hfi1_devdata *dd)
14198 {
14199         int i;
14200
14201         /* assign link credit variables */
14202         dd->vau = CM_VAU;
14203         dd->link_credits = CM_GLOBAL_CREDITS;
14204         if (is_ax(dd))
14205                 dd->link_credits--;
14206         dd->vcu = cu_to_vcu(hfi1_cu);
14207         /* enough room for 8 MAD packets plus header - 17K */
14208         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14209         if (dd->vl15_init > dd->link_credits)
14210                 dd->vl15_init = dd->link_credits;
14211
14212         write_uninitialized_csrs_and_memories(dd);
14213
14214         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14215                 for (i = 0; i < dd->num_pports; i++) {
14216                         struct hfi1_pportdata *ppd = &dd->pport[i];
14217
14218                         set_partition_keys(ppd);
14219                 }
14220         init_sc2vl_tables(dd);
14221 }
14222
14223 static void init_kdeth_qp(struct hfi1_devdata *dd)
14224 {
14225         /* user changed the KDETH_QP */
14226         if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14227                 /* out of range or illegal value */
14228                 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14229                 kdeth_qp = 0;
14230         }
14231         if (kdeth_qp == 0)      /* not set, or failed range check */
14232                 kdeth_qp = DEFAULT_KDETH_QP;
14233
14234         write_csr(dd, SEND_BTH_QP,
14235                   (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14236                   SEND_BTH_QP_KDETH_QP_SHIFT);
14237
14238         write_csr(dd, RCV_BTH_QP,
14239                   (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14240                   RCV_BTH_QP_KDETH_QP_SHIFT);
14241 }
14242
14243 /**
14244  * init_qpmap_table
14245  * @dd - device data
14246  * @first_ctxt - first context
14247  * @last_ctxt - first context
14248  *
14249  * This return sets the qpn mapping table that
14250  * is indexed by qpn[8:1].
14251  *
14252  * The routine will round robin the 256 settings
14253  * from first_ctxt to last_ctxt.
14254  *
14255  * The first/last looks ahead to having specialized
14256  * receive contexts for mgmt and bypass.  Normal
14257  * verbs traffic will assumed to be on a range
14258  * of receive contexts.
14259  */
14260 static void init_qpmap_table(struct hfi1_devdata *dd,
14261                              u32 first_ctxt,
14262                              u32 last_ctxt)
14263 {
14264         u64 reg = 0;
14265         u64 regno = RCV_QP_MAP_TABLE;
14266         int i;
14267         u64 ctxt = first_ctxt;
14268
14269         for (i = 0; i < 256; i++) {
14270                 reg |= ctxt << (8 * (i % 8));
14271                 ctxt++;
14272                 if (ctxt > last_ctxt)
14273                         ctxt = first_ctxt;
14274                 if (i % 8 == 7) {
14275                         write_csr(dd, regno, reg);
14276                         reg = 0;
14277                         regno += 8;
14278                 }
14279         }
14280
14281         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14282                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14283 }
14284
14285 struct rsm_map_table {
14286         u64 map[NUM_MAP_REGS];
14287         unsigned int used;
14288 };
14289
14290 struct rsm_rule_data {
14291         u8 offset;
14292         u8 pkt_type;
14293         u32 field1_off;
14294         u32 field2_off;
14295         u32 index1_off;
14296         u32 index1_width;
14297         u32 index2_off;
14298         u32 index2_width;
14299         u32 mask1;
14300         u32 value1;
14301         u32 mask2;
14302         u32 value2;
14303 };
14304
14305 /*
14306  * Return an initialized RMT map table for users to fill in.  OK if it
14307  * returns NULL, indicating no table.
14308  */
14309 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14310 {
14311         struct rsm_map_table *rmt;
14312         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14313
14314         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14315         if (rmt) {
14316                 memset(rmt->map, rxcontext, sizeof(rmt->map));
14317                 rmt->used = 0;
14318         }
14319
14320         return rmt;
14321 }
14322
14323 /*
14324  * Write the final RMT map table to the chip and free the table.  OK if
14325  * table is NULL.
14326  */
14327 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14328                                    struct rsm_map_table *rmt)
14329 {
14330         int i;
14331
14332         if (rmt) {
14333                 /* write table to chip */
14334                 for (i = 0; i < NUM_MAP_REGS; i++)
14335                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14336
14337                 /* enable RSM */
14338                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14339         }
14340 }
14341
14342 /*
14343  * Add a receive side mapping rule.
14344  */
14345 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14346                          struct rsm_rule_data *rrd)
14347 {
14348         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14349                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14350                   1ull << rule_index | /* enable bit */
14351                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14352         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14353                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14354                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14355                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14356                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14357                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14358                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14359         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14360                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14361                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14362                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14363                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14364 }
14365
14366 /*
14367  * Clear a receive side mapping rule.
