2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
49 * This file contains all of the code that is specific to the HFI chip
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
68 #define NUM_IB_PORTS 1
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
79 * Default time to aggregate two 10K packets from the idle state
80 * (timer not running). The timer starts at the end of the first packet,
81 * so only the time for one 10K packet and header plus a bit extra is needed.
82 * 10 * 1024 + 64 header byte = 10304 byte
83 * 10304 byte / 12.5 GB/s = 824.32ns
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
108 u64 flag; /* the flag */
109 char *str; /* description string */
110 u16 extra; /* extra information */
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED 0x1
121 #define SEC_PACKET_DROPPED 0x2
122 #define SEC_SC_HALTED 0x4 /* per-context only */
123 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */
125 #define DEFAULT_KRCVQS 2
126 #define MIN_KERNEL_KCTXTS 2
127 #define FIRST_KERNEL_KCTXT 1
128 /* sizes for both the QP and RSM map tables */
129 #define NUM_MAP_ENTRIES 256
130 #define NUM_MAP_REGS 32
132 /* Bit offset into the GUID which carries HFI id information */
133 #define GUID_HFI_INDEX_SHIFT 39
135 /* extract the emulation revision */
136 #define emulator_rev(dd) ((dd)->irev >> 8)
137 /* parallel and serial emulation versions are 3 and 4 respectively */
138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
144 #define IB_PACKET_TYPE 2ull
145 #define QW_SHIFT 6ull
147 #define QPN_WIDTH 7ull
149 /* LRH.BTH: QW 0, OFFSET 48 - for match */
150 #define LRH_BTH_QW 0ull
151 #define LRH_BTH_BIT_OFFSET 48ull
152 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
153 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
154 #define LRH_BTH_SELECT
155 #define LRH_BTH_MASK 3ull
156 #define LRH_BTH_VALUE 2ull
158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
159 #define LRH_SC_QW 0ull
160 #define LRH_SC_BIT_OFFSET 56ull
161 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
162 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
163 #define LRH_SC_MASK 128ull
164 #define LRH_SC_VALUE 0ull
166 /* SC[n..0] QW 0, OFFSET 60 - for select */
167 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
169 /* QPN[m+n:1] QW 1, OFFSET 1 */
170 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
172 /* defines to build power on SC2VL table */
184 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
185 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
186 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
187 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
188 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
189 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
190 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
191 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
194 #define DC_SC_VL_VAL( \
213 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
214 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
215 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
216 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
217 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
218 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
219 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
220 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
221 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
222 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
223 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
224 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
225 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
226 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
227 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
228 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
231 /* all CceStatus sub-block freeze bits */
232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
233 | CCE_STATUS_RXE_FROZE_SMASK \
234 | CCE_STATUS_TXE_FROZE_SMASK \
235 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
236 /* all CceStatus sub-block TXE pause bits */
237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
238 | CCE_STATUS_TXE_PAUSED_SMASK \
239 | CCE_STATUS_SDMA_PAUSED_SMASK)
240 /* all CceStatus sub-block RXE pause bits */
241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
249 static struct flag_table cce_err_status_flags[] = {
250 /* 0*/ FLAG_ENTRY0("CceCsrParityErr",
251 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
252 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
253 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
254 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
255 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
256 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
257 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
258 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
259 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
260 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
261 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
262 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
263 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
264 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
265 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
266 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
267 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
270 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
272 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
273 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
274 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
275 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
276 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
277 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
278 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
279 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
280 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
281 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
282 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
283 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
284 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
285 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
286 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
287 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
288 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
289 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
290 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
291 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
292 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
293 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
294 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
295 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
296 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
297 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
298 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
299 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
300 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
301 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
302 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
303 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
304 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
305 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
306 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
307 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
308 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
309 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
310 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
311 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
312 /*31*/ FLAG_ENTRY0("LATriggered",
313 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
314 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
315 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
316 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
317 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
318 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
319 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
320 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
321 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
322 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
323 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
324 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
325 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
326 /*38*/ FLAG_ENTRY0("CceIntMapCorErr",
327 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
328 /*39*/ FLAG_ENTRY0("CceIntMapUncErr",
329 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
330 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
331 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
339 static struct flag_table misc_err_status_flags[] = {
340 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
341 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
342 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
343 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
344 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
345 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
346 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
347 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
348 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
349 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
350 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
351 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
352 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
356 * TXE PIO Error flags and consequences
358 static struct flag_table pio_err_status_flags[] = {
359 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
361 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
362 /* 1*/ FLAG_ENTRY("PioWriteAddrParity",
364 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
365 /* 2*/ FLAG_ENTRY("PioCsrParity",
367 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
368 /* 3*/ FLAG_ENTRY("PioSbMemFifo0",
370 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
371 /* 4*/ FLAG_ENTRY("PioSbMemFifo1",
373 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
374 /* 5*/ FLAG_ENTRY("PioPccFifoParity",
376 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
377 /* 6*/ FLAG_ENTRY("PioPecFifoParity",
379 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
380 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
382 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
383 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
385 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
386 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
388 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
389 /*10*/ FLAG_ENTRY("PioSmPktResetParity",
391 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
392 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
394 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
395 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
397 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
398 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
400 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
401 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
403 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
404 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
406 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
407 /*16*/ FLAG_ENTRY("PioPpmcPblFifo",
409 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
410 /*17*/ FLAG_ENTRY("PioInitSmIn",
412 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
413 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
415 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
416 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
418 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
419 /*20*/ FLAG_ENTRY("PioHostAddrMemCor",
421 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
422 /*21*/ FLAG_ENTRY("PioWriteDataParity",
424 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
425 /*22*/ FLAG_ENTRY("PioStateMachine",
427 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
428 /*23*/ FLAG_ENTRY("PioWriteQwValidParity",
429 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
430 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
431 /*24*/ FLAG_ENTRY("PioBlockQwCountParity",
432 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
433 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
434 /*25*/ FLAG_ENTRY("PioVlfVlLenParity",
436 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
437 /*26*/ FLAG_ENTRY("PioVlfSopParity",
439 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
440 /*27*/ FLAG_ENTRY("PioVlFifoParity",
442 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
443 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
445 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
446 /*29*/ FLAG_ENTRY("PioPpmcSopLen",
448 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
450 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
452 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
453 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
455 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
456 /*34*/ FLAG_ENTRY("PioPccSopHeadParity",
458 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
459 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
461 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
465 /* TXE PIO errors that cause an SPC freeze */
466 #define ALL_PIO_FREEZE_ERR \
467 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
489 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
490 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
491 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
492 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
493 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
494 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
495 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
498 * TXE SDMA Error flags
500 static struct flag_table sdma_err_status_flags[] = {
501 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
502 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
503 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
504 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
505 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
506 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
507 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
508 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
512 /* TXE SDMA errors that cause an SPC freeze */
513 #define ALL_SDMA_FREEZE_ERR \
514 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
515 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
516 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
519 #define PORT_DISCARD_EGRESS_ERRS \
520 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
521 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
522 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
525 * TXE Egress Error flags
527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
528 static struct flag_table egress_err_status_flags[] = {
529 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
530 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
532 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
533 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
534 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
535 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
537 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
538 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
539 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
540 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
542 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
543 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
544 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
545 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
546 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
547 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
548 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
549 SEES(TX_SDMA0_DISALLOWED_PACKET)),
550 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
551 SEES(TX_SDMA1_DISALLOWED_PACKET)),
552 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
553 SEES(TX_SDMA2_DISALLOWED_PACKET)),
554 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
555 SEES(TX_SDMA3_DISALLOWED_PACKET)),
556 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
557 SEES(TX_SDMA4_DISALLOWED_PACKET)),
558 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
559 SEES(TX_SDMA5_DISALLOWED_PACKET)),
560 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
561 SEES(TX_SDMA6_DISALLOWED_PACKET)),
562 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
563 SEES(TX_SDMA7_DISALLOWED_PACKET)),
564 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
565 SEES(TX_SDMA8_DISALLOWED_PACKET)),
566 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
567 SEES(TX_SDMA9_DISALLOWED_PACKET)),
568 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
569 SEES(TX_SDMA10_DISALLOWED_PACKET)),
570 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
571 SEES(TX_SDMA11_DISALLOWED_PACKET)),
572 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
573 SEES(TX_SDMA12_DISALLOWED_PACKET)),
574 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
575 SEES(TX_SDMA13_DISALLOWED_PACKET)),
576 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
577 SEES(TX_SDMA14_DISALLOWED_PACKET)),
578 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
579 SEES(TX_SDMA15_DISALLOWED_PACKET)),
580 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
581 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
582 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
583 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
584 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
585 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
586 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
587 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
588 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
589 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
590 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
591 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
592 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
593 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
594 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
595 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
596 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
597 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
598 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
599 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
600 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
601 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
602 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
603 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
604 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
605 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
606 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
607 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
608 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
609 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
610 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
611 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
612 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
613 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
614 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
615 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
616 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
617 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
618 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
619 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
620 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
621 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
622 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
626 * TXE Egress Error Info flags
628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
629 static struct flag_table egress_err_info_flags[] = {
630 /* 0*/ FLAG_ENTRY0("Reserved", 0ull),
631 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
632 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
633 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
634 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
635 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
636 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
637 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
638 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
639 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
640 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
641 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
642 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
643 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
644 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
645 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
646 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
647 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
648 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
649 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
650 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
651 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
654 /* TXE Egress errors that cause an SPC freeze */
655 #define ALL_TXE_EGRESS_FREEZE_ERR \
656 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
657 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
658 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
659 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
660 | SEES(TX_LAUNCH_CSR_PARITY) \
661 | SEES(TX_SBRD_CTL_CSR_PARITY) \
662 | SEES(TX_CONFIG_PARITY) \
663 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
664 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
665 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
666 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
667 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
668 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
669 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
670 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
671 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
672 | SEES(TX_CREDIT_RETURN_PARITY))
675 * TXE Send error flags
677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
678 static struct flag_table send_err_status_flags[] = {
679 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
680 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
681 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
685 * TXE Send Context Error flags and consequences
687 static struct flag_table sc_err_status_flags[] = {
688 /* 0*/ FLAG_ENTRY("InconsistentSop",
689 SEC_PACKET_DROPPED | SEC_SC_HALTED,
690 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
691 /* 1*/ FLAG_ENTRY("DisallowedPacket",
692 SEC_PACKET_DROPPED | SEC_SC_HALTED,
693 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
694 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
695 SEC_WRITE_DROPPED | SEC_SC_HALTED,
696 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
697 /* 3*/ FLAG_ENTRY("WriteOverflow",
698 SEC_WRITE_DROPPED | SEC_SC_HALTED,
699 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
700 /* 4*/ FLAG_ENTRY("WriteOutOfBounds",
701 SEC_WRITE_DROPPED | SEC_SC_HALTED,
702 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
707 * RXE Receive Error flags
709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
710 static struct flag_table rxe_err_status_flags[] = {
711 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
712 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
713 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
714 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
715 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
716 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
717 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
718 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
719 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
720 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
721 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
722 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
723 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
724 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
725 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
726 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
727 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
728 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
729 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
730 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
731 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
732 RXES(RBUF_BLOCK_LIST_READ_UNC)),
733 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
734 RXES(RBUF_BLOCK_LIST_READ_COR)),
735 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
736 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
737 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
738 RXES(RBUF_CSR_QENT_CNT_PARITY)),
739 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
740 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
741 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
742 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
743 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
744 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
745 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
746 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
747 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
748 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
749 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
750 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
751 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
752 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
753 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
754 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
755 RXES(RBUF_FL_INITDONE_PARITY)),
756 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
757 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
758 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
759 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
760 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
761 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
762 RXES(LOOKUP_DES_PART1_UNC_COR)),
763 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
764 RXES(LOOKUP_DES_PART2_PARITY)),
765 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
766 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
767 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
768 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
769 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
770 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
771 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
772 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
773 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
774 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
775 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
776 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
777 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
778 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
779 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
780 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
781 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
782 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
783 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
784 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
785 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
786 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
789 /* RXE errors that will trigger an SPC freeze */
790 #define ALL_RXE_FREEZE_ERR \
791 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
836 #define RXE_FREEZE_ABORT_MASK \
837 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
838 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
839 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
845 static struct flag_table dcc_err_flags[] = {
846 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
847 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
848 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
849 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
850 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
851 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
852 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
853 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
854 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
855 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
856 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
857 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
858 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
859 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
860 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
861 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
862 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
863 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
864 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
865 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
866 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
867 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
868 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
869 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
870 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
871 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
872 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
873 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
874 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
875 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
876 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
877 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
878 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
879 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
880 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
881 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
882 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
883 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
884 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
885 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
886 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
887 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
888 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
889 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
890 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
891 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
898 static struct flag_table lcb_err_flags[] = {
899 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
900 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
901 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
902 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
903 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
904 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
905 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
906 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
907 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
908 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
909 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
910 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
911 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
912 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
913 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
914 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
915 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
916 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
917 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
918 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
919 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
920 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
921 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
922 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
923 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
924 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
925 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
926 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
927 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
928 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
929 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
930 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
931 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
932 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
933 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
934 LCBE(REDUNDANT_FLIT_PARITY_ERR))
940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
941 static struct flag_table dc8051_err_flags[] = {
942 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
943 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
944 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
945 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
946 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
947 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
948 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
949 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
950 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
951 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
952 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
956 * DC8051 Information Error flags
958 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
960 static struct flag_table dc8051_info_err_flags[] = {
961 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
962 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
963 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
964 FLAG_ENTRY0("Serdes internal loopback failure",
965 FAILED_SERDES_INTERNAL_LOOPBACK),
966 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
967 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
968 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
969 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
970 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
971 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
972 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
973 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
974 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
975 FLAG_ENTRY0("External Device Request Timeout",
976 EXTERNAL_DEVICE_REQ_TIMEOUT),
980 * DC8051 Information Host Information flags
982 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
984 static struct flag_table dc8051_info_host_msg_flags[] = {
985 FLAG_ENTRY0("Host request done", 0x0001),
986 FLAG_ENTRY0("BC SMA message", 0x0002),
987 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
988 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
989 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
990 FLAG_ENTRY0("External device config request", 0x0020),
991 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
992 FLAG_ENTRY0("LinkUp achieved", 0x0080),
993 FLAG_ENTRY0("Link going down", 0x0100),
996 static u32 encoded_size(u32 size);
997 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
998 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
999 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1001 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1002 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1003 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1004 u8 *remote_tx_rate, u16 *link_widths);
1005 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1006 u8 *flag_bits, u16 *link_widths);
1007 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1009 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1010 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1011 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1012 u8 *tx_polarity_inversion,
1013 u8 *rx_polarity_inversion, u8 *max_rate);
1014 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1015 unsigned int context, u64 err_status);
1016 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1017 static void handle_dcc_err(struct hfi1_devdata *dd,
1018 unsigned int context, u64 err_status);
1019 static void handle_lcb_err(struct hfi1_devdata *dd,
1020 unsigned int context, u64 err_status);
1021 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1024 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1025 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void set_partition_keys(struct hfi1_pportdata *);
1030 static const char *link_state_name(u32 state);
1031 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1033 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1035 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1036 static int thermal_init(struct hfi1_devdata *dd);
1038 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1040 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1041 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1042 static void handle_temp_err(struct hfi1_devdata *);
1043 static void dc_shutdown(struct hfi1_devdata *);
1044 static void dc_start(struct hfi1_devdata *);
1045 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1047 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1050 * Error interrupt table entry. This is used as input to the interrupt
1051 * "clear down" routine used for all second tier error interrupt register.
1052 * Second tier interrupt registers have a single bit representing them
1053 * in the top-level CceIntStatus.
1055 struct err_reg_info {
1056 u32 status; /* status CSR offset */
1057 u32 clear; /* clear CSR offset */
1058 u32 mask; /* mask CSR offset */
1059 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1063 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1064 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1065 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1068 * Helpers for building HFI and DC error interrupt table entries. Different
1069 * helpers are needed because of inconsistent register names.
1071 #define EE(reg, handler, desc) \
1072 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1074 #define DC_EE1(reg, handler, desc) \
1075 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1076 #define DC_EE2(reg, handler, desc) \
1077 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1080 * Table of the "misc" grouping of error interrupts. Each entry refers to
1081 * another register containing more information.
1083 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1084 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1085 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1086 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1087 /* 3*/ { 0, 0, 0, NULL }, /* reserved */
1088 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1089 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1090 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1091 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1092 /* the rest are reserved */
1096 * Index into the Various section of the interrupt sources
1097 * corresponding to the Critical Temperature interrupt.
1099 #define TCRIT_INT_SOURCE 4
1102 * SDMA error interrupt entry - refers to another register containing more
1105 static const struct err_reg_info sdma_eng_err =
1106 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1108 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1109 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1110 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1111 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1112 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1113 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1114 /* rest are reserved */
1118 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1119 * register can not be derived from the MTU value because 10K is not
1120 * a power of 2. Therefore, we need a constant. Everything else can
1123 #define DCC_CFG_PORT_MTU_CAP_10240 7
1126 * Table of the DC grouping of error interrupts. Each entry refers to
1127 * another register containing more information.
1129 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1130 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1131 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1132 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1133 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1134 /* the rest are reserved */
1144 * csr to read for name (if applicable)
1149 * offset into dd or ppd to store the counter's value
1159 * accessor for stat element, context either dd or ppd
1161 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1162 int mode, u64 data);
1165 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1166 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1168 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1178 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1180 (counter * 8 + RCV_COUNTER_ARRAY32), \
1181 0, flags | CNTR_32BIT, \
1182 port_access_u32_csr)
1184 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1186 (counter * 8 + RCV_COUNTER_ARRAY32), \
1187 0, flags | CNTR_32BIT, \
1191 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1193 (counter * 8 + RCV_COUNTER_ARRAY64), \
1195 port_access_u64_csr)
1197 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1199 (counter * 8 + RCV_COUNTER_ARRAY64), \
1203 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1204 #define OVR_ELM(ctx) \
1205 CNTR_ELEM("RcvHdrOvr" #ctx, \
1206 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1207 0, CNTR_NORMAL, port_access_u64_csr)
1210 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1212 (counter * 8 + SEND_COUNTER_ARRAY32), \
1213 0, flags | CNTR_32BIT, \
1214 port_access_u32_csr)
1217 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1219 (counter * 8 + SEND_COUNTER_ARRAY64), \
1221 port_access_u64_csr)
1223 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1225 counter * 8 + SEND_COUNTER_ARRAY64, \
1231 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1233 (counter * 8 + CCE_COUNTER_ARRAY32), \
1234 0, flags | CNTR_32BIT, \
1237 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1239 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1240 0, flags | CNTR_32BIT, \
1244 #define DC_PERF_CNTR(name, counter, flags) \
1251 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1259 #define SW_IBP_CNTR(name, cntr) \
1266 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1268 if (dd->flags & HFI1_PRESENT) {
1269 return readq((void __iomem *)dd->kregbase + offset);
1274 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1276 if (dd->flags & HFI1_PRESENT)
1277 writeq(value, (void __iomem *)dd->kregbase + offset);
1280 void __iomem *get_csr_addr(
1281 struct hfi1_devdata *dd,
1284 return (void __iomem *)dd->kregbase + offset;
1287 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1288 int mode, u64 value)
1292 if (mode == CNTR_MODE_R) {
1293 ret = read_csr(dd, csr);
1294 } else if (mode == CNTR_MODE_W) {
1295 write_csr(dd, csr, value);
1298 dd_dev_err(dd, "Invalid cntr register access mode");
1302 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1307 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1308 void *context, int vl, int mode, u64 data)
1310 struct hfi1_devdata *dd = context;
1311 u64 csr = entry->csr;
1313 if (entry->flags & CNTR_SDMA) {
1314 if (vl == CNTR_INVALID_VL)
1318 if (vl != CNTR_INVALID_VL)
1321 return read_write_csr(dd, csr, mode, data);
1324 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1325 void *context, int idx, int mode, u64 data)
1327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1329 if (dd->per_sdma && idx < dd->num_sdma)
1330 return dd->per_sdma[idx].err_cnt;
1334 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1335 void *context, int idx, int mode, u64 data)
1337 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1339 if (dd->per_sdma && idx < dd->num_sdma)
1340 return dd->per_sdma[idx].sdma_int_cnt;
1344 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1345 void *context, int idx, int mode, u64 data)
1347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1349 if (dd->per_sdma && idx < dd->num_sdma)
1350 return dd->per_sdma[idx].idle_int_cnt;
1354 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1355 void *context, int idx, int mode,
1358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1360 if (dd->per_sdma && idx < dd->num_sdma)
1361 return dd->per_sdma[idx].progress_int_cnt;
1365 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1366 int vl, int mode, u64 data)
1368 struct hfi1_devdata *dd = context;
1371 u64 csr = entry->csr;
1373 if (entry->flags & CNTR_VL) {
1374 if (vl == CNTR_INVALID_VL)
1378 if (vl != CNTR_INVALID_VL)
1382 val = read_write_csr(dd, csr, mode, data);
1386 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1387 int vl, int mode, u64 data)
1389 struct hfi1_devdata *dd = context;
1390 u32 csr = entry->csr;
1393 if (vl != CNTR_INVALID_VL)
1395 if (mode == CNTR_MODE_R)
1396 ret = read_lcb_csr(dd, csr, &data);
1397 else if (mode == CNTR_MODE_W)
1398 ret = write_lcb_csr(dd, csr, data);
1401 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1405 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1410 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1411 int vl, int mode, u64 data)
1413 struct hfi1_pportdata *ppd = context;
1415 if (vl != CNTR_INVALID_VL)
1417 return read_write_csr(ppd->dd, entry->csr, mode, data);
1420 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1421 void *context, int vl, int mode, u64 data)
1423 struct hfi1_pportdata *ppd = context;
1425 u64 csr = entry->csr;
1427 if (entry->flags & CNTR_VL) {
1428 if (vl == CNTR_INVALID_VL)
1432 if (vl != CNTR_INVALID_VL)
1435 val = read_write_csr(ppd->dd, csr, mode, data);
1439 /* Software defined */
1440 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1445 if (mode == CNTR_MODE_R) {
1447 } else if (mode == CNTR_MODE_W) {
1451 dd_dev_err(dd, "Invalid cntr sw access mode");
1455 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1460 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1461 int vl, int mode, u64 data)
1463 struct hfi1_pportdata *ppd = context;
1465 if (vl != CNTR_INVALID_VL)
1467 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1470 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1471 int vl, int mode, u64 data)
1473 struct hfi1_pportdata *ppd = context;
1475 if (vl != CNTR_INVALID_VL)
1477 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1480 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1481 void *context, int vl, int mode,
1484 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1486 if (vl != CNTR_INVALID_VL)
1488 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1491 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1492 void *context, int vl, int mode, u64 data)
1494 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1498 if (vl == CNTR_INVALID_VL)
1499 counter = &ppd->port_xmit_discards;
1500 else if (vl >= 0 && vl < C_VL_COUNT)
1501 counter = &ppd->port_xmit_discards_vl[vl];
1505 return read_write_sw(ppd->dd, counter, mode, data);
1508 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1509 void *context, int vl, int mode,
1512 struct hfi1_pportdata *ppd = context;
1514 if (vl != CNTR_INVALID_VL)
1517 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1521 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1522 void *context, int vl, int mode, u64 data)
1524 struct hfi1_pportdata *ppd = context;
1526 if (vl != CNTR_INVALID_VL)
1529 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1533 u64 get_all_cpu_total(u64 __percpu *cntr)
1538 for_each_possible_cpu(cpu)
1539 counter += *per_cpu_ptr(cntr, cpu);
1543 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1545 int vl, int mode, u64 data)
1549 if (vl != CNTR_INVALID_VL)
1552 if (mode == CNTR_MODE_R) {
1553 ret = get_all_cpu_total(cntr) - *z_val;
1554 } else if (mode == CNTR_MODE_W) {
1555 /* A write can only zero the counter */
1557 *z_val = get_all_cpu_total(cntr);
1559 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1561 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1568 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1569 void *context, int vl, int mode, u64 data)
1571 struct hfi1_devdata *dd = context;
1573 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1577 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1578 void *context, int vl, int mode, u64 data)
1580 struct hfi1_devdata *dd = context;
1582 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1586 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1587 void *context, int vl, int mode, u64 data)
1589 struct hfi1_devdata *dd = context;
1591 return dd->verbs_dev.n_piowait;
1594 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1595 void *context, int vl, int mode, u64 data)
1597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1599 return dd->verbs_dev.n_piodrain;
1602 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1603 void *context, int vl, int mode, u64 data)
1605 struct hfi1_devdata *dd = context;
1607 return dd->verbs_dev.n_txwait;
1610 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1611 void *context, int vl, int mode, u64 data)
1613 struct hfi1_devdata *dd = context;
1615 return dd->verbs_dev.n_kmem_wait;
1618 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1619 void *context, int vl, int mode, u64 data)
1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1623 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1627 /* Software counters for the error status bits within MISC_ERR_STATUS */
1628 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1629 void *context, int vl, int mode,
1632 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1634 return dd->misc_err_status_cnt[12];
1637 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1638 void *context, int vl, int mode,
1641 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1643 return dd->misc_err_status_cnt[11];
1646 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1647 void *context, int vl, int mode,
1650 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1652 return dd->misc_err_status_cnt[10];
1655 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1656 void *context, int vl,
1659 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1661 return dd->misc_err_status_cnt[9];
1664 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1665 void *context, int vl, int mode,
1668 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1670 return dd->misc_err_status_cnt[8];
1673 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1674 const struct cntr_entry *entry,
1675 void *context, int vl, int mode, u64 data)
1677 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1679 return dd->misc_err_status_cnt[7];
1682 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1683 void *context, int vl,
1686 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1688 return dd->misc_err_status_cnt[6];
1691 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1692 void *context, int vl, int mode,
1695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1697 return dd->misc_err_status_cnt[5];
1700 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1701 void *context, int vl, int mode,
1704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1706 return dd->misc_err_status_cnt[4];
1709 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1710 void *context, int vl,
1713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1715 return dd->misc_err_status_cnt[3];
1718 static u64 access_misc_csr_write_bad_addr_err_cnt(
1719 const struct cntr_entry *entry,
1720 void *context, int vl, int mode, u64 data)
1722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1724 return dd->misc_err_status_cnt[2];
1727 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1728 void *context, int vl,
1731 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1733 return dd->misc_err_status_cnt[1];
1736 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1737 void *context, int vl, int mode,
1740 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1742 return dd->misc_err_status_cnt[0];
1746 * Software counter for the aggregate of
1747 * individual CceErrStatus counters
1749 static u64 access_sw_cce_err_status_aggregated_cnt(
1750 const struct cntr_entry *entry,
1751 void *context, int vl, int mode, u64 data)
1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755 return dd->sw_cce_err_status_aggregate;
1759 * Software counters corresponding to each of the
1760 * error status bits within CceErrStatus
1762 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1763 void *context, int vl, int mode,
1766 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1768 return dd->cce_err_status_cnt[40];
1771 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1772 void *context, int vl, int mode,
1775 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1777 return dd->cce_err_status_cnt[39];
1780 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1781 void *context, int vl, int mode,
1784 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1786 return dd->cce_err_status_cnt[38];
1789 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1790 void *context, int vl, int mode,
1793 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1795 return dd->cce_err_status_cnt[37];
1798 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1799 void *context, int vl, int mode,
1802 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1804 return dd->cce_err_status_cnt[36];
1807 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1808 const struct cntr_entry *entry,
1809 void *context, int vl, int mode, u64 data)
1811 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1813 return dd->cce_err_status_cnt[35];
1816 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1817 const struct cntr_entry *entry,
1818 void *context, int vl, int mode, u64 data)
1820 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1822 return dd->cce_err_status_cnt[34];
1825 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1826 void *context, int vl,
1829 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1831 return dd->cce_err_status_cnt[33];
1834 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1835 void *context, int vl, int mode,
1838 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840 return dd->cce_err_status_cnt[32];
1843 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1844 void *context, int vl, int mode, u64 data)
1846 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1848 return dd->cce_err_status_cnt[31];
1851 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1852 void *context, int vl, int mode,
1855 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1857 return dd->cce_err_status_cnt[30];
1860 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1861 void *context, int vl, int mode,
1864 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866 return dd->cce_err_status_cnt[29];
1869 static u64 access_pcic_transmit_back_parity_err_cnt(
1870 const struct cntr_entry *entry,
1871 void *context, int vl, int mode, u64 data)
1873 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1875 return dd->cce_err_status_cnt[28];
1878 static u64 access_pcic_transmit_front_parity_err_cnt(
1879 const struct cntr_entry *entry,
1880 void *context, int vl, int mode, u64 data)
1882 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1884 return dd->cce_err_status_cnt[27];
1887 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1888 void *context, int vl, int mode,
1891 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1893 return dd->cce_err_status_cnt[26];
1896 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1897 void *context, int vl, int mode,
1900 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1902 return dd->cce_err_status_cnt[25];
1905 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1906 void *context, int vl, int mode,
1909 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1911 return dd->cce_err_status_cnt[24];
1914 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1915 void *context, int vl, int mode,
1918 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1920 return dd->cce_err_status_cnt[23];
1923 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1924 void *context, int vl,
1927 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1929 return dd->cce_err_status_cnt[22];
1932 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1933 void *context, int vl, int mode,
1936 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1938 return dd->cce_err_status_cnt[21];
1941 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1942 const struct cntr_entry *entry,
1943 void *context, int vl, int mode, u64 data)
1945 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1947 return dd->cce_err_status_cnt[20];
1950 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1951 void *context, int vl,
1954 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1956 return dd->cce_err_status_cnt[19];
1959 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1960 void *context, int vl, int mode,
1963 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1965 return dd->cce_err_status_cnt[18];
1968 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1969 void *context, int vl, int mode,
1972 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1974 return dd->cce_err_status_cnt[17];
1977 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1978 void *context, int vl, int mode,
1981 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1983 return dd->cce_err_status_cnt[16];
1986 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1987 void *context, int vl, int mode,
1990 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1992 return dd->cce_err_status_cnt[15];
1995 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1996 void *context, int vl,
1999 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2001 return dd->cce_err_status_cnt[14];
2004 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2005 void *context, int vl, int mode,
2008 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2010 return dd->cce_err_status_cnt[13];
2013 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2014 const struct cntr_entry *entry,
2015 void *context, int vl, int mode, u64 data)
2017 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2019 return dd->cce_err_status_cnt[12];
2022 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2023 const struct cntr_entry *entry,
2024 void *context, int vl, int mode, u64 data)
2026 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2028 return dd->cce_err_status_cnt[11];
2031 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2032 const struct cntr_entry *entry,
2033 void *context, int vl, int mode, u64 data)
2035 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2037 return dd->cce_err_status_cnt[10];
2040 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2041 const struct cntr_entry *entry,
2042 void *context, int vl, int mode, u64 data)
