GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / iio / temperature / ltc2983.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
4  * driver
5  *
6  * Copyright 2019 Analog Devices Inc.
7  */
8 #include <linux/bitfield.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/iio/iio.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19 #include <linux/spi/spi.h>
20
21 #include <asm/byteorder.h>
22 #include <asm/unaligned.h>
23
24 /* register map */
25 #define LTC2983_STATUS_REG                      0x0000
26 #define LTC2983_TEMP_RES_START_REG              0x0010
27 #define LTC2983_TEMP_RES_END_REG                0x005F
28 #define LTC2983_EEPROM_KEY_REG                  0x00B0
29 #define LTC2983_EEPROM_READ_STATUS_REG          0x00D0
30 #define LTC2983_GLOBAL_CONFIG_REG               0x00F0
31 #define LTC2983_MULT_CHANNEL_START_REG          0x00F4
32 #define LTC2983_MULT_CHANNEL_END_REG            0x00F7
33 #define LTC2986_EEPROM_STATUS_REG               0x00F9
34 #define LTC2983_MUX_CONFIG_REG                  0x00FF
35 #define LTC2983_CHAN_ASSIGN_START_REG           0x0200
36 #define LTC2983_CHAN_ASSIGN_END_REG             0x024F
37 #define LTC2983_CUST_SENS_TBL_START_REG         0x0250
38 #define LTC2983_CUST_SENS_TBL_END_REG           0x03CF
39
40 #define LTC2983_DIFFERENTIAL_CHAN_MIN           2
41 #define LTC2983_MIN_CHANNELS_NR                 1
42 #define LTC2983_SLEEP                           0x97
43 #define LTC2983_CUSTOM_STEINHART_SIZE           24
44 #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ          6
45 #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ       4
46
47 #define LTC2983_EEPROM_KEY                      0xA53C0F5A
48 #define LTC2983_EEPROM_WRITE_CMD                0x15
49 #define LTC2983_EEPROM_READ_CMD                 0x16
50 #define LTC2983_EEPROM_STATUS_FAILURE_MASK      GENMASK(3, 1)
51 #define LTC2983_EEPROM_READ_FAILURE_MASK        GENMASK(7, 0)
52
53 #define LTC2983_EEPROM_WRITE_TIME_MS            2600
54 #define LTC2983_EEPROM_READ_TIME_MS             20
55
56 #define LTC2983_CHAN_START_ADDR(chan) \
57                         (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
58 #define LTC2983_CHAN_RES_ADDR(chan) \
59                         (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
60 #define LTC2983_THERMOCOUPLE_DIFF_MASK          BIT(3)
61 #define LTC2983_THERMOCOUPLE_SGL(x) \
62                                 FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
63 #define LTC2983_THERMOCOUPLE_OC_CURR_MASK       GENMASK(1, 0)
64 #define LTC2983_THERMOCOUPLE_OC_CURR(x) \
65                                 FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
66 #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK      BIT(2)
67 #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
68                         FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
69
70 #define LTC2983_THERMISTOR_DIFF_MASK            BIT(2)
71 #define LTC2983_THERMISTOR_SGL(x) \
72                                 FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
73 #define LTC2983_THERMISTOR_R_SHARE_MASK         BIT(1)
74 #define LTC2983_THERMISTOR_R_SHARE(x) \
75                                 FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
76 #define LTC2983_THERMISTOR_C_ROTATE_MASK        BIT(0)
77 #define LTC2983_THERMISTOR_C_ROTATE(x) \
78                                 FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
79
80 #define LTC2983_DIODE_DIFF_MASK                 BIT(2)
81 #define LTC2983_DIODE_SGL(x) \
82                         FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
83 #define LTC2983_DIODE_3_CONV_CYCLE_MASK         BIT(1)
84 #define LTC2983_DIODE_3_CONV_CYCLE(x) \
85                                 FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
86 #define LTC2983_DIODE_AVERAGE_ON_MASK           BIT(0)
87 #define LTC2983_DIODE_AVERAGE_ON(x) \
88                                 FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
89
90 #define LTC2983_RTD_4_WIRE_MASK                 BIT(3)
91 #define LTC2983_RTD_ROTATION_MASK               BIT(1)
92 #define LTC2983_RTD_C_ROTATE(x) \
93                         FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
94 #define LTC2983_RTD_KELVIN_R_SENSE_MASK         GENMASK(3, 2)
95 #define LTC2983_RTD_N_WIRES_MASK                GENMASK(3, 2)
96 #define LTC2983_RTD_N_WIRES(x) \
97                         FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
98 #define LTC2983_RTD_R_SHARE_MASK                BIT(0)
99 #define LTC2983_RTD_R_SHARE(x) \
100                         FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
101
102 #define LTC2983_COMMON_HARD_FAULT_MASK  GENMASK(31, 30)
103 #define LTC2983_COMMON_SOFT_FAULT_MASK  GENMASK(27, 25)
104
105 #define LTC2983_STATUS_START_MASK       BIT(7)
106 #define LTC2983_STATUS_START(x)         FIELD_PREP(LTC2983_STATUS_START_MASK, x)
107 #define LTC2983_STATUS_UP_MASK          GENMASK(7, 6)
108 #define LTC2983_STATUS_UP(reg)          FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
109
110 #define LTC2983_STATUS_CHAN_SEL_MASK    GENMASK(4, 0)
111 #define LTC2983_STATUS_CHAN_SEL(x) \
112                                 FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
113
114 #define LTC2983_TEMP_UNITS_MASK         BIT(2)
115 #define LTC2983_TEMP_UNITS(x)           FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
116
117 #define LTC2983_NOTCH_FREQ_MASK         GENMASK(1, 0)
118 #define LTC2983_NOTCH_FREQ(x)           FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
119
120 #define LTC2983_RES_VALID_MASK          BIT(24)
121 #define LTC2983_DATA_MASK               GENMASK(23, 0)
122 #define LTC2983_DATA_SIGN_BIT           23
123
124 #define LTC2983_CHAN_TYPE_MASK          GENMASK(31, 27)
125 #define LTC2983_CHAN_TYPE(x)            FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
126
127 /* cold junction for thermocouples and rsense for rtd's and thermistor's */
128 #define LTC2983_CHAN_ASSIGN_MASK        GENMASK(26, 22)
129 #define LTC2983_CHAN_ASSIGN(x)          FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
130
131 #define LTC2983_CUSTOM_LEN_MASK         GENMASK(5, 0)
132 #define LTC2983_CUSTOM_LEN(x)           FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
133
134 #define LTC2983_CUSTOM_ADDR_MASK        GENMASK(11, 6)
135 #define LTC2983_CUSTOM_ADDR(x)          FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
136
137 #define LTC2983_THERMOCOUPLE_CFG_MASK   GENMASK(21, 18)
138 #define LTC2983_THERMOCOUPLE_CFG(x) \
139                                 FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
140 #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK    GENMASK(31, 29)
141 #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK    GENMASK(28, 25)
142
143 #define LTC2983_RTD_CFG_MASK            GENMASK(21, 18)
144 #define LTC2983_RTD_CFG(x)              FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
145 #define LTC2983_RTD_EXC_CURRENT_MASK    GENMASK(17, 14)
146 #define LTC2983_RTD_EXC_CURRENT(x) \
147                                 FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
148 #define LTC2983_RTD_CURVE_MASK          GENMASK(13, 12)
149 #define LTC2983_RTD_CURVE(x)            FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
150
151 #define LTC2983_THERMISTOR_CFG_MASK     GENMASK(21, 19)
152 #define LTC2983_THERMISTOR_CFG(x) \
153                                 FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
154 #define LTC2983_THERMISTOR_EXC_CURRENT_MASK     GENMASK(18, 15)
155 #define LTC2983_THERMISTOR_EXC_CURRENT(x) \
156                         FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
157
158 #define LTC2983_DIODE_CFG_MASK          GENMASK(26, 24)
159 #define LTC2983_DIODE_CFG(x)            FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
160 #define LTC2983_DIODE_EXC_CURRENT_MASK  GENMASK(23, 22)
161 #define LTC2983_DIODE_EXC_CURRENT(x) \
162                                 FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