14368  */
14369 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14370 {
14371         write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14372         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14373         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14374 }
14375
14376 /* return the number of RSM map table entries that will be used for QOS */
14377 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14378                            unsigned int *np)
14379 {
14380         int i;
14381         unsigned int m, n;
14382         u8 max_by_vl = 0;
14383
14384         /* is QOS active at all? */
14385         if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14386             num_vls == 1 ||
14387             krcvqsset <= 1)
14388                 goto no_qos;
14389
14390         /* determine bits for qpn */
14391         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14392                 if (krcvqs[i] > max_by_vl)
14393                         max_by_vl = krcvqs[i];
14394         if (max_by_vl > 32)
14395                 goto no_qos;
14396         m = ilog2(__roundup_pow_of_two(max_by_vl));
14397
14398         /* determine bits for vl */
14399         n = ilog2(__roundup_pow_of_two(num_vls));
14400
14401         /* reject if too much is used */
14402         if ((m + n) > 7)
14403                 goto no_qos;
14404
14405         if (mp)
14406                 *mp = m;
14407         if (np)
14408                 *np = n;
14409
14410         return 1 << (m + n);
14411
14412 no_qos:
14413         if (mp)
14414                 *mp = 0;
14415         if (np)
14416                 *np = 0;
14417         return 0;
14418 }
14419
14420 /**
14421  * init_qos - init RX qos
14422  * @dd - device data
14423  * @rmt - RSM map table
14424  *
14425  * This routine initializes Rule 0 and the RSM map table to implement
14426  * quality of service (qos).
14427  *
14428  * If all of the limit tests succeed, qos is applied based on the array
14429  * interpretation of krcvqs where entry 0 is VL0.
14430  *
14431  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14432  * feed both the RSM map table and the single rule.
14433  */
14434 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14435 {
14436         struct rsm_rule_data rrd;
14437         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14438         unsigned int rmt_entries;
14439         u64 reg;
14440
14441         if (!rmt)
14442                 goto bail;
14443         rmt_entries = qos_rmt_entries(dd, &m, &n);
14444         if (rmt_entries == 0)
14445                 goto bail;
14446         qpns_per_vl = 1 << m;
14447
14448         /* enough room in the map table? */
14449         rmt_entries = 1 << (m + n);
14450         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14451                 goto bail;
14452
14453         /* add qos entries to the the RSM map table */
14454         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14455                 unsigned tctxt;
14456
14457                 for (qpn = 0, tctxt = ctxt;
14458                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14459                         unsigned idx, regoff, regidx;
14460
14461                         /* generate the index the hardware will produce */
14462                         idx = rmt->used + ((qpn << n) ^ i);
14463                         regoff = (idx % 8) * 8;
14464                         regidx = idx / 8;
14465                         /* replace default with context number */
14466                         reg = rmt->map[regidx];
14467                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14468                                 << regoff);
14469                         reg |= (u64)(tctxt++) << regoff;
14470                         rmt->map[regidx] = reg;
14471                         if (tctxt == ctxt + krcvqs[i])
14472                                 tctxt = ctxt;
14473                 }
14474                 ctxt += krcvqs[i];
14475         }
14476
14477         rrd.offset = rmt->used;
14478         rrd.pkt_type = 2;
14479         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14480         rrd.field2_off = LRH_SC_MATCH_OFFSET;
14481         rrd.index1_off = LRH_SC_SELECT_OFFSET;
14482         rrd.index1_width = n;
14483         rrd.index2_off = QPN_SELECT_OFFSET;
14484         rrd.index2_width = m + n;
14485         rrd.mask1 = LRH_BTH_MASK;
14486         rrd.value1 = LRH_BTH_VALUE;
14487         rrd.mask2 = LRH_SC_MASK;
14488         rrd.value2 = LRH_SC_VALUE;
14489
14490         /* add rule 0 */
14491         add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14492
14493         /* mark RSM map entries as used */
14494         rmt->used += rmt_entries;
14495         /* map everything else to the mcast/err/vl15 context */
14496         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14497         dd->qos_shift = n + 1;
14498         return;
14499 bail:
14500         dd->qos_shift = 1;
14501         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14502 }
14503
14504 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14505                                     struct rsm_map_table *rmt)
14506 {
14507         struct rsm_rule_data rrd;
14508         u64 reg;
14509         int i, idx, regoff, regidx;
14510         u8 offset;
14511
14512         /* there needs to be enough room in the map table */
14513         if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14514                 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14515                 return;
14516         }
14517
14518         /*
14519          * RSM will extract the destination context as an index into the
14520          * map table.  The destination contexts are a sequential block
14521          * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14522          * Map entries are accessed as offset + extracted value.  Adjust
14523          * the added offset so this sequence can be placed anywhere in
14524          * the table - as long as the entries themselves do not wrap.
14525          * There are only enough bits in offset for the table size, so
14526          * start with that to allow for a "negative" offset.
14527          */
14528         offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14529                                                 (int)dd->first_dyn_alloc_ctxt);
14530
14531         for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14532                                 i < dd->num_rcv_contexts; i++, idx++) {
14533                 /* replace with identity mapping */
14534                 regoff = (idx % 8) * 8;
14535                 regidx = idx / 8;
14536                 reg = rmt->map[regidx];
14537                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14538                 reg |= (u64)i << regoff;
14539                 rmt->map[regidx] = reg;
14540         }
14541
14542         /*
14543          * For RSM intercept of Expected FECN packets:
14544          * o packet type 0 - expected
14545          * o match on F (bit 95), using select/match 1, and
14546          * o match on SH (bit 133), using select/match 2.