2044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2046 return dd->cce_err_status_cnt[9];
2049 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2050 const struct cntr_entry *entry,
2051 void *context, int vl, int mode, u64 data)
2053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2055 return dd->cce_err_status_cnt[8];
2058 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2059 void *context, int vl,
2062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2064 return dd->cce_err_status_cnt[7];
2067 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2068 const struct cntr_entry *entry,
2069 void *context, int vl, int mode, u64 data)
2071 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2073 return dd->cce_err_status_cnt[6];
2076 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2077 void *context, int vl, int mode,
2080 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2082 return dd->cce_err_status_cnt[5];
2085 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2086 void *context, int vl, int mode,
2089 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2091 return dd->cce_err_status_cnt[4];
2094 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2095 const struct cntr_entry *entry,
2096 void *context, int vl, int mode, u64 data)
2098 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2100 return dd->cce_err_status_cnt[3];
2103 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2104 void *context, int vl,
2107 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2109 return dd->cce_err_status_cnt[2];
2112 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2113 void *context, int vl,
2116 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2118 return dd->cce_err_status_cnt[1];
2121 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2122 void *context, int vl, int mode,
2125 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2127 return dd->cce_err_status_cnt[0];
2131 * Software counters corresponding to each of the
2132 * error status bits within RcvErrStatus
2134 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2135 void *context, int vl, int mode,
2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140 return dd->rcv_err_status_cnt[63];
2143 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2144 void *context, int vl,
2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149 return dd->rcv_err_status_cnt[62];
2152 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2153 void *context, int vl, int mode,
2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158 return dd->rcv_err_status_cnt[61];
2161 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2162 void *context, int vl, int mode,
2165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167 return dd->rcv_err_status_cnt[60];
2170 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2171 void *context, int vl,
2174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176 return dd->rcv_err_status_cnt[59];
2179 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2180 void *context, int vl,
2183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185 return dd->rcv_err_status_cnt[58];
2188 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2189 void *context, int vl, int mode,
2192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194 return dd->rcv_err_status_cnt[57];
2197 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2198 void *context, int vl, int mode,
2201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203 return dd->rcv_err_status_cnt[56];
2206 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2207 void *context, int vl, int mode,
2210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212 return dd->rcv_err_status_cnt[55];
2215 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2216 const struct cntr_entry *entry,
2217 void *context, int vl, int mode, u64 data)
2219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2221 return dd->rcv_err_status_cnt[54];
2224 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2225 const struct cntr_entry *entry,
2226 void *context, int vl, int mode, u64 data)
2228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2230 return dd->rcv_err_status_cnt[53];
2233 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2234 void *context, int vl,
2237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2239 return dd->rcv_err_status_cnt[52];
2242 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2243 void *context, int vl,
2246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2248 return dd->rcv_err_status_cnt[51];
2251 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2252 void *context, int vl,
2255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2257 return dd->rcv_err_status_cnt[50];
2260 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2261 void *context, int vl,
2264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2266 return dd->rcv_err_status_cnt[49];
2269 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2270 void *context, int vl,
2273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2275 return dd->rcv_err_status_cnt[48];
2278 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2279 void *context, int vl,
2282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2284 return dd->rcv_err_status_cnt[47];
2287 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2288 void *context, int vl, int mode,
2291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2293 return dd->rcv_err_status_cnt[46];
2296 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2297 const struct cntr_entry *entry,
2298 void *context, int vl, int mode, u64 data)
2300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2302 return dd->rcv_err_status_cnt[45];
2305 static u64 access_rx_lookup_csr_parity_err_cnt(
2306 const struct cntr_entry *entry,
2307 void *context, int vl, int mode, u64 data)
2309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2311 return dd->rcv_err_status_cnt[44];
2314 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2315 const struct cntr_entry *entry,
2316 void *context, int vl, int mode, u64 data)
2318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2320 return dd->rcv_err_status_cnt[43];
2323 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2324 const struct cntr_entry *entry,
2325 void *context, int vl, int mode, u64 data)
2327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2329 return dd->rcv_err_status_cnt[42];
2332 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2333 const struct cntr_entry *entry,
2334 void *context, int vl, int mode, u64 data)
2336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2338 return dd->rcv_err_status_cnt[41];
2341 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2342 const struct cntr_entry *entry,
2343 void *context, int vl, int mode, u64 data)
2345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2347 return dd->rcv_err_status_cnt[40];
2350 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2351 const struct cntr_entry *entry,
2352 void *context, int vl, int mode, u64 data)
2354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2356 return dd->rcv_err_status_cnt[39];
2359 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2360 const struct cntr_entry *entry,
2361 void *context, int vl, int mode, u64 data)
2363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2365 return dd->rcv_err_status_cnt[38];
2368 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2369 const struct cntr_entry *entry,
2370 void *context, int vl, int mode, u64 data)
2372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2374 return dd->rcv_err_status_cnt[37];
2377 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2378 const struct cntr_entry *entry,
2379 void *context, int vl, int mode, u64 data)
2381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2383 return dd->rcv_err_status_cnt[36];
2386 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2387 const struct cntr_entry *entry,
2388 void *context, int vl, int mode, u64 data)
2390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2392 return dd->rcv_err_status_cnt[35];
2395 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2396 const struct cntr_entry *entry,
2397 void *context, int vl, int mode, u64 data)
2399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2401 return dd->rcv_err_status_cnt[34];
2404 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2405 const struct cntr_entry *entry,
2406 void *context, int vl, int mode, u64 data)
2408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2410 return dd->rcv_err_status_cnt[33];
2413 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2414 void *context, int vl, int mode,
2417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2419 return dd->rcv_err_status_cnt[32];
2422 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2423 void *context, int vl, int mode,
2426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2428 return dd->rcv_err_status_cnt[31];
2431 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2432 void *context, int vl, int mode,
2435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2437 return dd->rcv_err_status_cnt[30];
2440 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2441 void *context, int vl, int mode,
2444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2446 return dd->rcv_err_status_cnt[29];
2449 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2450 void *context, int vl,
2453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2455 return dd->rcv_err_status_cnt[28];
2458 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2459 const struct cntr_entry *entry,
2460 void *context, int vl, int mode, u64 data)
2462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2464 return dd->rcv_err_status_cnt[27];
2467 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2468 const struct cntr_entry *entry,
2469 void *context, int vl, int mode, u64 data)
2471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2473 return dd->rcv_err_status_cnt[26];
2476 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2477 const struct cntr_entry *entry,
2478 void *context, int vl, int mode, u64 data)
2480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2482 return dd->rcv_err_status_cnt[25];
2485 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2486 const struct cntr_entry *entry,
2487 void *context, int vl, int mode, u64 data)
2489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2491 return dd->rcv_err_status_cnt[24];
2494 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2495 const struct cntr_entry *entry,
2496 void *context, int vl, int mode, u64 data)
2498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2500 return dd->rcv_err_status_cnt[23];
2503 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2504 const struct cntr_entry *entry,
2505 void *context, int vl, int mode, u64 data)
2507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2509 return dd->rcv_err_status_cnt[22];
2512 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2513 const struct cntr_entry *entry,
2514 void *context, int vl, int mode, u64 data)
2516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2518 return dd->rcv_err_status_cnt[21];
2521 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2522 const struct cntr_entry *entry,
2523 void *context, int vl, int mode, u64 data)
2525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2527 return dd->rcv_err_status_cnt[20];
2530 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2531 const struct cntr_entry *entry,
2532 void *context, int vl, int mode, u64 data)
2534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2536 return dd->rcv_err_status_cnt[19];
2539 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2540 void *context, int vl,
2543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2545 return dd->rcv_err_status_cnt[18];
2548 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2549 void *context, int vl,
2552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2554 return dd->rcv_err_status_cnt[17];
2557 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2558 const struct cntr_entry *entry,
2559 void *context, int vl, int mode, u64 data)
2561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2563 return dd->rcv_err_status_cnt[16];
2566 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2567 const struct cntr_entry *entry,
2568 void *context, int vl, int mode, u64 data)
2570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2572 return dd->rcv_err_status_cnt[15];
2575 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2576 void *context, int vl,
2579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2581 return dd->rcv_err_status_cnt[14];
2584 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2585 void *context, int vl,
2588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2590 return dd->rcv_err_status_cnt[13];
2593 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2594 void *context, int vl, int mode,
2597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2599 return dd->rcv_err_status_cnt[12];
2602 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2603 void *context, int vl, int mode,
2606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2608 return dd->rcv_err_status_cnt[11];
2611 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2612 void *context, int vl, int mode,
2615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2617 return dd->rcv_err_status_cnt[10];
2620 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2621 void *context, int vl, int mode,
2624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2626 return dd->rcv_err_status_cnt[9];
2629 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2630 void *context, int vl, int mode,
2633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2635 return dd->rcv_err_status_cnt[8];
2638 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2639 const struct cntr_entry *entry,
2640 void *context, int vl, int mode, u64 data)
2642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2644 return dd->rcv_err_status_cnt[7];
2647 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2648 const struct cntr_entry *entry,
2649 void *context, int vl, int mode, u64 data)
2651 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2653 return dd->rcv_err_status_cnt[6];
2656 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2657 void *context, int vl, int mode,
2660 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2662 return dd->rcv_err_status_cnt[5];
2665 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2666 void *context, int vl, int mode,
2669 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2671 return dd->rcv_err_status_cnt[4];
2674 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2675 void *context, int vl, int mode,
2678 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2680 return dd->rcv_err_status_cnt[3];
2683 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2684 void *context, int vl, int mode,
2687 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2689 return dd->rcv_err_status_cnt[2];
2692 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2693 void *context, int vl, int mode,
2696 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2698 return dd->rcv_err_status_cnt[1];
2701 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2702 void *context, int vl, int mode,
2705 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2707 return dd->rcv_err_status_cnt[0];
2711 * Software counters corresponding to each of the
2712 * error status bits within SendPioErrStatus
2714 static u64 access_pio_pec_sop_head_parity_err_cnt(
2715 const struct cntr_entry *entry,
2716 void *context, int vl, int mode, u64 data)
2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720 return dd->send_pio_err_status_cnt[35];
2723 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2724 const struct cntr_entry *entry,
2725 void *context, int vl, int mode, u64 data)
2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729 return dd->send_pio_err_status_cnt[34];
2732 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2733 const struct cntr_entry *entry,
2734 void *context, int vl, int mode, u64 data)
2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738 return dd->send_pio_err_status_cnt[33];
2741 static u64 access_pio_current_free_cnt_parity_err_cnt(
2742 const struct cntr_entry *entry,
2743 void *context, int vl, int mode, u64 data)
2745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747 return dd->send_pio_err_status_cnt[32];
2750 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2751 void *context, int vl, int mode,
2754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756 return dd->send_pio_err_status_cnt[31];
2759 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2760 void *context, int vl, int mode,
2763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765 return dd->send_pio_err_status_cnt[30];
2768 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2769 void *context, int vl, int mode,
2772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774 return dd->send_pio_err_status_cnt[29];
2777 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2778 const struct cntr_entry *entry,
2779 void *context, int vl, int mode, u64 data)
2781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783 return dd->send_pio_err_status_cnt[28];
2786 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2787 void *context, int vl, int mode,
2790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792 return dd->send_pio_err_status_cnt[27];
2795 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2796 void *context, int vl, int mode,
2799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2801 return dd->send_pio_err_status_cnt[26];
2804 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2805 void *context, int vl,
2808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2810 return dd->send_pio_err_status_cnt[25];
2813 static u64 access_pio_block_qw_count_parity_err_cnt(
2814 const struct cntr_entry *entry,
2815 void *context, int vl, int mode, u64 data)
2817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2819 return dd->send_pio_err_status_cnt[24];
2822 static u64 access_pio_write_qw_valid_parity_err_cnt(
2823 const struct cntr_entry *entry,
2824 void *context, int vl, int mode, u64 data)
2826 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2828 return dd->send_pio_err_status_cnt[23];
2831 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2832 void *context, int vl, int mode,
2835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2837 return dd->send_pio_err_status_cnt[22];
2840 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2841 void *context, int vl,
2844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2846 return dd->send_pio_err_status_cnt[21];
2849 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2850 void *context, int vl,
2853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2855 return dd->send_pio_err_status_cnt[20];
2858 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2859 void *context, int vl,
2862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2864 return dd->send_pio_err_status_cnt[19];
2867 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2868 const struct cntr_entry *entry,
2869 void *context, int vl, int mode, u64 data)
2871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2873 return dd->send_pio_err_status_cnt[18];
2876 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2877 void *context, int vl, int mode,
2880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2882 return dd->send_pio_err_status_cnt[17];
2885 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2886 void *context, int vl, int mode,
2889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2891 return dd->send_pio_err_status_cnt[16];
2894 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2895 const struct cntr_entry *entry,
2896 void *context, int vl, int mode, u64 data)
2898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2900 return dd->send_pio_err_status_cnt[15];
2903 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2904 const struct cntr_entry *entry,
2905 void *context, int vl, int mode, u64 data)
2907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2909 return dd->send_pio_err_status_cnt[14];
2912 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2913 const struct cntr_entry *entry,
2914 void *context, int vl, int mode, u64 data)
2916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2918 return dd->send_pio_err_status_cnt[13];
2921 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2922 const struct cntr_entry *entry,
2923 void *context, int vl, int mode, u64 data)
2925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2927 return dd->send_pio_err_status_cnt[12];
2930 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2931 const struct cntr_entry *entry,
2932 void *context, int vl, int mode, u64 data)
2934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2936 return dd->send_pio_err_status_cnt[11];
2939 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2940 const struct cntr_entry *entry,
2941 void *context, int vl, int mode, u64 data)
2943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2945 return dd->send_pio_err_status_cnt[10];
2948 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2949 const struct cntr_entry *entry,
2950 void *context, int vl, int mode, u64 data)
2952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2954 return dd->send_pio_err_status_cnt[9];
2957 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2958 const struct cntr_entry *entry,
2959 void *context, int vl, int mode, u64 data)
2961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2963 return dd->send_pio_err_status_cnt[8];
2966 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2967 const struct cntr_entry *entry,
2968 void *context, int vl, int mode, u64 data)
2970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2972 return dd->send_pio_err_status_cnt[7];
2975 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2976 void *context, int vl, int mode,
2979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2981 return dd->send_pio_err_status_cnt[6];
2984 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2985 void *context, int vl, int mode,
2988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2990 return dd->send_pio_err_status_cnt[5];
2993 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2994 void *context, int vl, int mode,
2997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2999 return dd->send_pio_err_status_cnt[4];
3002 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3003 void *context, int vl, int mode,
3006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3008 return dd->send_pio_err_status_cnt[3];
3011 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3012 void *context, int vl, int mode,
3015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3017 return dd->send_pio_err_status_cnt[2];
3020 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3021 void *context, int vl,
3024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3026 return dd->send_pio_err_status_cnt[1];
3029 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3030 void *context, int vl, int mode,
3033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3035 return dd->send_pio_err_status_cnt[0];
3039 * Software counters corresponding to each of the
3040 * error status bits within SendDmaErrStatus
3042 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3043 const struct cntr_entry *entry,
3044 void *context, int vl, int mode, u64 data)
3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048 return dd->send_dma_err_status_cnt[3];
3051 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3052 const struct cntr_entry *entry,
3053 void *context, int vl, int mode, u64 data)
3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057 return dd->send_dma_err_status_cnt[2];
3060 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3061 void *context, int vl, int mode,
3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066 return dd->send_dma_err_status_cnt[1];
3069 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3070 void *context, int vl, int mode,
3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075 return dd->send_dma_err_status_cnt[0];
3079 * Software counters corresponding to each of the
3080 * error status bits within SendEgressErrStatus
3082 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3083 const struct cntr_entry *entry,
3084 void *context, int vl, int mode, u64 data)
3086 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3088 return dd->send_egress_err_status_cnt[63];
3091 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3092 const struct cntr_entry *entry,
3093 void *context, int vl, int mode, u64 data)
3095 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3097 return dd->send_egress_err_status_cnt[62];
3100 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3101 void *context, int vl, int mode,
3104 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3106 return dd->send_egress_err_status_cnt[61];
3109 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3110 void *context, int vl,
3113 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3115 return dd->send_egress_err_status_cnt[60];
3118 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3119 const struct cntr_entry *entry,
3120 void *context, int vl, int mode, u64 data)
3122 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3124 return dd->send_egress_err_status_cnt[59];
3127 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3128 void *context, int vl, int mode,
3131 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133 return dd->send_egress_err_status_cnt[58];
3136 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3137 void *context, int vl, int mode,
3140 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142 return dd->send_egress_err_status_cnt[57];
3145 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3146 void *context, int vl, int mode,
3149 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151 return dd->send_egress_err_status_cnt[56];
3154 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3155 void *context, int vl, int mode,
3158 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160 return dd->send_egress_err_status_cnt[55];
3163 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3164 void *context, int vl, int mode,
3167 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3169 return dd->send_egress_err_status_cnt[54];
3172 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3173 void *context, int vl, int mode,
3176 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3178 return dd->send_egress_err_status_cnt[53];
3181 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3182 void *context, int vl, int mode,
3185 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3187 return dd->send_egress_err_status_cnt[52];
3190 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3191 void *context, int vl, int mode,
3194 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3196 return dd->send_egress_err_status_cnt[51];
3199 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3200 void *context, int vl, int mode,
3203 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3205 return dd->send_egress_err_status_cnt[50];
3208 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3209 void *context, int vl, int mode,
3212 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3214 return dd->send_egress_err_status_cnt[49];
3217 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3218 void *context, int vl, int mode,
3221 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3223 return dd->send_egress_err_status_cnt[48];
3226 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3227 void *context, int vl, int mode,
3230 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3232 return dd->send_egress_err_status_cnt[47];
3235 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3236 void *context, int vl, int mode,
3239 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3241 return dd->send_egress_err_status_cnt[46];
3244 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3245 void *context, int vl, int mode,
3248 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3250 return dd->send_egress_err_status_cnt[45];
3253 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3254 void *context, int vl,
3257 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3259 return dd->send_egress_err_status_cnt[44];
3262 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3263 const struct cntr_entry *entry,
3264 void *context, int vl, int mode, u64 data)
3266 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3268 return dd->send_egress_err_status_cnt[43];
3271 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3272 void *context, int vl, int mode,
3275 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3277 return dd->send_egress_err_status_cnt[42];
3280 static u64 access_tx_credit_return_partiy_err_cnt(
3281 const struct cntr_entry *entry,
3282 void *context, int vl, int mode, u64 data)
3284 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3286 return dd->send_egress_err_status_cnt[41];
3289 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3290 const struct cntr_entry *entry,
3291 void *context, int vl, int mode, u64 data)
3293 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3295 return dd->send_egress_err_status_cnt[40];
3298 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3299 const struct cntr_entry *entry,
3300 void *context, int vl, int mode, u64 data)
3302 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3304 return dd->send_egress_err_status_cnt[39];
3307 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3308 const struct cntr_entry *entry,
3309 void *context, int vl, int mode, u64 data)
3311 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3313 return dd->send_egress_err_status_cnt[38];
3316 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3317 const struct cntr_entry *entry,
3318 void *context, int vl, int mode, u64 data)
3320 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3322 return dd->send_egress_err_status_cnt[37];
3325 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3326 const struct cntr_entry *entry,
3327 void *context, int vl, int mode, u64 data)
3329 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3331 return dd->send_egress_err_status_cnt[36];
3334 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3335 const struct cntr_entry *entry,
3336 void *context, int vl, int mode, u64 data)
3338 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3340 return dd->send_egress_err_status_cnt[35];
3343 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3344 const struct cntr_entry *entry,
3345 void *context, int vl, int mode, u64 data)
3347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3349 return dd->send_egress_err_status_cnt[34];
3352 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3353 const struct cntr_entry *entry,
3354 void *context, int vl, int mode, u64 data)
3356 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3358 return dd->send_egress_err_status_cnt[33];
3361 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3362 const struct cntr_entry *entry,
3363 void *context, int vl, int mode, u64 data)
3365 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3367 return dd->send_egress_err_status_cnt[32];
3370 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3371 const struct cntr_entry *entry,
3372 void *context, int vl, int mode, u64 data)
3374 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3376 return dd->send_egress_err_status_cnt[31];
3379 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3380 const struct cntr_entry *entry,
3381 void *context, int vl, int mode, u64 data)
3383 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3385 return dd->send_egress_err_status_cnt[30];
3388 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3389 const struct cntr_entry *entry,
3390 void *context, int vl, int mode, u64 data)
3392 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3394 return dd->send_egress_err_status_cnt[29];
3397 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3398 const struct cntr_entry *entry,
3399 void *context, int vl, int mode, u64 data)
3401 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3403 return dd->send_egress_err_status_cnt[28];
3406 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3407 const struct cntr_entry *entry,
3408 void *context, int vl, int mode, u64 data)
3410 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3412 return dd->send_egress_err_status_cnt[27];
3415 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3416 const struct cntr_entry *entry,
3417 void *context, int vl, int mode, u64 data)
3419 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3421 return dd->send_egress_err_status_cnt[26];
3424 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3425 const struct cntr_entry *entry,
3426 void *context, int vl, int mode, u64 data)
3428 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3430 return dd->send_egress_err_status_cnt[25];
3433 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3434 const struct cntr_entry *entry,
3435 void *context, int vl, int mode, u64 data)
3437 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3439 return dd->send_egress_err_status_cnt[24];
3442 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3443 const struct cntr_entry *entry,
3444 void *context, int vl, int mode, u64 data)
3446 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3448 return dd->send_egress_err_status_cnt[23];
3451 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3452 const struct cntr_entry *entry,
3453 void *context, int vl, int mode, u64 data)
3455 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3457 return dd->send_egress_err_status_cnt[22];
3460 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3461 const struct cntr_entry *entry,
3462 void *context, int vl, int mode, u64 data)
3464 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3466 return dd->send_egress_err_status_cnt[21];
3469 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3470 const struct cntr_entry *entry,
3471 void *context, int vl, int mode, u64 data)
3473 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3475 return dd->send_egress_err_status_cnt[20];
3478 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3479 const struct cntr_entry *entry,
3480 void *context, int vl, int mode, u64 data)
3482 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3484 return dd->send_egress_err_status_cnt[19];
3487 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3488 const struct cntr_entry *entry,
3489 void *context, int vl, int mode, u64 data)
3491 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3493 return dd->send_egress_err_status_cnt[18];
3496 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3497 const struct cntr_entry *entry,
3498 void *context, int vl, int mode, u64 data)
3500 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3502 return dd->send_egress_err_status_cnt[17];
3505 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3506 const struct cntr_entry *entry,
3507 void *context, int vl, int mode, u64 data)
3509 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3511 return dd->send_egress_err_status_cnt[16];
3514 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3515 void *context, int vl, int mode,
3518 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3520 return dd->send_egress_err_status_cnt[15];
3523 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3524 void *context, int vl,
3527 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3529 return dd->send_egress_err_status_cnt[14];
3532 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3533 void *context, int vl, int mode,
3536 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3538 return dd->send_egress_err_status_cnt[13];
3541 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3542 void *context, int vl, int mode,
3545 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3547 return dd->send_egress_err_status_cnt[12];
3550 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3551 const struct cntr_entry *entry,
3552 void *context, int vl, int mode, u64 data)
3554 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3556 return dd->send_egress_err_status_cnt[11];
3559 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3560 void *context, int vl, int mode,
3563 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3565 return dd->send_egress_err_status_cnt[10];
3568 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3569 void *context, int vl, int mode,
3572 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3574 return dd->send_egress_err_status_cnt[9];
3577 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3578 const struct cntr_entry *entry,
3579 void *context, int vl, int mode, u64 data)
3581 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3583 return dd->send_egress_err_status_cnt[8];
3586 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3587 const struct cntr_entry *entry,
3588 void *context, int vl, int mode, u64 data)
3590 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3592 return dd->send_egress_err_status_cnt[7];
3595 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3596 void *context, int vl, int mode,
3599 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3601 return dd->send_egress_err_status_cnt[6];
3604 static u64 access_tx_incorrect_link_state_err_cnt(
3605 const struct cntr_entry *entry,
3606 void *context, int vl, int mode, u64 data)
3608 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3610 return dd->send_egress_err_status_cnt[5];
3613 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3614 void *context, int vl, int mode,
3617 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3619 return dd->send_egress_err_status_cnt[4];
3622 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3623 const struct cntr_entry *entry,
3624 void *context, int vl, int mode, u64 data)
3626 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3628 return dd->send_egress_err_status_cnt[3];
3631 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3632 void *context, int vl, int mode,
3635 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3637 return dd->send_egress_err_status_cnt[2];
3640 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3641 const struct cntr_entry *entry,
3642 void *context, int vl, int mode, u64 data)
3644 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3646 return dd->send_egress_err_status_cnt[1];
3649 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3650 const struct cntr_entry *entry,
3651 void *context, int vl, int mode, u64 data)
3653 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3655 return dd->send_egress_err_status_cnt[0];
3659 * Software counters corresponding to each of the
3660 * error status bits within SendErrStatus
3662 static u64 access_send_csr_write_bad_addr_err_cnt(
3663 const struct cntr_entry *entry,
3664 void *context, int vl, int mode, u64 data)
3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668 return dd->send_err_status_cnt[2];
3671 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3672 void *context, int vl,
3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677 return dd->send_err_status_cnt[1];
3680 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3681 void *context, int vl, int mode,
3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686 return dd->send_err_status_cnt[0];
3690 * Software counters corresponding to each of the
3691 * error status bits within SendCtxtErrStatus
3693 static u64 access_pio_write_out_of_bounds_err_cnt(
3694 const struct cntr_entry *entry,
3695 void *context, int vl, int mode, u64 data)
3697 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3699 return dd->sw_ctxt_err_status_cnt[4];
3702 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3703 void *context, int vl, int mode,
3706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3708 return dd->sw_ctxt_err_status_cnt[3];
3711 static u64 access_pio_write_crosses_boundary_err_cnt(
3712 const struct cntr_entry *entry,
3713 void *context, int vl, int mode, u64 data)
3715 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3717 return dd->sw_ctxt_err_status_cnt[2];
3720 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3721 void *context, int vl,
3724 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3726 return dd->sw_ctxt_err_status_cnt[1];
3729 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3730 void *context, int vl, int mode,
3733 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3735 return dd->sw_ctxt_err_status_cnt[0];
3739 * Software counters corresponding to each of the
3740 * error status bits within SendDmaEngErrStatus
3742 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3743 const struct cntr_entry *entry,
3744 void *context, int vl, int mode, u64 data)
3746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748 return dd->sw_send_dma_eng_err_status_cnt[23];
3751 static u64 access_sdma_header_storage_cor_err_cnt(
3752 const struct cntr_entry *entry,
3753 void *context, int vl, int mode, u64 data)
3755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757 return dd->sw_send_dma_eng_err_status_cnt[22];
3760 static u64 access_sdma_packet_tracking_cor_err_cnt(
3761 const struct cntr_entry *entry,
3762 void *context, int vl, int mode, u64 data)
3764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3766 return dd->sw_send_dma_eng_err_status_cnt[21];
3769 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3770 void *context, int vl, int mode,
3773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3775 return dd->sw_send_dma_eng_err_status_cnt[20];
3778 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3779 void *context, int vl, int mode,
3782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784 return dd->sw_send_dma_eng_err_status_cnt[19];
3787 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3788 const struct cntr_entry *entry,
3789 void *context, int vl, int mode, u64 data)
3791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793 return dd->sw_send_dma_eng_err_status_cnt[18];
3796 static u64 access_sdma_header_storage_unc_err_cnt(
3797 const struct cntr_entry *entry,
3798 void *context, int vl, int mode, u64 data)
3800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802 return dd->sw_send_dma_eng_err_status_cnt[17];
3805 static u64 access_sdma_packet_tracking_unc_err_cnt(
3806 const struct cntr_entry *entry,
3807 void *context, int vl, int mode, u64 data)
3809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811 return dd->sw_send_dma_eng_err_status_cnt[16];
3814 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3815 void *context, int vl, int mode,
3818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820 return dd->sw_send_dma_eng_err_status_cnt[15];
3823 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3824 void *context, int vl, int mode,
3827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3829 return dd->sw_send_dma_eng_err_status_cnt[14];
3832 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3833 void *context, int vl, int mode,
3836 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3838 return dd->sw_send_dma_eng_err_status_cnt[13];
3841 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3842 void *context, int vl, int mode,
3845 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3847 return dd->sw_send_dma_eng_err_status_cnt[12];
3850 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3851 void *context, int vl, int mode,
3854 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3856 return dd->sw_send_dma_eng_err_status_cnt[11];
3859 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3860 void *context, int vl, int mode,
3863 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3865 return dd->sw_send_dma_eng_err_status_cnt[10];
3868 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3869 void *context, int vl, int mode,
3872 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3874 return dd->sw_send_dma_eng_err_status_cnt[9];
3877 static u64 access_sdma_packet_desc_overflow_err_cnt(
3878 const struct cntr_entry *entry,
3879 void *context, int vl, int mode, u64 data)
3881 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3883 return dd->sw_send_dma_eng_err_status_cnt[8];
3886 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3887 void *context, int vl,
3890 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3892 return dd->sw_send_dma_eng_err_status_cnt[7];
3895 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3896 void *context, int vl, int mode, u64 data)
3898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3900 return dd->sw_send_dma_eng_err_status_cnt[6];
3903 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3904 void *context, int vl, int mode,
3907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3909 return dd->sw_send_dma_eng_err_status_cnt[5];
3912 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3913 void *context, int vl, int mode,
3916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3918 return dd->sw_send_dma_eng_err_status_cnt[4];
3921 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3922 const struct cntr_entry *entry,
3923 void *context, int vl, int mode, u64 data)
3925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3927 return dd->sw_send_dma_eng_err_status_cnt[3];
3930 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3931 void *context, int vl, int mode,
3934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3936 return dd->sw_send_dma_eng_err_status_cnt[2];
3939 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3940 void *context, int vl, int mode,
3943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3945 return dd->sw_send_dma_eng_err_status_cnt[1];
3948 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3949 void *context, int vl, int mode,
3952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3954 return dd->sw_send_dma_eng_err_status_cnt[0];
3957 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3958 void *context, int vl, int mode,
3961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3964 u64 csr = entry->csr;
3966 val = read_write_csr(dd, csr, mode, data);
3967 if (mode == CNTR_MODE_R) {
3968 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
3969 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
3970 } else if (mode == CNTR_MODE_W) {
3971 dd->sw_rcv_bypass_packet_errors = 0;
3973 dd_dev_err(dd, "Invalid cntr register access mode");
3979 #define def_access_sw_cpu(cntr) \
3980 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3981 void *context, int vl, int mode, u64 data) \
3983 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3984 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
3985 ppd->ibport_data.rvp.cntr, vl, \
3989 def_access_sw_cpu(rc_acks);
3990 def_access_sw_cpu(rc_qacks);
3991 def_access_sw_cpu(rc_delayed_comp);
3993 #define def_access_ibp_counter(cntr) \
3994 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3995 void *context, int vl, int mode, u64 data) \
3997 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3999 if (vl != CNTR_INVALID_VL) \
4002 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
4006 def_access_ibp_counter(loop_pkts);
4007 def_access_ibp_counter(rc_resends);
4008 def_access_ibp_counter(rnr_naks);
4009 def_access_ibp_counter(other_naks);
4010 def_access_ibp_counter(rc_timeouts);
4011 def_access_ibp_counter(pkt_drops);
4012 def_access_ibp_counter(dmawait);
4013 def_access_ibp_counter(rc_seqnak);
4014 def_access_ibp_counter(rc_dupreq);
4015 def_access_ibp_counter(rdma_seq);
4016 def_access_ibp_counter(unaligned);
4017 def_access_ibp_counter(seq_naks);
4019 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4020 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4021 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4023 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4025 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4026 RCV_TID_FLOW_GEN_MISMATCH_CNT,
4028 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4030 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4031 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4032 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4033 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4034 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4036 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4038 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4040 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4042 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4044 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4046 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4047 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4048 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4049 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4050 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4052 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4053 access_dc_rcv_err_cnt),
4054 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4056 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4058 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4060 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4061 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4062 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4063 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4065 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4066 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4067 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4069 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4071 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4073 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4075 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4077 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4079 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4081 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4082 CNTR_SYNTH | CNTR_VL),
4083 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4084 CNTR_SYNTH | CNTR_VL),
4085 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4086 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4087 CNTR_SYNTH | CNTR_VL),
4088 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4089 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4090 CNTR_SYNTH | CNTR_VL),
4091 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4093 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4094 CNTR_SYNTH | CNTR_VL),
4095 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4097 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4098 CNTR_SYNTH | CNTR_VL),
4100 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4102 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4104 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4106 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4108 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4110 [C_DC_CRC_MULT_LN] =
4111 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4113 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4115 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4117 [C_DC_SEQ_CRC_CNT] =
4118 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4120 [C_DC_ESC0_ONLY_CNT] =
4121 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4123 [C_DC_ESC0_PLUS1_CNT] =
4124 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4126 [C_DC_ESC0_PLUS2_CNT] =
4127 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4129 [C_DC_REINIT_FROM_PEER_CNT] =
4130 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4132 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4134 [C_DC_MISC_FLG_CNT] =
4135 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4137 [C_DC_PRF_GOOD_LTP_CNT] =
4138 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4139 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4140 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4142 [C_DC_PRF_RX_FLIT_CNT] =
4143 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4144 [C_DC_PRF_TX_FLIT_CNT] =
4145 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4146 [C_DC_PRF_CLK_CNTR] =
4147 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4148 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4149 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4150 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4151 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4153 [C_DC_PG_STS_TX_SBE_CNT] =
4154 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4155 [C_DC_PG_STS_TX_MBE_CNT] =
4156 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4158 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4159 access_sw_cpu_intr),
4160 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4161 access_sw_cpu_rcv_limit),
4162 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4163 access_sw_vtx_wait),
4164 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4165 access_sw_pio_wait),
4166 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4167 access_sw_pio_drain),
4168 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4169 access_sw_kmem_wait),
4170 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4171 access_sw_send_schedule),
4172 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4173 SEND_DMA_DESC_FETCHED_CNT, 0,
4174 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4175 dev_access_u32_csr),
4176 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4177 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4178 access_sde_int_cnt),
4179 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4180 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4181 access_sde_err_cnt),
4182 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4183 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4184 access_sde_idle_int_cnt),
4185 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4186 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4187 access_sde_progress_int_cnt),
4188 /* MISC_ERR_STATUS */
4189 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4191 access_misc_pll_lock_fail_err_cnt),
4192 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4194 access_misc_mbist_fail_err_cnt),
4195 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4197 access_misc_invalid_eep_cmd_err_cnt),
4198 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4200 access_misc_efuse_done_parity_err_cnt),
4201 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4203 access_misc_efuse_write_err_cnt),
4204 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4206 access_misc_efuse_read_bad_addr_err_cnt),
4207 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4209 access_misc_efuse_csr_parity_err_cnt),
4210 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4212 access_misc_fw_auth_failed_err_cnt),
4213 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4215 access_misc_key_mismatch_err_cnt),
4216 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4218 access_misc_sbus_write_failed_err_cnt),
4219 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4221 access_misc_csr_write_bad_addr_err_cnt),
4222 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4224 access_misc_csr_read_bad_addr_err_cnt),
4225 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4227 access_misc_csr_parity_err_cnt),
4229 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4231 access_sw_cce_err_status_aggregated_cnt),
4232 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4234 access_cce_msix_csr_parity_err_cnt),
4235 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4237 access_cce_int_map_unc_err_cnt),
4238 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4240 access_cce_int_map_cor_err_cnt),
4241 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4243 access_cce_msix_table_unc_err_cnt),
4244 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4246 access_cce_msix_table_cor_err_cnt),
4247 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4249 access_cce_rxdma_conv_fifo_parity_err_cnt),
4250 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4252 access_cce_rcpl_async_fifo_parity_err_cnt),
4253 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4255 access_cce_seg_write_bad_addr_err_cnt),
4256 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4258 access_cce_seg_read_bad_addr_err_cnt),
4259 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4261 access_la_triggered_cnt),
4262 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4264 access_cce_trgt_cpl_timeout_err_cnt),
4265 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4267 access_pcic_receive_parity_err_cnt),
4268 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4270 access_pcic_transmit_back_parity_err_cnt),
4271 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4273 access_pcic_transmit_front_parity_err_cnt),
4274 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4276 access_pcic_cpl_dat_q_unc_err_cnt),
4277 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4279 access_pcic_cpl_hd_q_unc_err_cnt),
4280 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4282 access_pcic_post_dat_q_unc_err_cnt),
4283 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4285 access_pcic_post_hd_q_unc_err_cnt),
4286 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4288 access_pcic_retry_sot_mem_unc_err_cnt),
4289 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4291 access_pcic_retry_mem_unc_err),
4292 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4294 access_pcic_n_post_dat_q_parity_err_cnt),
4295 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4297 access_pcic_n_post_h_q_parity_err_cnt),
4298 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4300 access_pcic_cpl_dat_q_cor_err_cnt),
4301 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4303 access_pcic_cpl_hd_q_cor_err_cnt),
4304 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4306 access_pcic_post_dat_q_cor_err_cnt),
4307 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4309 access_pcic_post_hd_q_cor_err_cnt),
4310 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4312 access_pcic_retry_sot_mem_cor_err_cnt),
4313 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4315 access_pcic_retry_mem_cor_err_cnt),
4316 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4317 "CceCli1AsyncFifoDbgParityError", 0, 0,
4319 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4320 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4321 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4323 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4325 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4326 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4328 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4329 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4330 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4332 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4333 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4335 access_cce_cli2_async_fifo_parity_err_cnt),
4336 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4338 access_cce_csr_cfg_bus_parity_err_cnt),
4339 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4341 access_cce_cli0_async_fifo_parity_err_cnt),
4342 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4344 access_cce_rspd_data_parity_err_cnt),
4345 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4347 access_cce_trgt_access_err_cnt),
