GNU Linux-libre 4.9.292-gnu1
[releases.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56         [IB_EVENT_CQ_ERR]               = "CQ error",
57         [IB_EVENT_QP_FATAL]             = "QP fatal error",
58         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
59         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
60         [IB_EVENT_COMM_EST]             = "communication established",
61         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
62         [IB_EVENT_PATH_MIG]             = "path migration successful",
63         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
64         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
65         [IB_EVENT_PORT_ACTIVE]          = "port active",
66         [IB_EVENT_PORT_ERR]             = "port error",
67         [IB_EVENT_LID_CHANGE]           = "LID change",
68         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
69         [IB_EVENT_SM_CHANGE]            = "SM change",
70         [IB_EVENT_SRQ_ERR]              = "SRQ error",
71         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
72         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
73         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
74         [IB_EVENT_GID_CHANGE]           = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79         size_t index = event;
80
81         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82                         ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87         [IB_WC_SUCCESS]                 = "success",
88         [IB_WC_LOC_LEN_ERR]             = "local length error",
89         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
90         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
91         [IB_WC_LOC_PROT_ERR]            = "local protection error",
92         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
93         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
94         [IB_WC_BAD_RESP_ERR]            = "bad response error",
95         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
96         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
97         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
98         [IB_WC_REM_OP_ERR]              = "remote operation error",
99         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
100         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
101         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
102         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
103         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
104         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
105         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
106         [IB_WC_FATAL_ERR]               = "fatal error",
107         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
108         [IB_WC_GENERAL_ERR]             = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113         size_t index = status;
114
115         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116                         wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122         switch (rate) {
123         case IB_RATE_2_5_GBPS: return  1;
124         case IB_RATE_5_GBPS:   return  2;
125         case IB_RATE_10_GBPS:  return  4;
126         case IB_RATE_20_GBPS:  return  8;
127         case IB_RATE_30_GBPS:  return 12;
128         case IB_RATE_40_GBPS:  return 16;
129         case IB_RATE_60_GBPS:  return 24;
130         case IB_RATE_80_GBPS:  return 32;
131         case IB_RATE_120_GBPS: return 48;
132         default:               return -1;
133         }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139         switch (mult) {
140         case 1:  return IB_RATE_2_5_GBPS;
141         case 2:  return IB_RATE_5_GBPS;
142         case 4:  return IB_RATE_10_GBPS;
143         case 8:  return IB_RATE_20_GBPS;
144         case 12: return IB_RATE_30_GBPS;
145         case 16: return IB_RATE_40_GBPS;
146         case 24: return IB_RATE_60_GBPS;
147         case 32: return IB_RATE_80_GBPS;
148         case 48: return IB_RATE_120_GBPS;
149         default: return IB_RATE_PORT_CURRENT;
150         }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156         switch (rate) {
157         case IB_RATE_2_5_GBPS: return 2500;
158         case IB_RATE_5_GBPS:   return 5000;
159         case IB_RATE_10_GBPS:  return 10000;
160         case IB_RATE_20_GBPS:  return 20000;
161         case IB_RATE_30_GBPS:  return 30000;
162         case IB_RATE_40_GBPS:  return 40000;
163         case IB_RATE_60_GBPS:  return 60000;
164         case IB_RATE_80_GBPS:  return 80000;
165         case IB_RATE_120_GBPS: return 120000;
166         case IB_RATE_14_GBPS:  return 14062;
167         case IB_RATE_56_GBPS:  return 56250;
168         case IB_RATE_112_GBPS: return 112500;
169         case IB_RATE_168_GBPS: return 168750;
170         case IB_RATE_25_GBPS:  return 25781;
171         case IB_RATE_100_GBPS: return 103125;
172         case IB_RATE_200_GBPS: return 206250;
173         case IB_RATE_300_GBPS: return 309375;
174         default:               return -1;
175         }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182         switch (node_type) {
183         case RDMA_NODE_IB_CA:
184         case RDMA_NODE_IB_SWITCH:
185         case RDMA_NODE_IB_ROUTER:
186                 return RDMA_TRANSPORT_IB;
187         case RDMA_NODE_RNIC:
188                 return RDMA_TRANSPORT_IWARP;
189         case RDMA_NODE_USNIC:
190                 return RDMA_TRANSPORT_USNIC;
191         case RDMA_NODE_USNIC_UDP:
192                 return RDMA_TRANSPORT_USNIC_UDP;
193         default:
194                 BUG();
195                 return 0;
196         }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202         if (device->get_link_layer)
203                 return device->get_link_layer(device, port_num);
204
205         switch (rdma_node_get_transport(device->node_type)) {
206         case RDMA_TRANSPORT_IB:
207                 return IB_LINK_LAYER_INFINIBAND;
208         case RDMA_TRANSPORT_IWARP:
209         case RDMA_TRANSPORT_USNIC:
210         case RDMA_TRANSPORT_USNIC_UDP:
211                 return IB_LINK_LAYER_ETHERNET;
212         default:
213                 return IB_LINK_LAYER_UNSPECIFIED;
214         }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221  * ib_alloc_pd - Allocates an unused protection domain.
222  * @device: The device on which to allocate the protection domain.
223  *
224  * A protection domain object provides an association between QPs, shared
225  * receive queues, address handles, memory regions, and memory windows.
226  *
227  * Every PD has a local_dma_lkey which can be used as the lkey value for local
228  * memory operations.
229  */
230 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
231                 const char *caller)
232 {
233         struct ib_pd *pd;
234         int mr_access_flags = 0;
235
236         pd = device->alloc_pd(device, NULL, NULL);
237         if (IS_ERR(pd))
238                 return pd;
239
240         pd->device = device;
241         pd->uobject = NULL;
242         pd->__internal_mr = NULL;
243         atomic_set(&pd->usecnt, 0);
244         pd->flags = flags;
245
246         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
247                 pd->local_dma_lkey = device->local_dma_lkey;
248         else
249                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
250
251         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
252                 pr_warn("%s: enabling unsafe global rkey\n", caller);
253                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
254         }
255
256         if (mr_access_flags) {
257                 struct ib_mr *mr;
258
259                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
260                 if (IS_ERR(mr)) {
261                         ib_dealloc_pd(pd);
262                         return ERR_CAST(mr);
263                 }
264
265                 mr->device      = pd->device;
266                 mr->pd          = pd;
267                 mr->uobject     = NULL;
268                 mr->need_inval  = false;
269
270                 pd->__internal_mr = mr;
271
272                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
273                         pd->local_dma_lkey = pd->__internal_mr->lkey;
274
275                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
276                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
277         }
278
279         return pd;
280 }
281 EXPORT_SYMBOL(__ib_alloc_pd);
282
283 /**
284  * ib_dealloc_pd - Deallocates a protection domain.
285  * @pd: The protection domain to deallocate.
286  *
287  * It is an error to call this function while any resources in the pd still
288  * exist.  The caller is responsible to synchronously destroy them and
289  * guarantee no new allocations will happen.
290  */
291 void ib_dealloc_pd(struct ib_pd *pd)
292 {
293         int ret;
294
295         if (pd->__internal_mr) {
296                 ret = pd->device->dereg_mr(pd->__internal_mr);
297                 WARN_ON(ret);
298                 pd->__internal_mr = NULL;
299         }
300
301         /* uverbs manipulates usecnt with proper locking, while the kabi
302            requires the caller to guarantee we can't race here. */
303         WARN_ON(atomic_read(&pd->usecnt));
304
305         /* Making delalloc_pd a void return is a WIP, no driver should return
306            an error here. */
307         ret = pd->device->dealloc_pd(pd);
308         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
309 }
310 EXPORT_SYMBOL(ib_dealloc_pd);
311
312 /* Address handles */
313
314 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
315 {
316         struct ib_ah *ah;
317
318         ah = pd->device->create_ah(pd, ah_attr);
319
320         if (!IS_ERR(ah)) {
321                 ah->device  = pd->device;
322                 ah->pd      = pd;
323                 ah->uobject = NULL;
324                 atomic_inc(&pd->usecnt);
325         }
326
327         return ah;
328 }
329 EXPORT_SYMBOL(ib_create_ah);
330
331 static int ib_get_header_version(const union rdma_network_hdr *hdr)
332 {
333         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
334         struct iphdr ip4h_checked;
335         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
336
337         /* If it's IPv6, the version must be 6, otherwise, the first
338          * 20 bytes (before the IPv4 header) are garbled.
