GNU Linux-libre 4.19.263-gnu1
[releases.git] / drivers / infiniband / hw / cxgb4 / t4.h
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4fw_ri_api.h"
39
40 #define T4_MAX_NUM_PD 65536
41 #define T4_MAX_MR_SIZE (~0ULL)
42 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
43 #define T4_STAG_UNSET 0xffffffff
44 #define T4_FW_MAJ 0
45 #define PCIE_MA_SYNC_A 0x30b4
46
47 struct t4_status_page {
48         __be32 rsvd1;   /* flit 0 - hw owns */
49         __be16 rsvd2;
50         __be16 qid;
51         __be16 cidx;
52         __be16 pidx;
53         u8 qp_err;      /* flit 1 - sw owns */
54         u8 db_off;
55         u8 pad[2];
56         u16 host_wq_pidx;
57         u16 host_cidx;
58         u16 host_pidx;
59         u16 pad2;
60         u32 srqidx;
61 };
62
63 #define T4_RQT_ENTRY_SHIFT 6
64 #define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
65 #define T4_EQ_ENTRY_SIZE 64
66
67 #define T4_SQ_NUM_SLOTS 5
68 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
69 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
70                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
71 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
72                         sizeof(struct fw_ri_immd)))
73 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
74                         sizeof(struct fw_ri_rdma_write_wr) - \
75                         sizeof(struct fw_ri_immd)))
76 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
77                         sizeof(struct fw_ri_rdma_write_wr) - \
78                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
79 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
80                         sizeof(struct fw_ri_immd)) & ~31UL)
81 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
82 #define T4_MAX_FR_DSGL 1024
83 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
84
85 static inline int t4_max_fr_depth(int use_dsgl)
86 {
87         return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
88 }
89
90 #define T4_RQ_NUM_SLOTS 2
91 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
92 #define T4_MAX_RECV_SGE 4
93
94 #define T4_WRITE_CMPL_MAX_SGL 4
95 #define T4_WRITE_CMPL_MAX_CQE 16
96
97 union t4_wr {
98         struct fw_ri_res_wr res;
99         struct fw_ri_wr ri;
100         struct fw_ri_rdma_write_wr write;
101         struct fw_ri_send_wr send;
102         struct fw_ri_rdma_read_wr read;
103         struct fw_ri_bind_mw_wr bind;
104         struct fw_ri_fr_nsmr_wr fr;
105         struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
106         struct fw_ri_inv_lstag_wr inv;
107         struct fw_ri_rdma_write_cmpl_wr write_cmpl;
108         struct t4_status_page status;
109         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
110 };
111
112 union t4_recv_wr {
113         struct fw_ri_recv_wr recv;
114         struct t4_status_page status;
115         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
116 };
117
118 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
119                                enum fw_wr_opcodes opcode, u8 flags, u8 len16)
120 {
121         wqe->send.opcode = (u8)opcode;
122         wqe->send.flags = flags;
123         wqe->send.wrid = wrid;
124         wqe->send.r1[0] = 0;
125         wqe->send.r1[1] = 0;
126         wqe->send.r1[2] = 0;
127         wqe->send.len16 = len16;
128 }
129
130 /* CQE/AE status codes */
131 #define T4_ERR_SUCCESS                     0x0
132 #define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
133                                                 /* STAG is offlimt, being 0, */
134                                                 /* or STAG_key mismatch */
135 #define T4_ERR_PDID                        0x2  /* PDID mismatch */
136 #define T4_ERR_QPID                        0x3  /* QPID mismatch */
137 #define T4_ERR_ACCESS                      0x4  /* Invalid access right */
138 #define T4_ERR_WRAP                        0x5  /* Wrap error */
139 #define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
140 #define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
141                                                 /* shared memory region */
142 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
143                                                 /* shared memory region */
144 #define T4_ERR_ECC                         0x9  /* ECC error detected */
145 #define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
146                                                 /* reading PSTAG for a MW  */
147                                                 /* Invalidate */
148 #define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
149                                                 /* software error */