4348 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4350 access_cce_trgt_async_fifo_parity_err_cnt),
4351 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4353 access_cce_csr_write_bad_addr_err_cnt),
4354 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4356 access_cce_csr_read_bad_addr_err_cnt),
4357 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4359 access_ccs_csr_parity_err_cnt),
4362 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4364 access_rx_csr_parity_err_cnt),
4365 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4367 access_rx_csr_write_bad_addr_err_cnt),
4368 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4370 access_rx_csr_read_bad_addr_err_cnt),
4371 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4373 access_rx_dma_csr_unc_err_cnt),
4374 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4376 access_rx_dma_dq_fsm_encoding_err_cnt),
4377 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4379 access_rx_dma_eq_fsm_encoding_err_cnt),
4380 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4382 access_rx_dma_csr_parity_err_cnt),
4383 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4385 access_rx_rbuf_data_cor_err_cnt),
4386 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4388 access_rx_rbuf_data_unc_err_cnt),
4389 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4391 access_rx_dma_data_fifo_rd_cor_err_cnt),
4392 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4394 access_rx_dma_data_fifo_rd_unc_err_cnt),
4395 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4397 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4398 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4400 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4401 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4403 access_rx_rbuf_desc_part2_cor_err_cnt),
4404 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4406 access_rx_rbuf_desc_part2_unc_err_cnt),
4407 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4409 access_rx_rbuf_desc_part1_cor_err_cnt),
4410 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4412 access_rx_rbuf_desc_part1_unc_err_cnt),
4413 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4415 access_rx_hq_intr_fsm_err_cnt),
4416 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4418 access_rx_hq_intr_csr_parity_err_cnt),
4419 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4421 access_rx_lookup_csr_parity_err_cnt),
4422 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4424 access_rx_lookup_rcv_array_cor_err_cnt),
4425 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4427 access_rx_lookup_rcv_array_unc_err_cnt),
4428 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4430 access_rx_lookup_des_part2_parity_err_cnt),
4431 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4433 access_rx_lookup_des_part1_unc_cor_err_cnt),
4434 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4436 access_rx_lookup_des_part1_unc_err_cnt),
4437 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4439 access_rx_rbuf_next_free_buf_cor_err_cnt),
4440 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4442 access_rx_rbuf_next_free_buf_unc_err_cnt),
4443 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4444 "RxRbufFlInitWrAddrParityErr", 0, 0,
4446 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4447 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4449 access_rx_rbuf_fl_initdone_parity_err_cnt),
4450 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4452 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4453 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4455 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4456 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4458 access_rx_rbuf_empty_err_cnt),
4459 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4461 access_rx_rbuf_full_err_cnt),
4462 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4464 access_rbuf_bad_lookup_err_cnt),
4465 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4467 access_rbuf_ctx_id_parity_err_cnt),
4468 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4470 access_rbuf_csr_qeopdw_parity_err_cnt),
4471 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4472 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4474 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4475 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4476 "RxRbufCsrQTlPtrParityErr", 0, 0,
4478 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4479 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4481 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4482 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4484 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4485 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4487 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4488 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4490 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4491 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4492 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4494 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4495 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4497 access_rx_rbuf_block_list_read_cor_err_cnt),
4498 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4500 access_rx_rbuf_block_list_read_unc_err_cnt),
4501 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4503 access_rx_rbuf_lookup_des_cor_err_cnt),
4504 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4506 access_rx_rbuf_lookup_des_unc_err_cnt),
4507 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4508 "RxRbufLookupDesRegUncCorErr", 0, 0,
4510 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4511 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4513 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4514 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4516 access_rx_rbuf_free_list_cor_err_cnt),
4517 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4519 access_rx_rbuf_free_list_unc_err_cnt),
4520 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4522 access_rx_rcv_fsm_encoding_err_cnt),
4523 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4525 access_rx_dma_flag_cor_err_cnt),
4526 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4528 access_rx_dma_flag_unc_err_cnt),
4529 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4531 access_rx_dc_sop_eop_parity_err_cnt),
4532 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4534 access_rx_rcv_csr_parity_err_cnt),
4535 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4537 access_rx_rcv_qp_map_table_cor_err_cnt),
4538 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4540 access_rx_rcv_qp_map_table_unc_err_cnt),
4541 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4543 access_rx_rcv_data_cor_err_cnt),
4544 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4546 access_rx_rcv_data_unc_err_cnt),
4547 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4549 access_rx_rcv_hdr_cor_err_cnt),
4550 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4552 access_rx_rcv_hdr_unc_err_cnt),
4553 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4555 access_rx_dc_intf_parity_err_cnt),
4556 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4558 access_rx_dma_csr_cor_err_cnt),
4559 /* SendPioErrStatus */
4560 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4562 access_pio_pec_sop_head_parity_err_cnt),
4563 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4565 access_pio_pcc_sop_head_parity_err_cnt),
4566 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4568 access_pio_last_returned_cnt_parity_err_cnt),
4569 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4571 access_pio_current_free_cnt_parity_err_cnt),
4572 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4574 access_pio_reserved_31_err_cnt),
4575 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4577 access_pio_reserved_30_err_cnt),
4578 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4580 access_pio_ppmc_sop_len_err_cnt),
4581 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4583 access_pio_ppmc_bqc_mem_parity_err_cnt),
4584 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4586 access_pio_vl_fifo_parity_err_cnt),
4587 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4589 access_pio_vlf_sop_parity_err_cnt),
4590 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4592 access_pio_vlf_v1_len_parity_err_cnt),
4593 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4595 access_pio_block_qw_count_parity_err_cnt),
4596 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4598 access_pio_write_qw_valid_parity_err_cnt),
4599 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4601 access_pio_state_machine_err_cnt),
4602 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4604 access_pio_write_data_parity_err_cnt),
4605 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4607 access_pio_host_addr_mem_cor_err_cnt),
4608 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4610 access_pio_host_addr_mem_unc_err_cnt),
4611 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4613 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4614 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4616 access_pio_init_sm_in_err_cnt),
4617 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4619 access_pio_ppmc_pbl_fifo_err_cnt),
4620 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4622 access_pio_credit_ret_fifo_parity_err_cnt),
4623 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4625 access_pio_v1_len_mem_bank1_cor_err_cnt),
4626 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4628 access_pio_v1_len_mem_bank0_cor_err_cnt),
4629 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4631 access_pio_v1_len_mem_bank1_unc_err_cnt),
4632 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4634 access_pio_v1_len_mem_bank0_unc_err_cnt),
4635 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4637 access_pio_sm_pkt_reset_parity_err_cnt),
4638 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4640 access_pio_pkt_evict_fifo_parity_err_cnt),
4641 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4642 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4644 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4645 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4647 access_pio_sbrdctl_crrel_parity_err_cnt),
4648 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4650 access_pio_pec_fifo_parity_err_cnt),
4651 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4653 access_pio_pcc_fifo_parity_err_cnt),
4654 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4656 access_pio_sb_mem_fifo1_err_cnt),
4657 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4659 access_pio_sb_mem_fifo0_err_cnt),
4660 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4662 access_pio_csr_parity_err_cnt),
4663 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4665 access_pio_write_addr_parity_err_cnt),
4666 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4668 access_pio_write_bad_ctxt_err_cnt),
4669 /* SendDmaErrStatus */
4670 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4672 access_sdma_pcie_req_tracking_cor_err_cnt),
4673 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4675 access_sdma_pcie_req_tracking_unc_err_cnt),
4676 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4678 access_sdma_csr_parity_err_cnt),
4679 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4681 access_sdma_rpy_tag_err_cnt),
4682 /* SendEgressErrStatus */
4683 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4685 access_tx_read_pio_memory_csr_unc_err_cnt),
4686 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4688 access_tx_read_sdma_memory_csr_err_cnt),
4689 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4691 access_tx_egress_fifo_cor_err_cnt),
4692 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4694 access_tx_read_pio_memory_cor_err_cnt),
4695 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4697 access_tx_read_sdma_memory_cor_err_cnt),
4698 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4700 access_tx_sb_hdr_cor_err_cnt),
4701 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4703 access_tx_credit_overrun_err_cnt),
4704 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4706 access_tx_launch_fifo8_cor_err_cnt),
4707 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4709 access_tx_launch_fifo7_cor_err_cnt),
4710 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4712 access_tx_launch_fifo6_cor_err_cnt),
4713 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4715 access_tx_launch_fifo5_cor_err_cnt),
4716 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4718 access_tx_launch_fifo4_cor_err_cnt),
4719 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4721 access_tx_launch_fifo3_cor_err_cnt),
4722 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4724 access_tx_launch_fifo2_cor_err_cnt),
4725 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4727 access_tx_launch_fifo1_cor_err_cnt),
4728 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4730 access_tx_launch_fifo0_cor_err_cnt),
4731 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4733 access_tx_credit_return_vl_err_cnt),
4734 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4736 access_tx_hcrc_insertion_err_cnt),
4737 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4739 access_tx_egress_fifo_unc_err_cnt),
4740 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4742 access_tx_read_pio_memory_unc_err_cnt),
4743 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4745 access_tx_read_sdma_memory_unc_err_cnt),
4746 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4748 access_tx_sb_hdr_unc_err_cnt),
4749 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4751 access_tx_credit_return_partiy_err_cnt),
4752 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4754 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4755 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4757 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4758 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4760 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4761 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4763 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4764 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4766 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4767 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4769 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4770 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4772 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4773 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4775 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4776 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4778 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4779 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4781 access_tx_sdma15_disallowed_packet_err_cnt),
4782 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4784 access_tx_sdma14_disallowed_packet_err_cnt),
4785 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4787 access_tx_sdma13_disallowed_packet_err_cnt),
4788 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4790 access_tx_sdma12_disallowed_packet_err_cnt),
4791 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4793 access_tx_sdma11_disallowed_packet_err_cnt),
4794 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4796 access_tx_sdma10_disallowed_packet_err_cnt),
4797 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4799 access_tx_sdma9_disallowed_packet_err_cnt),
4800 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4802 access_tx_sdma8_disallowed_packet_err_cnt),
4803 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4805 access_tx_sdma7_disallowed_packet_err_cnt),
4806 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4808 access_tx_sdma6_disallowed_packet_err_cnt),
4809 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4811 access_tx_sdma5_disallowed_packet_err_cnt),
4812 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4814 access_tx_sdma4_disallowed_packet_err_cnt),
4815 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4817 access_tx_sdma3_disallowed_packet_err_cnt),
4818 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4820 access_tx_sdma2_disallowed_packet_err_cnt),
4821 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4823 access_tx_sdma1_disallowed_packet_err_cnt),
4824 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4826 access_tx_sdma0_disallowed_packet_err_cnt),
4827 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4829 access_tx_config_parity_err_cnt),
4830 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4832 access_tx_sbrd_ctl_csr_parity_err_cnt),
4833 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4835 access_tx_launch_csr_parity_err_cnt),
4836 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4838 access_tx_illegal_vl_err_cnt),
4839 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4840 "TxSbrdCtlStateMachineParityErr", 0, 0,
4842 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4843 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4845 access_egress_reserved_10_err_cnt),
4846 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4848 access_egress_reserved_9_err_cnt),
4849 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4851 access_tx_sdma_launch_intf_parity_err_cnt),
4852 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4854 access_tx_pio_launch_intf_parity_err_cnt),
4855 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4857 access_egress_reserved_6_err_cnt),
4858 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4860 access_tx_incorrect_link_state_err_cnt),
4861 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4863 access_tx_linkdown_err_cnt),
4864 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4865 "EgressFifoUnderrunOrParityErr", 0, 0,
4867 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4868 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4870 access_egress_reserved_2_err_cnt),
4871 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4873 access_tx_pkt_integrity_mem_unc_err_cnt),
4874 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4876 access_tx_pkt_integrity_mem_cor_err_cnt),
4878 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4880 access_send_csr_write_bad_addr_err_cnt),
4881 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4883 access_send_csr_read_bad_addr_err_cnt),
4884 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4886 access_send_csr_parity_cnt),
4887 /* SendCtxtErrStatus */
4888 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4890 access_pio_write_out_of_bounds_err_cnt),
4891 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4893 access_pio_write_overflow_err_cnt),
4894 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4896 access_pio_write_crosses_boundary_err_cnt),
4897 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4899 access_pio_disallowed_packet_err_cnt),
4900 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4902 access_pio_inconsistent_sop_err_cnt),
4903 /* SendDmaEngErrStatus */
4904 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4906 access_sdma_header_request_fifo_cor_err_cnt),
4907 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4909 access_sdma_header_storage_cor_err_cnt),
4910 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4912 access_sdma_packet_tracking_cor_err_cnt),
4913 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4915 access_sdma_assembly_cor_err_cnt),
4916 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4918 access_sdma_desc_table_cor_err_cnt),
4919 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4921 access_sdma_header_request_fifo_unc_err_cnt),
4922 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4924 access_sdma_header_storage_unc_err_cnt),
4925 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4927 access_sdma_packet_tracking_unc_err_cnt),
4928 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4930 access_sdma_assembly_unc_err_cnt),
4931 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4933 access_sdma_desc_table_unc_err_cnt),
4934 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4936 access_sdma_timeout_err_cnt),
4937 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4939 access_sdma_header_length_err_cnt),
4940 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4942 access_sdma_header_address_err_cnt),
4943 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4945 access_sdma_header_select_err_cnt),
4946 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4948 access_sdma_reserved_9_err_cnt),
4949 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4951 access_sdma_packet_desc_overflow_err_cnt),
4952 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4954 access_sdma_length_mismatch_err_cnt),
4955 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4957 access_sdma_halt_err_cnt),
4958 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4960 access_sdma_mem_read_err_cnt),
4961 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4963 access_sdma_first_desc_err_cnt),
4964 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4966 access_sdma_tail_out_of_bounds_err_cnt),
4967 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4969 access_sdma_too_long_err_cnt),
4970 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4972 access_sdma_gen_mismatch_err_cnt),
4973 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4975 access_sdma_wrong_dw_err_cnt),
4978 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4979 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4981 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4983 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4985 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4987 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4989 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4991 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4993 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4994 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4995 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4996 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4997 CNTR_SYNTH | CNTR_VL),
4998 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4999 CNTR_SYNTH | CNTR_VL),
5000 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5001 CNTR_SYNTH | CNTR_VL),
5002 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5003 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5004 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5005 access_sw_link_dn_cnt),
5006 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5007 access_sw_link_up_cnt),
5008 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5009 access_sw_unknown_frame_cnt),
5010 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5011 access_sw_xmit_discards),
5012 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5013 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5014 access_sw_xmit_discards),
5015 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5016 access_xmit_constraint_errs),
5017 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5018 access_rcv_constraint_errs),
5019 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5020 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5021 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5022 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5023 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5024 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5025 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5026 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5027 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5028 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5029 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5030 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5031 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5032 access_sw_cpu_rc_acks),
5033 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5034 access_sw_cpu_rc_qacks),
5035 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5036 access_sw_cpu_rc_delayed_comp),
5037 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5038 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5039 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5040 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5041 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5042 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5043 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5044 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5045 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5046 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5047 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5048 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5049 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5050 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5051 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5052 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5053 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5054 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5055 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5056 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5057 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5058 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5059 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5060 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5061 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5062 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5063 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5064 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5065 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5066 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5067 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5068 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5069 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5070 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5071 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5072 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5073 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5074 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5075 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5076 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5077 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5078 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5079 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5080 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5081 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5082 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5083 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5084 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5085 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5086 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5087 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5088 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5089 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5090 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5091 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5092 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5093 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5094 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5095 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5096 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5097 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5098 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5099 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5100 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5101 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5102 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5103 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5104 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5105 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5106 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5107 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5108 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5109 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5110 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5111 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5112 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5113 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5114 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5115 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5116 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5119 /* ======================================================================== */
5121 /* return true if this is chip revision revision a */
5122 int is_ax(struct hfi1_devdata *dd)
5125 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5126 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5127 return (chip_rev_minor & 0xf0) == 0;
5130 /* return true if this is chip revision revision b */
5131 int is_bx(struct hfi1_devdata *dd)
5134 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5135 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5136 return (chip_rev_minor & 0xF0) == 0x10;
5140 * Append string s to buffer buf. Arguments curp and len are the current
5141 * position and remaining length, respectively.
5143 * return 0 on success, 1 on out of room
5145 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5149 int result = 0; /* success */
5152 /* add a comma, if first in the buffer */
5155 result = 1; /* out of room */
5162 /* copy the string */
5163 while ((c = *s++) != 0) {
5165 result = 1; /* out of room */
5173 /* write return values */
5181 * Using the given flag table, print a comma separated string into
5182 * the buffer. End in '*' if the buffer is too short.
5184 static char *flag_string(char *buf, int buf_len, u64 flags,
5185 struct flag_table *table, int table_size)
5193 /* make sure there is at least 2 so we can form "*" */
5197 len--; /* leave room for a nul */
5198 for (i = 0; i < table_size; i++) {
5199 if (flags & table[i].flag) {
5200 no_room = append_str(buf, &p, &len, table[i].str);
5203 flags &= ~table[i].flag;
5207 /* any undocumented bits left? */
5208 if (!no_room && flags) {
5209 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5210 no_room = append_str(buf, &p, &len, extra);
5213 /* add * if ran out of room */
5215 /* may need to back up to add space for a '*' */
5221 /* add final nul - space already allocated above */
5226 /* first 8 CCE error interrupt source names */
5227 static const char * const cce_misc_names[] = {
5228 "CceErrInt", /* 0 */
5229 "RxeErrInt", /* 1 */
5230 "MiscErrInt", /* 2 */
5231 "Reserved3", /* 3 */
5232 "PioErrInt", /* 4 */
5233 "SDmaErrInt", /* 5 */
5234 "EgressErrInt", /* 6 */
5239 * Return the miscellaneous error interrupt name.
5241 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5243 if (source < ARRAY_SIZE(cce_misc_names))
5244 strncpy(buf, cce_misc_names[source], bsize);
5246 snprintf(buf, bsize, "Reserved%u",
5247 source + IS_GENERAL_ERR_START);
5253 * Return the SDMA engine error interrupt name.
5255 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5257 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5262 * Return the send context error interrupt name.
5264 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5266 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5270 static const char * const various_names[] = {
5279 * Return the various interrupt name.
5281 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5283 if (source < ARRAY_SIZE(various_names))
5284 strncpy(buf, various_names[source], bsize);
5286 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5291 * Return the DC interrupt name.
5293 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5295 static const char * const dc_int_names[] = {
5299 "lbm" /* local block merge */
5302 if (source < ARRAY_SIZE(dc_int_names))
5303 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5305 snprintf(buf, bsize, "DCInt%u", source);
5309 static const char * const sdma_int_names[] = {
5316 * Return the SDMA engine interrupt name.
5318 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5320 /* what interrupt */
5321 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5323 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5325 if (likely(what < 3))
5326 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5328 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5333 * Return the receive available interrupt name.
5335 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5337 snprintf(buf, bsize, "RcvAvailInt%u", source);
5342 * Return the receive urgent interrupt name.
5344 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5346 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5351 * Return the send credit interrupt name.
5353 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5355 snprintf(buf, bsize, "SendCreditInt%u", source);
5360 * Return the reserved interrupt name.
5362 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5364 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5368 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5370 return flag_string(buf, buf_len, flags,
5371 cce_err_status_flags,
5372 ARRAY_SIZE(cce_err_status_flags));
5375 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5377 return flag_string(buf, buf_len, flags,
5378 rxe_err_status_flags,
5379 ARRAY_SIZE(rxe_err_status_flags));
5382 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5384 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5385 ARRAY_SIZE(misc_err_status_flags));
5388 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5390 return flag_string(buf, buf_len, flags,
5391 pio_err_status_flags,
5392 ARRAY_SIZE(pio_err_status_flags));
5395 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5397 return flag_string(buf, buf_len, flags,
5398 sdma_err_status_flags,
5399 ARRAY_SIZE(sdma_err_status_flags));
5402 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5404 return flag_string(buf, buf_len, flags,
5405 egress_err_status_flags,
5406 ARRAY_SIZE(egress_err_status_flags));
5409 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5411 return flag_string(buf, buf_len, flags,
5412 egress_err_info_flags,
5413 ARRAY_SIZE(egress_err_info_flags));
5416 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5418 return flag_string(buf, buf_len, flags,
5419 send_err_status_flags,
5420 ARRAY_SIZE(send_err_status_flags));
5423 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5429 * For most these errors, there is nothing that can be done except
5430 * report or record it.
5432 dd_dev_info(dd, "CCE Error: %s\n",
5433 cce_err_status_string(buf, sizeof(buf), reg));
5435 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5436 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5437 /* this error requires a manual drop into SPC freeze mode */
5439 start_freeze_handling(dd->pport, FREEZE_SELF);
5442 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5443 if (reg & (1ull << i)) {
5444 incr_cntr64(&dd->cce_err_status_cnt[i]);
5445 /* maintain a counter over all cce_err_status errors */
5446 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5452 * Check counters for receive errors that do not have an interrupt
5453 * associated with them.
5455 #define RCVERR_CHECK_TIME 10
5456 static void update_rcverr_timer(unsigned long opaque)
5458 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5459 struct hfi1_pportdata *ppd = dd->pport;
5460 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5462 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5463 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5464 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5465 set_link_down_reason(
5466 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5467 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5468 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5470 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5472 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5475 static int init_rcverr(struct hfi1_devdata *dd)
5477 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5478 /* Assume the hardware counter has been reset */
5479 dd->rcv_ovfl_cnt = 0;
5480 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5483 static void free_rcverr(struct hfi1_devdata *dd)
5485 if (dd->rcverr_timer.data)
5486 del_timer_sync(&dd->rcverr_timer);
5487 dd->rcverr_timer.data = 0;
5490 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5495 dd_dev_info(dd, "Receive Error: %s\n",
5496 rxe_err_status_string(buf, sizeof(buf), reg));
5498 if (reg & ALL_RXE_FREEZE_ERR) {
5502 * Freeze mode recovery is disabled for the errors
5503 * in RXE_FREEZE_ABORT_MASK
5505 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5506 flags = FREEZE_ABORT;
5508 start_freeze_handling(dd->pport, flags);
5511 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5512 if (reg & (1ull << i))
5513 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5517 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5522 dd_dev_info(dd, "Misc Error: %s",
5523 misc_err_status_string(buf, sizeof(buf), reg));
5524 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5525 if (reg & (1ull << i))
5526 incr_cntr64(&dd->misc_err_status_cnt[i]);
5530 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5535 dd_dev_info(dd, "PIO Error: %s\n",
5536 pio_err_status_string(buf, sizeof(buf), reg));
5538 if (reg & ALL_PIO_FREEZE_ERR)
5539 start_freeze_handling(dd->pport, 0);
5541 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5542 if (reg & (1ull << i))
5543 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5547 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5552 dd_dev_info(dd, "SDMA Error: %s\n",
5553 sdma_err_status_string(buf, sizeof(buf), reg));
5555 if (reg & ALL_SDMA_FREEZE_ERR)
5556 start_freeze_handling(dd->pport, 0);
5558 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5559 if (reg & (1ull << i))
5560 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5564 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5566 incr_cntr64(&ppd->port_xmit_discards);
5569 static void count_port_inactive(struct hfi1_devdata *dd)
5571 __count_port_discards(dd->pport);
5575 * We have had a "disallowed packet" error during egress. Determine the
5576 * integrity check which failed, and update relevant error counter, etc.
5578 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5579 * bit of state per integrity check, and so we can miss the reason for an
5580 * egress error if more than one packet fails the same integrity check
5581 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5583 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5586 struct hfi1_pportdata *ppd = dd->pport;
5587 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5588 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5591 /* clear down all observed info as quickly as possible after read */
5592 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5595 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5596 info, egress_err_info_string(buf, sizeof(buf), info), src);
5598 /* Eventually add other counters for each bit */
5599 if (info & PORT_DISCARD_EGRESS_ERRS) {
5603 * Count all applicable bits as individual errors and
5604 * attribute them to the packet that triggered this handler.
5605 * This may not be completely accurate due to limitations
5606 * on the available hardware error information. There is
5607 * a single information register and any number of error
5608 * packets may have occurred and contributed to it before
5609 * this routine is called. This means that:
5610 * a) If multiple packets with the same error occur before
5611 * this routine is called, earlier packets are missed.
5612 * There is only a single bit for each error type.
5613 * b) Errors may not be attributed to the correct VL.
5614 * The driver is attributing all bits in the info register
5615 * to the packet that triggered this call, but bits
5616 * could be an accumulation of different packets with
5618 * c) A single error packet may have multiple counts attached
5619 * to it. There is no way for the driver to know if
5620 * multiple bits set in the info register are due to a
5621 * single packet or multiple packets. The driver assumes
5624 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5625 for (i = 0; i < weight; i++) {
5626 __count_port_discards(ppd);
5627 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5628 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5630 incr_cntr64(&ppd->port_xmit_discards_vl
5637 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5638 * register. Does it represent a 'port inactive' error?
5640 static inline int port_inactive_err(u64 posn)
5642 return (posn >= SEES(TX_LINKDOWN) &&
5643 posn <= SEES(TX_INCORRECT_LINK_STATE));
5647 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5648 * register. Does it represent a 'disallowed packet' error?
5650 static inline int disallowed_pkt_err(int posn)
5652 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5653 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5657 * Input value is a bit position of one of the SDMA engine disallowed
5658 * packet errors. Return which engine. Use of this must be guarded by
5659 * disallowed_pkt_err().
5661 static inline int disallowed_pkt_engine(int posn)
5663 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5667 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5670 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5672 struct sdma_vl_map *m;
5676 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5680 m = rcu_dereference(dd->sdma_map);
5681 vl = m->engine_to_vl[engine];
5688 * Translate the send context (sofware index) into a VL. Return -1 if the
5689 * translation cannot be done.
5691 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5693 struct send_context_info *sci;
5694 struct send_context *sc;
5697 sci = &dd->send_contexts[sw_index];
5699 /* there is no information for user (PSM) and ack contexts */
5700 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5706 if (dd->vld[15].sc == sc)
5708 for (i = 0; i < num_vls; i++)
5709 if (dd->vld[i].sc == sc)
5715 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5717 u64 reg_copy = reg, handled = 0;
5721 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5722 start_freeze_handling(dd->pport, 0);
5723 else if (is_ax(dd) &&
5724 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5725 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5726 start_freeze_handling(dd->pport, 0);
5729 int posn = fls64(reg_copy);
5730 /* fls64() returns a 1-based offset, we want it zero based */
5731 int shift = posn - 1;
5732 u64 mask = 1ULL << shift;
5734 if (port_inactive_err(shift)) {
5735 count_port_inactive(dd);
5737 } else if (disallowed_pkt_err(shift)) {
5738 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5740 handle_send_egress_err_info(dd, vl);
5749 dd_dev_info(dd, "Egress Error: %s\n",
5750 egress_err_status_string(buf, sizeof(buf), reg));
5752 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5753 if (reg & (1ull << i))
5754 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5758 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5763 dd_dev_info(dd, "Send Error: %s\n",
5764 send_err_status_string(buf, sizeof(buf), reg));
5766 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5767 if (reg & (1ull << i))
5768 incr_cntr64(&dd->send_err_status_cnt[i]);
5773 * The maximum number of times the error clear down will loop before
5774 * blocking a repeating error. This value is arbitrary.
5776 #define MAX_CLEAR_COUNT 20
5779 * Clear and handle an error register. All error interrupts are funneled
5780 * through here to have a central location to correctly handle single-
5781 * or multi-shot errors.
5783 * For non per-context registers, call this routine with a context value
5784 * of 0 so the per-context offset is zero.
5786 * If the handler loops too many times, assume that something is wrong
5787 * and can't be fixed, so mask the error bits.
5789 static void interrupt_clear_down(struct hfi1_devdata *dd,
5791 const struct err_reg_info *eri)
5796 /* read in a loop until no more errors are seen */
5799 reg = read_kctxt_csr(dd, context, eri->status);
5802 write_kctxt_csr(dd, context, eri->clear, reg);
5803 if (likely(eri->handler))
5804 eri->handler(dd, context, reg);
5806 if (count > MAX_CLEAR_COUNT) {
5809 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5812 * Read-modify-write so any other masked bits
5815 mask = read_kctxt_csr(dd, context, eri->mask);
5817 write_kctxt_csr(dd, context, eri->mask, mask);
5824 * CCE block "misc" interrupt. Source is < 16.
5826 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5828 const struct err_reg_info *eri = &misc_errs[source];
5831 interrupt_clear_down(dd, 0, eri);
5833 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5838 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5840 return flag_string(buf, buf_len, flags,
5841 sc_err_status_flags,
5842 ARRAY_SIZE(sc_err_status_flags));
5846 * Send context error interrupt. Source (hw_context) is < 160.
5848 * All send context errors cause the send context to halt. The normal
5849 * clear-down mechanism cannot be used because we cannot clear the
5850 * error bits until several other long-running items are done first.
5851 * This is OK because with the context halted, nothing else is going
5852 * to happen on it anyway.
5854 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5855 unsigned int hw_context)
5857 struct send_context_info *sci;
5858 struct send_context *sc;
5863 unsigned long irq_flags;
5865 sw_index = dd->hw_to_sw[hw_context];
5866 if (sw_index >= dd->num_send_contexts) {
5868 "out of range sw index %u for send context %u\n",
5869 sw_index, hw_context);
5872 sci = &dd->send_contexts[sw_index];
5873 spin_lock_irqsave(&dd->sc_lock, irq_flags);
5876 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5877 sw_index, hw_context);
5878 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5882 /* tell the software that a halt has begun */
5883 sc_stop(sc, SCF_HALTED);
5885 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5887 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5888 send_context_err_status_string(flags, sizeof(flags),
5891 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5892 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5895 * Automatically restart halted kernel contexts out of interrupt
5896 * context. User contexts must ask the driver to restart the context.
5898 if (sc->type != SC_USER)
5899 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5900 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5903 * Update the counters for the corresponding status bits.
5904 * Note that these particular counters are aggregated over all
5907 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5908 if (status & (1ull << i))
5909 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5913 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5914 unsigned int source, u64 status)
5916 struct sdma_engine *sde;
5919 sde = &dd->per_sdma[source];
5920 #ifdef CONFIG_SDMA_VERBOSITY
5921 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5922 slashstrip(__FILE__), __LINE__, __func__);
5923 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5924 sde->this_idx, source, (unsigned long long)status);
5927 sdma_engine_error(sde, status);
5930 * Update the counters for the corresponding status bits.
5931 * Note that these particular counters are aggregated over
5932 * all 16 DMA engines.
5934 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5935 if (status & (1ull << i))
5936 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5941 * CCE block SDMA error interrupt. Source is < 16.
5943 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5945 #ifdef CONFIG_SDMA_VERBOSITY
5946 struct sdma_engine *sde = &dd->per_sdma[source];
5948 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5949 slashstrip(__FILE__), __LINE__, __func__);
5950 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5952 sdma_dumpstate(sde);
5954 interrupt_clear_down(dd, source, &sdma_eng_err);
5958 * CCE block "various" interrupt. Source is < 8.
5960 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5962 const struct err_reg_info *eri = &various_err[source];
5965 * TCritInt cannot go through interrupt_clear_down()
5966 * because it is not a second tier interrupt. The handler
5967 * should be called directly.
5969 if (source == TCRIT_INT_SOURCE)
5970 handle_temp_err(dd);
5971 else if (eri->handler)
5972 interrupt_clear_down(dd, 0, eri);
5975 "%s: Unimplemented/reserved interrupt %d\n",
5979 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5981 /* src_ctx is always zero */
5982 struct hfi1_pportdata *ppd = dd->pport;
5983 unsigned long flags;
5984 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5986 if (reg & QSFP_HFI0_MODPRST_N) {
5987 if (!qsfp_mod_present(ppd)) {
5988 dd_dev_info(dd, "%s: QSFP module removed\n",
5991 ppd->driver_link_ready = 0;
5993 * Cable removed, reset all our information about the
5994 * cache and cable capabilities
5997 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5999 * We don't set cache_refresh_required here as we expect
6000 * an interrupt when a cable is inserted
6002 ppd->qsfp_info.cache_valid = 0;
6003 ppd->qsfp_info.reset_needed = 0;
6004 ppd->qsfp_info.limiting_active = 0;
6005 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6007 /* Invert the ModPresent pin now to detect plug-in */
6008 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6009 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6011 if ((ppd->offline_disabled_reason >
6013 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6014 (ppd->offline_disabled_reason ==
6015 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6016 ppd->offline_disabled_reason =
6018 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6020 if (ppd->host_link_state == HLS_DN_POLL) {
6022 * The link is still in POLL. This means
6023 * that the normal link down processing
6024 * will not happen. We have to do it here
6025 * before turning the DC off.
6027 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6030 dd_dev_info(dd, "%s: QSFP module inserted\n",
6033 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6034 ppd->qsfp_info.cache_valid = 0;
6035 ppd->qsfp_info.cache_refresh_required = 1;
6036 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6040 * Stop inversion of ModPresent pin to detect
6041 * removal of the cable
6043 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6044 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6045 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6047 ppd->offline_disabled_reason =
6048 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6052 if (reg & QSFP_HFI0_INT_N) {
6053 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6055 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6056 ppd->qsfp_info.check_interrupt_flags = 1;
6057 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6060 /* Schedule the QSFP work only if there is a cable attached. */
6061 if (qsfp_mod_present(ppd))
6062 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6065 static int request_host_lcb_access(struct hfi1_devdata *dd)
6069 ret = do_8051_command(dd, HCMD_MISC,
6070 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6071 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6072 if (ret != HCMD_SUCCESS) {
6073 dd_dev_err(dd, "%s: command failed with error %d\n",
6076 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6079 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6083 ret = do_8051_command(dd, HCMD_MISC,
6084 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6085 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6086 if (ret != HCMD_SUCCESS) {
6087 dd_dev_err(dd, "%s: command failed with error %d\n",
6090 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6094 * Set the LCB selector - allow host access. The DCC selector always
6095 * points to the host.
6097 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6099 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6100 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6101 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6105 * Clear the LCB selector - allow 8051 access. The DCC selector always
6106 * points to the host.
6108 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6110 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6111 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6115 * Acquire LCB access from the 8051. If the host already has access,
6116 * just increment a counter. Otherwise, inform the 8051 that the
6117 * host is taking access.
6121 * -EBUSY if the 8051 has control and cannot be disturbed
6122 * -errno if unable to acquire access from the 8051
6124 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6126 struct hfi1_pportdata *ppd = dd->pport;
6130 * Use the host link state lock so the operation of this routine
6131 * { link state check, selector change, count increment } can occur
6132 * as a unit against a link state change. Otherwise there is a
6133 * race between the state change and the count increment.
6136 mutex_lock(&ppd->hls_lock);
6138 while (!mutex_trylock(&ppd->hls_lock))
6142 /* this access is valid only when the link is up */
6143 if (ppd->host_link_state & HLS_DOWN) {
6144 dd_dev_info(dd, "%s: link state %s not up\n",
6145 __func__, link_state_name(ppd->host_link_state));
6150 if (dd->lcb_access_count == 0) {
6151 ret = request_host_lcb_access(dd);
6154 "%s: unable to acquire LCB access, err %d\n",
6158 set_host_lcb_access(dd);
6160 dd->lcb_access_count++;
6162 mutex_unlock(&ppd->hls_lock);
6167 * Release LCB access by decrementing the use count. If the count is moving
6168 * from 1 to 0, inform 8051 that it has control back.
6172 * -errno if unable to release access to the 8051
6174 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6179 * Use the host link state lock because the acquire needed it.
6180 * Here, we only need to keep { selector change, count decrement }
6184 mutex_lock(&dd->pport->hls_lock);
6186 while (!mutex_trylock(&dd->pport->hls_lock))
6190 if (dd->lcb_access_count == 0) {
6191 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6196 if (dd->lcb_access_count == 1) {
6197 set_8051_lcb_access(dd);
6198 ret = request_8051_lcb_access(dd);
6201 "%s: unable to release LCB access, err %d\n",
6203 /* restore host access if the grant didn't work */
6204 set_host_lcb_access(dd);
6208 dd->lcb_access_count--;
6210 mutex_unlock(&dd->pport->hls_lock);
6215 * Initialize LCB access variables and state. Called during driver load,
6216 * after most of the initialization is finished.
6218 * The DC default is LCB access on for the host. The driver defaults to
6219 * leaving access to the 8051. Assign access now - this constrains the call
6220 * to this routine to be after all LCB set-up is done. In particular, after
6221 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6223 static void init_lcb_access(struct hfi1_devdata *dd)
6225 dd->lcb_access_count = 0;
6229 * Write a response back to a 8051 request.
6231 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6233 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6234 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6236 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6237 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6241 * Handle host requests from the 8051.
6243 static void handle_8051_request(struct hfi1_pportdata *ppd)
6245 struct hfi1_devdata *dd = ppd->dd;
6250 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6251 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6252 return; /* no request */
6254 /* zero out COMPLETED so the response is seen */
6255 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6257 /* extract request details */
6258 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6259 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6260 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6261 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6264 case HREQ_LOAD_CONFIG:
6265 case HREQ_SAVE_CONFIG:
6266 case HREQ_READ_CONFIG:
6267 case HREQ_SET_TX_EQ_ABS:
6268 case HREQ_SET_TX_EQ_REL:
6270 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6272 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6274 case HREQ_CONFIG_DONE:
6275 hreq_response(dd, HREQ_SUCCESS, 0);
6278 case HREQ_INTERFACE_TEST:
6279 hreq_response(dd, HREQ_SUCCESS, data);
6282 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6283 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6288 static void write_global_credit(struct hfi1_devdata *dd,
6289 u8 vau, u16 total, u16 shared)
6291 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6293 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6295 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6296 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6300 * Set up initial VL15 credits of the remote. Assumes the rest of
6301 * the CM credit registers are zero from a previous global or credit reset .
6303 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6305 /* leave shared count at zero for both global and VL15 */
6306 write_global_credit(dd, vau, vl15buf, 0);
6308 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6309 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6313 * Zero all credit details from the previous connection and
6314 * reset the CM manager's internal counters.
6316 void reset_link_credits(struct hfi1_devdata *dd)
6320 /* remove all previous VL credit limits */
6321 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6322 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6323 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6324 write_global_credit(dd, 0, 0, 0);
6325 /* reset the CM block */
6326 pio_send_control(dd, PSC_CM_RESET);
6329 /* convert a vCU to a CU */
6330 static u32 vcu_to_cu(u8 vcu)
6335 /* convert a CU to a vCU */
6336 static u8 cu_to_vcu(u32 cu)
6341 /* convert a vAU to an AU */
6342 static u32 vau_to_au(u8 vau)
6344 return 8 * (1 << vau);
6347 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6349 ppd->sm_trap_qp = 0x0;
6354 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6356 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6360 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6361 write_csr(dd, DC_LCB_CFG_RUN, 0);
6362 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6363 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6364 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6365 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6366 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6367 reg = read_csr(dd, DCC_CFG_RESET);
6368 write_csr(dd, DCC_CFG_RESET, reg |
6369 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6370 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6371 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6373 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6374 write_csr(dd, DCC_CFG_RESET, reg);
6375 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6380 * This routine should be called after the link has been transitioned to
6381 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6384 * The expectation is that the caller of this routine would have taken
6385 * care of properly transitioning the link into the correct state.