163 #define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0)
164 #define LTC2983_DIODE_IDEAL_FACTOR(x) \
165                                 FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
166
167 #define LTC2983_R_SENSE_VAL_MASK        GENMASK(26, 0)
168 #define LTC2983_R_SENSE_VAL(x)          FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
169
170 #define LTC2983_ADC_SINGLE_ENDED_MASK   BIT(26)
171 #define LTC2983_ADC_SINGLE_ENDED(x) \
172                                 FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
173
174 enum {
175         LTC2983_SENSOR_THERMOCOUPLE = 1,
176         LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
177         LTC2983_SENSOR_RTD = 10,
178         LTC2983_SENSOR_RTD_CUSTOM = 18,
179         LTC2983_SENSOR_THERMISTOR = 19,
180         LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
181         LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
182         LTC2983_SENSOR_DIODE = 28,
183         LTC2983_SENSOR_SENSE_RESISTOR = 29,
184         LTC2983_SENSOR_DIRECT_ADC = 30,
185         LTC2983_SENSOR_ACTIVE_TEMP = 31,
186 };
187
188 #define to_thermocouple(_sensor) \
189                 container_of(_sensor, struct ltc2983_thermocouple, sensor)
190
191 #define to_rtd(_sensor) \
192                 container_of(_sensor, struct ltc2983_rtd, sensor)
193
194 #define to_thermistor(_sensor) \
195                 container_of(_sensor, struct ltc2983_thermistor, sensor)
196
197 #define to_diode(_sensor) \
198                 container_of(_sensor, struct ltc2983_diode, sensor)
199
200 #define to_rsense(_sensor) \
201                 container_of(_sensor, struct ltc2983_rsense, sensor)
202
203 #define to_adc(_sensor) \
204                 container_of(_sensor, struct ltc2983_adc, sensor)
205
206 #define to_temp(_sensor) \
207                 container_of(_sensor, struct ltc2983_temp, sensor)
208
209 struct ltc2983_chip_info {
210         const char *name;
211         unsigned int max_channels_nr;
212         bool has_temp;
213         bool has_eeprom;
214 };
215
216 struct ltc2983_data {
217         const struct ltc2983_chip_info *info;
218         struct regmap *regmap;
219         struct spi_device *spi;
220         struct mutex lock;
221         struct completion completion;
222         struct iio_chan_spec *iio_chan;
223         struct ltc2983_sensor **sensors;
224         u32 mux_delay_config;
225         u32 filter_notch_freq;
226         u16 custom_table_size;
227         u8 num_channels;
228         u8 iio_channels;
229         /*
230          * DMA (thus cache coherency maintenance) may require the
231          * transfer buffers to live in their own cache lines.
232          * Holds the converted temperature
233          */
234         __be32 temp __aligned(IIO_DMA_MINALIGN);
235         __be32 chan_val;
236         __be32 eeprom_key;
237 };
238
239 struct ltc2983_sensor {
240         int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
241         int (*assign_chan)(struct ltc2983_data *st,
242                            const struct ltc2983_sensor *sensor);
243         /* specifies the sensor channel */
244         u32 chan;
245         /* sensor type */
246         u32 type;
247 };
248
249 struct ltc2983_custom_sensor {
250         /* raw table sensor data */
251         void *table;
252         size_t size;
253         /* address offset */
254         s8 offset;
255         bool is_steinhart;
256 };
257
258 struct ltc2983_thermocouple {
259         struct ltc2983_sensor sensor;
260         struct ltc2983_custom_sensor *custom;
261         u32 sensor_config;
262         u32 cold_junction_chan;
263 };
264
265 struct ltc2983_rtd {
266         struct ltc2983_sensor sensor;
267         struct ltc2983_custom_sensor *custom;
268         u32 sensor_config;
269         u32 r_sense_chan;
270         u32 excitation_current;
271         u32 rtd_curve;
272 };
273
274 struct ltc2983_thermistor {
275         struct ltc2983_sensor sensor;
276         struct ltc2983_custom_sensor *custom;
277         u32 sensor_config;
278         u32 r_sense_chan;
279         u32 excitation_current;
280 };
281
282 struct ltc2983_diode {
283         struct ltc2983_sensor sensor;
284         u32 sensor_config;
285         u32 excitation_current;
286         u32 ideal_factor_value;
287 };
288
289 struct ltc2983_rsense {
290         struct ltc2983_sensor sensor;
291         u32 r_sense_val;
292 };
293
294 struct ltc2983_adc {
295         struct ltc2983_sensor sensor;
296         bool single_ended;
297 };
298
299 struct ltc2983_temp {
300         struct ltc2983_sensor sensor;
301         struct ltc2983_custom_sensor *custom;
302         bool single_ended;
303 };
304
305 /*
306  * Convert to Q format numbers. These number's are integers where
307  * the number of integer and fractional bits are specified. The resolution
308  * is given by 1/@resolution and tell us the number of fractional bits. For
309  * instance a resolution of 2^-10 means we have 10 fractional bits.
310  */
311 static u32 __convert_to_raw(const u64 val, const u32 resolution)
312 {
313         u64 __res = val * resolution;
314
315         /* all values are multiplied by 1000000 to remove the fraction */
316         do_div(__res, 1000000);
317
318         return __res;
319 }
320
321 static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
322 {
323         s64 __res = -(s32)val;
324
325         __res = __convert_to_raw(__res, resolution);
326
327         return (u32)-__res;
328 }
329
330 static int __ltc2983_fault_handler(const struct ltc2983_data *st,
331                                    const u32 result, const u32 hard_mask,
332                                    const u32 soft_mask)
333 {
334         const struct device *dev = &st->spi->dev;
335
336         if (result & hard_mask) {
337                 dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
338                 return -EIO;
339         } else if (result & soft_mask) {
340                 /* just print a warning */
341                 dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
342         }
343
344         return 0;
345 }
346
347 static int __ltc2983_chan_assign_common(struct ltc2983_data *st,
348                                         const struct ltc2983_sensor *sensor,
349                                         u32 chan_val)
350 {
351         u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
352
353         chan_val |= LTC2983_CHAN_TYPE(sensor->type);
354         dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
355                 chan_val);
356         st->chan_val = cpu_to_be32(chan_val);
357         return regmap_bulk_write(st->regmap, reg, &st->chan_val,
358                                  sizeof(st->chan_val));
359 }
360
361 static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
362                                           struct ltc2983_custom_sensor *custom,
363                                           u32 *chan_val)
364 {
365         u32 reg;
366         u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
367                 LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
368         const struct device *dev = &st->spi->dev;
369         /*
370          * custom->size holds the raw size of the table. However, when
371          * configuring the sensor channel, we must write the number of
372          * entries of the table minus 1. For steinhart sensors 0 is written
373          * since the size is constant!
374          */
375         const u8 len = custom->is_steinhart ? 0 :
376                 (custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
377         /*
378          * Check if the offset was assigned already. It should be for steinhart
379          * sensors. When coming from sleep, it should be assigned for all.
380          */
381         if (custom->offset < 0) {
382                 /*
383                  * This needs to be done again here because, from the moment
384                  * when this test was done (successfully) for this custom
385                  * sensor, a steinhart sensor might have been added changing
386                  * custom_table_size...