339          */
340         if (ip6h->version != 6)
341                 return (ip4h->version == 4) ? 4 : 0;
342         /* version may be 6 or 4 because the first 20 bytes could be garbled */
343
344         /* RoCE v2 requires no options, thus header length
345          * must be 5 words
346          */
347         if (ip4h->ihl != 5)
348                 return 6;
349
350         /* Verify checksum.
351          * We can't write on scattered buffers so we need to copy to
352          * temp buffer.
353          */
354         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
355         ip4h_checked.check = 0;
356         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
357         /* if IPv4 header checksum is OK, believe it */
358         if (ip4h->check == ip4h_checked.check)
359                 return 4;
360         return 6;
361 }
362
363 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
364                                                      u8 port_num,
365                                                      const struct ib_grh *grh)
366 {
367         int grh_version;
368
369         if (rdma_protocol_ib(device, port_num))
370                 return RDMA_NETWORK_IB;
371
372         grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
373
374         if (grh_version == 4)
375                 return RDMA_NETWORK_IPV4;
376
377         if (grh->next_hdr == IPPROTO_UDP)
378                 return RDMA_NETWORK_IPV6;
379
380         return RDMA_NETWORK_ROCE_V1;
381 }
382
383 struct find_gid_index_context {
384         u16 vlan_id;
385         enum ib_gid_type gid_type;
386 };
387
388 static bool find_gid_index(const union ib_gid *gid,
389                            const struct ib_gid_attr *gid_attr,
390                            void *context)
391 {
392         struct find_gid_index_context *ctx =
393                 (struct find_gid_index_context *)context;
394
395         if (ctx->gid_type != gid_attr->gid_type)
396                 return false;
397
398         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
399             (is_vlan_dev(gid_attr->ndev) &&
400              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
401                 return false;
402
403         return true;
404 }
405
406 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
407                                    u16 vlan_id, const union ib_gid *sgid,
408                                    enum ib_gid_type gid_type,
409                                    u16 *gid_index)
410 {
411         struct find_gid_index_context context = {.vlan_id = vlan_id,
412                                                  .gid_type = gid_type};
413
414         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
415                                      &context, gid_index);
416 }
417
418 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
419                                   enum rdma_network_type net_type,
420                                   union ib_gid *sgid, union ib_gid *dgid)
421 {
422         struct sockaddr_in  src_in;
423         struct sockaddr_in  dst_in;
424         __be32 src_saddr, dst_saddr;
425
426         if (!sgid || !dgid)
427                 return -EINVAL;
428
429         if (net_type == RDMA_NETWORK_IPV4) {
430                 memcpy(&src_in.sin_addr.s_addr,
431                        &hdr->roce4grh.saddr, 4);
432                 memcpy(&dst_in.sin_addr.s_addr,
433                        &hdr->roce4grh.daddr, 4);
434                 src_saddr = src_in.sin_addr.s_addr;
435                 dst_saddr = dst_in.sin_addr.s_addr;
436                 ipv6_addr_set_v4mapped(src_saddr,
437                                        (struct in6_addr *)sgid);
438                 ipv6_addr_set_v4mapped(dst_saddr,
439                                        (struct in6_addr *)dgid);
440                 return 0;
441         } else if (net_type == RDMA_NETWORK_IPV6 ||
442                    net_type == RDMA_NETWORK_IB) {
443                 *dgid = hdr->ibgrh.dgid;
444                 *sgid = hdr->ibgrh.sgid;
445                 return 0;
446         } else {
447                 return -EINVAL;
448         }
449 }
450
451 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
452                        const struct ib_wc *wc, const struct ib_grh *grh,
453                        struct ib_ah_attr *ah_attr)
454 {
455         u32 flow_class;
456         u16 gid_index;
457         int ret;
458         enum rdma_network_type net_type = RDMA_NETWORK_IB;
459         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
460         int hoplimit = 0xff;
461         union ib_gid dgid;
462         union ib_gid sgid;
463
464         memset(ah_attr, 0, sizeof *ah_attr);
465         if (rdma_cap_eth_ah(device, port_num)) {
466                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
467                         net_type = wc->network_hdr_type;
468                 else
469                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
470                 gid_type = ib_network_to_gid_type(net_type);
471         }
472         ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
473                                      &sgid, &dgid);
474         if (ret)
475                 return ret;
476
477         if (rdma_protocol_roce(device, port_num)) {
478                 int if_index = 0;
479                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
480                                 wc->vlan_id : 0xffff;
481                 struct net_device *idev;
482                 struct net_device *resolved_dev;
483
484                 if (!(wc->wc_flags & IB_WC_GRH))
485                         return -EPROTOTYPE;
486
487                 if (!device->get_netdev)
488                         return -EOPNOTSUPP;
489
490                 idev = device->get_netdev(device, port_num);
491                 if (!idev)
492                         return -ENODEV;
493
494                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
495                                                    ah_attr->dmac,
496                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
497                                                    NULL : &vlan_id,
498                                                    &if_index, &hoplimit);
499                 if (ret) {
500                         dev_put(idev);
501                         return ret;
502                 }
503
504                 resolved_dev = dev_get_by_index(&init_net, if_index);
505                 if (resolved_dev->flags & IFF_LOOPBACK) {
506                         dev_put(resolved_dev);
507                         resolved_dev = idev;
508                         dev_hold(resolved_dev);
509                 }
510                 rcu_read_lock();
511                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
512                                                                    resolved_dev))
513                         ret = -EHOSTUNREACH;
514                 rcu_read_unlock();
515                 dev_put(idev);
516                 dev_put(resolved_dev);
517                 if (ret)
518                         return ret;
519
520                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
521                                               &dgid, gid_type, &gid_index);
522                 if (ret)
523                         return ret;
524         }
525
526         ah_attr->dlid = wc->slid;
527         ah_attr->sl = wc->sl;
528         ah_attr->src_path_bits = wc->dlid_path_bits;
529         ah_attr->port_num = port_num;
530
531         if (wc->wc_flags & IB_WC_GRH) {
532                 ah_attr->ah_flags = IB_AH_GRH;
533                 ah_attr->grh.dgid = sgid;
534
535                 if (!rdma_cap_eth_ah(device, port_num)) {
536                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
537                                 ret = ib_find_cached_gid_by_port(device, &dgid,
538                                                                  IB_GID_TYPE_IB,
539                                                                  port_num, NULL,
540                                                                  &gid_index);
541                                 if (ret)
542                                         return ret;
543                         } else {
544                                 gid_index = 0;
545                         }
546                 }
547
548                 ah_attr->grh.sgid_index = (u8) gid_index;
549                 flow_class = be32_to_cpu(grh->version_tclass_flow);
550                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
551                 ah_attr->grh.hop_limit = hoplimit;
552                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
553         }
554         return 0;
555 }
556 EXPORT_SYMBOL(ib_init_ah_from_wc);
557
558 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
559                                    const struct ib_grh *grh, u8 port_num)
560 {
561         struct ib_ah_attr ah_attr;
562         int ret;
563
564         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
565         if (ret)
566                 return ERR_PTR(ret);
567
568         return ib_create_ah(pd, &ah_attr);
569 }
570 EXPORT_SYMBOL(ib_create_ah_from_wc);
571
572 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
573 {
574         return ah->device->modify_ah ?
575                 ah->device->modify_ah(ah, ah_attr) :
576                 -ENOSYS;
577 }
578 EXPORT_SYMBOL(ib_modify_ah);
579
580 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
581 {
582         return ah->device->query_ah ?