14547          *
14548          * Use index 1 to extract the 8-bit receive context from DestQP
14549          * (start at bit 64).  Use that as the RSM map table index.
14550          */
14551         rrd.offset = offset;
14552         rrd.pkt_type = 0;
14553         rrd.field1_off = 95;
14554         rrd.field2_off = 133;
14555         rrd.index1_off = 64;
14556         rrd.index1_width = 8;
14557         rrd.index2_off = 0;
14558         rrd.index2_width = 0;
14559         rrd.mask1 = 1;
14560         rrd.value1 = 1;
14561         rrd.mask2 = 1;
14562         rrd.value2 = 1;
14563
14564         /* add rule 1 */
14565         add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14566
14567         rmt->used += dd->num_user_contexts;
14568 }
14569
14570 /* Initialize RSM for VNIC */
14571 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14572 {
14573         u8 i, j;
14574         u8 ctx_id = 0;
14575         u64 reg;
14576         u32 regoff;
14577         struct rsm_rule_data rrd;
14578
14579         if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14580                 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14581                            dd->vnic.rmt_start);
14582                 return;
14583         }
14584
14585         dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14586                 dd->vnic.rmt_start,
14587                 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14588
14589         /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14590         regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14591         reg = read_csr(dd, regoff);
14592         for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14593                 /* Update map register with vnic context */
14594                 j = (dd->vnic.rmt_start + i) % 8;
14595                 reg &= ~(0xffllu << (j * 8));
14596                 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14597                 /* Wrap up vnic ctx index */
14598                 ctx_id %= dd->vnic.num_ctxt;
14599                 /* Write back map register */
14600                 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14601                         dev_dbg(&(dd)->pcidev->dev,
14602                                 "Vnic rsm map reg[%d] =0x%llx\n",
14603                                 regoff - RCV_RSM_MAP_TABLE, reg);
14604
14605                         write_csr(dd, regoff, reg);
14606                         regoff += 8;
14607                         if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14608                                 reg = read_csr(dd, regoff);
14609                 }
14610         }
14611
14612         /* Add rule for vnic */
14613         rrd.offset = dd->vnic.rmt_start;
14614         rrd.pkt_type = 4;
14615         /* Match 16B packets */
14616         rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14617         rrd.mask1 = L2_TYPE_MASK;
14618         rrd.value1 = L2_16B_VALUE;
14619         /* Match ETH L4 packets */
14620         rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14621         rrd.mask2 = L4_16B_TYPE_MASK;
14622         rrd.value2 = L4_16B_ETH_VALUE;
14623         /* Calc context from veswid and entropy */
14624         rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14625         rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14626         rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14627         rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14628         add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14629
14630         /* Enable RSM if not already enabled */
14631         add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14632 }
14633
14634 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14635 {
14636         clear_rsm_rule(dd, RSM_INS_VNIC);
14637
14638         /* Disable RSM if used only by vnic */
14639         if (dd->vnic.rmt_start == 0)
14640                 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14641 }
14642
14643 static int init_rxe(struct hfi1_devdata *dd)
14644 {
14645         struct rsm_map_table *rmt;
14646         u64 val;
14647
14648         /* enable all receive errors */
14649         write_csr(dd, RCV_ERR_MASK, ~0ull);
14650
14651         rmt = alloc_rsm_map_table(dd);
14652         if (!rmt)
14653                 return -ENOMEM;
14654
14655         /* set up QOS, including the QPN map table */
14656         init_qos(dd, rmt);
14657         init_user_fecn_handling(dd, rmt);
14658         complete_rsm_map_table(dd, rmt);
14659         /* record number of used rsm map entries for vnic */
14660         dd->vnic.rmt_start = rmt->used;
14661         kfree(rmt);
14662
14663         /*
14664          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14665          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14666          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14667          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14668          * Max_PayLoad_Size set to its minimum of 128.
14669          *
14670          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14671          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14672          * tune_pcie_caps() which is called after this routine.
14673          */
14674
14675         /* Have 16 bytes (4DW) of bypass header available in header queue */
14676         val = read_csr(dd, RCV_BYPASS);
14677         val |= (4ull << 16);
14678         write_csr(dd, RCV_BYPASS, val);
14679         return 0;
14680 }
14681
14682 static void init_other(struct hfi1_devdata *dd)
14683 {
14684         /* enable all CCE errors */
14685         write_csr(dd, CCE_ERR_MASK, ~0ull);
14686         /* enable *some* Misc errors */
14687         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14688         /* enable all DC errors, except LCB */
14689         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14690         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14691 }
14692
14693 /*
14694  * Fill out the given AU table using the given CU.  A CU is defined in terms
14695  * AUs.  The table is a an encoding: given the index, how many AUs does that
14696  * represent?
14697  *
14698  * NOTE: Assumes that the register layout is the same for the
14699  * local and remote tables.