6386 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6387 * before calling this function.
6389 static void _dc_shutdown(struct hfi1_devdata *dd)
6391 lockdep_assert_held(&dd->dc8051_lock);
6393 if (dd->dc_shutdown)
6396 dd->dc_shutdown = 1;
6397 /* Shutdown the LCB */
6398 lcb_shutdown(dd, 1);
6400 * Going to OFFLINE would have causes the 8051 to put the
6401 * SerDes into reset already. Just need to shut down the 8051,
6404 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6407 static void dc_shutdown(struct hfi1_devdata *dd)
6409 mutex_lock(&dd->dc8051_lock);
6411 mutex_unlock(&dd->dc8051_lock);
6415 * Calling this after the DC has been brought out of reset should not
6417 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6418 * before calling this function.
6420 static void _dc_start(struct hfi1_devdata *dd)
6422 lockdep_assert_held(&dd->dc8051_lock);
6424 if (!dd->dc_shutdown)
6427 /* Take the 8051 out of reset */
6428 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6429 /* Wait until 8051 is ready */
6430 if (wait_fm_ready(dd, TIMEOUT_8051_START))
6431 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6434 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6435 write_csr(dd, DCC_CFG_RESET, 0x10);
6436 /* lcb_shutdown() with abort=1 does not restore these */
6437 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6438 dd->dc_shutdown = 0;
6441 static void dc_start(struct hfi1_devdata *dd)
6443 mutex_lock(&dd->dc8051_lock);
6445 mutex_unlock(&dd->dc8051_lock);
6449 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6451 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6453 u64 rx_radr, tx_radr;
6456 if (dd->icode != ICODE_FPGA_EMULATION)
6460 * These LCB defaults on emulator _s are good, nothing to do here:
6461 * LCB_CFG_TX_FIFOS_RADR
6462 * LCB_CFG_RX_FIFOS_RADR
6464 * LCB_CFG_IGNORE_LOST_RCLK
6466 if (is_emulator_s(dd))
6468 /* else this is _p */
6470 version = emulator_rev(dd);
6472 version = 0x2d; /* all B0 use 0x2d or higher settings */
6474 if (version <= 0x12) {
6475 /* release 0x12 and below */
6478 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6479 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6480 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6483 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6484 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6485 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6487 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6488 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6490 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6491 } else if (version <= 0x18) {
6492 /* release 0x13 up to 0x18 */
6493 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6495 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6496 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6497 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6498 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6499 } else if (version == 0x19) {
6501 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6503 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6504 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6505 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6506 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6507 } else if (version == 0x1a) {
6509 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6511 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6512 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6513 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6514 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6515 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6517 /* release 0x1b and higher */
6518 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6520 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6521 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6522 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6523 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6526 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6527 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6528 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6529 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6530 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6534 * Handle a SMA idle message
6536 * This is a work-queue function outside of the interrupt.
6538 void handle_sma_message(struct work_struct *work)
6540 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6542 struct hfi1_devdata *dd = ppd->dd;
6547 * msg is bytes 1-4 of the 40-bit idle message - the command code
6550 ret = read_idle_sma(dd, &msg);
6553 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6555 * React to the SMA message. Byte[1] (0 for us) is the command.
6557 switch (msg & 0xff) {
6560 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6563 * Only expected in INIT or ARMED, discard otherwise.
6565 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6566 ppd->neighbor_normal = 1;
6568 case SMA_IDLE_ACTIVE:
6570 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6573 * Can activate the node. Discard otherwise.
6575 if (ppd->host_link_state == HLS_UP_ARMED &&
6576 ppd->is_active_optimize_enabled) {
6577 ppd->neighbor_normal = 1;
6578 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6582 "%s: received Active SMA idle message, couldn't set link to Active\n",
6588 "%s: received unexpected SMA idle message 0x%llx\n",
6594 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6597 unsigned long flags;
6599 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6600 rcvctrl = read_csr(dd, RCV_CTRL);
6603 write_csr(dd, RCV_CTRL, rcvctrl);
6604 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6607 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6609 adjust_rcvctrl(dd, add, 0);
6612 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6614 adjust_rcvctrl(dd, 0, clear);
6618 * Called from all interrupt handlers to start handling an SPC freeze.
6620 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6622 struct hfi1_devdata *dd = ppd->dd;
6623 struct send_context *sc;
6626 if (flags & FREEZE_SELF)
6627 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6629 /* enter frozen mode */
6630 dd->flags |= HFI1_FROZEN;
6632 /* notify all SDMA engines that they are going into a freeze */
6633 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6635 /* do halt pre-handling on all enabled send contexts */
6636 for (i = 0; i < dd->num_send_contexts; i++) {
6637 sc = dd->send_contexts[i].sc;
6638 if (sc && (sc->flags & SCF_ENABLED))
6639 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6642 /* Send context are frozen. Notify user space */
6643 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6645 if (flags & FREEZE_ABORT) {
6647 "Aborted freeze recovery. Please REBOOT system\n");
6650 /* queue non-interrupt handler */
6651 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6655 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6656 * depending on the "freeze" parameter.
6658 * No need to return an error if it times out, our only option
6659 * is to proceed anyway.
6661 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6663 unsigned long timeout;
6666 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6668 reg = read_csr(dd, CCE_STATUS);
6670 /* waiting until all indicators are set */
6671 if ((reg & ALL_FROZE) == ALL_FROZE)
6672 return; /* all done */
6674 /* waiting until all indicators are clear */
6675 if ((reg & ALL_FROZE) == 0)
6676 return; /* all done */
6679 if (time_after(jiffies, timeout)) {
6681 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6682 freeze ? "" : "un", reg & ALL_FROZE,
6683 freeze ? ALL_FROZE : 0ull);
6686 usleep_range(80, 120);
6691 * Do all freeze handling for the RXE block.
6693 static void rxe_freeze(struct hfi1_devdata *dd)
6698 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6700 /* disable all receive contexts */
6701 for (i = 0; i < dd->num_rcv_contexts; i++)
6702 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6706 * Unfreeze handling for the RXE block - kernel contexts only.
6707 * This will also enable the port. User contexts will do unfreeze
6708 * handling on a per-context basis as they call into the driver.
6711 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6716 /* enable all kernel contexts */
6717 for (i = 0; i < dd->n_krcv_queues; i++) {
6718 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6719 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6720 rcvmask |= dd->rcd[i]->rcvhdrtail_kvaddr ?
6721 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6722 hfi1_rcvctrl(dd, rcvmask, i);
6726 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6730 * Non-interrupt SPC freeze handling.
6732 * This is a work-queue function outside of the triggering interrupt.
6734 void handle_freeze(struct work_struct *work)
6736 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6738 struct hfi1_devdata *dd = ppd->dd;
6740 /* wait for freeze indicators on all affected blocks */
6741 wait_for_freeze_status(dd, 1);
6743 /* SPC is now frozen */
6745 /* do send PIO freeze steps */
6748 /* do send DMA freeze steps */
6751 /* do send egress freeze steps - nothing to do */
6753 /* do receive freeze steps */
6757 * Unfreeze the hardware - clear the freeze, wait for each
6758 * block's frozen bit to clear, then clear the frozen flag.
6760 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6761 wait_for_freeze_status(dd, 0);
6764 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6765 wait_for_freeze_status(dd, 1);
6766 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6767 wait_for_freeze_status(dd, 0);
6770 /* do send PIO unfreeze steps for kernel contexts */
6771 pio_kernel_unfreeze(dd);
6773 /* do send DMA unfreeze steps */
6776 /* do send egress unfreeze steps - nothing to do */
6778 /* do receive unfreeze steps for kernel contexts */
6779 rxe_kernel_unfreeze(dd);
6782 * The unfreeze procedure touches global device registers when
6783 * it disables and re-enables RXE. Mark the device unfrozen
6784 * after all that is done so other parts of the driver waiting
6785 * for the device to unfreeze don't do things out of order.
6787 * The above implies that the meaning of HFI1_FROZEN flag is
6788 * "Device has gone into freeze mode and freeze mode handling
6789 * is still in progress."
6791 * The flag will be removed when freeze mode processing has
6794 dd->flags &= ~HFI1_FROZEN;
6795 wake_up(&dd->event_queue);
6797 /* no longer frozen */
6801 * Handle a link up interrupt from the 8051.
6803 * This is a work-queue function outside of the interrupt.
6805 void handle_link_up(struct work_struct *work)
6807 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6809 set_link_state(ppd, HLS_UP_INIT);
6811 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6812 read_ltp_rtt(ppd->dd);
6814 * OPA specifies that certain counters are cleared on a transition
6815 * to link up, so do that.
6817 clear_linkup_counters(ppd->dd);
6819 * And (re)set link up default values.
6821 set_linkup_defaults(ppd);
6823 /* enforce link speed enabled */
6824 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6825 /* oops - current speed is not enabled, bounce */
6827 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6828 ppd->link_speed_active, ppd->link_speed_enabled);
6829 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6830 OPA_LINKDOWN_REASON_SPEED_POLICY);
6831 set_link_state(ppd, HLS_DN_OFFLINE);
6837 * Several pieces of LNI information were cached for SMA in ppd.
6838 * Reset these on link down
6840 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6842 ppd->neighbor_guid = 0;
6843 ppd->neighbor_port_number = 0;
6844 ppd->neighbor_type = 0;
6845 ppd->neighbor_fm_security = 0;
6848 static const char * const link_down_reason_strs[] = {
6849 [OPA_LINKDOWN_REASON_NONE] = "None",
6850 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6851 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6852 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6853 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6854 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6855 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6856 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6857 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6858 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6859 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6860 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6861 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6862 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6863 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6864 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6865 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6866 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6867 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6868 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6869 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6870 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6871 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6872 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6873 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6874 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6875 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6876 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6877 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6878 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6879 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6880 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6881 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6882 "Excessive buffer overrun",
6883 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6884 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6885 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6886 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6887 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6888 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6889 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6890 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6891 "Local media not installed",
6892 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6893 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6894 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6895 "End to end not installed",
6896 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6897 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6898 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6899 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6900 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6901 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6904 /* return the neighbor link down reason string */
6905 static const char *link_down_reason_str(u8 reason)
6907 const char *str = NULL;
6909 if (reason < ARRAY_SIZE(link_down_reason_strs))
6910 str = link_down_reason_strs[reason];
6918 * Handle a link down interrupt from the 8051.
6920 * This is a work-queue function outside of the interrupt.
6922 void handle_link_down(struct work_struct *work)
6924 u8 lcl_reason, neigh_reason = 0;
6925 u8 link_down_reason;
6926 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6929 static const char ldr_str[] = "Link down reason: ";
6931 if ((ppd->host_link_state &
6932 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6933 ppd->port_type == PORT_TYPE_FIXED)
6934 ppd->offline_disabled_reason =
6935 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6937 /* Go offline first, then deal with reading/writing through 8051 */
6938 was_up = !!(ppd->host_link_state & HLS_UP);
6939 set_link_state(ppd, HLS_DN_OFFLINE);
6943 /* link down reason is only valid if the link was up */
6944 read_link_down_reason(ppd->dd, &link_down_reason);
6945 switch (link_down_reason) {
6946 case LDR_LINK_TRANSFER_ACTIVE_LOW:
6947 /* the link went down, no idle message reason */
6948 dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6951 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6953 * The neighbor reason is only valid if an idle message
6954 * was received for it.
6956 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6957 dd_dev_info(ppd->dd,
6958 "%sNeighbor link down message %d, %s\n",
6959 ldr_str, neigh_reason,
6960 link_down_reason_str(neigh_reason));
6962 case LDR_RECEIVED_HOST_OFFLINE_REQ:
6963 dd_dev_info(ppd->dd,
6964 "%sHost requested link to go offline\n",
6968 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
6969 ldr_str, link_down_reason);
6974 * If no reason, assume peer-initiated but missed
6975 * LinkGoingDown idle flits.
6977 if (neigh_reason == 0)
6978 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6980 /* went down while polling or going up */
6981 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
6984 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6986 /* inform the SMA when the link transitions from up to down */
6987 if (was_up && ppd->local_link_down_reason.sma == 0 &&
6988 ppd->neigh_link_down_reason.sma == 0) {
6989 ppd->local_link_down_reason.sma =
6990 ppd->local_link_down_reason.latest;
6991 ppd->neigh_link_down_reason.sma =
6992 ppd->neigh_link_down_reason.latest;
6995 reset_neighbor_info(ppd);
6997 /* disable the port */
6998 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7001 * If there is no cable attached, turn the DC off. Otherwise,
7002 * start the link bring up.
7004 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7005 dc_shutdown(ppd->dd);
7010 void handle_link_bounce(struct work_struct *work)
7012 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7016 * Only do something if the link is currently up.
7018 if (ppd->host_link_state & HLS_UP) {
7019 set_link_state(ppd, HLS_DN_OFFLINE);
7022 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7023 __func__, link_state_name(ppd->host_link_state));
7028 * Mask conversion: Capability exchange to Port LTP. The capability
7029 * exchange has an implicit 16b CRC that is mandatory.
7031 static int cap_to_port_ltp(int cap)
7033 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7035 if (cap & CAP_CRC_14B)
7036 port_ltp |= PORT_LTP_CRC_MODE_14;
7037 if (cap & CAP_CRC_48B)
7038 port_ltp |= PORT_LTP_CRC_MODE_48;
7039 if (cap & CAP_CRC_12B_16B_PER_LANE)
7040 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7046 * Convert an OPA Port LTP mask to capability mask
7048 int port_ltp_to_cap(int port_ltp)
7052 if (port_ltp & PORT_LTP_CRC_MODE_14)
7053 cap_mask |= CAP_CRC_14B;
7054 if (port_ltp & PORT_LTP_CRC_MODE_48)
7055 cap_mask |= CAP_CRC_48B;
7056 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7057 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7063 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7065 static int lcb_to_port_ltp(int lcb_crc)
7069 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7070 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7071 else if (lcb_crc == LCB_CRC_48B)
7072 port_ltp = PORT_LTP_CRC_MODE_48;
7073 else if (lcb_crc == LCB_CRC_14B)
7074 port_ltp = PORT_LTP_CRC_MODE_14;
7076 port_ltp = PORT_LTP_CRC_MODE_16;
7082 * Our neighbor has indicated that we are allowed to act as a fabric
7083 * manager, so place the full management partition key in the second
7084 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7085 * that we should already have the limited management partition key in
7086 * array element 1, and also that the port is not yet up when
7087 * add_full_mgmt_pkey() is invoked.
7089 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7091 struct hfi1_devdata *dd = ppd->dd;
7093 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
7094 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7095 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7096 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7097 ppd->pkeys[2] = FULL_MGMT_P_KEY;
7098 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7099 hfi1_event_pkey_change(ppd->dd, ppd->port);
7102 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7104 if (ppd->pkeys[2] != 0) {
7106 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7107 hfi1_event_pkey_change(ppd->dd, ppd->port);
7112 * Convert the given link width to the OPA link width bitmask.
7114 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7119 * Simulator and quick linkup do not set the width.
7120 * Just set it to 4x without complaint.
7122 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7123 return OPA_LINK_WIDTH_4X;
7124 return 0; /* no lanes up */
7125 case 1: return OPA_LINK_WIDTH_1X;
7126 case 2: return OPA_LINK_WIDTH_2X;
7127 case 3: return OPA_LINK_WIDTH_3X;
7129 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7132 case 4: return OPA_LINK_WIDTH_4X;
7137 * Do a population count on the bottom nibble.
7139 static const u8 bit_counts[16] = {
7140 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7143 static inline u8 nibble_to_count(u8 nibble)
7145 return bit_counts[nibble & 0xf];
7149 * Read the active lane information from the 8051 registers and return
7152 * Active lane information is found in these 8051 registers:
7156 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7162 u8 tx_polarity_inversion;
7163 u8 rx_polarity_inversion;
7166 /* read the active lanes */
7167 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7168 &rx_polarity_inversion, &max_rate);
7169 read_local_lni(dd, &enable_lane_rx);
7171 /* convert to counts */
7172 tx = nibble_to_count(enable_lane_tx);
7173 rx = nibble_to_count(enable_lane_rx);
7176 * Set link_speed_active here, overriding what was set in
7177 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7178 * set the max_rate field in handle_verify_cap until v0.19.
7180 if ((dd->icode == ICODE_RTL_SILICON) &&
7181 (dd->dc8051_ver < dc8051_ver(0, 19))) {
7182 /* max_rate: 0 = 12.5G, 1 = 25G */
7185 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7189 "%s: unexpected max rate %d, using 25Gb\n",
7190 __func__, (int)max_rate);
7193 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7199 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7200 enable_lane_tx, tx, enable_lane_rx, rx);
7201 *tx_width = link_width_to_bits(dd, tx);
7202 *rx_width = link_width_to_bits(dd, rx);
7206 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7207 * Valid after the end of VerifyCap and during LinkUp. Does not change
7208 * after link up. I.e. look elsewhere for downgrade information.
7211 * + bits [7:4] contain the number of active transmitters
7212 * + bits [3:0] contain the number of active receivers
7213 * These are numbers 1 through 4 and can be different values if the
7214 * link is asymmetric.
7216 * verify_cap_local_fm_link_width[0] retains its original value.
7218 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7222 u8 misc_bits, local_flags;
7223 u16 active_tx, active_rx;
7225 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7227 rx = (widths >> 8) & 0xf;
7229 *tx_width = link_width_to_bits(dd, tx);
7230 *rx_width = link_width_to_bits(dd, rx);
7232 /* print the active widths */
7233 get_link_widths(dd, &active_tx, &active_rx);
7237 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7238 * hardware information when the link first comes up.
7240 * The link width is not available until after VerifyCap.AllFramesReceived
7241 * (the trigger for handle_verify_cap), so this is outside that routine
7242 * and should be called when the 8051 signals linkup.
7244 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7246 u16 tx_width, rx_width;
7248 /* get end-of-LNI link widths */
7249 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7251 /* use tx_width as the link is supposed to be symmetric on link up */
7252 ppd->link_width_active = tx_width;
7253 /* link width downgrade active (LWD.A) starts out matching LW.A */
7254 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7255 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7256 /* per OPA spec, on link up LWD.E resets to LWD.S */
7257 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7258 /* cache the active egress rate (units {10^6 bits/sec]) */
7259 ppd->current_egress_rate = active_egress_rate(ppd);
7263 * Handle a verify capabilities interrupt from the 8051.
7265 * This is a work-queue function outside of the interrupt.
7267 void handle_verify_cap(struct work_struct *work)
7269 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7271 struct hfi1_devdata *dd = ppd->dd;
7273 u8 power_management;
7283 u16 active_tx, active_rx;
7284 u8 partner_supported_crc;
7288 set_link_state(ppd, HLS_VERIFY_CAP);
7290 lcb_shutdown(dd, 0);
7291 adjust_lcb_for_fpga_serdes(dd);
7294 * These are now valid:
7295 * remote VerifyCap fields in the general LNI config
7296 * CSR DC8051_STS_REMOTE_GUID
7297 * CSR DC8051_STS_REMOTE_NODE_TYPE
7298 * CSR DC8051_STS_REMOTE_FM_SECURITY
7299 * CSR DC8051_STS_REMOTE_PORT_NO
7302 read_vc_remote_phy(dd, &power_management, &continious);
7303 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7304 &partner_supported_crc);
7305 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7306 read_remote_device_id(dd, &device_id, &device_rev);
7308 * And the 'MgmtAllowed' information, which is exchanged during
7309 * LNI, is also be available at this point.
7311 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7312 /* print the active widths */
7313 get_link_widths(dd, &active_tx, &active_rx);
7315 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7316 (int)power_management, (int)continious);
7318 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7319 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7320 (int)partner_supported_crc);
7321 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7322 (u32)remote_tx_rate, (u32)link_widths);
7323 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7324 (u32)device_id, (u32)device_rev);
7326 * The peer vAU value just read is the peer receiver value. HFI does
7327 * not support a transmit vAU of 0 (AU == 8). We advertised that
7328 * with Z=1 in the fabric capabilities sent to the peer. The peer
7329 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7330 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7331 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7332 * subject to the Z value exception.
7336 set_up_vl15(dd, vau, vl15buf);
7338 /* set up the LCB CRC mode */
7339 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7341 /* order is important: use the lowest bit in common */
7342 if (crc_mask & CAP_CRC_14B)
7343 crc_val = LCB_CRC_14B;
7344 else if (crc_mask & CAP_CRC_48B)
7345 crc_val = LCB_CRC_48B;
7346 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7347 crc_val = LCB_CRC_12B_16B_PER_LANE;
7349 crc_val = LCB_CRC_16B;
7351 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7352 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7353 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7355 /* set (14b only) or clear sideband credit */
7356 reg = read_csr(dd, SEND_CM_CTRL);
7357 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7358 write_csr(dd, SEND_CM_CTRL,
7359 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7361 write_csr(dd, SEND_CM_CTRL,
7362 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7365 ppd->link_speed_active = 0; /* invalid value */
7366 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7367 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7368 switch (remote_tx_rate) {
7370 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7373 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7377 /* actual rate is highest bit of the ANDed rates */
7378 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7381 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7383 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7385 if (ppd->link_speed_active == 0) {
7386 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7387 __func__, (int)remote_tx_rate);
7388 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7392 * Cache the values of the supported, enabled, and active
7393 * LTP CRC modes to return in 'portinfo' queries. But the bit
7394 * flags that are returned in the portinfo query differ from
7395 * what's in the link_crc_mask, crc_sizes, and crc_val
7396 * variables. Convert these here.
7398 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7399 /* supported crc modes */
7400 ppd->port_ltp_crc_mode |=
7401 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7402 /* enabled crc modes */
7403 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7404 /* active crc mode */
7406 /* set up the remote credit return table */
7407 assign_remote_cm_au_table(dd, vcu);
7410 * The LCB is reset on entry to handle_verify_cap(), so this must
7411 * be applied on every link up.
7413 * Adjust LCB error kill enable to kill the link if
7414 * these RBUF errors are seen:
7415 * REPLAY_BUF_MBE_SMASK
7416 * FLIT_INPUT_BUF_MBE_SMASK
7418 if (is_ax(dd)) { /* fixed in B0 */
7419 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7420 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7421 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7422 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7425 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7426 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7428 /* give 8051 access to the LCB CSRs */
7429 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7430 set_8051_lcb_access(dd);
7432 ppd->neighbor_guid =
7433 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7434 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7435 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7436 ppd->neighbor_type =
7437 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7438 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7439 ppd->neighbor_fm_security =
7440 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7441 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7443 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7444 ppd->neighbor_guid, ppd->neighbor_type,
7445 ppd->mgmt_allowed, ppd->neighbor_fm_security);
7446 if (ppd->mgmt_allowed)
7447 add_full_mgmt_pkey(ppd);
7449 /* tell the 8051 to go to LinkUp */
7450 set_link_state(ppd, HLS_GOING_UP);
7454 * Apply the link width downgrade enabled policy against the current active
7457 * Called when the enabled policy changes or the active link widths change.
7459 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7466 /* use the hls lock to avoid a race with actual link up */
7469 mutex_lock(&ppd->hls_lock);
7470 /* only apply if the link is up */
7471 if (ppd->host_link_state & HLS_DOWN) {
7472 /* still going up..wait and retry */
7473 if (ppd->host_link_state & HLS_GOING_UP) {
7474 if (++tries < 1000) {
7475 mutex_unlock(&ppd->hls_lock);
7476 usleep_range(100, 120); /* arbitrary */
7480 "%s: giving up waiting for link state change\n",
7486 lwde = ppd->link_width_downgrade_enabled;
7488 if (refresh_widths) {
7489 get_link_widths(ppd->dd, &tx, &rx);
7490 ppd->link_width_downgrade_tx_active = tx;
7491 ppd->link_width_downgrade_rx_active = rx;
7494 if (ppd->link_width_downgrade_tx_active == 0 ||
7495 ppd->link_width_downgrade_rx_active == 0) {
7496 /* the 8051 reported a dead link as a downgrade */
7497 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7498 } else if (lwde == 0) {
7499 /* downgrade is disabled */
7501 /* bounce if not at starting active width */
7502 if ((ppd->link_width_active !=
7503 ppd->link_width_downgrade_tx_active) ||
7504 (ppd->link_width_active !=
7505 ppd->link_width_downgrade_rx_active)) {
7507 "Link downgrade is disabled and link has downgraded, downing link\n");
7509 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7510 ppd->link_width_active,
7511 ppd->link_width_downgrade_tx_active,
7512 ppd->link_width_downgrade_rx_active);
7515 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7516 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7517 /* Tx or Rx is outside the enabled policy */
7519 "Link is outside of downgrade allowed, downing link\n");
7521 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7522 lwde, ppd->link_width_downgrade_tx_active,
7523 ppd->link_width_downgrade_rx_active);
7528 mutex_unlock(&ppd->hls_lock);
7531 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7532 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7533 set_link_state(ppd, HLS_DN_OFFLINE);
7539 * Handle a link downgrade interrupt from the 8051.
7541 * This is a work-queue function outside of the interrupt.
7543 void handle_link_downgrade(struct work_struct *work)
7545 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7546 link_downgrade_work);
7548 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7549 apply_link_downgrade_policy(ppd, 1);
7552 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7554 return flag_string(buf, buf_len, flags, dcc_err_flags,
7555 ARRAY_SIZE(dcc_err_flags));
7558 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7560 return flag_string(buf, buf_len, flags, lcb_err_flags,
7561 ARRAY_SIZE(lcb_err_flags));
7564 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7566 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7567 ARRAY_SIZE(dc8051_err_flags));
7570 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7572 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7573 ARRAY_SIZE(dc8051_info_err_flags));
7576 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7578 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7579 ARRAY_SIZE(dc8051_info_host_msg_flags));
7582 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7584 struct hfi1_pportdata *ppd = dd->pport;
7585 u64 info, err, host_msg;
7586 int queue_link_down = 0;
7589 /* look at the flags */
7590 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7591 /* 8051 information set by firmware */
7592 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7593 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7594 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7595 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7597 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7598 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7601 * Handle error flags.
7603 if (err & FAILED_LNI) {
7605 * LNI error indications are cleared by the 8051
7606 * only when starting polling. Only pay attention
7607 * to them when in the states that occur during
7610 if (ppd->host_link_state
7611 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7612 queue_link_down = 1;
7613 dd_dev_info(dd, "Link error: %s\n",
7614 dc8051_info_err_string(buf,
7619 err &= ~(u64)FAILED_LNI;
7621 /* unknown frames can happen durning LNI, just count */
7622 if (err & UNKNOWN_FRAME) {
7623 ppd->unknown_frame_count++;
7624 err &= ~(u64)UNKNOWN_FRAME;
7627 /* report remaining errors, but do not do anything */
7628 dd_dev_err(dd, "8051 info error: %s\n",
7629 dc8051_info_err_string(buf, sizeof(buf),
7634 * Handle host message flags.
7636 if (host_msg & HOST_REQ_DONE) {
7638 * Presently, the driver does a busy wait for
7639 * host requests to complete. This is only an
7640 * informational message.
7641 * NOTE: The 8051 clears the host message
7642 * information *on the next 8051 command*.
7643 * Therefore, when linkup is achieved,
7644 * this flag will still be set.
7646 host_msg &= ~(u64)HOST_REQ_DONE;
7648 if (host_msg & BC_SMA_MSG) {
7649 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7650 host_msg &= ~(u64)BC_SMA_MSG;
7652 if (host_msg & LINKUP_ACHIEVED) {
7653 dd_dev_info(dd, "8051: Link up\n");
7654 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7655 host_msg &= ~(u64)LINKUP_ACHIEVED;
7657 if (host_msg & EXT_DEVICE_CFG_REQ) {
7658 handle_8051_request(ppd);
7659 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7661 if (host_msg & VERIFY_CAP_FRAME) {
7662 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7663 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7665 if (host_msg & LINK_GOING_DOWN) {
7666 const char *extra = "";
7667 /* no downgrade action needed if going down */
7668 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7669 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7670 extra = " (ignoring downgrade)";
7672 dd_dev_info(dd, "8051: Link down%s\n", extra);
7673 queue_link_down = 1;
7674 host_msg &= ~(u64)LINK_GOING_DOWN;
7676 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7677 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7678 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7681 /* report remaining messages, but do not do anything */
7682 dd_dev_info(dd, "8051 info host message: %s\n",
7683 dc8051_info_host_msg_string(buf,
7688 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7690 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7692 * Lost the 8051 heartbeat. If this happens, we
7693 * receive constant interrupts about it. Disable
7694 * the interrupt after the first.
7696 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7697 write_csr(dd, DC_DC8051_ERR_EN,
7698 read_csr(dd, DC_DC8051_ERR_EN) &
7699 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7701 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7704 /* report the error, but do not do anything */
7705 dd_dev_err(dd, "8051 error: %s\n",
7706 dc8051_err_string(buf, sizeof(buf), reg));
7709 if (queue_link_down) {
7711 * if the link is already going down or disabled, do not
7714 if ((ppd->host_link_state &
7715 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7716 ppd->link_enabled == 0) {
7717 dd_dev_info(dd, "%s: not queuing link down\n",
7720 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7725 static const char * const fm_config_txt[] = {
7727 "BadHeadDist: Distance violation between two head flits",
7729 "BadTailDist: Distance violation between two tail flits",
7731 "BadCtrlDist: Distance violation between two credit control flits",
7733 "BadCrdAck: Credits return for unsupported VL",
7735 "UnsupportedVLMarker: Received VL Marker",
7737 "BadPreempt: Exceeded the preemption nesting level",
7739 "BadControlFlit: Received unsupported control flit",
7742 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7745 static const char * const port_rcv_txt[] = {
7747 "BadPktLen: Illegal PktLen",
7749 "PktLenTooLong: Packet longer than PktLen",
7751 "PktLenTooShort: Packet shorter than PktLen",
7753 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7755 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7757 "BadL2: Illegal L2 opcode",
7759 "BadSC: Unsupported SC",
7761 "BadRC: Illegal RC",
7763 "PreemptError: Preempting with same VL",
7765 "PreemptVL15: Preempting a VL15 packet",
7768 #define OPA_LDR_FMCONFIG_OFFSET 16
7769 #define OPA_LDR_PORTRCV_OFFSET 0
7770 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7772 u64 info, hdr0, hdr1;
7775 struct hfi1_pportdata *ppd = dd->pport;
7779 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7780 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7781 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7782 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7783 /* set status bit */
7784 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7786 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7789 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7790 struct hfi1_pportdata *ppd = dd->pport;
7791 /* this counter saturates at (2^32) - 1 */
7792 if (ppd->link_downed < (u32)UINT_MAX)
7794 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7797 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7798 u8 reason_valid = 1;
7800 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7801 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7802 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7803 /* set status bit */
7804 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7814 extra = fm_config_txt[info];
7817 extra = fm_config_txt[info];
7818 if (ppd->port_error_action &
7819 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7822 * lcl_reason cannot be derived from info
7826 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7831 snprintf(buf, sizeof(buf), "reserved%lld", info);
7836 if (reason_valid && !do_bounce) {
7837 do_bounce = ppd->port_error_action &
7838 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7839 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7842 /* just report this */
7843 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7844 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7847 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7848 u8 reason_valid = 1;
7850 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7851 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7852 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7853 if (!(dd->err_info_rcvport.status_and_code &
7854 OPA_EI_STATUS_SMASK)) {
7855 dd->err_info_rcvport.status_and_code =
7856 info & OPA_EI_CODE_SMASK;
7857 /* set status bit */
7858 dd->err_info_rcvport.status_and_code |=
7859 OPA_EI_STATUS_SMASK;
7861 * save first 2 flits in the packet that caused
7864 dd->err_info_rcvport.packet_flit1 = hdr0;
7865 dd->err_info_rcvport.packet_flit2 = hdr1;
7878 extra = port_rcv_txt[info];
7882 snprintf(buf, sizeof(buf), "reserved%lld", info);
7887 if (reason_valid && !do_bounce) {
7888 do_bounce = ppd->port_error_action &
7889 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7890 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7893 /* just report this */
7894 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7895 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
7898 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7901 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7902 /* informative only */
7903 dd_dev_info(dd, "8051 access to LCB blocked\n");
7904 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7906 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7907 /* informative only */
7908 dd_dev_info(dd, "host access to LCB blocked\n");
7909 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7912 /* report any remaining errors */
7914 dd_dev_info(dd, "DCC Error: %s\n",
7915 dcc_err_string(buf, sizeof(buf), reg));
7917 if (lcl_reason == 0)
7918 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7921 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7922 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7923 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7927 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7931 dd_dev_info(dd, "LCB Error: %s\n",
7932 lcb_err_string(buf, sizeof(buf), reg));
7936 * CCE block DC interrupt. Source is < 8.
7938 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7940 const struct err_reg_info *eri = &dc_errs[source];
7943 interrupt_clear_down(dd, 0, eri);
7944 } else if (source == 3 /* dc_lbm_int */) {
7946 * This indicates that a parity error has occurred on the
7947 * address/control lines presented to the LBM. The error
7948 * is a single pulse, there is no associated error flag,
7949 * and it is non-maskable. This is because if a parity
7950 * error occurs on the request the request is dropped.
7951 * This should never occur, but it is nice to know if it
7954 dd_dev_err(dd, "Parity error in DC LBM block\n");
7956 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7961 * TX block send credit interrupt. Source is < 160.
7963 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7965 sc_group_release_update(dd, source);
7969 * TX block SDMA interrupt. Source is < 48.
7971 * SDMA interrupts are grouped by type:
7974 * N - 2N-1 = SDmaProgress
7975 * 2N - 3N-1 = SDmaIdle
7977 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7979 /* what interrupt */
7980 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7982 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7984 #ifdef CONFIG_SDMA_VERBOSITY
7985 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7986 slashstrip(__FILE__), __LINE__, __func__);
7987 sdma_dumpstate(&dd->per_sdma[which]);
7990 if (likely(what < 3 && which < dd->num_sdma)) {
7991 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7993 /* should not happen */
7994 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7999 * RX block receive available interrupt. Source is < 160.
8001 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8003 struct hfi1_ctxtdata *rcd;
8006 if (likely(source < dd->num_rcv_contexts)) {
8007 rcd = dd->rcd[source];
8009 if (source < dd->first_user_ctxt)
8010 rcd->do_interrupt(rcd, 0);
8012 handle_user_interrupt(rcd);
8015 /* received an interrupt, but no rcd */
8016 err_detail = "dataless";
8018 /* received an interrupt, but are not using that context */
8019 err_detail = "out of range";
8021 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8022 err_detail, source);
8026 * RX block receive urgent interrupt. Source is < 160.
8028 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8030 struct hfi1_ctxtdata *rcd;
8033 if (likely(source < dd->num_rcv_contexts)) {
8034 rcd = dd->rcd[source];
8036 /* only pay attention to user urgent interrupts */
8037 if (source >= dd->first_user_ctxt)
8038 handle_user_interrupt(rcd);
8041 /* received an interrupt, but no rcd */
8042 err_detail = "dataless";
8044 /* received an interrupt, but are not using that context */
8045 err_detail = "out of range";
8047 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8048 err_detail, source);
8052 * Reserved range interrupt. Should not be called in normal operation.