387                  */
388                 if (st->custom_table_size + custom->size >
389                     (LTC2983_CUST_SENS_TBL_END_REG -
390                      LTC2983_CUST_SENS_TBL_START_REG) + 1) {
391                         dev_err(dev,
392                                 "Not space left(%d) for new custom sensor(%zu)",
393                                 st->custom_table_size,
394                                 custom->size);
395                         return -EINVAL;
396                 }
397
398                 custom->offset = st->custom_table_size /
399                                         LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
400                 st->custom_table_size += custom->size;
401         }
402
403         reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
404
405         *chan_val |= LTC2983_CUSTOM_LEN(len);
406         *chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
407         dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
408                 reg, custom->offset,
409                 custom->size);
410         /* write custom sensor table */
411         return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
412 }
413
414 static struct ltc2983_custom_sensor *
415 __ltc2983_custom_sensor_new(struct ltc2983_data *st, const struct fwnode_handle *fn,
416                             const char *propname, const bool is_steinhart,
417                             const u32 resolution, const bool has_signed)
418 {
419         struct ltc2983_custom_sensor *new_custom;
420         struct device *dev = &st->spi->dev;
421         /*
422          * For custom steinhart, the full u32 is taken. For all the others
423          * the MSB is discarded.
424          */
425         const u8 n_size = is_steinhart ? 4 : 3;
426         u8 index, n_entries;
427         int ret;
428
429         if (is_steinhart)
430                 n_entries = fwnode_property_count_u32(fn, propname);
431         else
432                 n_entries = fwnode_property_count_u64(fn, propname);
433         /* n_entries must be an even number */
434         if (!n_entries || (n_entries % 2) != 0) {
435                 dev_err(dev, "Number of entries either 0 or not even\n");
436                 return ERR_PTR(-EINVAL);
437         }
438
439         new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
440         if (!new_custom)
441                 return ERR_PTR(-ENOMEM);
442
443         new_custom->size = n_entries * n_size;
444         /* check Steinhart size */
445         if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
446                 dev_err(dev, "Steinhart sensors size(%zu) must be %u\n", new_custom->size,
447                         LTC2983_CUSTOM_STEINHART_SIZE);
448                 return ERR_PTR(-EINVAL);
449         }
450         /* Check space on the table. */
451         if (st->custom_table_size + new_custom->size >
452             (LTC2983_CUST_SENS_TBL_END_REG -
453              LTC2983_CUST_SENS_TBL_START_REG) + 1) {
454                 dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
455                                 st->custom_table_size, new_custom->size);
456                 return ERR_PTR(-EINVAL);
457         }
458
459         /* allocate the table */
460         if (is_steinhart)
461                 new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u32), GFP_KERNEL);
462         else
463                 new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u64), GFP_KERNEL);
464         if (!new_custom->table)
465                 return ERR_PTR(-ENOMEM);
466
467         /*
468          * Steinhart sensors are configured with raw values in the firmware
469          * node. For the other sensors we must convert the value to raw.
470          * The odd index's correspond to temperatures and always have 1/1024
471          * of resolution. Temperatures also come in Kelvin, so signed values
472          * are not possible.
473          */
474         if (is_steinhart) {
475                 ret = fwnode_property_read_u32_array(fn, propname, new_custom->table, n_entries);
476                 if (ret < 0)
477                         return ERR_PTR(ret);
478
479                 cpu_to_be32_array(new_custom->table, new_custom->table, n_entries);
480         } else {
481                 ret = fwnode_property_read_u64_array(fn, propname, new_custom->table, n_entries);
482                 if (ret < 0)
483                         return ERR_PTR(ret);
484
485                 for (index = 0; index < n_entries; index++) {
486                         u64 temp = ((u64 *)new_custom->table)[index];
487
488                         if ((index % 2) != 0)
489                                 temp = __convert_to_raw(temp, 1024);
490                         else if (has_signed && (s64)temp < 0)
491                                 temp = __convert_to_raw_sign(temp, resolution);
492                         else
493                                 temp = __convert_to_raw(temp, resolution);
494
495                         put_unaligned_be24(temp, new_custom->table + index * 3);
496                 }
497         }
498
499         new_custom->is_steinhart = is_steinhart;
500         /*
501          * This is done to first add all the steinhart sensors to the table,
502          * in order to maximize the table usage. If we mix adding steinhart
503          * with the other sensors, we might have to do some roundup to make
504          * sure that sensor_addr - 0x250(start address) is a multiple of 4
505          * (for steinhart), and a multiple of 6 for all the other sensors.
506          * Since we have const 24 bytes for steinhart sensors and 24 is
507          * also a multiple of 6, we guarantee that the first non-steinhart
508          * sensor will sit in a correct address without the need of filling
509          * addresses.
510          */
511         if (is_steinhart) {
512                 new_custom->offset = st->custom_table_size /
513                                         LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
514                 st->custom_table_size += new_custom->size;
515         } else {
516                 /* mark as unset. This is checked later on the assign phase */
517                 new_custom->offset = -1;
518         }
519
520         return new_custom;
521 }
522
523 static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
524                                               const u32 result)
525 {
526         return __ltc2983_fault_handler(st, result,
527                                        LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
528                                        LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
529 }
530
531 static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
532                                         const u32 result)
533 {
534         return __ltc2983_fault_handler(st, result,
535                                        LTC2983_COMMON_HARD_FAULT_MASK,
536                                        LTC2983_COMMON_SOFT_FAULT_MASK);
537 }
538
539 static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
540                                 const struct ltc2983_sensor *sensor)
541 {
542         struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
543         u32 chan_val;
544
545         chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
546         chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
547
548         if (thermo->custom) {
549                 int ret;
550
551                 ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
552                                                           &chan_val);
553                 if (ret)
554                         return ret;
555         }
556         return __ltc2983_chan_assign_common(st, sensor, chan_val);
557 }
558
559 static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
560                                    const struct ltc2983_sensor *sensor)
561 {
562         struct ltc2983_rtd *rtd = to_rtd(sensor);
563         u32 chan_val;
564
565         chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
566         chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
567         chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
568         chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
569
570         if (rtd->custom) {
571                 int ret;
572
573                 ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
574                                                           &chan_val);
575                 if (ret)
576                         return ret;
577         }
578         return __ltc2983_chan_assign_common(st, sensor, chan_val);
579 }
580
581 static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
582                                           const struct ltc2983_sensor *sensor)
583 {
584         struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
585         u32 chan_val;
586
587         chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
588         chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
589         chan_val |=
590                 LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
591
592         if (thermistor->custom) {
593                 int ret;