14700  */
14701 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14702                                u32 csr0to3, u32 csr4to7)
14703 {
14704         write_csr(dd, csr0to3,
14705                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14706                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14707                   2ull * cu <<
14708                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14709                   4ull * cu <<
14710                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14711         write_csr(dd, csr4to7,
14712                   8ull * cu <<
14713                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14714                   16ull * cu <<
14715                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14716                   32ull * cu <<
14717                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14718                   64ull * cu <<
14719                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14720 }
14721
14722 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14723 {
14724         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14725                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14726 }
14727
14728 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14729 {
14730         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14731                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14732 }
14733
14734 static void init_txe(struct hfi1_devdata *dd)
14735 {
14736         int i;
14737
14738         /* enable all PIO, SDMA, general, and Egress errors */
14739         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14740         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14741         write_csr(dd, SEND_ERR_MASK, ~0ull);
14742         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14743
14744         /* enable all per-context and per-SDMA engine errors */
14745         for (i = 0; i < dd->chip_send_contexts; i++)
14746                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14747         for (i = 0; i < dd->chip_sdma_engines; i++)
14748                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14749
14750         /* set the local CU to AU mapping */
14751         assign_local_cm_au_table(dd, dd->vcu);
14752
14753         /*
14754          * Set reasonable default for Credit Return Timer
14755          * Don't set on Simulator - causes it to choke.
14756          */
14757         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14758                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14759 }
14760
14761 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14762                        u16 jkey)
14763 {
14764         u8 hw_ctxt;
14765         u64 reg;
14766
14767         if (!rcd || !rcd->sc)
14768                 return -EINVAL;
14769
14770         hw_ctxt = rcd->sc->hw_context;
14771         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14772                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14773                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14774         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14775         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14776                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14777         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14778         /*
14779          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14780          */
14781         if (!is_ax(dd)) {
14782                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14783                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14784                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14785         }
14786
14787         /* Enable J_KEY check on receive context. */
14788         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14789                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14790                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14791         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14792
14793         return 0;
14794 }
14795
14796 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14797 {
14798         u8 hw_ctxt;
14799         u64 reg;
14800
14801         if (!rcd || !rcd->sc)
14802                 return -EINVAL;
14803
14804         hw_ctxt = rcd->sc->hw_context;
14805         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14806         /*
14807          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14808          * This check would not have been enabled for A0 h/w, see
14809          * set_ctxt_jkey().
14810          */
14811         if (!is_ax(dd)) {
14812                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14813                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14814                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14815         }
14816         /* Turn off the J_KEY on the receive side */
14817         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14818
14819         return 0;
14820 }
14821
14822 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14823                        u16 pkey)
14824 {
14825         u8 hw_ctxt;
14826         u64 reg;
14827
14828         if (!rcd || !rcd->sc)
14829                 return -EINVAL;
14830
14831         hw_ctxt = rcd->sc->hw_context;
14832         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14833                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14834         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14835         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14836         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14837         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14838         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14839
14840         return 0;
14841 }
14842
14843 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14844 {
14845         u8 hw_ctxt;
14846         u64 reg;
14847
14848         if (!ctxt || !ctxt->sc)
14849                 return -EINVAL;
14850
14851         hw_ctxt = ctxt->sc->hw_context;
14852         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14853         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14854         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14855         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14856
14857         return 0;
14858 }
14859
14860 /*
14861  * Start doing the clean up the the chip. Our clean up happens in multiple
14862  * stages and this is just the first.
14863  */
14864 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14865 {
14866         aspm_exit(dd);
14867         free_cntrs(dd);
14868         free_rcverr(dd);
14869         finish_chip_resources(dd);
14870 }
14871
14872 #define HFI_BASE_GUID(dev) \
14873         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14874
14875 /*
14876  * Information can be shared between the two HFIs on the same ASIC
14877  * in the same OS.  This function finds the peer device and sets
14878  * up a shared structure.
14879  */
14880 static int init_asic_data(struct hfi1_devdata *dd)
14881 {
14882         unsigned long flags;
14883         struct hfi1_devdata *tmp, *peer = NULL;
14884         struct hfi1_asic_data *asic_data;
14885         int ret = 0;
14886
14887         /* pre-allocate the asic structure in case we are the first device */
14888         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14889         if (!asic_data)
14890                 return -ENOMEM;
14891
14892         spin_lock_irqsave(&hfi1_devs_lock, flags);
14893         /* Find our peer device */
14894         list_for_each_entry(tmp, &hfi1_dev_list, list) {
14895                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14896                     dd->unit != tmp->unit) {
14897                         peer = tmp;
14898                         break;
14899                 }
14900         }
14901
14902         if (peer) {
14903                 /* use already allocated structure */
14904                 dd->asic_data = peer->asic_data;
14905                 kfree(asic_data);
14906         } else {
14907                 dd->asic_data = asic_data;
14908                 mutex_init(&dd->asic_data->asic_resource_mutex);
14909         }
14910         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14911         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14912
14913         /* first one through - set up i2c devices */
14914         if (!peer)
14915                 ret = set_up_i2c(dd, dd->asic_data);
14916
14917         return ret;
14918 }
14919
14920 /*
14921  * Set dd->boardname.  Use a generic name if a name is not returned from
14922  * EFI variable space.