583                 ah->device->query_ah(ah, ah_attr) :
584                 -ENOSYS;
585 }
586 EXPORT_SYMBOL(ib_query_ah);
587
588 int ib_destroy_ah(struct ib_ah *ah)
589 {
590         struct ib_pd *pd;
591         int ret;
592
593         pd = ah->pd;
594         ret = ah->device->destroy_ah(ah);
595         if (!ret)
596                 atomic_dec(&pd->usecnt);
597
598         return ret;
599 }
600 EXPORT_SYMBOL(ib_destroy_ah);
601
602 /* Shared receive queues */
603
604 struct ib_srq *ib_create_srq(struct ib_pd *pd,
605                              struct ib_srq_init_attr *srq_init_attr)
606 {
607         struct ib_srq *srq;
608
609         if (!pd->device->create_srq)
610                 return ERR_PTR(-ENOSYS);
611
612         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
613
614         if (!IS_ERR(srq)) {
615                 srq->device        = pd->device;
616                 srq->pd            = pd;
617                 srq->uobject       = NULL;
618                 srq->event_handler = srq_init_attr->event_handler;
619                 srq->srq_context   = srq_init_attr->srq_context;
620                 srq->srq_type      = srq_init_attr->srq_type;
621                 if (srq->srq_type == IB_SRQT_XRC) {
622                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
623                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
624                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
625                         atomic_inc(&srq->ext.xrc.cq->usecnt);
626                 }
627                 atomic_inc(&pd->usecnt);
628                 atomic_set(&srq->usecnt, 0);
629         }
630
631         return srq;
632 }
633 EXPORT_SYMBOL(ib_create_srq);
634
635 int ib_modify_srq(struct ib_srq *srq,
636                   struct ib_srq_attr *srq_attr,
637                   enum ib_srq_attr_mask srq_attr_mask)
638 {
639         return srq->device->modify_srq ?
640                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
641                 -ENOSYS;
642 }
643 EXPORT_SYMBOL(ib_modify_srq);
644
645 int ib_query_srq(struct ib_srq *srq,
646                  struct ib_srq_attr *srq_attr)
647 {
648         return srq->device->query_srq ?
649                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
650 }
651 EXPORT_SYMBOL(ib_query_srq);
652
653 int ib_destroy_srq(struct ib_srq *srq)
654 {
655         struct ib_pd *pd;
656         enum ib_srq_type srq_type;
657         struct ib_xrcd *uninitialized_var(xrcd);
658         struct ib_cq *uninitialized_var(cq);
659         int ret;
660
661         if (atomic_read(&srq->usecnt))
662                 return -EBUSY;
663
664         pd = srq->pd;
665         srq_type = srq->srq_type;
666         if (srq_type == IB_SRQT_XRC) {
667                 xrcd = srq->ext.xrc.xrcd;
668                 cq = srq->ext.xrc.cq;
669         }
670
671         ret = srq->device->destroy_srq(srq);
672         if (!ret) {
673                 atomic_dec(&pd->usecnt);
674                 if (srq_type == IB_SRQT_XRC) {
675                         atomic_dec(&xrcd->usecnt);
676                         atomic_dec(&cq->usecnt);
677                 }
678         }
679
680         return ret;
681 }
682 EXPORT_SYMBOL(ib_destroy_srq);
683
684 /* Queue pairs */
685
686 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
687 {
688         struct ib_qp *qp = context;
689         unsigned long flags;
690
691         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
692         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
693                 if (event->element.qp->event_handler)
694                         event->element.qp->event_handler(event, event->element.qp->qp_context);
695         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
696 }
697
698 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
699 {
700         mutex_lock(&xrcd->tgt_qp_mutex);
701         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
702         mutex_unlock(&xrcd->tgt_qp_mutex);
703 }
704
705 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
706                                   void (*event_handler)(struct ib_event *, void *),
707                                   void *qp_context)
708 {
709         struct ib_qp *qp;
710         unsigned long flags;
711
712         qp = kzalloc(sizeof *qp, GFP_KERNEL);
713         if (!qp)
714                 return ERR_PTR(-ENOMEM);
715
716         qp->real_qp = real_qp;
717         atomic_inc(&real_qp->usecnt);
718         qp->device = real_qp->device;
719         qp->event_handler = event_handler;
720         qp->qp_context = qp_context;
721         qp->qp_num = real_qp->qp_num;
722         qp->qp_type = real_qp->qp_type;
723
724         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
725         list_add(&qp->open_list, &real_qp->open_list);
726         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
727
728         return qp;
729 }
730
731 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
732                          struct ib_qp_open_attr *qp_open_attr)
733 {
734         struct ib_qp *qp, *real_qp;
735
736         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
737                 return ERR_PTR(-EINVAL);
738
739         qp = ERR_PTR(-EINVAL);
740         mutex_lock(&xrcd->tgt_qp_mutex);
741         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
742                 if (real_qp->qp_num == qp_open_attr->qp_num) {
743                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
744                                           qp_open_attr->qp_context);
745                         break;
746                 }
747         }
748         mutex_unlock(&xrcd->tgt_qp_mutex);
749         return qp;
750 }
751 EXPORT_SYMBOL(ib_open_qp);
752
753 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
754                 struct ib_qp_init_attr *qp_init_attr)
755 {
756         struct ib_qp *real_qp = qp;
757
758         qp->event_handler = __ib_shared_qp_event_handler;
759         qp->qp_context = qp;
760         qp->pd = NULL;
761         qp->send_cq = qp->recv_cq = NULL;
762         qp->srq = NULL;
763         qp->xrcd = qp_init_attr->xrcd;
764         atomic_inc(&qp_init_attr->xrcd->usecnt);
765         INIT_LIST_HEAD(&qp->open_list);
766
767         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
768                           qp_init_attr->qp_context);
769         if (!IS_ERR(qp))
770                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
771         else
772                 real_qp->device->destroy_qp(real_qp);
773         return qp;
774 }
775
776 struct ib_qp *ib_create_qp(struct ib_pd *pd,
777                            struct ib_qp_init_attr *qp_init_attr)
778 {
779         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
780         struct ib_qp *qp;
781         int ret;
782
783         if (qp_init_attr->rwq_ind_tbl &&
784             (qp_init_attr->recv_cq ||
785             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
786             qp_init_attr->cap.max_recv_sge))
787                 return ERR_PTR(-EINVAL);
788
789         /*
790          * If the callers is using the RDMA API calculate the resources
791          * needed for the RDMA READ/WRITE operations.
792          *
793          * Note that these callers need to pass in a port number.
794          */
795         if (qp_init_attr->cap.max_rdma_ctxs)
796                 rdma_rw_init_qp(device, qp_init_attr);
797
798         qp = device->create_qp(pd, qp_init_attr, NULL);
799         if (IS_ERR(qp))
800                 return qp;
801
802         qp->device     = device;
803         qp->real_qp    = qp;
804         qp->uobject    = NULL;
805         qp->qp_type    = qp_init_attr->qp_type;
806         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
807
808         atomic_set(&qp->usecnt, 0);
809         qp->mrs_used = 0;
810         spin_lock_init(&qp->mr_lock);
811         INIT_LIST_HEAD(&qp->rdma_mrs);
812         INIT_LIST_HEAD(&qp->sig_mrs);
813
814         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
815                 return ib_create_xrc_qp(qp, qp_init_attr);
816
817         qp->event_handler = qp_init_attr->event_handler;
818         qp->qp_context = qp_init_attr->qp_context;
819         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
820                 qp->recv_cq = NULL;
821                 qp->srq = NULL;
822         } else {
823                 qp->recv_cq = qp_init_attr->recv_cq;
824                 if (qp_init_attr->recv_cq)
825                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
826                 qp->srq = qp_init_attr->srq;
827                 if (qp->srq)
828                         atomic_inc(&qp_init_attr->srq->usecnt);
829         }
830
831         qp->pd      = pd;
832         qp->send_cq = qp_init_attr->send_cq;
833         qp->xrcd    = NULL;
834
835         atomic_inc(&pd->usecnt);
836         if (qp_init_attr->send_cq)
837                 atomic_inc(&qp_init_attr->send_cq->usecnt);
838         if (qp_init_attr->rwq_ind_tbl)
839                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
840
841         if (qp_init_attr->cap.max_rdma_ctxs) {
842                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
843                 if (ret) {
844                         pr_err("failed to init MR pool ret= %d\n", ret);
845                         ib_destroy_qp(qp);
846                         return ERR_PTR(ret);
847                 }
848         }
849
850         /*
851          * Note: all hw drivers guarantee that max_send_sge is lower than
852          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
853          * max_send_sge <= max_sge_rd.
