GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / infiniband / hw / cxgb4 / t4.h
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4fw_ri_api.h"
39
40 #define T4_MAX_NUM_PD 65536
41 #define T4_MAX_MR_SIZE (~0ULL)
42 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
43 #define T4_STAG_UNSET 0xffffffff
44 #define T4_FW_MAJ 0
45 #define PCIE_MA_SYNC_A 0x30b4
46
47 struct t4_status_page {
48         __be32 rsvd1;   /* flit 0 - hw owns */
49         __be16 rsvd2;
50         __be16 qid;
51         __be16 cidx;
52         __be16 pidx;
53         u8 qp_err;      /* flit 1 - sw owns */
54         u8 db_off;
55         u8 pad;
56         u16 host_wq_pidx;
57         u16 host_cidx;
58         u16 host_pidx;
59 };
60
61 #define T4_EQ_ENTRY_SIZE 64
62
63 #define T4_SQ_NUM_SLOTS 5
64 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
65 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
66                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
67 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
68                         sizeof(struct fw_ri_immd)))
69 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
70                         sizeof(struct fw_ri_rdma_write_wr) - \
71                         sizeof(struct fw_ri_immd)))
72 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
73                         sizeof(struct fw_ri_rdma_write_wr) - \
74                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
75 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
76                         sizeof(struct fw_ri_immd)) & ~31UL)
77 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
78 #define T4_MAX_FR_DSGL 1024
79 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
80
81 static inline int t4_max_fr_depth(int use_dsgl)
82 {
83         return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
84 }
85
86 #define T4_RQ_NUM_SLOTS 2
87 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
88 #define T4_MAX_RECV_SGE 4
89
90 union t4_wr {
91         struct fw_ri_res_wr res;
92         struct fw_ri_wr ri;
93         struct fw_ri_rdma_write_wr write;
94         struct fw_ri_send_wr send;
95         struct fw_ri_rdma_read_wr read;
96         struct fw_ri_bind_mw_wr bind;
97         struct fw_ri_fr_nsmr_wr fr;
98         struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
99         struct fw_ri_inv_lstag_wr inv;
100         struct t4_status_page status;
101         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
102 };
103
104 union t4_recv_wr {
105         struct fw_ri_recv_wr recv;
106         struct t4_status_page status;
107         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
108 };
109
110 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
111                                enum fw_wr_opcodes opcode, u8 flags, u8 len16)
112 {
113         wqe->send.opcode = (u8)opcode;
114         wqe->send.flags = flags;
115         wqe->send.wrid = wrid;
116         wqe->send.r1[0] = 0;
117         wqe->send.r1[1] = 0;
118         wqe->send.r1[2] = 0;
119         wqe->send.len16 = len16;
120 }
121
122 /* CQE/AE status codes */
123 #define T4_ERR_SUCCESS                     0x0
124 #define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
125                                                 /* STAG is offlimt, being 0, */
126                                                 /* or STAG_key mismatch */
127 #define T4_ERR_PDID                        0x2  /* PDID mismatch */
128 #define T4_ERR_QPID                        0x3  /* QPID mismatch */
129 #define T4_ERR_ACCESS                      0x4  /* Invalid access right */
130 #define T4_ERR_WRAP                        0x5  /* Wrap error */
131 #define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
132 #define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
133                                                 /* shared memory region */
134 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
135                                                 /* shared memory region */
136 #define T4_ERR_ECC                         0x9  /* ECC error detected */
137 #define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
138                                                 /* reading PSTAG for a MW  */
139                                                 /* Invalidate */
140 #define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
141                                                 /* software error */
142 #define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
143 #define T4_ERR_CRC                         0x10 /* CRC error */
144 #define T4_ERR_MARKER                      0x11 /* Marker error */
145 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
146 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
147 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
148 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
149 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