8054 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8058 dd_dev_err(dd, "unexpected %s interrupt\n",
8059 is_reserved_name(name, sizeof(name), source));
8062 static const struct is_table is_table[] = {
8065 * name func interrupt func
8067 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
8068 is_misc_err_name, is_misc_err_int },
8069 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
8070 is_sdma_eng_err_name, is_sdma_eng_err_int },
8071 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8072 is_sendctxt_err_name, is_sendctxt_err_int },
8073 { IS_SDMA_START, IS_SDMA_END,
8074 is_sdma_eng_name, is_sdma_eng_int },
8075 { IS_VARIOUS_START, IS_VARIOUS_END,
8076 is_various_name, is_various_int },
8077 { IS_DC_START, IS_DC_END,
8078 is_dc_name, is_dc_int },
8079 { IS_RCVAVAIL_START, IS_RCVAVAIL_END,
8080 is_rcv_avail_name, is_rcv_avail_int },
8081 { IS_RCVURGENT_START, IS_RCVURGENT_END,
8082 is_rcv_urgent_name, is_rcv_urgent_int },
8083 { IS_SENDCREDIT_START, IS_SENDCREDIT_END,
8084 is_send_credit_name, is_send_credit_int},
8085 { IS_RESERVED_START, IS_RESERVED_END,
8086 is_reserved_name, is_reserved_int},
8090 * Interrupt source interrupt - called when the given source has an interrupt.
8091 * Source is a bit index into an array of 64-bit integers.
8093 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8095 const struct is_table *entry;
8097 /* avoids a double compare by walking the table in-order */
8098 for (entry = &is_table[0]; entry->is_name; entry++) {
8099 if (source < entry->end) {
8100 trace_hfi1_interrupt(dd, entry, source);
8101 entry->is_int(dd, source - entry->start);
8105 /* fell off the end */
8106 dd_dev_err(dd, "invalid interrupt source %u\n", source);
8110 * General interrupt handler. This is able to correctly handle
8111 * all interrupts in case INTx is used.
8113 static irqreturn_t general_interrupt(int irq, void *data)
8115 struct hfi1_devdata *dd = data;
8116 u64 regs[CCE_NUM_INT_CSRS];
8120 this_cpu_inc(*dd->int_counter);
8122 /* phase 1: scan and clear all handled interrupts */
8123 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8124 if (dd->gi_mask[i] == 0) {
8125 regs[i] = 0; /* used later */
8128 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8130 /* only clear if anything is set */
8132 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8135 /* phase 2: call the appropriate handler */
8136 for_each_set_bit(bit, (unsigned long *)®s[0],
8137 CCE_NUM_INT_CSRS * 64) {
8138 is_interrupt(dd, bit);
8144 static irqreturn_t sdma_interrupt(int irq, void *data)
8146 struct sdma_engine *sde = data;
8147 struct hfi1_devdata *dd = sde->dd;
8150 #ifdef CONFIG_SDMA_VERBOSITY
8151 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8152 slashstrip(__FILE__), __LINE__, __func__);
8153 sdma_dumpstate(sde);
8156 this_cpu_inc(*dd->int_counter);
8158 /* This read_csr is really bad in the hot path */
8159 status = read_csr(dd,
8160 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8162 if (likely(status)) {
8163 /* clear the interrupt(s) */
8165 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8168 /* handle the interrupt(s) */
8169 sdma_engine_interrupt(sde, status);
8171 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8178 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8179 * to insure that the write completed. This does NOT guarantee that
8180 * queued DMA writes to memory from the chip are pushed.
8182 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8184 struct hfi1_devdata *dd = rcd->dd;
8185 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8187 mmiowb(); /* make sure everything before is written */
8188 write_csr(dd, addr, rcd->imask);
8189 /* force the above write on the chip and get a value back */
8190 (void)read_csr(dd, addr);
8193 /* force the receive interrupt */
8194 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8196 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8200 * Return non-zero if a packet is present.
8202 * This routine is called when rechecking for packets after the RcvAvail
8203 * interrupt has been cleared down. First, do a quick check of memory for
8204 * a packet present. If not found, use an expensive CSR read of the context
8205 * tail to determine the actual tail. The CSR read is necessary because there
8206 * is no method to push pending DMAs to memory other than an interrupt and we
8207 * are trying to determine if we need to force an interrupt.
8209 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8214 if (!rcd->rcvhdrtail_kvaddr)
8215 present = (rcd->seq_cnt ==
8216 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8217 else /* is RDMA rtail */
8218 present = (rcd->head != get_rcvhdrtail(rcd));
8223 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8224 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8225 return rcd->head != tail;
8229 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8230 * This routine will try to handle packets immediately (latency), but if
8231 * it finds too many, it will invoke the thread handler (bandwitdh). The
8232 * chip receive interrupt is *not* cleared down until this or the thread (if
8233 * invoked) is finished. The intent is to avoid extra interrupts while we
8234 * are processing packets anyway.
8236 static irqreturn_t receive_context_interrupt(int irq, void *data)
8238 struct hfi1_ctxtdata *rcd = data;
8239 struct hfi1_devdata *dd = rcd->dd;
8243 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8244 this_cpu_inc(*dd->int_counter);
8245 aspm_ctx_disable(rcd);
8247 /* receive interrupt remains blocked while processing packets */
8248 disposition = rcd->do_interrupt(rcd, 0);
8251 * Too many packets were seen while processing packets in this
8252 * IRQ handler. Invoke the handler thread. The receive interrupt
8255 if (disposition == RCV_PKT_LIMIT)
8256 return IRQ_WAKE_THREAD;
8259 * The packet processor detected no more packets. Clear the receive
8260 * interrupt and recheck for a packet packet that may have arrived
8261 * after the previous check and interrupt clear. If a packet arrived,
8262 * force another interrupt.
8264 clear_recv_intr(rcd);
8265 present = check_packet_present(rcd);
8267 force_recv_intr(rcd);
8273 * Receive packet thread handler. This expects to be invoked with the
8274 * receive interrupt still blocked.
8276 static irqreturn_t receive_context_thread(int irq, void *data)
8278 struct hfi1_ctxtdata *rcd = data;
8281 /* receive interrupt is still blocked from the IRQ handler */
8282 (void)rcd->do_interrupt(rcd, 1);
8285 * The packet processor will only return if it detected no more
8286 * packets. Hold IRQs here so we can safely clear the interrupt and
8287 * recheck for a packet that may have arrived after the previous
8288 * check and the interrupt clear. If a packet arrived, force another
8291 local_irq_disable();
8292 clear_recv_intr(rcd);
8293 present = check_packet_present(rcd);
8295 force_recv_intr(rcd);
8301 /* ========================================================================= */
8303 u32 read_physical_state(struct hfi1_devdata *dd)
8307 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8308 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8309 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8312 u32 read_logical_state(struct hfi1_devdata *dd)
8316 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8317 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8318 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8321 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8325 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8326 /* clear current state, set new state */
8327 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8328 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8329 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8333 * Use the 8051 to read a LCB CSR.
8335 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8340 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8341 if (acquire_lcb_access(dd, 0) == 0) {
8342 *data = read_csr(dd, addr);
8343 release_lcb_access(dd, 0);
8349 /* register is an index of LCB registers: (offset - base) / 8 */
8350 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8351 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8352 if (ret != HCMD_SUCCESS)
8358 * Read an LCB CSR. Access may not be in host control, so check.
8359 * Return 0 on success, -EBUSY on failure.
8361 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8363 struct hfi1_pportdata *ppd = dd->pport;
8365 /* if up, go through the 8051 for the value */
8366 if (ppd->host_link_state & HLS_UP)
8367 return read_lcb_via_8051(dd, addr, data);
8368 /* if going up or down, no access */
8369 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8371 /* otherwise, host has access */
8372 *data = read_csr(dd, addr);
8377 * Use the 8051 to write a LCB CSR.
8379 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8384 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8385 (dd->dc8051_ver < dc8051_ver(0, 20))) {
8386 if (acquire_lcb_access(dd, 0) == 0) {
8387 write_csr(dd, addr, data);
8388 release_lcb_access(dd, 0);
8394 /* register is an index of LCB registers: (offset - base) / 8 */
8395 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8396 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8397 if (ret != HCMD_SUCCESS)
8403 * Write an LCB CSR. Access may not be in host control, so check.
8404 * Return 0 on success, -EBUSY on failure.
8406 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8408 struct hfi1_pportdata *ppd = dd->pport;
8410 /* if up, go through the 8051 for the value */
8411 if (ppd->host_link_state & HLS_UP)
8412 return write_lcb_via_8051(dd, addr, data);
8413 /* if going up or down, no access */
8414 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8416 /* otherwise, host has access */
8417 write_csr(dd, addr, data);
8423 * < 0 = Linux error, not able to get access
8424 * > 0 = 8051 command RETURN_CODE
8426 static int do_8051_command(
8427 struct hfi1_devdata *dd,
8434 unsigned long timeout;
8436 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8438 mutex_lock(&dd->dc8051_lock);
8440 /* We can't send any commands to the 8051 if it's in reset */
8441 if (dd->dc_shutdown) {
8442 return_code = -ENODEV;
8447 * If an 8051 host command timed out previously, then the 8051 is
8450 * On first timeout, attempt to reset and restart the entire DC
8451 * block (including 8051). (Is this too big of a hammer?)
8453 * If the 8051 times out a second time, the reset did not bring it
8454 * back to healthy life. In that case, fail any subsequent commands.
8456 if (dd->dc8051_timed_out) {
8457 if (dd->dc8051_timed_out > 1) {
8459 "Previous 8051 host command timed out, skipping command %u\n",
8461 return_code = -ENXIO;
8469 * If there is no timeout, then the 8051 command interface is
8470 * waiting for a command.
8474 * When writing a LCB CSR, out_data contains the full value to
8475 * to be written, while in_data contains the relative LCB
8476 * address in 7:0. Do the work here, rather than the caller,
8477 * of distrubting the write data to where it needs to go:
8480 * 39:00 -> in_data[47:8]
8481 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8482 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8484 if (type == HCMD_WRITE_LCB_CSR) {
8485 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8486 reg = ((((*out_data) >> 40) & 0xff) <<
8487 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8488 | ((((*out_data) >> 48) & 0xffff) <<
8489 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8490 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8494 * Do two writes: the first to stabilize the type and req_data, the
8495 * second to activate.
8497 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8498 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8499 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8500 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8501 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8502 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8503 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8505 /* wait for completion, alternate: interrupt */
8506 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8508 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8509 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8512 if (time_after(jiffies, timeout)) {
8513 dd->dc8051_timed_out++;
8514 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8517 return_code = -ETIMEDOUT;
8524 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8525 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8526 if (type == HCMD_READ_LCB_CSR) {
8527 /* top 16 bits are in a different register */
8528 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8529 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8531 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8534 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8535 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8536 dd->dc8051_timed_out = 0;
8538 * Clear command for next user.
8540 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8543 mutex_unlock(&dd->dc8051_lock);
8547 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8549 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8552 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8553 u8 lane_id, u32 config_data)
8558 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8559 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8560 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8561 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8562 if (ret != HCMD_SUCCESS) {
8564 "load 8051 config: field id %d, lane %d, err %d\n",
8565 (int)field_id, (int)lane_id, ret);
8571 * Read the 8051 firmware "registers". Use the RAM directly. Always
8572 * set the result, even on error.
8573 * Return 0 on success, -errno on failure
8575 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8582 /* address start depends on the lane_id */
8584 addr = (4 * NUM_GENERAL_FIELDS)
8585 + (lane_id * 4 * NUM_LANE_FIELDS);
8588 addr += field_id * 4;
8590 /* read is in 8-byte chunks, hardware will truncate the address down */
8591 ret = read_8051_data(dd, addr, 8, &big_data);
8594 /* extract the 4 bytes we want */
8596 *result = (u32)(big_data >> 32);
8598 *result = (u32)big_data;
8601 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8602 __func__, lane_id, field_id);
8608 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8613 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8614 | power_management << POWER_MANAGEMENT_SHIFT;
8615 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8616 GENERAL_CONFIG, frame);
8619 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8620 u16 vl15buf, u8 crc_sizes)
8624 frame = (u32)vau << VAU_SHIFT
8626 | (u32)vcu << VCU_SHIFT
8627 | (u32)vl15buf << VL15BUF_SHIFT
8628 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8629 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8630 GENERAL_CONFIG, frame);
8633 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8634 u8 *flag_bits, u16 *link_widths)
8638 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8640 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8641 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8642 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8645 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8652 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8653 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8654 | (u32)link_widths << LINK_WIDTH_SHIFT;
8655 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8659 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8664 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8665 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8666 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8669 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8674 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8675 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8676 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8677 & REMOTE_DEVICE_REV_MASK;
8680 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8684 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8685 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8686 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8689 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8694 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8695 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8696 & POWER_MANAGEMENT_MASK;
8697 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8698 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8701 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8702 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8706 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8707 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8708 *z = (frame >> Z_SHIFT) & Z_MASK;
8709 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8710 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8711 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8714 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8720 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8722 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8723 & REMOTE_TX_RATE_MASK;
8724 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8727 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8731 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8732 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8735 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8739 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8740 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8743 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8745 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8748 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8750 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8753 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8759 if (dd->pport->host_link_state & HLS_UP) {
8760 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8763 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8764 & LINK_QUALITY_MASK;
8768 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8772 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8773 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8776 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8780 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8781 *ldr = (frame & 0xff);
8784 static int read_tx_settings(struct hfi1_devdata *dd,
8786 u8 *tx_polarity_inversion,
8787 u8 *rx_polarity_inversion,
8793 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8794 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8795 & ENABLE_LANE_TX_MASK;
8796 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8797 & TX_POLARITY_INVERSION_MASK;
8798 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8799 & RX_POLARITY_INVERSION_MASK;
8800 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8804 static int write_tx_settings(struct hfi1_devdata *dd,
8806 u8 tx_polarity_inversion,
8807 u8 rx_polarity_inversion,
8812 /* no need to mask, all variable sizes match field widths */
8813 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8814 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8815 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8816 | max_rate << MAX_RATE_SHIFT;
8817 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8821 * Read an idle LCB message.
8823 * Returns 0 on success, -EINVAL on error
8825 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8829 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8830 if (ret != HCMD_SUCCESS) {
8831 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8835 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8836 /* return only the payload as we already know the type */
8837 *data_out >>= IDLE_PAYLOAD_SHIFT;
8842 * Read an idle SMA message. To be done in response to a notification from
8845 * Returns 0 on success, -EINVAL on error
8847 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8849 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8854 * Send an idle LCB message.
8856 * Returns 0 on success, -EINVAL on error
8858 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8862 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8863 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8864 if (ret != HCMD_SUCCESS) {
8865 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8873 * Send an idle SMA message.
8875 * Returns 0 on success, -EINVAL on error
8877 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8881 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8882 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8883 return send_idle_message(dd, data);
8887 * Initialize the LCB then do a quick link up. This may or may not be
8890 * return 0 on success, -errno on error
8892 static int do_quick_linkup(struct hfi1_devdata *dd)
8895 unsigned long timeout;
8898 lcb_shutdown(dd, 0);
8901 /* LCB_CFG_LOOPBACK.VAL = 2 */
8902 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8903 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8904 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8905 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8908 /* start the LCBs */
8909 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8910 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8912 /* simulator only loopback steps */
8913 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8914 /* LCB_CFG_RUN.EN = 1 */
8915 write_csr(dd, DC_LCB_CFG_RUN,
8916 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8918 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8919 timeout = jiffies + msecs_to_jiffies(10);
8921 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8924 if (time_after(jiffies, timeout)) {
8926 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8932 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8933 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8938 * When doing quick linkup and not in loopback, both
8939 * sides must be done with LCB set-up before either
8940 * starts the quick linkup. Put a delay here so that
8941 * both sides can be started and have a chance to be
8942 * done with LCB set up before resuming.
8945 "Pausing for peer to be finished with LCB set up\n");
8947 dd_dev_err(dd, "Continuing with quick linkup\n");
8950 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8951 set_8051_lcb_access(dd);
8954 * State "quick" LinkUp request sets the physical link state to
8955 * LinkUp without a verify capability sequence.
8956 * This state is in simulator v37 and later.
8958 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8959 if (ret != HCMD_SUCCESS) {
8961 "%s: set physical link state to quick LinkUp failed with return %d\n",
8964 set_host_lcb_access(dd);
8965 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8972 return 0; /* success */
8976 * Set the SerDes to internal loopback mode.
8977 * Returns 0 on success, -errno on error.
8979 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8983 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8984 if (ret == HCMD_SUCCESS)
8987 "Set physical link state to SerDes Loopback failed with return %d\n",
8995 * Do all special steps to set up loopback.
8997 static int init_loopback(struct hfi1_devdata *dd)
8999 dd_dev_info(dd, "Entering loopback mode\n");
9001 /* all loopbacks should disable self GUID check */
9002 write_csr(dd, DC_DC8051_CFG_MODE,
9003 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9006 * The simulator has only one loopback option - LCB. Switch
9007 * to that option, which includes quick link up.
9009 * Accept all valid loopback values.
9011 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9012 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9013 loopback == LOOPBACK_CABLE)) {
9014 loopback = LOOPBACK_LCB;
9019 /* handle serdes loopback */
9020 if (loopback == LOOPBACK_SERDES) {
9021 /* internal serdes loopack needs quick linkup on RTL */
9022 if (dd->icode == ICODE_RTL_SILICON)
9024 return set_serdes_loopback_mode(dd);
9027 /* LCB loopback - handled at poll time */
9028 if (loopback == LOOPBACK_LCB) {
9029 quick_linkup = 1; /* LCB is always quick linkup */
9031 /* not supported in emulation due to emulation RTL changes */
9032 if (dd->icode == ICODE_FPGA_EMULATION) {
9034 "LCB loopback not supported in emulation\n");
9040 /* external cable loopback requires no extra steps */
9041 if (loopback == LOOPBACK_CABLE)
9044 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9049 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9050 * used in the Verify Capability link width attribute.
9052 static u16 opa_to_vc_link_widths(u16 opa_widths)
9057 static const struct link_bits {
9060 } opa_link_xlate[] = {
9061 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
9062 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
9063 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
9064 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
9067 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9068 if (opa_widths & opa_link_xlate[i].from)
9069 result |= opa_link_xlate[i].to;
9075 * Set link attributes before moving to polling.
9077 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9079 struct hfi1_devdata *dd = ppd->dd;
9081 u8 tx_polarity_inversion;
9082 u8 rx_polarity_inversion;
9085 /* reset our fabric serdes to clear any lingering problems */
9086 fabric_serdes_reset(dd);
9088 /* set the local tx rate - need to read-modify-write */
9089 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9090 &rx_polarity_inversion, &ppd->local_tx_rate);
9092 goto set_local_link_attributes_fail;
9094 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
9095 /* set the tx rate to the fastest enabled */
9096 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9097 ppd->local_tx_rate = 1;
9099 ppd->local_tx_rate = 0;
9101 /* set the tx rate to all enabled */
9102 ppd->local_tx_rate = 0;
9103 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9104 ppd->local_tx_rate |= 2;
9105 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9106 ppd->local_tx_rate |= 1;
9109 enable_lane_tx = 0xF; /* enable all four lanes */
9110 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9111 rx_polarity_inversion, ppd->local_tx_rate);
9112 if (ret != HCMD_SUCCESS)
9113 goto set_local_link_attributes_fail;
9116 * DC supports continuous updates.
9118 ret = write_vc_local_phy(dd,
9119 0 /* no power management */,
9120 1 /* continuous updates */);
9121 if (ret != HCMD_SUCCESS)
9122 goto set_local_link_attributes_fail;
9124 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9125 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9126 ppd->port_crc_mode_enabled);
9127 if (ret != HCMD_SUCCESS)
9128 goto set_local_link_attributes_fail;
9130 ret = write_vc_local_link_width(dd, 0, 0,
9131 opa_to_vc_link_widths(
9132 ppd->link_width_enabled));
9133 if (ret != HCMD_SUCCESS)
9134 goto set_local_link_attributes_fail;
9136 /* let peer know who we are */
9137 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9138 if (ret == HCMD_SUCCESS)
9141 set_local_link_attributes_fail:
9143 "Failed to set local link attributes, return 0x%x\n",
9149 * Call this to start the link.
9150 * Do not do anything if the link is disabled.
9151 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9153 int start_link(struct hfi1_pportdata *ppd)
9156 * Tune the SerDes to a ballpark setting for optimal signal and bit
9157 * error rate. Needs to be done before starting the link.
9161 if (!ppd->link_enabled) {
9162 dd_dev_info(ppd->dd,
9163 "%s: stopping link start because link is disabled\n",
9167 if (!ppd->driver_link_ready) {
9168 dd_dev_info(ppd->dd,
9169 "%s: stopping link start because driver is not ready\n",
9175 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9176 * pkey table can be configured properly if the HFI unit is connected
9177 * to switch port with MgmtAllowed=NO
9179 clear_full_mgmt_pkey(ppd);
9181 return set_link_state(ppd, HLS_DN_POLL);
9184 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9186 struct hfi1_devdata *dd = ppd->dd;
9188 unsigned long timeout;
9191 * Some QSFP cables have a quirk that asserts the IntN line as a side
9192 * effect of power up on plug-in. We ignore this false positive
9193 * interrupt until the module has finished powering up by waiting for
9194 * a minimum timeout of the module inrush initialization time of
9195 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9196 * module have stabilized.
9201 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9203 timeout = jiffies + msecs_to_jiffies(2000);
9205 mask = read_csr(dd, dd->hfi1_id ?
9206 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9207 if (!(mask & QSFP_HFI0_INT_N))
9209 if (time_after(jiffies, timeout)) {
9210 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9218 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9220 struct hfi1_devdata *dd = ppd->dd;
9223 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9226 * Clear the status register to avoid an immediate interrupt
9227 * when we re-enable the IntN pin
9229 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9231 mask |= (u64)QSFP_HFI0_INT_N;
9233 mask &= ~(u64)QSFP_HFI0_INT_N;
9235 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9238 void reset_qsfp(struct hfi1_pportdata *ppd)
9240 struct hfi1_devdata *dd = ppd->dd;
9241 u64 mask, qsfp_mask;
9243 /* Disable INT_N from triggering QSFP interrupts */
9244 set_qsfp_int_n(ppd, 0);
9246 /* Reset the QSFP */
9247 mask = (u64)QSFP_HFI0_RESET_N;
9249 qsfp_mask = read_csr(dd,
9250 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9253 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9259 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9261 wait_for_qsfp_init(ppd);
9264 * Allow INT_N to trigger the QSFP interrupt to watch
9265 * for alarms and warnings
9267 set_qsfp_int_n(ppd, 1);
9270 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9271 u8 *qsfp_interrupt_status)
9273 struct hfi1_devdata *dd = ppd->dd;
9275 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9276 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9277 dd_dev_info(dd, "%s: QSFP cable on fire\n",
9280 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9281 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9282 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9286 * The remaining alarms/warnings don't matter if the link is down.
9288 if (ppd->host_link_state & HLS_DOWN)
9291 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9292 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9293 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9296 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9297 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9298 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9301 /* Byte 2 is vendor specific */
9303 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9304 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9305 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9308 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9309 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9310 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9313 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9314 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9315 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9318 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9319 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9320 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9323 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9324 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9325 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9328 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9329 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9330 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9333 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9334 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9335 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9338 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9339 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9340 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9343 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9344 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9345 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9348 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9349 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9350 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9353 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9354 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9355 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9358 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9359 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9360 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9363 /* Bytes 9-10 and 11-12 are reserved */
9364 /* Bytes 13-15 are vendor specific */
9369 /* This routine will only be scheduled if the QSFP module present is asserted */
9370 void qsfp_event(struct work_struct *work)
9372 struct qsfp_data *qd;
9373 struct hfi1_pportdata *ppd;
9374 struct hfi1_devdata *dd;
9376 qd = container_of(work, struct qsfp_data, qsfp_work);
9381 if (!qsfp_mod_present(ppd))
9385 * Turn DC back on after cable has been re-inserted. Up until
9386 * now, the DC has been in reset to save power.
9390 if (qd->cache_refresh_required) {
9391 set_qsfp_int_n(ppd, 0);
9393 wait_for_qsfp_init(ppd);
9396 * Allow INT_N to trigger the QSFP interrupt to watch
9397 * for alarms and warnings
9399 set_qsfp_int_n(ppd, 1);
9404 if (qd->check_interrupt_flags) {
9405 u8 qsfp_interrupt_status[16] = {0,};
9407 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9408 &qsfp_interrupt_status[0], 16) != 16) {
9410 "%s: Failed to read status of QSFP module\n",
9413 unsigned long flags;
9415 handle_qsfp_error_conditions(
9416 ppd, qsfp_interrupt_status);
9417 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9418 ppd->qsfp_info.check_interrupt_flags = 0;
9419 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9425 static void init_qsfp_int(struct hfi1_devdata *dd)
9427 struct hfi1_pportdata *ppd = dd->pport;
9428 u64 qsfp_mask, cce_int_mask;
9429 const int qsfp1_int_smask = QSFP1_INT % 64;
9430 const int qsfp2_int_smask = QSFP2_INT % 64;
9433 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9434 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9435 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9436 * the index of the appropriate CSR in the CCEIntMask CSR array
9438 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9439 (8 * (QSFP1_INT / 64)));
9441 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9442 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9445 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9446 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9450 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9451 /* Clear current status to avoid spurious interrupts */
9452 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9454 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9457 set_qsfp_int_n(ppd, 0);
9459 /* Handle active low nature of INT_N and MODPRST_N pins */
9460 if (qsfp_mod_present(ppd))
9461 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9463 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9468 * Do a one-time initialize of the LCB block.
9470 static void init_lcb(struct hfi1_devdata *dd)
9472 /* simulator does not correctly handle LCB cclk loopback, skip */
9473 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9476 /* the DC has been reset earlier in the driver load */
9478 /* set LCB for cclk loopback on the port */
9479 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9480 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9481 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9482 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9483 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9484 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9485 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9489 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9492 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9498 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9501 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9504 /* read byte 2, the status byte */
9505 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9511 return 0; /* success */
9515 * Values for QSFP retry.
9517 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9518 * arrived at from experience on a large cluster.
9520 #define MAX_QSFP_RETRIES 20
9521 #define QSFP_RETRY_WAIT 500 /* msec */
9524 * Try a QSFP read. If it fails, schedule a retry for later.
9525 * Called on first link activation after driver load.
9527 static void try_start_link(struct hfi1_pportdata *ppd)
9529 if (test_qsfp_read(ppd)) {
9531 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9532 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9535 dd_dev_info(ppd->dd,
9536 "QSFP not responding, waiting and retrying %d\n",
9537 (int)ppd->qsfp_retry_count);
9538 ppd->qsfp_retry_count++;
9539 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9540 msecs_to_jiffies(QSFP_RETRY_WAIT));
9543 ppd->qsfp_retry_count = 0;
9549 * Workqueue function to start the link after a delay.
9551 void handle_start_link(struct work_struct *work)
9553 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9554 start_link_work.work);
9555 try_start_link(ppd);
9558 int bringup_serdes(struct hfi1_pportdata *ppd)
9560 struct hfi1_devdata *dd = ppd->dd;
9564 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9565 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9570 guid = dd->base_guid + ppd->port - 1;
9574 /* Set linkinit_reason on power up per OPA spec */
9575 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9577 /* one-time init of the LCB */
9581 ret = init_loopback(dd);
9587 if (ppd->port_type == PORT_TYPE_QSFP) {
9588 set_qsfp_int_n(ppd, 0);
9589 wait_for_qsfp_init(ppd);
9590 set_qsfp_int_n(ppd, 1);
9593 try_start_link(ppd);
9597 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9599 struct hfi1_devdata *dd = ppd->dd;
9602 * Shut down the link and keep it down. First turn off that the
9603 * driver wants to allow the link to be up (driver_link_ready).
9604 * Then make sure the link is not automatically restarted
9605 * (link_enabled). Cancel any pending restart. And finally
9608 ppd->driver_link_ready = 0;
9609 ppd->link_enabled = 0;
9611 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9612 flush_delayed_work(&ppd->start_link_work);
9613 cancel_delayed_work_sync(&ppd->start_link_work);
9615 ppd->offline_disabled_reason =
9616 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9617 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9618 OPA_LINKDOWN_REASON_SMA_DISABLED);
9619 set_link_state(ppd, HLS_DN_OFFLINE);
9621 /* disable the port */
9622 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9623 cancel_work_sync(&ppd->freeze_work);
9626 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9628 struct hfi1_pportdata *ppd;
9631 ppd = (struct hfi1_pportdata *)(dd + 1);
9632 for (i = 0; i < dd->num_pports; i++, ppd++) {
9633 ppd->ibport_data.rvp.rc_acks = NULL;
9634 ppd->ibport_data.rvp.rc_qacks = NULL;
9635 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9636 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9637 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9638 if (!ppd->ibport_data.rvp.rc_acks ||
9639 !ppd->ibport_data.rvp.rc_delayed_comp ||
9640 !ppd->ibport_data.rvp.rc_qacks)
9647 static const char * const pt_names[] = {
9653 static const char *pt_name(u32 type)
9655 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9659 * index is the index into the receive array
9661 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9662 u32 type, unsigned long pa, u16 order)
9665 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9666 (dd->kregbase + RCV_ARRAY));
9668 if (!(dd->flags & HFI1_PRESENT))
9671 if (type == PT_INVALID) {
9673 } else if (type > PT_INVALID) {
9675 "unexpected receive array type %u for index %u, not handled\n",
9680 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9681 pt_name(type), index, pa, (unsigned long)order);
9683 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9684 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9685 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9686 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9687 << RCV_ARRAY_RT_ADDR_SHIFT;
9688 writeq(reg, base + (index * 8));
9690 if (type == PT_EAGER)
9692 * Eager entries are written one-by-one so we have to push them
9693 * after we write the entry.
9700 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9702 struct hfi1_devdata *dd = rcd->dd;
9705 /* this could be optimized */
9706 for (i = rcd->eager_base; i < rcd->eager_base +
9707 rcd->egrbufs.alloced; i++)
9708 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9710 for (i = rcd->expected_base;
9711 i < rcd->expected_base + rcd->expected_count; i++)
9712 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9715 struct ib_header *hfi1_get_msgheader(
9716 struct hfi1_devdata *dd, __le32 *rhf_addr)
9718 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9720 return (struct ib_header *)
9721 (rhf_addr - dd->rhf_offset + offset);
9724 static const char * const ib_cfg_name_strings[] = {
9725 "HFI1_IB_CFG_LIDLMC",
9726 "HFI1_IB_CFG_LWID_DG_ENB",
9727 "HFI1_IB_CFG_LWID_ENB",
9729 "HFI1_IB_CFG_SPD_ENB",
9731 "HFI1_IB_CFG_RXPOL_ENB",
9732 "HFI1_IB_CFG_LREV_ENB",
9733 "HFI1_IB_CFG_LINKLATENCY",
9734 "HFI1_IB_CFG_HRTBT",
9735 "HFI1_IB_CFG_OP_VLS",
9736 "HFI1_IB_CFG_VL_HIGH_CAP",
9737 "HFI1_IB_CFG_VL_LOW_CAP",
9738 "HFI1_IB_CFG_OVERRUN_THRESH",
9739 "HFI1_IB_CFG_PHYERR_THRESH",
9740 "HFI1_IB_CFG_LINKDEFAULT",
9741 "HFI1_IB_CFG_PKEYS",
9743 "HFI1_IB_CFG_LSTATE",
9744 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9745 "HFI1_IB_CFG_PMA_TICKS",
9749 static const char *ib_cfg_name(int which)
9751 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9753 return ib_cfg_name_strings[which];
9756 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9758 struct hfi1_devdata *dd = ppd->dd;
9762 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9763 val = ppd->link_width_enabled;
9765 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9766 val = ppd->link_width_active;
9768 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9769 val = ppd->link_speed_enabled;
9771 case HFI1_IB_CFG_SPD: /* current Link speed */
9772 val = ppd->link_speed_active;
9775 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9776 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9777 case HFI1_IB_CFG_LINKLATENCY:
9780 case HFI1_IB_CFG_OP_VLS:
9781 val = ppd->actual_vls_operational;
9783 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9784 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9786 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9787 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9789 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9790 val = ppd->overrun_threshold;
9792 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9793 val = ppd->phy_error_threshold;
9795 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9796 val = dd->link_default;
9799 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9800 case HFI1_IB_CFG_PMA_TICKS:
9803 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9806 "%s: which %s: not implemented\n",
9808 ib_cfg_name(which));
9816 * The largest MAD packet size.
9818 #define MAX_MAD_PACKET 2048
9821 * Return the maximum header bytes that can go on the _wire_
9822 * for this device. This count includes the ICRC which is
9823 * not part of the packet held in memory but it is appended
9825 * This is dependent on the device's receive header entry size.
9826 * HFI allows this to be set per-receive context, but the
9827 * driver presently enforces a global value.
9829 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9832 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9833 * the Receive Header Entry Size minus the PBC (or RHF) size
9834 * plus one DW for the ICRC appended by HW.
9836 * dd->rcd[0].rcvhdrqentsize is in DW.
9837 * We use rcd[0] as all context will have the same value. Also,
9838 * the first kernel context would have been allocated by now so
9839 * we are guaranteed a valid value.
9841 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9846 * @ppd - per port data
9848 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9849 * registers compare against LRH.PktLen, so use the max bytes included
9852 * This routine changes all VL values except VL15, which it maintains at
9855 static void set_send_length(struct hfi1_pportdata *ppd)
9857 struct hfi1_devdata *dd = ppd->dd;
9858 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9859 u32 maxvlmtu = dd->vld[15].mtu;
9860 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9861 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9862 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9866 for (i = 0; i < ppd->vls_supported; i++) {
9867 if (dd->vld[i].mtu > maxvlmtu)
9868 maxvlmtu = dd->vld[i].mtu;
9870 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9871 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9872 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9874 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9875 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9876 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9878 write_csr(dd, SEND_LEN_CHECK0, len1);
9879 write_csr(dd, SEND_LEN_CHECK1, len2);
9880 /* adjust kernel credit return thresholds based on new MTUs */
9881 /* all kernel receive contexts have the same hdrqentsize */
9882 for (i = 0; i < ppd->vls_supported; i++) {
9883 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9884 sc_mtu_to_threshold(dd->vld[i].sc,
9886 dd->rcd[0]->rcvhdrqentsize));
9887 for (j = 0; j < INIT_SC_PER_VL; j++)
9888 sc_set_cr_threshold(
9889 pio_select_send_context_vl(dd, j, i),
9892 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9893 sc_mtu_to_threshold(dd->vld[15].sc,
9895 dd->rcd[0]->rcvhdrqentsize));
9896 sc_set_cr_threshold(dd->vld[15].sc, thres);
9898 /* Adjust maximum MTU for the port in DC */
9899 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9900 (ilog2(maxvlmtu >> 8) + 1);
9901 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9902 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9903 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9904 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9905 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9908 static void set_lidlmc(struct hfi1_pportdata *ppd)
9912 struct hfi1_devdata *dd = ppd->dd;
9913 u32 mask = ~((1U << ppd->lmc) - 1);
9914 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9916 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9917 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9918 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9919 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9920 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9921 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9922 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9925 * Iterate over all the send contexts and set their SLID check
9927 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9928 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9929 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9930 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9932 for (i = 0; i < dd->chip_send_contexts; i++) {
9933 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9935 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9938 /* Now we have to do the same thing for the sdma engines */
9939 sdma_update_lmc(dd, mask, ppd->lid);
9942 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9944 unsigned long timeout;
9947 timeout = jiffies + msecs_to_jiffies(msecs);
9949 curr_state = read_physical_state(dd);
9950 if (curr_state == state)
9952 if (time_after(jiffies, timeout)) {
9954 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9958 usleep_range(1950, 2050); /* sleep 2ms-ish */
9964 static const char *state_completed_string(u32 completed)
9966 static const char * const state_completed[] = {
9972 if (completed < ARRAY_SIZE(state_completed))
9973 return state_completed[completed];
9978 static const char all_lanes_dead_timeout_expired[] =
9979 "All lanes were inactive – was the interconnect media removed?";
9980 static const char tx_out_of_policy[] =
9981 "Passing lanes on local port do not meet the local link width policy";
9982 static const char no_state_complete[] =
9983 "State timeout occurred before link partner completed the state";
9984 static const char * const state_complete_reasons[] = {
9985 [0x00] = "Reason unknown",
9986 [0x01] = "Link was halted by driver, refer to LinkDownReason",
9987 [0x02] = "Link partner reported failure",
9988 [0x10] = "Unable to achieve frame sync on any lane",
9990 "Unable to find a common bit rate with the link partner",
9992 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
9994 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
9995 [0x14] = no_state_complete,
9997 "State timeout occurred before link partner identified equalization presets",
9999 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10000 [0x17] = tx_out_of_policy,
10001 [0x20] = all_lanes_dead_timeout_expired,
10003 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10004 [0x22] = no_state_complete,
10006 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10007 [0x24] = tx_out_of_policy,
10008 [0x30] = all_lanes_dead_timeout_expired,
10010 "State timeout occurred waiting for host to process received frames",
10011 [0x32] = no_state_complete,
10013 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10014 [0x34] = tx_out_of_policy,
10017 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10020 const char *str = NULL;
10022 if (code < ARRAY_SIZE(state_complete_reasons))
10023 str = state_complete_reasons[code];
10030 /* describe the given last state complete frame */
10031 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10032 const char *prefix)
10034 struct hfi1_devdata *dd = ppd->dd;
10042 * [ 0: 0] - success
10044 * [ 7: 4] - next state timeout
10045 * [15: 8] - reason code
10048 success = frame & 0x1;
10049 state = (frame >> 1) & 0x7;
10050 reason = (frame >> 8) & 0xff;
10051 lanes = (frame >> 16) & 0xffff;
10053 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10055 dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
10056 state_completed_string(state), state);
10057 dd_dev_err(dd, " state successfully completed: %s\n",
10058 success ? "yes" : "no");
10059 dd_dev_err(dd, " fail reason 0x%x: %s\n",
10060 reason, state_complete_reason_code_string(ppd, reason));
10061 dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
10065 * Read the last state complete frames and explain them. This routine
10066 * expects to be called if the link went down during link negotiation
10067 * and initialization (LNI). That is, anywhere between polling and link up.