854          */
855         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
856         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
857                                  device->attrs.max_sge_rd);
858
859         return qp;
860 }
861 EXPORT_SYMBOL(ib_create_qp);
862
863 static const struct {
864         int                     valid;
865         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
866         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
867 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
868         [IB_QPS_RESET] = {
869                 [IB_QPS_RESET] = { .valid = 1 },
870                 [IB_QPS_INIT]  = {
871                         .valid = 1,
872                         .req_param = {
873                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
874                                                 IB_QP_PORT                      |
875                                                 IB_QP_QKEY),
876                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
877                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
878                                                 IB_QP_PORT                      |
879                                                 IB_QP_ACCESS_FLAGS),
880                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
881                                                 IB_QP_PORT                      |
882                                                 IB_QP_ACCESS_FLAGS),
883                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
884                                                 IB_QP_PORT                      |
885                                                 IB_QP_ACCESS_FLAGS),
886                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
887                                                 IB_QP_PORT                      |
888                                                 IB_QP_ACCESS_FLAGS),
889                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
890                                                 IB_QP_QKEY),
891                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
892                                                 IB_QP_QKEY),
893                         }
894                 },
895         },
896         [IB_QPS_INIT]  = {
897                 [IB_QPS_RESET] = { .valid = 1 },
898                 [IB_QPS_ERR] =   { .valid = 1 },
899                 [IB_QPS_INIT]  = {
900                         .valid = 1,
901                         .opt_param = {
902                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
903                                                 IB_QP_PORT                      |
904                                                 IB_QP_QKEY),
905                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
906                                                 IB_QP_PORT                      |
907                                                 IB_QP_ACCESS_FLAGS),
908                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
909                                                 IB_QP_PORT                      |
910                                                 IB_QP_ACCESS_FLAGS),
911                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
912                                                 IB_QP_PORT                      |
913                                                 IB_QP_ACCESS_FLAGS),
914                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
915                                                 IB_QP_PORT                      |
916                                                 IB_QP_ACCESS_FLAGS),
917                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
918                                                 IB_QP_QKEY),
919                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
920                                                 IB_QP_QKEY),
921                         }
922                 },
923                 [IB_QPS_RTR]   = {
924                         .valid = 1,
925                         .req_param = {
926                                 [IB_QPT_UC]  = (IB_QP_AV                        |
927                                                 IB_QP_PATH_MTU                  |
928                                                 IB_QP_DEST_QPN                  |
929                                                 IB_QP_RQ_PSN),
930                                 [IB_QPT_RC]  = (IB_QP_AV                        |
931                                                 IB_QP_PATH_MTU                  |
932                                                 IB_QP_DEST_QPN                  |
933                                                 IB_QP_RQ_PSN                    |
934                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
935                                                 IB_QP_MIN_RNR_TIMER),
936                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
937                                                 IB_QP_PATH_MTU                  |
938                                                 IB_QP_DEST_QPN                  |
939                                                 IB_QP_RQ_PSN),
940                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
941                                                 IB_QP_PATH_MTU                  |
942                                                 IB_QP_DEST_QPN                  |
943                                                 IB_QP_RQ_PSN                    |
944                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
945                                                 IB_QP_MIN_RNR_TIMER),
946                         },
947                         .opt_param = {
948                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
949                                                  IB_QP_QKEY),
950                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
951                                                  IB_QP_ACCESS_FLAGS             |
952                                                  IB_QP_PKEY_INDEX),
953                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
954                                                  IB_QP_ACCESS_FLAGS             |
955                                                  IB_QP_PKEY_INDEX),
956                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
957                                                  IB_QP_ACCESS_FLAGS             |
958                                                  IB_QP_PKEY_INDEX),
959                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
960                                                  IB_QP_ACCESS_FLAGS             |
961                                                  IB_QP_PKEY_INDEX),
962                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
963                                                  IB_QP_QKEY),
964                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
965                                                  IB_QP_QKEY),
966                          },
967                 },
968         },
969         [IB_QPS_RTR]   = {
970                 [IB_QPS_RESET] = { .valid = 1 },
971                 [IB_QPS_ERR] =   { .valid = 1 },
972                 [IB_QPS_RTS]   = {
973                         .valid = 1,
974                         .req_param = {
975                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
976                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
977                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
978                                                 IB_QP_RETRY_CNT                 |
979                                                 IB_QP_RNR_RETRY                 |
980                                                 IB_QP_SQ_PSN                    |
981                                                 IB_QP_MAX_QP_RD_ATOMIC),
982                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
983                                                 IB_QP_RETRY_CNT                 |
984                                                 IB_QP_RNR_RETRY                 |
985                                                 IB_QP_SQ_PSN                    |
986                                                 IB_QP_MAX_QP_RD_ATOMIC),
987                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
988                                                 IB_QP_SQ_PSN),
989                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
990                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
991                         },
992                         .opt_param = {
993                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
994                                                  IB_QP_QKEY),
995                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
996                                                  IB_QP_ALT_PATH                 |
997                                                  IB_QP_ACCESS_FLAGS             |
998                                                  IB_QP_PATH_MIG_STATE),
999                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1000                                                  IB_QP_ALT_PATH                 |
1001                                                  IB_QP_ACCESS_FLAGS             |
1002                                                  IB_QP_MIN_RNR_TIMER            |
1003                                                  IB_QP_PATH_MIG_STATE),
1004                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1005                                                  IB_QP_ALT_PATH                 |
1006                                                  IB_QP_ACCESS_FLAGS             |
1007                                                  IB_QP_PATH_MIG_STATE),
1008                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1009                                                  IB_QP_ALT_PATH                 |
1010                                                  IB_QP_ACCESS_FLAGS             |
1011                                                  IB_QP_MIN_RNR_TIMER            |
1012                                                  IB_QP_PATH_MIG_STATE),
1013                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1014                                                  IB_QP_QKEY),
1015                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1016                                                  IB_QP_QKEY),
1017                          }
1018                 }
1019         },
1020         [IB_QPS_RTS]   = {
1021                 [IB_QPS_RESET] = { .valid = 1 },
1022                 [IB_QPS_ERR] =   { .valid = 1 },
1023                 [IB_QPS_RTS]   = {
1024                         .valid = 1,
1025                         .opt_param = {
1026                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1027                                                 IB_QP_QKEY),
1028                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1029                                                 IB_QP_ACCESS_FLAGS              |
1030                                                 IB_QP_ALT_PATH                  |
1031                                                 IB_QP_PATH_MIG_STATE),
1032                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1033                                                 IB_QP_ACCESS_FLAGS              |
1034                                                 IB_QP_ALT_PATH                  |
1035                                                 IB_QP_PATH_MIG_STATE            |
1036                                                 IB_QP_MIN_RNR_TIMER),
1037                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1038                                                 IB_QP_ACCESS_FLAGS              |
1039                                                 IB_QP_ALT_PATH                  |
1040                                                 IB_QP_PATH_MIG_STATE),