594
595                 ret = __ltc2983_chan_custom_sensor_assign(st,
596                                                           thermistor->custom,
597                                                           &chan_val);
598                 if (ret)
599                         return ret;
600         }
601         return __ltc2983_chan_assign_common(st, sensor, chan_val);
602 }
603
604 static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
605                                      const struct ltc2983_sensor *sensor)
606 {
607         struct ltc2983_diode *diode = to_diode(sensor);
608         u32 chan_val;
609
610         chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
611         chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
612         chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
613
614         return __ltc2983_chan_assign_common(st, sensor, chan_val);
615 }
616
617 static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
618                                        const struct ltc2983_sensor *sensor)
619 {
620         struct ltc2983_rsense *rsense = to_rsense(sensor);
621         u32 chan_val;
622
623         chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
624
625         return __ltc2983_chan_assign_common(st, sensor, chan_val);
626 }
627
628 static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
629                                    const struct ltc2983_sensor *sensor)
630 {
631         struct ltc2983_adc *adc = to_adc(sensor);
632         u32 chan_val;
633
634         chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
635
636         return __ltc2983_chan_assign_common(st, sensor, chan_val);
637 }
638
639 static int ltc2983_temp_assign_chan(struct ltc2983_data *st,
640                                     const struct ltc2983_sensor *sensor)
641 {
642         struct ltc2983_temp *temp = to_temp(sensor);
643         u32 chan_val;
644         int ret;
645
646         chan_val = LTC2983_ADC_SINGLE_ENDED(temp->single_ended);
647
648         ret = __ltc2983_chan_custom_sensor_assign(st, temp->custom, &chan_val);
649         if (ret)
650                 return ret;
651
652         return __ltc2983_chan_assign_common(st, sensor, chan_val);
653 }
654
655 static struct ltc2983_sensor *
656 ltc2983_thermocouple_new(const struct fwnode_handle *child, struct ltc2983_data *st,
657                          const struct ltc2983_sensor *sensor)
658 {
659         struct ltc2983_thermocouple *thermo;
660         struct fwnode_handle *ref;
661         u32 oc_current;
662         int ret;
663
664         thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
665         if (!thermo)
666                 return ERR_PTR(-ENOMEM);
667
668         if (fwnode_property_read_bool(child, "adi,single-ended"))
669                 thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
670
671         ret = fwnode_property_read_u32(child, "adi,sensor-oc-current-microamp", &oc_current);
672         if (!ret) {
673                 switch (oc_current) {
674                 case 10:
675                         thermo->sensor_config |=
676                                         LTC2983_THERMOCOUPLE_OC_CURR(0);
677                         break;
678                 case 100:
679                         thermo->sensor_config |=
680                                         LTC2983_THERMOCOUPLE_OC_CURR(1);
681                         break;
682                 case 500:
683                         thermo->sensor_config |=
684                                         LTC2983_THERMOCOUPLE_OC_CURR(2);
685                         break;
686                 case 1000:
687                         thermo->sensor_config |=
688                                         LTC2983_THERMOCOUPLE_OC_CURR(3);
689                         break;
690                 default:
691                         dev_err(&st->spi->dev,
692                                 "Invalid open circuit current:%u", oc_current);
693                         return ERR_PTR(-EINVAL);
694                 }
695
696                 thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
697         }
698         /* validate channel index */
699         if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
700             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
701                 dev_err(&st->spi->dev,
702                         "Invalid chann:%d for differential thermocouple",
703                         sensor->chan);
704                 return ERR_PTR(-EINVAL);
705         }
706
707         ref = fwnode_find_reference(child, "adi,cold-junction-handle", 0);
708         if (IS_ERR(ref)) {
709                 ref = NULL;
710         } else {
711                 ret = fwnode_property_read_u32(ref, "reg", &thermo->cold_junction_chan);
712                 if (ret) {
713                         /*
714                          * This would be catched later but we can just return
715                          * the error right away.
716                          */
717                         dev_err(&st->spi->dev, "Property reg must be given\n");
718                         goto fail;
719                 }
720         }
721
722         /* check custom sensor */
723         if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
724                 const char *propname = "adi,custom-thermocouple";
725
726                 thermo->custom = __ltc2983_custom_sensor_new(st, child,
727                                                              propname, false,
728                                                              16384, true);
729                 if (IS_ERR(thermo->custom)) {
730                         ret = PTR_ERR(thermo->custom);
731                         goto fail;
732                 }
733         }
734
735         /* set common parameters */
736         thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
737         thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
738
739         fwnode_handle_put(ref);
740         return &thermo->sensor;
741
742 fail:
743         fwnode_handle_put(ref);
744         return ERR_PTR(ret);
745 }
746
747 static struct ltc2983_sensor *
748 ltc2983_rtd_new(const struct fwnode_handle *child, struct ltc2983_data *st,
749                 const struct ltc2983_sensor *sensor)
750 {
751         struct ltc2983_rtd *rtd;
752         int ret = 0;
753         struct device *dev = &st->spi->dev;
754         struct fwnode_handle *ref;
755         u32 excitation_current = 0, n_wires = 0;
756
757         rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
758         if (!rtd)
759                 return ERR_PTR(-ENOMEM);
760
761         ref = fwnode_find_reference(child, "adi,rsense-handle", 0);
762         if (IS_ERR(ref)) {
763                 dev_err(dev, "Property adi,rsense-handle missing or invalid");
764                 return ERR_CAST(ref);
765         }
766
767         ret = fwnode_property_read_u32(ref, "reg", &rtd->r_sense_chan);
768         if (ret) {
769                 dev_err(dev, "Property reg must be given\n");
770                 goto fail;
771         }
772
773         ret = fwnode_property_read_u32(child, "adi,number-of-wires", &n_wires);
774         if (!ret) {
775                 switch (n_wires) {
776                 case 2:
777                         rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
778                         break;
779                 case 3:
780                         rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
781                         break;
782                 case 4:
783                         rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
784                         break;
785                 case 5:
786                         /* 4 wires, Kelvin Rsense */
787                         rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
788                         break;
789                 default:
790                         dev_err(dev, "Invalid number of wires:%u\n", n_wires);
791                         ret = -EINVAL;
792                         goto fail;
793                 }
794         }
795
796         if (fwnode_property_read_bool(child, "adi,rsense-share")) {
797                 /* Current rotation is only available with rsense sharing */
798                 if (fwnode_property_read_bool(child, "adi,current-rotate")) {
799                         if (n_wires == 2 || n_wires == 3) {
800                                 dev_err(dev,
801                                         "Rotation not allowed for 2/3 Wire RTDs");
802                                 ret = -EINVAL;
803                                 goto fail;
804                         }
805                         rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
806                 } else {
807                         rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
808                 }
809         }
810         /*
811          * rtd channel indexes are a bit more complicated to validate.
812          * For 4wire RTD with rotation, the channel selection cannot be
813          * >=19 since the chann + 1 is used in this configuration.
814          * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
815          * <=1 since chanel - 1 and channel - 2 are used.