150 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
151 #define T4_ERR_MSN                         0x18 /* MSN error */
152 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
153 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
154                                                 /* or READ_REQ */
155 #define T4_ERR_MSN_GAP                     0x1B
156 #define T4_ERR_MSN_RANGE                   0x1C
157 #define T4_ERR_IRD_OVERFLOW                0x1D
158 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
159                                                 /* software error */
160 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
161                                                 /* mismatch) */
162 /*
163  * CQE defs
164  */
165 struct t4_cqe {
166         __be32 header;
167         __be32 len;
168         union {
169                 struct {
170                         __be32 stag;
171                         __be32 msn;
172                 } rcqe;
173                 struct {
174                         __be32 stag;
175                         u16 nada2;
176                         u16 cidx;
177                 } scqe;
178                 struct {
179                         __be32 wrid_hi;
180                         __be32 wrid_low;
181                 } gen;
182                 u64 drain_cookie;
183         } u;
184         __be64 reserved;
185         __be64 bits_type_ts;
186 };
187
188 /* macros for flit 0 of the cqe */
189
190 #define CQE_QPID_S        12
191 #define CQE_QPID_M        0xFFFFF
192 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
193 #define CQE_QPID_V(x)     ((x)<<CQE_QPID_S)
194
195 #define CQE_SWCQE_S       11
196 #define CQE_SWCQE_M       0x1
197 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
198 #define CQE_SWCQE_V(x)    ((x)<<CQE_SWCQE_S)
199
200 #define CQE_DRAIN_S       10
201 #define CQE_DRAIN_M       0x1
202 #define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
203 #define CQE_DRAIN_V(x)    ((x)<<CQE_DRAIN_S)
204
205 #define CQE_STATUS_S      5
206 #define CQE_STATUS_M      0x1F
207 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
208 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
209
210 #define CQE_TYPE_S        4
211 #define CQE_TYPE_M        0x1
212 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
213 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
214
215 #define CQE_OPCODE_S      0
216 #define CQE_OPCODE_M      0xF
217 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
218 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
219
220 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
221 #define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
222 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
223 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
224 #define SQ_TYPE(x)        (CQE_TYPE((x)))
225 #define RQ_TYPE(x)        (!CQE_TYPE((x)))
226 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
227 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
228
229 #define CQE_SEND_OPCODE(x)( \
230         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
231         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
232         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
233         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
234
235 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
236
237 /* used for RQ completion processing */
238 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
239 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
240
241 /* used for SQ completion processing */
242 #define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
243 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
244
245 /* generic accessor macros */
246 #define CQE_WRID_HI(x)          (be32_to_cpu((x)->u.gen.wrid_hi))
247 #define CQE_WRID_LOW(x)         (be32_to_cpu((x)->u.gen.wrid_low))
248 #define CQE_DRAIN_COOKIE(x)     ((x)->u.drain_cookie)
249
250 /* macros for flit 3 of the cqe */
251 #define CQE_GENBIT_S    63
252 #define CQE_GENBIT_M    0x1
253 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
254 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
255
256 #define CQE_OVFBIT_S    62
257 #define CQE_OVFBIT_M    0x1
258 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
259
260 #define CQE_IQTYPE_S    60
261 #define CQE_IQTYPE_M    0x3
262 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
263
264 #define CQE_TS_M        0x0fffffffffffffffULL
265 #define CQE_TS_G(x)     ((x) & CQE_TS_M)
266
267 #define CQE_OVFBIT(x)   ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
268 #define CQE_GENBIT(x)   ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
269 #define CQE_TS(x)       (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
270
271 struct t4_swsqe {
272         u64                     wr_id;
273         struct t4_cqe           cqe;
274         int                     read_len;
275         int                     opcode;