1041                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1042                                                 IB_QP_ACCESS_FLAGS              |
1043                                                 IB_QP_ALT_PATH                  |
1044                                                 IB_QP_PATH_MIG_STATE            |
1045                                                 IB_QP_MIN_RNR_TIMER),
1046                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1047                                                 IB_QP_QKEY),
1048                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1049                                                 IB_QP_QKEY),
1050                         }
1051                 },
1052                 [IB_QPS_SQD]   = {
1053                         .valid = 1,
1054                         .opt_param = {
1055                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1056                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1057                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1058                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1059                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1060                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1061                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1062                         }
1063                 },
1064         },
1065         [IB_QPS_SQD]   = {
1066                 [IB_QPS_RESET] = { .valid = 1 },
1067                 [IB_QPS_ERR] =   { .valid = 1 },
1068                 [IB_QPS_RTS]   = {
1069                         .valid = 1,
1070                         .opt_param = {
1071                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1072                                                 IB_QP_QKEY),
1073                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1074                                                 IB_QP_ALT_PATH                  |
1075                                                 IB_QP_ACCESS_FLAGS              |
1076                                                 IB_QP_PATH_MIG_STATE),
1077                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1078                                                 IB_QP_ALT_PATH                  |
1079                                                 IB_QP_ACCESS_FLAGS              |
1080                                                 IB_QP_MIN_RNR_TIMER             |
1081                                                 IB_QP_PATH_MIG_STATE),
1082                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1083                                                 IB_QP_ALT_PATH                  |
1084                                                 IB_QP_ACCESS_FLAGS              |
1085                                                 IB_QP_PATH_MIG_STATE),
1086                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1087                                                 IB_QP_ALT_PATH                  |
1088                                                 IB_QP_ACCESS_FLAGS              |
1089                                                 IB_QP_MIN_RNR_TIMER             |
1090                                                 IB_QP_PATH_MIG_STATE),
1091                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1092                                                 IB_QP_QKEY),
1093                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1094                                                 IB_QP_QKEY),
1095                         }
1096                 },
1097                 [IB_QPS_SQD]   = {
1098                         .valid = 1,
1099                         .opt_param = {
1100                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1101                                                 IB_QP_QKEY),
1102                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1103                                                 IB_QP_ALT_PATH                  |
1104                                                 IB_QP_ACCESS_FLAGS              |
1105                                                 IB_QP_PKEY_INDEX                |
1106                                                 IB_QP_PATH_MIG_STATE),
1107                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1108                                                 IB_QP_AV                        |
1109                                                 IB_QP_TIMEOUT                   |
1110                                                 IB_QP_RETRY_CNT                 |
1111                                                 IB_QP_RNR_RETRY                 |
1112                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1113                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1114                                                 IB_QP_ALT_PATH                  |
1115                                                 IB_QP_ACCESS_FLAGS              |
1116                                                 IB_QP_PKEY_INDEX                |
1117                                                 IB_QP_MIN_RNR_TIMER             |
1118                                                 IB_QP_PATH_MIG_STATE),
1119                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1120                                                 IB_QP_AV                        |
1121                                                 IB_QP_TIMEOUT                   |
1122                                                 IB_QP_RETRY_CNT                 |
1123                                                 IB_QP_RNR_RETRY                 |
1124                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1125                                                 IB_QP_ALT_PATH                  |
1126                                                 IB_QP_ACCESS_FLAGS              |
1127                                                 IB_QP_PKEY_INDEX                |
1128                                                 IB_QP_PATH_MIG_STATE),
1129                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1130                                                 IB_QP_AV                        |
1131                                                 IB_QP_TIMEOUT                   |
1132                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1133                                                 IB_QP_ALT_PATH                  |
1134                                                 IB_QP_ACCESS_FLAGS              |
1135                                                 IB_QP_PKEY_INDEX                |
1136                                                 IB_QP_MIN_RNR_TIMER             |
1137                                                 IB_QP_PATH_MIG_STATE),
1138                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1139                                                 IB_QP_QKEY),
1140                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1141                                                 IB_QP_QKEY),
1142                         }
1143                 }
1144         },
1145         [IB_QPS_SQE]   = {
1146                 [IB_QPS_RESET] = { .valid = 1 },
1147                 [IB_QPS_ERR] =   { .valid = 1 },
1148                 [IB_QPS_RTS]   = {
1149                         .valid = 1,
1150                         .opt_param = {
1151                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1152                                                 IB_QP_QKEY),
1153                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1154                                                 IB_QP_ACCESS_FLAGS),
1155                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1156                                                 IB_QP_QKEY),
1157                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1158                                                 IB_QP_QKEY),
1159                         }
1160                 }
1161         },
1162         [IB_QPS_ERR] = {
1163                 [IB_QPS_RESET] = { .valid = 1 },
1164                 [IB_QPS_ERR] =   { .valid = 1 }
1165         }
1166 };
1167
1168 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1169                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1170                        enum rdma_link_layer ll)
1171 {
1172         enum ib_qp_attr_mask req_param, opt_param;
1173
1174         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1175             next_state < 0 || next_state > IB_QPS_ERR)
1176                 return 0;
1177
1178         if (mask & IB_QP_CUR_STATE  &&
1179             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1180             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1181                 return 0;
1182
1183         if (!qp_state_table[cur_state][next_state].valid)
1184                 return 0;
1185
1186         req_param = qp_state_table[cur_state][next_state].req_param[type];
1187         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1188
1189         if ((mask & req_param) != req_param)
1190                 return 0;
1191
1192         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1193                 return 0;
1194
1195         return 1;
1196 }
1197 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1198
1199 int ib_resolve_eth_dmac(struct ib_qp *qp,
1200                         struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1201 {
1202         int           ret = 0;
1203
1204         if (*qp_attr_mask & IB_QP_AV) {
1205                 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1206                     qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1207                         return -EINVAL;
1208
1209                 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1210                         return 0;
1211
1212                 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1213                         rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1214                                         qp_attr->ah_attr.dmac);
1215                 } else {
1216                         union ib_gid            sgid;
1217                         struct ib_gid_attr      sgid_attr;
1218                         int                     ifindex;
1219                         int                     hop_limit;
1220
1221                         ret = ib_query_gid(qp->device,
1222                                            qp_attr->ah_attr.port_num,
1223                                            qp_attr->ah_attr.grh.sgid_index,
1224                                            &sgid, &sgid_attr);
1225
1226                         if (ret || !sgid_attr.ndev) {
1227                                 if (!ret)
1228                                         ret = -ENXIO;
1229                                 goto out;
1230                         }
1231
1232                         ifindex = sgid_attr.ndev->ifindex;
1233
1234                         ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1235                                                            &qp_attr->ah_attr.grh.dgid,
1236                                                            qp_attr->ah_attr.dmac,
1237                                                            NULL, &ifindex, &hop_limit);
1238
1239                         dev_put(sgid_attr.ndev);
1240
1241                         qp_attr->ah_attr.grh.hop_limit = hop_limit;
1242                 }
1243         }
1244 out:
1245         return ret;
1246 }
1247 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1248
1249
1250 int ib_modify_qp(struct ib_qp *qp,
1251                  struct ib_qp_attr *qp_attr,
1252                  int qp_attr_mask)
1253 {
1254         int ret;
1255
1256         ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1257         if (ret)
1258                 return ret;
1259
1260         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1261 }
1262 EXPORT_SYMBOL(ib_modify_qp);
1263
1264 int ib_query_qp(struct ib_qp *qp,
1265                 struct ib_qp_attr *qp_attr,
1266                 int qp_attr_mask,
1267                 struct ib_qp_init_attr *qp_init_attr)
1268 {
1269         return qp->device->query_qp ?