150 #define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
151 #define T4_ERR_CRC                         0x10 /* CRC error */
152 #define T4_ERR_MARKER                      0x11 /* Marker error */
153 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
154 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
155 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
156 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
157 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
158 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
159 #define T4_ERR_MSN                         0x18 /* MSN error */
160 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
161 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
162                                                 /* or READ_REQ */
163 #define T4_ERR_MSN_GAP                     0x1B
164 #define T4_ERR_MSN_RANGE                   0x1C
165 #define T4_ERR_IRD_OVERFLOW                0x1D
166 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
167                                                 /* software error */
168 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
169                                                 /* mismatch) */
170 /*
171  * CQE defs
172  */
173 struct t4_cqe {
174         __be32 header;
175         __be32 len;
176         union {
177                 struct {
178                         __be32 stag;
179                         __be32 msn;
180                 } rcqe;
181                 struct {
182                         __be32 stag;
183                         u16 nada2;
184                         u16 cidx;
185                 } scqe;
186                 struct {
187                         __be32 wrid_hi;
188                         __be32 wrid_low;
189                 } gen;
190                 struct {
191                         __be32 stag;
192                         __be32 msn;
193                         __be32 reserved;
194                         __be32 abs_rqe_idx;
195                 } srcqe;
196                 struct {
197                         __be32 mo;
198                         __be32 msn;
199                         /*
200                          * Use union for immediate data to be consistent with
201                          * stack's 32 bit data and iWARP spec's 64 bit data.
202                          */
203                         union {
204                                 struct {
205                                         __be32 imm_data32;
206                                         u32 reserved;
207                                 } ib_imm_data;
208                                 __be64 imm_data64;
209                         } iw_imm_data;
210                 } imm_data_rcqe;
211
212                 u64 drain_cookie;
213                 __be64 flits[3];
214         } u;
215         __be64 reserved[3];
216         __be64 bits_type_ts;
217 };
218
219 /* macros for flit 0 of the cqe */
220
221 #define CQE_QPID_S        12
222 #define CQE_QPID_M        0xFFFFF
223 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
224 #define CQE_QPID_V(x)     ((x)<<CQE_QPID_S)
225
226 #define CQE_SWCQE_S       11
227 #define CQE_SWCQE_M       0x1
228 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
229 #define CQE_SWCQE_V(x)    ((x)<<CQE_SWCQE_S)
230
231 #define CQE_DRAIN_S       10
232 #define CQE_DRAIN_M       0x1
233 #define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
234 #define CQE_DRAIN_V(x)    ((x)<<CQE_DRAIN_S)
235
236 #define CQE_STATUS_S      5
237 #define CQE_STATUS_M      0x1F
238 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
239 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
240
241 #define CQE_TYPE_S        4
242 #define CQE_TYPE_M        0x1
243 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
244 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
245
246 #define CQE_OPCODE_S      0
247 #define CQE_OPCODE_M      0xF
248 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
249 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
250
251 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
252 #define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
253 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
254 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
255 #define SQ_TYPE(x)        (CQE_TYPE((x)))
256 #define RQ_TYPE(x)        (!CQE_TYPE((x)))
257 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
258 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
259
260 #define CQE_SEND_OPCODE(x)( \
261         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
262         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