10069 static void check_lni_states(struct hfi1_pportdata *ppd)
10071 u32 last_local_state;
10072 u32 last_remote_state;
10074 read_last_local_state(ppd->dd, &last_local_state);
10075 read_last_remote_state(ppd->dd, &last_remote_state);
10078 * Don't report anything if there is nothing to report. A value of
10079 * 0 means the link was taken down while polling and there was no
10080 * training in-process.
10082 if (last_local_state == 0 && last_remote_state == 0)
10085 decode_state_complete(ppd, last_local_state, "transmitted");
10086 decode_state_complete(ppd, last_remote_state, "received");
10090 * Helper for set_link_state(). Do not call except from that routine.
10091 * Expects ppd->hls_mutex to be held.
10093 * @rem_reason value to be sent to the neighbor
10095 * LinkDownReasons only set if transition succeeds.
10097 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10099 struct hfi1_devdata *dd = ppd->dd;
10100 u32 pstate, previous_state;
10105 previous_state = ppd->host_link_state;
10106 ppd->host_link_state = HLS_GOING_OFFLINE;
10107 pstate = read_physical_state(dd);
10108 if (pstate == PLS_OFFLINE) {
10109 do_transition = 0; /* in right state */
10110 do_wait = 0; /* ...no need to wait */
10111 } else if ((pstate & 0xff) == PLS_OFFLINE) {
10112 do_transition = 0; /* in an offline transient state */
10113 do_wait = 1; /* ...wait for it to settle */
10115 do_transition = 1; /* need to move to offline */
10116 do_wait = 1; /* ...will need to wait */
10119 if (do_transition) {
10120 ret = set_physical_link_state(dd,
10121 (rem_reason << 8) | PLS_OFFLINE);
10123 if (ret != HCMD_SUCCESS) {
10125 "Failed to transition to Offline link state, return %d\n",
10129 if (ppd->offline_disabled_reason ==
10130 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10131 ppd->offline_disabled_reason =
10132 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10136 /* it can take a while for the link to go down */
10137 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10142 /* make sure the logical state is also down */
10143 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10146 * Now in charge of LCB - must be after the physical state is
10147 * offline.quiet and before host_link_state is changed.
10149 set_host_lcb_access(dd);
10150 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10151 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10153 if (ppd->port_type == PORT_TYPE_QSFP &&
10154 ppd->qsfp_info.limiting_active &&
10155 qsfp_mod_present(ppd)) {
10158 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10160 set_qsfp_tx(ppd, 0);
10161 release_chip_resource(dd, qsfp_resource(dd));
10163 /* not fatal, but should warn */
10165 "Unable to acquire lock to turn off QSFP TX\n");
10170 * The LNI has a mandatory wait time after the physical state
10171 * moves to Offline.Quiet. The wait time may be different
10172 * depending on how the link went down. The 8051 firmware
10173 * will observe the needed wait time and only move to ready
10174 * when that is completed. The largest of the quiet timeouts
10175 * is 6s, so wait that long and then at least 0.5s more for
10176 * other transitions, and another 0.5s for a buffer.
10178 ret = wait_fm_ready(dd, 7000);
10181 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10182 /* state is really offline, so make it so */
10183 ppd->host_link_state = HLS_DN_OFFLINE;
10188 * The state is now offline and the 8051 is ready to accept host
10190 * - change our state
10191 * - notify others if we were previously in a linkup state
10193 ppd->host_link_state = HLS_DN_OFFLINE;
10194 if (previous_state & HLS_UP) {
10195 /* went down while link was up */
10196 handle_linkup_change(dd, 0);
10197 } else if (previous_state
10198 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10199 /* went down while attempting link up */
10200 check_lni_states(ppd);
10203 /* the active link width (downgrade) is 0 on link down */
10204 ppd->link_width_active = 0;
10205 ppd->link_width_downgrade_tx_active = 0;
10206 ppd->link_width_downgrade_rx_active = 0;
10207 ppd->current_egress_rate = 0;
10211 /* return the link state name */
10212 static const char *link_state_name(u32 state)
10215 int n = ilog2(state);
10216 static const char * const names[] = {
10217 [__HLS_UP_INIT_BP] = "INIT",
10218 [__HLS_UP_ARMED_BP] = "ARMED",
10219 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
10220 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
10221 [__HLS_DN_POLL_BP] = "POLL",
10222 [__HLS_DN_DISABLE_BP] = "DISABLE",
10223 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
10224 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
10225 [__HLS_GOING_UP_BP] = "GOING_UP",
10226 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10227 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10230 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10231 return name ? name : "unknown";
10234 /* return the link state reason name */
10235 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10237 if (state == HLS_UP_INIT) {
10238 switch (ppd->linkinit_reason) {
10239 case OPA_LINKINIT_REASON_LINKUP:
10241 case OPA_LINKINIT_REASON_FLAPPING:
10242 return "(FLAPPING)";
10243 case OPA_LINKINIT_OUTSIDE_POLICY:
10244 return "(OUTSIDE_POLICY)";
10245 case OPA_LINKINIT_QUARANTINED:
10246 return "(QUARANTINED)";
10247 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10248 return "(INSUFIC_CAPABILITY)";
10257 * driver_physical_state - convert the driver's notion of a port's
10258 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10259 * Return -1 (converted to a u32) to indicate error.
10261 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10263 switch (ppd->host_link_state) {
10266 case HLS_UP_ACTIVE:
10267 return IB_PORTPHYSSTATE_LINKUP;
10269 return IB_PORTPHYSSTATE_POLLING;
10270 case HLS_DN_DISABLE:
10271 return IB_PORTPHYSSTATE_DISABLED;
10272 case HLS_DN_OFFLINE:
10273 return OPA_PORTPHYSSTATE_OFFLINE;
10274 case HLS_VERIFY_CAP:
10275 return IB_PORTPHYSSTATE_POLLING;
10277 return IB_PORTPHYSSTATE_POLLING;
10278 case HLS_GOING_OFFLINE:
10279 return OPA_PORTPHYSSTATE_OFFLINE;
10280 case HLS_LINK_COOLDOWN:
10281 return OPA_PORTPHYSSTATE_OFFLINE;
10282 case HLS_DN_DOWNDEF:
10284 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10285 ppd->host_link_state);
10291 * driver_logical_state - convert the driver's notion of a port's
10292 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10293 * (converted to a u32) to indicate error.
10295 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10297 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10298 return IB_PORT_DOWN;
10300 switch (ppd->host_link_state & HLS_UP) {
10302 return IB_PORT_INIT;
10304 return IB_PORT_ARMED;
10305 case HLS_UP_ACTIVE:
10306 return IB_PORT_ACTIVE;
10308 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10309 ppd->host_link_state);
10314 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10315 u8 neigh_reason, u8 rem_reason)
10317 if (ppd->local_link_down_reason.latest == 0 &&
10318 ppd->neigh_link_down_reason.latest == 0) {
10319 ppd->local_link_down_reason.latest = lcl_reason;
10320 ppd->neigh_link_down_reason.latest = neigh_reason;
10321 ppd->remote_link_down_reason = rem_reason;
10326 * Change the physical and/or logical link state.
10328 * Do not call this routine while inside an interrupt. It contains
10329 * calls to routines that can take multiple seconds to finish.
10331 * Returns 0 on success, -errno on failure.
10333 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10335 struct hfi1_devdata *dd = ppd->dd;
10336 struct ib_event event = {.device = NULL};
10338 int orig_new_state, poll_bounce;
10340 mutex_lock(&ppd->hls_lock);
10342 orig_new_state = state;
10343 if (state == HLS_DN_DOWNDEF)
10344 state = dd->link_default;
10346 /* interpret poll -> poll as a link bounce */
10347 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10348 state == HLS_DN_POLL;
10350 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10351 link_state_name(ppd->host_link_state),
10352 link_state_name(orig_new_state),
10353 poll_bounce ? "(bounce) " : "",
10354 link_state_reason_name(ppd, state));
10357 * If we're going to a (HLS_*) link state that implies the logical
10358 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10359 * reset is_sm_config_started to 0.
10361 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10362 ppd->is_sm_config_started = 0;
10365 * Do nothing if the states match. Let a poll to poll link bounce
10368 if (ppd->host_link_state == state && !poll_bounce)
10373 if (ppd->host_link_state == HLS_DN_POLL &&
10374 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10376 * Quick link up jumps from polling to here.
10378 * Whether in normal or loopback mode, the
10379 * simulator jumps from polling to link up.
10380 * Accept that here.
10383 } else if (ppd->host_link_state != HLS_GOING_UP) {
10387 ppd->host_link_state = HLS_UP_INIT;
10388 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10390 /* logical state didn't change, stay at going_up */
10391 ppd->host_link_state = HLS_GOING_UP;
10393 "%s: logical state did not change to INIT\n",
10396 /* clear old transient LINKINIT_REASON code */
10397 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10398 ppd->linkinit_reason =
10399 OPA_LINKINIT_REASON_LINKUP;
10401 /* enable the port */
10402 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10404 handle_linkup_change(dd, 1);
10408 if (ppd->host_link_state != HLS_UP_INIT)
10411 ppd->host_link_state = HLS_UP_ARMED;
10412 set_logical_state(dd, LSTATE_ARMED);
10413 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10415 /* logical state didn't change, stay at init */
10416 ppd->host_link_state = HLS_UP_INIT;
10418 "%s: logical state did not change to ARMED\n",
10422 * The simulator does not currently implement SMA messages,
10423 * so neighbor_normal is not set. Set it here when we first
10426 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10427 ppd->neighbor_normal = 1;
10429 case HLS_UP_ACTIVE:
10430 if (ppd->host_link_state != HLS_UP_ARMED)
10433 ppd->host_link_state = HLS_UP_ACTIVE;
10434 set_logical_state(dd, LSTATE_ACTIVE);
10435 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10437 /* logical state didn't change, stay at armed */
10438 ppd->host_link_state = HLS_UP_ARMED;
10440 "%s: logical state did not change to ACTIVE\n",
10443 /* tell all engines to go running */
10444 sdma_all_running(dd);
10446 /* Signal the IB layer that the port has went active */
10447 event.device = &dd->verbs_dev.rdi.ibdev;
10448 event.element.port_num = ppd->port;
10449 event.event = IB_EVENT_PORT_ACTIVE;
10453 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10454 ppd->host_link_state == HLS_DN_OFFLINE) &&
10457 /* Hand LED control to the DC */
10458 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10460 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10461 u8 tmp = ppd->link_enabled;
10463 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10465 ppd->link_enabled = tmp;
10468 ppd->remote_link_down_reason = 0;
10470 if (ppd->driver_link_ready)
10471 ppd->link_enabled = 1;
10474 set_all_slowpath(ppd->dd);
10475 ret = set_local_link_attributes(ppd);
10479 ppd->port_error_action = 0;
10480 ppd->host_link_state = HLS_DN_POLL;
10482 if (quick_linkup) {
10483 /* quick linkup does not go into polling */
10484 ret = do_quick_linkup(dd);
10486 ret1 = set_physical_link_state(dd, PLS_POLLING);
10487 if (ret1 != HCMD_SUCCESS) {
10489 "Failed to transition to Polling link state, return 0x%x\n",
10494 ppd->offline_disabled_reason =
10495 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10497 * If an error occurred above, go back to offline. The
10498 * caller may reschedule another attempt.
10501 goto_offline(ppd, 0);
10503 case HLS_DN_DISABLE:
10504 /* link is disabled */
10505 ppd->link_enabled = 0;
10507 /* allow any state to transition to disabled */
10509 /* must transition to offline first */
10510 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10511 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10514 ppd->remote_link_down_reason = 0;
10517 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10518 if (ret1 != HCMD_SUCCESS) {
10520 "Failed to transition to Disabled link state, return 0x%x\n",
10525 ppd->host_link_state = HLS_DN_DISABLE;
10528 case HLS_DN_OFFLINE:
10529 if (ppd->host_link_state == HLS_DN_DISABLE)
10532 /* allow any state to transition to offline */
10533 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10535 ppd->remote_link_down_reason = 0;
10537 case HLS_VERIFY_CAP:
10538 if (ppd->host_link_state != HLS_DN_POLL)
10540 ppd->host_link_state = HLS_VERIFY_CAP;
10543 if (ppd->host_link_state != HLS_VERIFY_CAP)
10546 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10547 if (ret1 != HCMD_SUCCESS) {
10549 "Failed to transition to link up state, return 0x%x\n",
10554 ppd->host_link_state = HLS_GOING_UP;
10557 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10558 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10560 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10569 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10570 __func__, link_state_name(ppd->host_link_state),
10571 link_state_name(state));
10575 mutex_unlock(&ppd->hls_lock);
10578 ib_dispatch_event(&event);
10583 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10589 case HFI1_IB_CFG_LIDLMC:
10592 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10594 * The VL Arbitrator high limit is sent in units of 4k
10595 * bytes, while HFI stores it in units of 64 bytes.
10598 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10599 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10600 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10602 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10603 /* HFI only supports POLL as the default link down state */
10604 if (val != HLS_DN_POLL)
10607 case HFI1_IB_CFG_OP_VLS:
10608 if (ppd->vls_operational != val) {
10609 ppd->vls_operational = val;
10615 * For link width, link width downgrade, and speed enable, always AND
10616 * the setting with what is actually supported. This has two benefits.
10617 * First, enabled can't have unsupported values, no matter what the
10618 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10619 * "fill in with your supported value" have all the bits in the
10620 * field set, so simply ANDing with supported has the desired result.
10622 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10623 ppd->link_width_enabled = val & ppd->link_width_supported;
10625 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10626 ppd->link_width_downgrade_enabled =
10627 val & ppd->link_width_downgrade_supported;
10629 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10630 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10632 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10634 * HFI does not follow IB specs, save this value
10635 * so we can report it, if asked.
10637 ppd->overrun_threshold = val;
10639 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10641 * HFI does not follow IB specs, save this value
10642 * so we can report it, if asked.
10644 ppd->phy_error_threshold = val;
10647 case HFI1_IB_CFG_MTU:
10648 set_send_length(ppd);
10651 case HFI1_IB_CFG_PKEYS:
10652 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10653 set_partition_keys(ppd);
10657 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10658 dd_dev_info(ppd->dd,
10659 "%s: which %s, val 0x%x: not implemented\n",
10660 __func__, ib_cfg_name(which), val);
10666 /* begin functions related to vl arbitration table caching */
10667 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10671 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10672 VL_ARB_LOW_PRIO_TABLE_SIZE);
10673 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10674 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10677 * Note that we always return values directly from the
10678 * 'vl_arb_cache' (and do no CSR reads) in response to a
10679 * 'Get(VLArbTable)'. This is obviously correct after a
10680 * 'Set(VLArbTable)', since the cache will then be up to
10681 * date. But it's also correct prior to any 'Set(VLArbTable)'
10682 * since then both the cache, and the relevant h/w registers
10686 for (i = 0; i < MAX_PRIO_TABLE; i++)
10687 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10691 * vl_arb_lock_cache
10693 * All other vl_arb_* functions should be called only after locking
10696 static inline struct vl_arb_cache *
10697 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10699 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10701 spin_lock(&ppd->vl_arb_cache[idx].lock);
10702 return &ppd->vl_arb_cache[idx];
10705 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10707 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10710 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10711 struct ib_vl_weight_elem *vl)
10713 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10716 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10717 struct ib_vl_weight_elem *vl)
10719 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10722 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10723 struct ib_vl_weight_elem *vl)
10725 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10728 /* end functions related to vl arbitration table caching */
10730 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10731 u32 size, struct ib_vl_weight_elem *vl)
10733 struct hfi1_devdata *dd = ppd->dd;
10735 unsigned int i, is_up = 0;
10736 int drain, ret = 0;
10738 mutex_lock(&ppd->hls_lock);
10740 if (ppd->host_link_state & HLS_UP)
10743 drain = !is_ax(dd) && is_up;
10747 * Before adjusting VL arbitration weights, empty per-VL
10748 * FIFOs, otherwise a packet whose VL weight is being
10749 * set to 0 could get stuck in a FIFO with no chance to
10752 ret = stop_drain_data_vls(dd);
10757 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10762 for (i = 0; i < size; i++, vl++) {
10764 * NOTE: The low priority shift and mask are used here, but
10765 * they are the same for both the low and high registers.
10767 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10768 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10769 | (((u64)vl->weight
10770 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10771 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10772 write_csr(dd, target + (i * 8), reg);
10774 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10777 open_fill_data_vls(dd); /* reopen all VLs */
10780 mutex_unlock(&ppd->hls_lock);
10786 * Read one credit merge VL register.
10788 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10789 struct vl_limit *vll)
10791 u64 reg = read_csr(dd, csr);
10793 vll->dedicated = cpu_to_be16(
10794 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10795 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10796 vll->shared = cpu_to_be16(
10797 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10798 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10802 * Read the current credit merge limits.
10804 static int get_buffer_control(struct hfi1_devdata *dd,
10805 struct buffer_control *bc, u16 *overall_limit)
10810 /* not all entries are filled in */
10811 memset(bc, 0, sizeof(*bc));
10813 /* OPA and HFI have a 1-1 mapping */
10814 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10815 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10817 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10818 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10820 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10821 bc->overall_shared_limit = cpu_to_be16(
10822 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10823 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10825 *overall_limit = (reg
10826 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10827 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10828 return sizeof(struct buffer_control);
10831 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10836 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10837 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10838 for (i = 0; i < sizeof(u64); i++) {
10839 u8 byte = *(((u8 *)®) + i);
10841 dp->vlnt[2 * i] = byte & 0xf;
10842 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10845 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10846 for (i = 0; i < sizeof(u64); i++) {
10847 u8 byte = *(((u8 *)®) + i);
10849 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10850 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10852 return sizeof(struct sc2vlnt);
10855 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10856 struct ib_vl_weight_elem *vl)
10860 for (i = 0; i < nelems; i++, vl++) {
10866 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10868 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10870 0, dp->vlnt[0] & 0xf,
10871 1, dp->vlnt[1] & 0xf,
10872 2, dp->vlnt[2] & 0xf,
10873 3, dp->vlnt[3] & 0xf,
10874 4, dp->vlnt[4] & 0xf,
10875 5, dp->vlnt[5] & 0xf,
10876 6, dp->vlnt[6] & 0xf,
10877 7, dp->vlnt[7] & 0xf,
10878 8, dp->vlnt[8] & 0xf,
10879 9, dp->vlnt[9] & 0xf,
10880 10, dp->vlnt[10] & 0xf,
10881 11, dp->vlnt[11] & 0xf,
10882 12, dp->vlnt[12] & 0xf,
10883 13, dp->vlnt[13] & 0xf,
10884 14, dp->vlnt[14] & 0xf,
10885 15, dp->vlnt[15] & 0xf));
10886 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10887 DC_SC_VL_VAL(31_16,
10888 16, dp->vlnt[16] & 0xf,
10889 17, dp->vlnt[17] & 0xf,
10890 18, dp->vlnt[18] & 0xf,
10891 19, dp->vlnt[19] & 0xf,
10892 20, dp->vlnt[20] & 0xf,
10893 21, dp->vlnt[21] & 0xf,
10894 22, dp->vlnt[22] & 0xf,
10895 23, dp->vlnt[23] & 0xf,
10896 24, dp->vlnt[24] & 0xf,
10897 25, dp->vlnt[25] & 0xf,
10898 26, dp->vlnt[26] & 0xf,
10899 27, dp->vlnt[27] & 0xf,
10900 28, dp->vlnt[28] & 0xf,
10901 29, dp->vlnt[29] & 0xf,
10902 30, dp->vlnt[30] & 0xf,
10903 31, dp->vlnt[31] & 0xf));
10906 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10910 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10911 what, (int)limit, idx);
10914 /* change only the shared limit portion of SendCmGLobalCredit */
10915 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10919 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10920 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10921 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10922 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10925 /* change only the total credit limit portion of SendCmGLobalCredit */
10926 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10930 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10931 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10932 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10933 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10936 /* set the given per-VL shared limit */
10937 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10942 if (vl < TXE_NUM_DATA_VL)
10943 addr = SEND_CM_CREDIT_VL + (8 * vl);
10945 addr = SEND_CM_CREDIT_VL15;
10947 reg = read_csr(dd, addr);
10948 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10949 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10950 write_csr(dd, addr, reg);
10953 /* set the given per-VL dedicated limit */
10954 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10959 if (vl < TXE_NUM_DATA_VL)
10960 addr = SEND_CM_CREDIT_VL + (8 * vl);
10962 addr = SEND_CM_CREDIT_VL15;
10964 reg = read_csr(dd, addr);
10965 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10966 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10967 write_csr(dd, addr, reg);
10970 /* spin until the given per-VL status mask bits clear */
10971 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10974 unsigned long timeout;
10977 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10979 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10982 return; /* success */
10983 if (time_after(jiffies, timeout))
10984 break; /* timed out */
10989 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10990 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10992 * If this occurs, it is likely there was a credit loss on the link.
10993 * The only recovery from that is a link bounce.
10996 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
11000 * The number of credits on the VLs may be changed while everything
11001 * is "live", but the following algorithm must be followed due to
11002 * how the hardware is actually implemented. In particular,
11003 * Return_Credit_Status[] is the only correct status check.
11005 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11006 * set Global_Shared_Credit_Limit = 0
11008 * mask0 = all VLs that are changing either dedicated or shared limits
11009 * set Shared_Limit[mask0] = 0
11010 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11011 * if (changing any dedicated limit)
11012 * mask1 = all VLs that are lowering dedicated limits
11013 * lower Dedicated_Limit[mask1]
11014 * spin until Return_Credit_Status[mask1] == 0
11015 * raise Dedicated_Limits
11016 * raise Shared_Limits
11017 * raise Global_Shared_Credit_Limit
11019 * lower = if the new limit is lower, set the limit to the new value
11020 * raise = if the new limit is higher than the current value (may be changed
11021 * earlier in the algorithm), set the new limit to the new value
11023 int set_buffer_control(struct hfi1_pportdata *ppd,
11024 struct buffer_control *new_bc)
11026 struct hfi1_devdata *dd = ppd->dd;
11027 u64 changing_mask, ld_mask, stat_mask;
11029 int i, use_all_mask;
11030 int this_shared_changing;
11031 int vl_count = 0, ret;
11033 * A0: add the variable any_shared_limit_changing below and in the
11034 * algorithm above. If removing A0 support, it can be removed.
11036 int any_shared_limit_changing;
11037 struct buffer_control cur_bc;
11038 u8 changing[OPA_MAX_VLS];
11039 u8 lowering_dedicated[OPA_MAX_VLS];
11042 const u64 all_mask =
11043 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11044 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11045 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11046 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11047 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11048 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11049 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11050 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11051 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11053 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11054 #define NUM_USABLE_VLS 16 /* look at VL15 and less */
11056 /* find the new total credits, do sanity check on unused VLs */
11057 for (i = 0; i < OPA_MAX_VLS; i++) {
11059 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11062 nonzero_msg(dd, i, "dedicated",
11063 be16_to_cpu(new_bc->vl[i].dedicated));
11064 nonzero_msg(dd, i, "shared",
11065 be16_to_cpu(new_bc->vl[i].shared));
11066 new_bc->vl[i].dedicated = 0;
11067 new_bc->vl[i].shared = 0;
11069 new_total += be16_to_cpu(new_bc->overall_shared_limit);
11071 /* fetch the current values */
11072 get_buffer_control(dd, &cur_bc, &cur_total);
11075 * Create the masks we will use.
11077 memset(changing, 0, sizeof(changing));
11078 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11080 * NOTE: Assumes that the individual VL bits are adjacent and in
11084 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11088 any_shared_limit_changing = 0;
11089 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11092 this_shared_changing = new_bc->vl[i].shared
11093 != cur_bc.vl[i].shared;
11094 if (this_shared_changing)
11095 any_shared_limit_changing = 1;
11096 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11097 this_shared_changing) {
11099 changing_mask |= stat_mask;
11102 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11103 be16_to_cpu(cur_bc.vl[i].dedicated)) {
11104 lowering_dedicated[i] = 1;
11105 ld_mask |= stat_mask;
11109 /* bracket the credit change with a total adjustment */
11110 if (new_total > cur_total)
11111 set_global_limit(dd, new_total);
11114 * Start the credit change algorithm.
11117 if ((be16_to_cpu(new_bc->overall_shared_limit) <
11118 be16_to_cpu(cur_bc.overall_shared_limit)) ||
11119 (is_ax(dd) && any_shared_limit_changing)) {
11120 set_global_shared(dd, 0);
11121 cur_bc.overall_shared_limit = 0;
11125 for (i = 0; i < NUM_USABLE_VLS; i++) {
11130 set_vl_shared(dd, i, 0);
11131 cur_bc.vl[i].shared = 0;
11135 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11138 if (change_count > 0) {
11139 for (i = 0; i < NUM_USABLE_VLS; i++) {
11143 if (lowering_dedicated[i]) {
11144 set_vl_dedicated(dd, i,
11145 be16_to_cpu(new_bc->
11147 cur_bc.vl[i].dedicated =
11148 new_bc->vl[i].dedicated;
11152 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11154 /* now raise all dedicated that are going up */
11155 for (i = 0; i < NUM_USABLE_VLS; i++) {
11159 if (be16_to_cpu(new_bc->vl[i].dedicated) >
11160 be16_to_cpu(cur_bc.vl[i].dedicated))
11161 set_vl_dedicated(dd, i,
11162 be16_to_cpu(new_bc->
11167 /* next raise all shared that are going up */
11168 for (i = 0; i < NUM_USABLE_VLS; i++) {
11172 if (be16_to_cpu(new_bc->vl[i].shared) >
11173 be16_to_cpu(cur_bc.vl[i].shared))
11174 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11177 /* finally raise the global shared */
11178 if (be16_to_cpu(new_bc->overall_shared_limit) >
11179 be16_to_cpu(cur_bc.overall_shared_limit))
11180 set_global_shared(dd,
11181 be16_to_cpu(new_bc->overall_shared_limit));
11183 /* bracket the credit change with a total adjustment */
11184 if (new_total < cur_total)
11185 set_global_limit(dd, new_total);
11188 * Determine the actual number of operational VLS using the number of
11189 * dedicated and shared credits for each VL.
11191 if (change_count > 0) {
11192 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11193 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11194 be16_to_cpu(new_bc->vl[i].shared) > 0)
11196 ppd->actual_vls_operational = vl_count;
11197 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11198 ppd->actual_vls_operational :
11199 ppd->vls_operational,
11202 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11203 ppd->actual_vls_operational :
11204 ppd->vls_operational, NULL);
11212 * Read the given fabric manager table. Return the size of the
11213 * table (in bytes) on success, and a negative error code on
11216 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11220 struct vl_arb_cache *vlc;
11223 case FM_TBL_VL_HIGH_ARB:
11226 * OPA specifies 128 elements (of 2 bytes each), though
11227 * HFI supports only 16 elements in h/w.
11229 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11230 vl_arb_get_cache(vlc, t);
11231 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11233 case FM_TBL_VL_LOW_ARB:
11236 * OPA specifies 128 elements (of 2 bytes each), though
11237 * HFI supports only 16 elements in h/w.
11239 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11240 vl_arb_get_cache(vlc, t);
11241 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11243 case FM_TBL_BUFFER_CONTROL:
11244 size = get_buffer_control(ppd->dd, t, NULL);
11246 case FM_TBL_SC2VLNT:
11247 size = get_sc2vlnt(ppd->dd, t);
11249 case FM_TBL_VL_PREEMPT_ELEMS:
11251 /* OPA specifies 128 elements, of 2 bytes each */
11252 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11254 case FM_TBL_VL_PREEMPT_MATRIX:
11257 * OPA specifies that this is the same size as the VL
11258 * arbitration tables (i.e., 256 bytes).
11268 * Write the given fabric manager table.
11270 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11273 struct vl_arb_cache *vlc;
11276 case FM_TBL_VL_HIGH_ARB:
11277 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11278 if (vl_arb_match_cache(vlc, t)) {
11279 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11282 vl_arb_set_cache(vlc, t);
11283 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11284 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11285 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11287 case FM_TBL_VL_LOW_ARB:
11288 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11289 if (vl_arb_match_cache(vlc, t)) {
11290 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11293 vl_arb_set_cache(vlc, t);
11294 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11295 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11296 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11298 case FM_TBL_BUFFER_CONTROL:
11299 ret = set_buffer_control(ppd, t);
11301 case FM_TBL_SC2VLNT:
11302 set_sc2vlnt(ppd->dd, t);
11311 * Disable all data VLs.
11313 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11315 static int disable_data_vls(struct hfi1_devdata *dd)
11320 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11326 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11327 * Just re-enables all data VLs (the "fill" part happens
11328 * automatically - the name was chosen for symmetry with
11329 * stop_drain_data_vls()).
11331 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11333 int open_fill_data_vls(struct hfi1_devdata *dd)
11338 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11344 * drain_data_vls() - assumes that disable_data_vls() has been called,
11345 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11346 * engines to drop to 0.
11348 static void drain_data_vls(struct hfi1_devdata *dd)
11352 pause_for_credit_return(dd);
11356 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11358 * Use open_fill_data_vls() to resume using data VLs. This pair is
11359 * meant to be used like this:
11361 * stop_drain_data_vls(dd);
11362 * // do things with per-VL resources
11363 * open_fill_data_vls(dd);
11365 int stop_drain_data_vls(struct hfi1_devdata *dd)
11369 ret = disable_data_vls(dd);
11371 drain_data_vls(dd);
11377 * Convert a nanosecond time to a cclock count. No matter how slow
11378 * the cclock, a non-zero ns will always have a non-zero result.
11380 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11384 if (dd->icode == ICODE_FPGA_EMULATION)
11385 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11386 else /* simulation pretends to be ASIC */
11387 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11388 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11394 * Convert a cclock count to nanoseconds. Not matter how slow
11395 * the cclock, a non-zero cclocks will always have a non-zero result.
11397 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11401 if (dd->icode == ICODE_FPGA_EMULATION)
11402 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11403 else /* simulation pretends to be ASIC */
11404 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11405 if (cclocks && !ns)
11411 * Dynamically adjust the receive interrupt timeout for a context based on
11412 * incoming packet rate.
11414 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11416 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11418 struct hfi1_devdata *dd = rcd->dd;
11419 u32 timeout = rcd->rcvavail_timeout;
11422 * This algorithm doubles or halves the timeout depending on whether
11423 * the number of packets received in this interrupt were less than or
11424 * greater equal the interrupt count.
11426 * The calculations below do not allow a steady state to be achieved.
11427 * Only at the endpoints it is possible to have an unchanging
11430 if (npkts < rcv_intr_count) {
11432 * Not enough packets arrived before the timeout, adjust
11433 * timeout downward.
11435 if (timeout < 2) /* already at minimum? */
11440 * More than enough packets arrived before the timeout, adjust
11443 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11445 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11448 rcd->rcvavail_timeout = timeout;
11450 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11451 * been verified to be in range
11453 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11455 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11458 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11459 u32 intr_adjust, u32 npkts)
11461 struct hfi1_devdata *dd = rcd->dd;
11463 u32 ctxt = rcd->ctxt;
11466 * Need to write timeout register before updating RcvHdrHead to ensure
11467 * that a new value is used when the HW decides to restart counting.
11470 adjust_rcv_timeout(rcd, npkts);
11472 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11473 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11474 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11477 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11478 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11479 << RCV_HDR_HEAD_HEAD_SHIFT);
11480 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11484 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11488 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11489 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11491 if (rcd->rcvhdrtail_kvaddr)
11492 tail = get_rcvhdrtail(rcd);
11494 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11496 return head == tail;
11500 * Context Control and Receive Array encoding for buffer size:
11509 * 0x8 512 KB (Receive Array only)
11510 * 0x9 1 MB (Receive Array only)
11511 * 0xa 2 MB (Receive Array only)
11513 * 0xB-0xF - reserved (Receive Array only)
11516 * This routine assumes that the value has already been sanity checked.
11518 static u32 encoded_size(u32 size)
11521 case 4 * 1024: return 0x1;
11522 case 8 * 1024: return 0x2;
11523 case 16 * 1024: return 0x3;
11524 case 32 * 1024: return 0x4;
11525 case 64 * 1024: return 0x5;
11526 case 128 * 1024: return 0x6;
11527 case 256 * 1024: return 0x7;
11528 case 512 * 1024: return 0x8;
11529 case 1 * 1024 * 1024: return 0x9;
11530 case 2 * 1024 * 1024: return 0xa;
11532 return 0x1; /* if invalid, go with the minimum size */
11535 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11537 struct hfi1_ctxtdata *rcd;
11539 int did_enable = 0;
11541 rcd = dd->rcd[ctxt];
11545 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11547 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11548 /* if the context already enabled, don't do the extra steps */
11549 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11550 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11551 /* reset the tail and hdr addresses, and sequence count */
11552 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11554 if (rcd->rcvhdrtail_kvaddr)
11555 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11556 rcd->rcvhdrqtailaddr_dma);
11559 /* reset the cached receive header queue head value */
11563 * Zero the receive header queue so we don't get false
11564 * positives when checking the sequence number. The
11565 * sequence numbers could land exactly on the same spot.
11566 * E.g. a rcd restart before the receive header wrapped.
11568 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11570 /* starting timeout */
11571 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11573 /* enable the context */
11574 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11576 /* clean the egr buffer size first */
11577 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11578 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11579 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11580 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11582 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11583 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11586 /* zero RcvEgrIndexHead */
11587 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11589 /* set eager count and base index */
11590 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11591 & RCV_EGR_CTRL_EGR_CNT_MASK)
11592 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11593 (((rcd->eager_base >> RCV_SHIFT)
11594 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11595 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11596 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11599 * Set TID (expected) count and base index.