1270                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1271                 -ENOSYS;
1272 }
1273 EXPORT_SYMBOL(ib_query_qp);
1274
1275 int ib_close_qp(struct ib_qp *qp)
1276 {
1277         struct ib_qp *real_qp;
1278         unsigned long flags;
1279
1280         real_qp = qp->real_qp;
1281         if (real_qp == qp)
1282                 return -EINVAL;
1283
1284         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1285         list_del(&qp->open_list);
1286         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1287
1288         atomic_dec(&real_qp->usecnt);
1289         kfree(qp);
1290
1291         return 0;
1292 }
1293 EXPORT_SYMBOL(ib_close_qp);
1294
1295 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1296 {
1297         struct ib_xrcd *xrcd;
1298         struct ib_qp *real_qp;
1299         int ret;
1300
1301         real_qp = qp->real_qp;
1302         xrcd = real_qp->xrcd;
1303
1304         mutex_lock(&xrcd->tgt_qp_mutex);
1305         ib_close_qp(qp);
1306         if (atomic_read(&real_qp->usecnt) == 0)
1307                 list_del(&real_qp->xrcd_list);
1308         else
1309                 real_qp = NULL;
1310         mutex_unlock(&xrcd->tgt_qp_mutex);
1311
1312         if (real_qp) {
1313                 ret = ib_destroy_qp(real_qp);
1314                 if (!ret)
1315                         atomic_dec(&xrcd->usecnt);
1316                 else
1317                         __ib_insert_xrcd_qp(xrcd, real_qp);
1318         }
1319
1320         return 0;
1321 }
1322
1323 int ib_destroy_qp(struct ib_qp *qp)
1324 {
1325         struct ib_pd *pd;
1326         struct ib_cq *scq, *rcq;
1327         struct ib_srq *srq;
1328         struct ib_rwq_ind_table *ind_tbl;
1329         int ret;
1330
1331         WARN_ON_ONCE(qp->mrs_used > 0);
1332
1333         if (atomic_read(&qp->usecnt))
1334                 return -EBUSY;
1335
1336         if (qp->real_qp != qp)
1337                 return __ib_destroy_shared_qp(qp);
1338
1339         pd   = qp->pd;
1340         scq  = qp->send_cq;
1341         rcq  = qp->recv_cq;
1342         srq  = qp->srq;
1343         ind_tbl = qp->rwq_ind_tbl;
1344
1345         if (!qp->uobject)
1346                 rdma_rw_cleanup_mrs(qp);
1347
1348         ret = qp->device->destroy_qp(qp);
1349         if (!ret) {
1350                 if (pd)
1351                         atomic_dec(&pd->usecnt);
1352                 if (scq)
1353                         atomic_dec(&scq->usecnt);
1354                 if (rcq)
1355                         atomic_dec(&rcq->usecnt);
1356                 if (srq)
1357                         atomic_dec(&srq->usecnt);
1358                 if (ind_tbl)
1359                         atomic_dec(&ind_tbl->usecnt);
1360         }
1361
1362         return ret;
1363 }
1364 EXPORT_SYMBOL(ib_destroy_qp);
1365
1366 /* Completion queues */
1367
1368 struct ib_cq *ib_create_cq(struct ib_device *device,
1369                            ib_comp_handler comp_handler,
1370                            void (*event_handler)(struct ib_event *, void *),
1371                            void *cq_context,
1372                            const struct ib_cq_init_attr *cq_attr)
1373 {
1374         struct ib_cq *cq;
1375
1376         cq = device->create_cq(device, cq_attr, NULL, NULL);
1377
1378         if (!IS_ERR(cq)) {
1379                 cq->device        = device;
1380                 cq->uobject       = NULL;
1381                 cq->comp_handler  = comp_handler;
1382                 cq->event_handler = event_handler;
1383                 cq->cq_context    = cq_context;
1384                 atomic_set(&cq->usecnt, 0);
1385         }
1386
1387         return cq;
1388 }
1389 EXPORT_SYMBOL(ib_create_cq);
1390
1391 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1392 {
1393         return cq->device->modify_cq ?
1394                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1395 }
1396 EXPORT_SYMBOL(ib_modify_cq);
1397
1398 int ib_destroy_cq(struct ib_cq *cq)
1399 {
1400         if (atomic_read(&cq->usecnt))
1401                 return -EBUSY;
1402
1403         return cq->device->destroy_cq(cq);
1404 }
1405 EXPORT_SYMBOL(ib_destroy_cq);
1406
1407 int ib_resize_cq(struct ib_cq *cq, int cqe)
1408 {
1409         return cq->device->resize_cq ?
1410                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1411 }
1412 EXPORT_SYMBOL(ib_resize_cq);
1413
1414 /* Memory regions */
1415
1416 int ib_dereg_mr(struct ib_mr *mr)
1417 {
1418         struct ib_pd *pd = mr->pd;
1419         int ret;
1420
1421         ret = mr->device->dereg_mr(mr);
1422         if (!ret)
1423                 atomic_dec(&pd->usecnt);
1424
1425         return ret;
1426 }
1427 EXPORT_SYMBOL(ib_dereg_mr);
1428
1429 /**
1430  * ib_alloc_mr() - Allocates a memory region
1431  * @pd:            protection domain associated with the region
1432  * @mr_type:       memory region type
1433  * @max_num_sg:    maximum sg entries available for registration.
1434  *
1435  * Notes:
1436  * Memory registeration page/sg lists must not exceed max_num_sg.
1437  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1438  * max_num_sg * used_page_size.
1439  *
1440  */
1441 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1442                           enum ib_mr_type mr_type,
1443                           u32 max_num_sg)
1444 {
1445         struct ib_mr *mr;
1446
1447         if (!pd->device->alloc_mr)
1448                 return ERR_PTR(-ENOSYS);
1449
1450         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1451         if (!IS_ERR(mr)) {
1452                 mr->device  = pd->device;
1453                 mr->pd      = pd;
1454                 mr->uobject = NULL;
1455                 atomic_inc(&pd->usecnt);
1456                 mr->need_inval = false;
1457         }
1458
1459         return mr;
1460 }
1461 EXPORT_SYMBOL(ib_alloc_mr);
1462
1463 /* "Fast" memory regions */
1464
1465 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1466                             int mr_access_flags,
1467                             struct ib_fmr_attr *fmr_attr)
1468 {
1469         struct ib_fmr *fmr;
1470
1471         if (!pd->device->alloc_fmr)
1472                 return ERR_PTR(-ENOSYS);
1473
1474         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1475         if (!IS_ERR(fmr)) {
1476                 fmr->device = pd->device;
1477                 fmr->pd     = pd;
1478                 atomic_inc(&pd->usecnt);
1479         }
1480
1481         return fmr;
1482 }
1483 EXPORT_SYMBOL(ib_alloc_fmr);
1484
1485 int ib_unmap_fmr(struct list_head *fmr_list)
1486 {
1487         struct ib_fmr *fmr;
1488
1489         if (list_empty(fmr_list))
1490                 return 0;
1491
1492         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1493         return fmr->device->unmap_fmr(fmr_list);
1494 }
1495 EXPORT_SYMBOL(ib_unmap_fmr);
1496
1497 int ib_dealloc_fmr(struct ib_fmr *fmr)
1498 {
1499         struct ib_pd *pd;
1500         int ret;
1501
1502         pd = fmr->pd;
1503         ret = fmr->device->dealloc_fmr(fmr);
1504         if (!ret)
1505                 atomic_dec(&pd->usecnt);
1506
1507         return ret;
1508 }
1509 EXPORT_SYMBOL(ib_dealloc_fmr);
1510
1511 /* Multicast groups */
1512
1513 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1514 {
1515         struct ib_qp_init_attr init_attr = {};
1516         struct ib_qp_attr attr = {};
1517         int num_eth_ports = 0;
1518         int port;
1519
1520         /* If QP state >= init, it is assigned to a port and we can check this
1521          * port only.
1522          */
1523         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1524                 if (attr.qp_state >= IB_QPS_INIT) {
1525                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1526                             IB_LINK_LAYER_INFINIBAND)
1527                                 return true;
1528                         goto lid_check;
1529                 }
1530         }
1531
1532         /* Can't get a quick answer, iterate over all ports */
1533         for (port = 0; port < qp->device->phys_port_cnt; port++)
1534                 if (rdma_port_get_link_layer(qp->device, port) !=
1535                     IB_LINK_LAYER_INFINIBAND)
1536                         num_eth_ports++;
1537
1538         /* If we have at lease one Ethernet port, RoCE annex declares that
1539          * multicast LID should be ignored. We can't tell at this step if the
1540          * QP belongs to an IB or Ethernet port.
1541          */
1542         if (num_eth_ports)
1543                 return true;
1544
1545         /* If all the ports are IB, we can check according to IB spec. */
1546 lid_check:
1547         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1548                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
1549 }
1550
1551 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1552 {
1553         int ret;
1554
1555         if (!qp->device->attach_mcast)
1556                 return -ENOSYS;
1557         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1558             !is_valid_mcast_lid(qp, lid))
1559                 return -EINVAL;
1560
1561         ret = qp->device->attach_mcast(qp, gid, lid);
1562         if (!ret)
1563                 atomic_inc(&qp->usecnt);
1564         return ret;
1565 }
1566 EXPORT_SYMBOL(ib_attach_mcast);
1567
1568 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1569 {
1570         int ret;
1571
1572         if (!qp->device->detach_mcast)
1573                 return -ENOSYS;
1574         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1575             !is_valid_mcast_lid(qp, lid))
1576                 return -EINVAL;
1577
1578         ret = qp->device->detach_mcast(qp, gid, lid);
1579         if (!ret)
1580                 atomic_dec(&qp->usecnt);
1581         return ret;
1582 }
1583 EXPORT_SYMBOL(ib_detach_mcast);
1584
1585 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1586 {
1587         struct ib_xrcd *xrcd;
1588
1589         if (!device->alloc_xrcd)
1590                 return ERR_PTR(-ENOSYS);
1591
1592         xrcd = device->alloc_xrcd(device, NULL, NULL);
1593         if (!IS_ERR(xrcd)) {
1594                 xrcd->device = device;
1595                 xrcd->inode = NULL;
1596                 atomic_set(&xrcd->usecnt, 0);
1597                 mutex_init(&xrcd->tgt_qp_mutex);
1598                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1599         }
1600
1601         return xrcd;
1602 }
1603 EXPORT_SYMBOL(ib_alloc_xrcd);
1604
1605 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1606 {
1607         struct ib_qp *qp;
1608         int ret;
1609
1610         if (atomic_read(&xrcd->usecnt))
1611                 return -EBUSY;
1612
1613         while (!list_empty(&xrcd->tgt_qp_list)) {
1614                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1615                 ret = ib_destroy_qp(qp);
1616                 if (ret)
1617                         return ret;
1618         }
1619
1620         return xrcd->device->dealloc_xrcd(xrcd);
1621 }
1622 EXPORT_SYMBOL(ib_dealloc_xrcd);
1623
1624 /**
1625  * ib_create_wq - Creates a WQ associated with the specified protection
1626  * domain.