263         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
264         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
265
266 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
267
268 /* used for RQ completion processing */
269 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
270 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
271 #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
272 #define CQE_IMM_DATA(x)( \
273         (x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
274
275 /* used for SQ completion processing */
276 #define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
277 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
278
279 /* generic accessor macros */
280 #define CQE_WRID_HI(x)          (be32_to_cpu((x)->u.gen.wrid_hi))
281 #define CQE_WRID_LOW(x)         (be32_to_cpu((x)->u.gen.wrid_low))
282 #define CQE_DRAIN_COOKIE(x)     ((x)->u.drain_cookie)
283
284 /* macros for flit 3 of the cqe */
285 #define CQE_GENBIT_S    63
286 #define CQE_GENBIT_M    0x1
287 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
288 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
289
290 #define CQE_OVFBIT_S    62
291 #define CQE_OVFBIT_M    0x1
292 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
293
294 #define CQE_IQTYPE_S    60
295 #define CQE_IQTYPE_M    0x3
296 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
297
298 #define CQE_TS_M        0x0fffffffffffffffULL
299 #define CQE_TS_G(x)     ((x) & CQE_TS_M)
300
301 #define CQE_OVFBIT(x)   ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
302 #define CQE_GENBIT(x)   ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
303 #define CQE_TS(x)       (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
304
305 struct t4_swsqe {
306         u64                     wr_id;
307         struct t4_cqe           cqe;
308         int                     read_len;
309         int                     opcode;
310         int                     complete;
311         int                     signaled;
312         u16                     idx;
313         int                     flushed;
314         ktime_t                 host_time;
315         u64                     sge_ts;
316 };
317
318 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
319 {
320 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
321         return pgprot_writecombine(prot);
322 #else
323         return pgprot_noncached(prot);
324 #endif
325 }
326
327 enum {
328         T4_SQ_ONCHIP = (1<<0),
329 };
330
331 struct t4_sq {
332         union t4_wr *queue;
333         dma_addr_t dma_addr;
334         DEFINE_DMA_UNMAP_ADDR(mapping);
335         unsigned long phys_addr;
336         struct t4_swsqe *sw_sq;
337         struct t4_swsqe *oldest_read;
338         void __iomem *bar2_va;
339         u64 bar2_pa;
340         size_t memsize;
341         u32 bar2_qid;
342         u32 qid;
343         u16 in_use;
344         u16 size;
345         u16 cidx;
346         u16 pidx;
347         u16 wq_pidx;
348         u16 wq_pidx_inc;
349         u16 flags;
350         short flush_cidx;
351 };
352
353 struct t4_swrqe {
354         u64 wr_id;
355         ktime_t host_time;
356         u64 sge_ts;
357         int valid;
358 };
359
360 struct t4_rq {
361         union  t4_recv_wr *queue;
362         dma_addr_t dma_addr;
363         DEFINE_DMA_UNMAP_ADDR(mapping);
364         struct t4_swrqe *sw_rq;
365         void __iomem *bar2_va;
366         u64 bar2_pa;
367         size_t memsize;
368         u32 bar2_qid;
369         u32 qid;
370         u32 msn;
371         u32 rqt_hwaddr;
372         u16 rqt_size;
373         u16 in_use;
374         u16 size;
375         u16 cidx;
376         u16 pidx;
377         u16 wq_pidx;
378         u16 wq_pidx_inc;
379 };
380
381 struct t4_wq {
382         struct t4_sq sq;
383         struct t4_rq rq;
384         void __iomem *db;
385         struct c4iw_rdev *rdev;
386         int flushed;
387         u8 *qp_errp;
388         u32 *srqidxp;
389 };
390
391 struct t4_srq_pending_wr {
392         u64 wr_id;
393         union t4_recv_wr wqe;
394         u8 len16;
395 };
396
397 struct t4_srq {
398         union t4_recv_wr *queue;
399         dma_addr_t dma_addr;
400         DECLARE_PCI_UNMAP_ADDR(mapping);
401         struct t4_swrqe *sw_rq;
402         void __iomem *bar2_va;
403         u64 bar2_pa;
404         size_t memsize;
405         u32 bar2_qid;
406         u32 qid;
407         u32 msn;
408         u32 rqt_hwaddr;
409         u32 rqt_abs_idx;
410         u16 rqt_size;
411         u16 size;
412         u16 cidx;
413         u16 pidx;
414         u16 wq_pidx;
415         u16 wq_pidx_inc;
416         u16 in_use;
417         struct t4_srq_pending_wr *pending_wrs;