276         int                     complete;
277         int                     signaled;
278         u16                     idx;
279         int                     flushed;
280         struct timespec         host_ts;
281         u64                     sge_ts;
282 };
283
284 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
285 {
286 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
287         return pgprot_writecombine(prot);
288 #else
289         return pgprot_noncached(prot);
290 #endif
291 }
292
293 enum {
294         T4_SQ_ONCHIP = (1<<0),
295 };
296
297 struct t4_sq {
298         union t4_wr *queue;
299         dma_addr_t dma_addr;
300         DEFINE_DMA_UNMAP_ADDR(mapping);
301         unsigned long phys_addr;
302         struct t4_swsqe *sw_sq;
303         struct t4_swsqe *oldest_read;
304         void __iomem *bar2_va;
305         u64 bar2_pa;
306         size_t memsize;
307         u32 bar2_qid;
308         u32 qid;
309         u16 in_use;
310         u16 size;
311         u16 cidx;
312         u16 pidx;
313         u16 wq_pidx;
314         u16 wq_pidx_inc;
315         u16 flags;
316         short flush_cidx;
317 };
318
319 struct t4_swrqe {
320         u64 wr_id;
321         struct timespec host_ts;
322         u64 sge_ts;
323 };
324
325 struct t4_rq {
326         union  t4_recv_wr *queue;
327         dma_addr_t dma_addr;
328         DEFINE_DMA_UNMAP_ADDR(mapping);
329         struct t4_swrqe *sw_rq;
330         void __iomem *bar2_va;
331         u64 bar2_pa;
332         size_t memsize;
333         u32 bar2_qid;
334         u32 qid;
335         u32 msn;
336         u32 rqt_hwaddr;
337         u16 rqt_size;
338         u16 in_use;
339         u16 size;
340         u16 cidx;
341         u16 pidx;
342         u16 wq_pidx;
343         u16 wq_pidx_inc;
344 };
345
346 struct t4_wq {
347         struct t4_sq sq;
348         struct t4_rq rq;
349         void __iomem *db;
350         struct c4iw_rdev *rdev;
351         int flushed;
352 };
353
354 static inline int t4_rqes_posted(struct t4_wq *wq)
355 {
356         return wq->rq.in_use;
357 }
358
359 static inline int t4_rq_empty(struct t4_wq *wq)
360 {
361         return wq->rq.in_use == 0;
362 }
363
364 static inline int t4_rq_full(struct t4_wq *wq)
365 {
366         return wq->rq.in_use == (wq->rq.size - 1);
367 }
368
369 static inline u32 t4_rq_avail(struct t4_wq *wq)
370 {
371         return wq->rq.size - 1 - wq->rq.in_use;
372 }
373
374 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
375 {
376         wq->rq.in_use++;
377         if (++wq->rq.pidx == wq->rq.size)
378                 wq->rq.pidx = 0;
379         wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
380         if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
381                 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
382 }
383
384 static inline void t4_rq_consume(struct t4_wq *wq)
385 {
386         wq->rq.in_use--;
387         wq->rq.msn++;
388         if (++wq->rq.cidx == wq->rq.size)
389                 wq->rq.cidx = 0;
390 }
391
392 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
393 {
394         return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
395 }
396
397 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
398 {
399                 return wq->rq.size * T4_RQ_NUM_SLOTS;
400 }
401
402 static inline int t4_sq_onchip(struct t4_sq *sq)
403 {
404         return sq->flags & T4_SQ_ONCHIP;
405 }
406
407 static inline int t4_sq_empty(struct t4_wq *wq)
408 {
409         return wq->sq.in_use == 0;
410 }
411
412 static inline int t4_sq_full(struct t4_wq *wq)
413 {
414         return wq->sq.in_use == (wq->sq.size - 1);
415 }
416
417 static inline u32 t4_sq_avail(struct t4_wq *wq)
418 {
419         return wq->sq.size - 1 - wq->sq.in_use;
420 }
421
422 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
423 {
424         wq->sq.in_use++;
425         if (++wq->sq.pidx == wq->sq.size)
426                 wq->sq.pidx = 0;
427         wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
428         if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
429                 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
430 }
431
432 static inline void t4_sq_consume(struct t4_wq *wq)
433 {
434         BUG_ON(wq->sq.in_use < 1);
435         if (wq->sq.cidx == wq->sq.flush_cidx)
436                 wq->sq.flush_cidx = -1;
437         wq->sq.in_use--;
438         if (++wq->sq.cidx == wq->sq.size)
439                 wq->sq.cidx = 0;
440 }
441
442 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
443 {
444         return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
445 }
446
447 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
448 {
449                 return wq->sq.size * T4_SQ_NUM_SLOTS;
450 }
451
452 /* This function copies 64 byte coalesced work request to memory
453  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
454  * from the FIFO instead of from Host.