14923  *
14924  * Return 0 on success, -ENOMEM if space could not be allocated.
14925  */
14926 static int obtain_boardname(struct hfi1_devdata *dd)
14927 {
14928         /* generic board description */
14929         const char generic[] =
14930                 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14931         unsigned long size;
14932         int ret;
14933
14934         ret = read_hfi1_efi_var(dd, "description", &size,
14935                                 (void **)&dd->boardname);
14936         if (ret) {
14937                 dd_dev_info(dd, "Board description not found\n");
14938                 /* use generic description */
14939                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14940                 if (!dd->boardname)
14941                         return -ENOMEM;
14942         }
14943         return 0;
14944 }
14945
14946 /*
14947  * Check the interrupt registers to make sure that they are mapped correctly.
14948  * It is intended to help user identify any mismapping by VMM when the driver
14949  * is running in a VM. This function should only be called before interrupt
14950  * is set up properly.
14951  *
14952  * Return 0 on success, -EINVAL on failure.
14953  */
14954 static int check_int_registers(struct hfi1_devdata *dd)
14955 {
14956         u64 reg;
14957         u64 all_bits = ~(u64)0;
14958         u64 mask;
14959
14960         /* Clear CceIntMask[0] to avoid raising any interrupts */
14961         mask = read_csr(dd, CCE_INT_MASK);
14962         write_csr(dd, CCE_INT_MASK, 0ull);
14963         reg = read_csr(dd, CCE_INT_MASK);
14964         if (reg)
14965                 goto err_exit;
14966
14967         /* Clear all interrupt status bits */
14968         write_csr(dd, CCE_INT_CLEAR, all_bits);
14969         reg = read_csr(dd, CCE_INT_STATUS);
14970         if (reg)
14971                 goto err_exit;
14972
14973         /* Set all interrupt status bits */
14974         write_csr(dd, CCE_INT_FORCE, all_bits);
14975         reg = read_csr(dd, CCE_INT_STATUS);
14976         if (reg != all_bits)
14977                 goto err_exit;
14978
14979         /* Restore the interrupt mask */
14980         write_csr(dd, CCE_INT_CLEAR, all_bits);
14981         write_csr(dd, CCE_INT_MASK, mask);
14982
14983         return 0;
14984 err_exit:
14985         write_csr(dd, CCE_INT_MASK, mask);
14986         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14987         return -EINVAL;
14988 }
14989
14990 /**
14991  * Allocate and initialize the device structure for the hfi.
14992  * @dev: the pci_dev for hfi1_ib device
14993  * @ent: pci_device_id struct for this dev
14994  *
14995  * Also allocates, initializes, and returns the devdata struct for this
14996  * device instance
14997  *
14998  * This is global, and is called directly at init to set up the
14999  * chip-specific function pointers for later use.
15000  */
15001 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
15002                                   const struct pci_device_id *ent)
15003 {
15004         struct hfi1_devdata *dd;
15005         struct hfi1_pportdata *ppd;
15006         u64 reg;
15007         int i, ret;
15008         static const char * const inames[] = { /* implementation names */
15009                 "RTL silicon",
15010                 "RTL VCS simulation",
15011                 "RTL FPGA emulation",
15012                 "Functional simulator"
15013         };
15014         struct pci_dev *parent = pdev->bus->self;
15015
15016         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
15017                                 sizeof(struct hfi1_pportdata));
15018         if (IS_ERR(dd))
15019                 goto bail;
15020         ppd = dd->pport;
15021         for (i = 0; i < dd->num_pports; i++, ppd++) {
15022                 int vl;
15023                 /* init common fields */
15024                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15025                 /* DC supports 4 link widths */
15026                 ppd->link_width_supported =
15027                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15028                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15029                 ppd->link_width_downgrade_supported =
15030                         ppd->link_width_supported;
15031                 /* start out enabling only 4X */
15032                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15033                 ppd->link_width_downgrade_enabled =
15034                                         ppd->link_width_downgrade_supported;
15035                 /* link width active is 0 when link is down */
15036                 /* link width downgrade active is 0 when link is down */
15037
15038                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15039                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
15040                         hfi1_early_err(&pdev->dev,
15041                                        "Invalid num_vls %u, using %u VLs\n",
15042                                     num_vls, HFI1_MAX_VLS_SUPPORTED);
15043                         num_vls = HFI1_MAX_VLS_SUPPORTED;
15044                 }
15045                 ppd->vls_supported = num_vls;
15046                 ppd->vls_operational = ppd->vls_supported;
15047                 /* Set the default MTU. */
15048                 for (vl = 0; vl < num_vls; vl++)
15049                         dd->vld[vl].mtu = hfi1_max_mtu;
15050                 dd->vld[15].mtu = MAX_MAD_PACKET;
15051                 /*
15052                  * Set the initial values to reasonable default, will be set
15053                  * for real when link is up.