816          */
817         if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
818                 /* 4-wire */
819                 u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
820                         max = st->info->max_channels_nr;
821
822                 if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
823                         max = st->info->max_channels_nr - 1;
824
825                 if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
826                      == LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
827                     (rtd->r_sense_chan <=  min)) {
828                         /* kelvin rsense*/
829                         dev_err(dev,
830                                 "Invalid rsense chann:%d to use in kelvin rsense",
831                                 rtd->r_sense_chan);
832
833                         ret = -EINVAL;
834                         goto fail;
835                 }
836
837                 if (sensor->chan < min || sensor->chan > max) {
838                         dev_err(dev, "Invalid chann:%d for the rtd config",
839                                 sensor->chan);
840
841                         ret = -EINVAL;
842                         goto fail;
843                 }
844         } else {
845                 /* same as differential case */
846                 if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
847                         dev_err(&st->spi->dev,
848                                 "Invalid chann:%d for RTD", sensor->chan);
849
850                         ret = -EINVAL;
851                         goto fail;
852                 }
853         }
854
855         /* check custom sensor */
856         if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
857                 rtd->custom = __ltc2983_custom_sensor_new(st, child,
858                                                           "adi,custom-rtd",
859                                                           false, 2048, false);
860                 if (IS_ERR(rtd->custom)) {
861                         ret = PTR_ERR(rtd->custom);
862                         goto fail;
863                 }
864         }
865
866         /* set common parameters */
867         rtd->sensor.fault_handler = ltc2983_common_fault_handler;
868         rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
869
870         ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
871                                        &excitation_current);
872         if (ret) {
873                 /* default to 5uA */
874                 rtd->excitation_current = 1;
875         } else {
876                 switch (excitation_current) {
877                 case 5:
878                         rtd->excitation_current = 0x01;
879                         break;
880                 case 10:
881                         rtd->excitation_current = 0x02;
882                         break;
883                 case 25:
884                         rtd->excitation_current = 0x03;
885                         break;
886                 case 50:
887                         rtd->excitation_current = 0x04;
888                         break;
889                 case 100:
890                         rtd->excitation_current = 0x05;
891                         break;
892                 case 250:
893                         rtd->excitation_current = 0x06;
894                         break;
895                 case 500:
896                         rtd->excitation_current = 0x07;
897                         break;
898                 case 1000:
899                         rtd->excitation_current = 0x08;
900                         break;
901                 default:
902                         dev_err(&st->spi->dev,
903                                 "Invalid value for excitation current(%u)",
904                                 excitation_current);
905                         ret = -EINVAL;
906                         goto fail;
907                 }
908         }
909
910         fwnode_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
911
912         fwnode_handle_put(ref);
913         return &rtd->sensor;
914 fail:
915         fwnode_handle_put(ref);
916         return ERR_PTR(ret);
917 }
918
919 static struct ltc2983_sensor *
920 ltc2983_thermistor_new(const struct fwnode_handle *child, struct ltc2983_data *st,
921                        const struct ltc2983_sensor *sensor)
922 {
923         struct ltc2983_thermistor *thermistor;
924         struct device *dev = &st->spi->dev;
925         struct fwnode_handle *ref;
926         u32 excitation_current = 0;
927         int ret = 0;
928
929         thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
930         if (!thermistor)
931                 return ERR_PTR(-ENOMEM);
932
933         ref = fwnode_find_reference(child, "adi,rsense-handle", 0);
934         if (IS_ERR(ref)) {
935                 dev_err(dev, "Property adi,rsense-handle missing or invalid");
936                 return ERR_CAST(ref);
937         }
938
939         ret = fwnode_property_read_u32(ref, "reg", &thermistor->r_sense_chan);
940         if (ret) {
941                 dev_err(dev, "rsense channel must be configured...\n");
942                 goto fail;
943         }
944
945         if (fwnode_property_read_bool(child, "adi,single-ended")) {
946                 thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
947         } else if (fwnode_property_read_bool(child, "adi,rsense-share")) {
948                 /* rotation is only possible if sharing rsense */
949                 if (fwnode_property_read_bool(child, "adi,current-rotate"))
950                         thermistor->sensor_config =
951                                                 LTC2983_THERMISTOR_C_ROTATE(1);
952                 else
953                         thermistor->sensor_config =
954                                                 LTC2983_THERMISTOR_R_SHARE(1);
955         }
956         /* validate channel index */
957         if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
958             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
959                 dev_err(&st->spi->dev,
960                         "Invalid chann:%d for differential thermistor",
961                         sensor->chan);
962                 ret = -EINVAL;
963                 goto fail;
964         }
965
966         /* check custom sensor */
967         if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
968                 bool steinhart = false;
969                 const char *propname;
970
971                 if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
972                         steinhart = true;
973                         propname = "adi,custom-steinhart";
974                 } else {
975                         propname = "adi,custom-thermistor";
976                 }
977
978                 thermistor->custom = __ltc2983_custom_sensor_new(st, child,
979                                                                  propname,
980                                                                  steinhart,
981                                                                  64, false);
982                 if (IS_ERR(thermistor->custom)) {
983                         ret = PTR_ERR(thermistor->custom);
984                         goto fail;
985                 }
986         }
987         /* set common parameters */
988         thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
989         thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
990
991         ret = fwnode_property_read_u32(child, "adi,excitation-current-nanoamp",
992                                        &excitation_current);
993         if (ret) {
994                 /* Auto range is not allowed for custom sensors */
995                 if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
996                         /* default to 1uA */
997                         thermistor->excitation_current = 0x03;
998                 else
999                         /* default to auto-range */
1000                         thermistor->excitation_current = 0x0c;
1001         } else {
1002                 switch (excitation_current) {
1003                 case 0:
1004                         /* auto range */
1005                         if (sensor->type >=
1006                             LTC2983_SENSOR_THERMISTOR_STEINHART) {
1007                                 dev_err(&st->spi->dev,
1008                                         "Auto Range not allowed for custom sensors\n");
1009                                 ret = -EINVAL;
1010                                 goto fail;
1011                         }
1012                         thermistor->excitation_current = 0x0c;
1013                         break;
1014                 case 250:
1015                         thermistor->excitation_current = 0x01;
1016                         break;
1017                 case 500:
1018                         thermistor->excitation_current = 0x02;
1019                         break;
1020                 case 1000:
1021                         thermistor->excitation_current = 0x03;
1022                         break;
1023                 case 5000:
1024                         thermistor->excitation_current = 0x04;
1025                         break;
1026                 case 10000:
1027                         thermistor->excitation_current = 0x05;
1028                         break;
1029                 case 25000:
1030                         thermistor->excitation_current = 0x06;
1031                         break;
1032                 case 50000:
1033                         thermistor->excitation_current = 0x07;
1034                         break;
1035                 case 100000:
1036                         thermistor->excitation_current = 0x08;
1037                         break;
1038                 case 250000:
1039                         thermistor->excitation_current = 0x09;
1040                         break;
1041                 case 500000:
1042                         thermistor->excitation_current = 0x0a;
1043                         break;
1044                 case 1000000:
1045                         thermistor->excitation_current = 0x0b;
1046                         break;
1047                 default:
1048                         dev_err(&st->spi->dev,
1049                                 "Invalid value for excitation current(%u)",
1050                                 excitation_current);
1051                         ret = -EINVAL;
1052                         goto fail;
1053                 }
1054         }
1055
1056         fwnode_handle_put(ref);
1057         return &thermistor->sensor;
1058 fail:
1059         fwnode_handle_put(ref);
1060         return ERR_PTR(ret);
1061 }
1062
1063 static struct ltc2983_sensor *
1064 ltc2983_diode_new(const struct fwnode_handle *child, const struct ltc2983_data *st,
1065                   const struct ltc2983_sensor *sensor)
1066 {
1067         struct ltc2983_diode *diode;
1068         u32 temp = 0, excitation_current = 0;
1069         int ret;
1070
1071         diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
1072         if (!diode)
1073                 return ERR_PTR(-ENOMEM);
1074
1075         if (fwnode_property_read_bool(child, "adi,single-ended"))
1076                 diode->sensor_config = LTC2983_DIODE_SGL(1);
1077
1078         if (fwnode_property_read_bool(child, "adi,three-conversion-cycles"))
1079                 diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
1080
1081         if (fwnode_property_read_bool(child, "adi,average-on"))
1082                 diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
1083
1084         /* validate channel index */
1085         if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
1086             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1087                 dev_err(&st->spi->dev,
1088                         "Invalid chann:%d for differential thermistor",
1089                         sensor->chan);
1090                 return ERR_PTR(-EINVAL);
1091         }
1092         /* set common parameters */
1093         diode->sensor.fault_handler = ltc2983_common_fault_handler;
1094         diode->sensor.assign_chan = ltc2983_diode_assign_chan;
1095
1096         ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
1097                                        &excitation_current);
1098         if (!ret) {
1099                 switch (excitation_current) {
1100                 case 10:
1101                         diode->excitation_current = 0x00;
1102                         break;
1103                 case 20:
1104                         diode->excitation_current = 0x01;
1105                         break;
1106                 case 40:
1107                         diode->excitation_current = 0x02;
1108                         break;
1109                 case 80:
1110                         diode->excitation_current = 0x03;
1111                         break;
1112                 default:
1113                         dev_err(&st->spi->dev,
1114                                 "Invalid value for excitation current(%u)",
1115                                 excitation_current);
1116                         return ERR_PTR(-EINVAL);
1117                 }
1118         }
1119
1120         fwnode_property_read_u32(child, "adi,ideal-factor-value", &temp);
1121
1122         /* 2^20 resolution */
1123         diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
1124
1125         return &diode->sensor;
1126 }
1127
1128 static struct ltc2983_sensor *ltc2983_r_sense_new(struct fwnode_handle *child,
1129                                         struct ltc2983_data *st,
1130                                         const struct ltc2983_sensor *sensor)
1131 {
1132         struct ltc2983_rsense *rsense;
1133         int ret;
1134         u32 temp;
1135
1136         rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
1137         if (!rsense)
1138                 return ERR_PTR(-ENOMEM);
1139
1140         /* validate channel index */
1141         if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1142                 dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
1143                         sensor->chan);
1144                 return ERR_PTR(-EINVAL);
1145         }
1146
1147         ret = fwnode_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
1148         if (ret) {
1149                 dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
1150                 return ERR_PTR(-EINVAL);
1151         }
1152         /*
1153          * Times 1000 because we have milli-ohms and __convert_to_raw
1154          * expects scales of 1000000 which are used for all other
1155          * properties.