455  */
456 static inline void pio_copy(u64 __iomem *dst, u64 *src)
457 {
458         int count = 8;
459
460         while (count) {
461                 writeq(*src, dst);
462                 src++;
463                 dst++;
464                 count--;
465         }
466 }
467
468 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
469 {
470
471         /* Flush host queue memory writes. */
472         wmb();
473         if (wq->sq.bar2_va) {
474                 if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
475                         pr_debug("%s: WC wq->sq.pidx = %d\n",
476                                  __func__, wq->sq.pidx);
477                         pio_copy((u64 __iomem *)
478                                  (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
479                                  (u64 *)wqe);
480                 } else {
481                         pr_debug("%s: DB wq->sq.pidx = %d\n",
482                                  __func__, wq->sq.pidx);
483                         writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
484                                wq->sq.bar2_va + SGE_UDB_KDOORBELL);
485                 }
486
487                 /* Flush user doorbell area writes. */
488                 wmb();
489                 return;
490         }
491         writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
492 }
493
494 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
495                                  union t4_recv_wr *wqe)
496 {
497
498         /* Flush host queue memory writes. */
499         wmb();
500         if (wq->rq.bar2_va) {
501                 if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
502                         pr_debug("%s: WC wq->rq.pidx = %d\n",
503                                  __func__, wq->rq.pidx);
504                         pio_copy((u64 __iomem *)
505                                  (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
506                                  (void *)wqe);
507                 } else {
508                         pr_debug("%s: DB wq->rq.pidx = %d\n",
509                                  __func__, wq->rq.pidx);
510                         writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
511                                wq->rq.bar2_va + SGE_UDB_KDOORBELL);
512                 }
513
514                 /* Flush user doorbell area writes. */
515                 wmb();
516                 return;
517         }
518         writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
519 }
520
521 static inline int t4_wq_in_error(struct t4_wq *wq)
522 {
523         return wq->rq.queue[wq->rq.size].status.qp_err;
524 }
525
526 static inline void t4_set_wq_in_error(struct t4_wq *wq)
527 {
528         wq->rq.queue[wq->rq.size].status.qp_err = 1;
529 }
530
531 static inline void t4_disable_wq_db(struct t4_wq *wq)
532 {
533         wq->rq.queue[wq->rq.size].status.db_off = 1;
534 }
535
536 static inline void t4_enable_wq_db(struct t4_wq *wq)
537 {
538         wq->rq.queue[wq->rq.size].status.db_off = 0;
539 }
540
541 static inline int t4_wq_db_enabled(struct t4_wq *wq)
542 {
543         return !wq->rq.queue[wq->rq.size].status.db_off;
544 }
545
546 enum t4_cq_flags {
547         CQ_ARMED        = 1,
548 };
549
550 struct t4_cq {
551         struct t4_cqe *queue;
552         dma_addr_t dma_addr;
553         DEFINE_DMA_UNMAP_ADDR(mapping);
554         struct t4_cqe *sw_queue;
555         void __iomem *gts;
556         void __iomem *bar2_va;
557         u64 bar2_pa;
558         u32 bar2_qid;
559         struct c4iw_rdev *rdev;
560         size_t memsize;
561         __be64 bits_type_ts;
562         u32 cqid;
563         u32 qid_mask;
564         int vector;
565         u16 size; /* including status page */
566         u16 cidx;
567         u16 sw_pidx;
568         u16 sw_cidx;
569         u16 sw_in_use;
570         u16 cidx_inc;
571         u8 gen;
572         u8 error;
573         unsigned long flags;
574 };
575
576 static inline void write_gts(struct t4_cq *cq, u32 val)
577 {
578         if (cq->bar2_va)
579                 writel(val | INGRESSQID_V(cq->bar2_qid),
580                        cq->bar2_va + SGE_UDB_GTS);
581         else
582                 writel(val | INGRESSQID_V(cq->cqid), cq->gts);