15054                  */
15055                 ppd->overrun_threshold = 0x4;
15056                 ppd->phy_error_threshold = 0xf;
15057                 ppd->port_crc_mode_enabled = link_crc_mask;
15058                 /* initialize supported LTP CRC mode */
15059                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15060                 /* initialize enabled LTP CRC mode */
15061                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15062                 /* start in offline */
15063                 ppd->host_link_state = HLS_DN_OFFLINE;
15064                 init_vl_arb_caches(ppd);
15065         }
15066
15067         dd->link_default = HLS_DN_POLL;
15068
15069         /*
15070          * Do remaining PCIe setup and save PCIe values in dd.
15071          * Any error printing is already done by the init code.
15072          * On return, we have the chip mapped.
15073          */
15074         ret = hfi1_pcie_ddinit(dd, pdev);
15075         if (ret < 0)
15076                 goto bail_free;
15077
15078         /* Save PCI space registers to rewrite after device reset */
15079         ret = save_pci_variables(dd);
15080         if (ret < 0)
15081                 goto bail_cleanup;
15082
15083         /* verify that reads actually work, save revision for reset check */
15084         dd->revision = read_csr(dd, CCE_REVISION);
15085         if (dd->revision == ~(u64)0) {
15086                 dd_dev_err(dd, "cannot read chip CSRs\n");
15087                 ret = -EINVAL;
15088                 goto bail_cleanup;
15089         }
15090         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15091                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
15092         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15093                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
15094
15095         /*
15096          * Check interrupt registers mapping if the driver has no access to
15097          * the upstream component. In this case, it is likely that the driver
15098          * is running in a VM.
15099          */
15100         if (!parent) {
15101                 ret = check_int_registers(dd);
15102                 if (ret)
15103                         goto bail_cleanup;
15104         }
15105
15106         /*
15107          * obtain the hardware ID - NOT related to unit, which is a
15108          * software enumeration
15109          */
15110         reg = read_csr(dd, CCE_REVISION2);
15111         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15112                                         & CCE_REVISION2_HFI_ID_MASK;
15113         /* the variable size will remove unwanted bits */
15114         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15115         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15116         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15117                     dd->icode < ARRAY_SIZE(inames) ?
15118                     inames[dd->icode] : "unknown", (int)dd->irev);
15119
15120         /* speeds the hardware can support */
15121         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15122         /* speeds allowed to run at */
15123         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15124         /* give a reasonable active value, will be set on link up */
15125         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15126
15127         dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15128         dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15129         dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15130         dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15131         dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15132         /* fix up link widths for emulation _p */
15133         ppd = dd->pport;
15134         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15135                 ppd->link_width_supported =
15136                         ppd->link_width_enabled =
15137                         ppd->link_width_downgrade_supported =
15138                         ppd->link_width_downgrade_enabled =
15139                                 OPA_LINK_WIDTH_1X;
15140         }
15141         /* insure num_vls isn't larger than number of sdma engines */
15142         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15143                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15144                            num_vls, dd->chip_sdma_engines);
15145                 num_vls = dd->chip_sdma_engines;
15146                 ppd->vls_supported = dd->chip_sdma_engines;
15147                 ppd->vls_operational = ppd->vls_supported;
15148         }
15149
15150         /*
15151          * Convert the ns parameter to the 64 * cclocks used in the CSR.
15152          * Limit the max if larger than the field holds.  If timeout is
15153          * non-zero, then the calculated field will be at least 1.
15154          *
15155          * Must be after icode is set up - the cclock rate depends
15156          * on knowing the hardware being used.
15157          */
15158         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15159         if (dd->rcv_intr_timeout_csr >
15160                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15161                 dd->rcv_intr_timeout_csr =
15162                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15163         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15164                 dd->rcv_intr_timeout_csr = 1;
15165
15166         /* needs to be done before we look for the peer device */
15167         read_guid(dd);
15168
15169         /* set up shared ASIC data with peer device */
15170         ret = init_asic_data(dd);
15171         if (ret)
15172                 goto bail_cleanup;
15173
15174         /* obtain chip sizes, reset chip CSRs */
15175         ret = init_chip(dd);
15176         if (ret)
15177                 goto bail_cleanup;
15178
15179         /* read in the PCIe link speed information */
15180         ret = pcie_speeds(dd);
15181         if (ret)
15182                 goto bail_cleanup;
15183
15184         /* call before get_platform_config(), after init_chip_resources() */
15185         ret = eprom_init(dd);
15186         if (ret)
15187                 goto bail_free_rcverr;
15188
15189         /* Needs to be called before hfi1_firmware_init */
15190         get_platform_config(dd);
15191
15192         /* read in firmware */
15193         ret = hfi1_firmware_init(dd);
15194         if (ret)
15195                 goto bail_cleanup;
15196
15197         /*
15198          * In general, the PCIe Gen3 transition must occur after the
15199          * chip has been idled (so it won't initiate any PCIe transactions
15200          * e.g. an interrupt) and before the driver changes any registers
15201          * (the transition will reset the registers).