418         u16 pending_cidx;
419         u16 pending_pidx;
420         u16 pending_in_use;
421         u16 ooo_count;
422 };
423
424 static inline u32 t4_srq_avail(struct t4_srq *srq)
425 {
426         return srq->size - 1 - srq->in_use;
427 }
428
429 static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
430 {
431         srq->in_use++;
432         if (++srq->pidx == srq->size)
433                 srq->pidx = 0;
434         srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
435         if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
436                 srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
437         srq->queue[srq->size].status.host_pidx = srq->pidx;
438 }
439
440 static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
441 {
442         srq->pending_in_use++;
443         srq->in_use++;
444         if (++srq->pending_pidx == srq->size)
445                 srq->pending_pidx = 0;
446 }
447
448 static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
449 {
450         srq->pending_in_use--;
451         srq->in_use--;
452         if (++srq->pending_cidx == srq->size)
453                 srq->pending_cidx = 0;
454 }
455
456 static inline void t4_srq_produce_ooo(struct t4_srq *srq)
457 {
458         srq->in_use--;
459         srq->ooo_count++;
460 }
461
462 static inline void t4_srq_consume_ooo(struct t4_srq *srq)
463 {
464         srq->cidx++;
465         if (srq->cidx == srq->size)
466                 srq->cidx  = 0;
467         srq->queue[srq->size].status.host_cidx = srq->cidx;
468         srq->ooo_count--;
469 }
470
471 static inline void t4_srq_consume(struct t4_srq *srq)
472 {
473         srq->in_use--;
474         if (++srq->cidx == srq->size)
475                 srq->cidx = 0;
476         srq->queue[srq->size].status.host_cidx = srq->cidx;
477 }
478
479 static inline int t4_rqes_posted(struct t4_wq *wq)
480 {
481         return wq->rq.in_use;
482 }
483
484 static inline int t4_rq_empty(struct t4_wq *wq)
485 {
486         return wq->rq.in_use == 0;
487 }
488
489 static inline int t4_rq_full(struct t4_wq *wq)
490 {
491         return wq->rq.in_use == (wq->rq.size - 1);
492 }
493
494 static inline u32 t4_rq_avail(struct t4_wq *wq)
495 {
496         return wq->rq.size - 1 - wq->rq.in_use;
497 }
498
499 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
500 {
501         wq->rq.in_use++;
502         if (++wq->rq.pidx == wq->rq.size)
503                 wq->rq.pidx = 0;
504         wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
505         if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
506                 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
507 }
508
509 static inline void t4_rq_consume(struct t4_wq *wq)
510 {
511         wq->rq.in_use--;
512         if (++wq->rq.cidx == wq->rq.size)
513                 wq->rq.cidx = 0;
514 }
515
516 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
517 {
518         return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
519 }
520
521 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
522 {
523                 return wq->rq.size * T4_RQ_NUM_SLOTS;
524 }
525
526 static inline int t4_sq_onchip(struct t4_sq *sq)
527 {
528         return sq->flags & T4_SQ_ONCHIP;
529 }
530
531 static inline int t4_sq_empty(struct t4_wq *wq)
532 {
533         return wq->sq.in_use == 0;
534 }
535
536 static inline int t4_sq_full(struct t4_wq *wq)
537 {
538         return wq->sq.in_use == (wq->sq.size - 1);
539 }
540
541 static inline u32 t4_sq_avail(struct t4_wq *wq)
542 {
543         return wq->sq.size - 1 - wq->sq.in_use;
544 }
545
546 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
547 {
548         wq->sq.in_use++;
549         if (++wq->sq.pidx == wq->sq.size)
550                 wq->sq.pidx = 0;
551         wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
552         if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
553                 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
554 }
555
556 static inline void t4_sq_consume(struct t4_wq *wq)
557 {
558         if (wq->sq.cidx == wq->sq.flush_cidx)
559                 wq->sq.flush_cidx = -1;
560         wq->sq.in_use--;
561         if (++wq->sq.cidx == wq->sq.size)
562                 wq->sq.cidx = 0;
563 }
564
565 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
566 {
567         return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
568 }
569
570 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
571 {
572                 return wq->sq.size * T4_SQ_NUM_SLOTS;
573 }
574
575 /* This function copies 64 byte coalesced work request to memory
576  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
577  * from the FIFO instead of from Host.