583 }
584
585 static inline int t4_clear_cq_armed(struct t4_cq *cq)
586 {
587         return test_and_clear_bit(CQ_ARMED, &cq->flags);
588 }
589
590 static inline int t4_arm_cq(struct t4_cq *cq, int se)
591 {
592         u32 val;
593
594         set_bit(CQ_ARMED, &cq->flags);
595         while (cq->cidx_inc > CIDXINC_M) {
596                 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
597                 write_gts(cq, val);
598                 cq->cidx_inc -= CIDXINC_M;
599         }
600         val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
601         write_gts(cq, val);
602         cq->cidx_inc = 0;
603         return 0;
604 }
605
606 static inline void t4_swcq_produce(struct t4_cq *cq)
607 {
608         cq->sw_in_use++;
609         if (cq->sw_in_use == cq->size) {
610                 pr_debug("%s cxgb4 sw cq overflow cqid %u\n",
611                          __func__, cq->cqid);
612                 cq->error = 1;
613                 BUG_ON(1);
614         }
615         if (++cq->sw_pidx == cq->size)
616                 cq->sw_pidx = 0;
617 }
618
619 static inline void t4_swcq_consume(struct t4_cq *cq)
620 {
621         BUG_ON(cq->sw_in_use < 1);
622         cq->sw_in_use--;
623         if (++cq->sw_cidx == cq->size)
624                 cq->sw_cidx = 0;
625 }
626
627 static inline void t4_hwcq_consume(struct t4_cq *cq)
628 {
629         cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
630         if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
631                 u32 val;
632
633                 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
634                 write_gts(cq, val);
635                 cq->cidx_inc = 0;
636         }
637         if (++cq->cidx == cq->size) {
638                 cq->cidx = 0;
639                 cq->gen ^= 1;
640         }
641 }
642
643 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
644 {
645         return (CQE_GENBIT(cqe) == cq->gen);
646 }
647
648 static inline int t4_cq_notempty(struct t4_cq *cq)
649 {
650         return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
651 }
652
653 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
654 {
655         int ret;
656         u16 prev_cidx;
657
658         if (cq->cidx == 0)
659                 prev_cidx = cq->size - 1;
660         else
661                 prev_cidx = cq->cidx - 1;
662
663         if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
664                 ret = -EOVERFLOW;
665                 cq->error = 1;
666                 pr_err("cq overflow cqid %u\n", cq->cqid);
667                 BUG_ON(1);
668         } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
669
670                 /* Ensure CQE is flushed to memory */
671                 rmb();
672                 *cqe = &cq->queue[cq->cidx];
673                 ret = 0;
674         } else
675                 ret = -ENODATA;
676         return ret;
677 }
678
679 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
680 {
681         if (cq->sw_in_use == cq->size) {
682                 pr_debug("%s cxgb4 sw cq overflow cqid %u\n",
683                          __func__, cq->cqid);
684                 cq->error = 1;
685                 BUG_ON(1);
686                 return NULL;
687         }
688         if (cq->sw_in_use)
689                 return &cq->sw_queue[cq->sw_cidx];
690         return NULL;
691 }
692
693 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
694 {
695         int ret = 0;
696
697         if (cq->error)
698                 ret = -ENODATA;
699         else if (cq->sw_in_use)
700                 *cqe = &cq->sw_queue[cq->sw_cidx];
701         else
702                 ret = t4_next_hw_cqe(cq, cqe);
703         return ret;
704 }
705
706 static inline int t4_cq_in_error(struct t4_cq *cq)
707 {
708         return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
709 }
710
711 static inline void t4_set_cq_in_error(struct t4_cq *cq)
712 {
713         ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
714 }
715 #endif
716
717 struct t4_dev_status_page {
718         u8 db_off;
719         u8 pad1;
720         u16 pad2;
721         u32 pad3;
722         u64 qp_start;
723         u64 qp_size;
724         u64 cq_start;
725         u64 cq_size;
726 };