1627  * @pd: The protection domain associated with the WQ.
1628  * @wq_init_attr: A list of initial attributes required to create the
1629  * WQ. If WQ creation succeeds, then the attributes are updated to
1630  * the actual capabilities of the created WQ.
1631  *
1632  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1633  * the requested size of the WQ, and set to the actual values allocated
1634  * on return.
1635  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1636  * at least as large as the requested values.
1637  */
1638 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1639                            struct ib_wq_init_attr *wq_attr)
1640 {
1641         struct ib_wq *wq;
1642
1643         if (!pd->device->create_wq)
1644                 return ERR_PTR(-ENOSYS);
1645
1646         wq = pd->device->create_wq(pd, wq_attr, NULL);
1647         if (!IS_ERR(wq)) {
1648                 wq->event_handler = wq_attr->event_handler;
1649                 wq->wq_context = wq_attr->wq_context;
1650                 wq->wq_type = wq_attr->wq_type;
1651                 wq->cq = wq_attr->cq;
1652                 wq->device = pd->device;
1653                 wq->pd = pd;
1654                 wq->uobject = NULL;
1655                 atomic_inc(&pd->usecnt);
1656                 atomic_inc(&wq_attr->cq->usecnt);
1657                 atomic_set(&wq->usecnt, 0);
1658         }
1659         return wq;
1660 }
1661 EXPORT_SYMBOL(ib_create_wq);
1662
1663 /**
1664  * ib_destroy_wq - Destroys the specified WQ.
1665  * @wq: The WQ to destroy.
1666  */
1667 int ib_destroy_wq(struct ib_wq *wq)
1668 {
1669         int err;
1670         struct ib_cq *cq = wq->cq;
1671         struct ib_pd *pd = wq->pd;
1672
1673         if (atomic_read(&wq->usecnt))
1674                 return -EBUSY;
1675
1676         err = wq->device->destroy_wq(wq);
1677         if (!err) {
1678                 atomic_dec(&pd->usecnt);
1679                 atomic_dec(&cq->usecnt);
1680         }
1681         return err;
1682 }
1683 EXPORT_SYMBOL(ib_destroy_wq);
1684
1685 /**
1686  * ib_modify_wq - Modifies the specified WQ.
1687  * @wq: The WQ to modify.
1688  * @wq_attr: On input, specifies the WQ attributes to modify.
1689  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1690  *   are being modified.
1691  * On output, the current values of selected WQ attributes are returned.
1692  */
1693 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1694                  u32 wq_attr_mask)
1695 {
1696         int err;
1697
1698         if (!wq->device->modify_wq)
1699                 return -ENOSYS;
1700
1701         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1702         return err;
1703 }
1704 EXPORT_SYMBOL(ib_modify_wq);
1705
1706 /*
1707  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1708  * @device: The device on which to create the rwq indirection table.
1709  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1710  * create the Indirection Table.
1711  *
1712  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1713  *      than the created ib_rwq_ind_table object and the caller is responsible
1714  *      for its memory allocation/free.
1715  */
1716 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1717                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1718 {
1719         struct ib_rwq_ind_table *rwq_ind_table;
1720         int i;
1721         u32 table_size;
1722
1723         if (!device->create_rwq_ind_table)
1724                 return ERR_PTR(-ENOSYS);
1725
1726         table_size = (1 << init_attr->log_ind_tbl_size);
1727         rwq_ind_table = device->create_rwq_ind_table(device,
1728                                 init_attr, NULL);
1729         if (IS_ERR(rwq_ind_table))
1730                 return rwq_ind_table;
1731
1732         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1733         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1734         rwq_ind_table->device = device;
1735         rwq_ind_table->uobject = NULL;
1736         atomic_set(&rwq_ind_table->usecnt, 0);
1737
1738         for (i = 0; i < table_size; i++)
1739                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1740
1741         return rwq_ind_table;
1742 }
1743 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1744
1745 /*
1746  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1747  * @wq_ind_table: The Indirection Table to destroy.
1748 */
1749 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1750 {
1751         int err, i;
1752         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1753         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1754
1755         if (atomic_read(&rwq_ind_table->usecnt))
1756                 return -EBUSY;
1757
1758         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1759         if (!err) {
1760                 for (i = 0; i < table_size; i++)
1761                         atomic_dec(&ind_tbl[i]->usecnt);
1762         }
1763
1764         return err;
1765 }
1766 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1767
1768 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1769                                struct ib_flow_attr *flow_attr,
1770                                int domain)
1771 {
1772         struct ib_flow *flow_id;
1773         if (!qp->device->create_flow)
1774                 return ERR_PTR(-ENOSYS);
1775
1776         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1777         if (!IS_ERR(flow_id))
1778                 atomic_inc(&qp->usecnt);
1779         return flow_id;
1780 }
1781 EXPORT_SYMBOL(ib_create_flow);
1782
1783 int ib_destroy_flow(struct ib_flow *flow_id)
1784 {
1785         int err;
1786         struct ib_qp *qp = flow_id->qp;
1787
1788         err = qp->device->destroy_flow(flow_id);
1789         if (!err)
1790                 atomic_dec(&qp->usecnt);
1791         return err;
1792 }
1793 EXPORT_SYMBOL(ib_destroy_flow);
1794
1795 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1796                        struct ib_mr_status *mr_status)
1797 {
1798         return mr->device->check_mr_status ?
1799                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1800 }
1801 EXPORT_SYMBOL(ib_check_mr_status);
1802
1803 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1804                          int state)
1805 {
1806         if (!device->set_vf_link_state)
1807                 return -ENOSYS;
1808
1809         return device->set_vf_link_state(device, vf, port, state);
1810 }
1811 EXPORT_SYMBOL(ib_set_vf_link_state);
1812
1813 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1814                      struct ifla_vf_info *info)
1815 {
1816         if (!device->get_vf_config)
1817                 return -ENOSYS;
1818
1819         return device->get_vf_config(device, vf, port, info);
1820 }
1821 EXPORT_SYMBOL(ib_get_vf_config);
1822
1823 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1824                     struct ifla_vf_stats *stats)
1825 {
1826         if (!device->get_vf_stats)
1827                 return -ENOSYS;
1828
1829         return device->get_vf_stats(device, vf, port, stats);
1830 }
1831 EXPORT_SYMBOL(ib_get_vf_stats);
1832
1833 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1834                    int type)
1835 {
1836         if (!device->set_vf_guid)
1837                 return -ENOSYS;
1838
1839         return device->set_vf_guid(device, vf, port, guid, type);
1840 }
1841 EXPORT_SYMBOL(ib_set_vf_guid);
1842
1843 /**
1844  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1845  *     and set it the memory region.
1846  * @mr:            memory region
1847  * @sg:            dma mapped scatterlist
1848  * @sg_nents:      number of entries in sg
1849  * @sg_offset:     offset in bytes into sg
1850  * @page_size:     page vector desired page size
1851  *
1852  * Constraints:
1853  * - The first sg element is allowed to have an offset.