578  */
579 static inline void pio_copy(u64 __iomem *dst, u64 *src)
580 {
581         int count = 8;
582
583         while (count) {
584                 writeq(*src, dst);
585                 src++;
586                 dst++;
587                 count--;
588         }
589 }
590
591 static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
592                                   union t4_recv_wr *wqe)
593 {
594         /* Flush host queue memory writes. */
595         wmb();
596         if (inc == 1 && srq->bar2_qid == 0 && wqe) {
597                 pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
598                          __func__, srq->pidx, len16);
599                 pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
600         } else {
601                 pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
602                          __func__, srq->pidx, len16);
603                 writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
604                        srq->bar2_va + SGE_UDB_KDOORBELL);
605         }
606         /* Flush user doorbell area writes. */
607         wmb();
608 }
609
610 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
611 {
612
613         /* Flush host queue memory writes. */
614         wmb();
615         if (wq->sq.bar2_va) {
616                 if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
617                         pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
618                         pio_copy((u64 __iomem *)
619                                  (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
620                                  (u64 *)wqe);
621                 } else {
622                         pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
623                         writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
624                                wq->sq.bar2_va + SGE_UDB_KDOORBELL);
625                 }
626
627                 /* Flush user doorbell area writes. */
628                 wmb();
629                 return;
630         }
631         writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
632 }
633
634 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
635                                  union t4_recv_wr *wqe)
636 {
637
638         /* Flush host queue memory writes. */
639         wmb();
640         if (wq->rq.bar2_va) {
641                 if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
642                         pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
643                         pio_copy((u64 __iomem *)
644                                  (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
645                                  (void *)wqe);
646                 } else {
647                         pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
648                         writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
649                                wq->rq.bar2_va + SGE_UDB_KDOORBELL);
650                 }
651
652                 /* Flush user doorbell area writes. */
653                 wmb();
654                 return;
655         }
656         writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
657 }
658
659 static inline int t4_wq_in_error(struct t4_wq *wq)
660 {
661         return *wq->qp_errp;
662 }
663
664 static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
665 {
666         if (srqidx)
667                 *wq->srqidxp = srqidx;
668         *wq->qp_errp = 1;
669 }
670
671 static inline void t4_disable_wq_db(struct t4_wq *wq)
672 {
673         wq->rq.queue[wq->rq.size].status.db_off = 1;
674 }
675
676 static inline void t4_enable_wq_db(struct t4_wq *wq)
677 {
678         wq->rq.queue[wq->rq.size].status.db_off = 0;
679 }
680
681 static inline int t4_wq_db_enabled(struct t4_wq *wq)
682 {
683         return !wq->rq.queue[wq->rq.size].status.db_off;
684 }
685
686 enum t4_cq_flags {
687         CQ_ARMED        = 1,
688 };
689
690 struct t4_cq {
691         struct t4_cqe *queue;
692         dma_addr_t dma_addr;
693         DEFINE_DMA_UNMAP_ADDR(mapping);
694         struct t4_cqe *sw_queue;
695         void __iomem *gts;
696         void __iomem *bar2_va;
697         u64 bar2_pa;
698         u32 bar2_qid;
699         struct c4iw_rdev *rdev;
700         size_t memsize;
701         __be64 bits_type_ts;
702         u32 cqid;
703         u32 qid_mask;
704         int vector;
705         u16 size; /* including status page */
706         u16 cidx;
707         u16 sw_pidx;
708         u16 sw_cidx;
709         u16 sw_in_use;