11600 * rcd->expected_count is set to individual RcvArray entries,
11601 * not pairs, and the CSR takes a pair-count in groups of
11602 * four, so divide by 8.
11604 reg = (((rcd->expected_count >> RCV_SHIFT)
11605 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11606 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11607 (((rcd->expected_base >> RCV_SHIFT)
11608 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11609 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11610 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11611 if (ctxt == HFI1_CTRL_CTXT)
11612 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11614 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11615 write_csr(dd, RCV_VL15, 0);
11617 * When receive context is being disabled turn on tail
11618 * update with a dummy tail address and then disable
11621 if (dd->rcvhdrtail_dummy_dma) {
11622 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11623 dd->rcvhdrtail_dummy_dma);
11624 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11625 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11628 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11630 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11631 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11632 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11633 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11634 if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11635 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11636 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11637 /* See comment on RcvCtxtCtrl.TailUpd above */
11638 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11639 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11641 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11642 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11643 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11644 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11645 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11647 * In one-packet-per-eager mode, the size comes from
11648 * the RcvArray entry.
11650 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11651 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11653 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11654 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11655 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11656 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11657 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11658 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11659 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11660 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11661 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11662 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11663 rcd->rcvctrl = rcvctrl;
11664 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11665 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11667 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11669 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11670 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11672 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11674 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11675 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11676 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11677 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11678 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11679 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11680 ctxt, reg, reg == 0 ? "not" : "still");
11686 * The interrupt timeout and count must be set after
11687 * the context is enabled to take effect.
11689 /* set interrupt timeout */
11690 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11691 (u64)rcd->rcvavail_timeout <<
11692 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11694 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11695 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11696 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11699 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11701 * If the context has been disabled and the Tail Update has
11702 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11703 * so it doesn't contain an address that is invalid.
11705 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11706 dd->rcvhdrtail_dummy_dma);
11709 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11715 ret = dd->cntrnameslen;
11716 *namep = dd->cntrnames;
11718 const struct cntr_entry *entry;
11721 ret = (dd->ndevcntrs) * sizeof(u64);
11723 /* Get the start of the block of counters */
11724 *cntrp = dd->cntrs;
11727 * Now go and fill in each counter in the block.
11729 for (i = 0; i < DEV_CNTR_LAST; i++) {
11730 entry = &dev_cntrs[i];
11731 hfi1_cdbg(CNTR, "reading %s", entry->name);
11732 if (entry->flags & CNTR_DISABLED) {
11734 hfi1_cdbg(CNTR, "\tDisabled\n");
11736 if (entry->flags & CNTR_VL) {
11737 hfi1_cdbg(CNTR, "\tPer VL\n");
11738 for (j = 0; j < C_VL_COUNT; j++) {
11739 val = entry->rw_cntr(entry,
11745 "\t\tRead 0x%llx for %d\n",
11747 dd->cntrs[entry->offset + j] =
11750 } else if (entry->flags & CNTR_SDMA) {
11752 "\t Per SDMA Engine\n");
11753 for (j = 0; j < dd->chip_sdma_engines;
11756 entry->rw_cntr(entry, dd, j,
11759 "\t\tRead 0x%llx for %d\n",
11761 dd->cntrs[entry->offset + j] =
11765 val = entry->rw_cntr(entry, dd,
11768 dd->cntrs[entry->offset] = val;
11769 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11778 * Used by sysfs to create files for hfi stats to read
11780 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11786 ret = ppd->dd->portcntrnameslen;
11787 *namep = ppd->dd->portcntrnames;
11789 const struct cntr_entry *entry;
11792 ret = ppd->dd->nportcntrs * sizeof(u64);
11793 *cntrp = ppd->cntrs;
11795 for (i = 0; i < PORT_CNTR_LAST; i++) {
11796 entry = &port_cntrs[i];
11797 hfi1_cdbg(CNTR, "reading %s", entry->name);
11798 if (entry->flags & CNTR_DISABLED) {
11800 hfi1_cdbg(CNTR, "\tDisabled\n");
11804 if (entry->flags & CNTR_VL) {
11805 hfi1_cdbg(CNTR, "\tPer VL");
11806 for (j = 0; j < C_VL_COUNT; j++) {
11807 val = entry->rw_cntr(entry, ppd, j,
11812 "\t\tRead 0x%llx for %d",
11814 ppd->cntrs[entry->offset + j] = val;
11817 val = entry->rw_cntr(entry, ppd,
11821 ppd->cntrs[entry->offset] = val;
11822 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11829 static void free_cntrs(struct hfi1_devdata *dd)
11831 struct hfi1_pportdata *ppd;
11834 if (dd->synth_stats_timer.data)
11835 del_timer_sync(&dd->synth_stats_timer);
11836 dd->synth_stats_timer.data = 0;
11837 ppd = (struct hfi1_pportdata *)(dd + 1);
11838 for (i = 0; i < dd->num_pports; i++, ppd++) {
11840 kfree(ppd->scntrs);
11841 free_percpu(ppd->ibport_data.rvp.rc_acks);
11842 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11843 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11845 ppd->scntrs = NULL;
11846 ppd->ibport_data.rvp.rc_acks = NULL;
11847 ppd->ibport_data.rvp.rc_qacks = NULL;
11848 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11850 kfree(dd->portcntrnames);
11851 dd->portcntrnames = NULL;
11856 kfree(dd->cntrnames);
11857 dd->cntrnames = NULL;
11858 if (dd->update_cntr_wq) {
11859 destroy_workqueue(dd->update_cntr_wq);
11860 dd->update_cntr_wq = NULL;
11864 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11865 u64 *psval, void *context, int vl)
11870 if (entry->flags & CNTR_DISABLED) {
11871 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11875 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11877 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11879 /* If its a synthetic counter there is more work we need to do */
11880 if (entry->flags & CNTR_SYNTH) {
11881 if (sval == CNTR_MAX) {
11882 /* No need to read already saturated */
11886 if (entry->flags & CNTR_32BIT) {
11887 /* 32bit counters can wrap multiple times */
11888 u64 upper = sval >> 32;
11889 u64 lower = (sval << 32) >> 32;
11891 if (lower > val) { /* hw wrapped */
11892 if (upper == CNTR_32BIT_MAX)
11898 if (val != CNTR_MAX)
11899 val = (upper << 32) | val;
11902 /* If we rolled we are saturated */
11903 if ((val < sval) || (val > CNTR_MAX))
11910 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11915 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11916 struct cntr_entry *entry,
11917 u64 *psval, void *context, int vl, u64 data)
11921 if (entry->flags & CNTR_DISABLED) {
11922 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11926 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11928 if (entry->flags & CNTR_SYNTH) {
11930 if (entry->flags & CNTR_32BIT) {
11931 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11932 (data << 32) >> 32);
11933 val = data; /* return the full 64bit value */
11935 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11939 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11944 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11949 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11951 struct cntr_entry *entry;
11954 entry = &dev_cntrs[index];
11955 sval = dd->scntrs + entry->offset;
11957 if (vl != CNTR_INVALID_VL)
11960 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11963 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11965 struct cntr_entry *entry;
11968 entry = &dev_cntrs[index];
11969 sval = dd->scntrs + entry->offset;
11971 if (vl != CNTR_INVALID_VL)
11974 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11977 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11979 struct cntr_entry *entry;
11982 entry = &port_cntrs[index];
11983 sval = ppd->scntrs + entry->offset;
11985 if (vl != CNTR_INVALID_VL)
11988 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11989 (index <= C_RCV_HDR_OVF_LAST)) {
11990 /* We do not want to bother for disabled contexts */
11994 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11997 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11999 struct cntr_entry *entry;
12002 entry = &port_cntrs[index];
12003 sval = ppd->scntrs + entry->offset;
12005 if (vl != CNTR_INVALID_VL)
12008 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12009 (index <= C_RCV_HDR_OVF_LAST)) {
12010 /* We do not want to bother for disabled contexts */
12014 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12017 static void do_update_synth_timer(struct work_struct *work)
12024 struct hfi1_pportdata *ppd;
12025 struct cntr_entry *entry;
12026 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12030 * Rather than keep beating on the CSRs pick a minimal set that we can
12031 * check to watch for potential roll over. We can do this by looking at
12032 * the number of flits sent/recv. If the total flits exceeds 32bits then
12033 * we have to iterate all the counters and update.
12035 entry = &dev_cntrs[C_DC_RCV_FLITS];
12036 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12038 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12039 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12043 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12044 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12046 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12048 * May not be strictly necessary to update but it won't hurt and
12049 * simplifies the logic here.
12052 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12055 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12057 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12058 total_flits, (u64)CNTR_32BIT_MAX);
12059 if (total_flits >= CNTR_32BIT_MAX) {
12060 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12067 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12068 for (i = 0; i < DEV_CNTR_LAST; i++) {
12069 entry = &dev_cntrs[i];
12070 if (entry->flags & CNTR_VL) {
12071 for (vl = 0; vl < C_VL_COUNT; vl++)
12072 read_dev_cntr(dd, i, vl);
12074 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12077 ppd = (struct hfi1_pportdata *)(dd + 1);
12078 for (i = 0; i < dd->num_pports; i++, ppd++) {
12079 for (j = 0; j < PORT_CNTR_LAST; j++) {
12080 entry = &port_cntrs[j];
12081 if (entry->flags & CNTR_VL) {
12082 for (vl = 0; vl < C_VL_COUNT; vl++)
12083 read_port_cntr(ppd, j, vl);
12085 read_port_cntr(ppd, j, CNTR_INVALID_VL);
12091 * We want the value in the register. The goal is to keep track
12092 * of the number of "ticks" not the counter value. In other
12093 * words if the register rolls we want to notice it and go ahead
12094 * and force an update.
12096 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12097 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12100 entry = &dev_cntrs[C_DC_RCV_FLITS];
12101 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12104 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12105 dd->unit, dd->last_tx, dd->last_rx);
12108 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12112 static void update_synth_timer(unsigned long opaque)
12114 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12116 queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12117 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12120 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12121 static int init_cntrs(struct hfi1_devdata *dd)
12123 int i, rcv_ctxts, j;
12126 char name[C_MAX_NAME];
12127 struct hfi1_pportdata *ppd;
12128 const char *bit_type_32 = ",32";
12129 const int bit_type_32_sz = strlen(bit_type_32);
12131 /* set up the stats timer; the add_timer is done at the end */
12132 setup_timer(&dd->synth_stats_timer, update_synth_timer,
12133 (unsigned long)dd);
12135 /***********************/
12136 /* per device counters */
12137 /***********************/
12139 /* size names and determine how many we have*/
12143 for (i = 0; i < DEV_CNTR_LAST; i++) {
12144 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12145 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12149 if (dev_cntrs[i].flags & CNTR_VL) {
12150 dev_cntrs[i].offset = dd->ndevcntrs;
12151 for (j = 0; j < C_VL_COUNT; j++) {
12152 snprintf(name, C_MAX_NAME, "%s%d",
12153 dev_cntrs[i].name, vl_from_idx(j));
12154 sz += strlen(name);
12155 /* Add ",32" for 32-bit counters */
12156 if (dev_cntrs[i].flags & CNTR_32BIT)
12157 sz += bit_type_32_sz;
12161 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12162 dev_cntrs[i].offset = dd->ndevcntrs;
12163 for (j = 0; j < dd->chip_sdma_engines; j++) {
12164 snprintf(name, C_MAX_NAME, "%s%d",
12165 dev_cntrs[i].name, j);
12166 sz += strlen(name);
12167 /* Add ",32" for 32-bit counters */
12168 if (dev_cntrs[i].flags & CNTR_32BIT)
12169 sz += bit_type_32_sz;
12174 /* +1 for newline. */
12175 sz += strlen(dev_cntrs[i].name) + 1;
12176 /* Add ",32" for 32-bit counters */
12177 if (dev_cntrs[i].flags & CNTR_32BIT)
12178 sz += bit_type_32_sz;
12179 dev_cntrs[i].offset = dd->ndevcntrs;
12184 /* allocate space for the counter values */
12185 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12189 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12193 /* allocate space for the counter names */
12194 dd->cntrnameslen = sz;
12195 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12196 if (!dd->cntrnames)
12199 /* fill in the names */
12200 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12201 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12203 } else if (dev_cntrs[i].flags & CNTR_VL) {
12204 for (j = 0; j < C_VL_COUNT; j++) {
12205 snprintf(name, C_MAX_NAME, "%s%d",
12208 memcpy(p, name, strlen(name));
12211 /* Counter is 32 bits */
12212 if (dev_cntrs[i].flags & CNTR_32BIT) {
12213 memcpy(p, bit_type_32, bit_type_32_sz);
12214 p += bit_type_32_sz;
12219 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12220 for (j = 0; j < dd->chip_sdma_engines; j++) {
12221 snprintf(name, C_MAX_NAME, "%s%d",
12222 dev_cntrs[i].name, j);
12223 memcpy(p, name, strlen(name));
12226 /* Counter is 32 bits */
12227 if (dev_cntrs[i].flags & CNTR_32BIT) {
12228 memcpy(p, bit_type_32, bit_type_32_sz);
12229 p += bit_type_32_sz;
12235 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12236 p += strlen(dev_cntrs[i].name);
12238 /* Counter is 32 bits */
12239 if (dev_cntrs[i].flags & CNTR_32BIT) {
12240 memcpy(p, bit_type_32, bit_type_32_sz);
12241 p += bit_type_32_sz;
12248 /*********************/
12249 /* per port counters */
12250 /*********************/
12253 * Go through the counters for the overflows and disable the ones we
12254 * don't need. This varies based on platform so we need to do it
12255 * dynamically here.
12257 rcv_ctxts = dd->num_rcv_contexts;
12258 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12259 i <= C_RCV_HDR_OVF_LAST; i++) {
12260 port_cntrs[i].flags |= CNTR_DISABLED;
12263 /* size port counter names and determine how many we have*/
12265 dd->nportcntrs = 0;
12266 for (i = 0; i < PORT_CNTR_LAST; i++) {
12267 if (port_cntrs[i].flags & CNTR_DISABLED) {
12268 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12272 if (port_cntrs[i].flags & CNTR_VL) {
12273 port_cntrs[i].offset = dd->nportcntrs;
12274 for (j = 0; j < C_VL_COUNT; j++) {
12275 snprintf(name, C_MAX_NAME, "%s%d",
12276 port_cntrs[i].name, vl_from_idx(j));
12277 sz += strlen(name);
12278 /* Add ",32" for 32-bit counters */
12279 if (port_cntrs[i].flags & CNTR_32BIT)
12280 sz += bit_type_32_sz;
12285 /* +1 for newline */
12286 sz += strlen(port_cntrs[i].name) + 1;
12287 /* Add ",32" for 32-bit counters */
12288 if (port_cntrs[i].flags & CNTR_32BIT)
12289 sz += bit_type_32_sz;
12290 port_cntrs[i].offset = dd->nportcntrs;
12295 /* allocate space for the counter names */
12296 dd->portcntrnameslen = sz;
12297 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12298 if (!dd->portcntrnames)
12301 /* fill in port cntr names */
12302 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12303 if (port_cntrs[i].flags & CNTR_DISABLED)
12306 if (port_cntrs[i].flags & CNTR_VL) {
12307 for (j = 0; j < C_VL_COUNT; j++) {
12308 snprintf(name, C_MAX_NAME, "%s%d",
12309 port_cntrs[i].name, vl_from_idx(j));
12310 memcpy(p, name, strlen(name));
12313 /* Counter is 32 bits */
12314 if (port_cntrs[i].flags & CNTR_32BIT) {
12315 memcpy(p, bit_type_32, bit_type_32_sz);
12316 p += bit_type_32_sz;
12322 memcpy(p, port_cntrs[i].name,
12323 strlen(port_cntrs[i].name));
12324 p += strlen(port_cntrs[i].name);
12326 /* Counter is 32 bits */
12327 if (port_cntrs[i].flags & CNTR_32BIT) {
12328 memcpy(p, bit_type_32, bit_type_32_sz);
12329 p += bit_type_32_sz;
12336 /* allocate per port storage for counter values */
12337 ppd = (struct hfi1_pportdata *)(dd + 1);
12338 for (i = 0; i < dd->num_pports; i++, ppd++) {
12339 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12343 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12348 /* CPU counters need to be allocated and zeroed */
12349 if (init_cpu_counters(dd))
12352 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12353 WQ_MEM_RECLAIM, dd->unit);
12354 if (!dd->update_cntr_wq)
12357 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12359 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12366 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12368 switch (chip_lstate) {
12371 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12375 return IB_PORT_DOWN;
12377 return IB_PORT_INIT;
12379 return IB_PORT_ARMED;
12380 case LSTATE_ACTIVE:
12381 return IB_PORT_ACTIVE;
12385 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12387 /* look at the HFI meta-states only */
12388 switch (chip_pstate & 0xf0) {
12390 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12394 return IB_PORTPHYSSTATE_DISABLED;
12396 return OPA_PORTPHYSSTATE_OFFLINE;
12398 return IB_PORTPHYSSTATE_POLLING;
12399 case PLS_CONFIGPHY:
12400 return IB_PORTPHYSSTATE_TRAINING;
12402 return IB_PORTPHYSSTATE_LINKUP;
12404 return IB_PORTPHYSSTATE_PHY_TEST;
12408 /* return the OPA port logical state name */
12409 const char *opa_lstate_name(u32 lstate)
12411 static const char * const port_logical_names[] = {
12417 "PORT_ACTIVE_DEFER",
12419 if (lstate < ARRAY_SIZE(port_logical_names))
12420 return port_logical_names[lstate];
12424 /* return the OPA port physical state name */
12425 const char *opa_pstate_name(u32 pstate)
12427 static const char * const port_physical_names[] = {
12434 "PHYS_LINK_ERR_RECOVER",
12441 if (pstate < ARRAY_SIZE(port_physical_names))
12442 return port_physical_names[pstate];
12447 * Read the hardware link state and set the driver's cached value of it.
12448 * Return the (new) current value.
12450 u32 get_logical_state(struct hfi1_pportdata *ppd)
12454 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12455 if (new_state != ppd->lstate) {
12456 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12457 opa_lstate_name(new_state), new_state);
12458 ppd->lstate = new_state;
12461 * Set port status flags in the page mapped into userspace
12462 * memory. Do it here to ensure a reliable state - this is
12463 * the only function called by all state handling code.
12464 * Always set the flags due to the fact that the cache value
12465 * might have been changed explicitly outside of this
12468 if (ppd->statusp) {
12469 switch (ppd->lstate) {
12472 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12473 HFI1_STATUS_IB_READY);
12475 case IB_PORT_ARMED:
12476 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12478 case IB_PORT_ACTIVE:
12479 *ppd->statusp |= HFI1_STATUS_IB_READY;
12483 return ppd->lstate;
12487 * wait_logical_linkstate - wait for an IB link state change to occur
12488 * @ppd: port device
12489 * @state: the state to wait for
12490 * @msecs: the number of milliseconds to wait
12492 * Wait up to msecs milliseconds for IB link state change to occur.
12493 * For now, take the easy polling route.
12494 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12496 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12499 unsigned long timeout;
12501 timeout = jiffies + msecs_to_jiffies(msecs);
12503 if (get_logical_state(ppd) == state)
12505 if (time_after(jiffies, timeout))
12509 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12514 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12519 pstate = read_physical_state(ppd->dd);
12520 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12521 if (ppd->last_pstate != ib_pstate) {
12522 dd_dev_info(ppd->dd,
12523 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12524 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12526 ppd->last_pstate = ib_pstate;
12531 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12532 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12534 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12535 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12537 int hfi1_init_ctxt(struct send_context *sc)
12540 struct hfi1_devdata *dd = sc->dd;
12542 u8 set = (sc->type == SC_USER ?
12543 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12544 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12545 reg = read_kctxt_csr(dd, sc->hw_context,
12546 SEND_CTXT_CHECK_ENABLE);
12548 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12550 SET_STATIC_RATE_CONTROL_SMASK(reg);
12551 write_kctxt_csr(dd, sc->hw_context,
12552 SEND_CTXT_CHECK_ENABLE, reg);
12557 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12562 if (dd->icode != ICODE_RTL_SILICON) {
12563 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12564 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12568 reg = read_csr(dd, ASIC_STS_THERM);
12569 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12570 ASIC_STS_THERM_CURR_TEMP_MASK);
12571 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12572 ASIC_STS_THERM_LO_TEMP_MASK);
12573 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12574 ASIC_STS_THERM_HI_TEMP_MASK);
12575 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12576 ASIC_STS_THERM_CRIT_TEMP_MASK);
12577 /* triggers is a 3-bit value - 1 bit per trigger. */
12578 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12583 /* ========================================================================= */
12586 * Enable/disable chip from delivering interrupts.
12588 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12593 * In HFI, the mask needs to be 1 to allow interrupts.
12596 /* enable all interrupts */
12597 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12598 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12602 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12603 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12608 * Clear all interrupt sources on the chip.
12610 static void clear_all_interrupts(struct hfi1_devdata *dd)
12614 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12615 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12617 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12618 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12619 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12620 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12621 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12622 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12623 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12624 for (i = 0; i < dd->chip_send_contexts; i++)
12625 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12626 for (i = 0; i < dd->chip_sdma_engines; i++)
12627 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12629 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12630 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12631 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12634 /* Move to pcie.c? */
12635 static void disable_intx(struct pci_dev *pdev)
12640 static void clean_up_interrupts(struct hfi1_devdata *dd)
12644 /* remove irqs - must happen before disabling/turning off */
12645 if (dd->num_msix_entries) {
12647 struct hfi1_msix_entry *me = dd->msix_entries;
12649 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12650 if (!me->arg) /* => no irq, no affinity */
12652 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12653 free_irq(me->msix.vector, me->arg);
12657 if (dd->requested_intx_irq) {
12658 free_irq(dd->pcidev->irq, dd);
12659 dd->requested_intx_irq = 0;
12663 /* turn off interrupts */
12664 if (dd->num_msix_entries) {
12666 pci_disable_msix(dd->pcidev);
12669 disable_intx(dd->pcidev);
12672 /* clean structures */
12673 kfree(dd->msix_entries);
12674 dd->msix_entries = NULL;
12675 dd->num_msix_entries = 0;
12679 * Remap the interrupt source from the general handler to the given MSI-X
12682 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12687 /* clear from the handled mask of the general interrupt */
12690 dd->gi_mask[m] &= ~((u64)1 << n);
12692 /* direct the chip source to the given MSI-X interrupt */
12695 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12696 reg &= ~((u64)0xff << (8 * n));
12697 reg |= ((u64)msix_intr & 0xff) << (8 * n);
12698 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12701 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12702 int engine, int msix_intr)
12705 * SDMA engine interrupt sources grouped by type, rather than
12706 * engine. Per-engine interrupts are as follows:
12711 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12713 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12715 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12719 static int request_intx_irq(struct hfi1_devdata *dd)
12723 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12725 ret = request_irq(dd->pcidev->irq, general_interrupt,
12726 IRQF_SHARED, dd->intx_name, dd);
12728 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12731 dd->requested_intx_irq = 1;
12735 static int request_msix_irqs(struct hfi1_devdata *dd)
12737 int first_general, last_general;
12738 int first_sdma, last_sdma;
12739 int first_rx, last_rx;
12742 /* calculate the ranges we are going to use */
12744 last_general = first_general + 1;
12745 first_sdma = last_general;
12746 last_sdma = first_sdma + dd->num_sdma;
12747 first_rx = last_sdma;
12748 last_rx = first_rx + dd->n_krcv_queues;
12751 * Sanity check - the code expects all SDMA chip source
12752 * interrupts to be in the same CSR, starting at bit 0. Verify
12753 * that this is true by checking the bit location of the start.
12755 BUILD_BUG_ON(IS_SDMA_START % 64);
12757 for (i = 0; i < dd->num_msix_entries; i++) {
12758 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12759 const char *err_info;
12760 irq_handler_t handler;
12761 irq_handler_t thread = NULL;
12764 struct hfi1_ctxtdata *rcd = NULL;
12765 struct sdma_engine *sde = NULL;
12767 /* obtain the arguments to request_irq */
12768 if (first_general <= i && i < last_general) {
12769 idx = i - first_general;
12770 handler = general_interrupt;
12772 snprintf(me->name, sizeof(me->name),
12773 DRIVER_NAME "_%d", dd->unit);
12774 err_info = "general";
12775 me->type = IRQ_GENERAL;
12776 } else if (first_sdma <= i && i < last_sdma) {
12777 idx = i - first_sdma;
12778 sde = &dd->per_sdma[idx];
12779 handler = sdma_interrupt;
12781 snprintf(me->name, sizeof(me->name),
12782 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12784 remap_sdma_interrupts(dd, idx, i);
12785 me->type = IRQ_SDMA;
12786 } else if (first_rx <= i && i < last_rx) {
12787 idx = i - first_rx;
12788 rcd = dd->rcd[idx];
12789 /* no interrupt if no rcd */
12793 * Set the interrupt register and mask for this
12794 * context's interrupt.
12796 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12797 rcd->imask = ((u64)1) <<
12798 ((IS_RCVAVAIL_START + idx) % 64);
12799 handler = receive_context_interrupt;
12800 thread = receive_context_thread;
12802 snprintf(me->name, sizeof(me->name),
12803 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12804 err_info = "receive context";
12805 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12806 me->type = IRQ_RCVCTXT;
12808 /* not in our expected range - complain, then
12812 "Unexpected extra MSI-X interrupt %d\n", i);
12815 /* no argument, no interrupt */
12818 /* make sure the name is terminated */
12819 me->name[sizeof(me->name) - 1] = 0;
12821 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12825 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12826 err_info, me->msix.vector, idx, ret);
12830 * assign arg after request_irq call, so it will be
12835 ret = hfi1_get_irq_affinity(dd, me);
12838 "unable to pin IRQ %d\n", ret);
12845 * Set the general handler to accept all interrupts, remap all
12846 * chip interrupts back to MSI-X 0.
12848 static void reset_interrupts(struct hfi1_devdata *dd)
12852 /* all interrupts handled by the general handler */
12853 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12854 dd->gi_mask[i] = ~(u64)0;
12856 /* all chip interrupts map to MSI-X 0 */
12857 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12858 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12861 static int set_up_interrupts(struct hfi1_devdata *dd)
12863 struct hfi1_msix_entry *entries;
12864 u32 total, request;
12866 int single_interrupt = 0; /* we expect to have all the interrupts */
12870 * 1 general, "slow path" interrupt (includes the SDMA engines
12871 * slow source, SDMACleanupDone)
12872 * N interrupts - one per used SDMA engine
12873 * M interrupt - one per kernel receive context
12875 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12877 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12882 /* 1-1 MSI-X entry assignment */
12883 for (i = 0; i < total; i++)
12884 entries[i].msix.entry = i;
12886 /* ask for MSI-X interrupts */
12888 request_msix(dd, &request, entries);
12890 if (request == 0) {
12892 /* dd->num_msix_entries already zero */
12894 single_interrupt = 1;
12895 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12898 dd->num_msix_entries = request;
12899 dd->msix_entries = entries;
12901 if (request != total) {
12902 /* using MSI-X, with reduced interrupts */
12905 "cannot handle reduced interrupt case, want %u, got %u\n",
12910 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12913 /* mask all interrupts */
12914 set_intr_state(dd, 0);
12915 /* clear all pending interrupts */
12916 clear_all_interrupts(dd);
12918 /* reset general handler mask, chip MSI-X mappings */
12919 reset_interrupts(dd);
12921 if (single_interrupt)
12922 ret = request_intx_irq(dd);
12924 ret = request_msix_irqs(dd);
12931 clean_up_interrupts(dd);
12936 * Set up context values in dd. Sets:
12938 * num_rcv_contexts - number of contexts being used
12939 * n_krcv_queues - number of kernel contexts
12940 * first_user_ctxt - first non-kernel context in array of contexts
12941 * freectxts - number of free user contexts
12942 * num_send_contexts - number of PIO send contexts being used
12944 static int set_up_context_variables(struct hfi1_devdata *dd)
12946 unsigned long num_kernel_contexts;
12947 int total_contexts;
12951 int user_rmt_reduced;
12954 * Kernel receive contexts:
12955 * - Context 0 - control context (VL15/multicast/error)
12956 * - Context 1 - first kernel context
12957 * - Context 2 - second kernel context
12962 * n_krcvqs is the sum of module parameter kernel receive
12963 * contexts, krcvqs[]. It does not include the control
12964 * context, so add that.
12966 num_kernel_contexts = n_krcvqs + 1;
12968 num_kernel_contexts = DEFAULT_KRCVQS + 1;
12970 * Every kernel receive context needs an ACK send context.
12971 * one send context is allocated for each VL{0-7} and VL15
12973 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12975 "Reducing # kernel rcv contexts to: %d, from %lu\n",
12976 (int)(dd->chip_send_contexts - num_vls - 1),
12977 num_kernel_contexts);
12978 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12982 * - default to 1 user context per real (non-HT) CPU core if
12983 * num_user_contexts is negative
12985 if (num_user_contexts < 0)
12986 num_user_contexts =
12987 cpumask_weight(&node_affinity.real_cpu_mask);
12989 total_contexts = num_kernel_contexts + num_user_contexts;
12992 * Adjust the counts given a global max.
12994 if (total_contexts > dd->chip_rcv_contexts) {
12996 "Reducing # user receive contexts to: %d, from %d\n",
12997 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12998 (int)num_user_contexts);
12999 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13001 total_contexts = num_kernel_contexts + num_user_contexts;
13004 /* each user context requires an entry in the RMT */
13005 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13006 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13007 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13009 "RMT size is reducing the number of user receive contexts from %d to %d\n",
13010 (int)num_user_contexts,
13013 num_user_contexts = user_rmt_reduced;
13014 total_contexts = num_kernel_contexts + num_user_contexts;
13017 /* the first N are kernel contexts, the rest are user contexts */
13018 dd->num_rcv_contexts = total_contexts;
13019 dd->n_krcv_queues = num_kernel_contexts;
13020 dd->first_user_ctxt = num_kernel_contexts;
13021 dd->num_user_contexts = num_user_contexts;
13022 dd->freectxts = num_user_contexts;
13024 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13025 (int)dd->chip_rcv_contexts,
13026 (int)dd->num_rcv_contexts,
13027 (int)dd->n_krcv_queues,
13028 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13031 * Receive array allocation:
13032 * All RcvArray entries are divided into groups of 8. This
13033 * is required by the hardware and will speed up writes to
13034 * consecutive entries by using write-combining of the entire
13037 * The number of groups are evenly divided among all contexts.
13038 * any left over groups will be given to the first N user
13041 dd->rcv_entries.group_size = RCV_INCREMENT;
13042 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13043 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13044 dd->rcv_entries.nctxt_extra = ngroups -
13045 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13046 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13047 dd->rcv_entries.ngroups,
13048 dd->rcv_entries.nctxt_extra);
13049 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13050 MAX_EAGER_ENTRIES * 2) {
13051 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13052 dd->rcv_entries.group_size;
13054 "RcvArray group count too high, change to %u\n",
13055 dd->rcv_entries.ngroups);
13056 dd->rcv_entries.nctxt_extra = 0;
13059 * PIO send contexts
13061 ret = init_sc_pools_and_sizes(dd);
13062 if (ret >= 0) { /* success */
13063 dd->num_send_contexts = ret;
13066 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13067 dd->chip_send_contexts,
13068 dd->num_send_contexts,
13069 dd->sc_sizes[SC_KERNEL].count,
13070 dd->sc_sizes[SC_ACK].count,
13071 dd->sc_sizes[SC_USER].count,
13072 dd->sc_sizes[SC_VL15].count);
13073 ret = 0; /* success */
13080 * Set the device/port partition key table. The MAD code
13081 * will ensure that, at least, the partial management
13082 * partition key is present in the table.
13084 static void set_partition_keys(struct hfi1_pportdata *ppd)
13086 struct hfi1_devdata *dd = ppd->dd;
13090 dd_dev_info(dd, "Setting partition keys\n");
13091 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13092 reg |= (ppd->pkeys[i] &
13093 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13095 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13096 /* Each register holds 4 PKey values. */
13097 if ((i % 4) == 3) {
13098 write_csr(dd, RCV_PARTITION_KEY +
13099 ((i - 3) * 2), reg);
13104 /* Always enable HW pkeys check when pkeys table is set */
13105 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13109 * These CSRs and memories are uninitialized on reset and must be
13110 * written before reading to set the ECC/parity bits.
13112 * NOTE: All user context CSRs that are not mmaped write-only
13113 * (e.g. the TID flows) must be initialized even if the driver never
13116 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13121 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13122 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13124 /* SendCtxtCreditReturnAddr */
13125 for (i = 0; i < dd->chip_send_contexts; i++)
13126 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13128 /* PIO Send buffers */
13129 /* SDMA Send buffers */
13131 * These are not normally read, and (presently) have no method
13132 * to be read, so are not pre-initialized
13136 /* RcvHdrTailAddr */
13137 /* RcvTidFlowTable */
13138 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13139 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13140 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13141 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13142 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13146 for (i = 0; i < dd->chip_rcv_array_count; i++)
13147 write_csr(dd, RCV_ARRAY + (8 * i),
13148 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13150 /* RcvQPMapTable */
13151 for (i = 0; i < 32; i++)
13152 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13156 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13158 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13161 unsigned long timeout;
13164 /* is the condition present? */
13165 reg = read_csr(dd, CCE_STATUS);
13166 if ((reg & status_bits) == 0)
13169 /* clear the condition */
13170 write_csr(dd, CCE_CTRL, ctrl_bits);
13172 /* wait for the condition to clear */
13173 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13175 reg = read_csr(dd, CCE_STATUS);
13176 if ((reg & status_bits) == 0)
13178 if (time_after(jiffies, timeout)) {
13180 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13181 status_bits, reg & status_bits);
13188 /* set CCE CSRs to chip reset defaults */
13189 static void reset_cce_csrs(struct hfi1_devdata *dd)
13193 /* CCE_REVISION read-only */
13194 /* CCE_REVISION2 read-only */
13195 /* CCE_CTRL - bits clear automatically */
13196 /* CCE_STATUS read-only, use CceCtrl to clear */
13197 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13198 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13199 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13200 for (i = 0; i < CCE_NUM_SCRATCH; i++)
13201 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13202 /* CCE_ERR_STATUS read-only */
13203 write_csr(dd, CCE_ERR_MASK, 0);
13204 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13205 /* CCE_ERR_FORCE leave alone */
13206 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13207 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13208 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13209 /* CCE_PCIE_CTRL leave alone */
13210 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13211 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13212 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13213 CCE_MSIX_TABLE_UPPER_RESETCSR);
13215 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13216 /* CCE_MSIX_PBA read-only */
13217 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13218 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13220 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13221 write_csr(dd, CCE_INT_MAP, 0);
13222 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13223 /* CCE_INT_STATUS read-only */
13224 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13225 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13226 /* CCE_INT_FORCE leave alone */
13227 /* CCE_INT_BLOCKED read-only */
13229 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13230 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13233 /* set MISC CSRs to chip reset defaults */
13234 static void reset_misc_csrs(struct hfi1_devdata *dd)
13238 for (i = 0; i < 32; i++) {
13239 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13240 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13241 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13244 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13245 * only be written 128-byte chunks
13247 /* init RSA engine to clear lingering errors */
13248 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13249 write_csr(dd, MISC_CFG_RSA_MU, 0);
13250 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13251 /* MISC_STS_8051_DIGEST read-only */
13252 /* MISC_STS_SBM_DIGEST read-only */
13253 /* MISC_STS_PCIE_DIGEST read-only */
13254 /* MISC_STS_FAB_DIGEST read-only */
13255 /* MISC_ERR_STATUS read-only */
13256 write_csr(dd, MISC_ERR_MASK, 0);
13257 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13258 /* MISC_ERR_FORCE leave alone */
13261 /* set TXE CSRs to chip reset defaults */
13262 static void reset_txe_csrs(struct hfi1_devdata *dd)
13269 write_csr(dd, SEND_CTRL, 0);
13270 __cm_reset(dd, 0); /* reset CM internal state */
13271 /* SEND_CONTEXTS read-only */
13272 /* SEND_DMA_ENGINES read-only */
13273 /* SEND_PIO_MEM_SIZE read-only */
13274 /* SEND_DMA_MEM_SIZE read-only */
13275 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13276 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13277 /* SEND_PIO_ERR_STATUS read-only */
13278 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13279 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13280 /* SEND_PIO_ERR_FORCE leave alone */
13281 /* SEND_DMA_ERR_STATUS read-only */
13282 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13283 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13284 /* SEND_DMA_ERR_FORCE leave alone */
13285 /* SEND_EGRESS_ERR_STATUS read-only */
13286 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13287 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13288 /* SEND_EGRESS_ERR_FORCE leave alone */
13289 write_csr(dd, SEND_BTH_QP, 0);
13290 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13291 write_csr(dd, SEND_SC2VLT0, 0);
13292 write_csr(dd, SEND_SC2VLT1, 0);
13293 write_csr(dd, SEND_SC2VLT2, 0);
13294 write_csr(dd, SEND_SC2VLT3, 0);
13295 write_csr(dd, SEND_LEN_CHECK0, 0);
13296 write_csr(dd, SEND_LEN_CHECK1, 0);
13297 /* SEND_ERR_STATUS read-only */
13298 write_csr(dd, SEND_ERR_MASK, 0);
13299 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13300 /* SEND_ERR_FORCE read-only */
13301 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13302 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13303 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13304 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13305 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13306 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13307 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13308 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13309 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13310 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13311 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13312 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13313 /* SEND_CM_CREDIT_USED_STATUS read-only */
13314 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13315 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13316 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13317 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13318 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13319 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13320 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13321 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13322 /* SEND_CM_CREDIT_USED_VL read-only */
13323 /* SEND_CM_CREDIT_USED_VL15 read-only */
13324 /* SEND_EGRESS_CTXT_STATUS read-only */
13325 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13326 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13327 /* SEND_EGRESS_ERR_INFO read-only */
13328 /* SEND_EGRESS_ERR_SOURCE read-only */
13331 * TXE Per-Context CSRs
13333 for (i = 0; i < dd->chip_send_contexts; i++) {
13334 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13335 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13336 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13337 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13338 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13339 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13340 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13341 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13342 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13343 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13344 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13345 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13349 * TXE Per-SDMA CSRs
13351 for (i = 0; i < dd->chip_sdma_engines; i++) {
13352 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13353 /* SEND_DMA_STATUS read-only */
13354 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13355 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13356 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13357 /* SEND_DMA_HEAD read-only */
13358 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13359 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13360 /* SEND_DMA_IDLE_CNT read-only */
13361 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13362 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13363 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13364 /* SEND_DMA_ENG_ERR_STATUS read-only */
13365 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13366 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13367 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13368 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13369 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13370 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13371 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13372 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13373 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13374 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13380 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13382 static void init_rbufs(struct hfi1_devdata *dd)
13388 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13393 reg = read_csr(dd, RCV_STATUS);
13394 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13395 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13398 * Give up after 1ms - maximum wait time.