15202          *
15203          * In particular, place this call after:
15204          * - init_chip()     - the chip will not initiate any PCIe transactions
15205          * - pcie_speeds()   - reads the current link speed
15206          * - hfi1_firmware_init() - the needed firmware is ready to be
15207          *                          downloaded
15208          */
15209         ret = do_pcie_gen3_transition(dd);
15210         if (ret)
15211                 goto bail_cleanup;
15212
15213         /* start setting dd values and adjusting CSRs */
15214         init_early_variables(dd);
15215
15216         parse_platform_config(dd);
15217
15218         ret = obtain_boardname(dd);
15219         if (ret)
15220                 goto bail_cleanup;
15221
15222         snprintf(dd->boardversion, BOARD_VERS_MAX,
15223                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15224                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15225                  (u32)dd->majrev,
15226                  (u32)dd->minrev,
15227                  (dd->revision >> CCE_REVISION_SW_SHIFT)
15228                     & CCE_REVISION_SW_MASK);
15229
15230         ret = set_up_context_variables(dd);
15231         if (ret)
15232                 goto bail_cleanup;
15233
15234         /* set initial RXE CSRs */
15235         ret = init_rxe(dd);
15236         if (ret)
15237                 goto bail_cleanup;
15238
15239         /* set initial TXE CSRs */
15240         init_txe(dd);
15241         /* set initial non-RXE, non-TXE CSRs */
15242         init_other(dd);
15243         /* set up KDETH QP prefix in both RX and TX CSRs */
15244         init_kdeth_qp(dd);
15245
15246         ret = hfi1_dev_affinity_init(dd);
15247         if (ret)
15248                 goto bail_cleanup;
15249
15250         /* send contexts must be set up before receive contexts */
15251         ret = init_send_contexts(dd);
15252         if (ret)
15253                 goto bail_cleanup;
15254
15255         ret = hfi1_create_kctxts(dd);
15256         if (ret)
15257                 goto bail_cleanup;
15258
15259         /*
15260          * Initialize aspm, to be done after gen3 transition and setting up
15261          * contexts and before enabling interrupts
15262          */
15263         aspm_init(dd);
15264
15265         dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15266         /*
15267          * rcd[0] is guaranteed to be valid by this point. Also, all
15268          * context are using the same value, as per the module parameter.
15269          */
15270         dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15271
15272         ret = init_pervl_scs(dd);
15273         if (ret)
15274                 goto bail_cleanup;
15275
15276         /* sdma init */
15277         for (i = 0; i < dd->num_pports; ++i) {
15278                 ret = sdma_init(dd, i);
15279                 if (ret)
15280                         goto bail_cleanup;
15281         }
15282
15283         /* use contexts created by hfi1_create_kctxts */
15284         ret = set_up_interrupts(dd);
15285         if (ret)
15286                 goto bail_cleanup;
15287
15288         /* set up LCB access - must be after set_up_interrupts() */
15289         init_lcb_access(dd);
15290
15291         /*
15292          * Serial number is created from the base guid:
15293          * [27:24] = base guid [38:35]
15294          * [23: 0] = base guid [23: 0]
15295          */
15296         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15297                  (dd->base_guid & 0xFFFFFF) |
15298                      ((dd->base_guid >> 11) & 0xF000000));
15299
15300         dd->oui1 = dd->base_guid >> 56 & 0xFF;
15301         dd->oui2 = dd->base_guid >> 48 & 0xFF;
15302         dd->oui3 = dd->base_guid >> 40 & 0xFF;
15303
15304         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15305         if (ret)
15306                 goto bail_clear_intr;
15307
15308         thermal_init(dd);
15309
15310         ret = init_cntrs(dd);
15311         if (ret)
15312                 goto bail_clear_intr;
15313
15314         ret = init_rcverr(dd);
15315         if (ret)
15316                 goto bail_free_cntrs;
15317
15318         init_completion(&dd->user_comp);
15319
15320         /* The user refcount starts with one to inidicate an active device */
15321         atomic_set(&dd->user_refcount, 1);
15322
15323         goto bail;
15324
15325 bail_free_rcverr:
15326         free_rcverr(dd);
15327 bail_free_cntrs:
15328         free_cntrs(dd);
15329 bail_clear_intr:
15330         hfi1_clean_up_interrupts(dd);
15331 bail_cleanup:
15332         hfi1_pcie_ddcleanup(dd);
15333 bail_free:
15334         hfi1_free_devdata(dd);
15335         dd = ERR_PTR(ret);
15336 bail:
15337         return dd;
15338 }
15339
15340 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15341                         u32 dw_len)
15342 {
15343         u32 delta_cycles;
15344         u32 current_egress_rate = ppd->current_egress_rate;
15345         /* rates here are in units of 10^6 bits/sec */
15346
15347         if (desired_egress_rate == -1)
15348                 return 0; /* shouldn't happen */
15349
15350         if (desired_egress_rate >= current_egress_rate)
15351                 return 0; /* we can't help go faster, only slower */
15352
15353         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15354                         egress_cycles(dw_len * 4, current_egress_rate);
15355
15356         return (u16)delta_cycles;
15357 }
15358
15359 /**
15360  * create_pbc - build a pbc for transmission
15361  * @flags: special case flags or-ed in built pbc
15362  * @srate: static rate
15363  * @vl: vl
15364  * @dwlen: dword length (header words + data words + pbc words)
15365  *
15366  * Create a PBC with the given flags, rate, VL, and length.