710         u16 cidx_inc;
711         u8 gen;
712         u8 error;
713         u8 *qp_errp;
714         unsigned long flags;
715 };
716
717 static inline void write_gts(struct t4_cq *cq, u32 val)
718 {
719         if (cq->bar2_va)
720                 writel(val | INGRESSQID_V(cq->bar2_qid),
721                        cq->bar2_va + SGE_UDB_GTS);
722         else
723                 writel(val | INGRESSQID_V(cq->cqid), cq->gts);
724 }
725
726 static inline int t4_clear_cq_armed(struct t4_cq *cq)
727 {
728         return test_and_clear_bit(CQ_ARMED, &cq->flags);
729 }
730
731 static inline int t4_arm_cq(struct t4_cq *cq, int se)
732 {
733         u32 val;
734
735         set_bit(CQ_ARMED, &cq->flags);
736         while (cq->cidx_inc > CIDXINC_M) {
737                 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
738                 write_gts(cq, val);
739                 cq->cidx_inc -= CIDXINC_M;
740         }
741         val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
742         write_gts(cq, val);
743         cq->cidx_inc = 0;
744         return 0;
745 }
746
747 static inline void t4_swcq_produce(struct t4_cq *cq)
748 {
749         cq->sw_in_use++;
750         if (cq->sw_in_use == cq->size) {
751                 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
752                         __func__, cq->cqid);
753                 cq->error = 1;
754                 cq->sw_in_use--;
755                 return;
756         }
757         if (++cq->sw_pidx == cq->size)
758                 cq->sw_pidx = 0;
759 }
760
761 static inline void t4_swcq_consume(struct t4_cq *cq)
762 {
763         cq->sw_in_use--;
764         if (++cq->sw_cidx == cq->size)
765                 cq->sw_cidx = 0;
766 }
767
768 static inline void t4_hwcq_consume(struct t4_cq *cq)
769 {
770         cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
771         if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
772                 u32 val;
773
774                 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
775                 write_gts(cq, val);
776                 cq->cidx_inc = 0;
777         }
778         if (++cq->cidx == cq->size) {
779                 cq->cidx = 0;
780                 cq->gen ^= 1;
781         }
782 }
783
784 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
785 {
786         return (CQE_GENBIT(cqe) == cq->gen);
787 }
788
789 static inline int t4_cq_notempty(struct t4_cq *cq)
790 {
791         return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
792 }
793
794 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
795 {
796         int ret;
797         u16 prev_cidx;
798
799         if (cq->cidx == 0)
800                 prev_cidx = cq->size - 1;
801         else
802                 prev_cidx = cq->cidx - 1;
803
804         if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
805                 ret = -EOVERFLOW;
806                 cq->error = 1;
807                 pr_err("cq overflow cqid %u\n", cq->cqid);
808         } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
809
810                 /* Ensure CQE is flushed to memory */
811                 rmb();
812                 *cqe = &cq->queue[cq->cidx];
813                 ret = 0;
814         } else
815                 ret = -ENODATA;
816         return ret;
817 }
818
819 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
820 {
821         if (cq->sw_in_use == cq->size) {
822                 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
823                         __func__, cq->cqid);
824                 cq->error = 1;
825                 return NULL;
826         }
827         if (cq->sw_in_use)
828                 return &cq->sw_queue[cq->sw_cidx];
829         return NULL;
830 }
831
832 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
833 {
834         int ret = 0;
835
836         if (cq->error)
837                 ret = -ENODATA;
838         else if (cq->sw_in_use)
839                 *cqe = &cq->sw_queue[cq->sw_cidx];
840         else
841                 ret = t4_next_hw_cqe(cq, cqe);
842         return ret;
843 }
844
845 static inline int t4_cq_in_error(struct t4_cq *cq)
846 {
847         return *cq->qp_errp;
848 }
849
850 static inline void t4_set_cq_in_error(struct t4_cq *cq)
851 {
852         *cq->qp_errp = 1;
853 }
854 #endif
855
856 struct t4_dev_status_page {
857         u8 db_off;
858         u8 write_cmpl_supported;
859         u16 pad2;
860         u32 pad3;
861         u64 qp_start;
862         u64 qp_size;
863         u64 cq_start;
864         u64 cq_size;
865 };