13400 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
13401 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13402 * 136 KB / (66% * 250MB/s) = 844us
13404 if (count++ > 500) {
13406 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13410 udelay(2); /* do not busy-wait the CSR */
13413 /* start the init - expect RcvCtrl to be 0 */
13414 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13417 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13418 * period after the write before RcvStatus.RxRbufInitDone is valid.
13419 * The delay in the first run through the loop below is sufficient and
13420 * required before the first read of RcvStatus.RxRbufInintDone.
13422 read_csr(dd, RCV_CTRL);
13424 /* wait for the init to finish */
13427 /* delay is required first time through - see above */
13428 udelay(2); /* do not busy-wait the CSR */
13429 reg = read_csr(dd, RCV_STATUS);
13430 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13433 /* give up after 100us - slowest possible at 33MHz is 73us */
13434 if (count++ > 50) {
13436 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13443 /* set RXE CSRs to chip reset defaults */
13444 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13451 write_csr(dd, RCV_CTRL, 0);
13453 /* RCV_STATUS read-only */
13454 /* RCV_CONTEXTS read-only */
13455 /* RCV_ARRAY_CNT read-only */
13456 /* RCV_BUF_SIZE read-only */
13457 write_csr(dd, RCV_BTH_QP, 0);
13458 write_csr(dd, RCV_MULTICAST, 0);
13459 write_csr(dd, RCV_BYPASS, 0);
13460 write_csr(dd, RCV_VL15, 0);
13461 /* this is a clear-down */
13462 write_csr(dd, RCV_ERR_INFO,
13463 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13464 /* RCV_ERR_STATUS read-only */
13465 write_csr(dd, RCV_ERR_MASK, 0);
13466 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13467 /* RCV_ERR_FORCE leave alone */
13468 for (i = 0; i < 32; i++)
13469 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13470 for (i = 0; i < 4; i++)
13471 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13472 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13473 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13474 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13475 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13476 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13477 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13478 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13479 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13481 for (i = 0; i < 32; i++)
13482 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13485 * RXE Kernel and User Per-Context CSRs
13487 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13489 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13490 /* RCV_CTXT_STATUS read-only */
13491 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13492 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13493 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13494 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13495 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13496 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13497 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13498 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13499 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13500 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13503 /* RCV_HDR_TAIL read-only */
13504 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13505 /* RCV_EGR_INDEX_TAIL read-only */
13506 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13507 /* RCV_EGR_OFFSET_TAIL read-only */
13508 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13509 write_uctxt_csr(dd, i,
13510 RCV_TID_FLOW_TABLE + (8 * j), 0);
13516 * Set sc2vl tables.
13518 * They power on to zeros, so to avoid send context errors
13519 * they need to be set:
13521 * SC 0-7 -> VL 0-7 (respectively)
13526 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13529 /* init per architecture spec, constrained by hardware capability */
13531 /* HFI maps sent packets */
13532 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13538 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13544 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13550 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13557 /* DC maps received packets */
13558 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13560 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13561 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13562 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13564 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13565 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13567 /* initialize the cached sc2vl values consistently with h/w */
13568 for (i = 0; i < 32; i++) {
13569 if (i < 8 || i == 15)
13570 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13572 *((u8 *)(dd->sc2vl) + i) = 0;
13577 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13578 * depend on the chip going through a power-on reset - a driver may be loaded
13579 * and unloaded many times.
13581 * Do not write any CSR values to the chip in this routine - there may be
13582 * a reset following the (possible) FLR in this routine.
13585 static void init_chip(struct hfi1_devdata *dd)
13590 * Put the HFI CSRs in a known state.
13591 * Combine this with a DC reset.
13593 * Stop the device from doing anything while we do a
13594 * reset. We know there are no other active users of
13595 * the device since we are now in charge. Turn off
13596 * off all outbound and inbound traffic and make sure
13597 * the device does not generate any interrupts.
13600 /* disable send contexts and SDMA engines */
13601 write_csr(dd, SEND_CTRL, 0);
13602 for (i = 0; i < dd->chip_send_contexts; i++)
13603 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13604 for (i = 0; i < dd->chip_sdma_engines; i++)
13605 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13606 /* disable port (turn off RXE inbound traffic) and contexts */
13607 write_csr(dd, RCV_CTRL, 0);
13608 for (i = 0; i < dd->chip_rcv_contexts; i++)
13609 write_csr(dd, RCV_CTXT_CTRL, 0);
13610 /* mask all interrupt sources */
13611 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13612 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13615 * DC Reset: do a full DC reset before the register clear.
13616 * A recommended length of time to hold is one CSR read,
13617 * so reread the CceDcCtrl. Then, hold the DC in reset
13618 * across the clear.
13620 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13621 (void)read_csr(dd, CCE_DC_CTRL);
13625 * A FLR will reset the SPC core and part of the PCIe.
13626 * The parts that need to be restored have already been
13629 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13631 /* do the FLR, the DC reset will remain */
13634 /* restore command and BARs */
13635 restore_pci_variables(dd);
13638 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13640 restore_pci_variables(dd);
13643 dd_dev_info(dd, "Resetting CSRs with writes\n");
13644 reset_cce_csrs(dd);
13645 reset_txe_csrs(dd);
13646 reset_rxe_csrs(dd);
13647 reset_misc_csrs(dd);
13649 /* clear the DC reset */
13650 write_csr(dd, CCE_DC_CTRL, 0);
13652 /* Set the LED off */
13656 * Clear the QSFP reset.
13657 * An FLR enforces a 0 on all out pins. The driver does not touch
13658 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
13659 * anything plugged constantly in reset, if it pays attention
13661 * Prime examples of this are optical cables. Set all pins high.
13662 * I2CCLK and I2CDAT will change per direction, and INT_N and
13663 * MODPRS_N are input only and their value is ignored.
13665 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13666 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13667 init_chip_resources(dd);
13670 static void init_early_variables(struct hfi1_devdata *dd)
13674 /* assign link credit variables */
13676 dd->link_credits = CM_GLOBAL_CREDITS;
13678 dd->link_credits--;
13679 dd->vcu = cu_to_vcu(hfi1_cu);
13680 /* enough room for 8 MAD packets plus header - 17K */
13681 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13682 if (dd->vl15_init > dd->link_credits)
13683 dd->vl15_init = dd->link_credits;
13685 write_uninitialized_csrs_and_memories(dd);
13687 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13688 for (i = 0; i < dd->num_pports; i++) {
13689 struct hfi1_pportdata *ppd = &dd->pport[i];
13691 set_partition_keys(ppd);
13693 init_sc2vl_tables(dd);
13696 static void init_kdeth_qp(struct hfi1_devdata *dd)
13698 /* user changed the KDETH_QP */
13699 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13700 /* out of range or illegal value */
13701 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13704 if (kdeth_qp == 0) /* not set, or failed range check */
13705 kdeth_qp = DEFAULT_KDETH_QP;
13707 write_csr(dd, SEND_BTH_QP,
13708 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13709 SEND_BTH_QP_KDETH_QP_SHIFT);
13711 write_csr(dd, RCV_BTH_QP,
13712 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13713 RCV_BTH_QP_KDETH_QP_SHIFT);
13718 * @dd - device data
13719 * @first_ctxt - first context
13720 * @last_ctxt - first context
13722 * This return sets the qpn mapping table that
13723 * is indexed by qpn[8:1].
13725 * The routine will round robin the 256 settings
13726 * from first_ctxt to last_ctxt.
13728 * The first/last looks ahead to having specialized
13729 * receive contexts for mgmt and bypass. Normal
13730 * verbs traffic will assumed to be on a range
13731 * of receive contexts.
13733 static void init_qpmap_table(struct hfi1_devdata *dd,
13738 u64 regno = RCV_QP_MAP_TABLE;
13740 u64 ctxt = first_ctxt;
13742 for (i = 0; i < 256; i++) {
13743 reg |= ctxt << (8 * (i % 8));
13745 if (ctxt > last_ctxt)
13748 write_csr(dd, regno, reg);
13754 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13755 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13758 struct rsm_map_table {
13759 u64 map[NUM_MAP_REGS];
13763 struct rsm_rule_data {
13779 * Return an initialized RMT map table for users to fill in. OK if it
13780 * returns NULL, indicating no table.
13782 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13784 struct rsm_map_table *rmt;
13785 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
13787 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13789 memset(rmt->map, rxcontext, sizeof(rmt->map));
13797 * Write the final RMT map table to the chip and free the table. OK if
13800 static void complete_rsm_map_table(struct hfi1_devdata *dd,
13801 struct rsm_map_table *rmt)
13806 /* write table to chip */
13807 for (i = 0; i < NUM_MAP_REGS; i++)
13808 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
13811 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13816 * Add a receive side mapping rule.
13818 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
13819 struct rsm_rule_data *rrd)
13821 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
13822 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
13823 1ull << rule_index | /* enable bit */
13824 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13825 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
13826 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13827 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13828 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13829 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13830 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13831 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13832 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
13833 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
13834 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
13835 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
13836 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
13839 /* return the number of RSM map table entries that will be used for QOS */
13840 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
13847 /* is QOS active at all? */
13848 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13853 /* determine bits for qpn */
13854 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
13855 if (krcvqs[i] > max_by_vl)
13856 max_by_vl = krcvqs[i];
13857 if (max_by_vl > 32)
13859 m = ilog2(__roundup_pow_of_two(max_by_vl));
13861 /* determine bits for vl */
13862 n = ilog2(__roundup_pow_of_two(num_vls));
13864 /* reject if too much is used */
13873 return 1 << (m + n);
13884 * init_qos - init RX qos
13885 * @dd - device data
13886 * @rmt - RSM map table
13888 * This routine initializes Rule 0 and the RSM map table to implement
13889 * quality of service (qos).
13891 * If all of the limit tests succeed, qos is applied based on the array
13892 * interpretation of krcvqs where entry 0 is VL0.
13894 * The number of vl bits (n) and the number of qpn bits (m) are computed to
13895 * feed both the RSM map table and the single rule.
13897 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
13899 struct rsm_rule_data rrd;
13900 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13901 unsigned int rmt_entries;
13906 rmt_entries = qos_rmt_entries(dd, &m, &n);
13907 if (rmt_entries == 0)
13909 qpns_per_vl = 1 << m;
13911 /* enough room in the map table? */
13912 rmt_entries = 1 << (m + n);
13913 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
13916 /* add qos entries to the the RSM map table */
13917 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
13920 for (qpn = 0, tctxt = ctxt;
13921 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13922 unsigned idx, regoff, regidx;
13924 /* generate the index the hardware will produce */
13925 idx = rmt->used + ((qpn << n) ^ i);
13926 regoff = (idx % 8) * 8;
13928 /* replace default with context number */
13929 reg = rmt->map[regidx];
13930 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13932 reg |= (u64)(tctxt++) << regoff;
13933 rmt->map[regidx] = reg;
13934 if (tctxt == ctxt + krcvqs[i])
13940 rrd.offset = rmt->used;
13942 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
13943 rrd.field2_off = LRH_SC_MATCH_OFFSET;
13944 rrd.index1_off = LRH_SC_SELECT_OFFSET;
13945 rrd.index1_width = n;
13946 rrd.index2_off = QPN_SELECT_OFFSET;
13947 rrd.index2_width = m + n;
13948 rrd.mask1 = LRH_BTH_MASK;
13949 rrd.value1 = LRH_BTH_VALUE;
13950 rrd.mask2 = LRH_SC_MASK;
13951 rrd.value2 = LRH_SC_VALUE;
13954 add_rsm_rule(dd, 0, &rrd);
13956 /* mark RSM map entries as used */
13957 rmt->used += rmt_entries;
13958 /* map everything else to the mcast/err/vl15 context */
13959 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
13960 dd->qos_shift = n + 1;
13964 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13967 static void init_user_fecn_handling(struct hfi1_devdata *dd,
13968 struct rsm_map_table *rmt)
13970 struct rsm_rule_data rrd;
13972 int i, idx, regoff, regidx;
13975 /* there needs to be enough room in the map table */
13976 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
13977 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
13982 * RSM will extract the destination context as an index into the
13983 * map table. The destination contexts are a sequential block
13984 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
13985 * Map entries are accessed as offset + extracted value. Adjust
13986 * the added offset so this sequence can be placed anywhere in
13987 * the table - as long as the entries themselves do not wrap.
13988 * There are only enough bits in offset for the table size, so
13989 * start with that to allow for a "negative" offset.
13991 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
13992 (int)dd->first_user_ctxt);
13994 for (i = dd->first_user_ctxt, idx = rmt->used;
13995 i < dd->num_rcv_contexts; i++, idx++) {
13996 /* replace with identity mapping */
13997 regoff = (idx % 8) * 8;
13999 reg = rmt->map[regidx];
14000 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14001 reg |= (u64)i << regoff;
14002 rmt->map[regidx] = reg;
14006 * For RSM intercept of Expected FECN packets:
14007 * o packet type 0 - expected
14008 * o match on F (bit 95), using select/match 1, and
14009 * o match on SH (bit 133), using select/match 2.
14011 * Use index 1 to extract the 8-bit receive context from DestQP
14012 * (start at bit 64). Use that as the RSM map table index.
14014 rrd.offset = offset;
14016 rrd.field1_off = 95;
14017 rrd.field2_off = 133;
14018 rrd.index1_off = 64;
14019 rrd.index1_width = 8;
14020 rrd.index2_off = 0;
14021 rrd.index2_width = 0;
14028 add_rsm_rule(dd, 1, &rrd);
14030 rmt->used += dd->num_user_contexts;
14033 static void init_rxe(struct hfi1_devdata *dd)
14035 struct rsm_map_table *rmt;
14037 /* enable all receive errors */
14038 write_csr(dd, RCV_ERR_MASK, ~0ull);
14040 rmt = alloc_rsm_map_table(dd);
14041 /* set up QOS, including the QPN map table */
14043 init_user_fecn_handling(dd, rmt);
14044 complete_rsm_map_table(dd, rmt);
14048 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14049 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14050 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14051 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14052 * Max_PayLoad_Size set to its minimum of 128.
14054 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14055 * (64 bytes). Max_Payload_Size is possibly modified upward in
14056 * tune_pcie_caps() which is called after this routine.
14060 static void init_other(struct hfi1_devdata *dd)
14062 /* enable all CCE errors */
14063 write_csr(dd, CCE_ERR_MASK, ~0ull);
14064 /* enable *some* Misc errors */
14065 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14066 /* enable all DC errors, except LCB */
14067 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14068 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14072 * Fill out the given AU table using the given CU. A CU is defined in terms
14073 * AUs. The table is a an encoding: given the index, how many AUs does that
14076 * NOTE: Assumes that the register layout is the same for the
14077 * local and remote tables.
14079 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14080 u32 csr0to3, u32 csr4to7)
14082 write_csr(dd, csr0to3,
14083 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14084 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14086 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14088 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14089 write_csr(dd, csr4to7,
14091 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14093 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14095 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14097 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14100 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14102 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14103 SEND_CM_LOCAL_AU_TABLE4_TO7);
14106 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14108 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14109 SEND_CM_REMOTE_AU_TABLE4_TO7);
14112 static void init_txe(struct hfi1_devdata *dd)
14116 /* enable all PIO, SDMA, general, and Egress errors */
14117 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14118 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14119 write_csr(dd, SEND_ERR_MASK, ~0ull);
14120 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14122 /* enable all per-context and per-SDMA engine errors */
14123 for (i = 0; i < dd->chip_send_contexts; i++)
14124 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14125 for (i = 0; i < dd->chip_sdma_engines; i++)
14126 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14128 /* set the local CU to AU mapping */
14129 assign_local_cm_au_table(dd, dd->vcu);
14132 * Set reasonable default for Credit Return Timer
14133 * Don't set on Simulator - causes it to choke.
14135 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14136 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14139 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14141 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14146 if (!rcd || !rcd->sc) {
14150 sctxt = rcd->sc->hw_context;
14151 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14152 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14153 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14154 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14155 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14156 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14157 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14159 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14162 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14163 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14164 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14167 /* Enable J_KEY check on receive context. */
14168 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14169 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14170 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14171 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14176 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14178 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14183 if (!rcd || !rcd->sc) {
14187 sctxt = rcd->sc->hw_context;
14188 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14190 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14191 * This check would not have been enabled for A0 h/w, see
14195 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14196 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14197 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14199 /* Turn off the J_KEY on the receive side */
14200 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14205 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14207 struct hfi1_ctxtdata *rcd;
14212 if (ctxt < dd->num_rcv_contexts) {
14213 rcd = dd->rcd[ctxt];
14218 if (!rcd || !rcd->sc) {
14222 sctxt = rcd->sc->hw_context;
14223 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14224 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14225 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14226 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14227 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14228 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14229 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14234 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
14236 struct hfi1_ctxtdata *rcd;
14241 if (ctxt < dd->num_rcv_contexts) {
14242 rcd = dd->rcd[ctxt];
14247 if (!rcd || !rcd->sc) {
14251 sctxt = rcd->sc->hw_context;
14252 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14253 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14254 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14255 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14261 * Start doing the clean up the the chip. Our clean up happens in multiple
14262 * stages and this is just the first.
14264 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14269 clean_up_interrupts(dd);
14270 finish_chip_resources(dd);
14273 #define HFI_BASE_GUID(dev) \
14274 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14277 * Information can be shared between the two HFIs on the same ASIC
14278 * in the same OS. This function finds the peer device and sets
14279 * up a shared structure.
14281 static int init_asic_data(struct hfi1_devdata *dd)
14283 unsigned long flags;
14284 struct hfi1_devdata *tmp, *peer = NULL;
14285 struct hfi1_asic_data *asic_data;
14288 /* pre-allocate the asic structure in case we are the first device */
14289 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14293 spin_lock_irqsave(&hfi1_devs_lock, flags);
14294 /* Find our peer device */
14295 list_for_each_entry(tmp, &hfi1_dev_list, list) {
14296 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14297 dd->unit != tmp->unit) {
14304 /* use already allocated structure */
14305 dd->asic_data = peer->asic_data;
14308 dd->asic_data = asic_data;
14309 mutex_init(&dd->asic_data->asic_resource_mutex);
14311 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14312 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14314 /* first one through - set up i2c devices */
14316 ret = set_up_i2c(dd, dd->asic_data);
14322 * Set dd->boardname. Use a generic name if a name is not returned from
14323 * EFI variable space.
14325 * Return 0 on success, -ENOMEM if space could not be allocated.
14327 static int obtain_boardname(struct hfi1_devdata *dd)
14329 /* generic board description */
14330 const char generic[] =
14331 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14332 unsigned long size;
14335 ret = read_hfi1_efi_var(dd, "description", &size,
14336 (void **)&dd->boardname);
14338 dd_dev_info(dd, "Board description not found\n");
14339 /* use generic description */
14340 dd->boardname = kstrdup(generic, GFP_KERNEL);
14341 if (!dd->boardname)
14348 * Check the interrupt registers to make sure that they are mapped correctly.
14349 * It is intended to help user identify any mismapping by VMM when the driver
14350 * is running in a VM. This function should only be called before interrupt
14351 * is set up properly.
14353 * Return 0 on success, -EINVAL on failure.
14355 static int check_int_registers(struct hfi1_devdata *dd)
14358 u64 all_bits = ~(u64)0;
14361 /* Clear CceIntMask[0] to avoid raising any interrupts */
14362 mask = read_csr(dd, CCE_INT_MASK);
14363 write_csr(dd, CCE_INT_MASK, 0ull);
14364 reg = read_csr(dd, CCE_INT_MASK);
14368 /* Clear all interrupt status bits */
14369 write_csr(dd, CCE_INT_CLEAR, all_bits);
14370 reg = read_csr(dd, CCE_INT_STATUS);
14374 /* Set all interrupt status bits */
14375 write_csr(dd, CCE_INT_FORCE, all_bits);
14376 reg = read_csr(dd, CCE_INT_STATUS);
14377 if (reg != all_bits)
14380 /* Restore the interrupt mask */
14381 write_csr(dd, CCE_INT_CLEAR, all_bits);
14382 write_csr(dd, CCE_INT_MASK, mask);
14386 write_csr(dd, CCE_INT_MASK, mask);
14387 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14392 * Allocate and initialize the device structure for the hfi.
14393 * @dev: the pci_dev for hfi1_ib device
14394 * @ent: pci_device_id struct for this dev
14396 * Also allocates, initializes, and returns the devdata struct for this
14399 * This is global, and is called directly at init to set up the
14400 * chip-specific function pointers for later use.
14402 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14403 const struct pci_device_id *ent)
14405 struct hfi1_devdata *dd;
14406 struct hfi1_pportdata *ppd;
14409 static const char * const inames[] = { /* implementation names */
14411 "RTL VCS simulation",
14412 "RTL FPGA emulation",
14413 "Functional simulator"
14415 struct pci_dev *parent = pdev->bus->self;
14417 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14418 sizeof(struct hfi1_pportdata));
14422 for (i = 0; i < dd->num_pports; i++, ppd++) {
14424 /* init common fields */
14425 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14426 /* DC supports 4 link widths */
14427 ppd->link_width_supported =
14428 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14429 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14430 ppd->link_width_downgrade_supported =
14431 ppd->link_width_supported;
14432 /* start out enabling only 4X */
14433 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14434 ppd->link_width_downgrade_enabled =
14435 ppd->link_width_downgrade_supported;
14436 /* link width active is 0 when link is down */
14437 /* link width downgrade active is 0 when link is down */
14439 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14440 num_vls > HFI1_MAX_VLS_SUPPORTED) {
14441 hfi1_early_err(&pdev->dev,
14442 "Invalid num_vls %u, using %u VLs\n",
14443 num_vls, HFI1_MAX_VLS_SUPPORTED);
14444 num_vls = HFI1_MAX_VLS_SUPPORTED;
14446 ppd->vls_supported = num_vls;
14447 ppd->vls_operational = ppd->vls_supported;
14448 ppd->actual_vls_operational = ppd->vls_supported;
14449 /* Set the default MTU. */
14450 for (vl = 0; vl < num_vls; vl++)
14451 dd->vld[vl].mtu = hfi1_max_mtu;
14452 dd->vld[15].mtu = MAX_MAD_PACKET;
14454 * Set the initial values to reasonable default, will be set
14455 * for real when link is up.
14457 ppd->lstate = IB_PORT_DOWN;
14458 ppd->overrun_threshold = 0x4;
14459 ppd->phy_error_threshold = 0xf;
14460 ppd->port_crc_mode_enabled = link_crc_mask;
14461 /* initialize supported LTP CRC mode */
14462 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14463 /* initialize enabled LTP CRC mode */
14464 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14465 /* start in offline */
14466 ppd->host_link_state = HLS_DN_OFFLINE;
14467 init_vl_arb_caches(ppd);
14468 ppd->last_pstate = 0xff; /* invalid value */
14471 dd->link_default = HLS_DN_POLL;
14474 * Do remaining PCIe setup and save PCIe values in dd.
14475 * Any error printing is already done by the init code.
14476 * On return, we have the chip mapped.
14478 ret = hfi1_pcie_ddinit(dd, pdev);
14482 /* verify that reads actually work, save revision for reset check */
14483 dd->revision = read_csr(dd, CCE_REVISION);
14484 if (dd->revision == ~(u64)0) {
14485 dd_dev_err(dd, "cannot read chip CSRs\n");
14489 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14490 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14491 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14492 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14495 * Check interrupt registers mapping if the driver has no access to
14496 * the upstream component. In this case, it is likely that the driver
14497 * is running in a VM.
14500 ret = check_int_registers(dd);
14506 * obtain the hardware ID - NOT related to unit, which is a
14507 * software enumeration
14509 reg = read_csr(dd, CCE_REVISION2);
14510 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14511 & CCE_REVISION2_HFI_ID_MASK;
14512 /* the variable size will remove unwanted bits */
14513 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14514 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14515 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14516 dd->icode < ARRAY_SIZE(inames) ?
14517 inames[dd->icode] : "unknown", (int)dd->irev);
14519 /* speeds the hardware can support */
14520 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14521 /* speeds allowed to run at */
14522 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14523 /* give a reasonable active value, will be set on link up */
14524 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14526 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14527 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14528 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14529 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14530 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14531 /* fix up link widths for emulation _p */
14533 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14534 ppd->link_width_supported =
14535 ppd->link_width_enabled =
14536 ppd->link_width_downgrade_supported =
14537 ppd->link_width_downgrade_enabled =
14540 /* insure num_vls isn't larger than number of sdma engines */
14541 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14542 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14543 num_vls, dd->chip_sdma_engines);
14544 num_vls = dd->chip_sdma_engines;
14545 ppd->vls_supported = dd->chip_sdma_engines;
14546 ppd->vls_operational = ppd->vls_supported;
14550 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14551 * Limit the max if larger than the field holds. If timeout is
14552 * non-zero, then the calculated field will be at least 1.
14554 * Must be after icode is set up - the cclock rate depends
14555 * on knowing the hardware being used.
14557 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14558 if (dd->rcv_intr_timeout_csr >
14559 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14560 dd->rcv_intr_timeout_csr =
14561 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14562 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14563 dd->rcv_intr_timeout_csr = 1;
14565 /* needs to be done before we look for the peer device */
14568 /* set up shared ASIC data with peer device */
14569 ret = init_asic_data(dd);
14573 /* obtain chip sizes, reset chip CSRs */
14576 /* read in the PCIe link speed information */
14577 ret = pcie_speeds(dd);
14581 /* call before get_platform_config(), after init_chip_resources() */
14582 ret = eprom_init(dd);
14584 goto bail_free_rcverr;
14586 /* Needs to be called before hfi1_firmware_init */
14587 get_platform_config(dd);
14589 /* read in firmware */
14590 ret = hfi1_firmware_init(dd);
14595 * In general, the PCIe Gen3 transition must occur after the
14596 * chip has been idled (so it won't initiate any PCIe transactions
14597 * e.g. an interrupt) and before the driver changes any registers
14598 * (the transition will reset the registers).
14600 * In particular, place this call after:
14601 * - init_chip() - the chip will not initiate any PCIe transactions
14602 * - pcie_speeds() - reads the current link speed
14603 * - hfi1_firmware_init() - the needed firmware is ready to be
14606 ret = do_pcie_gen3_transition(dd);
14610 /* start setting dd values and adjusting CSRs */
14611 init_early_variables(dd);
14613 parse_platform_config(dd);
14615 ret = obtain_boardname(dd);
14619 snprintf(dd->boardversion, BOARD_VERS_MAX,
14620 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14621 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14624 (dd->revision >> CCE_REVISION_SW_SHIFT)
14625 & CCE_REVISION_SW_MASK);
14627 ret = set_up_context_variables(dd);
14631 /* set initial RXE CSRs */
14633 /* set initial TXE CSRs */
14635 /* set initial non-RXE, non-TXE CSRs */
14637 /* set up KDETH QP prefix in both RX and TX CSRs */
14640 ret = hfi1_dev_affinity_init(dd);
14644 /* send contexts must be set up before receive contexts */
14645 ret = init_send_contexts(dd);
14649 ret = hfi1_create_ctxts(dd);
14653 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14655 * rcd[0] is guaranteed to be valid by this point. Also, all
14656 * context are using the same value, as per the module parameter.
14658 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14660 ret = init_pervl_scs(dd);
14665 for (i = 0; i < dd->num_pports; ++i) {
14666 ret = sdma_init(dd, i);
14671 /* use contexts created by hfi1_create_ctxts */
14672 ret = set_up_interrupts(dd);
14676 /* set up LCB access - must be after set_up_interrupts() */
14677 init_lcb_access(dd);
14680 * Serial number is created from the base guid:
14681 * [27:24] = base guid [38:35]
14682 * [23: 0] = base guid [23: 0]
14684 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14685 (dd->base_guid & 0xFFFFFF) |
14686 ((dd->base_guid >> 11) & 0xF000000));
14688 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14689 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14690 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14692 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14694 goto bail_clear_intr;
14698 ret = init_cntrs(dd);
14700 goto bail_clear_intr;
14702 ret = init_rcverr(dd);
14704 goto bail_free_cntrs;
14706 init_completion(&dd->user_comp);
14708 /* The user refcount starts with one to inidicate an active device */
14709 atomic_set(&dd->user_refcount, 1);
14718 clean_up_interrupts(dd);
14720 hfi1_pcie_ddcleanup(dd);
14722 hfi1_free_devdata(dd);
14728 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14732 u32 current_egress_rate = ppd->current_egress_rate;
14733 /* rates here are in units of 10^6 bits/sec */
14735 if (desired_egress_rate == -1)
14736 return 0; /* shouldn't happen */
14738 if (desired_egress_rate >= current_egress_rate)
14739 return 0; /* we can't help go faster, only slower */
14741 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14742 egress_cycles(dw_len * 4, current_egress_rate);
14744 return (u16)delta_cycles;
14748 * create_pbc - build a pbc for transmission
14749 * @flags: special case flags or-ed in built pbc
14750 * @srate: static rate
14752 * @dwlen: dword length (header words + data words + pbc words)
14754 * Create a PBC with the given flags, rate, VL, and length.
14756 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14757 * for verbs, which does not use this PSM feature. The lone other caller
14758 * is for the diagnostic interface which calls this if the user does not
14759 * supply their own PBC.
14761 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14764 u64 pbc, delay = 0;
14766 if (unlikely(srate_mbs))
14767 delay = delay_cycles(ppd, srate_mbs, dw_len);
14770 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14771 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14772 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14773 | (dw_len & PBC_LENGTH_DWS_MASK)
14774 << PBC_LENGTH_DWS_SHIFT;
14779 #define SBUS_THERMAL 0x4f
14780 #define SBUS_THERM_MONITOR_MODE 0x1
14782 #define THERM_FAILURE(dev, ret, reason) \
14784 "Thermal sensor initialization failed: %s (%d)\n", \
14788 * Initialize the thermal sensor.
14790 * After initialization, enable polling of thermal sensor through
14791 * SBus interface. In order for this to work, the SBus Master
14792 * firmware has to be loaded due to the fact that the HW polling
14793 * logic uses SBus interrupts, which are not supported with
14794 * default firmware. Otherwise, no data will be returned through
14795 * the ASIC_STS_THERM CSR.
14797 static int thermal_init(struct hfi1_devdata *dd)
14801 if (dd->icode != ICODE_RTL_SILICON ||
14802 check_chip_resource(dd, CR_THERM_INIT, NULL))
14805 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14807 THERM_FAILURE(dd, ret, "Acquire SBus");
14811 dd_dev_info(dd, "Initializing thermal sensor\n");
14812 /* Disable polling of thermal readings */
14813 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14815 /* Thermal Sensor Initialization */
14816 /* Step 1: Reset the Thermal SBus Receiver */
14817 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14818 RESET_SBUS_RECEIVER, 0);
14820 THERM_FAILURE(dd, ret, "Bus Reset");
14823 /* Step 2: Set Reset bit in Thermal block */
14824 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14825 WRITE_SBUS_RECEIVER, 0x1);
14827 THERM_FAILURE(dd, ret, "Therm Block Reset");
14830 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14831 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14832 WRITE_SBUS_RECEIVER, 0x32);
14834 THERM_FAILURE(dd, ret, "Write Clock Div");
14837 /* Step 4: Select temperature mode */
14838 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14839 WRITE_SBUS_RECEIVER,
14840 SBUS_THERM_MONITOR_MODE);
14842 THERM_FAILURE(dd, ret, "Write Mode Sel");
14845 /* Step 5: De-assert block reset and start conversion */
14846 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14847 WRITE_SBUS_RECEIVER, 0x2);
14849 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14852 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14855 /* Enable polling of thermal readings */
14856 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14858 /* Set initialized flag */
14859 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14861 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14864 release_chip_resource(dd, CR_SBUS);
14868 static void handle_temp_err(struct hfi1_devdata *dd)
14870 struct hfi1_pportdata *ppd = &dd->pport[0];
14872 * Thermal Critical Interrupt
14873 * Put the device into forced freeze mode, take link down to
14874 * offline, and put DC into reset.
14877 "Critical temperature reached! Forcing device into freeze mode!\n");
14878 dd->flags |= HFI1_FORCED_FREEZE;
14879 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14881 * Shut DC down as much and as quickly as possible.
14883 * Step 1: Take the link down to OFFLINE. This will cause the
14884 * 8051 to put the Serdes in reset. However, we don't want to
14885 * go through the entire link state machine since we want to
14886 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14887 * but rather an attempt to save the chip.
14888 * Code below is almost the same as quiet_serdes() but avoids
14889 * all the extra work and the sleeps.
14891 ppd->driver_link_ready = 0;
14892 ppd->link_enabled = 0;
14893 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14896 * Step 2: Shutdown LCB and 8051
14897 * After shutdown, do not restore DC_CFG_RESET value.