1156          * 2^10 resolution
1157          */
1158         rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
1159
1160         /* set common parameters */
1161         rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
1162
1163         return &rsense->sensor;
1164 }
1165
1166 static struct ltc2983_sensor *ltc2983_adc_new(struct fwnode_handle *child,
1167                                          struct ltc2983_data *st,
1168                                          const struct ltc2983_sensor *sensor)
1169 {
1170         struct ltc2983_adc *adc;
1171
1172         adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
1173         if (!adc)
1174                 return ERR_PTR(-ENOMEM);
1175
1176         if (fwnode_property_read_bool(child, "adi,single-ended"))
1177                 adc->single_ended = true;
1178
1179         if (!adc->single_ended &&
1180             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1181                 dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
1182                         sensor->chan);
1183                 return ERR_PTR(-EINVAL);
1184         }
1185         /* set common parameters */
1186         adc->sensor.assign_chan = ltc2983_adc_assign_chan;
1187         adc->sensor.fault_handler = ltc2983_common_fault_handler;
1188
1189         return &adc->sensor;
1190 }
1191
1192 static struct ltc2983_sensor *ltc2983_temp_new(struct fwnode_handle *child,
1193                                                struct ltc2983_data *st,
1194                                                const struct ltc2983_sensor *sensor)
1195 {
1196         struct ltc2983_temp *temp;
1197
1198         temp = devm_kzalloc(&st->spi->dev, sizeof(*temp), GFP_KERNEL);
1199         if (!temp)
1200                 return ERR_PTR(-ENOMEM);
1201
1202         if (fwnode_property_read_bool(child, "adi,single-ended"))
1203                 temp->single_ended = true;
1204
1205         if (!temp->single_ended &&
1206             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1207                 dev_err(&st->spi->dev, "Invalid chan:%d for differential temp\n",
1208                         sensor->chan);
1209                 return ERR_PTR(-EINVAL);
1210         }
1211
1212         temp->custom = __ltc2983_custom_sensor_new(st, child, "adi,custom-temp",
1213                                                    false, 4096, true);
1214         if (IS_ERR(temp->custom))
1215                 return ERR_CAST(temp->custom);
1216
1217         /* set common parameters */
1218         temp->sensor.assign_chan = ltc2983_temp_assign_chan;
1219         temp->sensor.fault_handler = ltc2983_common_fault_handler;
1220
1221         return &temp->sensor;
1222 }
1223
1224 static int ltc2983_chan_read(struct ltc2983_data *st,
1225                         const struct ltc2983_sensor *sensor, int *val)
1226 {
1227         u32 start_conversion = 0;
1228         int ret;
1229         unsigned long time;
1230
1231         start_conversion = LTC2983_STATUS_START(true);
1232         start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
1233         dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
1234                 sensor->chan, start_conversion);
1235         /* start conversion */
1236         ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
1237         if (ret)
1238                 return ret;
1239
1240         reinit_completion(&st->completion);
1241         /*
1242          * wait for conversion to complete.
1243          * 300 ms should be more than enough to complete the conversion.
1244          * Depending on the sensor configuration, there are 2/3 conversions
1245          * cycles of 82ms.
1246          */
1247         time = wait_for_completion_timeout(&st->completion,
1248                                            msecs_to_jiffies(300));
1249         if (!time) {
1250                 dev_warn(&st->spi->dev, "Conversion timed out\n");
1251                 return -ETIMEDOUT;
1252         }
1253
1254         /* read the converted data */
1255         ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
1256                                &st->temp, sizeof(st->temp));
1257         if (ret)
1258                 return ret;
1259
1260         *val = __be32_to_cpu(st->temp);
1261
1262         if (!(LTC2983_RES_VALID_MASK & *val)) {
1263                 dev_err(&st->spi->dev, "Invalid conversion detected\n");
1264                 return -EIO;
1265         }
1266
1267         ret = sensor->fault_handler(st, *val);
1268         if (ret)
1269                 return ret;
1270
1271         *val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
1272         return 0;
1273 }
1274
1275 static int ltc2983_read_raw(struct iio_dev *indio_dev,
1276                             struct iio_chan_spec const *chan,
1277                             int *val, int *val2, long mask)
1278 {
1279         struct ltc2983_data *st = iio_priv(indio_dev);
1280         int ret;
1281
1282         /* sanity check */
1283         if (chan->address >= st->num_channels) {
1284                 dev_err(&st->spi->dev, "Invalid chan address:%ld",
1285                         chan->address);
1286                 return -EINVAL;
1287         }
1288
1289         switch (mask) {
1290         case IIO_CHAN_INFO_RAW:
1291                 mutex_lock(&st->lock);
1292                 ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
1293                 mutex_unlock(&st->lock);
1294                 return ret ?: IIO_VAL_INT;
1295         case IIO_CHAN_INFO_SCALE:
1296                 switch (chan->type) {
1297                 case IIO_TEMP:
1298                         /* value in milli degrees */
1299                         *val = 1000;
1300                         /* 2^10 */
1301                         *val2 = 1024;
1302                         return IIO_VAL_FRACTIONAL;
1303                 case IIO_VOLTAGE:
1304                         /* value in millivolt */
1305                         *val = 1000;
1306                         /* 2^21 */
1307                         *val2 = 2097152;
1308                         return IIO_VAL_FRACTIONAL;
1309                 default:
1310                         return -EINVAL;
1311                 }
1312         }
1313
1314         return -EINVAL;
1315 }
1316
1317 static int ltc2983_reg_access(struct iio_dev *indio_dev,
1318                               unsigned int reg,
1319                               unsigned int writeval,
1320                               unsigned int *readval)
1321 {
1322         struct ltc2983_data *st = iio_priv(indio_dev);
1323
1324         if (readval)
1325                 return regmap_read(st->regmap, reg, readval);
1326         else
1327                 return regmap_write(st->regmap, reg, writeval);
1328 }
1329
1330 static irqreturn_t ltc2983_irq_handler(int irq, void *data)
1331 {
1332         struct ltc2983_data *st = data;
1333
1334         complete(&st->completion);
1335         return IRQ_HANDLED;
1336 }
1337
1338 #define LTC2983_CHAN(__type, index, __address) ({ \
1339         struct iio_chan_spec __chan = { \
1340                 .type = __type, \
1341                 .indexed = 1, \
1342                 .channel = index, \
1343                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1344                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1345                 .address = __address, \
1346         }; \
1347         __chan; \
1348 })
1349
1350 static int ltc2983_parse_fw(struct ltc2983_data *st)
1351 {
1352         struct device *dev = &st->spi->dev;
1353         struct fwnode_handle *child;
1354         int ret = 0, chan = 0, channel_avail_mask = 0;
1355
1356         device_property_read_u32(dev, "adi,mux-delay-config-us", &st->mux_delay_config);
1357
1358         device_property_read_u32(dev, "adi,filter-notch-freq", &st->filter_notch_freq);
1359
1360         st->num_channels = device_get_child_node_count(dev);
1361         if (!st->num_channels) {
1362                 dev_err(&st->spi->dev, "At least one channel must be given!");
1363                 return -EINVAL;
1364         }
1365
1366         st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