15367  *
15368  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15369  * for verbs, which does not use this PSM feature.  The lone other caller
15370  * is for the diagnostic interface which calls this if the user does not
15371  * supply their own PBC.
15372  */
15373 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15374                u32 dw_len)
15375 {
15376         u64 pbc, delay = 0;
15377
15378         if (unlikely(srate_mbs))
15379                 delay = delay_cycles(ppd, srate_mbs, dw_len);
15380
15381         pbc = flags
15382                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15383                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15384                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15385                 | (dw_len & PBC_LENGTH_DWS_MASK)
15386                         << PBC_LENGTH_DWS_SHIFT;
15387
15388         return pbc;
15389 }
15390
15391 #define SBUS_THERMAL    0x4f
15392 #define SBUS_THERM_MONITOR_MODE 0x1
15393
15394 #define THERM_FAILURE(dev, ret, reason) \
15395         dd_dev_err((dd),                                                \
15396                    "Thermal sensor initialization failed: %s (%d)\n",   \
15397                    (reason), (ret))
15398
15399 /*
15400  * Initialize the thermal sensor.
15401  *
15402  * After initialization, enable polling of thermal sensor through
15403  * SBus interface. In order for this to work, the SBus Master
15404  * firmware has to be loaded due to the fact that the HW polling
15405  * logic uses SBus interrupts, which are not supported with
15406  * default firmware. Otherwise, no data will be returned through
15407  * the ASIC_STS_THERM CSR.
15408  */
15409 static int thermal_init(struct hfi1_devdata *dd)
15410 {
15411         int ret = 0;
15412
15413         if (dd->icode != ICODE_RTL_SILICON ||
15414             check_chip_resource(dd, CR_THERM_INIT, NULL))
15415                 return ret;
15416
15417         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15418         if (ret) {
15419                 THERM_FAILURE(dd, ret, "Acquire SBus");
15420                 return ret;
15421         }
15422
15423         dd_dev_info(dd, "Initializing thermal sensor\n");
15424         /* Disable polling of thermal readings */
15425         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15426         msleep(100);
15427         /* Thermal Sensor Initialization */
15428         /*    Step 1: Reset the Thermal SBus Receiver */
15429         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15430                                 RESET_SBUS_RECEIVER, 0);
15431         if (ret) {
15432                 THERM_FAILURE(dd, ret, "Bus Reset");
15433                 goto done;
15434         }
15435         /*    Step 2: Set Reset bit in Thermal block */
15436         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15437                                 WRITE_SBUS_RECEIVER, 0x1);
15438         if (ret) {
15439                 THERM_FAILURE(dd, ret, "Therm Block Reset");
15440                 goto done;
15441         }
15442         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15443         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15444                                 WRITE_SBUS_RECEIVER, 0x32);
15445         if (ret) {
15446                 THERM_FAILURE(dd, ret, "Write Clock Div");
15447                 goto done;
15448         }
15449         /*    Step 4: Select temperature mode */
15450         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15451                                 WRITE_SBUS_RECEIVER,
15452                                 SBUS_THERM_MONITOR_MODE);
15453         if (ret) {
15454                 THERM_FAILURE(dd, ret, "Write Mode Sel");
15455                 goto done;
15456         }
15457         /*    Step 5: De-assert block reset and start conversion */
15458         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15459                                 WRITE_SBUS_RECEIVER, 0x2);
15460         if (ret) {
15461                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15462                 goto done;
15463         }
15464         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15465         msleep(22);
15466
15467         /* Enable polling of thermal readings */
15468         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15469
15470         /* Set initialized flag */
15471         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15472         if (ret)
15473                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15474
15475 done:
15476         release_chip_resource(dd, CR_SBUS);
15477         return ret;
15478 }
15479
15480 static void handle_temp_err(struct hfi1_devdata *dd)
15481 {
15482         struct hfi1_pportdata *ppd = &dd->pport[0];
15483         /*
15484          * Thermal Critical Interrupt
15485          * Put the device into forced freeze mode, take link down to
15486          * offline, and put DC into reset.
15487          */
15488         dd_dev_emerg(dd,
15489                      "Critical temperature reached! Forcing device into freeze mode!\n");
15490         dd->flags |= HFI1_FORCED_FREEZE;
15491         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15492         /*
15493          * Shut DC down as much and as quickly as possible.
15494          *
15495          * Step 1: Take the link down to OFFLINE. This will cause the
15496          *         8051 to put the Serdes in reset. However, we don't want to
15497          *         go through the entire link state machine since we want to
15498          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15499          *         but rather an attempt to save the chip.
15500          *         Code below is almost the same as quiet_serdes() but avoids
15501          *         all the extra work and the sleeps.
15502          */
15503         ppd->driver_link_ready = 0;
15504         ppd->link_enabled = 0;
15505         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15506                                 PLS_OFFLINE);
15507         /*
15508          * Step 2: Shutdown LCB and 8051
15509          *         After shutdown, do not restore DC_CFG_RESET value.
15510          */
15511         dc_shutdown(dd);
15512 }