1854  * - Each sg element must either be aligned to page_size or virtually
1855  *   contiguous to the previous element. In case an sg element has a
1856  *   non-contiguous offset, the mapping prefix will not include it.
1857  * - The last sg element is allowed to have length less than page_size.
1858  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1859  *   then only max_num_sg entries will be mapped.
1860  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1861  *   constraints holds and the page_size argument is ignored.
1862  *
1863  * Returns the number of sg elements that were mapped to the memory region.
1864  *
1865  * After this completes successfully, the  memory region
1866  * is ready for registration.
1867  */
1868 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1869                  unsigned int *sg_offset, unsigned int page_size)
1870 {
1871         if (unlikely(!mr->device->map_mr_sg))
1872                 return -ENOSYS;
1873
1874         mr->page_size = page_size;
1875
1876         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1877 }
1878 EXPORT_SYMBOL(ib_map_mr_sg);
1879
1880 /**
1881  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1882  *     to a page vector
1883  * @mr:            memory region
1884  * @sgl:           dma mapped scatterlist
1885  * @sg_nents:      number of entries in sg
1886  * @sg_offset_p:   IN:  start offset in bytes into sg
1887  *                 OUT: offset in bytes for element n of the sg of the first
1888  *                      byte that has not been processed where n is the return
1889  *                      value of this function.
1890  * @set_page:      driver page assignment function pointer
1891  *
1892  * Core service helper for drivers to convert the largest
1893  * prefix of given sg list to a page vector. The sg list
1894  * prefix converted is the prefix that meet the requirements
1895  * of ib_map_mr_sg.
1896  *
1897  * Returns the number of sg elements that were assigned to
1898  * a page vector.
1899  */
1900 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1901                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1902 {
1903         struct scatterlist *sg;
1904         u64 last_end_dma_addr = 0;
1905         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1906         unsigned int last_page_off = 0;
1907         u64 page_mask = ~((u64)mr->page_size - 1);
1908         int i, ret;
1909
1910         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1911                 return -EINVAL;
1912
1913         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1914         mr->length = 0;
1915
1916         for_each_sg(sgl, sg, sg_nents, i) {
1917                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1918                 u64 prev_addr = dma_addr;
1919                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1920                 u64 end_dma_addr = dma_addr + dma_len;
1921                 u64 page_addr = dma_addr & page_mask;
1922
1923                 /*
1924                  * For the second and later elements, check whether either the
1925                  * end of element i-1 or the start of element i is not aligned
1926                  * on a page boundary.
1927                  */
1928                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1929                         /* Stop mapping if there is a gap. */
1930                         if (last_end_dma_addr != dma_addr)
1931                                 break;
1932
1933                         /*
1934                          * Coalesce this element with the last. If it is small
1935                          * enough just update mr->length. Otherwise start
1936                          * mapping from the next page.
1937                          */
1938                         goto next_page;
1939                 }
1940
1941                 do {
1942                         ret = set_page(mr, page_addr);
1943                         if (unlikely(ret < 0)) {
1944                                 sg_offset = prev_addr - sg_dma_address(sg);
1945                                 mr->length += prev_addr - dma_addr;
1946                                 if (sg_offset_p)
1947                                         *sg_offset_p = sg_offset;
1948                                 return i || sg_offset ? i : ret;
1949                         }
1950                         prev_addr = page_addr;
1951 next_page:
1952                         page_addr += mr->page_size;
1953                 } while (page_addr < end_dma_addr);
1954
1955                 mr->length += dma_len;
1956                 last_end_dma_addr = end_dma_addr;
1957                 last_page_off = end_dma_addr & ~page_mask;
1958
1959                 sg_offset = 0;
1960         }
1961
1962         if (sg_offset_p)
1963                 *sg_offset_p = 0;
1964         return i;
1965 }
1966 EXPORT_SYMBOL(ib_sg_to_pages);
1967
1968 struct ib_drain_cqe {
1969         struct ib_cqe cqe;
1970         struct completion done;
1971 };
1972
1973 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1974 {
1975         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1976                                                 cqe);
1977
1978         complete(&cqe->done);
1979 }
1980
1981 /*
1982  * Post a WR and block until its completion is reaped for the SQ.
1983  */
1984 static void __ib_drain_sq(struct ib_qp *qp)
1985 {
1986         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1987         struct ib_drain_cqe sdrain;
1988         struct ib_send_wr swr = {}, *bad_swr;
1989         int ret;
1990
1991         if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1992                 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1993                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1994                 return;
1995         }
1996
1997         swr.wr_cqe = &sdrain.cqe;
1998         sdrain.cqe.done = ib_drain_qp_done;
1999         init_completion(&sdrain.done);
2000
2001         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2002         if (ret) {
2003                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2004                 return;
2005         }
2006
2007         ret = ib_post_send(qp, &swr, &bad_swr);
2008         if (ret) {
2009                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2010                 return;
2011         }
2012
2013         wait_for_completion(&sdrain.done);
2014 }
2015
2016 /*
2017  * Post a WR and block until its completion is reaped for the RQ.
2018  */
2019 static void __ib_drain_rq(struct ib_qp *qp)
2020 {
2021         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2022         struct ib_drain_cqe rdrain;
2023         struct ib_recv_wr rwr = {}, *bad_rwr;
2024         int ret;
2025
2026         if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
2027                 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
2028                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2029                 return;
2030         }
2031
2032         rwr.wr_cqe = &rdrain.cqe;
2033         rdrain.cqe.done = ib_drain_qp_done;
2034         init_completion(&rdrain.done);
2035
2036         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2037         if (ret) {
2038                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2039                 return;
2040         }
2041
2042         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2043         if (ret) {
2044                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2045                 return;
2046         }
2047
2048         wait_for_completion(&rdrain.done);
2049 }
2050
2051 /**
2052  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2053  *                 application.
2054  * @qp:            queue pair to drain
2055  *
2056  * If the device has a provider-specific drain function, then
2057  * call that.  Otherwise call the generic drain function
2058  * __ib_drain_sq().
2059  *
2060  * The caller must:
2061  *
2062  * ensure there is room in the CQ and SQ for the drain work request and
2063  * completion.
2064  *
2065  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2066  * IB_POLL_DIRECT.
2067  *
2068  * ensure that there are no other contexts that are posting WRs concurrently.
2069  * Otherwise the drain is not guaranteed.
2070  */
2071 void ib_drain_sq(struct ib_qp *qp)
2072 {
2073         if (qp->device->drain_sq)
2074                 qp->device->drain_sq(qp);
2075         else
2076                 __ib_drain_sq(qp);
2077 }
2078 EXPORT_SYMBOL(ib_drain_sq);
2079
2080 /**
2081  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2082  *                 application.
2083  * @qp:            queue pair to drain
2084  *
2085  * If the device has a provider-specific drain function, then
2086  * call that.  Otherwise call the generic drain function
2087  * __ib_drain_rq().
2088  *
2089  * The caller must:
2090  *
2091  * ensure there is room in the CQ and RQ for the drain work request and
2092  * completion.
2093  *
2094  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2095  * IB_POLL_DIRECT.
2096  *
2097  * ensure that there are no other contexts that are posting WRs concurrently.
2098  * Otherwise the drain is not guaranteed.
2099  */
2100 void ib_drain_rq(struct ib_qp *qp)
2101 {
2102         if (qp->device->drain_rq)
2103                 qp->device->drain_rq(qp);
2104         else
2105                 __ib_drain_rq(qp);
2106 }
2107 EXPORT_SYMBOL(ib_drain_rq);
2108
2109 /**
2110  * ib_drain_qp() - Block until all CQEs have been consumed by the
2111  *                 application on both the RQ and SQ.
2112  * @qp:            queue pair to drain
2113  *
2114  * The caller must:
2115  *
2116  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2117  * and completions.
2118  *
2119  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2120  * IB_POLL_DIRECT.
2121  *
2122  * ensure that there are no other contexts that are posting WRs concurrently.
2123  * Otherwise the drain is not guaranteed.
2124  */
2125 void ib_drain_qp(struct ib_qp *qp)
2126 {
2127         ib_drain_sq(qp);
2128         if (!qp->srq)
2129                 ib_drain_rq(qp);
2130 }
2131 EXPORT_SYMBOL(ib_drain_qp);