1367                                    GFP_KERNEL);
1368         if (!st->sensors)
1369                 return -ENOMEM;
1370
1371         st->iio_channels = st->num_channels;
1372         device_for_each_child_node(dev, child) {
1373                 struct ltc2983_sensor sensor;
1374
1375                 ret = fwnode_property_read_u32(child, "reg", &sensor.chan);
1376                 if (ret) {
1377                         dev_err(dev, "reg property must given for child nodes\n");
1378                         goto put_child;
1379                 }
1380
1381                 /* check if we have a valid channel */
1382                 if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
1383                     sensor.chan > st->info->max_channels_nr) {
1384                         ret = -EINVAL;
1385                         dev_err(dev, "chan:%d must be from %u to %u\n", sensor.chan,
1386                                 LTC2983_MIN_CHANNELS_NR, st->info->max_channels_nr);
1387                         goto put_child;
1388                 } else if (channel_avail_mask & BIT(sensor.chan)) {
1389                         ret = -EINVAL;
1390                         dev_err(dev, "chan:%d already in use\n", sensor.chan);
1391                         goto put_child;
1392                 }
1393
1394                 ret = fwnode_property_read_u32(child, "adi,sensor-type", &sensor.type);
1395                 if (ret) {
1396                         dev_err(dev,
1397                                 "adi,sensor-type property must given for child nodes\n");
1398                         goto put_child;
1399                 }
1400
1401                 dev_dbg(dev, "Create new sensor, type %u, chann %u",
1402                                                                 sensor.type,
1403                                                                 sensor.chan);
1404
1405                 if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
1406                     sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
1407                         st->sensors[chan] = ltc2983_thermocouple_new(child, st,
1408                                                                      &sensor);
1409                 } else if (sensor.type >= LTC2983_SENSOR_RTD &&
1410                            sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
1411                         st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
1412                 } else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
1413                            sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
1414                         st->sensors[chan] = ltc2983_thermistor_new(child, st,
1415                                                                    &sensor);
1416                 } else if (sensor.type == LTC2983_SENSOR_DIODE) {
1417                         st->sensors[chan] = ltc2983_diode_new(child, st,
1418                                                               &sensor);
1419                 } else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
1420                         st->sensors[chan] = ltc2983_r_sense_new(child, st,
1421                                                                 &sensor);
1422                         /* don't add rsense to iio */
1423                         st->iio_channels--;
1424                 } else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
1425                         st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
1426                 } else if (st->info->has_temp &&
1427                            sensor.type == LTC2983_SENSOR_ACTIVE_TEMP) {
1428                         st->sensors[chan] = ltc2983_temp_new(child, st, &sensor);
1429                 } else {
1430                         dev_err(dev, "Unknown sensor type %d\n", sensor.type);
1431                         ret = -EINVAL;
1432                         goto put_child;
1433                 }
1434
1435                 if (IS_ERR(st->sensors[chan])) {
1436                         dev_err(dev, "Failed to create sensor %ld",
1437                                 PTR_ERR(st->sensors[chan]));
1438                         ret = PTR_ERR(st->sensors[chan]);
1439                         goto put_child;
1440                 }
1441                 /* set generic sensor parameters */
1442                 st->sensors[chan]->chan = sensor.chan;
1443                 st->sensors[chan]->type = sensor.type;
1444
1445                 channel_avail_mask |= BIT(sensor.chan);
1446                 chan++;
1447         }
1448
1449         return 0;
1450 put_child:
1451         fwnode_handle_put(child);
1452         return ret;
1453 }
1454
1455 static int ltc2983_eeprom_cmd(struct ltc2983_data *st, unsigned int cmd,
1456                               unsigned int wait_time, unsigned int status_reg,
1457                               unsigned long status_fail_mask)
1458 {
1459         unsigned long time;
1460         unsigned int val;
1461         int ret;
1462
1463         ret = regmap_bulk_write(st->regmap, LTC2983_EEPROM_KEY_REG,
1464                                 &st->eeprom_key, sizeof(st->eeprom_key));
1465         if (ret)
1466                 return ret;
1467
1468         reinit_completion(&st->completion);
1469
1470         ret = regmap_write(st->regmap, LTC2983_STATUS_REG,
1471                            LTC2983_STATUS_START(true) | cmd);
1472         if (ret)
1473                 return ret;
1474
1475         time = wait_for_completion_timeout(&st->completion,
1476                                            msecs_to_jiffies(wait_time));
1477         if (!time) {
1478                 dev_err(&st->spi->dev, "EEPROM command timed out\n");
1479                 return -ETIMEDOUT;
1480         }
1481
1482         ret = regmap_read(st->regmap, status_reg, &val);
1483         if (ret)
1484                 return ret;
1485
1486         if (val & status_fail_mask) {
1487                 dev_err(&st->spi->dev, "EEPROM command failed: 0x%02X\n", val);
1488                 return -EINVAL;
1489         }
1490
1491         return 0;
1492 }
1493
1494 static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
1495 {
1496         u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
1497         int ret;
1498
1499         /* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1500         ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
1501                                        LTC2983_STATUS_UP(status) == 1, 25000,
1502                                        25000 * 10);
1503         if (ret) {
1504                 dev_err(&st->spi->dev, "Device startup timed out\n");
1505                 return ret;
1506         }
1507
1508         ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
1509                                  LTC2983_NOTCH_FREQ_MASK,
1510                                  LTC2983_NOTCH_FREQ(st->filter_notch_freq));
1511         if (ret)
1512                 return ret;
1513
1514         ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
1515                            st->mux_delay_config);
1516         if (ret)
1517                 return ret;
1518
1519         if (st->info->has_eeprom && !assign_iio) {
1520                 ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_READ_CMD,
1521                                          LTC2983_EEPROM_READ_TIME_MS,
1522                                          LTC2983_EEPROM_READ_STATUS_REG,
1523                                          LTC2983_EEPROM_READ_FAILURE_MASK);
1524                 if (!ret)
1525                         return 0;
1526         }
1527
1528         for (chan = 0; chan < st->num_channels; chan++) {
1529                 u32 chan_type = 0, *iio_chan;
1530
1531                 ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
1532                 if (ret)
1533                         return ret;
1534                 /*
1535                  * The assign_iio flag is necessary for when the device is
1536                  * coming out of sleep. In that case, we just need to
1537                  * re-configure the device channels.
1538                  * We also don't assign iio channels for rsense.
1539                  */
1540                 if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
1541                     !assign_iio)
1542                         continue;
1543
1544                 /* assign iio channel */
1545                 if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
1546                         chan_type = IIO_TEMP;
1547                         iio_chan = &iio_chan_t;
1548                 } else {
1549                         chan_type = IIO_VOLTAGE;
1550                         iio_chan = &iio_chan_v;
1551                 }
1552
1553                 /*
1554                  * add chan as the iio .address so that, we can directly
1555                  * reference the sensor given the iio_chan_spec
1556                  */
1557                 st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
1558                                                        chan);
1559         }
1560
1561         return 0;
1562 }
1563
1564 static const struct regmap_range ltc2983_reg_ranges[] = {
1565         regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
1566         regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
1567         regmap_reg_range(LTC2983_EEPROM_KEY_REG, LTC2983_EEPROM_KEY_REG),
1568         regmap_reg_range(LTC2983_EEPROM_READ_STATUS_REG,
1569                          LTC2983_EEPROM_READ_STATUS_REG),
1570         regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
1571         regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
1572                          LTC2983_MULT_CHANNEL_END_REG),
1573         regmap_reg_range(LTC2986_EEPROM_STATUS_REG, LTC2986_EEPROM_STATUS_REG),
1574         regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
1575         regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
1576                          LTC2983_CHAN_ASSIGN_END_REG),
1577         regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
1578                          LTC2983_CUST_SENS_TBL_END_REG),
1579 };
1580
1581 static const struct regmap_access_table ltc2983_reg_table = {
1582         .yes_ranges = ltc2983_reg_ranges,
1583         .n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
1584 };
1585
1586 /*
1587  *  The reg_bits are actually 12 but the device needs the first *complete*
1588  *  byte for the command (R/W).
1589  */
1590 static const struct regmap_config ltc2983_regmap_config = {
1591         .reg_bits = 24,
1592         .val_bits = 8,
1593         .wr_table = &ltc2983_reg_table,
1594         .rd_table = &ltc2983_reg_table,
1595         .read_flag_mask = GENMASK(1, 0),
1596         .write_flag_mask = BIT(1),
1597 };
1598
1599 static const struct  iio_info ltc2983_iio_info = {
1600         .read_raw = ltc2983_read_raw,
1601         .debugfs_reg_access = ltc2983_reg_access,
1602 };
1603
1604 static int ltc2983_probe(struct spi_device *spi)
1605 {
1606         struct ltc2983_data *st;
1607         struct iio_dev *indio_dev;
1608         struct gpio_desc *gpio;
1609         int ret;
1610
1611         indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1612         if (!indio_dev)
1613                 return -ENOMEM;
1614
1615         st = iio_priv(indio_dev);
1616
1617         st->info = spi_get_device_match_data(spi);
1618         if (!st->info)
1619                 return -ENODEV;
1620
1621         st->regmap = devm_regmap_init_spi(spi, &ltc2983_regmap_config);
1622         if (IS_ERR(st->regmap)) {
1623                 dev_err(&spi->dev, "Failed to initialize regmap\n");
1624                 return PTR_ERR(st->regmap);
1625         }
1626
1627         mutex_init(&st->lock);
1628         init_completion(&st->completion);
1629         st->spi = spi;
1630         st->eeprom_key = cpu_to_be32(LTC2983_EEPROM_KEY);
1631         spi_set_drvdata(spi, st);
1632
1633         ret = ltc2983_parse_fw(st);
1634         if (ret)
1635                 return ret;
1636
1637         gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH);
1638         if (IS_ERR(gpio))
1639                 return PTR_ERR(gpio);
1640
1641         if (gpio) {
1642                 /* bring the device out of reset */
1643                 usleep_range(1000, 1200);
1644                 gpiod_set_value_cansleep(gpio, 0);
1645         }
1646
1647         st->iio_chan = devm_kzalloc(&spi->dev,
1648                                     st->iio_channels * sizeof(*st->iio_chan),
1649                                     GFP_KERNEL);
1650         if (!st->iio_chan)
1651                 return -ENOMEM;
1652
1653         ret = ltc2983_setup(st, true);
1654         if (ret)
1655                 return ret;
1656
1657         ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
1658                                IRQF_TRIGGER_RISING, st->info->name, st);
1659         if (ret) {
1660                 dev_err(&spi->dev, "failed to request an irq, %d", ret);
1661                 return ret;
1662         }
1663
1664         if (st->info->has_eeprom) {
1665                 ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_WRITE_CMD,
1666                                          LTC2983_EEPROM_WRITE_TIME_MS,
1667                                          LTC2986_EEPROM_STATUS_REG,
1668                                          LTC2983_EEPROM_STATUS_FAILURE_MASK);
1669                 if (ret)
1670                         return ret;
1671         }
1672
1673         indio_dev->name = st->info->name;
1674         indio_dev->num_channels = st->iio_channels;
1675         indio_dev->channels = st->iio_chan;
1676         indio_dev->modes = INDIO_DIRECT_MODE;
1677         indio_dev->info = &ltc2983_iio_info;
1678
1679         return devm_iio_device_register(&spi->dev, indio_dev);
1680 }
1681
1682 static int ltc2983_resume(struct device *dev)
1683 {
1684         struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1685         int dummy;
1686
1687         /* dummy read to bring the device out of sleep */
1688         regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
1689         /* we need to re-assign the channels */
1690         return ltc2983_setup(st, false);
1691 }
1692
1693 static int ltc2983_suspend(struct device *dev)
1694 {
1695         struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1696
1697         return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
1698 }
1699
1700 static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend,
1701                                 ltc2983_resume);
1702
1703 static const struct ltc2983_chip_info ltc2983_chip_info_data = {
1704         .name = "ltc2983",
1705         .max_channels_nr = 20,
1706 };
1707
1708 static const struct ltc2983_chip_info ltc2984_chip_info_data = {
1709         .name = "ltc2984",
1710         .max_channels_nr = 20,
1711         .has_eeprom = true,
1712 };
1713
1714 static const struct ltc2983_chip_info ltc2986_chip_info_data = {
1715         .name = "ltc2986",
1716         .max_channels_nr = 10,
1717         .has_temp = true,
1718         .has_eeprom = true,
1719 };
1720
1721 static const struct ltc2983_chip_info ltm2985_chip_info_data = {
1722         .name = "ltm2985",
1723         .max_channels_nr = 10,
1724         .has_temp = true,
1725         .has_eeprom = true,
1726 };
1727
1728 static const struct spi_device_id ltc2983_id_table[] = {
1729         { "ltc2983", (kernel_ulong_t)&ltc2983_chip_info_data },
1730         { "ltc2984", (kernel_ulong_t)&ltc2984_chip_info_data },
1731         { "ltc2986", (kernel_ulong_t)&ltc2986_chip_info_data },
1732         { "ltm2985", (kernel_ulong_t)&ltm2985_chip_info_data },
1733         {},
1734 };
1735 MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
1736
1737 static const struct of_device_id ltc2983_of_match[] = {
1738         { .compatible = "adi,ltc2983", .data = &ltc2983_chip_info_data },
1739         { .compatible = "adi,ltc2984", .data = &ltc2984_chip_info_data },
1740         { .compatible = "adi,ltc2986", .data = &ltc2986_chip_info_data },
1741         { .compatible = "adi,ltm2985", .data = &ltm2985_chip_info_data },
1742         {},
1743 };
1744 MODULE_DEVICE_TABLE(of, ltc2983_of_match);
1745
1746 static struct spi_driver ltc2983_driver = {
1747         .driver = {
1748                 .name = "ltc2983",
1749                 .of_match_table = ltc2983_of_match,
1750                 .pm = pm_sleep_ptr(&ltc2983_pm_ops),
1751         },
1752         .probe = ltc2983_probe,
1753         .id_table = ltc2983_id_table,
1754 };
1755
1756 module_spi_driver(ltc2983_driver);
1757
1758 MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1759 MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1760 MODULE_LICENSE("GPL");